A design study for a medium-scale field demonstration of the viscous barrier technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moridis, G.; Yen, P.; Persoff, P.
1996-09-01
This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory`s new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30more » ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier.« less
Method for formation of subsurface barriers using viscous colloids
Apps, J.A.; Persoff, P.; Moridis, G.; Pruess, K.
1998-11-17
A method is described for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysiloxanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature. 17 figs.
Slimak, K M
1978-12-01
The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.
Double barrier system for an in situ conversion process
McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL
2009-05-05
A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.
NASA Astrophysics Data System (ADS)
Radonjic, M.; Du, H.
2015-12-01
Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to predominantly nano-scale range as characteristic of pore-size distribution typical for shale rocks. The effect of compression on cement appears to petrophysically alter cement towards the properties of shale caprocks, although the process is achieved much faster than in the case of shale diagenesis over geological times.
Review of potential subsurface permeable barrier emplacement and monitoring technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.
1994-02-01
This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, ormore » excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.« less
Feasibility study of tank leakage mitigation using subsurface barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treat, R.L.; Peters, B.B.; Cameron, R.J.
1994-09-21
The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulatingmore » air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.« less
GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER
Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...
Method of installing subsurface barrier
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2007-10-09
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Subsurface materials management and containment system
Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.
2004-07-06
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Subsurface materials management and containment system
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2006-10-17
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
NASA Astrophysics Data System (ADS)
Zhang, Z. Fred
2016-06-01
A surface barrier is a commonly used technology for isolation of subsurface contaminants. Surface barriers for isolating radioactive waste are expected to perform for centuries to millennia, yet there are very few data for field-scale surface barriers for periods approaching a decade or longer. The Prototype Hanford Barrier (PHB) with a design life of 1000 years was constructed over an existing radioactive waste site in 1994 to demonstrate its long-term performance. The primary element of the PHB is an evapotranspiration-capillary (ETC) barrier in which precipitation water is stored in a fine-textured soil layer and later released to the atmosphere via evapotranspiration. To address the barrier performance under extreme conditions, this study included an enhanced precipitation stress test from 1995 to 1997 to determine barrier response to extreme precipitation events. During this period a 1000 year 24 h return rainstorm was simulated in March every year. The loss of vegetation on barrier hydrology was tested with a controlled fire test in 2008. The 19 year monitoring record shows that the store-and-release mechanism worked as well as or better than the design criterion. Average drainage from the ETC barrier amounted to an average of 0.005 mm yr-1, which is well below the design criterion of 0.5 mm yr-1. After a simulated wildfire, the naturally reestablished vegetation and increased evaporation combined to release the stored water and summer precipitation to the atmosphere such that drainage did not occur in the 5 years subsequent to the fire.
Method of sealing casings of subsurface materials management system
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2007-02-06
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.
2006-04-18
Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.
Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan
NASA Astrophysics Data System (ADS)
Fang, H. T.
2015-12-01
The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface to input parameter. The simulation of water level and chloride concentration already showed the real situation, and the result can be applied to the future study of the Chi-Ken subsurface reservoir salinity problems.
NASA Astrophysics Data System (ADS)
Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.
2005-12-01
Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.
Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...
Hwang, C.; Copeland, A.; Lucas, Susan; ...
2015-01-22
We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.
Containment of subsurface contaminants
Corey, John C.
1994-01-01
A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.
NASA Astrophysics Data System (ADS)
Cornaton, F. J.; Park, Y.-J.; Normani, S. D.; Sudicky, E. A.; Sykes, J. F.
2008-04-01
Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.
Plasmid incidence in bacteria from deep subsurface sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, J.K.; Hicks, R.J.; Li, S.W.
Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of themore » individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.« less
Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals
NASA Astrophysics Data System (ADS)
Raghunath, P.; Huang, W. F.; Lin, M. C.
2013-04-01
Hydrogenation of TiO2 is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO2 hydrogenation through H and/or H2 diffusion from the surface into subsurface layers of anatase TiO2 (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H2 molecules can migrate from the crystal surface into TiO2 near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H2 on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H2 migration from the first layer of the subsurface Osub1 to the 2nd layer of the subsurface oxygen Osub2 requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H2 penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H2 from the cage by increasing its escaping barrier energy. The H2 molecule inside a cage can readily dissociate and form 2HO-species exothermically (ΔH = -31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H2O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H2 molecule. H2O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H2, and H2O appear prominently within the TiO2 band gap; in addition, the former induces a shift of the band gap position notably towards the conduction band. The thermochemistry for formation of the most stable sub-surface species (2HO and H2O) has been predicted. These results satisfactorily account for the photo-catalytic activity enhancement observed experimentally by hydrogenation at high temperatures and high pressures.
Containment of subsurface contaminants
Corey, J.C.
1994-09-06
A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.
Takai, Ken; Hirayama, Hisako; Sakihama, Yuri; Inagaki, Fumio; Yamato, Yu; Horikoshi, Koki
2002-01-01
Culture-dependent and -independent techniques were combined to characterize the physiological properties and the ecological impacts of culture-resistant phylotypes of thermophiles within the order Aquificales from a subsurface hot aquifer of a Japanese gold mine. Thermophilic bacteria phylogenetically associated with previously uncultured phylotypes of Aquificales were successfully isolated. 16S ribosomal DNA clone analysis of the entire microbial DNA assemblage and fluorescence in situ whole-cell hybridization analysis indicated that the isolates dominated the microbial population in the subsurface aquifer. The isolates were facultatively anaerobic, hydrogen- or sulfur/thiosulfate-oxidizing, thermophilic chemolithoautotrophs utilizing molecular oxygen, nitrate, ferric iron, arsenate, selenate, and selenite as electron acceptors. Their versatile energy-generating systems may reflect the geochemical conditions of their habitat in the geothermally active subsurface gold mine. PMID:12039766
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinsey, P.C.
2000-05-05
The U.S. Dept of Energy (DOE) Subsurface Microbial Culture Collection (SMCC) contains nearly 10,000 strains of microorganisms isolated from terrestrial subsurface environments. Many of the aerobic, gram-negative, chemoheterotrophs isolated from the DOE Savannah River Site (SRS) have previously been identified by phylogenetic analysis of 16S ribosomal RNA (rRNA) gene nucleotide sequences. These SMCC isolates are currently being examined using Biolog GN Microplates and the Biolog Microstation System in order to gain knowledge of their metabolic capabilities and to compare Biolog IDs with 16S IDs. To accommodate the particular needs of these subsurface isolates, which are often incapable of growing undermore » high-nutrient conditions, Biolog's recommendations for inoculating isolates into Biolog GN Microplates have been altered. The isolates are grown on low nutrient media, sodium thioglycolate (3mM) is added to the culture media to inhibit capsule formation, and a low density of bacteria is inoculated into the microplate. Using these altered inoculation criteria, 60 percent of these SMCC isolates have a Biolog genus ID that matches the 16S rRNA ID. These results indicate that the Biolog System can be a good means of identifying unusual environmental isolates, even when recommended inoculation procedures are altered to accommodate particular isolate needs.« less
Lin, Wen-Sheng; Liu, Chen-Wuing; Li, Ming-Hsu
2016-01-01
Many disposal concepts currently show that concrete is an effective confinement material used in engineered barrier systems (EBS) at a number of low-level radioactive waste (LLW) disposal sites. Cement-based materials have properties for the encapsulation, isolation, or retardation of a variety of hazardous contaminants. The reactive chemical transport model of HYDROGEOCHEM 5.0 was applied to simulate the effect of hydrogeochemical processes on concrete barrier degradation in an EBS which has been proposed to use in the LLW disposal site in Taiwan. The simulated results indicated that the main processes that are responsible for concrete degradation are the species induced from hydrogen ion, sulfate, and chloride. The EBS with the side ditch drainage system effectively discharges the infiltrated water and lowers the solute concentrations that may induce concrete degradation. The redox processes markedly influence the formations of the degradation materials. The reductive environment in the EBS reduces the formation of ettringite in concrete degradation processes. Moreover, the chemical conditions in the concrete barriers maintain an alkaline condition after 300 years in the proposed LLW repository. This study provides a detailed picture of the long-term evolution of the hydrogeochemical environment in the proposed LLW disposal site in Taiwan.
Active cooling-based surface confinement system for thermal soil treatment
Aines, R.D.; Newmark, R.L.
1997-10-28
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.
Active cooling-based surface confinement system for thermal soil treatment
Aines, Roger D.; Newmark, Robin L.
1997-01-01
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.
Evaluation of Subsurface Engineered Barriers at Waste Sites Volumes 1 and 2
This report provides the U.S. Environmental Protection Agency’s (EPA) waste programs with a national retrospective analysis of barrier field performance, as well as information that useful in developing guidance on the use and evaluation of barrier systems
Colangelo-Lillis, J; Eicken, H; Carpenter, S D; Deming, J W
2016-05-01
Cryopegs are sub-surface hypersaline brines at sub-zero temperatures within permafrost; their global extent and distribution are unknown. The permafrost barrier to surface and groundwater advection maintains these brines as semi-isolated systems over geological time. A cryopeg 7 m below ground near Barrow, Alaska, was sampled for geochemical and microbiological analysis. Sub-surface brines (in situtemperature of -6 °C, salinity of 115 ppt), and an associated sediment-infused ice wedge (melt salinity of 0.04 ppt) were sampled using sterile technique. Major ionic concentrations in the brine corresponded more closely to other (Siberian) cryopegs than to Standard seawater or the ice wedge. Ionic ratios and stable isotope analysis of water conformed to a marine or brackish origin with subsequent Rayleigh fractionation. The brine contained ∼1000× more bacteria than surrounding ice, relatively high viral numbers suggestive of infection and reproduction, and an unusually high ratio of particulate to dissolved extracellular polysaccharide substances. A viral metagenome indicated a high frequency of temperate viruses and limited viral diversity compared to surface environments, with closest similarity to low water activity environments. Interpretations of the results underscore the isolation of these underexplored microbial ecosystems from past and present oceans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms
NASA Astrophysics Data System (ADS)
Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.
2016-12-01
Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical characterization of isolated strains can help us establish the possible mechanisms of EET, and hence provide an insight on survival strategies of subsurface microbiota in extreme environments. Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical characterization of isolated strains can help us establish the possible mechanisms of EET, and hence provide an insight on survival strategies of subsurface microbiota in extreme environments.
Hydrologic connectivity of geographically isolated wetlands to surface water systems
NASA Astrophysics Data System (ADS)
Creed, I. F.; Ameli, A.
2016-12-01
Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.
Barrier-free subsurface incorporation of 3 d metal atoms into Bi(111) films
Klein, C.; Vollmers, N. J.; Gerstmann, U.; ...
2015-05-27
By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3 d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. Thus, it allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observedmore » for topological insulators formed by substrate-stabilized Bi bilayers.« less
Geophysical Monitoring of Two types of Subsurface Injection
Nano-scale particles of zero-valent iron (ZVI) were injected into the subsurface at the 100-D area of the DOE Hanford facility. The intent of this iron injection was to repair a gap in the existing in-situ redox manipulation barrier located at the site. A number of geophysical me...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasrotia, Puja; Green, Stefan; Canion, Andy
2014-01-01
The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungalmore » communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.« less
Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.
2014-01-01
The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927
PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF INORGANIC CONTAMINANTS
The permeable reactive barrier (PRB) technology is an in-situ approach for groundwater remediation that couples subsurface flow management with a passive chemical or biochemical treatment zone. The development and application of the PRB technology has progressed over the last de...
COST ANALYSIS OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF GROUND WATER
ABSTRACT
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment...
Permeable reactive barriers (PRBs) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented ...
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
Moore, L.J.; Jol, H.M.; Kruse, S.; Vanderburgh, S.; Kaminsky, G.M.
2004-01-01
The southwest Washington coastline has experienced extremely high rates of progradation during the late Holocene. Subsurface stratigraphy, preserved because of progradation and interpreted using ground-penetrating radar (GPR), has previously been used successfully to document coastal response to prehistoric storm and earthquake events. New GPR data collected at Ocean Shores, Washington, suggest that the historic stratigraphy of the coastal barrier in this area represents a higher resolution record of coastal behavior than previously thought. GPR records for this location at 200 MHz reveal a series of gently sloping, seaward-dipping reflections with slopes similar to the modern beach and spacings on the order of 20-45 cm. Field evidence and model results suggest that thin (1-10 cm), possibly magnetite-rich, heavy-mineral lags or low-porosity layers left by winter storms and separated by thick (20-40 cm) summer progradational sequences are responsible for generating the GPR reflections. These results indicate that a record of annual progradation is preserved in the subsurface of the prograding barrier and can be quantified using GPR. Such records of annual coastal behavior, where available, will be invaluable in understanding past coastal response to climatic and tectonic forcing. ?? 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin
2011-06-15
The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.« less
Permeable reactive barriers (PRB's) are an alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are being selected with increased frequency at waste sites (more than 40 f...
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
Permeable reactive barrier technology is an in-situ approach for remediating groundwater contamination that combines subsurface fluid flow management with passive chemical treatment. Factors such as the buildup of mineral precipitates, buildup of microbial biomass (bio-fouling...
The research approach will involve hydrogeological and geochemical studies to provide information needed in order to select an appropriate design configuration and to evaluate the performance of a pilot-scale subsurface permeable reactive barrier to remediate arsenic-contaminated...
In-situ chemical barrier and method of making
Cantrell, K.J.; Kaplan, D.I.
1999-01-12
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete. 7 figs.
In-situ chemical barrier and method of making
Cantrell, Kirk J.; Kaplan, Daniel I.
1999-01-01
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete.
LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: AN UPDATE ON A U.S. MULTI-AGENCY INITIATIVE
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment option at seve...
AMELIORATION OF ACID MINE DRAINAGE USING REACTIVE MIXTURES IN PERMEABLE REACTIVE BARRIERS
The generation and release of acidic drainage from mine wastes is an environmental problem of international scale. The use of zero-valent iron and/or iron mixtures in subsurface Permeable Reactive Barriers (PRB) presents a possible passive alternative for remediating acidic grou...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J.; Carter, Ernest E.; Son, Jaime Santos
Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. A material including wax may be introduced into one or more wellbores. The material introduced into two or more wells may mix in the formation and congeal to form a barrier to fluid flow.
A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...
A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...
Demonstration of close-coupled barriers for subsurface containment of buried waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.
1996-05-01
A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed wastemore » remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.« less
Permeable reactive barrier (PRB) technology is gradually being accepted as a viable alternative to conventional groundwater remediation systems such as pump and treat. PRB technology involves the placement or formation of a reactive treatment zone in the path of a dissolved conta...
Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, NC and the Denver Federal Center, CO sites. These groundwater treatment systems use zero-valent iron filings to intercept an...
Evaluation of Subsurface Engineered Barriers at Waste Sites
1998-08-01
28 3-4 MATRIX FOR EVALUATING BARRIER CQA/CQC AGAINST ACCEPTABLE INDSUTRY PRACTICES...STANDARDS................................................................. 66 4-2 MATRIX FOR EVALUATING CAP AGAINST ACCEPTABLE INDSUTRY PRACTICES...stated previously, the most widely used technique for containment is the soil-bentonite slurry wall. It is typically the most economical , utilizes low
Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier
NASA Astrophysics Data System (ADS)
Zhang, Z. F.; Strickland, C. E.; Field, J. G.
2009-12-01
A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.
Direct control and characterization of a Schottky barrier by scanning tunneling microscopy
NASA Technical Reports Server (NTRS)
Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.
1988-01-01
Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.
Aromatic-degrading Sphingomonas isolates from the deep subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, J.K.; Romine, M.F.; Balkwill, D.L.
An obligately aerobic chemoheterotrophic bacterium (strain F199) previously isolated from Southeast Coastal Plain subsurface sediments and shown to degrade toluene, naphthalene, and other aromatic compounds was characterized by analysis of its 16S rRNA nucleotide base sequence and cellular lipid composition. Strain F199 contained 2-OH14:0 and 18:1{omega}7c as the predominant cellular fatty acids and sphingolipids that are characteristic of the genus Sphingomonas. Phylogenetic analysis of its 16SrRNA sequence indicated that F199 was most closely related to Sphingomonas capsulata among the bacteria currently in the Ribosomal Database. Five additional isolates from deep Southeast Coastal Plain sediments were determined by 16S rRNA sequencemore » analysis to be closely related to F199. These strains also contained characteristic sphingolipids. Four of these five strains could also grow on a broad range of aromatic compounds and could mineralize [{sup 14C}]toluene and [{sup 14C}]naphthalene. S. capsulata (ATCC 14666), Sphingomonas paucimobiolis (ATCC 29837), and one of the subsurface isolates were unable to grow on any of the aromatic compounds or mineralize toluene or naphthalene. These results indicate that bacteria within the genus Sphingomonas are present in Southeast Coastal Plain subsurface sediments and that the capacity for degrading a broad range of substituted aromatic compounds appears to be common among Sphingomonas species from this environment. 41 refs., 2 figs., 5 tabs.« less
SST Control by Subsurface Mixing During Indian Ocean Monsoons
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SST Control by Subsurface Mixing during Indian Ocean ...quantify the variability in upper ocean mixing associated with changes in barrier layer thickness and strength across the BoB and under different...These objectives directly target the fundamental role that upper ocean dynamics play in the complex air-sea interactions of the northern Indian Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lighty, R.G.; Russell, K.L.
Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm incrementsmore » from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.« less
NASA Astrophysics Data System (ADS)
Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.
2010-12-01
The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears to minimize environmental stresses, like UV radiation, desiccation and temperature fluctuation, typically found on the soil surface. Our findings indicate that E. coli strains above the surface are largely diverse, until they enter subsurface environments where specific extracellular characteristics are likely advantageous for survival and/or transport.
NASA Astrophysics Data System (ADS)
Harrison, B. K.; Bailey, J. V.
2013-12-01
Sediment horizons represent a significant - but not permanent - barrier to microbial transport. Cells commonly attach to mineral surfaces in unconsolidated sediments. However, by taxis, growth, or passive migration under advecting fluids, some portion of the microbial community may transgress sedimentary boundaries. Few studies have attempted to constrain such transport of community signatures in the marine subsurface and its potential impact on biogeography. Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula recovered sediments over a greater than 1km interval representing a gradual decrease of terrestrial influence, from tidal to continental shelf depositional settings. This sequence represents a key opportunity to link subsurface microbial communities to lithological variability and investigate the permanence of community signatures characteristic of distinct depositional regimes. The phylogenetic connectivity between marine and terrestrially-influenced deposits may demonstrate to what degree sediments offer a substantial barrier to cell transport in the subsurface. Previous work has demonstrated that the Actinobacterial phylum is broadly distributed in marine sediments (Maldonado et al., 2005), present and active in the deep subsurface (Orsi et al., 2013), and that marine and terrestrial lineages may potentially be distinguished by 16S rRNA gene sequencing (e.g. Prieto-Davó et al., 2013). We report on Actinobacteria-specific 16S rRNA gene diversity recovered between 1370 and 2642 mbsf with high-throughput sequencing using the Illumina MiSeq platform, as well as selective assembly and analysis of environmental clone libraries.
Applications of spatially offset Raman spectroscopy to defense and security
NASA Astrophysics Data System (ADS)
Guicheteau, Jason; Hopkins, Rebecca
2016-05-01
Spatially offset Raman spectroscopy (SORS) allows for sub-surface and through barrier detection and has applications in drug analysis, cancer detection, forensic science, as well as defense and security. This paper reviews previous efforts in SORS and other through barrier Raman techniques and presents a discussion on current research in defense and security applications.
Vapor-barrier Vacuum Isolation System
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)
2014-01-01
A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.
NASA Astrophysics Data System (ADS)
Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui
2012-01-01
The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.
NASA Astrophysics Data System (ADS)
Erikat, I. A.; Hamad, B. A.
2013-11-01
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Erikat, I A; Hamad, B A
2013-11-07
We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.
Sulfur barrier for use with in situ processes for treating formations
Vinegar, Harold J [Bellaire, TX; Christensen, Del Scot [Friendswood, TX
2009-12-15
Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.
Isolation barriers between petunia axillaris and Petunia integrifolia (Solanaceae).
Dell'olivo, Alexandre; Hoballah, Maria Elena; Gübitz, Thomas; Kuhlemeier, Cris
2011-07-01
The isolation barriers restricting gene flow between populations or species are of crucial interest for understanding how biological species arise and how they are maintained. Few studies have examined the entire range of possible isolation barriers from geographic isolation to next generation hybrid viability. Here, we present a detailed analysis of isolation barriers between two flowering plant species of the genus Petunia (Solanaceae). Petunia integrifolia and P. axillaris feature divergent pollination syndromes but can produce fertile hybrids when crossed in the laboratory. Both Petunia species are primarily isolated in space but appear not to hybridize in sympatry. Our experiments demonstrate that pollinator isolation is very high but not strong enough to explain the absence of hybrids in nature. However, pollinator isolation in conjunction with male gametic isolation (i.e., pollen-pistil interaction) can explain the lack of natural hybridization, while postzygotic isolation barriers are low or nonexistent. Our study supports the notion that reproductive isolation in flowering plants is mainly caused by pre- rather than postzygotic isolation mechanisms. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Cultivation Of Deep Subsurface Microbial Communities
NASA Astrophysics Data System (ADS)
Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.
2018-01-01
The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.
Russell, Joseph A.; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.
2016-01-01
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705
Russell, Joseph A; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F
2016-01-01
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.
NASA Astrophysics Data System (ADS)
Chattaraj, D.; Kumar, Nandha; Ghosh, Prasenjit; Majumder, C.; Dash, Smruti
2017-11-01
With increasing demand for hydrogen economy driven world, the fundamental research of hydrogen-metal interactions has gained momentum. In this work we report a systematic theoretical study of the stability of different surfaces of intermetallic ZrCo that is a possible candidate as a getter bed for tritium. Our first principles ab initio thermodynamic calculations predict that amongst the (100), (110) and (111) surfaces, the stoichiometric (110) surface is the most stable one over a wide range of Co chemical potential. We have also studied adsorption, dissociation and diffusion of hydrogen on the (110) surface. On the basis of total energy, it is seen that adsorption of molecular hydrogen (H2) on the surface is much weaker than atomic hydrogen. The H2 decomposition on ZrCo surface can easily take place and the dissociation barrier is calculated to be 0.70 eV. The strength of binding of H atom on the surface is more or less independent of surface coverage till 1.0 ML of H. The thermodynamic stability of atomic H adsorbed on the surface, in subsurface and bulk decreases from surface to bulk to subsurface. Though the H atoms are mobile on the surface, their diffusion to the subsurface involves a barrier of about 0.79 eV.
Relations between Vegetation and Geologic Framework in Barrier Island
NASA Astrophysics Data System (ADS)
Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.
2017-12-01
Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better understand how barrier islands have responded to environmental change in the past should be integrated into current models of barrier island evolution in order to more accurately predict how the island will change over time in response to continued climatic variability.
The Serpentinite Subsurface Microbiome
NASA Astrophysics Data System (ADS)
Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.
2011-12-01
Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.
A new physical barrier system for seawater intrusion control
NASA Astrophysics Data System (ADS)
Abdoulhalik, Antoifi; Ahmed, Ashraf; Hamill, G. A.
2017-06-01
The construction of subsurface physical barriers is one of various methods used to control seawater intrusion (SWI) in coastal aquifers. This study proposes the mixed physical barrier (MPB) as a new barrier system for seawater intrusion control, which combines an impermeable cutoff wall and a semi-permeable subsurface dam. The effect of the traditionally-used physical barriers on transient saltwater wedge dynamics was first explored for various hydraulic gradients, and the workability of the MPB was thereafter thoroughly analysed. A newly developed automated image analysis based on light-concentration conversion was used in the experiments, which were completed in a porous media tank. The numerical code SEAWAT was used to assess the consistency of the experimental data and examine the sensitivity of the performance of the barriers to various key parameters. The results show that the MPB induced a visible lifting of the dense saline flux upward towards the outlet by the light freshwater. This saltwater lifting mechanism, observed for the first time, induced significant reduction to the saline water intrusion length. The use of the MPB yielded up to 62% and 42% more reduction of the saltwater intrusion length than the semi-permeable dam and the cutoff wall, respectively. The performance achieved by the MPB with a wall depth of 40% of the aquifer thickness was greater than that of a single cutoff wall with a penetration depth of 90% of the aquifer thickness (about 13% extra reduction). This means that the MPB could produce better seawater intrusion reduction than the traditionally used barriers at even lower cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aklujkar, Muktak; Young, Nelson D; Holmes, Dawn
2010-01-01
Background. Geobacter species in a phylogenetic cluster known as subsurface clade 1 are often the predominant microorganisms in subsurface environments in which Fe(III) reduction is the primary electron-accepting process. Geobacter bemidjiensis, a member of this clade, was isolated from hydrocarbon-contaminated subsurface sediments in Bemidji, Minnesota, and is closely related to Geobacter species found to be abundant at other subsurface sites. This study examines whether there are significant differences in the metabolism and physiology of G. bemidjiensis compared to non-subsurface Geobacter species. Results. Annotation of the genome sequence of G. bemidjiensis indicates several differences in metabolism compared to previously sequenced non-subsurfacemore » Geobacteraceae, which will be useful for in silico metabolic modeling of subsurface bioremediation processes involving Geobacter species. Pathways can now be predicted for the use of various carbon sources such as propionate by G. bemidjiensis. Additional metabolic capabilities such as carbon dioxide fixation and growth on glucose were predicted from the genome annotation. The presence of different dicarboxylic acid transporters and two oxaloacetate decarboxylases in G. bemidjiensis may explain its ability to grow by disproportionation of fumarate. Although benzoate is the only aromatic compound that G. bemidjiensis is known or predicted to utilize as an electron donor and carbon source, the genome suggests that this species may be able to detoxify other aromatic pollutants without degrading them. Furthermore, G. bemidjiensis is auxotrophic for 4-aminobenzoate, which makes it the first Geobacter species identified as having a vitamin requirement. Several features of the genome indicated that G. bemidjiensis has enhanced abilities to respire, detoxify and avoid oxygen. Conclusion. Overall, the genome sequence of G. bemidjiensis offers surprising insights into the metabolism and physiology of Geobacteraceae in subsurface environments, compared to non-subsurface Geobacter species, such as the ability to disproportionate fumarate, more efficient oxidation of propionate, enhanced responses to oxygen stress, and dependence on the environment for a vitamin requirement. Therefore, an understanding of the activity of Geobacter species in the subsurface is more likely to benefit from studies of subsurface isolates such as G. bemidjiensis than from the non-subsurface model species studied so far.« less
Green, Stefan J.; Rishishwar, Lavanya; Prakash, Om; Katz, Lee S.; Mariño-Ramírez, Leonardo; Jordan, I. King; Munk, Christine; Ivanova, Natalia; Mikhailova, Natalia; Watson, David B.; Brown, Steven D.; Palumbo, Anthony V.; Brooks, Scott C.
2012-01-01
We report the first genome sequences for six strains of Rhodanobacter species isolated from a variety of soil and subsurface environments. Three of these strains are capable of complete denitrification and three others are not. However, all six strains contain most of the genes required for the respiration of nitrate to gaseous nitrogen. The nondenitrifying members of the genus lack only the gene for nitrate reduction, the first step in the full denitrification pathway. The data suggest that the environmental role of bacteria from the genus Rhodanobacter should be reevaluated. PMID:22843592
Social Isolation and Physical Barriers in the Houses of Stroke Survivors in Rural China.
Zhang, Lifang; Yan, Tiebin; You, Liming; Li, Kun; Gao, Yan
2016-12-01
To describe the home barriers and social isolation of stroke survivors in the rural areas of China and to explore which home barriers are associated with social isolation. Cross-sectional survey. Structured interviews and observation in the participants' homes. Community-dwelling stroke survivors in the rural areas of China (N=818). Not applicable. Physical barriers in rural homes were surveyed using a home fall hazards assessment. Social isolation was identified if ≥2 of the following indicators were observed: low frequency of getting out of the home, lacking leisure activities, and living alone in the previous 3 months. The prevalence rates of 18 among 30 home barriers were >20%, and the highest was 93% (lack of handrails in the bathroom). The prevalence of social isolation was 30%. Three home barriers were independently related to social isolation. These were a distant toilet (odds ratio [OR], 2.363; 95% confidence interval [CI], 1.527-3.658; P<.001), unsuitable seating (OR, 1.571; 95% CI, 1.026-2.404; P=.038), and inaccessible light switches (OR, 1.572; 95% CI, 1.064-2.324; P=.023). Many barriers exist in the houses of stroke survivors in rural China. Some of them are related to social isolation. Eliminating or decreasing home barriers could be a feasible and effective approach to reducing social isolation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Advanced Polymer Technology for Containing and Immobilizing Strontium-90 in the Subsurface - 8361
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Baker; G. Heath; C. Scott
2008-02-01
Many Department of Energy (DOE) sites, including Idaho and Hanford, have heavy metals and/or radionuclides (e.g. strontium-90) present that are strongly adsorbed in the vadose zone, but which nevertheless are propagating toward the water table. A key challenge for immobilization of these contaminants is bringing the chosen amendment or remediation technology into contact with the contaminated porous medium, while ensuring that contaminated water and colloids do not escape. This is particularly challenging when the subsurface geology is complex and highly heterogeneous, as is the case at many DOE sites. The Idaho National Laboratory (INL) in collaboration with the University ofmore » Texas at Austin (UT) has conducted research sponsored through the DOE Office of Environmental Management (EM) Advanced Remediation Technologies Phase I program that successfully demonstrated application of a novel, pH-triggered advanced polymer for creating a physical barrier that prevents heavy metals and radionuclides in vadose zone soil and soil-pore water from migrating to the groundwater. The focus of this paper is on the column and sandbox experiments conducted by researchers at the Idaho National Laboratory in support of the Phase I program objectives. Proof of these concepts provides a technology basis for confining or isolating a volume of contaminated groundwater, to be implemented in future investigations at the Vadose Zone Research Park (VZRP) at INL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less
Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; ...
2016-05-10
Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less
Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, P.M.; Kowalik, W.S.
1995-08-01
Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portionsmore » of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.« less
Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R
2016-01-01
Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface. PMID:26140532
Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R
2016-02-01
Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.
Reproductive Isolation during Domestication[W
Dempewolf, Hannes; Hodgins, Kathryn A.; Rummell, Sonja E.; Ellstrand, Norman C.; Rieseberg, Loren H.
2012-01-01
It has been hypothesized that reproductive isolation should facilitate evolution under domestication. However, a systematic comparison of reproductive barrier strength between crops and their progenitors has not been conducted to test this hypothesis. Here, we present a systematic survey of reproductive barriers between 32 economically important crop species and their progenitors to better understand the role of reproductive isolation during the domestication process. We took a conservative approach, avoiding those types of reproductive isolation that are poorly known for these taxa (e.g., differences in flowering time). We show that the majority of crops surveyed are isolated from their progenitors by one or more reproductive barriers, despite the fact that the most important reproductive barrier in natural systems, geographical isolation, was absent, at least in the initial stages of domestication for most species. Thus, barriers to reproduction between crops and wild relatives are closely associated with domestication and may facilitate it, thereby raising the question whether reproductive isolation could be viewed as a long-overlooked “domestication trait.” Some of the reproductive barriers observed (e.g., polyploidy and uniparental reproduction), however, may have been favored for reasons other than, or in addition to, their effects on gene flow. PMID:22773750
PERFORMANCE GOALS CASE STUDY: ELIZABETH CITY, NC
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobecky, Patricia A.
2015-04-06
In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Areamore » 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.« less
CONTAINMENT TECHNOLOGY AND MONITORING
Subsurface vertical barriers have been used to control ground-water seepage in the construction industry for many years. Recently, much attention has been focused on the use of containment technologies as supplemental and stand-alone remedial options for hazardous waste sites to...
Cozzolino, Salvatore; Scopece, Giovanni
2008-09-27
The type of reproductive isolation prevalent in the initial stages of species divergence can affect the nature and rate of emergence of additional reproductive barriers that subsequently strengthen isolation between species. Different groups of Mediterranean deceptive orchids are characterized by different levels of pollinator specificity. Whereas food-deceptive orchid species show weak pollinator specificity, the sexually deceptive Ophrys species display a more specialized pollination strategy. Comparative analyses reveal that orchids with high pollinator specificity mostly rely on premating reproductive barriers and have very little postmating isolation. In this group, a shift to a novel pollinator achieved by modifying the odour bouquet may represent the main isolation mechanism involved in speciation. By contrast, orchids with weak premating isolation, such as generalized food-deceptive orchids, show strong evidence for intrinsic postmating reproductive barriers, particularly for late-acting postzygotic barriers such as hybrid sterility. In such species, chromosomal differences may have played a key role in species isolation, although strong postmating-prezygotic isolation has also evolved in these orchids. Molecular analyses of hybrid zones indicate that the types and strength of reproductive barriers in deceptive orchids with contrasting premating isolation mechanisms directly affect the rate and evolutionary consequences of hybridization and the nature of species differentiation.
COMBINATION OF IRON AND MIXED ANAEROBIC CULTURE FOR PERCHLOROETHENE DEGRADATION
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment option at severa...
EVALUATION OF CONTAINMENT SYSTEMS USING HYDRAULIC HEAD DATA
Subsurface vertical barriers have been used as components of containment systems to prevent or reduce the impact of containment sources on ground-water resources. Many containment systems also include a low permeability cover to prevent the infiltration-/recharge of precipitatio...
Control of Subsurface Contaminant Migration by Vertical Engineered Barriers
This Fact Sheet is intended to provide remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other remediation stakeholders with a basic overview of hazardous waste containment systems constructed to prevent or limit the migration of contamination in gr...
De Hert, Koen; Honnay, Olivier; Jacquemyn, Hans
2012-11-01
In food-deceptive orchid species, postmating reproductive barriers (fruit set and embryo mortality) have been shown to be more important for reproductive isolation than premating barriers (pollinator isolation). However, currently there is very little knowledge about whether germination failure acts as a reproductive barrier in hybridizing orchid species. In this study, we investigated germination and protocorm development of pure and hybrid seeds of three species of the orchid genus Dactylorhiza. To test the hypothesis that germination failure contributed to total reproductive isolation, reproductive barriers based on germination were combined with already available data on early acting barriers (fruit set and embryo mortality) to calculate the relative and absolute contributions of these barriers to reproductive isolation. Protocorms were formed in all crosses, indicating that both hybrid and pure seeds were able to germinate and grow into protocorms. Also, the number of protocorms per seed packet was not significantly different between hybrid and pure seeds. High fruit set, high seed viability, and substantial seed germination resulted in very low reproductive isolation (average RI = 0.05). In two of six interspecific crosses, hybrids performed even better than the intraspecific crosses. Very weak postmating reproductive barriers were observed between our study species and may explain the frequent occurrence of first-generation hybrids in mixed Dactylorhiza populations. Germination failure, which is regarded as one of the most important bottlenecks in the orchid life cycle, was not important for reproductive isolation.
Diffusion of Radionuclides in Concrete and Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.
2012-04-25
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability ofmore » the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.« less
LONG TERM PERFORMANCE MONITORING OF A PRB FOR REMEDIATION OF CHLORINATED SOLVENTS AND CHROMIUM
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
NASA Astrophysics Data System (ADS)
Benard, L. D.; Tuah, P. M.; Suadin, E. G.; Jamian, N.
2015-04-01
The distribution of hydrocarbon-utilizing bacterial may vary between surface and subsurface of the seawater. One of the identified contributors is the Total Petroleum Hydrocarbon. The isolation and characterization of bacteria using Direct and Enrichment techniques helps in identifying dominant bacterial populations in seawater of Mantanani Island, Kota Belud, Sabah, potential of further investigation as hydrocarbon degrader. Crude oil (5% v/v) was added as the carbon source for bacteria in Enrichment technique. For surface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 2.60 × 107 CFU/mL and 3.84 × 106 CFU/mL respectively. Meanwhile, for subsurface seawater, the highest population of bacteria identified for both Direct and Enrichment technique were 5.21 × 106 CFU/mL and 8.99 × 107 CFU/mL respectively. Dominant species in surface seawater were characterized as Marinobacter hydrocarbonoclasticus-RMSF-C1 and RMSF-C2 and Alcanivorax borkumensis-RMSF-C3, RMSF-C4 and RMSF-C5. As for subsurface seawater, dominant species were characterized as Pseudomonas luteola-SSBR-W1, Burkholderia cepacia-SSBR-C1, Rhizobium radiobacter- SSBR-C3 and Leuconostoc-cremois -SSBR-C4.
Christie, Kyle; Strauss, Sharon Y
2018-05-01
Understanding the relative roles of intrinsic and extrinsic reproductive barriers, and their interplay within the geographic context of diverging taxa, remains an outstanding challenge in the study of speciation. We conducted a comparative analysis of reproductive isolation in California Jewelflowers (Streptanthus, s.l., Brassicaceae) by quantifying potential barriers to gene flow at multiple life history stages in 39 species pairs spanning five million years of evolutionary divergence. We quantified nine potential pre- and postzygotic barriers and explored patterns of reproductive isolation in relation to genetic distance. Intrinsic postzygotic isolation was initially weak, increased at intermediate genetic distances, and reached a threshold characterized by complete genetic incompatibility. Climatic niche differences were strong at shallow genetic distances, and species pairs with overlapping ranges showed slight but appreciable phenological isolation, highlighting the potential for ecological barriers to contribute to speciation. Geographic analyses suggest that speciation is not regionally allopatric in the California Jewelflowers, as recently diverged taxa occur in relatively close proximity and display substantial range overlap. Young pairs are characterized by incomplete intrinsic postzygotic isolation, suggesting that extrinsic barriers or fine-scale spatial segregation are more important early in the divergence process than genetic incompatibilities. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Low temperature monitoring system for subsurface barriers
Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX
2009-08-18
A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.
Mobile bacteria and transport of polynuclear aromatic hydrocarbons in porous media.
Jenkins, M B; Lion, L W
1993-01-01
Sorption of hydrophobic pollutants such as polynuclear aromatic hydrocarbons (PAHs) to soil and aquifer materials can severely retard their mobility and the time course of their removal. Because mobile colloids may enhance the mobility of hydrophobic pollutants in porous media and indigenous bacteria are generally colloidal in size, bacterial isolates from soil and subsurface environments were tested for their ability to enhance the transport of phenanthrene, a model PAH, in aquifer sand. Batch isotherm experiments were performed to measure the ability of selected bacteria, including 14 isolates from a manufactured gas plant waste site, to sorb 14C-phenanthrene and to determine whether the presence of the suspended cells would reduce the distribution coefficient (Kd) for phenanthrene with the sand. Column experiments were then used to test the mobility of isolates that reduced the Kd for phenanthrene and to test the most mobile isolate for its ability to enhance the transport of phenanthrene. All of the isolates tested passively sorbed phenanthrene, and most but not all of the isolates reduced the Kd for phenanthrene. Some, but not all, of those isolates were mobile in column experiments. The most mobile isolate significantly enhanced the transport of phenanthrene in aquifer sand, reducing its retardation coefficient by 25% at a cell concentration of approximately 5 x 10(7) ml-1. The experimental results demonstrated that mobile bacteria may enhance the transport of PAHs in the subsurface. PMID:8250555
Liu, Liangliang; Li, Chongyang; Jiang, Man; Li, Xiaodong; Huang, Xiaowei; Wang, Zhu; Jia, Yu
2018-06-05
First principles calculations were performed to cast insight into the mechanism of the improvement of O2 reduction reaction (ORR) activity by Zn and H interstitials on the anatase TiO2 (101) surface. For the Zn-modified anatase TiO2 (101) surface, both surface and subsurface Zn interstitials could contribute to O2 adsorption and dissociation, but the dissociation barriers of O2 molecules are still too high, which limits the ORR activity. After a H adatom is introduced onto the Zn-modified anatase TiO2 (101) surface, the highest energy barriers are greatly reduced compared with those of the Zn-modified surface. Meanwhile, it is observed that the dissociation barriers decrease almost linearly with the increase of the charge difference of adsorption O2 between initial and transition state configurations. Specifically, subsurface Zn and surface H interstitials facilitate O2 dissociation and subsequent oxidation reactions, and further frequency analysis shows that these dissociation processes are frequent even at the room temperature of 300 K. In a word, this work provides a theoretical support to design a high ORR activity catalyst of the TiO2 nanocrystal comparable to precious Pt catalysts.
Forde, Arnell S.; Smith, Christopher G.; Reynolds, Billy J.
2016-03-18
From April 13 to 20, 2013, scientists from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center (USGS-SPCMSC) conducted geophysical and sediment sampling surveys on Dauphin Island, Alabama, as part of Field Activity 13BIM01. The objectives of the study were to quantify inorganic and organic accretion rates in back-barrier and mainland marsh and estuarine environments. Various field and laboratory methods were used to achieve these objectives, including subsurface imaging using Ground Penetrating Radar (GPR), sediment sampling, lithologic and microfossil analyses, and geochronology techniques to produce barrier island stratigraphic cross sections to help interpret the recent (last 2000 years) geologic evolution of the island.This data series report is an archive of GPR and associated Global Positioning System (GPS) data collected in April 2013 from Dauphin Island and adjacent barrier-island environments. In addition to GPR data, marsh core and vibracore data were also collected collected but are not reported (or included) in the current report. Data products, including elevation-corrected subsurface profile images of the processed GPR data, unprocessed digital GPR trace data, post-processed GPS data, Geographic Information System (GIS) files and accompanying Federal Geographic Data Committee (FGDC) metadata, can be downloaded from the Data Downloads page.
Nevin, Kelly P.; Holmes, Dawn E.; Woodard, Trevor L.; Hinlein, Erich S.; Ostendorf, David W.; Lovely, Derek R.
2005-01-01
Fe(III)-reducing isolates were recovered from two aquifers in which Fe(III) reduction is known to be important. Strain BemT was enriched from subsurface sediments collected in Bemidji, MN, USA, near a site where Fe(III) reduction is important in aromatic hydrocarbon degradation. Strains P11, P35T and P39 were isolated from the groundwater of an aquifer in Plymouth, MA, USA, in which Fe(III) reduction is important because of long-term inputs of acetate as a highway de-icing agent to the subsurface. All four isolates were Gram-negative, slightly curved rods that grew best in freshwater media. Strains P11, P35T and P39 exhibited motility via means of monotrichous flagella. Analysis of the 16S rRNA and nifD genes indicated that all four strains are δ-proteobacteria and members of the Geobacter cluster of the Geobacteraceae. Differences in phenotypic and phylogenetic characteristics indicated that the four isolates represent two novel species within the genus Geobacter. All of the isolates coupled the oxidation of acetate to the reduction of Fe(III) [iron(III) citrate, amorphous iron(III) oxide, iron(III) pyrophosphate and iron(III) nitrilotriacetate]. All four strains utilized ethanol, lactate, malate, pyruvate and succinate as electron donors and malate and fumarate as electron acceptors. Strain BemT grew fastest at 30 °C, whereas strains P11, P35T and P39 grew equally well at 17, 22 and 30 °C. In addition, strains P11, P35T and P39 were capable of growth at 4 °C. The names Geobacter bemidjiensis sp. nov. (type strain BemT=ATCC BAA-1014T=DSM 16622T=JCM 12645T) and Geobacter psychrophilus sp. nov. (strains P11, P35T and P39; type strain P35T=ATCC BAA-1013T=DSM 16674T=JCM 12644T) are proposed.
Metabolic and Physiological Characteristics of Novel Cultivars from Serpentinite Seep Fluids
NASA Astrophysics Data System (ADS)
Nelson, B.; Chowdhury, S.; Brazelton, W. J.; Schrenk, M. O.
2011-12-01
Subsurface waters associated with the alteration of ultramafic rocks become highly reducing and alkaline through a process known as serpentinization. As habitat, these fluids are in many ways metabolically constraining but can provide sufficient energy for chemolithotrophy. As part of an ongoing effort to characterize these communities, heterotrophic enrichment cultures and anaerobic microcosms were initiated with alkaline waters found at three geographically and geochemically distinct sites of active serpentinization. These include the Northern Apennine ophiolite in the Ligurian region of Italy, the Tablelands ophiolite at Gros Morne National Park, Canada and the Coast Range ophiolite at McLaughlin Natural Reserve, California. Enrichment cultures at pH 11 yielded numerous isolates related to Proteobacteria and Firmicutes, some of which are closely related to other cultivars from high pH and subsurface environments. Anaerobic water samples were amended with combinations of electron donors (hydrogen, complex organics, acetate) and acceptors (ferric iron, sulfate) in a block design. After several weeks of incubation, DNA was extracted from cell concentrations and community differences were compared by TRFLP. Of particular interest is the isolation of a putative iron reducing Firmicute from samples enriched with complex organic compounds and ferric citrate. Ongoing studies are aimed at characterizing the physiology of these isolates. These data provide important insights into the metabolic potential of serpentinite subsurface ecosystems, and are a complement to culture-independent genomic analyses.
In-Situ Contained And Of Volatile Soil Contaminants
Varvel, Mark Darrell
2005-12-27
The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.
In-Situ Containment and Extraction of Volatile Soil Contaminants
Varvel, Mark Darrell
2005-12-27
The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.
Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.
2007-01-01
There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.
Paleokarst processes in the Eocene limestones of the Pyramids Plateau, Giza, Egypt
NASA Astrophysics Data System (ADS)
El Aref, M. M.; Refai, E.
The Eocene limestones of the Pyramids plateau are characterized by landforms of stepped terraced escarpment and karst ridges with isolated hills. The carbonate country rocks are also dominated by minor surface, surface to subsurface and subsurface solution features associated with karst products. The systematic field observations eludicate the denudation trend of the minor solution features and suggest the origin of the regional landscapes. The lithologic and structural characters of the limestone country rocks comprise the main factors controlling the surface and subsurface karst evolution. The development of the karst features and the associated sediments in the study area provides information on the paleohydrolic, chemical and climatic environments involved in the origin of the karstification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji-Hoon; Fredrickson, James K.; Plymale, Andrew E.
2015-04-08
Increasing concentrations of H 2 with depth were observed across a geologic unconformity and associated redox transition zone in the subsurface at the Hanford Site in south-central Washington, USA. An opposing gradient characterized by decreasing O 2 and nitrate concentrations was consistent with microbial-catalyzed biogeochemical processes. Sterile sand was incubated in situ within a multi-level sampler placed across the redox transition zone to evaluate the potential for Tc(VII) reduction and for enrichment of H 2-oxidizing denitrifiers capable of reducing Tc(VII). H 2-driven TcO 4- reduction was detected in sand incubated at all depths but was strongest in material from amore » depth of 17.1 m. Acidovorax spp. were isolated from H 2-nitrate enrichments from colonized sand from 15.1 m, with one representative, strain JHL-9, subsequently characterized. JHL-9 grew on acetate with either O 2 or nitrate as electron acceptor (data not shown) and on medium with bicarbonate, H 2 and nitrate. JHL-9 also reduced pertechnetate (TcO 4-) under denitrifying conditions with H 2 as the electron donor. H 2-oxidizing Acidovorax spp. in the subsurface at Hanford and other locations may contribute to the maintenance of subsurface redox gradients and offer the potential for Tc(VII) reduction.« less
Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K; Beyenal, Haluk
2012-11-01
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.
Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.
2012-01-01
A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, B.; Cao, B.; McLean, Jeffrey S.
2012-11-07
A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A alsomore » could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.« less
Floral scent and species divergence in a pair of sexually deceptive orchids.
Gervasi, Daniel D L; Selosse, Marc-Andre; Sauve, Mathieu; Francke, Wittko; Vereecken, Nicolas J; Cozzolino, Salvatore; Schiestl, Florian P
2017-08-01
Speciation is typically accompanied by the formation of isolation barriers between lineages. Commonly, reproductive barriers are separated into pre- and post-zygotic mechanisms that can evolve with different speed. In this study, we measured the strength of different reproductive barriers in two closely related, sympatric orchids of the Ophrys insectifera group, namely Ophrys insectifera and Ophrys aymoninii to infer possible mechanisms of speciation. We quantified pre- and post-pollination barriers through observation of pollen flow, by performing artificial inter- and intraspecific crosses and analyzing scent bouquets. Additionally, we investigated differences in mycorrhizal fungi as a potential extrinsic factor of post-zygotic isolation. Our results show that floral isolation mediated by the attraction of different pollinators acts apparently as the sole reproductive barrier between the two orchid species, with later-acting intrinsic barriers seemingly absent. Also, the two orchids share most of their fungal mycorrhizal partners in sympatry, suggesting little or no importance of mycorrhizal symbiosis in reproductive isolation. Key traits underlying floral isolation were two alkenes and wax ester, present predominantly in the floral scent of O. aymoninii . These compounds, when applied to flowers of O. insectifera , triggered attraction and a copulation attempt of the bee pollinator of O. aymoninii and thus led to the (partial) breakdown of floral isolation. Based on our results, we suggest that adaptation to different pollinators, mediated by floral scent, underlies species isolation in this plant group. Pollinator switches may be promoted by low pollination success of individuals in dense patches of plants, an assumption that we also confirmed in our study.
Subsurface defects of fused silica optics and laser induced damage at 351 nm.
Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng
2013-05-20
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent
1999-09-28
An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.
Apparatus for in situ installation of underground containment barriers under contaminated lands
Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent
1998-06-16
An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.
Microbial Life of North Pacific Oceanic Crust
NASA Astrophysics Data System (ADS)
Schumann, G.; Koos, R.; Manz, W.; Reitner, J.
2003-12-01
Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep biosphere. Molecular microbial diversity is currently determined by cloning und comparative 16S rRNA gene analyses. The first results will also be presented. In summary, the low number of isolates, cultivated under aerobic conditions, is in good agreement with the common opinion that most of the bacteria within the deep biosphere are anaerobic. Thus, studies of microbial community structure in solid geological materials are feasible and constitute further evidence that continuing microbiological activity in the challenging exploration of the deep sub-seafloor biosphere environment is absolutely promising.
Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul
2015-01-21
The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.
Patterns of reproductive isolation in Mediterranean deceptive orchids.
Scopece, Giovanni; Musacchio, Aldo; Widmer, Alex; Cozzolino, Salvatore
2007-11-01
The evolution of reproductive isolation is of central interest in evolutionary biology. In plants, this is typically achieved by a combination of pre- and postpollination mechanisms that prevent, or limit, the amount of interspecific gene flow. Here, we investigated and compared two ecologically defined groups of Mediterranean orchids that differ in pollination biology and pollinator specificity: sexually deceptive orchids versus food-deceptive orchids. We used experimental crosses to assess the strength of postmating prezygotic, and postzygotic reproductive isolation, and a phylogenetic framework to determine their relative rates of evolution. We found quantitative and qualitative differences between the two groups. Food-deceptive orchids have weak premating isolation but strong postmating isolation, whereas the converse situation characterizes sexually deceptive orchids. Only postzygotic reproductive isolation among food-deceptive orchids was found to evolve in a clock-like manner. Comparison of evolutionary rates, within a common interval of genetic distance, showed that the contribution of postmating barriers was more relevant in the food-deceptive species than in the sexually deceptive species. Asymmetry in prezygotic isolation was found among food-deceptive species. Our results indicate that postmating barriers are most important for reproductive isolation in food-deceptive orchids, whereas premating barriers are most important in sexually deceptive orchids. The different rate of evolution of reproductive isolation and the relative strength of pre- and postmating barriers may have implication for speciation processes in the two orchid groups.
The Rate of Evolution of Postmating-Prezygotic Reproductive Isolation in Drosophila
Turissini, David A; McGirr, Joseph A; Patel, Sonali S; David, Jean R; Matute, Daniel R
2018-01-01
Abstract Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolution of postmating-prezygotic (PMPZ) barriers. We measured the magnitude of two barriers to gene flow that act after mating occurs but before fertilization. We also measured the magnitude of a premating barrier (female mating rate in nonchoice experiments) and two postzygotic barriers (hybrid inviability and hybrid sterility) for all pairwise crosses of all nine known extant species within the melanogaster subgroup. Our results indicate that PMPZ isolation evolves faster than hybrid inviability but slower than premating isolation. Next, we partition postzygotic isolation into different components and find that, as expected, hybrid sterility evolves faster than hybrid inviability. These results lend support for the hypothesis that, in Drosophila, reproductive isolation mechanisms (RIMs) that act early in reproduction (or in development) tend to evolve faster than those that act later in the reproductive cycle. Finally, we tested whether there was evidence for reinforcing selection at any RIM. We found no evidence for generalized evolution of reproductive isolation via reinforcement which indicates that there is no pervasive evidence of this evolutionary process. Our results indicate that PMPZ RIMs might have important evolutionary consequences in initiating speciation and in the persistence of new species. PMID:29048573
Metallic, or zero-valence-state, iron is being incorporated into permeable reactive subsurface barriers for remediating a variety of contaminant plume types. The remediation occurs via reductive processes that are associated with surface corrosion of the iron metal. Reaction rate...
Lysfjord, J P; Haas, P J; Melgaard, H L; Pflug, I J
1995-01-01
Barrier isolators that enclose aseptic filling equipment are being proposed as a means of: (1) assisting in achieving a 10(-6) sterility assurance level (SAL) in the filling area and (2) minimizing the clean environment required in the manufacturing area. The need for operator and maintenance access to the interior of the barrier isolators presents difficulties in achieving the above goals. Several methods are available for reducing the microbial level inside the isolation barrier. If the objective is the decontamination of all surfaces inside the enclosure, saturated steam at atmospheric pressure can be used. If the objective is to sterilize the inside of the enclosure, saturated steam at atmospheric pressure with added H2O2 can be used. Test data and practical interface considerations relative to various methodologies will be reviewed.
Sato, Yukie; Sakamoto, Hironori; Gotoh, Tetsuo; Saito, Yutaka; Chao, Jung-Tai; Egas, Martijn; Mochizuki, Atsushi
2018-06-01
In speciation research, much attention is paid to the evolution of reproductive barriers, preventing diverging groups from hybridizing back into one gene pool. The prevalent view is that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection and genetic drift in groups that are segregated spatially and/or temporally. Reproductive barriers, however, can also be reinforced by natural selection against maladaptive hybridization. These mutually compatible theories are both empirically supported by studies, analysing relationships between intensity of reproductive isolation and genetic distance in sympatric taxa and allopatric taxa. Here, we present the - to our knowledge - first comparative study in a haplodiploid organism, the social spider mite Stigmaeopsis miscanthi, by measuring premating and post-mating, pre- and post-zygotic components of reproductive isolation, using three recently diverged forms of the mite that partly overlap in home range. We carried out cross-experiments and measured genetic distances (mitochondrial DNA and nuclear DNA) among parapatric and allopatric populations of the three forms. Our results show that the three forms are reproductively isolated, despite the absence of premating barriers, and that the post-mating, prezygotic component contributes most to reproductive isolation. As expected, the strength of post-mating reproductive barriers positively correlated with genetic distance. We did not find a clear pattern of prezygotic barriers evolving faster in parapatry than in allopatry, although one form did show a trend in line with the ecological and behavioural relationships between the forms. Our study advocates the versatility of haplodiploid animals for investigating the evolution of reproductive barriers. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Fisk, M. R.; Popa, R.; Smith, A. R.; Popa, R.; Boone, J.
2011-12-01
We isolated 21 species of bacteria from subseafloor and terrestrial basalt environments and which thrive on olivine at neutral pH. Cell numbers increase four to five orders of magnitude over three weeks in media where the only metabolic energy comes from the oxidation of Fe(II) in olivine. The subseafloor bacteria were isolated from a borehole on the flank of Juan de Fuca Ridge in the northeast Pacific basin where the temperature ranged from 4 up to 64 °C over four years. Terrestrial isolates originated from the basalt-ice boundary in a lava tube on the flank of Newberry Caldera in the Cascades of Oregon. The borehole water was either seawater or seawater plus subseafloor formation water and the lava tube ice was frozen meteoric or ground water. Although microorganisms capable of oxidizing iron for growth are known, microbes that oxidize iron from silicate minerals at neutral pH have not previously been cultured. The 21 species in this study are the first neutrophilic, iron-oxidizing bacteria (nFeOB) to be isolated and cultured that grow on olivine. These nFeOB are primary producers and we believe that they are a widespread component of the subsurface biosphere. In addition to their ability use iron from olivine, these microbes assimilate carbon from bicarbonate in solution and can grow when oxygen pressures are low. They also use nitrate as an alternative electron acceptor to oxygen in anaerobiosis. Since basalt is the most common rock in the Earth's crust and iron is the fourth most abundant element in the crust, we believe nFeOB are likely to be a significant portion of the subsurface biosphere. They are likely to affect, and perhaps in some environments control, the weathering rate of olivine and possibly of pyroxene and basalt glass. Olivine is a component of Mars's surface and it is present on other rocky bodies in the solar system. The ability of these bacteria to use Fe(II) from olivine, to assimilate carbon, to grow at low temperature, and to use low levels of oxygen and nitrate as oxidants would allow them to survive below the surface of Mars. These cultured organisms, which are the first known to oxidize iron from olivine at neutral pH, may be a major component of the subsurface biosphere, may affect global chemical cycles of elements in basalt, and could potentially, live in the Martian subsurface.
Johnson, Melissa A; Price, Donald K; Price, Jonathan P; Stacy, Elizabeth A
2015-11-01
Recent reviews of reproductive isolation (RI) in plants propose that boundaries between closely related species are maintained predominantly through prezygotic mechanisms. However, few experimental studies have explored how boundaries are maintained in long-lived species. Hawaiian Cyrtandra presents an intriguing challenge to our understanding of RI, as it comprises 60 shrub or small tree species that are almost exclusively restricted to wet forests, where sympatry of multiple species is common. We assessed the relative strengths of pre- and postzygotic barriers among four species of Cyrtandra occurring at the extremes of the main Hawaiian Island's natural island-age gradient, Kaua'i (4.7 Myr) and Hawai'i Island (0.6 Myr), to contrast the strengths and stages of reproductive isolation among species at different stages of divergence. A combination of F1 seed germination, F1 seedling survival, and F1 seedling growth isolated (61-91%) three of the species from sympatric relatives. In contrast, the fourth species was isolated (59%) from its sympatric relative through phenological differences alone. Significant postzygotic barriers in between-island crosses were also observed in one species. Results suggest that boundaries between sympatric Cyrtandra species in Hawaii are maintained predominantly through postzygotic barriers. Observations from between-island crosses indicate that postzygotic barriers can arise in allopatry, which may be important in the initial divergence of populations. Future studies of RI in Cyrtandra should include a broader range of species to determine if postzygotic isolating barriers are foremost in the maintenance of species boundaries in this large genus. © 2015 Botanical Society of America.
Anaerobic decomposition of humic substances by Clostridium from the deep subsurface
Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko
2016-01-01
Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface. PMID:26743007
Temperature and pressure adaptation of a sulfate reducer from the deep subsurface
Fichtel, Katja; Logemann, Jörn; Fichtel, Jörg; Rullkötter, Jürgen; Cypionka, Heribert; Engelen, Bert
2015-01-01
Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment–basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure. PMID:26500624
Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species
NASA Astrophysics Data System (ADS)
Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe
2018-04-01
Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.
Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick
2016-10-01
A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Methods and system for subsurface stabilization using jet grouting
Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.
1999-01-01
Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.
Rapid evolution of reproductive isolation between incipient outcrossing and selfing Clarkia species.
Briscoe Runquist, Ryan D; Chu, Eric; Iverson, Justin L; Kopp, Jason C; Moeller, David A
2014-10-01
A major goal of speciation research is to understand the processes involved in the earliest stages of the evolution of reproductive isolation (RI). One important challenge has been to identify systems where lineages have very recently diverged and opportunities for hybridization are present. We conducted a comprehensive examination of the components of RI across the life cycle of two subspecies of Clarkia xantiana, which diverged recently (ca. 65,000 bp). One subspecies is primarily outcrossing, but self-compatible, whereas the other is primarily selfing. The subspecies co-occur in a zone of sympatry but hybrids are rarely observed. Premating barriers resulted in nearly complete isolation in both subspecies with flowering time and pollinator preference (for the outcrosser over the selfer) as the strongest barriers. We found that the outcrosser had consistently more competitive pollen, facilitating hybridization in one direction, but no evidence for pollen-pistil interactions as an isolating barrier. Surprisingly, postzygotic isolation was detected at the stage of hybrid seed development, but in no subsequent life stages. This crossing barrier was asymmetric with crosses from the selfer to outcrosser most frequently failing. Collectively, the results provide evidence for rapid evolution of multiple premating and postzygotic barriers despite a very recent divergence time. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands.
Ridley, Christina M; Voordouw, Gerrit
2018-06-01
Little is known about the microbial ecology of the subsurface oil sands in Northern Alberta, Canada. Biodegradation of low molecular weight hydrocarbons by indigenous microbes has enriched high molecular weight hydrocarbons, resulting in highly viscous bitumen. This extreme subsurface environment is further characterized by low nutrient availability and limited access to water, thus resulting in low microbial biomass. Improved DNA isolation protocols and increasingly sensitive sequencing methods have allowed an in-depth investigation of the microbial ecology of this unique subsurface environmental niche. Community analysis was performed on core samples (n = 62) that were retrieved from two adjacent sites located in the Athabasca Oil Sands at depths from 220 to 320 m below the surface. Microbial communities were dominated by aerobic taxa, including Pseudomonas and Acinetobacter. Only one core sample microbial community was dominated by anaerobic taxa, including the methanogen Methanoculleus, as well as Desulfomicrobium and Thauera. Although the temperature of the bitumen-containing subsurface is low (8°C), two core samples had high fractions of the potentially thermophilic taxon, Thermus. Predominance of aerobic taxa in the subsurface suggests the potential for in situ aerobic hydrocarbon degradation; however, more studies are required to determine the functional role of these taxa within this unique environment.
Implementation of a Non-Metallic Barrier in an Electric Motor
NASA Technical Reports Server (NTRS)
M?Sadoques, George; Carra, Michael; Beringer, Woody
2012-01-01
Electric motors that run in pure oxygen must be sealed, or "canned," for safety reasons to prevent the oxygen from entering into the electrical portion of the motor. The current canning process involves designing a metallic barrier around the rotor to provide the separation. This metallic barrier reduces the motor efficiency as speed is increased. In higher-speed electric motors, efficiency is greatly improved if a very thin, nonmetallic barrier can be utilized. The barrier thickness needs to be approximately 0.025-in. (.0.6-mm) thick and can be made of a brittle material such as glass. The motors, however, designed for space applications are typically subject to high-vibration environments. A fragile, non-metallic barrier can be utilized in a motor assembly if held in place by a set of standard rubber O-ring seals. The O-rings provide the necessary sealing to keep oxygen away from the electrical portion of the motor and also isolate the fragile barrier from the harsh motor vibration environment. The compliance of the rubber O-rings gently constrains the fragile barrier and isolates it from the harsh external motor environment. The use of a non-metallic barrier greatly improves motor performance, especially at higher speeds, while isolating the electronics from the working fluid with an inert liner.
Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species
Jangir, Yamini; French, Sarah; Momper, Lily M.; Moser, Duane P.; Amend, Jan P.; El-Naggar, Mohamed Y.
2016-01-01
Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate metabolisms (e.g., nitrate reduction) by these organisms were previously known, our observations suggest that additional ‘hidden’ interactions with external electron acceptors are also possible. Electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface. PMID:27242768
Harte, Philip T.
2005-01-01
The Milford-Souhegan glacial-drift (MSGD) aquifer, in south-central New Hampshire, is an important source of industrial, commercial, and domestic water. The MSGD aquifer was also an important source of drinking water for the town of Milford until it was found to contain high concentrations of volatile organic compounds (VOCs) in the Savage and Keyes municipal-supply wells in the early 1980s. A VOC plume was found to cover part of the southwestern half of the MSGD aquifer. In September 1984, the site was designated a Superfund site, called the Savage Municipal Well Superfund site. The primary source area of contaminants was a former tool manufacturing facility (called the OK Tool facility, and now called the Operable Unit 1 (OU1) area) that disposed of solvents at the surface and in the subsurface. The facility was closed in 1987 and removed in 1998. A low-permeability containment barrier wall was constructed and installed in the overburden (MSGD aquifer) in 1998 to encapsulate the highest concentrations of VOCs, and a pump-and-treat remediation facility was also added. Remedial operations of extraction and injection wells started in May 1999. A network of water-level monitoring sites was implemented in water year 2000 (October 1, 1999, through September 30, 2000) in the OU1 area to help assess the effectiveness of remedial operations to mitigate the VOC plume, and to evaluate the effect of the barrier wall and remedial operations on the hydraulic connections across the barrier and between the overburden and underlying bedrock. Remedial extraction and injections wells inside and outside the barrier help isolate ground-water flow inside the barrier and the further spreading of VOCs. This report summarizes both continuous and selected periodic manual measurements of water level and physical water properties (specific conductance and water temperature) for 10 monitoring locations during water years 2000-03. Additional periodic manual measurements of water levels were made at four nearby monitoring wells. Water levels are referenced to periods of remedial extraction and injection operations. Remedial extraction inside the barrier in the overburden causes water-level drawdowns in interior (inside the barrier) monitoring wells but also exterior (outside the barrier) monitoring wells. Drawdowns were observed in the following descending sequence at: interior overburden wells, interior underlying bedrock wells, exterior underlying bedrock wells, and exterior overburden wells.
NASA Astrophysics Data System (ADS)
Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro
2017-04-01
Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.
Weihs, Timothy P.; Barbee, Jr., Troy W.
2002-01-01
Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).
Pre-treatment zones (PTZs) composed of sand, 10% zero-valent iron [Fe(0)]/sand, and 10% pyrite (FeS2)/sand were examined for their ability to prolong Fe(0) reactivity in aboveground column reactors and a subsurface permeable reactive barrier (PRB). The test site had an acidic, o...
Kurt D. Fausch; Bruce E. Rieman; Michael Young; Jason B. Dunham
2006-01-01
Native salmonid populations in the inland West are often restricted to small isolated habitats at risk from invasion by nonnative salmonids. However, further isolating these populations using barriers to prevent invasions can increase their extinction risk. This monograph reviews the state of knowledge about this tradeoff between invasion and isolation. We present a...
Estimating geological CO2 storage security to deliver on climate mitigation.
Alcalde, Juan; Flude, Stephanie; Wilkinson, Mark; Johnson, Gareth; Edlmann, Katriona; Bond, Clare E; Scott, Vivian; Gilfillan, Stuart M V; Ogaya, Xènia; Haszeldine, R Stuart
2018-06-12
Carbon capture and storage (CCS) can help nations meet their Paris CO 2 reduction commitments cost-effectively. However, lack of confidence in geologic CO 2 storage security remains a barrier to CCS implementation. Here we present a numerical program that calculates CO 2 storage security and leakage to the atmosphere over 10,000 years. This combines quantitative estimates of geological subsurface CO 2 retention, and of surface CO 2 leakage. We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO 2 retained in the subsurface over 10,000 years. An unrealistic scenario, where CO 2 storage is inadequately regulated, estimates that more than 78% will be retained over 10,000 years. Our modelling results suggest that geological storage of CO 2 can be a secure climate change mitigation option, but we note that long-term behaviour of CO 2 in the subsurface remains a key uncertainty.
A field evaluation of subsurface and surface runoff. II. Runoff processes
Pilgrim, D.H.; Huff, D.D.; Steele, T.D.
1978-01-01
Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.
Isolated molecular dopants in pentacene observed by scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Kahn, Antoine
2009-11-01
Doping is essential to the control of electronic structure and conductivity of semiconductor materials. Whereas doping of inorganic semiconductors is well established, doping of organic molecular semiconductors is still relatively poorly understood. Using scanning tunneling microscopy, we investigate, at the molecular scale, surface and subsurface tetrafluoro-tetracyanoquinodimethane p -dopants in the prototypical molecular semiconductor pentacene. Surface dopants diffuse to pentacene vacancies and appear as negatively charged centers, consistent with the standard picture of an ionized acceptor. Subsurface dopants, however, have the effect of a positive charge, evidence that the donated hole is localized by the parent acceptor counterion, in contrast to the model of doping in inorganic semiconductors. Scanning tunneling spectroscopy shows that the electron potential energy is locally lowered near a subsurface dopant feature, in agreement with the localized hole model.
Martin, M D; Mendelson, T C
2016-04-01
Models of speciation by sexual selection propose that male-female coevolution leads to the rapid evolution of behavioural reproductive isolation. Here, we compare the strength of behavioural isolation to ecological isolation, gametic incompatibility and hybrid inviability in a group of dichromatic stream fishes. In addition, we examine whether any of these individual barriers, or a combined measure of total isolation, is predicted by body shape differences, male colour differences, environmental differences or genetic distance. Behavioural isolation reaches the highest values of any barrier and is significantly greater than ecological isolation. No individual reproductive barrier is associated with any of the predictor variables. However, marginally significant relationships between male colour and body shape differences with ecological and behavioural isolation are discussed. Differences in male colour and body shape predict total reproductive isolation between species; hierarchical partitioning of these two variables' effects suggests a stronger role for male colour differences. Together, these results suggest an important role for divergent sexual selection in darter speciation but raise new questions about the mechanisms of sexual selection at play and the role of male nuptial ornaments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Takai, K; Komatsu, T; Horikoshi, K
2001-07-01
A novel extreme thermophile was isolated from a water sample derived from a deep subsurface geothermal water pool at a depth of 1500 m in the Hacchoubaru geothermal plant in Oita Prefecture, Japan. The cells were found to be straight rods, each being motile by means of a polar flagellum. Growth was observed at temperatures between 60 and 85 degrees C (optimum 78 degrees C; 120 min doubling time) and between pH 5.5 and pH 9.0 (optimum 7.5). The isolate was a strictly aerobic heterotroph capable of utilizing a number of substrates such as yeast extract, peptone, tryptone, various carbohydrates, sugars, amino acids and organic acids. Elemental sulfur, thiosulfate, sulfide or cysteine-hydrochloride was required as an electron donor for growth. Hydrogen gas did not support growth. The G+C content of the genomic DNA was 44.7 mol%. Phylogenetic analysis based on 16S rDNA sequences and DNA-DNA hybridization analysis indicated that the isolate was closely related to members of the hydrogen-oxidizing, autotrophic and thermophilic genera Hydrogenobacter and Calderobacterium. However this isolate was differentiated from the previously described species of these genera on the basis of the physiological and molecular properties of the new isolate. The name Hydrogenobacter subterraneus sp. nov. is proposed; the type strain is HGP1T (= JCM 10560T = IFO 16485T).
Roh, Yul; Liu, Shi V; Li, Guangshan; Huang, Heshu; Phelps, Tommy J; Zhou, Jizhong
2002-12-01
Five bacterial strains were isolated from anaerobic enrichment cultures that had originated from inoculations with samples collected from the deep subsurface environments of the millions-of-years-old, geologically and hydrologically isolated Piceance Basin in Colorado. Small-subunit rRNA gene-based analyses indicated that all of these bacteria were closely related to Thermoanaerobacter ethanolicus, with similarities of 99.4 to 99.5%. Three isolates (X513, X514, and X561) from the five bacterial strains were used to examine physiological characteristics. These thermophilic bacteria were able to use acetate, glucose, hydrogen, lactate, pyruvate, succinate, and xylose as electron donors while reducing Fe(III), cobalt(III), chromium(VI), manganese(IV), and uranium(VI) at 60 degrees C. One of the isolates (X514) was also able to utilize hydrogen as an electron donor for Fe(III) reduction. These bacteria exhibited diverse mineral precipitation capabilities, including the formation of magnetite (Fe(3)O(4)), siderite (FeCO(3)), rhodochrosite (MnCO(3)), and uraninite (UO(2)). The gas composition of the incubation headspace and the ionic composition of the incubation medium exerted profound influences on the types of minerals formed. The susceptibility of the thermophilic Fe(III)-reducing cultures to metabolic inhibitors specific for ferric reductase, hydrogenase, and electron transport indicated that iron reduction by these bacteria is an enzymatic process.
Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro.
Pérez-Torrado, Roberto; Llopis, Silvia; Jespersen, Lene; Fernández-Espinar, Teresa; Querol, Amparo
2012-06-15
Saccharomyces cerevisiae is generally considered to be a safe organism and is essential to produce many different kinds of foods as well as being widely used as a dietary supplement. However, several isolates, which are genetically related to brewing and baking yeasts, have shown virulent traits, being able to produce human infections in immunodeficient patients. Previously it has been shown that the administration of S. cerevisiae clinical isolates can lead to systemic infections, reaching several organs in murine systems. In this work, we studied S. cerevisiae clinical isolates in an in vitro intestinal epithelial barrier model, comparing their behaviour with that of several strains of the related pathogens Candida glabrata and Candida albicans. The results showed that, in contrast to C. glabrata and C. albicans, S. cerevisiae was not able to cross the intestinal barrier. We concluded that S. cerevisiae can only perform opportunistic or passive crossings when epithelial barrier integrity is previously compromised. Copyright © 2012 Elsevier B.V. All rights reserved.
Microbial community assembly and evolution in subseafloor sediment.
Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U
2017-03-14
Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
Evaluation of positron emission tomography as a method to visualize subsurface microbial processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinsella K.; Schlyer D.; Kinsella, K.
2012-01-18
Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils weremore » seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.« less
STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollard, David; Aydin, Atilla
2005-02-22
Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, onmore » which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical simulation of fluid flow to study a typical sandstone aquifer/reservoir at a variety of scales. We have produced many tools and insights which can be applied to active subsurface flow systems and practical problems of pressing global importance.« less
NASA Astrophysics Data System (ADS)
May, Christine; Roering, Josh; Snow, Kyle; Griswold, Kitty; Gresswell, Robert
2017-01-01
Waterfalls create barriers to fish migration, yet hundreds of isolated salmonid populations exist above barriers and have persisted for thousands of years in steep mountainous terrain. Ecological theory indicates that small isolated populations in disturbance-prone landscapes are at greatest risk of extirpation because immigration and recolonization are not possible. On the contrary, many above-barrier populations are currently thriving while their downstream counterparts are dwindling. This quandary led us to explore geomorphic knickpoints as a mechanism for disconnecting hillslope and channel processes by limiting channel incision and decreasing the pace of base-level lowering. Using LiDAR from the Oregon Coast Range, we found gentler channel gradients, wider valleys, lower gradient hillslopes, and less shallow landslide potential in an above-barrier catchment compared to a neighboring catchment devoid of persistent knickpoints. Based on this unique geomorphic template, above-barrier channel networks are less prone to debris flows and other episodic sediment fluxes. These above-barrier catchments also have greater resiliency to flooding, owing to wider valleys with greater floodplain connectivity. Habitat preference models further indicate that salmonid habitat is present in greater quantity and quality in these above-barrier networks. Therefore the paradox of the persistence of small isolated fish populations may be facilitated by a geomorphic mechanism that both limits their connectivity to larger fish populations yet dampens the effect of disturbance by decreasing connections between hillslope and channel processes above geomorphic knickpoints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Kantar; H Demiray; N Dogan
2011-12-31
Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groupsmore » with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantar, C.; Dodge, C.; Demiray, H.
2011-01-26
Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groupsmore » with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.« less
Reconsolidated Salt as a Geotechnical Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Gadbury, Casey
Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt repositories have the potential to isolate permanently vast inventories of radioactive and hazardous wastes.« less
Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint
NASA Astrophysics Data System (ADS)
Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.
2015-12-01
A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.
Clusters of incompatible genotypes evolve with limited dispersal
Erin L. Landguth; Norman A. Johnson; Samuel A. Cushman
2015-01-01
Theoretical and empirical studies have shown heterogeneous selection to be the primary driver for the evolution of reproductively isolated genotypes in the absence of geographic barriers. Here, we ask whether limited dispersal alone can lead to the evolution of reproductively isolated genotypes despite the absence of any geographic barriers or heterogeneous...
Zhang, Xinxu; Fang, Jing; Bach, Wolfgang; Edwards, Katrina J.; Orcutt, Beth N.; Wang, Fengping
2016-01-01
Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe3+/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement. PMID:27199959
A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...
A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...
Thixotropic gel for vadose zone remediation
Riha, Brian D.
2012-07-03
A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.
Thixotropic gel for vadose zone remediation
Rhia, Brian D [Augusta, GA
2011-03-01
A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.
Thixotropic gel for vadose zone remediation
Riha, Brian D.; Looney, Brian B.
2015-10-27
A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.
Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude
Ballester, Joan; Petrova, Desislava; Bordoni, Simona; Ben Cash; García-Díez, Markel; Rodó, Xavier
2016-01-01
Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes. PMID:27808279
Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude.
Ballester, Joan; Petrova, Desislava; Bordoni, Simona; Ben Cash; García-Díez, Markel; Rodó, Xavier
2016-11-03
Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes.
Mahringer, Anne; Ardjomand-Woelkart, Karin; Bauer, Rudolf; Fricker, Gert; Efferth, Thomas
2013-03-01
The blood-brain barrier prevents the passage of toxic compounds from blood circulation into brain tissue. Unfortunately, drugs for the treatment of neurodegenerative diseases, brain tumors, and other diseases also do not cross the blood-brain barrier. In the present investigation, we used isolated porcine brain capillary endothelial cells and a flow cytometric calcein-AM assay to analyze inhibition of P-glycoprotein, a major constituent of the blood-brain barrier. We tested 8 alkamides isolated from Echinacea angustifolia and found that four of them inhibited P-glycoprotein-mediated calcein transport in porcine brain capillary endothelial cells. Georg Thieme Verlag KG Stuttgart · New York.
Kilinc Balci, F. Selcen
2016-01-01
Although they play an important role in infection prevention and control, textile materials and personal protective equipment (PPE) used in health care settings are known to be one of the sources of cross-infection. Gowns are recommended to prevent transmission of infectious diseases in certain settings; however, laboratory and field studies have produced mixed results of their efficacy. PPE used in health care is regulated as either class I (low risk) or class II (intermediate risk) devices in the United States. Many organizations have published guidelines for the use of PPE, including isolation gowns, in health care settings. In addition, the Association for the Advancement of Medical Instrumentation published a guidance document on the selection of gowns and a classification standard on liquid barrier performance for both surgical and isolation gowns. However, there is currently no existing standard specific to isolation gowns that considers not only the barrier resistance but also a wide array of end user desired attributes. As a result, infection preventionists and purchasing agents face several difficulties in the selection process, and end users have limited or no information on the levels of protection provided by isolation gowns. Lack of knowledge about the performance of protective clothing used in health care became more apparent during the 2014 Ebola epidemic. This article reviews laboratory studies, regulations, guidelines and standards pertaining to isolation gowns, characterization problems, and other potential barriers of isolation gown selection and use. PMID:26391468
Cassidy, Irene
2006-10-01
To illuminate issues central to general student nurses' experiences of caring for isolated patients within the hospital environment, which may assist facilitators of learning to prepare students for caring roles. Because of the development of hospital-resistant micro-organisms, caring for patients in source isolation is a frequent occurrence for supernumerary students on the general nursing programme. Despite this, students' perceptions of caring for this client group remain under researched. Through methods grounded in hermeneutic phenomenology, eight students in the second year of the three-year undergraduate programme in general nursing were interviewed using an un-structured, open-ended and face-to-face interview approach. Data analysis was approached through thematic analysis. Four themes emerged: The organization: caring in context, Barriers and breaking the barriers, Theory and practice, Only a student. The imposed physical, psychological, social and emotional barriers of isolation dramatically alter the caring experience. Balancing the care of isolated patients to meet their individual needs while preventing the spread of infection has significance for students. Applying infection control theory to the care of patients in source isolation is vital for students' personal and professional development. Perceptions of supernumerary status influence students' experiences of caring for these patients. Designating equipment for the sole use of isolated patients assists students in maintaining infection control standards. Balancing the art and science of caring for patients in source isolation is important to reduce barriers to the student-patient relationship and to promote delivery of holistic care. Staff nurses should consider using available opportunities to impart recommended isolation practices to students thereby linking the theory of infection control to patient care. Providing structured, continuing education for all grades of staff would acknowledge the interdependence of all healthcare workers in controlling hospital-acquired infection.
Social isolation and perceived barriers to establishing social networks among Latina immigrants.
Hurtado-de-Mendoza, Alejandra; Gonzales, Felisa A; Serrano, Adriana; Kaltman, Stacey
2014-03-01
Research has identified numerous mechanisms through which perceived social isolation and lack of social support negatively impact health. Little research attention has been dedicated to factors that influence the development of social networks, which have the potential to decrease perceptions of social isolation and provide social support. There is mixed evidence concerning the availability of supportive social networks for Latinos in the US. This study explores trauma-exposed Latina immigrants' experiences of social isolation in the US and its perceived causes. Twenty-eight Latina immigrant women participated in an interview about traumatic experiences. Informal help seeking and the availability of friendships in the US were also queried. Frequent comparisons between experiences in their home countries and in the US shaped the emerging themes of social isolation and lack of social support. Women reported feeling lonely, isolated, closed-in, and less free in the US due to family separation and various obstacles to developing and maintaining relationships. Socioeconomic, environmental, and psychosocial barriers were offered as explanations for their limited social networks in the US. Understanding experiences of social isolation as well as barriers to forging social networks can help inform the development of social support interventions that can contribute to improved health among Latinos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P.; Hamilton-Brehm, Scott D.; Fisher, Jenny C.
The work described here revealed the presence of diverse microbial communities located across 19 subsurface sites at the NNSS/NTTR and nearby locations. Overall, the diversity of microorganisms was high for subsurface habitats and variable between sites. As of this writing, preparations are being made to combine the Illumina sequences and 16S rRNA clone libraries with other non-NNSS/NTTR well sites of Southern Nevada Regional Flow System for a publication manuscript describing our very broad landscape scale survey of subsurface microbial diversity. Isolates DRI-13 and DRI-14 remain to be fully characterized and named in accordance with the conventions established by Bergey's Manualmore » of Systematic Bacteriology. In preparation to be published, these microorganisms will be submitted to the American Type Culture Collection (ATCC) and the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ).It is anticipated that the data resulting from this study in combination with other data sets that will allow us to produce a number of publications that will be impactful to the subsurface microbiology community.« less
Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.
2014-01-01
The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493
What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies.
Mérot, C; Salazar, C; Merrill, R M; Jiggins, C D; Joron, M
2017-06-14
The process by which species evolve can be illuminated by investigating barriers that limit gene flow between taxa. Recent radiations, such as Heliconius butterflies, offer the opportunity to compare isolation between pairs of taxa at different stages of ecological, geographical, and phylogenetic divergence. Here, we report a comparative analysis of existing and novel data in order to quantify the strength and direction of isolating barriers within a well-studied clade of Heliconius Our results highlight that increased divergence is associated with the accumulation of stronger and more numerous barriers to gene flow. Wing pattern is both under natural selection for Müllerian mimicry and involved in mate choice, and therefore underlies several isolating barriers. However, pairs which share a similar wing pattern also display strong reproductive isolation mediated by traits other than wing pattern. This suggests that, while wing pattern is a key factor for early stages of divergence, it may become facultative at later stages of divergence. Additional factors including habitat partitioning, hybrid sterility, and chemically mediated mate choice are associated with complete speciation. Therefore, although most previous work has emphasized the role of wing pattern, our comparative results highlight that speciation is a multi-dimensional process, whose completion is stabilized by many factors. © 2017 The Author(s).
Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy.
Rempe, Ralf G; Hartz, Anika M S; Soldner, Emma L B; Sokola, Brent S; Alluri, Satya R; Abner, Erin L; Kryscio, Richard J; Pekcec, Anton; Schlichtiger, Juli; Bauer, Björn
2018-05-02
The blood-brain barrier is dysfunctional in epilepsy, thereby contributing to seizure genesis and resistance to antiseizure drugs. Previously, several groups reported that seizures increase brain glutamate levels, which leads to barrier dysfunction. One critical component of barrier dysfunction is brain capillary leakage. Based on our preliminary data, we hypothesized that glutamate released during seizures mediates an increase in matrix-metalloproteinase (MMP) expression and activity levels, thereby contributing to barrier leakage. To test this hypothesis, we exposed isolated brain capillaries from male Sprague Dawley rats to glutamate ex vivo and used an in vivo / ex vivo approach of isolated brain capillaries from female Wistar rats that experienced status epilepticus as an acute seizure model. We found that exposing isolated rat brain capillaries to glutamate increased MMP-2 and MMP-9 protein and activity levels, and decreased tight junction protein levels, which resulted in barrier leakage. We confirmed these findings in vivo in rats after status epilepticus and in brain capillaries from male mice lacking cytosolic phospholipase A 2 Together, our data support the hypothesis that glutamate released during seizures signals an increase in MMP-2 and MMP-9 protein expression and activity levels, resulting in blood-brain barrier leakage. SIGNIFICANCE STATEMENT The mechanism leading to seizure-mediated blood-brain barrier dysfunction in epilepsy is poorly understood. In the present study, we focused on defining this mechanism in the brain capillary endothelium. We demonstrate that seizures trigger a pathway that involves glutamate signaling through cytosolic phospholipase A 2 , which increases MMP levels and decreases tight junction protein expression levels, resulting in barrier leakage. These findings may provide potential therapeutic avenues within the blood-brain barrier to limit barrier dysfunction in epilepsy and decrease seizure burden. Copyright © 2018 the authors 0270-6474/18/384301-15$15.00/0.
NASA Astrophysics Data System (ADS)
Halkides, D. J.; Waliser, Duane E.; Lee, Tong; Menemenlis, Dimitris; Guan, Bin
2015-02-01
Spatial and temporal variation of processes that determine ocean mixed-layer (ML) temperature (MLT) variability on the timescale of the Madden-Julian Oscillation (MJO) in the Tropical Indian Ocean (TIO) are examined in a heat-conserving ocean state estimate for years 1993-2011. We introduce a new metric for representing spatial variability of the relative importance of processes. In general, horizontal advection is most important at the Equator. Subsurface processes and surface heat flux are more important away from the Equator, with surface heat flux being the more dominant factor. Analyses at key sites are discussed in the context of local dynamics and literature. At 0°, 80.5°E, for MLT events > 2 standard deviations, ocean dynamics account for more than two thirds of the net tendency during cooling and warming phases. Zonal advection alone accounts for ˜40% of the net tendency. Moderate events (1-2 standard deviations) show more differences between events, and some are dominated by surface heat flux. At 8°S, 67°E in the Seychelles-Chagos Thermocline Ridge (SCTR) area, surface heat flux accounts for ˜70% of the tendency during strong cooling and warming phases; subsurface processes linked to ML depth (MLD) deepening (shoaling) during cooling (warming) account for ˜30%. MLT is more sensitive to subsurface processes in the SCTR, due to the thin MLD, thin barrier layer and raised thermocline. Results for 8°S, 67°E support assertions by Vialard et al. (2008) not previously confirmed due to measurement error that prevented budget closure and the small number of events studied. The roles of MLD, barrier layer thickness, and thermocline depth on different timescales are examined.
Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties.
Basha, Sreenivasulu; Lingamgunta, Lakshman Kumar; Kannali, Jayakumar; Gajula, Swarna Kumari; Bandikari, Ramesh; Dasari, Sreenivasulu; Dalavai, Veena; Chinthala, Paramageetham; Gundala, Prasada Babu; Kutagolla, Peera; Balaji, Vinodh Kumar
2018-04-24
Concrete is a strong and fairly inexpensive building substance, but has several disadvantages like cracking that allows corrosion, thus reducing its lifespan. To mitigate these complications, long-lasting microbial self-healing cement is an alternative that is eco-friendly and also actively repairs cracks. The present paper describes the detailed experimental investigation on compressive strength of cement mortars, mixed with six alkaliphilic bacteria, isolated from subsurface mica mines of high alkalinity. The experiments showed that the addition of alkaliphilic isolates at different cell concentrations (10 4 and 10 6 cells/ml) enhanced the compressive strength of cement mortar, because the rapid growth of bacteria at high alkalinity precipitates calcite crystals that lead to filling of pores and densifying the concrete mix. Thus, Bacillus subtilis (SVUNM4) showed the highest compressive strength (28.61%) of cement mortar at 10 4 cells/ml compared to those of other five alkaliphilic isolates (Brevibacillus sp., SVUNM15-22.1%; P. dendritiformis, SVUNM11-19.9%; B. methylotrophicus, SVUNM9-16%; B. licheniformis, SVUNM14-12.7% and S. maltophilia, SVUNM13-9.6%) and controlled cement mortar as well. This method resulted in the filling of cracks in concrete with calcite (CaCO 3 ), which was observed by scanning electron microscopy (SEM). Our results showed that the alkaliphilic bacterial isolates used in the study are effective in self-healing and repair of concrete cracks.
Purushotham, Chetana B; Robin, V V
2016-10-01
Various mechanisms of isolation can structure populations and result in cultural and genetic differentiation. Similar to genetic markers, for songbirds, culturally transmitted sexual signals such as breeding song can be used as a measure of differentiation as songs can also be impacted by geographic isolation resulting in population-level differences in song structure. Several studies have found differences in song structure either across ancient geographic barriers or across contemporary habitat barriers owing to deforestation. However, very few studies have examined the effect of both ancient barriers and recent deforestation in the same system. In this study, we examined the geographic variation in song structure across six populations of the White-bellied Shortwing, a threatened and endemic songbird species complex found on isolated mountaintops or "sky islands" of the Western Ghats. While some sky islands in the system are isolated by ancient valleys, others are separated by deforestation. We examined 14 frequency and temporal spectral traits and two syntax traits from 835 songs of 38 individuals across the six populations. We identified three major song clusters based on a discriminant model of spectral traits, degree of similarity of syntax features, as well as responses of birds to opportunistic playback. However, some traits like complex vocal mechanisms (CVM), relating to the use of syrinxes, clearly differentiated both ancient and recently fragmented populations. We suggest that CVMs may have a cultural basis and can be used to identify culturally isolated populations that cannot be differentiated using genetic markers or commonly used frequency-based song traits. Our results demonstrate the use of bird songs to reconstruct phylogenetic groups and impacts of habitat fragmentation even in complex scenarios of historic and contemporary isolation.
High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)
2015-01-01
A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping
2018-05-01
Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.
Kieft, Thomas L.; Kuloyo, Olukayode; Linage-Alvarez, Borja; van Heerden, Esta; Lindsay, Melody R.; Magnabosco, Cara; Wang, Wei; Wiggins, Jessica B.; Guo, Ling; Perlman, David H.; Kyin, Saw; Shwe, Henry H.; Harris, Rachel L.; Oh, Youmi; Yi, Min Joo; Purtschert, Roland; Slater, Greg F.; Ono, Shuhei; Wei, Siwen; Li, Long; Sherwood Lollar, Barbara; Onstott, Tullis C.
2016-01-01
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. PMID:27872277
USDA-ARS?s Scientific Manuscript database
Edible films may be used in food packaging, for which they must deliver good barrier and mechanical properties. Films based on proteins have good gas barrier and mechanical properties, but poor water barrier properties. Films made from lipids have good water barrier properties, but poor mechanical p...
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Statz, C.; Hahnel, R.; Benedix, W. S.; Hamran, S. E.; Ciarletti, V.
2016-12-01
The "Water Ice Subsurface Deposition on Mars" Experiment (WISDOM) is a Ground Penetrating Radar (GPR) and part of the 2020 ExoMars Rover payload. It will be the first GPR operating on a planetary rover and the first fully polarimetric radar tasked at probing the subsurface of Mars. WISDOM operates at frequencies between 500 MHz and 3 GHz yielding a centimetric resolution and a penetration depth of about 3 meters in Martian soil. Its prime scientific objective is the detailed characterization of the material distribution within the first few meters of the Martian subsurface as a contribution to the search for evidence of past life. For the first time, WISDOM will give access to the geological structure, electromagnetic nature, and hydrological state of the shallow subsurface by retrieving the layering and properties of the buried reflectors at an unprecedented resolution and, due to the fully polarimetric measurements, amount of information. Furthermore, a "real time" subsurface analysis will support the drill operations by identifying locations of high scientific interest and low risk. Key element in the WISDOM data analysis is the fast and reliable classification and correct localization of subsurface scatterers and layers. The fully polarimetric nature of the WISDOM measurements allows the use of the entropy-alpha decomposition (H-alpha). This method enables the classification of reconstructed images of the subsurface (obtained by inverse imaging algorithms, e.g. f-k migration) with regard to the main scattering mechanisms of geological features present in the image of the subsurface. It is, for example, possible to differentiate smooth surfaces, rough surfaces, isolated spherical scatterers, double- and bounce scattering, anisotropic scatterers, clouds of small scatterers of similar shape as well as layers of oblate spheroids. Preliminary tests under laboratory conditions suggest the feasibility and value of the approach for the classification of geological features in the Martian subsurface in the context of WISDOM data processing and operations. It is a fast and reliable tool leveraging the whole amount of information provided by the fully polarimetric WISDOM Radar.
NASA Astrophysics Data System (ADS)
Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Casar, C.; Simon, A.; Arcilla, C. A.
2016-12-01
Serpentinization in the subsurface produces highly reduced, high pH fluids that provide microbial habitats. It is assumed that these deep subsurface fluids contain copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. As serpentinized fluids reach the oxygenated surface environment, microbial biomes shift and organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). However, the relationship of microbial communities found in surface expressions of serpentinizing fluids to the subsurface biosphere is still a target of exploration. Our work in the Zambales ophiolite (Philippines) defines surface microbial habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Springs range from pH 9-11.5, and contain 0.06-2 ppm DO, 0-3.7 ppm sulfide, 30-800 ppm silica. Gases include H2 and CH4 > 10uM, CO2 > 1 mM, and trace amounts of CO. These surface data allow prediction of the subsurface metabolic landscape. For example, Cardace et al., (2015) predicted that metabolism of iron is important in both biospheres. Growth media were designed to target iron reduction yielding heterotrophic and autotrophic iron reducers at high pH. Reduced iron minerals were produced in several cultures (Casar et al., sub.), and isolation efforts are underway. Shotgun metagenomic analysis shows the metabolic capacity for methanogenesis, suggesting microbial origins for some CH4 present. The enzymes methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. The metagenomes indicate carbon cycling at these sites is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. In this tropical climate, cellulose is also a likely carbon source; cellulose degrading isolates have been obtained. These results indicate a metabolically flexible community at the surface where serpentinizing fluids are expressed. The next step is to understand what these surface systems might tell us about the subsurface biosphere. References: Cardace et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00010 Woycheese et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00044
Delamination-Indicating Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2007-01-01
The risk of premature failure of thermal barrier coatings (TBCs), typically composed of yttria-stabilized zirconia (YSZ), compromises the reliability of TBCs used to provide thermal protection for turbine engine components. Unfortunately, TBC delamination proceeds well beneath the TBC surface and cannot be monitored by visible inspection. Nondestructive diagnostic tools that could reliably probe the subsurface damage state of TBCs would alleviate the risk of TBC premature failure by indicating when the TBC needs to be replaced before the level of TBC damage threatens engine performance or safety. To meet this need, a new coating design for thermal barrier coatings (TBCs) that are self-indicating for delamination has been successfully implemented by incorporating a europium-doped luminescent sublayer at the base of a TBC composed of YSZ. The luminescent sublayer has the same YSZ composition as the rest of the TBC except for the addition of low-level europium doping and therefore does not alter TBC performance.
Saccharomyces cerevisiae show low levels of traversal across human endothelial barrier in vitro.
Pérez-Torrado, Roberto; Querol, Amparo
2017-01-01
Background : Saccharomyces cerevisiae is generally considered safe, and is involved in the production of many types of foods and dietary supplements. However, some isolates, which are genetically related to strains used in brewing and baking, have shown virulent traits, being able to produce infections in humans, mainly in immunodeficient patients. This can lead to systemic infections in humans. Methods : In this work, we studied S. cerevisiae isolates in an in vitro human endothelial barrier model, comparing their behaviour with that of several strains of the related pathogens Candida glabrata and Candida albicans . Results : The results showed that this food related yeast is able to cross the endothelial barrier in vitro . However, in contrast to C. glabrata and C. albicans , S. cerevisiae showed very low levels of traversal. Conclusions : We conclude that using an in vitro human endothelial barrier model with S. cerevisiae can be useful to evaluate the safety of S. cerevisiae strains isolated from foods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Robert C.; Szecsody, James; Rigali, Mark J.
We have performed an initial evaluation and testing program to assess the effectiveness of a hydroxyapatite (Ca10(PO4)6(OH)2) permeable reactive barrier and source area treatment to decrease uranium mobility at the Department of Energy (DOE) former Old Rifle uranium mill processing site in Rifle, western Colorado. Uranium ore was processed at the site from the 1940s to the 1970s. The mill facilities at the site as well as the uranium mill tailings previously stored there have all been removed. Groundwater in the alluvial aquifer beneath the site still contains elevated concentrations of uranium, and is currently used for field tests tomore » study uranium behavior in groundwater and investigate potential uranium remediation technologies. The technology investigated in this work is based on in situ formation of apatite in sediment to create a subsurface apatite PRB and also for source area treatment. The process is based on injecting a solution containing calcium citrate and sodium into the subsurface for constructing the PRB within the uranium plume. As the indigenous sediment micro-organisms biodegrade the injected citrate, the calcium is released and reacts with the phosphate to form hydroxyapatite (precipitate). This paper reports on proof-of-principle column tests with Old Rifle sediment and synthetic groundwater.« less
Larcombe, Matthew J; Costa E Silva, João; Tilyard, Paul; Gore, Peter; Potts, Brad M
2016-09-01
Many previous studies conclude that pre-zygotic barriers such as mechanical isolation account for most reproductive isolation between pairs of taxa. However, the inheritance and persistence of barriers such as these after the first generation of hybridization is rarely quantified, even though it is a vital consideration in understanding gene flow potential. There is an asymmetrical pre-zygotic mechanical barrier to hybridization between Eucalyptus nitens and Eucalyptus globulus, which completely prevents small-flowered E. nitens pollen from mating with large E. globulus flowers, while the reverse cross is possible. We aimed to determine the relative importance of pre- and post-zygotic barriers in preventing gene flow following secondary contact between E. nitens and E. globulus, including the inheritance of barriers in advanced-generation hybrids. Experimental crossing was used to produce outcrossed E. nitens, E. globulus and their F1, F2, BCg and BCn hybrids. The strength and inheritance of a suite of pre- and post-zygotic barriers were assessed, including 20-year survival, growth and reproductive capacity. The mechanical barrier to hybridization was lost or greatly reduced in the F1 hybrid. In contrast, intrinsic post-zygotic barriers were strong and persistent. Line-cross analysis indicated that the outbreeding depression in the hybrids was best explained by epistatic loss. The removal of strong mechanical barriers between E. nitens and E. globulus allows F1 hybrids to act as a bridge for bi-directional gene flow between these species. However, strong and persistent post-zygotic barriers exist, meaning that wherever F1 hybridization does occur, intrinsic post-zygotic barriers will be responsible for most reproductive isolation in this system. This potential transient nature of mechanical barriers to zygote formation due to additive inheritance in hybrids appears under-appreciated, and highlights the often important role that intrinsic post-mating barriers play in maintaining species boundaries at zones of secondary contact. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System
NASA Astrophysics Data System (ADS)
Ulrich, C.; Hubbard, S. S.; Peterson, J.; Blom, K.; Black, W.; Delaney, C.; Mendoza, J.
2014-12-01
An evaluation is underway at the Goat Rock State Park, located at the mouth of the Russian River near Jenner, CA, to quantify the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. We are monitoring seepage through the jetty and beach berm with multiple surface and borehole geophysical methods, including: electrical resistivity (ERT), seismic refraction (SR), ground penetrating radar (GPR), and electromagnetic methods (EM). We use SR data to characterize deeper bedrock controls on beach barrier functioning; ERT and EM methods to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure; time-lapse ERT and EM data to monitor moisture changes and mixing of saline and fresh water within the beach berm, and borehole ERT and GPR data to delineate the geometry of the (often buried) jetty. Preliminary ERT and EM results indicate two preferential flow paths through zones of missing jetty structure, while time-lapse borehole ERT data is expected to image saltwater flow impedance in zones of intact jetty structure. All data are being integrated with topography, tidal, borehole, and hydrological information and the results of the assessment will enable the Sonoma County Water Agency to develop the feasibility of alternatives to the existing jetty that may help achieve target estuarine water surface elevations.
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.
Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteriamore » cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.« less
Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.
Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T
1999-10-01
Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.
Geophysical Assessment of the Control of a Jetty on a Barrier Beach and Estuary System
NASA Astrophysics Data System (ADS)
Ulrich, C.; Hubbard, S.; Delaney, C.; Seymour, D.; Blom, K.; Black, W.
2013-12-01
An evaluation is underway at the Goat Rock State Beach, which is located at the mouth of the Russian River near Jenner, CA. The study focuses on quantifying the influence of a man made jetty on the functioning of a barrier beach and associated implications for estuary fish habitat and flood control. Flow through the beach results from water level differences between the estuary and the ocean. When the estuary is closed or perched, one of the potential major sources of outflow from the lagoon is seepage flow through the barrier beach. The location and design of the jetty could be altering subsurface flow paths through the jetty and possibly impeding or enhancing subsurface flow where the jetty is still intact. This will result in unnatural connectivity between the ocean and the estuary leading to atypical surface water elevations and possibly salinity imbalance. Results of the assessment will enable the Sonoma County Water Agency to understand how the jetty affects formation of the barrier beach and water surface elevations within the estuary. As one aspect of the evaluation, we are using geophysical methods to monitor seepage through the jetty as well as through the beach berm. We are using multiple surface geophysical methods, including: electrical resistivity, seismic refraction, ground penetrating radar, and electromagnetic methods. In general, seismic data are being used to characterize deeper bedrock controls on beach barrier functioning such as, channeling of estuarine water beneath the barrier beach. Electrical and electromagnetic methods are being used to characterize the beach sediment layers that could contribute to preferential flow paths during tide cycles in addition to preferential flow paths created by the jetty structure. Time-lapse electrical and electromagnetic data are being used to monitor moisture changes and mixing of saline and fresh water within the beach berm. Ground penetrating radar data are being used to delineate the geometry of the (often buried) jetty. All data are being integrated with topography, tidal and hydrological information, and electrical conductivity and temperature data from monitoring wells. These results are expected to improve the overall understanding of the jetty's effects on beach permeability and will better improve the understanding of the jetty's influence on estuary habitats and flood risk.
Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P
2018-06-01
Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (<13 km) genetic structure within reaches unimpeded by barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (<100). Our study highlights that, in structured populations, the ability to detect short-term genetic effects from barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.
Tao, Zhi-Bin; Ren, Zong-Xin; Bernhardt, Peter; Liang, Huan; Li, Hai-Dong; Zhao, Yan-Hui; Wang, Hong; Li, De-Zhu
2018-06-01
Isolation between species, or taxa sharing a common lineage, depends primarily on the relative strengths of various reproductive barriers. Previous studies on reproductive isolation between orchids emphasized mechanical and ethological barriers in flowers of species showing food and/or sexual mimicry. In this study, we investigated and quantified a series of prepollination and postpollination barriers between pink and white forms of Spiranthes sinensis sl, a nectar-secreting complex. We generated ML trees based on trn S-G and mat K to explore phylogenetic relationships in this species complex. Spiranthes sinensis sl segregated from some other congeners, but the white form constituted a distinct clade in relation to the pink form. The white form secreted 2-Phenylethanol as it is a single-scent compound and was pollinated almost exclusively by native, large-bodied Apis cerana and Bombus species (Apidae). Apis cerana showed a high floral constancy to this form. The scentless, pink form was pollinated primarily by smaller bees in the genera Ceratina (Apidae), and members of the family Halictidae, with infrequent visits by A. cerana and Bombus species. Fruit set and the production of large embryos following interform pollination treatments were significantly lower compared to intraform pollination results for the white form. Our results suggested that pollinator isolation, based on color and scent cues, may result in greater floral constancy in white populations when both forms are sympatric as two different, guilds of pollinators forage selectively preventing or reducing prospective gene flow. Postpollination barriers appear weaker than prepollination barriers but they also play a role in interform isolation, especially in the white form. Our findings suggest that floral color forms in S. sinensis do not represent an unbalanced polymorphism. Interpretations of the evolutionary status of these forms are discussed.
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2016-09-19
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimatesmore » demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2015-09-30
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate thatmore » even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy.
Hartz, Anika M S; Pekcec, Anton; Soldner, Emma L B; Zhong, Yu; Schlichtiger, Juli; Bauer, Bjoern
2017-04-03
A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.
Long Term Geoelectrical Monitoring of Deep-water Horizon Oil Spill in the Gulf Coast
NASA Astrophysics Data System (ADS)
Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.
2011-12-01
In the aftermath of the catastrophic Deep-water Horizon (DWH) spill in the Gulf Coast, opportunities exist to study the evolution of fresh crude oil contamination in beach sediments and marshes. Grand Terre 1 Island, off the coast of Grand Isle in southern Louisiana, is an uninhabited barrier island, heavily impacted by the DWH spill, and ideal for undisturbed long term monitoring of crude oil degradation processes. A 10 channel Syscal-Pro resistivity / IP instrument (IRIS Instruments, France) is the heart of the fully autonomous geoelectrical monitoring system; the system, which is housed in a weatherproof container, relies solely on solar power, is controlled by an energy efficient PC and can be accessed remotely via web tools. The monitoring scheme involves collecting bi-daily resistivity measurements from surface and shallow boreholes, ranging from January 2011 to the present; environmental parameters, such as T, are continuously recorded at several depths. During regular field trips we perform larger scale geophysical surveys, and geochemical measurements (pH, DO, T, fluid C) to support the continuous geophysical monitoring. The contaminated layer on site is a visually distinctive layer of crude oil, isolated by cleaner sands above and below which is identified by a clear and obvious resistive anomaly in preliminary surveys. Early results show a decrease in average of the resistance values of each dataset over time. Further processing of the data yields a linearly shaped resistive anomaly, which coincides with the location of the oil layer. The changes in subsurface resistivity appear to be focused within this anomaly. Time filtering of the data by the time that they were collected, morning or evening, reveals a diurnal variation. While both time frames follow the same overall trend, the measurements in the morning are slightly more resistive than those in the evening. This indicates that there are environmental factors, such as temperature, that need to be accounted for when analyzing the data for evidence of biological processes. These preliminary findings indicate changes in the subsurface properties of the contaminated area and suggest that geoelectrical methods are sensitive to contamination evolution processes. Such geophysical data, constrained by geochemical and microbiological information, have the potential to be used as a long term monitoring tool for biological and geochemical processes in the subsurface.
Electrochemical characterization of cerium-based conversion coatings on aluminum alloy 7075-T6
NASA Astrophysics Data System (ADS)
Joshi, Simon
This research used electrochemical techniques to characterize the deposition and corrosion protection behavior of cerium-based conversion coatings on Al 7075-T6. Alkaline activation decreased native oxide impedance (5.9 kO-cm2) by ˜25% promoting deposition of 250--500 nm coatings. Activation in NaOH solutions deposited coatings with large cracks and craters, whereas Na2CO3 activation resulted in uniform coatings, i.e., fewer cracks and almost no craters. Uniformly deposited coatings exhibited better cathodic inhibition and higher impedance (˜200 kO-cm 2) than on NaOH activated substrates (˜100 kO-cm 2). Subsurface crevices, caused by Cl- and H 2O2 in the deposition solution, were found under large cracks and craters. Thus, Na2CO3 activation produced fewer subsurface crevices. To reduce subsurface crevice formation, Ce(NO3) 3 and CeCl3 were used in different ratios. Coatings made using 100% Ce(NO3)3 solutions were ˜60 nm thick without subsurface crevices, but the coatings offered little corrosion protection. Despite formation of subsurface crevices, Cl- was necessary as impedance increased linearly with Cl- concentration in the deposition solution. To characterize the different non-uniform features of the coatings, microelectrochemical testing was performed and it showed three distinct regions: active, intermediate, and passive. Humidity experiments were performed to understand the effect of moisture during salt spray testing and showed an increase in coating impedance by making the exposed substrate oxide more passive. However, this passive oxide could not provide corrosion resistance in a chloride environment. Dissolution studies showed that cerium migration was only possible at pH ≤2. Overall, deposition of uniform 250--500 nm thick outings was essential to make it an effective barrier to Cl - attach and prevent subsurface crevices on Al 7075-T6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...
2018-01-08
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...
2018-01-08
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
NASA Astrophysics Data System (ADS)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; Dafflon, Baptiste; Yuan, Fengming; Romanovsky, Vladimir E.
2018-01-01
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ˜ 10 cm shallower and ˜ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ˜ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.
Araújo, Cristiano V M; Silva, Daniel C V R; Gomes, Luiz E T; Acayaba, Raphael D; Montagner, Cassiana C; Moreira-Santos, Matilde; Ribeiro, Rui; Pompêo, Marcelo L M
2018-02-01
Information on how atrazine can affect the spatial distribution of organisms is non-existent. As this effect has been observed for some other contaminants, we hypothesized that atrazine-containing leachates/discharges could trigger spatial avoidance by the fish Poecilia reticulata and form a chemical barrier isolating upstream and downstream populations. Firstly, guppies were exposed to an atrazine gradient in a non-forced exposure system, in which organisms moved freely among the concentrations, to assess their ability to avoid atrazine. Secondly, a chemical barrier formed by atrazine, separating two clean habitats (extremities of the non-forced system), was simulated to assess whether the presence of the contaminant could prevent guppies from migrating to the other side of the system. Fish were able to avoid atrazine contamination at environmentally relevant concentrations (0.02 μg L -1 ), below those described to cause sub-lethal effects. The AC 50 (atrazine concentration causing avoidance to 50% of the population) was 0.065 μg L -1 . The chemical barrier formed by atrazine at 150 μg L -1 (concentration that should produce an avoidance around 82%) caused a reduction in the migratory potential of the fish by 47%; while the chemical barrier at 1058 μg L -1 (concentration that produces torpidity) caused a reduction in the migratory potential of the fish by 91%. Contamination by atrazine, besides driving the spatial distribution of fish populations, has potential to act as a chemical barrier by isolating fish populations. This study includes a novel approach to be integrated in environmental risk assessment schemes to assess high-tier contamination effects such as habitat fragmentation and population displacement and isolation. Copyright © 2017 Elsevier Ltd. All rights reserved.
105-KE Isolation Barrier Leak Rate Acceptance Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCracken, K.J.
1995-06-14
This Acceptance Test Report (ATR) contains the completed and signed Acceptance Procedure (ATP) for the 105-KE Isolations Barrier Leak Rate Test. The Test Engineer`s log, the completed sections of the ATP in the Appendix for Repeat Testing (Appendix K), the approved WHC J-7s (Appendix H), the data logger files (Appendices T and U), and the post test calibration checks (Appendix V) are included.
Evaluation of Oxidation Damage in Thermal Barrier Coating Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
1996-01-01
A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polvonov, B. Z., E-mail: uzferfizika@mail.ru; Yuldashev, N. Kh.
The band of intrinsic (e–h) radiation emission by the subsurface potential barriers of crystal grains and the edge doublet band arising as LO-phonon replicas of the e–h band are observed in the spectra of the low-temperature (4.2 K) photoluminescence of fine-grained (with a grain size of d{sub cr} ≤ 1 µm) CdTe films. Film doping with the In impurity results in quenching of the doublet band, while heat treatment leads to activation of the intrinsic band, a short-wavelength shift of the red boundary (ΔE{sub r} = 16–29 meV) and the halfwidth modulation (Δ{sub A} = 6–17 meV) of which correlatemore » with the height of micropotential barriers and the temperature of recombining hot photocarriers.« less
Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales
Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.
2017-01-01
ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary. PMID:28685163
Sass, Henrik; Cypionka, Heribert
2004-09-01
Deep subsurface sandstones in the area of Berlin (Germany) located 600 to 1060 m below the surface were examined for the presence of viable microorganisms. The in situ temperatures at the sampling sites ranged from 37 to 45 degrees C. Investigations focussed on sulfate-reducing bacteria able to grow on methanol and triethylene glycol, which are added as chemicals to facilitate the long-term underground storage of natural gas. Seven strains were isolated from porewater brines in the porous sandstone. Three of them were obtained with methanol (strains H1M, H3M, and B1M), three strains with triethylene glycol (strains H1T, B1T, and B2T) and one strain with a mixture of lactate, acetate and butyrate (strain H1-13). Due to phenotypic properties six isolates could be identified as members of the genus Desulfovibrio, and strain B2T as a Desulfotomaculum. The salt tolerance and temperature range for growth indicated that the isolates originated from the indigenous deep subsurface sandstones. They grew in mineral media reflecting the in situ ionic composition of the different brines, which contained 1.5 to 190 g NaCl x l(-1) and high calcium and magnesium concentrations. The Desulfovibrio strains grew at temperatures between 20 and 50 degrees C, while the Desulfotomaculum strain was thermophilic and grew between 30 and 65 degrees C. The strains utilized a broad spectrum of electron donors and acceptors. They grew with carbon compounds like lactate, pyruvate, formate, n-alcohols (C1-C5), glycerol, ethylene glycol, malate, succinate, and fumarate. Some strains even utilized glucose as electron donor and carbon source. All strains were able to use sulfate, sulfite and nitrate as electron acceptors. Additionally, three Desulfovibrio strains reduced manganese oxide, the Desulfotomaculum strain reduced manganese oxide, iron oxide, and elemental sulfur. The 16S rRNA analysis revealed that the isolates belong to three different species. The strains H1T, H3M and B1M could be identified as Desulfovibrio indonesiensis, and strain B2T as Desulfotomaculum geothermicum. The other Desulfovibrio strains (H1M, H1-13, and B1T) showed identical 16S rDNA sequences and similarities as low as 93% to their closest relative, Desulfovibrio aminophilusT. Therefore, these isolates were assigned to a new species, Desulfovibrio cavernae sp. nov., with strain H1M as the type strain.
Tamazawa, Satoshi; Mayumi, Daisuke; Mochimaru, Hanako; Sakata, Susumu; Maeda, Haruo; Wakayama, Tatsuki; Ikarashi, Masayuki; Kamagata, Yoichi; Tamaki, Hideyuki
2017-10-01
A novel thermophilic, anaerobic, chemoheterotrophic, acetate-oxidizing and iron(III)-, manganese(IV)-, nitrate- and sulfate-reducing bacterium, designated strain ANA T , was isolated from a deep subsurface oil field in Japan (Yabase oil field, Akita Pref.). Cells of strain ANA T were Gram-stain-negative, non-motile, non-spore forming and slightly curved or twisted rods (1.5-5.0 µm long and 0.6-0.7 µm wide). The isolate grew at 25-60 °C (optimum 55 °C) and pH 6.0-8.0 (optimum pH 7.0). The isolate was capable of reducing iron(III), manganese(IV), nitrate and sulfate as an electron acceptor. The isolate utilized a limited range of electron donors such as acetate, lactate, pyruvate and yeast extract for iron reduction. Strain ANA T also used pyruvate, fumarate, succinate, malate, yeast extract and peptone for fermentative growth. The major respiratory quinones were menaquinone-7(H8) and menaquinone-8. The strain contained C18 : 0, iso-C18 : 0 and C16 : 0 as the major cellular fatty acids. The G+C content of the genomic DNA was 34.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain ANA T was closely related to Calditerrivibrio nitroreducens in the phylum Deferribacteres with low sequence similarities (89.5 %), and formed a distinct clade within the family Deferribacteraceae. In addition, the isolate is the first sulfate-reducing member of the phylum Deferribacteres. Based on phenotypic, chemotaxonomic and phylogenetic properties, a novel genus and species, Petrothermobacter organivorans gen. nov., sp. nov., is proposed for the isolate (type strain=ANA T = NBRC 112621 T =DSM 105015 T ).
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-10-14
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.
Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock
Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan
2016-01-01
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, T; Fredrickson, Jim K.; Balkwill, David L.
Several strains of Sphingomonas isolated from deep Atlantic coastal plain aquifers at the US Department of Energy Savannah River Site (SRS) near Aiken, SC were shown to degrade a variety of aromatic hydrocarbons in a liquid culture medium. Sphingomonas aromaticivorans strain B0695 was the most versatile of the five strains examined. This strain was able to degrade acenaphthene, anthracene, phenanthrene, 2,3-benzofluorene, 2-methyl naphthalene, 2,3-dimethylnaphthalene, and fluoranthene in the presence of 400 mg l(-1) Tween 80. Studies involving microcosms composed of aquifer sediments showed that S. aromaticivorans B0695 could degrade phenanthrene effectively in sterile sediment and could enhance the rate atmore » which this compound was degraded in nonsterile sediment. These findings indicate that it may be feasible to carry out (or, at least, to enhance) in situ bioremediation of phenanthrene-contaminated soils and subsurface environments with S. aromaticivorans B0695. In contrast, stra in B0695 was unable to degrade fluoranthene in microcosms containing aquifer sediments, even though it readily degraded this polynuclear aromatic hydrocarbon (PAH) in a defined liquid growth medium.« less
Yu, Guo; Zhang, Guojin; Flach, Carol R; Mendelsohn, Richard
2013-06-01
Vibrational spectroscopy and imaging have been used to compare barrier properties in human skin, porcine skin, and two human skin equivalents, Epiderm 200X with an enhanced barrier and Epiderm 200 with a normal barrier. Three structural characterizations were performed. First, chain packing and conformational order were compared in isolated human stratum corneum (SC), isolated porcine SC, and in the Epiderm 200X surface layers. The infrared (IR) spectrum of isolated human SC revealed a large proportion of orthorhombically packed lipid chains at physiological temperatures along with a thermotropic phase transition to a state with hexagonally packed chains. In contrast, the lipid phase at physiological temperatures in both porcine SC and in Epiderm 200X, although dominated by conformationally ordered chains, lacked significant levels of orthorhombic subcell packing. Second, confocal Raman imaging of cholesterol bands showed extensive formation of cholesterol-enriched pockets within the human skin equivalents (HSEs). Finally, IR imaging tracked lipid barrier dimensions as well as the spatial disposition of ordered lipids in human SC and Epiderm 200X. These approaches provide a useful set of experiments for exploring structural differences between excised human skin and HSEs, which in turn may provide a rationale for the functional differences observed among these preparations.
Aagaard, Jan E; George, Renee D; Fishman, Lila; Maccoss, Michael J; Swanson, Willie J
2013-01-01
Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.
Janette Williams, S; Huang, Han-Hung; Kover, Karen; Moore, Wayne; Berkland, Cory; Singh, Milind; Smirnova, Irina V; MacGregor, Ronal
2010-01-01
For people with type 1 diabetes and severe hypoglycemic unawareness, islet transplants offer hope for improving the quality of life. However, islet cell death occurs quickly during or after transplantation, requiring large quantities of islets per transplant. The purpose of this study was to determine whether poor function demonstrated in large islets was a result of diffusion barriers and if removing those barriers could improve function and transplantation outcomes. Islets were isolated from male DA rats and measured for cell viability, islet survival, glucose diffusion and insulin secretion. Modeling of diffusion barriers was completed using dynamic partial differential equations for a sphere. Core cell death occurred in 100% of the large islets (diameter >150 µm), resulting in poor survival within 7 days after isolation. In contrast, small islets (diameter <100 µm) exhibited good survival rates in culture (91%). Glucose diffusion into islets was tracked with 2-NBDG; 4.2 µm/min in small islets and 2.8 µm/min in large islets. 2-NBDG never permeated to the core cells of islets larger than 150 µm diameter. Reducing the diffusion barrier in large islets improved their immediate and long-term viability in culture. However, reduction of the diffusion barrier in large islets failed to improve their inferior in vitro insulin secretion compared to small islets, and did not return glucose control to diabetic animals following transplantation. Thus, diffusion barriers lead to low viability and poor survival for large islets, but are not solely responsible for the inferior insulin secretion or poor transplantation outcomes of large versus small islets. PMID:20885858
Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards
Hyma, Katie E.; Fay, Justin C.
2012-01-01
Humans have had a significant impact on the distribution and abundance of Saccharomyces cerevisiae through its widespread use in beer, bread and wine production. Yet, similar to other Saccharomyces species, S. cerevisiae has also been isolated from habitats unrelated to fermentations. Strains of S. cerevisiae isolated from grapes, wine must and vineyards worldwide are genetically differentiated from strains isolated from oak-tree bark, exudate and associated soil in North America. However, the causes and consequences of this differentiation have not yet been resolved. Historical differentiation of these two groups may have been influenced by geographic, ecological or human-associated barriers to gene flow. Here, we make use of the relatively recent establishment of vineyards across North America to identify and characterize any active barriers to gene flow between these two groups. We examined S. cerevisiae strains isolated from grapes and oak-trees within three North American vineyards and compared them to those isolated from oak-trees outside of vineyards. Within vineyards we found evidence of migration between grapes and oak-trees and potential gene flow between the divergent oak-tree and vineyard groups. Yet, we found no vineyard genotypes on oak-trees outside of vineyards. In contrast, S. paradoxus isolated from the same sources showed population structure characterized by isolation by distance. The apparent absence of ecological or genetic barriers between sympatric vineyard and oak-tree populations of S. cerevisiae implies that vineyards play an important role in the mixing between these two groups. PMID:23286354
Atri, Dimitra
2016-10-01
Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. © 2016 The Author(s).
2016-01-01
Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. PMID:27707907
He, W.; Anderson, R.N.
1998-08-25
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.
He, Wei; Anderson, Roger N.
1998-01-01
A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.
Barnett, Stephen; Jones, Sandra C; Bennett, Sue; Iverson, Don; Bonney, Andrew
2013-01-01
General practice training is a community of practice in which novices and experts share knowledge. However, there are barriers to knowledge sharing for general practioner (GP) registrars, including geographic and workplace isolation. Virtual communities of practice (VCoP) can be effective in overcoming these barriers using social media tools. The present study examined the perceived usefulness, features and barriers to implementing a VCoP for GP training. Following a survey study of GP registrars and supervisors on VCoP feasibility, a qualitative telephone interview study was undertaken within a regional training provider. Participants with the highest Internet usage in the survey study were selected. Two researchers worked independently conducting thematic analysis using manual coding of transcriptions, later discussing themes until agreement was reached. Seven GP registrars and three GP supervisors participated in the study (average age 38.2 years). Themes emerged regarding professional isolation, potential of social media tools to provide peer support and improve knowledge sharing, and barriers to usage, including time, access and skills. Frequent Internet-using GP registrars and supervisors perceive a VCoP for GP training as a useful tool to overcome professional isolation through improved knowledge sharing. Given that professional isolation can lead to decreased rural work and reduced hours, a successful VCoP may have a positive outcome on the rural medical workforce.
Barcelona, M J; Xie, G
2001-08-15
Permeable reactive barriers (PRB) are being used to engineer favorable field conditions for in-situ remediation efforts. Two redox adjustment barriers were installed to facilitate a 10-month research effort on the fate and transport of MTBE (methyl tert-butyl ether) at a site called the Michigan Integrated Remediation Technology Laboratory (MIRTL). Thirty kilograms of whey were injected as a slurry into an unconfined aquifer to establish an upgradient reductive zone to reduce O2 concentration in the vicinity of a contaminant injection source. To minimize the impact of contaminant release, 363 kg of oxygen release compound (ORC) were placed in the aquifer as a downgradient oxidative barrier. Dissolved oxygen and other chemical species were monitored in the field to evaluate the effectiveness of this technology. A transient one-dimensional advective-dispersive-reaction (ADR) model was proposed to simulate the dissolved oxygen transport. The equations were solved with commonly encountered PRB initial and constant/variable boundary conditions. No similar previous solution was found in the literature. The in-situ lifetimes, based on variable source loading, were estimated to be 1,661 and 514 days for the whey barrier and ORC barrier, respectively. Estimates based on either maximum O2 consumption/production or measured O2 curves were found to under- or overestimate the lifetime of the barriers. The pseudo-first-order rate constant of whey depletion was estimated to be 0.303/d with a dissolution rate of 0.04/d. The oxygen release rate constant in the ORC barrier was estimated to be 0.03/d. This paper provides a means to design and predict the performance of reactive redox barriers, especially when only limited field data are available.
Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik
2009-01-01
Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use with subsurface gas hydrate sediments from the Indian Continental Shelf, Cascadia Margin and Gulf of Mexico. Generally, highest cell concentrations in enrichments occurred close to in situ pressures (14 MPa) in a variety of media, although growth continued up to at least 80 MPa. Predominant sequences in enrichments were Carnobacterium, Clostridium, Marinilactibacillus and Pseudomonas, plus Acetobacterium and Bacteroidetes in Indian samples, largely independent of media and pressures. Related 16S rRNA gene sequences for all of these Bacteria have been detected in deep, subsurface environments, although isolated strains were piezotolerant, being able to grow at atmospheric pressure. Only the Clostridium and Acetobacterium were obligate anaerobes. No Archaea were enriched. It may be that these sediment samples were not deep enough (total depth 1126–1527 m) to obtain obligate piezophiles. PMID:19694787
Methods and apparatuses for reagent delivery, reactive barrier formation, and pest control
Gilmore, Tyler [Pasco, WA; Kaplan, Daniel I [Aiken, SC; Last, George [Richland, WA
2002-07-09
A reagent delivery method includes positioning reagent delivery tubes in contact with soil. The tubes can include a wall that is permeable to a soil-modifying reagent. The method further includes supplying the reagent in the tubes, diffusing the reagent through the permeable wall and into the soil, and chemically modifying a selected component of the soil using the reagent. The tubes can be in subsurface contact with soil, including groundwater, and can be placed with directional drilling equipment independent of groundwater well casings. The soil-modifying reagent includes a variety of gases, liquids, colloids, and adsorbents that may be reactive or non-reactive with soil components. The method may be used inter alia to form reactive barriers, control pests, and enhance soil nutrients for microbes and plants.
Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2013-01-01
Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.
Harvey, R.W.; Lion, Leonard W.; Young, L.Y.; Leckie, J.O.
1982-01-01
The particle-laden surface layer (approx 150-370 mu m) and subsurface waters of a South San Francisco Bay salt marsh were sampled over 2 tidal cycles and analyzed for particle numbers and particulate-associated and total concentrations of Pb and bacteria. Laboratory studies examined the ability of a bacterial isolate from the surface layer and a bacterial 'film-former' to sorb Pb at environmentally significant concentrations in seawater. Degrees by which Pb concentrated in the surface layer relative to the subsurface strongly correlated with enrichments of surface layer bacteria (bacterioneuston). A significant fraction of the bacterioneuston and surface layer Pb were associated with particles. Particle-bound bacterioneuston may interact with Pb at particulate surfaces in this microenvironment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santillan, Eugenio-Felipe U.; Shanahan, Timothy M.; Omelon, Christopher R.
2015-07-23
When CO 2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO 2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO 2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO 2- rich spring considered a carbon sequestration analog, was characterized. The isolate was cultured under varying CO 2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designatedmore » CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO 2 between 0 and 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 h. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° and 45°C and consumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 and 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO 2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO 2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO 2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.« less
Methanogenic archaea isolated from Taiwan's Chelungpu fault.
Wu, Sue-Yao; Lai, Mei-Chin
2011-02-01
Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the subsurface environment.
NASA Astrophysics Data System (ADS)
Santillan, Eugenio Felipe; Shanahan, Timothy; Omelon, Christopher; Major, Jonathan; Bennett, Philip
2015-07-01
When CO2 is sequestered into the deep subsurface, changes to the subsurface microbial community will occur. Capnophiles, microorganisms that grow in CO2-rich environments, are some organisms that may be selected for under the new environmental conditions. To determine whether capnophiles comprise an important part of CO2-rich environments, an isolate from Crystal Geyser, Utah, U.S.A., a CO2- rich spring considered a carbon sequestration analogue, was characterized. The isolate was cultured under varying CO2, pH, salinity, and temperature, as well as different carbon substrates and terminal electron acceptors (TEAs) to elucidate growth conditions and metabolic activity. Designated CG-1, the isolate is related (99%) to Lactobacillus casei in 16S rRNA gene identity, growing at PCO2 between 0 to 1.0 MPa. Growth is inhibited at 2.5 MPa, but stationary phase cultures exposed to this pressure survive beyond 5 days. At 5.0 MPa, survival is at least 24 hours. CG-1 grows in neutral pH, 0.25 M NaCl, and between 25° to 45°C andconsumes glucose, lactose, sucrose, or crude oil, likely performing lactic acid fermentation. Fatty acid profiles between 0.1 MPa to 1.0 MPa suggests decreases in cell size and increases in membrane rigidity. Transmission electron microscopy reveals rod shaped bacteria at 0.1 MPa. At 1.0 MPa, cells are smaller, amorphous, and produce abundant capsular material. Its ability to grow in environments regardless of the presence of CO2 suggests we have isolated an organism that is more capnotolerant than capnophilic. Results also show that microorganisms are capable of surviving the stressful conditions created by the introduction of CO2 for sequestration. Furthermore, our ability to culture an environmental isolate indicates that organisms found in CO2 environments from previous genomic and metagenomics studies are viable, metabolizing, and potentially affecting the surrounding environment.
Code of Federal Regulations, 2010 CFR
2010-01-01
... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...
Code of Federal Regulations, 2011 CFR
2011-01-01
... appropriate; and the sealing of shafts, ramps, and boreholes. (d) Areas related to isolation. Although the... geologic setting that provides isolation of the radioactive waste, make up the geologic repository. (e... will be capable of contributing to the isolation of radioactive waste and thus be a barrier important...
Badalamenti, Jonathan P; Erickson, Joshua D; Salomon, Christine E
2016-04-14
We sequenced and annotated the complete 7,170,504-bp genome of a novel secondary metabolite-producingStreptomycesstrain,Streptomyces albusSM254, isolated from copper-rich subsurface fluids at ~220-m depth within the Soudan Iron Mine (Soudan, MN, USA). Copyright © 2016 Badalamenti et al.
NASA Astrophysics Data System (ADS)
Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party
2011-12-01
The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum Proteobacteria) at 8%, and Formosa (phylum Bacteroidetes) at 7%. These lineages support a paradigm suggesting the importance of fermentation in the subsurface. However, this study extends the predicted range for fermentation below the shallow subsurface and into organic carbon limited marine sediments. Other previously characterized subsurface active populations from environments with higher organic carbon concentrations do not show similar levels of reduced diversity or predominance of fermentative populations. This study further emphasizes the spatial variability of microbial populations in the deep subsurface and highlights the need for continued exploration.
Reactive Membrane Barriers for Containment of Subsurface Contamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
William A. Arnold; Edward L. Cussler
2007-02-26
The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents andmore » cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when groundwater was used in place of deionized water. The performance of high density polyethylene (HDPE) membranes containing Fe{sup 0} was then evaluating using carbon tetrachloride as the target contaminant. Only with a hydrophilic additive (glycerol), was the iron able to extend lag times. Lag times were increased by a factor of 15, but only 2-3% of the iron was used, likely due to formation of oxide precipitates on the iron surface, which slowed the reaction. With thicker membranes and lower carbon tetrachloride concentrations, it is expected that performance will improve. Previous models for reactive membranes were also extended. The lag time is a measurement of when the barrier is breached, but contaminants do slowly leak through prior to the lag time. Thus, two parameters, the leakage and the kill time, were developed to determine when a certain amount of pollutant has escaped (the kill time) or when a given exposure (concentration x time) occurs (the leakage). Finally, a model was developed to explain the behavior of mobile reaction products in reactive barrier membranes. Although the goal of the technology is to avoid such products, it is important to be able to predict how these products will behave. Interestingly, calculations show that for any mobile reaction products, one half of the mass will diffuse into the containment area and one half will escape, assuming that the volumes of the containment area and the surrounding environment are much larger than the barrier membrane. These parameters/models will aid in the effective design of barrier membranes.« less
Zhang, Zhengyu; Uchida, Yasuo; Hirano, Satoshi; Ando, Daisuke; Kubo, Yoshiyuki; Auriola, Seppo; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi; Urtti, Arto; Terasaki, Tetsuya; Tachikawa, Masanori
2017-11-06
The purpose of this study was to determine absolute protein expression levels of transporters at the porcine inner blood-retinal barrier (BRB) and to compare the transporter protein expression quantitatively among the inner BRB, outer BRB, blood-brain barrier (BBB), and blood-cerebrospinal fluid barrier (BCSFB). Crude membrane fractions of isolated retinal capillaries (inner BRB) and isolated retinal pigment epithelium (RPE, outer BRB) were prepared from porcine eyeballs, while plasma membrane fractions were prepared from isolated porcine brain capillaries (BBB) and isolated choroid plexus (BCSFB). Protein expression levels of 32 molecules, including 16 ATP-binding-cassette (ABC) transporters and 13 solute-carrier (SLC) transporters, were measured using a quantitative targeted absolute proteomic technique. At the inner BRB, five molecules were detected: breast cancer resistance protein (BCRP, ABCG2; 22.8 fmol/μg protein), multidrug resistance protein 1 (MDR1, ABCB1; 8.70 fmol/μg protein), monocarboxylate transporter 1 (MCT1, SLC16A1; 4.83 fmol/μg protein), glucose transporter 1 (GLUT1, SLC2A1; 168 fmol/μg protein), and sodium-potassium adenosine triphosphatase (Na + /K + -ATPase; 53.7 fmol/μg protein). Other proteins were under the limits of quantification. Expression of MCT1 was at least 17.6-, 11.0-, and 19.2-fold greater than those of MCT2, 3, and 4, respectively. The transporter protein expression at the inner BRB was most highly correlated with that at the BBB (R 2 = 0.8906), followed by outer BRB (R 2 = 0.7988) and BCSFB (R 2 = 0.4730). Sodium-dependent multivitamin transporter (SMVT, SLC5A6) and multidrug resistance-associated protein 1 (MRP1, ABCC1) were expressed at the outer BRB (0.378 and 1.03 fmol/μg protein, respectively) but were under the limit of quantification at the inner BRB. These findings may be helpful for understanding differential barrier function.
Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction
Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A.; Leorri, Eduardo
2016-01-01
The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches. PMID:27929122
Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.
Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo
2016-12-08
The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.
Reaction of hydrogen with Ag(111): binding states, minimum energy paths, and kinetics.
Montoya, Alejandro; Schlunke, Anna; Haynes, Brian S
2006-08-31
The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.
Wijesekara, Hasintha Rangana; De Silva, Sunethra Nalin; Wijesundara, Dharani Thanuja De Silva; Basnayake, Bendict Francis Antony; Vithanage, Meththika Suharshini
2015-01-01
This study presents the use of direct current resistivity techniques (DCRT) for investigation and characterization of leachate-contaminated subsurface environment of an open solid waste dumpsite at Kandy, Sri Lanka. The particular dumpsite has no liner and hence the leachate flows directly to the nearby river via subsurface and surface channels. For the identification of possible subsurface flow paths and the direction of the leachate, DCRT (two-dimensional, three-dimensional and vertical electrical sounding) have been applied. In addition, the physico-chemical parameters such as pH, electrical conductivity (EC), alkalinity, hardness, chloride, chemical oxygen demand (COD) and total organic carbon (TOC) of leachate collected from different points of the solid waste dumping area and leachate drainage channel were analysed. Resistivity data confirmed that the leachate flow is confined to the near surface and no separate plume is observed in the downstream area, which may be due to the contamination distribution in the shallow overburden thickness. The stratigraphy with leachate pockets and leachate plume movements was well demarcated inside the dumpsite via low resistivity zones (1-3 Ωm). The recorded EC, alkalinity, hardness and chloride contents in leachate were averaged as 14.13 mS cm⁻¹, 3236, 2241 and 320 mg L⁻¹, respectively, which confirmed the possible causes for low resistivity values. This study confirms that DCRT can be effectively utilized to assess the subsurface characteristics of the open dumpsites to decide on corridor placement and depth of permeable reactive barriers to reduce the groundwater contamination.
Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards.
Hyma, Katie E; Fay, Justin C
2013-06-01
Humans have had a significant impact on the distribution and abundance of Saccharomyces cerevisiae through its widespread use in beer, bread and wine production. Yet, similar to other Saccharomyces species, S. cerevisiae has also been isolated from habitats unrelated to fermentations. Strains of S. cerevisiae isolated from grapes, wine must and vineyards worldwide are genetically differentiated from strains isolated from oak-tree bark, exudate and associated soil in North America. However, the causes and consequences of this differentiation have not yet been resolved. Historical differentiation of these two groups may have been influenced by geographic, ecological or human-associated barriers to gene flow. Here, we make use of the relatively recent establishment of vineyards across North America to identify and characterize any active barriers to gene flow between these two groups. We examined S. cerevisiae strains isolated from grapes and oak trees within three North American vineyards and compared them to those isolated from oak trees outside of vineyards. Within vineyards, we found evidence of migration between grapes and oak trees and potential gene flow between the divergent oak-tree and vineyard groups. Yet, we found no vineyard genotypes on oak trees outside of vineyards. In contrast, Saccharomyces paradoxus isolated from the same sources showed population structure characterized by isolation by distance. The apparent absence of ecological or genetic barriers between sympatric vineyard and oak-tree populations of S. cerevisiae implies that vineyards play an important role in the mixing between these two groups. © 2013 John Wiley & Sons Ltd.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
Schmid, Markus
2013-01-01
Whey protein isolate (WPI)-based cast films are very brittle, due to several chain interactions caused by a large amount of different functional groups. In order to overcome film brittleness, plasticizers, like glycerol, are commonly used. As a result of adding plasticizers, the free volume between the polymer chains increases, leading to higher permeability values. The objective of this study was to investigate the effect of partially substituting glycerol by hydrolysed whey protein isolate (h-WPI) in WPI-based cast films on their mechanical, optical and barrier properties. As recently published by the author, it is proven that increasing the h-WPI content in WPI-based films at constant glycerol concentrations significantly increases film flexibility, while maintaining the barrier properties. The present study considered these facts in order to increase the barrier performance, while maintaining film flexibility. Therefore glycerol was partially replaced by h-WPI in WPI-based cast films. The results clearly indicate that partially replacing glycerol by h-WPI reduces the oxygen permeability and the water vapor transmission rate, while the mechanical properties did not change significantly. Thus, film flexibility was maintained, even though the plasticizer concentration was decreased. PMID:28811434
Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng
2015-02-14
Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.
Deconstructing the shallow internal structure of the Moon using GRAIL gravity and LOLA topography
NASA Astrophysics Data System (ADS)
Zuber, M. T.
2015-12-01
Globally-distributed, high-resolution gravity and topography observations of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission and Lunar Orbiter Laser Altimeter (LOLA) instrument aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft afford the unprecedented opportunity to explore the shallow internal structure of the Moon. Gravity and topography can be combined to produce Bouguer gravity that reveals the distribution of mass in the subsurface, with high degrees in the spherical harmonic expansion of the Bouguer anomalies sensitive to shallowest structure. For isolated regions of the lunar highlands and several basins we have deconstructed the gravity field and mapped the subsurface distribution of density anomalies. While specified spherical harmonic degree ranges can be used to estimate contributions at different depths, such analyses require considerable caution in interpretation. A comparison of filtered Bouguer gravity with forward models of disk masses with plausible densities illustrates the interdependencies of the gravitational power of density anomalies with depth and spatial scale. The results have implications regarding the limits of interpretation of lunar subsurface structure.
ARCTIC FOUNDATIONS, INC. FREEZE BARRIER SYSTEM - SITE TECHNOLOGY CAPSULE
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tec...
NASA Astrophysics Data System (ADS)
Persson, Tobias; Nordin, Anna-Karin; Zacchi, Guido; Jönsson, Ann-Sofi
Hemicelluloses, which are abundant in nature and have potential use in a wide variety of applications, may make an important contribution in helping relieve society of its dependence on petrochemicals. However, cost-efficient methods for the isolation of hemicelluloses are required. This article presents an economic evaluation of a full-scale process to isolate hemicelluloses from process water from a thermomechanical pulp mill. Experimental data obtained in laboratory scale were used for the scale up of the process by computer simulation. The isolation method consisted of two process steps. The suspended matter in the process water was removed by microfiltration and thereafter the hemicelluloses were concentrated by ultrafiltration, and at the same time, separated from smaller molecules and ions in the process water. The isolated hemicelluloses were intended for the production of oxygen barriers for food packaging, an application for which they have been shown to have suitable properties. The solution produced contained 30 g hemicelluloses/L with a purity (defined as the ratio between the hemicelluloses and the total solids) of approx 80%. The evaluation was performed for a plant with a daily production of 4 metric tonnes (t) of hemicelluloses, which is the estimated future need of barrier films at Tetra Pak (Lund, Sweden). The production cost was calculated to be € 670/t of hemiceluloses. This is approx 9 times lower than the price of ethylene vinyl alcohol, which is produced by petrochemicals and is currently used as an oxygen barrier in fiber-based packaging materials. This indicates that it is possible to produce oxygen barriers made of hemicelluloses at a prices that is competitive with the materials used today.
The stratigraphic record of Khawr Al Maqta, Abu Dhabi, United Arab Emirates
NASA Astrophysics Data System (ADS)
Lokier, S. W.; Herrmann, S.
2012-04-01
Well-constrained modern depositional analogues are vital to the development of accurate geological reservoir models. The development of realistic hydrocarbon reservoir models requires the application of high-precision, well-constrained outcrop and sub-surface data sets with accurately-documented facies geometries and depositional sequence architectures. The Abu Dhabi coastline provides the best modern analogue for the study of ramp-style carbonate depositional facies akin to those observed in the sub-surface reservoirs of the United Arab Emirates (UAE). However, all previous studies have relied on temporally limited surface datasets. This study employed thirty five shallow subsurface cores spanning the width of the Khawr Al Maqta - the narrow shallow tidal channel that separates Abu Dhabi Island from the mainland. The cores were taken over a transect measuring 1.2 km in length by 50 m wide thus providing a high-resolution record of sub-surface facies geometries in a stratigraphically complex setting. Geometries in these Pleistocene to Holocene facies are complex with interdigitating, laterally heterogeneous carbonate, siliciclastic and evaporite units represented throughout the area of the study. Carbonate facies range from molluscan rudstones to marls and are all indicative of deposition in a shallow, relatively low energy marine setting akin to that seen in the environs of Abu Dhabi Island today. Texturally mature quartz sands occur as thin lenses and as thin cross bedded or laminated horizons up to twenty five centimetres thick. Glauconitic mudstones are common and locally exhibit evidence of rootlets and desiccation cracks. Evaporites are present in the form of gypsum occurring as isolated crystals and nodules or as massive chicken-wire units in excess of three metres thick. All of these textures are consistent with evaporite development in the shallow subsurface. Early, shallow-burial diagenesis has been important. Bioclasts are pervasively leached throughout the stratigraphic sequence thereby resulting in a significant enhancement in porosity in the carbonate lithologies. This pervasive mouldic porosity is locally occluded by the precipitation of gypsum cements. The displacive precipitation of significant quantities of gypsum has resulted in the deformation of primary sedimentary structures. This complex sequence of mixed carbonate-siliciclastic-evaporite lithofacies is interpreted to record repeated episodes of flooding and sub-aerial exposure associated with the waxing and waning of the Pleistocene ice-sheets. During periods of relative sea-level fall carbonate sequences entered the meteoric realm with the consequent dissolution of unstable bioclasts. Transgression and reflooding once again isolated Abu Dhabi Island from the mainland, thus permitting the precipitation of shallow-water carbonate lithofacies. During sea-level highstands the north-westerly Shamal wind transported carbonate sediments into the lee-of the island resulting in the south-easterly shore-wards development of a tombolo. However, the strong tidal currents of the Khawr Al Maqta prevented final connection to the mainland, thus ensuring the isolation of Abu Dhabi until the subsequent regression.
Prakash, Om; Gihring, Thomas M; Dalton, Dava D; Chin, Kuk-Jeong; Green, Stefan J; Akob, Denise M; Wanger, Greg; Kostka, Joel E
2010-03-01
An Fe(III)- and uranium(VI)-reducing bacterium, designated strain FRC-32(T), was isolated from a contaminated subsurface of the USA Department of Energy Oak Ridge Field Research Center (ORFRC) in Oak Ridge, Tennessee, where the sediments are exposed to mixed waste contamination of radionuclides and hydrocarbons. Analyses of both 16S rRNA gene and the Geobacteraceae-specific citrate synthase (gltA) mRNA gene sequences retrieved from ORFRC sediments indicated that this strain was abundant and active in ORFRC subsurface sediments undergoing uranium(VI) bioremediation. The organism belonged to the subsurface clade of the genus Geobacter and shared 92-98 % 16S rRNA gene and 75-81 % rpoB gene sequence similarities with other recognized species of the genus. In comparison to its closest relative, Geobacter uraniireducens Rf4(T), according to 16S rRNA gene sequence similarity, strain FRC-32(T) showed a DNA-DNA relatedness value of 21 %. Cells of strain FRC-32(T) were Gram-negative, non-spore-forming, curved rods, 1.0-1.5 microm long and 0.3-0.5 microm in diameter; the cells formed pink colonies in a semisolid cultivation medium, a characteristic feature of the genus Geobacter. The isolate was an obligate anaerobe, had temperature and pH optima for growth at 30 degrees C and pH 6.7-7.3, respectively, and could tolerate up to 0.7 % NaCl although growth was better in the absence of NaCl. Similar to other members of the Geobacter group, strain FRC-32(T) conserved energy for growth from the respiration of Fe(III)-oxyhydroxide coupled with the oxidation of acetate. Strain FRC-32(T) was metabolically versatile and, unlike its closest relative, G. uraniireducens, was capable of utilizing formate, butyrate and butanol as electron donors and soluble ferric iron (as ferric citrate) and elemental sulfur as electron acceptors. Growth on aromatic compounds including benzoate and toluene was predicted from preliminary genomic analyses and was confirmed through successive transfer with fumarate as the electron acceptor. Thus, based on genotypic, phylogenetic and phenotypic differences, strain FRC-32(T) is considered to represent a novel species of the genus Geobacter, for which the name Geobacter daltonii sp. nov. is proposed. The type strain is FRC-32(T) (=DSM 22248(T)=JCM 15807(T)).
Assessment of DInSAR Potential in Simulating Geological Subsurface Structure
NASA Astrophysics Data System (ADS)
Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.
2013-12-01
High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations. The newly developed and modified algorithm will then be applied in another part of the region where subsurface information is limited.
ARCTIC FOUNDATIONS, INC. FREEZE BARRIER TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tech...
40 CFR 191.14 - Assurance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Assurance requirements. 191.14 Section 191.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION... barriers to isolate the wastes from the accessible environment. Both engineered and natural barriers shall...
Postmating Reproductive isolation between strains of Drosophila willistoni.
Mardiros, Xian B; Park, Ronni; Clifton, Bryan; Grewal, Gurman; Khizar, Amina K; Markow, Therese A; Ranz, José M; Civetta, Alberto
2016-10-01
Speciation can occur through the presence of reproductive isolation barriers that impede mating, restrict cross-fertilization, or render inviable/sterile hybrid progeny. The D. willistoni subgroup is ideally suited for studies of speciation, with examples of both allopatry and sympatry, a range of isolation barriers, and the availability of one species complete genome sequence to facilitate genetic studies of divergence. D. w. willistoni has the largest geographic distribution among members of the Drosophila willistoni subgroup, spanning from Argentina to the southern United States, including the Caribbean islands. A subspecies of D. w. willistoni, D. w. quechua, is geographically separated by the Andes mountain range and has evolved unidirectional sterility, in that only male offspring of D. w. quechua females × D. w. willistoni males are sterile. Whether D. w. willistoni flies residing east of the Andes belong to one or more D. willistoni subspecies remains unresolved. Here we perform fecundity assays and show that F1 hybrid males produced from crosses between different strains found in Central America, North America, and northern Caribbean islands are reproductively isolated from South American and southern Caribbean island strains as a result of unidirectional hybrid male sterility. Our results show the existence of a reproductive isolation barrier between the northern and southern strains and suggest a subdivision of the previously identified D. willistoni willistoni species into 2 new subspecies.
Feeding a subsurface biosphere: radiolysis and abiogenic energy sources
NASA Astrophysics Data System (ADS)
Onstott, T.
Noble gas analyses of ground water collected from the deep, fractured, basaltic andesite and quartzite Archean strata in South Africa suggest subsurface residence times ranging from tens to hundreds of millions of years. Hydraulically isolated compartments of highly saline water contain hundreds of μM concentrations of gas comprised primarily of C1-4 hydrocarbons, H2 and He, with minor Ar and N .2 Carbon and hydrogen isotopic analyses of the hydrocarbons suggest an abiogenic origin com atible with surface catalysed reductive assimilation (i.e. Fischer-Tropschp synthesis). H2 and He data suggest that the H2 is generated by subsurface radiolysis of water. One sample of a saline, isolated water/gas pocket agrees exactly with that predicted by radioactive decay of U, Th, K in the host rock and indicates a subsurface H2 production rate of 0.1 to 1 nM/yr. Other samples yielded less H2 than predicted and require a sink for this H2 . Possible sinks include microbial H2 oxidation and abiotic formation of hydrocarbons at rates slightly less than the H2 production rate. Highly diffusive H2 is essential for life in deep subsurface environments where only trace amounts of organic carbon exist. Lithoautotrophic microbes can acquire energy from the redox reactions involving H2 with other electron acceptors (Fe3 +, SO4 2 - or CO2 ), to synthesis organic carbon and can be fully independent of solar-driven photosynthesis. The microbial abundance in many of these ground water samples, however, is below our detection limit (<5000 cells/ml). This contrasts with shallow sedimentary aquifers where H2 levels of tens of nM are regulated by the coexistence of autotrophs/lithotrophs and heterotrophs for maximum efficiency of H2 utilization. The excessive H2 found in deep crustal environments implies that these microbial ecosystems are electron-acceptor and or substrate limited. The oxidants generated by water radiolysis interact with the reduced solid phases in the rock matrix, e.g. pyrite, producing potential electron acceptors, e.g. Fe3 +, that may be readily available for consumption by microbial communities than H . Nitrogen doesn't appear to be2 limited, because ammonia concentrations range upwards to tens of μM, but its origin remains a mystery. The unused H2 , CH4 and He continue to migrate upward to shallow aquifers. Microbial H2 oxidation may dominate over Fischer-Tropsch reactions in crustal environments where formation temperatures are <120o C; and vice versa for deeper crustal environments. This H2 cycle should be present on extraterrestrial bodies, producing potential chemical energy and crustal scale diffusive fluxes from the interaction subsurface ice/water and radiogenic decay.
Evidence of Geobacter-associated phage in a uranium-contaminated aquifer
Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R
2015-01-01
Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site. PMID:25083935
Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taillefert, Martial
This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined thatmore » both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datta, S.; Mailloux, B; Jung, H
2009-01-01
Groundwater arsenic (As) is elevated in the shallow Holocene aquifers of Bangladesh. In the dry season, the shallow groundwater discharges to major rivers. This process may influence the chemistry of the river and the hyporheic zone sediment. To assess the fate of As during discharge, surface (0-5 cm) and subsurface (1-3 m) sediment samples were collected at 9 sites from the bank of the Meghna River along a transect from its northern source (25 degrees N) to the Bay of Bengal (22.5 degrees N). Bulk As concentrations of surface sediment averaged 16 {+-} 7 mg/kg (n = 9). Subsurface sedimentmore » contained higher mean concentrations of As of 4,000 mg/kg (n = 14), ranging from 1 to 23,000 mg/kg As, with >100 mg/kg As measured at 8 sites. X-ray absorption near-edge structure spectroscopy indicated that As was mainly arsenate and arsenite, not As-bearing sulfides. We hypothesize that the elevated sediment As concentrations form as As-rich groundwater discharges to the river, and enters a more oxidizing environment. A significant portion of dissolved As sorbs to iron-bearing minerals, which form a natural reactive barrier. Recycling of this sediment-bound As to the Ganges-Brahmaputra-Meghna Delta aquifer provides a potential source of As to further contaminate groundwater. Furthermore, chemical fluxes from groundwater discharge from the Ganges-Brahmaputra-Meghna Delta may be less than previous estimates because this barrier can immobilize many elements.« less
Nickols, Jordan; Obiako, Boniface; Ramila, K C; Putinta, Kevin; Schilling, Sarah; Sayner, Sarah L
2015-12-15
Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. Copyright © 2015 the American Physiological Society.
Nickols, Jordan; Obiako, Boniface; Ramila, K. C.; Putinta, Kevin; Schilling, Sarah
2015-01-01
Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. PMID:26475732
Diel fluctuations in natural organic matter quality in an oligotrophic cave system
NASA Astrophysics Data System (ADS)
Brown, T.; Engel, A. S.; Pfiffner, S. M.
2016-12-01
Transformations of natural organic matter (NOM) and effects of photochemical degradation on dissolved organic matter (DOM) quality in recharge can be readily studied in cave systems with hydrologic connections between the surface and subsurface. Specifically, diel controls on photodegradation, fresh NOM production, and microbial C cycling were examined from recharge to resurgence of an oligotrophic cave stream in Kentucky. We used NOM isolation and spectroscopic analysis to concentrate and characterize DOM, and lipid profiling to evaluate microbial community structure. A hydrophilic fraction of DOM was isolated from bulk waters in the field using diethylaminoethyl (DEAE) weak anion exchange column chromatography, and isolates were characterized with FTIR spectroscopy to identify differences in macromolecular structure between surface and subsurface (downstream) DOM. Lipids from colloidal NOM (retained on 0.2 µm filter) and stream sediments were extracted using a modified Bligh Dyer method, segregated into classes, and converted to fatty acid methyl esters (FAME) for quantification and identification by GC-MS. During a late summer, low flow, 24-hour sampling event, the quality of surface water DOM recharged at night was 40% richer in aliphatic esters, 30% richer in phenols and alkanes, and elevated in polysaccharides compared with DOM recharged during daylight. IR absorptivity in nocturnal DOM isolates was an order of magnitude lower in the cave stream, with recalcitrant DOM interpreted from bands of aliphatic esters, alkanes, and organo-silicates. Phospholipid fatty acid (PLFA) profiles indicated that the abundance of polyunsaturated PLFA associated with algae, fungi, and higher plants decreased along the flowpath. Cave microbes exhibited elevated trans:cis ratios relative to surface communities, and the ratio increased at night. This suggested that downstream microbial communities existed in a state of reduced activity without inputs of photosynthates at night.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. Fred
A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In thismore » design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.« less
Surface vacancies concentration of CeO2(1 1 1) using kinetic Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Mattiello, S.; Kolling, S.; Heiliger, C.
2016-01-01
Kinetic Monte Carlo simulations (kMC) are useful tools for the investigation of the dynamics of surface properties. Within this method we investigate the oxygen vacancy concentration of \\text{Ce}{{\\text{O}}2}(1 1 1) at ultra high vacuum conditions (UHV). In order to achieve first principles calculations the input for the simulations, i.e. energy barriers for the microscopic processes, we use density functional theory (DFT) results from literature. We investigate the possibility of ad- and desorption of oxygen on ceria as well as the diffusion of oxygen vacancies to and from the subsurface. In particular, we focus on the vacancy surface concentration as well as on the ratio of the number of subsurface vacancies to the number of vacancies at the surface. The comparison of our dynamically obtained results to the experimental findings leads to several issues. In conclusion, we can claim a substantial incompatibility of the experimental results and the dynamical calculation using DFT inputs.
Halophilic Archaea determined from geothermal steam vent aerosols.
Ellis, Dean G; Bizzoco, Richard W; Kelley, Scott T
2008-06-01
Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface.
Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere.
Fullerton, Heather; Moyer, Craig L
2016-05-15
Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into the metabolic potential of this type of habitat. In addition, a reductive dehalogenase gene (rdhA) has been directly linked to marine subsurface Chloroflexi, suggesting that reductive dehalogenation is not limited to the class Dehalococcoidia This discovery expands the nutrient-cycling and metabolic potential present within the deep subsurface and provides functional gene information relating to this enigmatic group. Copyright © 2016 Fullerton and Moyer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetzenbach, L.D.
1995-12-01
More than 1100 bacterial isolates were obtained over a two year period from 31 springs in a region along the southern boarder of California and Nevada. Water samples were collected from 17 springs in Ash Meadows National Wildlife Refuge and 14 springs in Death Valley National Park. Bacteria isolated from these samples were subjected to extraction and gas chromatography to determine the cellular fatty acid profile of each isolate. Fatty acid methyl esters (FAME) extracted from cell membranes were separated and classified using the Hewlett Packard by gas chromatography. The FAME profiles of each isolate were then subjected to clustermore » analysis by the unweighted pair-group method using arithmetic averages. During this quarter the relatedness of FAME patterns of bacterial isolates were examined at the genus level by counting the number of clusters produced in a MIDI dendrogram at a Euclidian distance of 25. This information was then used to determine microbiological relationships among springs.« less
Some New Windows into Terrestrial Deep Subsurface Microbial Ecosystems
NASA Astrophysics Data System (ADS)
Moser, D. P.
2011-12-01
Over the past several years, our group has surveyed the microbial ecology and biogeochemistry of a range of fracture rock subsurface ecosystems via deep mine boreholes in South Africa, the United States, and Canada; and boreholes from surface or deeply-sourced natural springs of the U.S. Great Basin. Collectively, these mostly unexplored habitats represent a wide range of geologic provinces, host rock types, aquatic chemistries, and the vast potential for biogeographic isolation. Thus, patterns of microbial diversity are of interest from the perspective of filling a fundamental knowledge gap; and while not necessarily expected, the detection of closely related microorganisms from geographically isolated settings would be noteworthy. Across these sample sets, microbial communities were invariably very low in biomass (e.g. 10e3 - 10e4 cells per mL) and dominated by deeply-branching bacterial lineages, particularly from the phyla Firmicutes and Nitrospira. In several cases, the Firmicutes have shown very close phylogenetic affiliations to lineages detected at divergent locations. For example, one abundant lineage from a new artesian well drilled into the Furnace Creek Fault of Death Valley, CA bears a very close phylogenetic relatedness to environmental DNA sequences (SSU rRNA gene) detected in one of the world's deepest mines (Tau Tona of South Africa) and what was North America's deepest gold mine (Homestake of South Dakota). Several radioactive wells from the Nevada National Security Site have produced rRNA gene sequences very close (e.g. greater than 99% identity) to that of Desulforudis audaxviator, a rarely detected microorganism thought to subsist as a single species ecosystem on the products of radiochemical reactions in deep crustal rocks from the South African Witwatersrand Basin. These sequences, along with more distantly related sequences from the marine subsurface (ridge flank basalt and mud volcanoes) and groundwater in Europe, hint at a role in certain hydrogen-rich subsurface settings for this group. Likewise, patterns of archaeal diversity across many of our Great Basin sites suggest shared deep lineages, particularly with the phylum, Thaumarchaeota. Here we will explore the possible significance of these patterns of diversity and discuss future research plans involving high throughput molecular techniques.
Cultivating the Deep Subsurface Microbiome
NASA Astrophysics Data System (ADS)
Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.
2017-12-01
Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system locally dominated by unclassified and candidate phyla, has the potential to yield novel subsurface organisms with unique physiologies. We intend to further utilize subsurface isolates to probe the effects of geochemical perturbations on biosignatures in future studies, thus broadening our understanding of subterranean ecosystems.
Assessing Controls on the Geometry and Dimensions of Modern Barrier Islands
NASA Astrophysics Data System (ADS)
Mulhern, J.; Johnson, C. L.; Martin, J. M.
2015-12-01
Barrier islands are highly ephemeral features, shaped by wave, tide, and storm energy. The processes that govern the size, shape, and motion of barrier islands are not well constrained, yet central to coastal dynamics. While the global distribution of barrier islands has been mapped and assessed, there is little consensus on the forces controlling barrier island formation, motion, or preservation. This study presents a new semi-global database of modern barrier islands to better understand their morphology and spatial distribution. We have mapped, in Google Earth, the subaerial extent of >350 barrier islands and spits, measuring spatial characteristic such as exposed area, perimeter, length, and width. These objects are cross-referenced with parameters that potentially control morphology, including tidal range, wave height, climate, distance from the continental shelf, proximity to fluvial output, and tectonic setting. This approach provides a more optimal framework to assess controls on coastal features, including barrier island morphology, and to investigate potential geometric scaling relationships. Preliminary analysis shows trends in the spatial characteristics of barrier islands. There is a strong linear relationship between the perimeter and length (y= -0.59 + 0.42x, R2=0.95). Linear trends also relate length to area when the data are separated by tidal range to wave height ratio. Assessment of barrier island shape supports the hypothesis of Hayes (1979) that barrier islands in wave-dominated settings are long and linear while those in mixed energy setting are more rounded. The barrier islands of the Texas Gulf of Mexico are larger than the global average for the database, with distinctly longer length values (41.16 km vs. 15.77 km respectively) and larger areas (103.81 km2 vs. 42.14 km2 respectively). Initial assessment shows that tidal range and wave height are primary controls barrier island dimensions. Future work will consider climate, latitude, fluvial input, and tectonic regime as additional factors. Assessing modern barrier islands will lend insight into potential paleomorphodynamic relationships and help determine how islands are transferred into the rock record, with implications for sequence stratigraphy, subsurface reservoirs, etc.
NASA Astrophysics Data System (ADS)
Kuroda, S.; Ishii, N.; Morii, T.
2017-12-01
Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.
Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado
NASA Astrophysics Data System (ADS)
Block, Lisa V.; Wood, Christopher K.; Yeck, William L.; King, Vanessa M.
2015-02-01
Precise relative hypocentres of seismic events induced by long-term fluid injection at the Paradox Valley Unit (PVU) brine disposal well provide constraints on the subsurface geological structure and compliment information available from deep seismic reflection and well data. We use the 3-D spatial distribution of the hypocentres to refine the locations, strikes, and throws of subsurface faults interpreted previously from geophysical surveys and to infer the existence of previously unidentified subsurface faults. From distinct epicentre lineations and focal mechanism trends, we identify a set of conjugate fracture orientations consistent with shear-slip reactivation of late-Palaeozoic fractures over a widespread area, as well as an additional fracture orientation present only near the injection well. We propose simple Mohr-Coulomb fracture models to explain these observations. The observation that induced seismicity preferentially occurs along one of the identified conjugate fracture orientations can be explained by a rotation in the direction of the regional maximum compressive stress from the time when the fractures were formed to the present. Shear slip along the third fracture orientation observed near the injection well is inconsistent with the current regional stress field and suggests a local rotation of the horizontal stresses. The detailed subsurface model produced by this analysis provides important insights for anticipating spatial patterns of future induced seismicity and for evaluation of possible additional injection well sites that are likely to be seismically and hydrologically isolated from the current well. In addition, the interpreted fault patterns provide constraints for estimating the maximum magnitude earthquake that may be induced, and for building geomechanical models to simulate pore pressure diffusion, stress changes and earthquake triggering.
NASA Astrophysics Data System (ADS)
Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.
2015-12-01
Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.
NASA Astrophysics Data System (ADS)
Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.
2017-12-01
The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.
The influence of subsurface hydrodynamics on convective precipitation
NASA Astrophysics Data System (ADS)
Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.
2014-12-01
The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.
NASA Astrophysics Data System (ADS)
Fang, J.
2015-12-01
Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.
Enhancing DNA electro-transformation efficiency on a clinical Staphylococcus capitis isolate.
Cui, Bintao; Smooker, Peter M; Rouch, Duncan A; Deighton, Margaret A
2015-02-01
Clinical staphylococcus isolates possess a stronger restriction-modification (RM) barrier than laboratory strains. Clinical isolates are therefore more resistant to acceptance of foreign genetic material than laboratory strains, as their restriction systems more readily recognize and destroy foreign DNA. This stronger barrier consequently restricts genetic studies to a small number of domestic strains that are capable of accepting foreign DNA. In this study, an isolate of Staphylococcus capitis, obtained from the blood of a very low birth-weight baby, was transformed with a shuttle vector, pBT2. Optimal conditions for electro-transformation were as follows: cells were harvested at mid-log phase, electro-competent cells were prepared; cells were pre-treated at 55°C for 1min; 3μg of plasmid DNA was mixed with 70-80μL of competent cells (3-4×10(10)cells/mL) at 20°C in 0.5M sucrose, 10% glycerol; and electroporation was conducted using 2.1kV/cm field strength with a 0.1cm gap. Compared to the conventional method, which involves DNA electroporation of Staphylococcus aureus RN4220 as an intermediate strain to overcome the restriction barrier, our proposed approach exhibits a higher level (3 log10 units) of transformation efficiency. Heat treatment was used to temporarily inactivate the recipient RM barrier. Other important parameters contributing to improved electro-transformation efficiency were growth stage for cell harvesting, the quantity of DNA, the transformation temperature and field strength. The approach described here may facilitate genetic manipulations of this opportunistic pathogen. Copyright © 2014 Elsevier B.V. All rights reserved.
Ge Sun; Timothy J. Callahan; Jennifer E. Pyzoha; Carl C. Trettin
2006-01-01
Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of...
Ge Sun; Timothy J. Callahan; Jennifer E. Pyzoha; Carl C. Trettin
2006-01-01
Restoring depressional wetlands or geographically isolated wetlands such as cypress swamps and Carolina bays on the Atlantic Coastal Plains requires a clear understanding of the hydrologic processes and water balances. The objectives of this paper are to (1) test a distributed forest hydrology model, FLATWOODS, for a Carolina bay wetland system using seven years of...
NASA Technical Reports Server (NTRS)
Bailey, R. F.
1982-01-01
Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.
NASA Astrophysics Data System (ADS)
Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum
2017-02-01
Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.
Awad, John; van Leeuwen, John; Liffner, Joel; Chow, Christopher; Drikas, Mary
2016-02-01
The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Rey, M.; Donostia International Physics Center; Tremblay, J. C.
2015-04-21
Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emergemore » from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.« less
1981-10-01
Geography 3-1 Topography 3-. Drainage 3-1 ii Page Surface Geology 3-3 Barrier Sediments 3-3 Myrtle Beach Backbarrier Sediments 3-3 soils 3-5 Subsurface...Beach AFB Surface Drainage and Surface Water Sampling Points 3-2 3.2 Myrtle Beach AFB Surface Soils 3-4 3.3 Myrtle Beach AFB Location of Geologic Cross...has created a potential contamination problem. This situation is compounded by the site’s sandy soil and shallow ground water table. b.) Weathering Pit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.; Moridis, G.J.; Pruess, K.
1994-01-01
The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amy, P.S.; Haldeman, D.L.; Hall, D.H.
1992-10-01
One water and three rock samples were taken from a mined tunnel system, U12n, in Rainier Mesa at the Nevada Test Site. Endolithic microorganisms were cultured from ashfall tuff, which was crushed and made into slurries with a formulation of artificial pore water, on R2A agar plates. Microbial counts ranged from 10{sup 2} viable cells per ml. Many of the isolates were very small (<1{mu}m) when viewed in the rock matrix and remained small even when cultured. Most were gram-negative rods. Individual isolates were profiled by API-NFT strip number, antibiotic and metal resistance patterns, and colony and cellular morphologies. Threemore » identification systems, API-NFT strips, BIOLOG, and MIDI, were compared. Each system identified only a small percentage of the total isolates, and in only seven cases were the isolates identified the same way by more than one system. The same genus was identified in three of these cases, but different species were indicated. The genus Pseudomonas was the most commonly identified. The isolate profiles and the three identification systems demonstrated that water isolates were considerably different from endolithic isolates.« less
ERIC Educational Resources Information Center
Halpin, Catherine M.; Reilly, Ciara; Walsh, John J.
2010-01-01
The discovery that galantamine penetrates the blood-brain barrier has led to its clinical use in the treatment of choline-deficiency conditions in the brain, such as Alzheimer's disease. This experiment involves the isolation and structure elucidation of galantamine from "Leucojum aestivum". Isolation of the alkaloid constituents in "L. aestivum"…
T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.
2010-01-01
DOE’s Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint andmore » serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i.e., CP, NP and HDU) showed relatively large variation during the seasonal wetting-drying cycle. For the soil below 2-m depth, the seasonal variation of soil water content was relatively small. The construction of the surface barrier was completed in April 2008. In the soil below the surface barrier (Nests C and D), the CP measurements showed that water content at the soil between 0.6-m and 2.3-m depths was very stable, indicating no climatic impacts on soil water condition beneath the barrier. The NP-measured water content showed that soil water drainage seemed occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) in FY09. The HDU-measured water pressure decreased consistently in the soil above 5-m depth, indicating soil water drainage at these depths of the soil. In the soil below the edge of the surface barrier (Nest B), the CP-measured water content was relatively stable through the year except at the 0.9-m depth; the NP-measured water content showed that soil water drainage was occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) but at a slightly smaller magnitude than those in Nests C and D; the HDU-measurements show that the pressure head changes in FY09 in Nest B were less than those for C and D but more than those for A. The soil-water-pressure head was more sensitive to soil water regime changes under dry conditions. In the soil beneath the barrier, the theoretical steady-state values of pressure head is equal to the negative of the distance to groundwater table. Hence, it is expected that, in the future, while the water content become stable, the pressure head will keep decreasing for a long time (e.g., many years). These results indicate that the T Tank Farm surface barrier was performing as expected by intercepting the meteoric water from infiltrating into the soil and the soil was becoming drier gradually. The barrier also has some effects on the soil below the barrier edge but at a reduced magnitude.« less
Al atom on MoO3(010) surface: adsorption and penetration using density functional theory.
Wu, Hong-Zhang; Bandaru, Sateesh; Wang, Da; Liu, Jin; Lau, Woon Ming; Wang, Zhenling; Li, Li-Li
2016-03-14
Interfacial issues, such as the interfacial structure and the interdiffusion of atoms at the interface, are fundamental to the understanding of the ignition and reaction mechanisms of nanothermites. This study employs first-principle density functional theory to model Al/MoO3 by placing an Al adatom onto a unit cell of a MoO3(010) slab, and to probe the initiation of interfacial interactions of Al/MoO3 nanothermite by tracking the adsorption and subsurface-penetration of the Al adatom. The calculations show that the Al adatom can spontaneously go through the topmost atomic plane (TAP) of MoO3(010) and reach the 4-fold hollow adsorption-site located below the TAP, with this subsurface adsorption configuration being the most preferred one among all plausible adsorption configurations. Two other plausible configurations place the Al adatom at two bridge sites located above the TAP of MoO3(010) but the Al adatom can easily penetrate below this TAP to a relatively more stable adsorption configuration, with a small energy barrier of merely 0.2 eV. The evidence of subsurface penetration of Al implies that Al/MoO3 likely has an interface with intermixing of Al, Mo and O atoms. These results provide new insights on the interfacial interactions of Al/MoO3 and the ignition/combustion mechanisms of Al/MoO3 nanothermites.
Impact of topography on groundwater salinization due to ocean surge inundation
NASA Astrophysics Data System (ADS)
Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.
2016-08-01
Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.
Biogeography and evolution of Thermococcus isolates from hydrothermal vent systems of the Pacific
Price, Mark T.; Fullerton, Heather; Moyer, Craig L.
2015-01-01
Thermococcus is a genus of hyperthermophilic archaea that is ubiquitous in marine hydrothermal environments growing in anaerobic subsurface habitats but able to survive in cold oxygenated seawater. DNA analyses of Thermococcus isolates were applied to determine the relationship between geographic distribution and relatedness focusing primarily on isolates from the Juan de Fuca Ridge and South East Pacific Rise. Amplified fragment length polymorphism (AFLP) analysis and multilocus sequence typing (MLST) were used to resolve genomic differences in 90 isolates of Thermococcus, making biogeographic patterns and evolutionary relationships apparent. Isolates were differentiated into regionally endemic populations however there was also evidence in some lineages of cosmopolitan distribution. The biodiversity identified in Thermococcus isolates and presence of distinct lineages within the same vent site suggests the utilization of varying ecological niches in this genus. In addition to resolving biogeographic patterns in Thermococcus, this study has raised new questions about the closely related Pyrococcus genus. The phylogenetic placement of Pyrococcus type strains shows the close relationship between Thermococcus and Pyrococcus and the unresolved divergence of these two genera. PMID:26441901
Understanding Motivators and Barriers to Physical Activity
ERIC Educational Resources Information Center
Patay, Mary E.; Patton, Kevin; Parker, Melissa; Fahey, Kathleen; Sinclair, Christina
2015-01-01
The purpose of this study was to understand the factors that influence physical activity among year-round residents in an isolated summer resort community. Specifically, we explored the personal, environmental, social, and culture-specific perceived motivators and barriers to physical activity. Participants were formally interviewed about their…
Isolation of Geobacter species from diverse sedimentary environments
Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.
1996-01-01
In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.
Yonushonis, W P; Roy, M J; Carman, R J; Sims, R E
1987-02-01
Five New Zealand White rabbits (Oryctolagus cuniculus) in a rigid barrier rabbit breeding colony developed acute diarrhea 1 week after weaning. Both Clostridium spiroforme and an iota-toxin were isolated from cecal and colon contents of all five rabbits. When pure isolates of C. spiroforme were administered to two normal healthy rabbits, the rabbits developed identical disease and shed both the organism and the iota-toxin. Results of this study suggested that C. spiroforme is an important enteric pathogen of weanling rabbits and the etiology of this diarrhea complex can be rapidly confirmed using four diagnostic criteria.
NASA Astrophysics Data System (ADS)
Racko, Juraj; Benko, Peter; Mikolášek, Miroslav; Granzner, Ralf; Kittler, Mario; Schwierz, Frank; Harmatha, Ladislav; Breza, Juraj
2017-02-01
The contribution employs electrical simulation to assess the effect of the distribution of aluminium in the metal/GaN/AlGaN heterostructure on the leakage current. The heterostructure is characterized by a high density of traps causing an increase of the leakage current consisting of the thermionic emission component and of a non-negligible contribution of trap-assisted tunnelling. The leakage current is highly sensitive to the bending of the potential barrier Ec in the subsurface region of the GaN/AlGaN structure. The band bending is strongly affected by the sheet bound charge at the first GaN/AlGaN/GaN interface due to spontaneous and piezoelectric polarization. The overall charge depends on the concentration of Al, the distribution of Al at the first heterointerface having a strong effect on the formation of the potential barrier.
Bayoumi, T A; Reda, S M; Saleh, H M
2012-01-01
Radioactive waste generated from the nuclear applications should be properly isolated by a suitable containment system such as, multi-barrier container. The present study aims to evaluate the isolation capacity of a new multi-barrier container made from cement and clay and including borate waste materials. These wastes were spiked by (137)Cs and (60)Co radionuclides to simulate that waste generated from the primary cooling circuit of pressurized water reactors. Leaching of both radionuclides in ground water was followed and calculated during ten years. Monte Carlo (MCNP5) simulations computed the photon flux distribution of the multi-barrier container, including radioactive borate waste of specific activity 11.22KBq/g and 4.18KBq/g for (137)Cs and (60)Co, respectively, at different periods of 0, 15.1, 30.2 and 302 years. The average total flux for 100cm radius of spherical cell was 0.192photon/cm(2) at initial time and 2.73×10(-4)photon/cm(2) after 302 years. Maximum waste activity keeping the surface radiation dose within the permissible level was calculated and found to be 56KBq/g with attenuation factors of 0.73cm(-1) and 0.6cm(-1) for cement and clay, respectively. The average total flux was 1.37×10(-3)photon/cm(2) after 302 years. Monte Carlo simulations revealed that the proposed multi-barrier container is safe enough during transportation, evacuation or rearrangement in the disposal site for more than 300 years. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brock, Marcus T
2009-08-01
Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog. Using hand-pollinations, conspecific and heterospecific pollen germination success on native stigmas was compared. To additionally test for interspecific pollen competition, T. ceratophorum plants received one of three possible hand-pollinations: control conspecific pollination, concomitant conspecific and heterospecific pollination (mixed), or conspecific pollen followed by heterospecific pollen 15 min later (staggered). Floral isolation was negligible as no insect preference was detected. On a presence/absence basis, florets on native inflorescences received slightly less pollen analog from heterospecific donors than from conspecific donors; however, the amount of dye particles transferred from either Taraxacum species to stigmas on recipient T. ceratophorum inflorescences was equivalent. In contrast to weak floral isolation, strong pollen germination and pollen competition barriers should reduce the potential for hybridization. Heterospecific T. officinale pollen exhibited reduced germination success on T. ceratophorum stigmas in comparison to conspecific pollen. Furthermore, a significant pollen-competition effect on the percentage of hybrid offspring was detected only when T. officinale preceded T. ceratophorum pollen by 15 min. This result indicates that conspecific pollen out-competes heterospecific pollen but further suggests that biotic and abiotic factors reducing pollen accrual rates may partially remove barriers to natural hybridization.
Sutton, Jonathan E.; Beste, Ariana; Steven H. Overbury
2015-10-12
In this study, we use density functional theory to explain the preferred structure of partially reduced CeO 2(111). Low-energy ordered structures are formed when the vacancies are isolated (maximized intervacancy separation) and the size of the Ce 3+ ions is minimized. Both conditions help minimize disruptions to the lattice around the vacancy. The stability of the ordered structures suggests that isolated vacancies are adequate for modeling more complex (e.g., catalytic) systems. Oxygen diffusion barriers are predicted to be low enough that O diffusion between vacancies is thermodynamically controlled at room temperature. The O-diffusion-reaction energies and barriers are decreased when onemore » Ce f electron hops from a nearest-neighbor Ce cation to a next-nearest-neighbor Ce cation, with a barrier that has been estimated to be slightly less than the barrier to O diffusion in the absence of polaron hopping. In conculsion, this indicates that polaron hopping plays a key role in facilitating the overall O diffusion process, and depending on the relative magnitudes of the polaron hopping and O diffusion barriers, polaron hopping may be the kinetically limiting process.« less
Wang, Lei; Tian, Wei; Shi, Yongmin
2017-08-07
The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.
Geophysical Characterization of Groundwater-Fault Dynamics at San Andreas Oasis
NASA Astrophysics Data System (ADS)
Faherty, D.; Polet, J.; Osborn, S. G.
2017-12-01
The San Andreas Oasis has historically provided a reliable source of fresh water near the northeast margin of the Salton Sea, although since the recent completion of the Coachella Canal Lining Project and persistent drought in California, surface water at the site has begun to disappear. This may be an effect of the canal lining, however, the controls on groundwater are complicated by the presence of the Hidden Springs Fault (HSF), a northeast dipping normal fault that trends near the San Andreas Oasis. Its surface expression is apparent as a lineation against which all plant growth terminates, suggesting that it may form a partial barrier to subsurface groundwater flow. Numerous environmental studies have detailed the chemical evolution of waters resources at San Andreas Spring, although there remains a knowledge gap on the HSF and its relation to groundwater at the site. To better constrain flow paths and characterize groundwater-fault interactions, we have employed resistivity surveys near the surface trace of the HSF to generate profiles of lateral and depth-dependent variations in resistivity. The survey design is comprised of lines installed in Wenner Arrays, using an IRIS Syscal Kid, with 24 electrodes, at a maximum electrode spacing of 5 meters. In addition, we have gathered constraints on the geometry of the HSF using a combination of ground-based magnetic and gravity profiles, conducted with a GEM walking Proton Precession magnetometer and a Lacoste & Romberg gravimeter. Seventeen gravity measurements were acquired across the surface trace of the fault. Preliminary resistivity results depict a shallow conductor localized at the oasis and discontinuous across the HSF. Magnetic data reveal a large contrast in subsurface magnetic susceptibility that appears coincident with the surface trace and trend of the HSF, while gravity data suggests a shallow, relatively high density anomaly centered near the oasis. These data also hint at a second, previously undocumented fault bounding the opposite margin of the oasis and trending subparallel to the HSF. We thus speculate that the Hidden Springs Fault and this possible secondary fault act as partial barriers to lateral subsurface flow and form a structural wedge, localizing groundwater beneath the oasis.
10 CFR 960.3-1-5 - Basis for site evaluations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... comparative evaluations of sites in terms of the capabilities of the natural barriers for waste isolation and.... Comparative site evaluations shall place primary importance on the natural barriers of the site. In such... only to the extent necessary to obtain realistic source terms for comparative site evaluations based on...
10 CFR 960.3-1-5 - Basis for site evaluations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... comparative evaluations of sites in terms of the capabilities of the natural barriers for waste isolation and.... Comparative site evaluations shall place primary importance on the natural barriers of the site. In such... only to the extent necessary to obtain realistic source terms for comparative site evaluations based on...
10 CFR 960.3-1-5 - Basis for site evaluations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... comparative evaluations of sites in terms of the capabilities of the natural barriers for waste isolation and.... Comparative site evaluations shall place primary importance on the natural barriers of the site. In such... only to the extent necessary to obtain realistic source terms for comparative site evaluations based on...
10 CFR 960.3-1-5 - Basis for site evaluations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... comparative evaluations of sites in terms of the capabilities of the natural barriers for waste isolation and.... Comparative site evaluations shall place primary importance on the natural barriers of the site. In such... only to the extent necessary to obtain realistic source terms for comparative site evaluations based on...
10 CFR 960.3-1-5 - Basis for site evaluations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... comparative evaluations of sites in terms of the capabilities of the natural barriers for waste isolation and.... Comparative site evaluations shall place primary importance on the natural barriers of the site. In such... only to the extent necessary to obtain realistic source terms for comparative site evaluations based on...
Current collectors for improved safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less
Räsänen, Katja; Hendry, Andrew P
2014-01-01
Ecological speciation seems to occur readily but is clearly not ubiquitous – and the relative contributions of different reproductive barriers remain unclear in most systems. We here investigate the potential importance of selection against migrants in lake/stream stickleback (Gasterosteus aculeatus) from the Misty Lake system, Canada. This system is of particular interest because one population contrast (Lake vs. Outlet stream) shows very low genetic and morphological divergence, whereas another population contrast (Lake vs. Inlet stream) shows dramatic genetic and morphological divergence apparently without strong and symmetric reproductive barriers. To test whether selection against migrants might solve this “conundrum of missing reproductive isolation”, we performed a fully factorial reciprocal transplant experiment using 225 individually marked stickleback collected from the wild. Relative fitness of the different ecotypes (Lake, Inlet, and Outlet) was assessed based on survival and mass change in experimental enclosures. We found that Inlet fish performed poorly in the lake (selection against migrants in that direction), whereas Lake fish outperformed Inlet fish in all environments (no selection against migrants in the opposite direction). As predicted from their phenotypic and genetic similarity, Outlet and Lake fish performed similarly in all environments. These results suggest that selection against migrants is asymmetric and, together with previous work, indicates that multiple reproductive barriers contribute to reproductive isolation. Similar mosaic patterns of reproductive isolation are likely in other natural systems. PMID:24772291
Bourigault, C; Corvec, S; Bemer, P; Juvin, M-E; Guillouzouic, A; Crémet, L; Reynaud, A; Leprince, C; Lepelletier, D
2013-10-01
The French national surveillance program of multidrug-resistant bacteria (MDR) shows an increase of enterobacteriaceae-producing extended-spectrum beta-lactamases (ESBLE) incidence. The objectives of this study were to assess: the incidence of EBLSE in a large French university hospital between 2005 and 2010, and the difference of barrier precautions implementation between ESBL and other MDR. The ESBLE incidence measure used data from the laboratory of bacteriology. The application of isolation and barrier precautions was analyzed from the MRB national surveillance data over a 3-year period from 2006 to 2008. Data were entered and analyzed using Epi Info software. The Chi(2) test was used for the comparison of proportions. The overall incidence of ESBLE was significantly higher in 2010 than in 2005 (0.20/1000 patients-days vs 0.03/1000 patients-days, respectively) (P<0.001). The same was observed for Escherichia coli incidence with rates ranging from 0.02/1000 patients-days in 2005 to 0.15/1000 patients-days in 2010. Isolation precautions for patients with EBLSE were applied in relation for most patients with MRB (ESBLE vs others), without significant difference. The surveillance programme of MRB showed a significant increase of ESBLE, especially for E. coli. Isolation and barrier precautions were used for most patients with MRB, including ESBLE. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Hybrid chickadees are deficient in learning and memory.
McQuillan, Michael A; Roth, Timothy C; Huynh, Alex V; Rice, Amber M
2018-05-01
Identifying the phenotypes underlying postzygotic reproductive isolation is crucial for fully understanding the evolution and maintenance of species. One potential postzygotic isolating barrier that has rarely been examined is learning and memory ability in hybrids. Learning and memory are important fitness-related traits, especially in scatter-hoarding species, where accurate retrieval of hoarded food is vital for winter survival. Here, we test the hypothesis that learning and memory ability can act as a postzygotic isolating barrier by comparing these traits among two scatter-hoarding songbird species, black-capped (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis), and their naturally occurring hybrids. In an outdoor aviary setting, we find that hybrid chickadees perform significantly worse on an associative learning spatial task and are worse at solving a novel problem compared to both parental species. Deficiencies in learning and memory abilities could therefore contribute to postzygotic reproductive isolation between chickadee species. Given the importance of learning and memory for fitness, our results suggest that these traits may play an important, but as yet overlooked, role in postzygotic reproductive isolation. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haldeman, D.L.; Amy, P.S.; White, D.C.
1994-08-01
The abundance of viable microorganisms recovered from deep subsurface volcanic rock samples increased after rock perturbation and storage for 1 week at 4{degrees}C, while the diversity and evenness of recoverable heterotrophic bacterial communities generally decreased. One sample of each morphologically distinct colony type, recovered both before and after storage of U12n rock samples, was purified and characterized by fatty acid methyl ester (MIDI) and API rapid NFT strips. As determined by MIDI cluster analysis, the composition of the recoverable microbial communities changed with storage of rock samples; some groups of organisms were recovered only before, only after, or at bothmore » sample times. In general, the isolates recovered only after storage of rock samples had a greater ability to utilize the carbohydrates included in API test strips and had faster generation times than isolates recovered only on initial plating. The nutritional versatility and faster growth rates of organisms recovered in higher proportions after sample storage provide evidence that some microbial community changes may be due to the proliferation of a few bacterial types. However, because some new genera are recovered only after storage, the possibility also exists that dormant bacterial types are resuscitated during sample perturbation and storage. 30 refs., 1 fig., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Moon, Jung-Won; Goltz, Mark N.; Ahn, Kyu-Hong; Park, Jae-Woo
2003-02-01
In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient ( K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.
Le concept suédois pour stockage définitif des déchets nucléaires
NASA Astrophysics Data System (ADS)
Hedman, Tommy; Nyström, Anders; Thegerström, Claes
2002-10-01
The purpose of a disposal is to isolate the radioactive waste from man and the environment. If the isolation is broken, the leakage and transport of radioactive substances must be retarded. The package is one of several barriers, used to achieve these two main functions. For short-lived, low and intermediate level waste four standard containers of steel and concrete are used. Spent fuel will be placed in a canister consisting of a pressure-bearing insert of cast nodular iron and an outer corrosion barrier of copper before it is deposited in a deep geological repository. In particular, the development of a high integrity copper canister for the isolation of spent nuclear fuel is described in this paper. To cite this article: T. Hedman et al., C. R. Physique 3 (2002) 903-913.
ERIC Educational Resources Information Center
Mayfield-Johnson, Susan; Mohn, Richard S.; Mitra, Amal K.; Young, Rebekah; McCullers, Elizabeth M.
2014-01-01
Online distance education creates increased opportunities for continuing education and advanced training for allied health professionals living in underserved and geographically isolated areas. The purpose of this article was to explore attitudes on barriers and benefits of distance education technology among underrepresented minority allied…
Poverty in Alabama. A Barrier to Postsecondary Education.
ERIC Educational Resources Information Center
Shannon, Mary Lee Rice
This study was undertaken with the belief that financial need is not an isolated barrier to postsecondary education and that it is frequently accompanied by distinct motivational, academic, and geographic factors. The distribution of Alabama's poverty on a county level is shown and evaluated. It is noted that all of the countries with a…
Shifting barriers and phenotypic diversification by hybridisation.
Sefc, Kristina M; Mattersdorfer, Karin; Ziegelbecker, Angelika; Neuhüttler, Nina; Steiner, Oliver; Goessler, Walter; Koblmüller, Stephan
2017-05-01
The establishment of hybrid taxa relies on reproductive isolation from the parental forms, typically achieved by ecological differentiation. Here, we present an alternative mechanism, in which shifts in the strength and location of dispersal barriers facilitate diversification by hybridisation. Our case study concerns the highly diverse, stenotopic rock-dwelling cichlids of the African Great Lakes, many of which display geographic colour pattern variation. The littoral habitat of these fish has repeatedly been restructured in the course of ancient lake level fluctuations. Genetic data and an experimental cross support the hybrid origin of a distinct yellow-coloured variant of Tropheus moorii from ancient admixture between two allopatric, red and bluish variants. Deficient assortative mating preferences imply that reproductive isolation continues to be contingent on geographic separation. Linking paleolimnological data with the establishment of the hybrid variant, we sketch a selectively neutral diversification process governed solely by rearrangements of dispersal barriers. © 2017 John Wiley & Sons Ltd/CNRS.
2013-01-01
Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery. PMID:23773766
Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I
2013-06-18
Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.
NASA Astrophysics Data System (ADS)
Martellato, E.; Foing, B. H.; Benkhoff, J.
2013-09-01
Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.
Safety assessment of discharge chute isolation barrier preparation and installation. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meichle, R.H.
1994-10-10
This revision responds to RL comments and increases the discussion of the ``effective hazard categorization`` and the readiness review basis. The safety assessment is made for the activities for the preparation and installation of the discharge chute isolation barriers. The safety assessment includes a hazard assessment and comparison of potential accidents/events to those addressed by the current safety basis documentation. No significant hazards were identified. An evaluation against the USQ evaluation questions were made and the determination made that the activities do not represent a USQ. Hazard categorization techniques were used to provide a basis for readiness review classification.
Evolution, biogeography, and systematics of Puriana: evolution and speciation in Ostracoda, III.
Cronin, T. M.
1987-01-01
Three types of geographic isolation - land barriers, deep water barriers, and climatic barriers - resulted in three distinct evolutionary responses in Neogene and Quaternary species of the epineritic ostracode genus Puriana. Through systematic, paleobiogeographic, and morphologic study of several hundred fossil and Recent populations from the eastern Pacific, western Atlantic, Gulf of Mexico, and the Caribbean, the phylogeny of the genus and the geography of speciation events were determined. Isolation of large populations by the Isthumus of Panama during the Pliocene did not lead to lineage splitting in species known to have existed before the Isthmus formed. Conversely, the establishment of small isolated populations on Caribbean islands by passive dispersal mechanisms frequently led to the evolution of new species or subspecies. Climatic changes along the southeastern United States during the Pliocene also catalyzed possible parapatric speciation as populations that immigrated to the northeastern periphery of the genus' range split to form new species. The results provide evidence that evolutionary models describing the influence of abiotic events on patterns of evolution and speciation can be tested using properly selected tectonic and climatic events and fossil groups amenable to species-level analysis. Two new species, P. bajaensis and P. paikensis, are described. -Author
Dispersal Limitations on Fish Community Recovery Following Long-term Water Quality Remediation
McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.; ...
2016-02-22
Holistic restoration approaches, such as water quality remediation, are likely to meet conservation objectives because they are typically implemented at watershed scales, as opposed to individual stream reaches. However, habitat fragmentation may impose constraints on the ecological effectiveness of holistic restoration strategies by limiting colonization following remediation. We questioned the importance of dispersal limitations to fish community recovery following long-term water quality remediation and species reintroductions across the White Oak Creek (WOC) watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness and biomass to water quality remediation were evaluated in light of habitat fragmentation andmore » population isolation from instream barriers, which varied in their passage potential. In addition, ordination techniques were used to determine the relative importance of habitat connectivity and water quality, in explaining variation fish communities relative to environmental fluctuations, i.e. streamflow. Ecological recovery (changes in richness) at each site was negatively related to barrier index, a measure of community isolation by barriers relative to stream distance. Following species reintroductions, dispersal by fish species was consistently in the downstream direction and upstream passage above barriers was non-existent. The importance of barrier index in explaining variation in fish communities was stronger during higher flow conditions, but decreased over time an indication of increasing community stability and loss of seasonal migrants. Compared to habitat fragmentation, existing water quality concerns (i.e., outfalls, point source discharges) were unrelated to ecological recovery, but explained relatively high variation in community dynamics. Our results suggest that habitat fragmentation limited the ecological effectiveness of intensive water quality remediation efforts and fish reintroduction efforts by impeding recolonization at isolated stream reaches.« less
Dispersal Limitations on Fish Community Recovery Following Long-term Water Quality Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.
Holistic restoration approaches, such as water quality remediation, are likely to meet conservation objectives because they are typically implemented at watershed scales, as opposed to individual stream reaches. However, habitat fragmentation may impose constraints on the ecological effectiveness of holistic restoration strategies by limiting colonization following remediation. We questioned the importance of dispersal limitations to fish community recovery following long-term water quality remediation and species reintroductions across the White Oak Creek (WOC) watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness and biomass to water quality remediation were evaluated in light of habitat fragmentation andmore » population isolation from instream barriers, which varied in their passage potential. In addition, ordination techniques were used to determine the relative importance of habitat connectivity and water quality, in explaining variation fish communities relative to environmental fluctuations, i.e. streamflow. Ecological recovery (changes in richness) at each site was negatively related to barrier index, a measure of community isolation by barriers relative to stream distance. Following species reintroductions, dispersal by fish species was consistently in the downstream direction and upstream passage above barriers was non-existent. The importance of barrier index in explaining variation in fish communities was stronger during higher flow conditions, but decreased over time an indication of increasing community stability and loss of seasonal migrants. Compared to habitat fragmentation, existing water quality concerns (i.e., outfalls, point source discharges) were unrelated to ecological recovery, but explained relatively high variation in community dynamics. Our results suggest that habitat fragmentation limited the ecological effectiveness of intensive water quality remediation efforts and fish reintroduction efforts by impeding recolonization at isolated stream reaches.« less
A rapid method for hydraulic profiling in unconsolidated formations
Dietrich, P.; Butler, J.J.; Faiss, K.
2008-01-01
Information on vertical variations in hydraulic conductivity (K) can often shed much light on how a contaminant will move in the subsurface. The direct-push injection logger has been developed to rapidly obtain such information in shallow unconsolidated settings. This small-diameter tool consists of a short screen located just behind a drive point. The tool is advanced into the subsurface while water is injected through the screen to keep it clear. Upon reaching a depth at which information about K is desired, advancement ceases and the injection rate and pressure are measured on the land surface. The rate and pressure values are used in a ratio that serves as a proxy for K. A vertical profile of this ratio can be transformed into a K profile through regressions with K estimates determined using other techniques. The viability of the approach was assessed at an extensively studied field site in eastern Germany. The assessment demonstrated that this tool can rapidly identify zones that may serve as conduits for or barriers to contaminant movement. ?? 2007 The Author(s).
The PanCam Instrument for the ExoMars Rover
NASA Astrophysics Data System (ADS)
Coates, A. J.; Jaumann, R.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C. R.; Cross, R. E.; Grindrod, P.; Bridges, J. C.; Balme, M.; Gupta, S.; Crawford, I. A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J. L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G. R.; PanCam Team
2017-07-01
The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.
Preinvestigation evaluation of corrective measure technologies for the Badger Army Ammunition Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, P.A.; Tsai, S.Y.
1989-02-01
This report briefly describes and evaluates the suitability of corrective measure technologies for possible use at the solid waste management units (SWMUs) at the Badger Army Ammunition Plant (BAAP), near Baraboo, Wisconsin. Corrective measure technologies considered for contaminated soils include excavation plus on- or off-site disposal in landfills or by incineration, use of solidification or stabilization methods, and in-situ methods such as bioreclamation and chemical or physical methods. Technologies considered for treatment of contaminated groundwater include groundwater pumping followed by discharge or treatment by air stripping and use of subsurface barriers. 5 refs., 1 tab.
M4SF-17LL010302072: The Roles of Diffusion and Corrosion in Radionuclide Retardation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik; Balboni, E.; Atkins-Duffin, Cindy
This progress report (Level 4 Milestone Number M4SF-17LL010302072) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Crystalline Disposal R&D Activity Number M4SF-17LL01030207 and Crystalline International Collaborations Activity Number M4SF-17LL01030208. The focus of this research is the interaction of radionuclides with Engineered Barrier System (EBS) and host rock materials at various physicochemical conditions relevant to subsurface repository environments. They include both chemical and physical processes such as solubility, sorption, and diffusion.
Cryptic postzygotic isolation in an eruptive species of bark beetle (Dendroctonus ponderosae)
Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz
2011-01-01
Studies of postzygotic isolation often involve well-differentiated taxa that show a consistent level of incompatibility, thereby limiting our understanding of the initial stages and development of reproductive barriers. Dendroctonus ponderosae provides an informative system because recent evidence suggests that distant populations produce hybrids with reproductive...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... electrical isolation requirements, the test specifications and requirements for electrical isolation monitoring, the state-of-charge of electric energy storage devices prior to the crash tests, a proposed protective barrier compliance option for electrical safety, the use of alternative gas to crash test hydrogen...
10 CFR 63.21 - Content of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... design bases and their relation to the design criteria. (4) A description of the kind, amount, and... extent to which they affect waste isolation. Investigations must extend from the surface to a depth... barriers important to waste isolation as required by § 63.115. (15) An explanation of measures used to...
10 CFR 63.21 - Content of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... design bases and their relation to the design criteria. (4) A description of the kind, amount, and... extent to which they affect waste isolation. Investigations must extend from the surface to a depth... barriers important to waste isolation as required by § 63.115. (15) An explanation of measures used to...
Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.
ERIC Educational Resources Information Center
Hoffman, Darleane C.; Choppin, Gregory R.
1986-01-01
Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)
Finster, K.W.; Cockell, C.S.; Voytek, M.A.; Gronstal, A.L.; Kjeldsen, K.U.
2009-01-01
A novel actinobacterium, designated CB31T, was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l-1) and MgCl2???6H 2O (3 g l-1). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was ll-diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H4) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45??C, with an optimum between 35 and 40??C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31T is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31T (=NCIMB 14440T = DSM 21240T). ?? 2009 Springer Science+Business Media B.V.
Finster, K W; Cockell, C S; Voytek, M A; Gronstal, A L; Kjeldsen, K U
2009-11-01
A novel actinobacterium, designated CB31(T), was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l(-1)) and MgCl2 x 6 H2O (3 g l(-1)). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was LL: -diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H(4)) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45 degrees C, with an optimum between 35 and 40 degrees C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31(T) is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31(T) (=NCIMB 14440(T) = DSM 21240(T)).
NASA Astrophysics Data System (ADS)
McClymont, Alastair F.; Hayashi, Masaki; Bentley, Laurence R.; Christensen, Brendan S.
2013-09-01
our current understanding of permafrost thaw in subarctic regions in response to rising air temperatures, little is known about the subsurface geometry and distribution of discontinuous permafrost bodies in peat-covered, wetland-dominated terrains and their responses to rising temperature. Using electrical resistivity tomography, ground-penetrating radar profiling, and thermal-conduction modeling, we show how the land cover distributions influence thawing of discontinuous permafrost at a study site in the Northwest Territories, Canada. Permafrost bodies in this region occur under forested peat plateaus and have thicknesses of 5-13 m. Our geophysical data reveal different stages of thaw resulting from disturbances within the active layer: from widening and deepening of differential thaw features under small frost-table depressions to complete thaw of permafrost under an isolated bog. By using two-dimensional geometric constraints derived from our geophysics profiles and meteorological data, we model seasonal and interannual changes to permafrost distribution in response to contemporary climatic conditions and changes in land cover. Modeling results show that in this environment (1) differences in land cover have a strong influence on subsurface thermal gradients such that lateral thaw dominates over vertical thaw and (2) in accordance with field observations, thaw-induced subsidence and flooding at the lateral margins of peat plateaus represents a positive feedback that leads to enhanced warming along the margins of peat plateaus and subsequent lateral heat conduction. Based on our analysis, we suggest that subsurface energy transfer processes (and feedbacks) at scales of 1-100 m have a strong influence on overall permafrost degradation rates at much larger scales.
Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.
2014-01-01
Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621
Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang
2010-05-01
Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.
The Benefits and Barriers of Virtual Collaboration among Online Adjuncts
ERIC Educational Resources Information Center
Schieffer, Lori
2016-01-01
Online education is a current trend in higher education. This has left colleges needing to hire more part-time remote adjuncts to fill the fluctuating number of available courses. Because remote online adjuncts are susceptible to isolation, the need has arisen to study the benefits and barriers of virtual collaboration. The purpose of this…
Direct Measurement of the Isomerization Barrier of the Isolated Retinal Chromophore
2015-11-03
al. Angew. Chem. Int. Ed. 2008, 47, 1668 –1671 Dehydrated gas-phase structures Barlow Correlation Experiment – Barrier energy in protein is ~1-1.2...eV, and inversely correlated with the absorption wavelength Theory – ~1-2eV Barlow R.B.; Birge R.R.; Kaplan E.; Tallent J.R. Nature 1993, 366, 64
USDA-ARS?s Scientific Manuscript database
In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...
Shaw, C M; Brodie, J; Mueller, J F
2012-01-01
To date there has been limited evidence anthropogenically sourced pollution from catchments reaching corals of the Great Barrier Reef (GBR). In this study, freshly isolated zooxanthellae were exposed to polar chemicals (chiefly herbicides) extracted from water samples collected in a flood plume in the GBR lagoon. Photosynthetic potential of the isolated zooxanthellae declined after exposure to concentrated extracts (10 times) from all but one of the sampling sites. Photosynthetic potential demonstrated a significant positive relationship with the concentration of diuron in the concentrated extracts and a significant inverse relationship with salinity measured at the sampling site. This study demonstrates that runoff from land based application of herbicides may reduce photosynthetic efficiency in corals of inshore reefs in the GBR. The ecological impacts of the chemicals in combination with other potential stressors on corals remain unclear. Copyright © 2012 Elsevier Ltd. All rights reserved.
Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.
Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza
2015-11-02
Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.
Qvarnström, Anna; Ålund, Murielle; McFarlane, S Eryn; Sirkiä, Päivi M
2016-01-01
Climate adaptation is surprisingly rarely reported as a cause for the build-up of reproductive isolation between diverging populations. In this review, we summarize evidence for effects of climate adaptation on pre- and postzygotic isolation between emerging species with a particular focus on pied (Ficedula hypoleuca) and collared (Ficedula albicollis) flycatchers as a model for research on speciation. Effects of climate adaptation on prezygotic isolation or extrinsic selection against hybrids have been documented in several taxa, but the combined action of climate adaptation and sexual selection is particularly well explored in Ficedula flycatchers. There is a general lack of evidence for divergent climate adaptation causing intrinsic postzygotic isolation. However, we argue that the profound effects of divergence in climate adaptation on the whole biochemical machinery of organisms and hence many underlying genes should increase the likelihood of genetic incompatibilities arising as side effects. Fast temperature-dependent co-evolution between mitochondrial and nuclear genomes may be particularly likely to lead to hybrid sterility. Thus, how climate adaptation relates to reproductive isolation is best explored in relation to fast-evolving barriers to gene flow, while more research on later stages of divergence is needed to achieve a complete understanding of climate-driven speciation.
NASA Astrophysics Data System (ADS)
Pinc, William Ross
The aim of the work presented in this dissertation is to investigate the corrosion protection mechanism of cerium-based conversion coatings (CeCCs) used in the corrosion protection of high strength aluminum alloys. The corrosion resistance of CeCCs involves two general mechanisms; barrier and active. The barrier protection mechanism was influenced by processing parameters, specifically surface preparation, post-treatment, and the use of gelatin. Post-treatment and the addition of gelatin to the coating solution resulted in fewer cracks and transformation of the coating to CePO4, which increased the corrosion resistance by improving the barrier aspect of CeCCs. CeCCs were found to best act as barriers when crack size was limited and CePO4 was present in the coating. CeCCs were found to protect areas of the substrate that were exposed in the coating, indicating that the coatings were more than simple barriers. CeCCs contained large cracks, underneath which subsurface crevices were connected to the surface by the cracks. Despite the observation that no cerium was present in crevices, coatings with crevices exhibited significant corrosion protection. The impedance of post-treated coatings with crevices increased during salt spray exposure. The increase in impedance was associated with the formation of protective oxides / hydroxides; however, crevice-free coatings also exhibited active protection leading to the conclusion that the formation of interfacial layers between the CeCC and the substrate also contributed to the active protection. Based on the overall results of the study, the optimal corrosion protection of CeCCs occurred when processing conditions produced coatings with morphologies and compositions that facilitated both the barrier and active protection mechanisms.
Foote, A P; Penner, G B; Walpole, M E; Klotz, J L; Brown, K R; Bush, L P; Harmon, D L
2014-07-01
Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in volatile fatty acids (VFA) absorption from the washed rumen of steers. Previous data also indicates that incubating an extract of endophyte-infected tall fescue seed causes an increase in the amount of VFA absorbed per unit of blood flow, which could result from an alteration in the absorptive or barrier function of the rumen epithelium. An experiment was conducted to determine the acute effects of an endophyte-infected tall fescue seed extract (EXT) on total, passive or facilitated acetate and butyrate flux across the isolated bovine rumen as well as the barrier function measured by inulin flux and tissue conductance (G t ). Flux of ergovaline across the rumen epithelium was also evaluated. Rumen tissue from the caudal dorsal sac of Holstein steers (n=6), fed a common diet, was collected and isolated shortly after slaughter and mounted between two halves of Ussing chambers. In vitro treatments included vehicle control (80% methanol, 0.5% of total volume), Low EXT (50 ng ergovaline/ml) and High EXT (250 ng ergovaline/ml). Results indicate that there is no effect of acute exposure to ergot alkaloids on total, passive or facilitated flux of acetate or butyrate across the isolate bovine rumen epithelium (P>0.51). Inulin flux (P=0.16) and G t (P>0.17) were not affected by EXT treatment, indicating no alteration in barrier function due to acute ergot alkaloid exposure. Ergovaline was detected in the serosal buffer of the High EXT treatment indicating that the flux rate is ~0.25 to 0.44 ng/cm2 per hour. Data indicate that specific pathways for VFA absorption and barrier function of the rumen epithelium are not affected by acute exposure to ergot alkaloids from tall fescue at the concentrations tested. Ergovaline has the potential to be absorbed from the rumen of cattle that could contribute to reduced blood flow and motility and lead to reduced growth rates of cattle.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Chen, M.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Aines, R. D.
2011-12-01
CO2 capture and sequestration (CCS) integrated with geothermal energy production in deep geological formations can play an important role in reducing CO2 emissions to the atmosphere and thereby mitigate global climate change. For industrial-scale CO2 injection in saline formations, pressure buildup can limit storage capacity and security. Active CO2 Reservoir Management (ACRM) combines brine production with CO2 injection to relieve pressure buildup, increase injectivity, manipulate CO2 migration, constrain brine leakage, and enable beneficial utilization of produced brine. Therefore, ACRM can be an enabler of carbon capture, utilization, and sequestration (CCUS). Useful products may include freshwater, cooling water, make-up water for pressure support in oil, gas, and geothermal reservoir operations, and geothermal energy production. Implementation barriers to industrial-scale CCS include concerns about (1) CO2 sequestration security and assurance, (2) pore-space competition with neighboring subsurface activities, (3) CO2 capture costs, and (4) water-use demands imposed by CCS operations, which is particularly important where water resources are already scarce. CCUS, enabled by ACRM, has the potential of addressing these barriers. Pressure relief from brine production can substantially reduce the driving force for potential CO2 and brine migration, as well as minimize interference with neighboring subsurface activities. Electricity generated from geothermal energy can offset a portion of the parasitic energy and financial costs of CCS. Produced brine can be used to generate freshwater by desalination technologies, such as RO, provide a source for saltwater cooling systems or be used as make-up water for oil, gas, or geothermal reservoir operations, reducing the consumption of valuable freshwater resources. We examine the impact of brine production on reducing CO2 and brine leakage. A volumetric balance between injected and produced fluids minimizes the spatial extent of the pressure perturbation, substantially reducing both the Area of Review (AoR) and interactions with neighboring subsurface activities. This will reduce pore-space competition between neighboring subsurface activities, allowing for independent planning, assessment, and permitting. Because post-injection pressure buildup is virtually eliminated, this could have a major impact on post-injection monitoring requirements. Reducing the volume of rock over which brine can migrate may significantly affect site characterization requirements, as well as the impact of parametric and conceptual model uncertainties, such as those related to abandoned wells. ACRM-CCUS has the potential of playing a beneficial role in site-characterization, permitting, and monitoring activities, and in gaining public acceptance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.
2017-12-01
Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined with additional geological information, modeling of the gravity signal based on the vertical component of the gravitational attraction was particularly useful to estimate the seasonal recharge leading to temporary groundwater storage in the vadose zone.
Modeling the Hydrologic Response to Changes in Groundcover Conditions Caused by Fire Disturbances
NASA Astrophysics Data System (ADS)
Kikinzon, E.; Atchley, A. L.; Coon, E.; Middleton, R. S.
2016-12-01
Climate change and fire suppression increase wildfire activity, which alters ecosystem functions and can significantly impact hydrological response. Both wildfire and prescribed burns reduce groundcover, affect top layers of subsurface, and change the structure of overland flow pathways. To understand respective effects on surface and subsurface hydrology, it is imperative to accurately represent surface-subsurface interface pre and post-fire, and to model physical processes in groundcover components. We show mechanistic models used to describe physics in two key types of groundcover, litter and duff, in Advanced Terrestrial Simulator (ATS). Litter is considered to be a part of vegetative canopy covering the surface. It has associated water storage capacity, which allows simulating interception and drainage, and its thickness is used to evaluate surface roughness with potential effect of slowing overland flow compared to bare soil. Duff on the other hand is incorporated into the subsurface, thus requiring meshing and discretization capability to support complex geometries including pinchouts, which is necessary both for achieving desired mesh resolution and portraying bare soil patches without adversely affecting the time scale. As part of the subsurface, duff has its own hydrologic and water retention properties used to resolve infiltration and saturation limited runoff generation, run on, and infiltration processes. This enables the use of ATS for fine scale modeling of integrated hydrology with adequate representation of groundcover influence. To isolate the impact of changing groundcover, we consider a simple hill slope and study the hydrological response to varying amount and geometries of groundcover. To cover landscape characteristics produced by a wide variety of fire conditions, from high intensity to low intensity fire impacts, we simulate hydrologic response to precipitation events over a number of typical geometries and with fine control over amounts of two described types of groundcover. We then analyze hydrological sensitivity to presence or absence of particular groundcover types, their respective patchiness, and possible changes in overland flow pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Karrie A.; Bender, Kelly S.; Li, Yusong
Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and themore » formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor (nitrate), indicating that nutrients are not limiting viral production, but rather substrates that can be converted into energy for host metabolism. Our results also revealed that cell abundance was not correlated to the mineralization of organic carbon, but rather viruses were positively correlated with carbon mineralization. This is a result of viral-mediated cell lysis and demonstrates that viruses are sensitive indicators of microbial activity. Viruses as an indicator of microbial activity was not unique to batch culture studies as results obtained from an in situ field experiment conducted at the DOE Old Rifle Field site. This study revealed that viral abundance increased in response to the injection of oxygenated groundwater and influx of dissolved organic carbon whereas cell abundance changes were minimal. However, the extent to which viral-mediated cell lysis alters organic matter pools subsequently influencing microbial community structure and biogeochemical function remains a critical question in subsurface biogeochemical cycling. The production of significant numbers of viruses in groundwater has implications for nanoparticulate metal as well as carbon transport in groundwater. We have demonstrated that the virus surface is reactive and will adsorb heavy metals. Thus viruses can promote colloidal contaminant mobility. Interestingly, the presence of heavy metals has a positive effect on infectivity of the phage, increasing phage infection which could lead to further production of viruses. Together, the results indicate that the sorption of metals to the surface of viruses could not only contribute to nanoparticulate metal as well as carbon transport but could also enhance infectivity further contributing to cell lysis which could subsequently influence biogeochemical cycling. As more viruses infect host microbial populations the high concentration of metals would enhance infection, resulting in cell lysis, and decreasing the metabolically active host population while yielding greater numbers of viruses capable of transporting contaminats. Additional studies will be necessary to further establish the potential relationship(s) between viruses, cells, carbon, and metals/radionuclides to provide sufficient scientific understanding to incorporate coupled physical, chemical, and biological processes into agent based and reactive transport models.« less
Experimental hybridization and backcrossing reveal forces of reproductive isolation in Microbotryum
2013-01-01
Background Hybridization and reproductive isolation are central to the origin and maintenance of species, and especially for sympatric species, gene flow is often inhibited through barriers that depend upon mating compatibility factors. The anther-smut fungi (genus Microbotryum) serve as models for speciation in the face of sympatry, and previous studies have tested for but not detected assortative mating. In addition, post-mating barriers are indicated by reduced fitness of hybrids, but sources of those barriers (i.e. ecological maladaptation or genetic incompatibilities) have not yet been detected. Here, backcrossing experiments, specifically controlling for the fungal species origins of the mating compatibility factors, were used to investigate reproductive isolation in the recently-derived species Microbotryum lychnidis-dioicae and Microbotryum silenes-dioicae. Results Assortative mating was detected during backcrossing and was manifested by the preferential conjugation of the hybrid-produced gametes with non-hybrid gametes containing mating compatibility factors from the same parental species. Patterns of post-mating performance supported either a level of extrinsic isolation mechanism, where backcross progeny with a higher proportion of the pathogen genome adapted to the particular host environment were favored, or an infection advantage attributed to greater genetic contribution to the hybrid from the M. lychnidis-dioicae genome. Conclusion The use of controlled backcrossing experiments reveals significant species-specific mating type effects on conjugations between recently-derived sister species, which are likely to play important roles in both maintaining species separation and the nature of hybrids lineages that emerge in sympatry between Microbotryum species. PMID:24112452
Are isolated wetlands groundwater recharge hotspots?
NASA Astrophysics Data System (ADS)
Webb, A.; Wicks, C. M.; Brantley, S. T.; Golladay, S. W.
2017-12-01
Geographically isolated wetlands (GIWs) are a common landscape feature in the mantled karst terrain of the Dougherty Plain physiographic district in Southwestern Georgia. These wetlands support a high diversity of obligate/facultative wetland flora and fauna, including several endangered species. While the ecological value of these wetlands is well documented, the hydrologic effects of GIWs on larger watershed processes, such as water storage and aquifer recharge, are less clear. Our project seeks to understand the spatial and temporal variation in recharge across GIWs on this mantled karst landscape. In particular, our first step is to understand the role of isolated wetlands (presumed sinkholes) in delivering water into the underlying aquifer. Our hypothesis is that many GIWs are actually water-filled sinkholes and are locations of focused recharge feeding either the underlying upper Floridan aquifer or the nearby creeks. If we are correct, then these sinkholes should exhibit "drains", i.e., conduits into the limestone bedrock. Thus, the purposes of our initial study are to image the soil-limestone contact (the buried epikarstic surface) and determine if possible subsurface drains exist. Our field work was conducted at the Joseph W Jones Ecological Research Center. During the dry season, we conducted ground penetrating radar (GPR) surveys as grids and lines across a large wetland and across a field with no surface expression of a wetland or sinkhole. We used GPR (200 MHz antenna) with 1-m spacing between antenna and a ping rate of 1 ping per 40 centimeters. Our results show that the epikarstic surface exhibits a drain underneath the wetland (sinkhole) and that no similar feature was seen under the field, even though the survey grid and spacing were similar. As our project progresses, we will survey additional wetlands occurring across varying soil types to determine the spatial distribution between surface wetlands and subsurface drains.
NASA Astrophysics Data System (ADS)
Rowe, A. R.; Abuyen, K.; Casar, C. P.; Osburn, M. R.; Kruger, B.; El-Naggar, M.; Amend, J.
2017-12-01
Little is known about the importance of mineral oxidation processes in subsurface environments. This stems, in part from our limited insight into the biochemistry of many of these metabolisms, especially where redox interactions with solid surfaces is concerned. To this aim, we have been developing electrochemical cultivation techniques, to target enrichment and isolation of microbes capable of oxidative extracellular electron transfer (oxEET)—transfer of electrons from the exterior of the cell to the interior. Our previous worked focused on marine sediments; using an electrode poised at a given redox potential to isolate mineral-oxidizing microbes. Electrode oxidizing microbes isolated from these enrichments belong to the genera Thioclava, Marinobacter, Halomonas, Idiomarina, Thalassospira, and Pseudamonas; organisms commonly detected in marine and deep sea sediments but not generally associated with mineral, sulfur and/or iron oxidation. At the Sanford Underground Research Facility (SURF) in Leed, South Dakota, we have been utilizing similar electrocultivation techniques to understand: 1) the potential for mineral oxidation by subsurface microbes, 2) their selective colonization on mineral vs. electrode surfaces, as well as 3) the community composition of microbes capable of these metabolic interactions. An electrochemical and mineral enrichment scheme was designed and installed into a sulfidic groundwater flow, located at the 4100 ft level of the former gold mine. The communities enriched on electrodes (graphite and indium tin oxide coated glass) and minerals (sulfur, pyrite, and schists from the location) were compared to the long-term ground water microbial community observed. Ultimately, these observations will help inform the potential activity of a lithotrophic microbes in situ and will in turn guide our culturing efforts.
Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response.
Almajed, Faisal S; Forsythe, Stephen J
2016-01-01
Cronobacter sakazakii is the most frequently clinically isolated species of the Cronobacter genus. However the virulence factors of C. sakazakii including their ability to overcome host barriers remains poorly studied. In this study, ten clinical isolates of C. sakazakii were assessed for their ability to invade and translocate through human colonic carcinoma epithelial cells (Caco-2) and human brain microvascular endothelial cells (HBMEC). Their ability to avoid phagocytosis in human macrophages U937 and human brain microglial cells was investigated. Additionally, they were tested for serum sensitivity and the presence of the Cronobacter plasminogen activation gene (cpa) gene, which is reported to confer serum resistance. Our data showed that the clinical C. sakazakii strains invaded and translocated through Caco-2 and HBMEC cell lines and some strains showed significantly higher levels of invasion and translocation. Moreover, C. sakazakii was able to persist and even multiply in phagocytic macrophage and microglial cells. All strains, except one, were able to withstand human serum exposure, the single serum sensitive strain was also the only one which did not encode for the cpa gene. These results demonstrate that C. sakazakii clinical isolates are able to overcome host barriers and evade the host immune response indicating their capacity to cause diseases such as necrotizing enterocolitis (NEC) and meningitis. Our data showed for the first time the ability of C. sakazakii clinical isolates to survive and multiply within human microglial cells. Additionally, it was shown that C. sakazakii clinical strains have the capacity to translocate through the Caco-2 and HBMEC cell lines paracellularly. Copyright © 2015 Elsevier Ltd. All rights reserved.
Varying Indian crustal front in the southern Tibetan Plateau as revealed by magnetotelluric data
NASA Astrophysics Data System (ADS)
Xie, Chengliang; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Zhang, Letian; Dong, Hao; Yin, Yaotian
2017-10-01
In the southern Tibetan plateau, which is considered to be the ongoing India-Eurasia continental collision zone, tracing of the Indian crustal front beneath Tibet is still controversial. We conducted deep subsurface electrical modeling in southern Tibet and discuss the geometry of the front of the Indian crust. Three areas along the Yarlung-Zangbo river zone for which previous magnetotelluric (MT) data are available were inverted independently using a three-dimensional MT inversion algorithm ModEM. Electrical horizontal slices at different depths and north-south oriented cross sections at different longitudes were obtained to provide a geoelectrical perspective for deep processes beneath the Tethyan Himalaya and Lhasa terrane. Horizontal slices at depths greater than - 15 km show that the upper crust is covered with resistive layers. Below a depth of - 20 km, discontinuous conductive distributions are primarily concentrated north of the Yarlung-Zangbo sutures (YZS) and could be imaged from mid- to lower crust. The results show that the maximum depth to which the resistive layers extend is over - 20 km, while the mid- to lower crustal conductive zones extend to depths greater than - 50 km. The results indicate that the conductive region in the mid- to lower crust can be imaged primarily from the YZS to south of the Bangong-Nujiang sutures in western Tibet and to 31°N in eastern Tibet. The northern front of the conductive zones appears as an irregular barrier to the Indian crust from west to east. We suggest that a relatively less conductive subsurface in the northern portion of the barrier indicates a relatively cold and strong crust and that the front of the Indian crust might be halted in the south of the barrier. We suggest that the Indian crustal front varies from west to east and has at least reached: 33.5°N at 80°E, 31°N at 85°E, and 30.5°N at 87°E and 92°E.[Figure not available: see fulltext.
Chang, Chang; Nickerson, Michael T
2015-01-01
Biodegradable edible films prepared using proteins are both economically and environmentally important to the food packaging industry relative to traditional petroleum-derived synthetic materials. In the present study, the mechanical and water vapor barrier properties of casted canola protein isolate edible films were investigated as a function of protein (5.0% and 7.5%) and glycerol (30%, 35%, 40%, 45%, and 50%) content. Specifically, tensile strength and elongation, elastic modulus, puncture strength and deformation, opacity, and water vapor permeability were measured. Results indicated that tensile strength, puncture strength, and elastic modulus decreased, while tensile elongation and puncture deformation values increased as glycerol concentration increased for both 5.0% and 7.5% canola protein isolate films. Furthermore, tensile strength, puncture strength, and elastic modulus values were found to increase at higher protein concentrations within the canola protein isolate films, whereas puncture deformation values decreased. Tensile elongation was found to be similar for both canola protein isolate protein levels. Canola protein isolate films became more transparent with increasing of glycerol concentration and decreasing of canola protein isolate concentration. Water vapor permeability value was also found to increase with increasing glycerol and protein contents. Overall, results indicated that canola protein isolate films were less brittle, more malleable and transparent, and had greater water vapor permeability at higher glycerol levels. However, as protein level increased, canola protein isolate films were more brittle, less malleable and more opaque, and also had increased water vapor permeability. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
New Proposed Drilling at Surtsey Volcano, Iceland
NASA Astrophysics Data System (ADS)
Jackson, Marie D.
2014-12-01
Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.
Guy, T.J.; Gresswell, R.E.; Banks, M.A.
2008-01-01
Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.
NASA Astrophysics Data System (ADS)
Schwindt, Daniel; Kozák, Johanna-Luise; Kohlpaintner, Michael
2017-04-01
In the central European Alps, permafrost can be expected in altitudes above 2300 m a.s.l., where mean annual air temperatures are below -1°C. However, attributed to the thermally induced "chimney effect", isolated permafrost lenses can be found in scree slopes far below the timberline where mean annual air temperature is positive. Usually the supercooled subsurface appears as lenses at the foot of talus slopes, covered by a thick layer of organic material and a unique vegetation composition most obviously characterized by dwarf grown trees ("Hexenwäldli") and azonal plant species. The fact that mean annual air temperature is positive and therefore can be excluded as a driving factor makes these sites unique for studying interdependencies between a supercooled subsurface, plant adaptation and vegetation sociology as well as the soil development. Three study sites in the Swiss Alps, differing in altitude and substrate (granite, dolomite, limestone) were investigated. Studies covered the permafrost-affected central parts of the slope as well as the surrounding areas. For characterizing distribution and temporal variability of ground ice geophysical methods were applied (electrical resistivity- and seismic refraction tomography). Temperature data loggers were used for monitoring the thermal regime (air-, surface- and soil temperatures). Chemical parameters (pH, C/N ratio) and nutrient contents (N, P, Ca, Mg, Mn, K) were analyzed in different depth levels. Plant communities were analyzed with the Braun-Blanquet method. To characterize physiognomic adaptation of trees, transects have been determined parallel to slope, measuring tree height, diameter and age. Results show a strong spatial correlation between frozen ground, formation of a thick organic layer (Tangelhumus), azonal plant species distribution and pronounced dwarfing of trees. Surrounding areas with unfrozen subsurface show an - for the particular altitude - expected species and soil composition and normal forest growth. Ellenberg pointer values in central parts of the study sites showed a strong plant adaption to cold temperatures. However, plant sociological analysis did not indicate one clear azonal community, but two different permafrost-plant-communities, one adapted to acidic and the other to calcareous substrates. Dwarf grown trees (e.g. spruce, 63cm high, 122 years old) could be found in permafrost-affected areas of all study sites, while the same species developed normally in the surroundings. Main factor for the physiognomic adaptation seems to be the low temperature in the rooting zone and the correlated shorter vegetation period, as air temperatures and nutrient supplies between the permafrost affected area and its surroundings are comparable. Pronounced interdependencies between frozen ground distribution, vegetation cover and soil development could be verified for all sites. The supercooled subsurface causes reduced decomposition of organic material as well as dwarfing of trees. In return, Tangelhumus and dwarfed trees positively affect supercooling. Dry organic material thermally insulates the subsurface during summer and prevents/delays thawing, while the high thermal conductivity of the moist or frozen Tangelhumus enhances heat flow and supercooling in winter. In addition, dwarfed trees prevent the formation of a consistent insulating snow cover optimizing thermal fluxes between atmosphere and subsurface.
Evaluating the Effect of Three Water Management Techniques on Tomato Crop.
Elnesr, Mohammad Nabil; Alazba, Abdurrahman Ali; Zein El-Abedein, Assem Ibrahim; El-Adl, Mahmoud Maher
2015-01-01
The effects of three water management techniques were evaluated on subsurface drip irrigated tomatoes. The three techniques were the intermittent flow (3 pulses), the dual-lateral drip system (two lateral lines per row, at 15 and 25 cm below soil surface), and the physical barrier (buried at 30 cm below soil surface). Field experiments were established for two successive seasons. Water movement in soil was monitored using continuously logging capacitance probes up to 60 cm depth. The results showed that the dual lateral technique positively increased the yield up to 50%, water use efficiency up to 54%, while the intermittent application improved some of the quality measures (fruit size, TSS, and Vitamin C), not the quantity of the yield that decreased in one season, and not affected in the other. The physical barrier has no significant effect on any of the important growth measures. The soil water patterns showed that the dual lateral method lead to uniform wetting pattern with depth up to 45 cm, the physical barrier appeared to increase lateral and upward water movement, while the intermittent application kept the wetting pattern at higher moisture level for longer time. The cost analysis showed also that the economic treatments were the dual lateral followed by the intermittent technique, while the physical barrier is not economical. The study recommends researching the effect of the dual lateral method on the root growth and performance. The intermittent application may be recommended to improve tomato quality but not quantity. The physical barrier is not recommended unless in high permeable soils.
ERIC Educational Resources Information Center
Baker, Cheryl B.
2011-01-01
Rural educators face many barriers when trying to participate in high quality professional development, including isolation, funding issues, distance, and lack of temporary replacements. Technological solutions can assist rural educators in overcoming these barriers. Participating in on-line professional learning communities can provide New…
Small Wastewater Systems Research
Small communities face barriers to building and maintaining effective wastewater treatment services, challenges include financial/economic limitations, lack of managerial training and geographic isolation/remoteness.
Microbial production and oxidation of methane in deep subsurface
NASA Astrophysics Data System (ADS)
Kotelnikova, Svetlana
2002-10-01
The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the "greenhouse" effect in the planet's atmosphere. Earlier, the deep "organic carbon poor" subsurface was not considered as a source of "biogenic" methane. Evidence of active methanogenesis and presence of viable methanogens including autotrophic organisms were obtained for some subsurface environments including water-flooded oil-fields, deep sandy aquifers, deep sea hydrothermal vents, the deep sediments and granitic groundwater at depths of 10 to 2000 m below sea level. As a rule, the deep subterranean microbial populations dwell at more or less oligotrophic conditions. Molecular hydrogen has been found in a variety of subsurface environments, where its concentrations were significantly higher than in the tested surface aquatic environments. Chemolithoautotrophic microorganisms from deep aquifers that could grow on hydrogen and carbon dioxide can act as primary producers of organic carbon, initiating heterotrophic food chains in the deep subterranean environments independent of photosynthesis. "Biogenic" methane has been found all over the world. On the basis of documented occurrences, gases in reservoirs and older sediments are similar and have the isotopic character of methane derived from CO 2 reduction. Groundwater representing the methanogenic end member are characterized by a relative depletion of dissolved organic carbon (DOC) in combination with an enrichment in 13C in inorganic carbon, which is consistent with the preferential reduction of 12CO 2 by autotrophic methanogens or acetogens. The isotopic composition of methane formed via CO 2 reduction is controlled by the δ13C of the original CO 2 substrate. Literature data shows that CH 4 as heavy as -40‰ or -50‰ can be produced by the microbial reduction of isotopically heavy CO 2. Produced methane may be oxidized microbially to carbon dioxide. Microbial methane oxidation is a biogeochemical process that limits the release of methane, a greenhouse gas from anaerobic environments. Anaerobic methane oxidation plays an important role in marine sediments. Similar processes may take place in deep subsurface and thus fuel the deep microbial community. Organisms or consortia responsible for anaerobic methane oxidation have not yet been cultured, although diverse aerobic methanotrophs have been isolated from a variety of underground niches. The presence of aerobic methanotrophs in the anoxic subsurface remains to be explained. The presence of methane in the deep subsurface have been shown all over the world. The flux of gases between the deep subsurface and the atmosphere is driven by the concentration gradient from depth to the atmosphere. However, methane is consumed by methanotrophs on the way of its evolution in oxidized environments and is transformed to organic form, available for further microbial processing. When the impact of subsurface environments to global warming is estimated, it is necessary to take into account the activity of methane-producing Archaea and methane-oxidizing biofilters in groundwater. Microbial production and oxidation of methane is involved in the carbon cycle in the deep subsurface environments.
Evaluation of structural issues related to isolation of the 100-KE/100-KW discharge chute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkel, B.V.; Hyde, L.L.
The issue of excessive post-seismic leakage in the discharge chute of the K East and K West fuel storage basins was resolved by designing isolation barriers to maintain basin water levels if the discharge chute should drain. This report addresses the structural issues associated with isolation of the discharge chute. The report demonstrates the structural adequacy of the components associated with chute isolation for normal and seismic loading. Associated issues, such as hardware drop accidents and seismic slosh heights are also addressed.
In situ remediation of uranium contaminated groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.; Marozas, D.C.
1997-02-01
In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptablemore » regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.« less
In situ remediation of uranium contaminated groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.; Marozas, D.C.
1997-12-31
In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ tomore » acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.« less
Fajardo-Cavazos, Patricia; Nicholson, Wayne
2006-01-01
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992
NASA Astrophysics Data System (ADS)
Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand
2017-04-01
Subsurface-intensified eddies are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these eddies are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified eddies can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the eddies positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface eddies generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying eddy. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water Eddies - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D eddies characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface eddies from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the Meddy potential vorticity structure at depth (around 1000 m below the sea-surface). Such anomalies were long-lived, mostly migrated exhibiting southwestward trajectories, their intensities were O(10 cm) and extended horizontally up to more than 300 km (around 1.5 times the Meddy diameter). On the other hand, the Meddies thermohaline surface signatures proved to be mostly dominated by the local surface conditions and their structure poorly correlated to the Meddy structure at depth (e.g. the Meddy volume-integrated salt and temperature content). These results point out that satellite altimetry is the most suitable approach to track subsurface-intensified eddies from observations of the sea-surface, also encouraging the use of future high-resolution altimetric observations (e.g. SWOT) to detect subsurface oceanic motions from satellite sensors.
Cuevas, Jaime; Ruiz, Ana Isabel; Fernández, Raúl
2018-02-21
Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 10 3 years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ito, Megumi; Suyama, Yoshihisa; Ohsawa, Takeshi A; Watano, Yasuyuki
2008-12-01
The reproductive isolation barriers and the mating patterns among Pinus pumila, P. parviflora var. pentaphylla and their hybrids were examined by flowering phenology and genetic assays of three life stages: airborne-pollen grains, adults and seeds, in a hybrid zone on Mount Apoi, Hokkaido, Japan. Chloroplast DNA composition of the airborne-pollen was determined by single-pollen polymerase chain reaction. Mating patterns were analysed by estimating the molecular hybrid index of the seed parent, their seed embryos and pollen parents. The observation of flowering phenology showed that the flowering of P. pumila precedes that of P. parviflora var. pentaphylla by about 6 to 10 days within the same altitudinal ranges. Although this prezygotic isolation barrier is effective, the genetic assay of airborne-pollen showed that the two pine species, particularly P. pumila, still have chances to form F(1) hybrid seeds. Both parental species showed a strong assortative mating pattern; F(1) seeds were found in only 1.4% of seeds from P. pumila mother trees and not at all in P. parviflora var. pentaphylla. The assortative mating was concluded as the combined result of flowering time differentiation and cross-incompatibility. In contrast to the parental species, hybrids were fertilized evenly by the two parental species and themselves. The breakdown of prezygotic barriers (intermediate flowering phenology) and cross-incompatibility may account for the unselective mating. It is suggested that introgression is ongoing on Mount Apoi through backcrossing between hybrids and parental species, despite strong isolation barriers between the parental species.
NASA Astrophysics Data System (ADS)
Oliver, T. S. N.; Tamura, T.; Hudson, J. P.; Woodroffe, C. D.
2017-07-01
Prograded barriers are distinctive coastal landforms preserving the position of past shorelines as low relief, shore-parallel ridges composed of beach sediments and commonly adorned with variable amounts of dune sand. Prograded barriers have been valued as coastal archives which contain palaeoenvironmental information, however integrating the millennial timescale geological history of barriers with observed inter-decadal modern beach processes has proved difficult. Technologies such as airborne LiDAR, ground penetrating radar (GPR) and optically stimulated luminescence dating (OSL) were utilised at Boydtown and Wonboyn, in southeastern Australia, and combined with previously reported radiocarbon dates and offshore seismic and sedimentological data to reconstruct the morpho-sedimentary history of prograded barrier systems. These technologies enabled reconstruction of geological timescale processes integrated with an inter-decadal model of ridge formation explaining the GPR-imaged subsurface character of the barriers. Both the Boydtown and Wonboyn barriers began prograding 7500-8000 years ago when sea level attained at or near present height along this coastline and continued prograding until the present-day with an initially slower rate of shoreline advancement. Sources of sediment for progradation appear to be the inner shelf and shoreface with a large shelf sand body likely contributing to progradation at Wonboyn. The Towamba River seems to have delivered sediment to Twofold Bay during flood events after transitioning to a mature estuarine system sometime after 4000 cal. yr BP. Some of this material appears to have been reworked onto the Boydtown barrier, increasing the rate of progradation in the seaward 50% of the barrier deposited over the past 1500 years. The GPR imaged beachfaces are shown to have similar geometry to beach profiles following recent storm events and a model of ridge formation involving cut and fill of the beachface, and dune building in the backshore, explains the character of the preserved beachface record and the morphology of the ridges. This model is applicable to future management of individual beaches where such beaches are subject to ongoing cut and fill, dune building processes and inherited sediment budget conditions.
Mutation and premating isolation
NASA Technical Reports Server (NTRS)
Woodruff, R. C.; Thompson, J. N. Jr
2002-01-01
While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.
M4FT-16LL080302052-Update to Thermodynamic Database Development and Sorption Database Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, Mavrik; Wolery, T. J.; Atkins-Duffin, C.
2016-08-16
This progress report (Level 4 Milestone Number M4FT-16LL080302052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number FT-16LL08030205. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physico-chemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.
Sedimentology of Upper Cretaceous Coffee sands in north-central Mississippi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, E.J.
1984-09-01
The Upper Cretaceous Coffee Group within the Desha basin of Mississippi is composed of two major lithologies, a light to dark marlstone and a series of white, fine to medium-grained siltstones and sandstones. The two source areas for the sands are the Sharkey platform to the south and the southern Appalachians. The presence of hydrocarbons has been described at the outcrop and in subsurface cuttings and cores. Depositional environments in the shallow shelf consist of lagoons, barrier island bars, offshore bars, and surge channel deposits. Southwest regional dip of approximately 40 ft/mi (8 m/km) is reflected on all Upper Cretaceousmore » horizons.« less
Nicholson, Wayne L; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C
2013-01-08
The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO(2)-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function.
Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, David; Schuerger, Andrew C.
2013-01-01
The ability of terrestrial microorganisms to grow in the near-surface environment of Mars is of importance to the search for life and protection of that planet from forward contamination by human and robotic exploration. Because most water on present-day Mars is frozen in the regolith, permafrosts are considered to be terrestrial analogs of the martian subsurface environment. Six bacterial isolates were obtained from a permafrost borehole in northeastern Siberia capable of growth under conditions of low temperature (0 °C), low pressure (7 mbar), and a CO2-enriched anoxic atmosphere. By 16S ribosomal DNA analysis, all six permafrost isolates were identified as species of the genus Carnobacterium, most closely related to C. inhibens (five isolates) and C. viridans (one isolate). Quantitative growth assays demonstrated that the six permafrost isolates, as well as nine type species of Carnobacterium (C. alterfunditum, C. divergens, C. funditum, C. gallinarum, C. inhibens, C. maltaromaticum, C. mobile, C. pleistocenium, and C. viridans) were all capable of growth under cold, low-pressure, anoxic conditions, thus extending the low-pressure extreme at which life can function. PMID:23267097
Sustainability of High-Level Isolation Capabilities among US Ebola Treatment Centers.
Herstein, Jocelyn J; Biddinger, Paul D; Gibbs, Shawn G; Le, Aurora B; Jelden, Katelyn C; Hewlett, Angela L; Lowe, John J
2017-06-01
To identify barriers to maintaining and applying capabilities of US high-level isolation units (HLIUs) used during the Ebola virus disease outbreak, during 2016 we surveyed HLIUs. HLIUs identified sustainability challenges and reported the highly infectious diseases they would treat. HLIUs expended substantial resources in development but must strategize models of sustainability to maintain readiness.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
..., isolation from family and friends, harm to children living with a parent or caretaker who is either... communities compound the basic dynamics of family violence. Barriers such as the isolation of vast rural areas.... The formula has two parts, the Tribal population base allocation and a population category allocation...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
..., psychological trauma, isolation from family and friends, harm to children living with a parent or caretaker who..., these dynamics may be compounded by barriers such as the isolation of vast rural areas, the concern for... these bases. Please see www.hhs.gov/ocr/civilrights/understanding/index.html . HHS also provides...
ERIC Educational Resources Information Center
Cook-Craig, Patricia G.; Lane, Karen G.; Siebold, Wendi L.
2010-01-01
Rural, frontier, and geographically isolated communities face unique challenges associated with ensuring that they are equal partners in capacity-building and prevention planning processes at the state and local level despite barriers that can inhibit participation. By their nature, rural, frontier, and geographically isolated communities and…
Climate reconstruction from borehole temperatures influenced by groundwater flow
NASA Astrophysics Data System (ADS)
Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.
2017-12-01
Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
ERIC Educational Resources Information Center
Cross, Jennifer Riedl; Frazier, Andrea Dawn; Kim, Mihyeon; Cross, Tracy L.
2018-01-01
In 14 focus group interviews, sixth- to eighth-grade high-ability students from high- (n = 36) and low-income (n = 45) families were asked to describe the barriers they perceived to their academic success. Three themes were identified through the qualitative analysis: "Constraining Environments, Integration versus Isolation," and…
Andrew M. Liebhold
2003-01-01
Through out evolutionary history, water and land barriers served to isolate the world's biota into distinct compartments With the advent of greater human mobility and world trade, these barriers are breaking-down and alien species are increasingly being transported into new habitats. Many alien species have had devastating impacts on their environment resulting in...
Yuan, Yao-Wu; Sagawa, Janelle M; Young, Riane C; Christensen, Brian J; Bradshaw, Harvey D
2013-05-01
Prezygotic barriers play a major role in the evolution of reproductive isolation, which is a prerequisite for speciation. However, despite considerable progress in identifying genes and mutations responsible for postzygotic isolation, little is known about the genetic and molecular basis underlying prezygotic barriers. The bumblebee-pollinated Mimulus lewisii and the hummingbird-pollinated M. cardinalis represent a classic example of pollinator-mediated prezygotic isolation between two sister species in sympatry. Flower color differences resulting from both carotenoid and anthocyanin pigments contribute to pollinator discrimination between the two species in nature. Through fine-scale genetic mapping, site-directed mutagenesis, and transgenic experiments, we demonstrate that a single-repeat R3 MYB repressor, ROSE INTENSITY1 (ROI1), is the causal gene underlying a major quantitative trait locus (QTL) with the largest effect on anthocyanin concentration and that cis-regulatory change rather than coding DNA mutations cause the allelic difference between M. lewisii and M. cardinalis. Together with the genomic resources and stable transgenic tools developed here, these results suggest that Mimulus is an excellent platform for studying the genetics of pollinator-mediated reproductive isolation and the molecular basis of morphological evolution at the most fundamental level-gene by gene, mutation by mutation.
Peterson, D.P.; Rieman, B.E.; Dunham, J.B.; Fausch, K.D.; Young, M.K.
2008-01-01
Native salmonid fishes often face simultaneous threats from habitat fragmentation and invasion by nonnative trout species. Unfortunately, management actions to address one may create or exacerbate the other. A consistent decision process would include a systematic analysis of when and where intentional use or removal of barriers is the most appropriate action. We developed a Bayesian belief network as a tool for such analyses. We focused on native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and nonnative brook trout (Salvelinus fontinalis) and considered the environmental factors influencing both species, their potential interactions, and the effects of isolation on the persistence of local cutthroat trout populations. The trade-offs between isolation and invasion were strongly influenced by size and habitat quality of the stream network to be isolated and existing demographic linkages within and among populations. An application of the model in several sites in western Montana (USA) showed the process could help clarify management objectives and options and prioritize conservation actions among streams. The approach can also facilitate communication among parties concerned with native salmonids, nonnative fish invasions, barriers and intentional isolation, and management of the associated habitats and populations. ?? 2008 NRC.
Complex carbonate and clastic stratigraphy of the inner shelf off west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locker, S.D.; Doyle, L.J.; Hine, A.C.
1990-05-01
The near surface stratigraphy (< 30 m) of the inner shelf off the west coast of Florida was investigated using high-resolution seismic, side-scan sonar, and continuous underwater video camera coverage. The simultaneous operation of all three systems provided a unique opportunity to calibrate acoustic data with actual video images of the sea floor in a geologically complex area characterized by limestone dissolution structures, hard-bottom exposures, and overlain by a limited supply of terrigenous clastics. Three principle bottom types, grass, sand, and hard-bottom mapped using video and side-scan sonographs, show a correlation with two subsurface stratigraphic zones. The nearshore subsurface zonemore » extending to 6-7 m water depth is characterized by flat or rolling strata and sinkholes that increase in size (200-1,200 m in diameter) and become more numerous further offshore. This zone is truncated by a major erosional unconformity overlain by a thin (<3 m) sequence of Holocene sediment, which together form a terrace upon which the Anclote Key barrier island formed. The offshore subsurface zone (7-11 m water depth) exhibits irregular and discontinuous high-amplitude flat or inclined reflections and few sinkholes. Offshore, extensive hard-bottom exposures are common with discontinuous sediment that occur as lenses or sand waves. The complex stratigraphy of the west Florida shelf includes outcropping Neogene limestones that have undergone dissolution during sea level lowstands. Carbonates and clastics dispersed during multiple sea level changes overlie the Neogene limestones. Dissolution styles and erosional unconformities produced bedrock topography and now control modern geological and biological processes.« less
NASA Astrophysics Data System (ADS)
Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.
2017-11-01
Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.
Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow.
Ravinet, M; Faria, R; Butlin, R K; Galindo, J; Bierne, N; Rafajlović, M; Noor, M A F; Mehlig, B; Westram, A M
2017-08-01
Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.
2017-06-01
The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological environment at Lake St Lucia and highlights the long-term geomorphic controls that have shaped the recent evolution and natural dynamics of the system. Unlike most coastal lake systems, this system is particularly effective as an archive of geomorphological change. Systems driven by back-barrier modifications, such as Lake St Lucia, highlight how geomorphological changes driven by sediment-supply, climate and sea level can be distributed unevenly over several isolated back-barrier basins.
Sedeek, Khalid E M; Scopece, Giovanni; Staedler, Yannick M; Schönenberger, Jürg; Cozzolino, Salvatore; Schiestl, Florian P; Schlüter, Philipp M
2014-12-01
High pollinator specificity and the potential for simple genetic changes to affect pollinator attraction make sexually deceptive orchids an ideal system for the study of ecological speciation, in which change of flower odour is likely important. This study surveys reproductive barriers and differences in floral phenotypes in a group of four closely related, coflowering sympatric Ophrys species and uses a genotyping-by-sequencing (GBS) approach to obtain information on the proportion of the genome that is differentiated between species. Ophrys species were found to effectively lack postpollination barriers, but are strongly isolated by their different pollinators (floral isolation) and, to a smaller extent, by shifts in flowering time (temporal isolation). Although flower morphology and perhaps labellum coloration may contribute to floral isolation, reproductive barriers may largely be due to differences in flower odour chemistry. GBS revealed shared polymorphism throughout the Ophrys genome, with very little population structure between species. Genome scans for FST outliers identified few markers that are highly differentiated between species and repeatable in several populations. These genome scans also revealed highly differentiated polymorphisms in genes with putative involvement in floral odour production, including a previously identified candidate gene thought to be involved in the biosynthesis of pseudo-pheromones by the orchid flowers. Taken together, these data suggest that ecological speciation associated with different pollinators in sexually deceptive orchids has a genic rather than a genomic basis, placing these species at an early phase of genomic divergence within the 'speciation continuum'. © 2014 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Direct measurement of sub-surface mass change using the variable-baseline gravity gradient method
Kennedy, Jeffrey; Ferré, Ty P.A.; Güntner, Andreas; Abe, Maiko; Creutzfeldt, Benjamin
2014-01-01
Time-lapse gravity data provide a direct, non-destructive method to monitor mass changes at scales from cm to km. But, the effectively infinite spatial sensitivity of gravity measurements can make it difficult to isolate the signal of interest. The variable-baseline gravity gradient method, based on the difference of measurements between two gravimeters, is an alternative to the conventional approach of individually modeling all sources of mass and elevation change. This approach can improve the signal-to-noise ratio for many applications by removing the contributions of Earth tides, loading, and other signals that have the same effect on both gravimeters. At the same time, this approach can focus the support volume within a relatively small user-defined region of the subsurface. The method is demonstrated using paired superconducting gravimeters to make for the first time a large-scale, non-invasive measurement of infiltration wetting front velocity and change in water content above the wetting front.
Sousa, Diana Z; Visser, Michael; van Gelder, Antonie H; Boeren, Sjef; Pieterse, Mervin M; Pinkse, Martijn W H; Verhaert, Peter D E M; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J M
2018-01-16
Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17 T , isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.
Dreher, C.A.; Flocks, J.G.; Kulp, M.A.; Ferina, N.F.
2010-01-01
In 2006 and 2007, the U.S. Geological Survey (USGS) and collaborators at the University of New Orleans (UNO) collected high-resolution seismic profiles and subsurface cores around the Chandeleur and Breton Islands, Louisiana (Study Area Map). To ground-truth the acoustic seismic surveys conducted in 2006, 124 vibracores were acquired during the 07SCC04 and 07SCC05 cruises in 2007. These cores were collected within the back-barrier, nearshore, and offshore environments. The surveys were conducted as part of a post-hurricane assessment and sediment resource inventory for the Barrier Island Coastal Monitoring (BICM) project. Vibracores were collected offshore using the USGS R/V G.K. Gilbert, while the terrestrial, back-barrier, and nearshore vibracores were collected from the UNO R/V Greenhead. This report serves as an archive of sediment data from two concurrent vibracore surveys (cruises 07SCC04 and 07SCC05) from around the Breton and Chandeleur Islands in 2007 and also documents sediment data from vibracores collected offshore of the Chandeleur Islands in 1987 (cruise 87039). The 1987 vibracores were collected through the collaborated efforts of the USGS, Louisiana Geological Survey (LGS), and Alpine Ocean Seismic. Each vibracore can be identified by cruise and core number.
Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA
Wehmiller, John F.; Thieler, E. Robert; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.
2010-01-01
The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ∼90 m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided, yielding a total of at least eight stratigraphically and statistically distinct aminozones. Kinetic modeling, supplemented with local calibration, indicates that these aminozones represent depositional events ranging from ∼80 ka to nearly 2 Ma. Three prominent seismic reflections are interpreted to represent the base of the early, middle, and late Pleistocene, respectively, roughly 2 Ma, 800 ka, and 130 ka. The large number of samples and the available stratigraphic control provide new insights into the capabilities and limitations of aminostratigraphic methods in assessing relative and numerical ages of Atlantic Coastal Plain Quaternary deposits.
The PanCam Instrument for the ExoMars Rover
Coates, A.J.; Jaumann, R.; Griffiths, A.D.; Leff, C.E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C.R.; Cross, R.E.; Grindrod, P.; Bridges, J.C.; Balme, M.; Gupta, S.; Crawford, I.A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J.L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G.R.
2017-01-01
Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars—ExoMars—Instrumentation—Geology—Atmosphere—Exobiology—Context. Astrobiology 17, 511–541.
Electrical resistivity surveys in Prospect Gulch, San Juan County, Colorado
McDougal, Robert R.
2006-01-01
Prospect Gulch is a major source of naturally occurring and mining related metals to Cement Creek, a tributary of the upper Animas River in southwestern Colorado. Efforts to improve water quality in the watershed have focused on Prospect Gulch because many of its abandoned mines and are located on federal lands. Information on sources and pathways of metals, and related ground-water flow, will be useful to help prioritize and develop remediation strategies. It has been shown that the occurrence of sulfate, aluminum, iron, zinc and other metals associated with historical mining and the natural weathering of pyritic rock is substantial. In this study, direct current resistivity surveys were conducted to determine the subsurface resistivity distribution and to identify faults and fractures that may act as ground-water conduits or barriers to flow. Five lines of resistivity data were collected in the vicinity of Prospect Gulch, and cross-section profiles were constructed from the field data using a two-dimensional inversion algorithm. The conductive anomalies in the profiles are most likely caused by wet or saturated rocks and sediments, clay rich deposits, or high TDS ground water. Resistive anomalies are likely bedrock, dry surficial and sub-surface deposits, or deposits of ferricrete.
Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.
Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E
2017-07-04
The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.
NASA Astrophysics Data System (ADS)
Vo, V. T.; Koon, K. L.; Hu, Z. R.; Dharmasiri, C. N.; Subramaniam, S. C.; Rezazadeh, A. A.
2004-04-01
Electrical isolation in multilayer GaAs planar doped barrier (PDB) diode structures produced by H+ and Fe+ ion implantation were investigated. For an H+ bombardment with a dose of 1×1015cm-2, a sheet resistivity as high as 3×108 Ω/sq and thermal stability up to 400 °C has been achieved. For samples bombarded by Fe+ ions, a similar high sheet resistivity has also been achieved although a longer annealing time (15 min) and a higher annealing temperature (550 °C) were needed. The rf dissipation losses of coplanar waveguide (CPW) "thru" lines fabricated on bombarded multilayer PDBD structure samples were also examined. The measured rf losses were 1.65 dB/cm at 10 GHz and 3 dB/cm at 40 GHz, similar to the values that a CPW line exhibits on a semi-isolating GaAs substrate.
Diverse archaeal community of a bat guano pile in Domica Cave (Slovak Karst, Slovakia).
Chronáková, A; Horák, A; Elhottová, D; Kristůfek, V
2009-09-01
The molecular diversity of Archaea in a bat guano pile in Cave Domica (Slovakia), temperate cave ecosystem with significant bat colony (about 1600 individuals), was examined. The guano pile was created mainly by an activity of the Mediterranean horseshoe bat (Rhinolophus euryale) and provides a source of organic carbon and other nutrients in the oligotrophic subsurface ecosystem. The upper and the basal parts of guano surface were sampled where the latter one had higher pH and higher admixture of limestone bedrock and increased colonization of invertebrates. The relative proportion of Archaea determined using CARD-FISH in both parts was 3.5-3.9 % (the basal and upper part, respectively). The archaeal community was dominated by non-thermophilic Crenarchaeota (99 % of clones). Phylogenetic analysis of 115 16S rDNA sequences revealed the presence of Crenarchaeota previously isolated from temperate surface soils (group 1.1b, 62 clones), deep subsurface acid waters (group 1.1a, 52 clones) and Euryarchaeota (1 clone). Four of the analyzed sequences were found to have little similarity to those in public databases. The composition of both archaeal communities differed, with respect to higher diversity of Archaea in the upper part of the bat guano pile. High diversity archaeal population is present in the bat guano deposit and consists of both soil- and subsurface-born Crenarchaeota.
The global distribution of Martian permafrost
NASA Technical Reports Server (NTRS)
Paige, David A.
1991-01-01
Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.
Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neff, J.M.; Owens, E.H.; Stoker, S.W.
1995-12-31
Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurfacemore » oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m{sup 2} to about 12,000 m{sup 2}. Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs.« less
Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.
Akob, Denise M; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-08-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine
Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-01-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873
Al-Bader, Dhia; Eliyas, Mohamed; Rayan, Rihab; Radwan, Samir
2013-04-01
Two picocyanobacterial strains related to Acaryochloris were isolated from the Arabian Gulf, 3 m below the water surface, one from the north shore and the other from the south shore of Kuwait. Both strains were morphologically, ultrastructurally, and albeit to a less extend, phylogenetically similar to Acaryochloris. However, both isolates lacked chlorophyll d and produced instead chlorophyll a, as the major photosynthetic pigment. Both picocyanobacterial isolates were associated with oil-utilizing bacteria in the magnitude of 10(5) cells g(-1). According to their 16S rRNA gene sequences, bacteria associated with the isolate from the north were affiliated to Paenibacillus sp., Bacillus pumilus, and Marinobacter aquaeolei, but those associated with the isolate from the south were affiliated to Bacillus asahii and Alcanivorax jadensis. These bacterial differences were probably due to environmental variations. In batch cultures, the bacterial consortia in the nonaxenic biomass as well as the pure bacterial isolates effectively consumed crude oil and pure aliphatic and aromatic hydrocarbons, including very high-molecular-weight compounds. Water and diethylether extracts from the phototrophic biomass enhanced growth of individual bacterial isolates and their hydrocarbon-consumption potential in batch cultures. It was concluded that these consortia could be promising in bioremediation of hydrocarbon pollutants, especially heavy sediments in the marine ecosystem.
Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine
Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-01-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.
Douglas P. Peterson; Bruce E. Rieman; Dona L. Horan; Michael K. Young
2014-01-01
Habitat fragmentation in aquatic systems has led to widespread isolation of stream fishes. Metapopulation theory predicts that persistence is directly related to local patch size and its characteristics, but because these relationships tend to be taxon-specific, empirical data are important. We assembled 246 observations of occurrence of westslope cutthroat trout (WCT...
Pleistocene barrier bar seaward of ooid shoal complex near Miami, Florida
Halley, Robert B.; Shinn, Eugene A.; Hudson, J. Harold; Lidz, Barbara H.
1977-01-01
An ooid sand barrier bar of Pleistocene age was deposited along the seaward side of an ooid shoal complex southwest of Miami, Florida. The bar is 35 km long, about 0.8 km wide, elongate parallel with the trend of the ooid shoal complex and perpendicular to channels between individual shoals. A depression 1.6 km wide, interpreted as a back-barrier channel, isolates the bar from the ooid shoals. During sea-level fall and subaerial exposure of the bar, the ooid sand was cemented in place, preventing migration of the barrier. No Holocene analogue of this sand body is recognized, perhaps because of the relative youthfulness of Holocene ooid shoals. This Pleistocene ooid shoal complex, with its reservoir-size barrier bar, may serve as a refined model for exploration in ancient ooid sand belts.
Failed sperm development as a reproductive isolating barrier between species.
Wünsch, Lisa K; Pfennig, Karin S
2013-01-01
Hybrid male sterility is a common reproductive isolating barrier between species. Yet, little is known about the actual developmental causes of this phenomenon, especially in naturally hybridizing species. We sought to evaluate the developmental causes of hybrid male sterility, using spadefoot toads as our study system. Plains spadefoot toads (Spea bombifrons) and Mexican spadefoot toads (S. multiplicata) hybridize where they co-occur in the southwestern USA. Hybrids are viable, but hybrid males suffer reduced fertility. We compared testes size and developmental stages of sperm cell maturation between hybrid males and males of each species. We found that testes of hybrid males did not differ in mean size from pure-species males. However, hybrids showed a greater range of within-individual variation in testes size than pure-species males. Moreover, although hybrids produced similar numbers of early stage sperm cells, hybrids produced significantly fewer mature spermatozoids than pure-species males. Interestingly, an introgressed individual produced numbers of live sperm comparable to pure-species males, but the majority of these sperm cells were abnormally shaped and non-motile. These results indicate that hybrid incompatibilities in late sperm development serve as a reproductive isolating barrier between species. The nature of this breakdown highlights the possibilities that hybrid males may vary in fertility and that fertility could possibly be recovered in introgressed males. © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, S.E. Jr.; Chung, K.T.
Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) weremore » significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site.« less
Pathways to dewetting in hydrophobic confinement
Remsing, Richard C.; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G.; Garde, Shekhar; Patel, Amish J.
2015-01-01
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces—tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces—namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics—facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie–Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly. PMID:26100866
Pathways to dewetting in hydrophobic confinement.
Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J
2015-07-07
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.
NASA Astrophysics Data System (ADS)
Reiss, Martin; Chifflard, Peter
2016-04-01
Runoff generation processes in low mountain ranges in middle Europe are strongly influenced by lateral fluxes of soil water caused by periglacial cover beds. Less attention has been paid to the stratification of soils in hydrologic research as a major trigger of lateral slope water paths (REISS & CHIFFLARD 2014) although especially in the low mountain ranges in Middle Europe subsurface stormflow generation is strongly influenced by the periglacial cover beds (MOLDENHAUER et al. 2013) which are a typical example for stratified soils and almost widespread everywhere in the low mountain ranges. By contrast in soil science the Substrate-Oriented-Soil-Evolution-Model (LORZ et al. 2011) underlines the importance of stratified soils and lithological discontinuities (LD) as a key element controlling ecological processes and depth functions of soil properties. Whereas depth distributions of e.g. trace elements in the soil matrix at the point scale have been already detected, investigations of dissolved trace metal concentrations in the soil pore water and their depth distribution depending on soil stratification are scarce. Based on a typical depth distribution of trace metal concentrations in soil pore water depending on lithological discontinuities these depth functions may indicate zones of preferential transport. Additionally, there is still a missing link of investigations at different scales regarding the impacts of the geochemical barriers and the pronounced depth distributions on the chemical composition of the subsurface stormflow and consequently the hillslope runoff. Therefore, we validated the hypotheses that LDs act as geochemical barriers for their vertical distribution at the point and hillslope scale and that this typical depth functions of trace elements can be used to identify sources of subsurface stormflow at the catchment scale. To address these objectives, our research and sampling design is based on a multi-scale approach combining experimental research at the point and hillslope scale in a small forested catchment (0.24 square kilometer) in Central-Germany called "Krofdorfer Forst". The study area is totally covered by beech forest and characterized as a typically sloped terrain of the mid-latitudes with periglacial cover beds. The catchment is devoid of any riparian zone and is characterized by steep hillslopes that issue directly into the receiving creek. At the point scale the impacts of LDs on the depth distribution of metals (Cr, Mn, Fe, Ni, Cu, Zn, Ar, Se, Cd, Pb) and alkaline earths (Na, Mg, K, Ca) were investigated. Soil water samples were captured at several soil profiles along a hillslope (upper, middle, foot slope) by soil solution access tubes which are installed in different depths depending on the LDs ranging from 10 cm to 110 cm. Soil water samples were taken since October 2012 in an irregular interval. In a complementary effort the temporal variability of the same geochemical parameters mentioned above were investigated in a high temporal resolution in the catchment runoff by using an automatic water sampler. All water samples were filtered and analyzed by using an ICP-MS. First results show that especially manganese is a very suitable element to identify chemical depth functions in soil pore water at the point scale. For this element the LDs act as geochemical barrier. Further elements have to be considered under different aspects since their depth distribution depends not on the lithological discontinuities. At the catchment scale the temporal variability of manganese concentration during different rainfall-runoff events can be used to detect sources of subsurface stormflow. References Reiss, M. & Chifflard, P. (2014): Short Report: Identifying sources of subsurface flow - A theoretical framework assessing the hydrological implications of lithological discontinuities. In: Open Journal of Modern Hydrology 4(3):91-94 Moldenhauer, K.-M., Heller, K., Chifflard, P., Hübner, R. & Kleber, A. (2013): Influence of Cover Beds on Slope Hydrology. In: Kleber, A. & Terhorst, B. (eds.): Mid-Latitude Slope Deposits (Cover Beds). Elsevier, pp. 127-152 Lorz, C., Heller, K. & Kleber, A. (2011): Stratification of the Regolith Continuum - A Key Property for Processes and Functions of Landscapes. In: Zeitschrift für Geomorphologie 55:277-292
Natural hybridization and genetic and morphological variation between two epiphytic bromeliads
Neri, Jordana; Wendt, Tânia
2018-01-01
Abstract Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. Here, we examine the genetic and morphological differences between two closely related bromeliad species: Vriesea simplex and Vriesea scalaris. Furthermore, we examined the occurrence of natural hybridization and discuss the action of reproductive isolation barriers. Nuclear genomic admixture suggests hybridization in sympatric populations, although interspecific gene flow is low among species in all sympatric zones (Nem < 0.5). Thus, morphological and genetic divergence (10.99 %) between species can be maintained despite ongoing natural hybridization. Cross-evaluation of our genetic and morphological data suggests that species integrity is maintained by the simultaneous action of multiple barriers, such as divergent reproductive systems among species, differences in floral traits and low hybrid seed viability. PMID:29308124
Hypotheses to explain the origin of species in Amazonia.
Haffer, J
2008-11-01
The main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global climatic-vegetational changes affected the biomes of the world not only during the Pleistocene but also during the Tertiary and earlier geological periods. New geoscientific evidence for the effect of dry climatic periods in Amazonia supports the predictions of the Refuge hypothesis. The disturbance-vicariance hypothesis refers to the presumed effect of cold/warm climatic phases of the Pleistocene only and is of limited general relevance because most extant species originated earlier and probably through paleogeographic changes and the formation of ecological refuges during the Tertiary.
NASA Astrophysics Data System (ADS)
Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi
2006-08-01
Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.
Advanced Borehole Radar for Hydrogeology
NASA Astrophysics Data System (ADS)
Sato, M.
2014-12-01
Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental conditions for a long period. We demonstrated this idea using cross- hole borehole radar measurement. We think this method is useful for detecting any changes in hydrogeological situations, which will be useful for subsurface storage such as LNG and nuclear waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, W.A.; Tyler, N.
1989-03-01
Three reservoirs representing different depositional environments - barrier island (West Ranch field, south-central Texas), fluvial (La Gloria field, south Texas), and submarine fan (Spraberry trend, Midland basin) - illustrate variations in reservoir continuity. Pay continuity methods based on facies geometry and variations in permeability and thickness between wells can quantify reservoir heterogeneity in each of these examples. Although barrier-island reservoirs are relatively homogeneous, West Ranch field contains wide (1000-5000 ft or 300-1500 m) dip-parallel belts of lenticular inlet-fill facies that disrupt reservoir continuity in the main barrier-core facies. Other reservoir compartments in West Ranch field are in flood-tidal delta depositsmore » partly encased in lagoonal mudstones updip of the barrier core. Fluvial reservoirs have a higher degree of internal complexity than barrier-island reservoirs. In La Gloria field, reservoirs exhibit significant heterogeneity in the form of numerous sandstone stringers bounded vertically and laterally by thin mudstone layers. Successful infill wells in La Gloria field contact partly drained reservoir compartments in splay deposits that pinch out laterally into flood-plain mudstones. Recompletions in vertically isolated sandstone stringers in La Gloria field contact other reservoir compartments. Submarine fan deposits are extremely heterogeneous and may have the greatest potential for infill drilling to tap isolated compartments in clastic reservoirs. The Spraberry trend contains thin discontinuous reservoir sandstones deposited in complex mid-fan channels. Although facies relationships in Spraberry reservoirs are similar to those in fluvial reservoirs in La Gloria field, individual pay stringers are thinner and more completely encased in low-permeability mudstone facies.« less
Zeisler, Viktoria; Schreiber, Lukas
2016-01-01
Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.
Chedid, Rebecca Jean; Dew, Angela; Veitch, Craig
2013-06-01
This qualitative study formed part of a large-scale, multi-phase study into the delivery of therapy services to people with a disability, living in one rural area of New South Wales, Australia. The study's purpose was to identify the impact of Information and Communication Technology on the workforce practices of occupational therapists' working in a rural area of New South Wales. Individual semi-structured telephone interviews were conducted with 13 occupational therapists working in disability, health and private practice in a rural area of New South Wales. Participants were asked about access to, skills and limitations of using Information and Communication Technology. A modified grounded theory approach, based on thematic analysis and constant comparison, was used to analyse the interview transcripts. This study found widespread use of technology by rurally based occupational therapists working in the disability sector in New South Wales. However, Information and Communication Technology was primarily used for client contact, professional development and professional networking rather than therapy provision. The study identified individual, workplace and community barriers to greater uptake of Information and Communication Technology by this group. The individual barriers included: age cohort, knowledge and personal preferences. The workplace barriers included: support and training and availability of resources. The community barriers included: infrastructure and perceptions of clients' acceptance. The potential exists for Information and Communication Technology to supplement face-to-face therapy provision, enhance access to professional development and reduce professional isolation thereby addressing the rural challenges of large distances, travel times and geographic isolation. To overcome these challenges, individual, workplace and community Information and Communication Technology barriers should be addressed concurrently. © 2012 The Authors Australian Occupational Therapy Journal © 2012 Occupational Therapy Australia.
Charania, N A; Tsuji, L J S
2011-01-01
First Nation communities were highly impacted by the 2009 H1N1 influenza pandemic. Multiple government bodies (ie federal, provincial, and First Nations) in Canada share responsibility for the health sector pandemic response in remote and isolated First Nation communities and this may have resulted in a fragmented pandemic response. This study aimed to discover if and how the dichotomy (or trichotomy) of involved government bodies led to barriers faced and opportunities for improvement during the health sector response to the 2009 H1N1 pandemic in three remote and isolated sub-arctic First Nation communities of northern Ontario, Canada. A qualitative community-based participatory approach was employed. Semi-directed interviews were conducted with adult key informants (n=13) using purposive sampling of participants representing the two (or three) government bodies of each study community. Data were manually transcribed and coded using deductive and inductive thematic analysis to reveal positive aspects, barriers faced, and opportunities for improvement along with the similarities and differences regarding the pandemic responses of each government body. Primary barriers faced by participants included receiving contradicting governmental guidelines and direction from many sources. In addition, there was a lack of human resources, information sharing, and specific details included in community-level pandemic plans. Recommended areas of improvement include developing a complementary communication plan, increasing human resources, and updating community-level pandemic plans. Participants reported many issues that may be attributable to the dichotomy (or trichotomy) of government bodies responsible for healthcare delivery during a pandemic. Increasing formal communication and collaboration between responsible government bodies will assist in clarifying roles and responsibilities and improve the pandemic response in Canada's remote and isolated First Nation communities.
Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben
2015-01-01
In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).
Musso, T B; Francisca, F M; Musso, T B; Musso, T B
2013-01-01
Earthen layers play a significant role in isolating contaminants in the subsurface, controlling the migration of contaminant plumes, and as landfill liners and covers. The physical, chemical and mineralogical properties of three calcareous mudstones from the Jagüel and Roca formations in North Patagonia, Argentina, are evaluated to determine their potential for the construction of liners. These mudstones were deposited in a marine environment in the Upper Cretaceous-Paleocene. The tested specimens mainly comprise silt and clay-sized particles, and their mineralogy is dominated by a smectite/illite mixed layer (70-90% Sm) and calcite in smaller proportion. Powdered mudstone samples have little viscosity and swelling potential when suspended in water. The hydraulic conductivity of compacted mudstones and sand-mudstone mixtures is very low (around 1-3 x 10(-10) m/s) and in good agreement with the expected hydraulic behaviour of compacted earthen layers. This behaviour can be attributed to the large amount of fine particles, high specific surface and the close packing of particles as confirmed by scanning electron microscope analysis. The tested materials also show a high cation exchange capacity (50-70 cmol/kg), indicating a high contaminant retardation capability. The calcareous mudstones show satisfactory mineralogical and chemical properties as well as an adequate hydraulic behaviour, demonstrating the potential use of these materials for the construction of compacted liners for the containment of leachate or as covers in landfills. These findings confirm the potential usage of marine calcareous mudstones as a low-cost geomaterial in environmental engineering projects.
Sanford, Ward E.; Pearson, S.C.P.; Kiyosugi, K.; Lehto, H.L.; Saballos, J.A.; Connor, C.B.
2012-01-01
We investigate geologic controls on circulation in the shallow hydrothermal system of Masaya volcano, Nicaragua, and their relationship to surface diffuse degassing. On a local scale (~250 m), relatively impermeable normal faults dipping at ~60° control the flowpath of water vapor and other gases in the vadose zone. These shallow normal faults are identified by modeling of a NE-SW trending magnetic anomaly of up to 2300 nT that corresponds to a topographic offset. Elevated SP and CO2 to the NW of the faults and an absence of CO2 to the SE suggest that these faults are barriers to flow. TOUGH2 numerical models of fluid circulation show enhanced flow through the footwalls of the faults, and corresponding increased mass flow and temperature at the surface (diffuse degassing zones). On a larger scale, TOUGH2 modeling suggests that groundwater convection may be occurring in a 3-4 km radial fracture zone transecting the entire flank of the volcano. Hot water rising uniformly into the base of the model at 1 x 10-5 kg/m2s results in convection that focuses heat and fluid and can explain the three distinct diffuse degassing zones distributed along the fracture. Our data and models suggest that the unusually active surface degassing zones at Masaya volcano can result purely from uniform heat and fluid flux at depth that is complicated by groundwater convection and permeability variations in the upper few km. Therefore isolating the effects of subsurface geology is vital when trying to interpret diffuse degassing in light of volcanic activity.
Yanke, Eric; Zellmer, Caroline; Van Hoof, Sarah; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia
2015-01-01
Background Achieving and sustaining high levels of healthcare worker (HCW) compliance with contact isolation precautions is challenging. The aim of this study was to determine HCW work system barriers to, and facilitators of, adherence to contact isolation for patients with suspected or confirmed Clostridium difficile infection (CDI) using a human factors and systems engineering approach. Methods Prospective cohort study from September 2013 to November 2013 at a large academic medical center (hospital A) and an affiliated Veterans Administration (VA) hospital (hospital B). A human factors engineering (HFE) model for patient safety – the Systems Engineering Initiative for Patient Safety (SEIPS) model – was used to guide work system analysis and direct observation data collection. 288 observations were conducted. HCWs and visitors were assessed for compliance with all components of contact isolation precautions (hand hygiene, gowning, and gloving) before and after patient contact. Time required to complete contact isolation precautions was measured and adequacy of contact isolation supplies was assessed. Results Full compliance with contact isolation precautions was low at both hospitals: hospital A, 7%; hospital B, 22%. Lack of appropriate hand hygiene prior to room entry (Compliance: hospital A, 18%; hospital B, 29%) was the most common reason for lack of full compliance. More time was required for full compliance as compared to compliance with no components of contact isolation precautions before patient room entry, inside patient room, and after patient room exit (59.9 sec vs. 3.2 sec; P < .001; 507.3 sec vs. 149.7 sec; P = .006; 15.2 sec vs. 1.3 sec; P < .001). Compliance was lower when contact isolation supplies were inadequate (4% vs. 16%; P = .005). Conclusions Adherence to contact isolation precautions for CDI is a complex, time-consuming process. HFE analysis indicates multiple work system components serve as barriers and facilitators to full compliance with contact isolation precautions and should be addressed further to prevent CDI. PMID:25728149
Yanke, Eric; Zellmer, Caroline; Van Hoof, Sarah; Moriarty, Helene; Carayon, Pascale; Safdar, Nasia
2015-03-01
Achieving and sustaining high levels of health care worker (HCW) compliance with contact isolation precautions is challenging. The aim of this study was to determine HCW work system barriers to and facilitators of adherence to contact isolation for patients with suspected or confirmed Clostridium difficile infection (CDI) using a human factors and systems engineering approach. This prospective cohort study took place between September 2013 and November 2013 at a large academic medical center (hospital A) and an affiliated Veterans Administration hospital (hospital B). A human factors engineering (HFE) model for patient safety, the Systems Engineering Initiative for Patient Safety model, was used to guide work system analysis and direct observation data collection. There were 288 observations conducted. HCWs and visitors were assessed for compliance with all components of contact isolation precautions (hand hygiene, gowning, and gloving) before and after patient contact. Time required to complete contact isolation precautions was measured, and adequacy of contact isolation supplies was assessed. Full compliance with contact isolation precautions was low at both hospitals A (7%) and B (22%). Lack of appropriate hand hygiene prior to room entry (compliance for hospital A: 18%; compliance for hospital B: 29%) was the most common reason for lack of full compliance. More time was required for full compliance compared with compliance with no components of contact isolation precautions before patient room entry, inside patient room, and after patient room exit (59.9 vs 3.2 seconds, P < .001; 507.3 vs 149.7 seconds, P = .006; 15.2 vs 1.3 seconds, P < .001, respectively). Compliance was lower when contact isolation supplies were inadequate (4% vs 16%, P = .005). Adherence to contact isolation precautions for CDI is a complex, time-consuming process. HFE analysis indicates that multiple work system components serve as barriers and facilitators to full compliance with contact isolation precautions and should be addressed further to prevent CDI. Published by Elsevier Inc.
Remediation potential of mulch for removing lead.
Jang, A; Bishop, P L
2012-01-01
Hardwood bark mulch has good physicochemical properties for the adsorption of lead (Pb(II)). Batch tests were conducted to obtain the sorption coefficient of Pb(II) in mulch. The results of the Freundlich model were not in as good agreement as for the case of the Langmuir model. In addition, a laboratory-scale mulch permeable reactive barrier (PRB) system was designed for the treatment of Pb(II)-contaminated groundwater. The mulch PRB system, using a mulch layer, can potentially be used in the subsurface for cost-effective and in situ transformation of the Pb(II) into environmentally acceptable forms. From the Pb(II) breakthrough curve, the mulch becomes saturated more quickly at higher flow rates.
Geographically multifarious phenotypic divergence during speciation
Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L
2013-01-01
Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669
Modelling gas transport in the shallow subsurface in the Maguelone field experiment
NASA Astrophysics Data System (ADS)
Basirat, Farzad; Niemi, Auli; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Pezard, Philippe; Sharma, Prabhakar; Fagerlund, Fritjof
2013-04-01
Developing reliable monitoring techniques to detect and characterize CO2 leakage in shallow subsurface is necessary for the safety of any GCS project. To test different monitoring techniques, shallow injection-monitoring experiment have and are being carried out at the Maguelone, along the Mediterranean lido of the Gulf of Lions, near Montpellier, France. This experimental site was developed in the context of EU FP7 project MUSTANG and is documented in Lofi et al. (2012). Gas injection experiments are being carried out and three techniques of pressure, electrical resistivity and seismic monitoring have been used to detect the nitrogen and CO2 release in the near surface environment. In the present work we use the multiphase and multicomponent TOUGH2/EOS7CA model to simulate the gaseous nitrogen and CO2 transport of the experiments carried out so far. The objective is both to gain understanding of the system performance based on the model analysis as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. Numerical simulation can also be used for the prediction of experimental setup limitations. We expect the simulations to represent the breakthrough time for the different tested injection rates. Based on the hydrogeological formation data beneath the lido, we also expect the vertical heterogeneities in grain size distribution create an effective capillary barrier against upward gas transport in numerical simulations. Lofi J., Pezard P.A., Bouchette F., Raynal O., Sabatier P., Denchik N., Levannier A., Dezileau L., and Certain R. Integrated onshore-offshore geophysical investigation of a layered coastal aquifer, NW Mediterranean. Ground Water, (2012).
Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.
ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes frommore » metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary.« less
Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment
NASA Astrophysics Data System (ADS)
Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.
2017-12-01
The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.SAND2017-8198A.
NASA Astrophysics Data System (ADS)
Williams, N. R.; Hibbard, S. M.; Golombek, M. P.
2017-12-01
The plains of Arcadia Planitia on Mars at 40°N and 200°E straddle the southern boundary of a latitude-dependent mantle (LDM) of shallow water-ice that holds key records for the planet's climate. Ice is not stable at mid-latitude surfaces today, but is expected to have precipitated in the past during different obliquities and climatic conditions with remnant excess ice preserved in the subsurface under a veneer of soil partially isolating it from the atmosphere. Previous work has documented evidence for substantial ice in Arcadia using gamma ray spectrometry; ground-penetrating radar reflections and dielectric constants; and surface morphologies of lobate debris aprons, expanded secondary craters, terraced craters, and surface polygons. New high-resolution orbital images have been acquired that resolve meter-scale ice-related morphologies. In particular, Arcadia exhibits widespread polygonal patterned ground created by cryoturbation, and large areas of crenulated "brain coral" terrain for which the sinuous troughs have already undergone sublimation while the sinuous ridges are still ice-rich. We examined over 200 High Resolution Imaging Science Experiment (HiRISE) 25 cm/pixel images that resolve these morphologies indicating a complex transition of progressive ice loss at the edge of the LDM. HiRISE coverage is sparse across Arcadia; however, 6 m/pixel Context Camera (CTX) image coverage is nearly complete and fills in the gaps for terrain units with distinct textures. We find that crenulated terrain is restricted to a narrow latitude band at 38°N-43°N. Isolated shallow pits also occur northward of 40°N, and in many cases interconnect to form crenulations as part of a transitional morphologic continuum. Polygonal surface morphologies are ubiquitous farther north, but become increasingly sparse and more degraded farther south. These pits, crenulations, and polygons are sensitive to ice at depths of centimeters to a few meters, which could be easily accessible for future in-situ resource utilization. The latitude band of 38°N-43°N where these fine-scale morphologies occur represents the southern edge of the LDM where significant remnant ice is stored in the shallow subsurface.
Bowie, Rachel V; Donatello, Simona; Lyes, Clíona; Owens, Mark B; Babina, Irina S; Hudson, Lance; Walsh, Shaun V; O'Donoghue, Diarmuid P; Amu, Sylvie; Barry, Sean P; Fallon, Padraic G; Hopkins, Ann M
2012-04-15
Intestinal epithelial barrier disruption is a feature of inflammatory bowel disease (IBD), but whether barrier disruption precedes or merely accompanies inflammation remains controversial. Tight junction (TJ) adhesion complexes control epithelial barrier integrity. Since some TJ proteins reside in cholesterol-enriched regions of the cell membrane termed lipid rafts, we sought to elucidate the relationship between rafts and intestinal epithelial barrier function. Lipid rafts were isolated from Caco-2 intestinal epithelial cells primed with the proinflammatory cytokine interferon-γ (IFN-γ) or treated with methyl-β-cyclodextrin as a positive control for raft disruption. Rafts were also isolated from the ilea of mice in which colitis had been induced in conjunction with in vivo intestinal permeability measurements, and lastly from intestinal biopsies of ulcerative colitis (UC) patients with predominantly mild or quiescent disease. Raft distribution was analyzed by measuring activity of the raft-associated enzyme alkaline phosphatase and by performing Western blot analysis for flotillin-1. Epithelial barrier integrity was estimated by measuring transepithelial resistance in cytokine-treated cells or in vivo permeability to fluorescent dextran in colitic mice. Raft and nonraft fractions were analyzed by Western blotting for the TJ proteins occludin and zonula occludens-1 (ZO-1). Our results revealed that lipid rafts were disrupted in IFN-γ-treated cells, in the ilea of mice with subclinical colitis, and in UC patients with quiescent inflammation. This was not associated with a clear pattern of occludin or ZO-1 relocalization from raft to nonraft fractions. Significantly, a time-course study in colitic mice revealed that disruption of lipid rafts preceded the onset of increased intestinal permeability. Our data suggest for the first time that lipid raft disruption occurs early in the inflammatory cascade in murine and human colitis and, we speculate, may contribute to subsequent disruption of epithelial barrier function.
Reactive Fe(II) layers in deep-sea sediments
NASA Astrophysics Data System (ADS)
König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.
1999-05-01
The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.J.; Fischer, D.D.; Crawford, R.C.
1982-06-01
Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less
Benardini, James N; Vaishampayan, Parag A; Schwendner, Petra; Swanner, Elizabeth; Fukui, Youhei; Osman, Sharif; Satomi, Masakata; Venkateswaran, Kasthuri
2011-06-01
A novel Gram-positive, motile, endospore-forming, aerobic bacterium was isolated from the NASA Phoenix Lander assembly clean room that exhibits 100 % 16S rRNA gene sequence similarity to two strains isolated from a deep subsurface environment. All strains are rod-shaped, endospore-forming bacteria, whose endospores are resistant to UV radiation up to 500 J m(-2). A polyphasic taxonomic study including traditional phenotypic tests, fatty acid analysis, 16S rRNA gene sequencing and DNA-DNA hybridization analysis was performed to characterize these novel strains. The 16S rRNA gene sequencing convincingly grouped these novel strains within the genus Paenibacillus as a separate cluster from previously described species. The similarity of 16S rRNA gene sequences among the novel strains was identical but only 98.1 to 98.5 % with their nearest neighbours Paenibacillus barengoltzii ATCC BAA-1209(T) and Paenibacillus timonensis CIP 108005(T). The menaquinone MK-7 was dominant in these novel strains as shown in other species of the genus Paenibacillus. The DNA-DNA hybridization dissociation value was <45 % with the closest related species. The novel strains had DNA G+C contents of 51.9 to 52.8 mol%. Phenotypically, the novel strains can be readily differentiated from closely related species by the absence of urease and gelatinase and the production of acids from a variety of sugars including l-arabinose. The major fatty acid was anteiso-C(15 : 0) as seen in P. barengoltzii and P. timonensis whereas the proportion of C(16 : 0) was significantly different from the closely related species. Based on phylogenetic and phenotypic results, it was concluded that these strains represent a novel species of the genus Paenibacillus, for which the name Paenibacillus phoenicis sp. nov. is proposed. The type strain is 3PO2SA(T) ( = NRRL B-59348(T) = NBRC 106274(T)).
Quantitative aspects of vibratory mobilization and break-up of non-wetting fluids in porous media
NASA Astrophysics Data System (ADS)
Deng, Wen
Seismic stimulation is a promising technology aimed to mobilize the entrapped non-wetting fluids in the subsurface. The applications include enhanced oil recovery or, alternatively, facilitation of movement of immiscible/partly-miscible gases far into porous media, for example, for CO2 sequestration. This work is devoted to detailed quantitative studies of the two basic pore-scale mechanisms standing behind seismic stimulation: the mobilization of bubbles or drops entrapped in pore constrictions by capillary forces and the break-up of continuous long bubbles or drops. In typical oil-production operations, oil is produced by the natural reservoir-pressure drive during the primary stage and by artificial water flooding at the secondary stage. Capillary forces act to retain a substantial residual fraction of reservoir oil even after water flooding. The seismic stimulation is an unconventional technology that serves to overcome capillary barriers in individual pores and liberate the entrapped oil by adding an oscillatory inertial forcing to the external pressure gradient. According to our study, the effect of seismic stimulation on oil mobilization is highly dependent on the frequencies and amplitudes of the seismic waves. Generally, the lower the frequency and the larger the amplitude, more effective is the mobilization. To describe the mobilization process, we developed two theoretical hydrodynamics-based models and justified both using computational fluid dynamics (CFD). Our theoretical models have a significant advantage over CFD in that they reduce the computational time significantly, while providing correct practical guidance regarding the required field parameters of vibroseismic stimulation, such as the amplitude and frequency of the seismic field. The models also provide important insights into the basic mechanisms governing the vibration-driven two-phase flow in constricted capillaries. In a waterflooded reservoir, oil can be recovered most efficiently by forming continuous streams from isolated droplets. The longer the continuous oil phase under a certain pressure gradient, the more easily it overcomes its capillary barrier. However, surface tension between water and oil causes the typically non-wetting oil, constituting the core phase in the channels, to break up at the pore constriction into isolated beads, which inhibits further motion. The break-up thus counteracts the mobilization. We developed a theoretical model that provides an exact quantitative description of the dynamics of the oil-snap-off process. It also formulates a purely geometric criterion that controls, based on pore geometry only, whether the oil core phase stays continuous or disintegrates into droplets. Both the theoretical model and the break-criterion have been validated against CFD simulations. The work completed elucidates the basic physical mechanisms behind the enhanced oil recovery by seismic waves and vibrations. This creates a theoretical foundation for the further development of corresponding field technologies.
Obbard, Martyn E.; Harnden, Matthew; McConnell, Sabine; Howe, Eric J.; Burrows, Frank G.; White, Bradley N.; Kyle, Christopher J.
2017-01-01
The processes leading to genetic isolation influence a population’s local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus) are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i) a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been irreversibly modified by humans, and form strong barriers to movement. PMID:28235066
Jensen, Stina Rikke; Mirsepasi-Lauridsen, Hengameh Chloé; Thysen, Anna Hammerich; Brynskov, Jørn; Krogfelt, Karen A; Petersen, Andreas Munk; Pedersen, Anders Elm; Brix, Susanne
2015-12-01
Escherichia coli (E. coli) may be implicated in the pathogenesis of inflammatory bowel disease (IBD), as implied from a higher prevalence of mucosa-associated E. coli in the gut of IBD-affected individuals. However, it is unclear whether different non-diarrheagenic E. coli spp. segregate from each other in their ability to promote intestinal inflammation. Herein we compared the inflammation-inducing properties of non-diarrheagenic LF82, 691-04A, E. coli Nissle 1917 (ECN) and eleven new intestinal isolates from different locations in five IBD patients and one healthy control. Viable E. coli were cultured with human monocyte-derived dendritic cells (moDCs) and monolayers of intestinal epithelial cells (IECs), followed by analysis of secreted cytokines, intracellular levels of reactive oxygen species and cellular death. The IBD-associated E. coli LF82 induced the same dose-dependent inflammatory cytokine profile as ECN and ten of the new E. coli isolates displayed as high level IL-12p70, IL-1β, IL-23 and TNF-α from moDCs irrespective of their site of isolation (ileum/colon/faeces), disease origin (diseased/non-diseased) or known virulence factors. Contrarily, 691-04A and one new IBD E. coli isolate induced a different cellular phenotype with enhanced killing of moDCs and IECs, coupled to elevated IL-18. The cytopathic nature of 691-04A and one other IBD E. coli isolate suggests that colonization with specific non-diarrheagenic E. coli could promote intestinal barrier leakage and profound intestinal inflammation, while LF82, ECN and the remaining non-diarrheagenic E. coli isolates hold notorious pro-inflammatory characteristics that can progress inflammation in case of intestinal barrier leakage. Copyright © 2015 Elsevier GmbH. All rights reserved.
Energy barriers and rates of tautomeric transitions in DNA bases: ab initio quantum chemical study.
Basu, Soumalee; Majumdar, Rabi; Das, Gourab K; Bhattacharyya, Dhananjay
2005-12-01
Tautomeric transitions of DNA bases are proton transfer reactions, which are important in biology. These reactions are involved in spontaneous point mutations of the genetic material. In the present study, intrinsic reaction coordinates (IRC) analyses through ab initio quantum chemical calculations have been carried out for the individual DNA bases A, T, G, C and also A:T and G:C base pairs to estimate the kinetic and thermodynamic barriers using MP2/6-31G** method for tautomeric transitions. Relatively higher values of kinetic barriers (about 50-60 kcal/mol) have been observed for the single bases, indicating that tautomeric alterations of isolated single bases are quite unlikely. On the other hand, relatively lower values of the kinetic barriers (about 20-25 kcal/mol) for the DNA base pairs A:T and G:C clearly suggest that the tautomeric shifts are much more favorable in DNA base pairs than in isolated single bases. The unusual base pairing A':C, T':G, C':A or G':T in the daughter DNA molecule, resulting from a parent DNA molecule with tautomeric shifts, is found to be stable enough to result in a mutation. The transition rate constants for the single DNA bases in addition to the base pairs are also calculated by computing the free energy differences between the transition states and the reactants.
Genetic Dissection of a Key Reproductive Barrier Between Nascent Species of House Mice
White, Michael A.; Steffy, Brian; Wiltshire, Tim; Payseur, Bret A.
2011-01-01
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice. PMID:21750261
Genetic dissection of a key reproductive barrier between nascent species of house mice.
White, Michael A; Steffy, Brian; Wiltshire, Tim; Payseur, Bret A
2011-09-01
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.
Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong
2012-09-01
Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.
Strategies towards an optimized use of the shallow geothermal potential
NASA Astrophysics Data System (ADS)
Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.
2013-12-01
Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.
NASA Astrophysics Data System (ADS)
Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.
2008-12-01
Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e.g. in Florida, Brazil, Mauritius and Australia's Great Barrier Reef lagoon. From shore-parallel transects along the Central Great Barrier Reef coastline, numerous processes and locations of SGD were identified, including terrestrially-derived fresh SGD and the recirculation of seawater in mangrove forests, as well as riverine sources. From variations in the inverse relationship of the two tracers radon and salinity, some aspects of regional freshwater input into the lagoon during the tropical wet season could be assessed. Such surveys on coastal scales can be a useful tool to obtain an overview of locations and processes of SGD on an unknown coastline.
GROUNDWATER RECHARGE AND CHEMICAL ...
The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc
Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids
NASA Astrophysics Data System (ADS)
Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.
2017-03-01
The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.
Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids.
Jungbluth, Sean P; Amend, Jan P; Rappé, Michael S
2017-03-28
The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.
Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids
Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.
2017-01-01
The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation. PMID:28350381
Announcing a Hydrogeology Journal theme issue on "The future of hydrogeology"
Voss, Clifford I.
2003-01-01
What is the future of hydrogeology? Are most of the fundamental scientific problems in hydrogeology already solved? Is there really any need for more fundamental research, field measurements, or method development? Have recent scientific advances really added capabilities and tools for our practical needs? Are there any unsolved hydrogeologic questions still remaining that are vital to our optimal use and management of subsurface resources or does the remaining work only fill in some details to a story essentially already told? Will the science of hydrogeology soon become primarily an applied field, where the main task is to use known methods to solve practical problems of water supply and water quality? For other questions involving subsurface fluids, for example, waste isolation, understanding of geological processes and climate changes, are current hydrogeologic capabilities sufficient and is there any possibility for improvement? These are the types of questions that will be dealt with by an upcoming theme issue of Hydrogeology Journal (HJ) to appear in early 2005 [HJ 13(1)]. This issue will contain 10–20 peer-reviewed invited articles on both general topics and specific subject areas of hydrogeology.
Krumholz, L R; Harris, S H; Tay, S T; Suflita, J M
1999-06-01
We examined the relative roles of acetogenic and sulfate-reducing bacteria in H2 consumption in a previously characterized subsurface sandstone ecosystem. Enrichment cultures originally inoculated with ground sandstone material obtained from a Cretaceous formation in central New Mexico were grown with hydrogen in a mineral medium supplemented with 0.02% yeast extract. Sulfate reduction and acetogenesis occurred in these cultures, and the two most abundant organisms carrying out the reactions were isolated. Based on 16S rRNA analysis data and on substrate utilization patterns, these organisms were named Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. The steady-state H2 concentrations measured in sandstone-sediment slurries (threshold concentration, 5 nM), in pure cultures of sulfate reducers (threshold concentration, 2 nM), and in pure cultures of acetogens (threshold concentrations 195 to 414 nM) suggest that sulfate reduction is the dominant terminal electron-accepting process in the ecosystem examined. In an experiment in which direct competition for H2 between D. hypogeium and A. psammolithicum was examined, sulfate reduction was the dominant process.
NASA Astrophysics Data System (ADS)
Beller, H. R.; Han, R.; Karaoz, U.; Lim, H.; Brodie, E. L.
2012-12-01
Pelosinus species are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp. strain HCF1, an isolate that predominated anaerobic, Cr(VI)-reducing columns constructed with Hanford 100H aquifer sediment (constituting 80% of the total bacterial population in the columns). Strain HCF1 ferments lactate to propionate and acetate (a complete fermentation pathway was identified in the genome) and its genome encodes both [NiFe]- and [FeFe]-hydrogenases for H2 cycling. This bacterium has unexpected capabilities and gene content associated with reduction of nitrogen oxides. In this strain, either H2 or lactate can act as a sole electron donor for nitrate, Cr(VI), and Fe(III) reduction. Transcriptional studies demonstrated differential expression of nitrate reductases and hydrogenases. Overall, the unexpected metabolic capabilities and gene content reported here broaden our perspective on what biogeochemical and ecological roles this species might play as a prominent member of microbial communities in subsurface environments.
Introduction to the hydrogeochemical investigations within the International Stripa Project
Nordstrom, D. Kirk; Olsson, T.; Carlsson, L.; Fritz, P.
1989-01-01
The International Stripa Project (1980-1990) has sponsored hydrogeochemical investigations at several subsurface drillholes in the granitic portion of an abandoned iron ore mine, central Sweden. The purpose has been to advance our understanding of geochemical processes in crystalline bedrock that may affect the safety assessment of high-level radioactive waste repositories. More than a dozen investigators have collected close to a thousand water and gas samples for chemical and isotopic analyses to develop concepts for the behavior of solutes in a granitic repository environment. The Stripa granite is highly radioactive and has provided an exceptional opportunity to study the behavior of natural radionuclides, especially subsurface production. Extensive microfracturing, low permeability with isolated fracture zones of high permeability, unusual water chemistry, and a typical granitic mineral assemblage with thin veins and fracture coatings of calcite, chlorite, seriate, epidote and quartz characterize the site. Preliminary groundwater flow modeling indicates that the mine has perturbed the flow environment to a depth of about 3 km and may have induced deep groundwaters to flow into the mine. ?? 1989.
3D Geological Mapping - uncovering the subsurface to increase environmental understanding
NASA Astrophysics Data System (ADS)
Kessler, H.; Mathers, S.; Peach, D.
2012-12-01
Geological understanding is required for many disciplines studying natural processes from hydrology to landscape evolution. The subsurface structure of rocks and soils and their properties occupies three-dimensional (3D) space and geological processes operate in time. Traditionally geologists have captured their spatial and temporal knowledge in 2 dimensional maps and cross-sections and through narrative, because paper maps and later two dimensional geographical information systems (GIS) were the only tools available to them. Another major constraint on using more explicit and numerical systems to express geological knowledge is the fact that a geologist only ever observes and measures a fraction of the system they study. Only on rare occasions does the geologist have access to enough real data to generate meaningful predictions of the subsurface without the input of conceptual understanding developed from and knowledge of the geological processes responsible for the deposition, emplacement and diagenesis of the rocks. This in turn has led to geology becoming an increasingly marginalised science as other disciplines have embraced the digital world and have increasingly turned to implicit numerical modelling to understand environmental processes and interactions. Recent developments in geoscience methodology and technology have gone some way to overcoming these barriers and geologists across the world are beginning to routinely capture their knowledge and combine it with all available subsurface data (of often highly varying spatial distribution and quality) to create regional and national geological three dimensional geological maps. This is re-defining the way geologists interact with other science disciplines, as their concepts and knowledge are now expressed in an explicit form that can be used downstream to design process models structure. For example, groundwater modellers can refine their understanding of groundwater flow in three dimensions or even directly parameterize their numerical models using outputs from 3D mapping. In some cases model code is being re-designed in order to deal with the increasing geological complexity expressed by Geologists. These 3D maps contain have inherent uncertainty, just as their predecessors, 2D geological maps had, and there remains a significant body of work to quantify and effectively communicate this uncertainty. Here we present examples of regional and national 3D maps from Geological Survey Organisations worldwide and how these are being used to better solve real-life environmental problems. The future challenge for geologists is to make these 3D maps easily available in an accessible and interoperable form so that the environmental science community can truly integrate the hidden subsurface into a common understanding of the whole geosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, Robin; Peyton, Brent M.; Apel, William A.
2014-01-29
Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less
Pardiñas, A F; Campo, D; Pola, I G; Miralles, L; Juanes, F; Garcia-Vazquez, E
2010-11-01
Nucleotide variation of partial cytochrome b sequences was analysed in the bluefish Pomatomus saltatrix to investigate the population-structuring roles of climate change and oceanic barriers. Western and eastern North Atlantic Ocean populations appeared to be totally isolated, with the latter connected to the Mediterranean Sea within which further structuring occurred. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
APPLICATIONS OF THE PLASTIC FILM TECHNIQUE IN THE ISOLATION AND STUDY OF ANAEROBIC BACTERIA
Shank, J. L.
1963-01-01
Shank, J. L. (Swift & Co., Chicago, Ill.). Applications of the plastic film technique in the isolation and study of anaerobic bacteria. J. Bacteriol. 86:95–100. 1963.—The use of plastic films as oxygen barriers on the surface of agar pour plates, in conjunction with thioglycolate and other selective and differential agents, allows the primary isolation and enumeration of clostridia and other anaerobes. Quantitative studies reveal little if any inhibition of the test organisms under these conditions, and toxin production, where it occurs, is shown to be virtually unimpaired. Images PMID:14051828
Atchison, Michael L
2009-01-01
There is a nationwide shortage of veterinarian-scientists in the United States. Barriers to recruiting veterinary students into research careers need to be identified, and mechanisms devised to reduce these barriers. Barriers to attracting veterinary students into research careers include ignorance of available research careers and of the training opportunities. Once admitted, students in research training programs often feel isolated, fitting into neither the veterinary environment nor the research environment. To address the above issues, it is necessary to advertise and educate the public about opportunities for veterinarian-scientists. Schools need to develop high-quality training programs that are well structured but retain appropriate flexibility. Sufficient resources are needed to operate these programs so that students do not graduate with significant debt. A community of veterinarian-scientists needs to be developed so that students do not feel isolated but, rather, are part of a large community of like-minded individuals. Because of the complexities of programs that train veterinarian-scientists, it is necessary to provide extensive advising and for faculty to develop a proactive, servant-leadership attitude. Finally, students must be made aware of career options after graduation.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.
1998-01-01
Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.
Waste Isolation Pilot Plant Salt Decontamination Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmer, Ricky Lynn; Reese, Stephen Joseph
2015-03-01
On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. Several practical, easily deployable methods of decontaminating WIPP salt, using a surrogate contaminant and americium (241Am), were developed and tested. The effectiveness of the methods is evaluated qualitatively, and to the extent practical, quantitatively. Of the methods tested (dry brushing, vacuum cleaning, water washing, mechanical grinding, strippable coatings, and fixative barriers), the most practical seems to be water washing. Effectiveness is very high, and water washing is easy and rapid to deploy. The amount of wastewater produced (~2 L/m2) would bemore » substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from water washed coupons found no residual removable contamination. Thus, whatever contamination is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.« less
No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system.
Charron, Guillaume; Landry, Christian R
2017-06-01
Although microorganisms account for the largest fraction of Earth's biodiversity, we know little about how their reproductive barriers evolve. Sexual microorganisms such as Saccharomyces yeasts rapidly develop strong intrinsic post-zygotic isolation, but the role of extrinsic isolation in the early speciation process remains to be investigated. We measured the growth of F 1 hybrids between two incipient species of Saccharomyces paradoxus to assess the presence of extrinsic post-zygotic isolation across 32 environments. More than 80% of hybrids showed either partial dominance of the best parent or over-dominance for growth, revealing no fitness defects in F 1 hybrids. Extrinsic reproductive isolation therefore likely plays little role in limiting gene flow between incipient yeast species and is not a requirement for speciation. © 2017 The Author(s).
Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.
1995-01-01
Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.
The clinical consequences of an industrial aerosol plant explosion.
Hull, D; Grindlinger, G A; Hirsch, E F; Petrone, S; Burke, J
1985-04-01
The factors relating to the clinical outcome of an industrial aerosol plant explosion are reviewed. Eighteen of 24 workers inside the plant required hospitalization and five died. Proximity to the blast was associated with extensive injuries unless workers were shielded by physical barriers or partitions. Burn severity and mortality were increased in those wearing synthetic garments compared to their counterparts wearing fiber clothing. Facial burns occurred in all unprotected workers. Forearm and hand burns in 11 patients required decompressive escharotomies. Topical treatment with silver sulfadiazine was associated with more significant leukopenia and neutropenia than treatment with silver nitrate. We conclude that industrial design should include safeguards which isolate workers from flammable materials, including isolation of explosive materials from working areas, alarm systems to detect leakage of flammable agents, protective barriers and shields, and the regulation and institution of flame and flash-resistant clothing.
Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim
2016-09-01
In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.
2012-12-01
Community genomics and proteomics (proteogenomics) can be used to predict the metabolic potential of complex microbial communities and provide insight into microbial activity and nutrient cycling in situ. Inferences regarding the physiology of specific organisms then can guide isolation efforts, which, if successful, can yield strains that can be metabolically and structurally characterized to further test metagenomic predictions. Here we used proteogenomic data from an acetate-stimulated, sulfidic sediment column deployed in a groundwater well in Rifle, CO to direct laboratory amendment experiments to isolate a bacterial strain potentially involved in sulfur oxidation for physiological and microscopic characterization (Handley et al, submitted 2012). Field strains of Sulfurovum (genome r9c2) were predicted to be capable of CO2 fixation via the reverse TCA cycle and sulfur oxidation (Sox and SQR) coupled to either nitrate reduction (Nap, Nir, Nos) in anaerobic environments or oxygen reduction in microaerobic (cbb3 and bd oxidases) environments; however, key genes for sulfur oxidation (soxXAB) were not identified. Sulfidic groundwater and sediment from the Rifle site were used to inoculate cultures that contained various sulfur species, with and without nitrate and oxygen. We isolated a bacterium, Sulfurovum sp. OBA, whose 16S rRNA gene shares 99.8 % identity to the gene of the dominant genomically characterized strain (genome r9c2) in the Rifle sediment column. The 16S rRNA gene of the isolate most closely matches (95 % sequence identity) the gene of Sulfurovum sp. NBC37-1, a genome-sequenced deep-sea sulfur oxidizer. Strain OBA grew via polysulfide, colloidal sulfur, and tetrathionate oxidation coupled to nitrate reduction under autotrophic and mixotrophic conditions. Strain OBA also grew heterotrophically, oxidizing glucose, fructose, mannose, and maltose with nitrate as an electron acceptor. Over the range of oxygen concentrations tested, strain OBA was not capable of aerobic growth, but it could tolerate low oxygen conditions in the polysulfide/nitrate growth medium, suggesting that oxidases identified by genomics may play a role in detoxification rather than energy generation. Cryo-TEM imaging showed that strain OBA cells are rod-shaped and ~0.4 wide and 1.0 μm in length, and confirmed metagenomics-based predictions of a Gram-negative cell envelope, pili and polyphosphate body production. Our results show the value of integrating metagenomics, culturing, and microscopic imaging to discern the physiology of bacteria involved in biogeochemical transformations in the subsurface.
Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing
NASA Astrophysics Data System (ADS)
Bulusu, S.
2014-12-01
Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, J.F.; Burton, F.G.; Cataldo, D.A.
1982-09-01
The objective of this project was to develop and evaluate the effectiveness of physical and chemical barriers designed to prevent plant and animal breachment of uranium mill tailings containment systems for an extended period of time. A polymeric carrier/biocide delivery system was developed and tested in the laboratory, greenhouse and field. A continuous flow technique was established to determine the release rates of the biocides from the PCD systems; polymeric carrier specifications were established. Studies were conducted to determine effective biocide concentrations required to produce a phytotoxic response and the relative rates of phytotoxin degradation resulting from chemical and biologicalmore » breakdown in soils. The final PCD system developed was a pelletized system containing 24% trifluralin, 18% carbon black and 58% polymer. Pellets were placed in the soil at the Grand Junction U-tailings site at one in. and two in. intervals. Data obtained in the field determined that the pellets released enough herbicide to the soil layer to stop root elongation past the barrier. Physical barriers to subsurface movement of burrowing animals were investigated. Small crushed stone (1 to 1 1/2 in. diameter) placed over asphalt emulsion and multilayer soil seals proved effective as barriers to a small mammal (ground squirrels) but were not of sufficient size to stop a larger animal (the prairie dog). No penetrations were made through the asphalt emulsion or the clay layer of the multilayer soil seals by either of the two mammals tested. A literature survey was prepared and published on the burrowing habits of the animals that may be found at U-tailings sites.« less
Multiple Genes Cause Postmating Prezygotic Reproductive Isolation in the Drosophila virilis Group.
Ahmed-Braimah, Yasir H
2016-12-07
Understanding the genetic basis of speciation is a central problem in evolutionary biology. Studies of reproductive isolation have provided several insights into the genetic causes of speciation, especially in taxa that lend themselves to detailed genetic scrutiny. Reproductive barriers have usually been divided into those that occur before zygote formation (prezygotic) and after (postzygotic), with the latter receiving a great deal of attention over several decades. Reproductive barriers that occur after mating but before zygote formation [postmating prezygotic (PMPZ)] are especially understudied at the genetic level. Here, I present a phenotypic and genetic analysis of a PMPZ reproductive barrier between two species of the Drosophila virilis group: D. americana and D. virilis This species pair shows strong PMPZ isolation, especially when D. americana males mate with D. virilis females: ∼99% of eggs laid after these heterospecific copulations are not fertilized. Previous work has shown that the paternal loci contributing to this incompatibility reside on two chromosomes, one of which (chromosome 5) likely carries multiple factors. The other (chromosome 2) is fixed for a paracentric inversion that encompasses nearly half the chromosome. Here, I present two results. First, I show that PMPZ in this species cross is largely due to defective sperm storage in heterospecific copulations. Second, using advanced intercross and backcross mapping approaches, I identify genomic regions that carry genes capable of rescuing heterospecific fertilization. I conclude that paternal incompatibility between D. americana males and D. virilis females is underlain by four or more genes on chromosomes 2 and 5. Copyright © 2016 Ahmed-Braimah.
Goldstein, G W; Betz, A L; Bowman, P D; Dorovini-Zis, K
1986-01-01
The endothelial cells in brain capillaries are the anatomic site of the blood-brain barrier. To learn more about the biology of these specialized cells, we developed methods to prepare suspensions of purified brain microvessels as well as primary cultures of endothelial cells in monolayer. These two preparations allow for direct investigation of the metabolism, transport properties, and receptor content of the brain capillary. We used isolated brain microvessels to study distribution of membrane carriers between the luminal and the abluminal plasma membrane of endothelial cells. We found that Na+K+-ATPase and the A-system amino-acid transport system are located predominantly on the abluminal surface of brain capillary endothelial cells. This distribution of transport carriers is consistent with the low permeability of potassium and small neutral amino acids in the blood-to-brain direction. It suggests, however, that both solutes can be actively transported across brain capillaries from the brain interstitial fluid to the blood. In tissue culture, the endothelial cells form continuous tight junctions with their neighbors. This results in a cellular layer impermeable to protein tracers. When exposed to hyperosmolar solutions, in an attempt to mimic the conditions that open the blood-brain barrier in vivo, we found a reversible separation of the tight junctions between contiguous endothelial cells. No indication of activation of pinocytosis was observed. In vitro systems provide a novel approach for studying the function of the blood-brain barrier and allow for observations not possible with intact animals.
Eight electrode optical readout gap
Boettcher, G.E.; Crain, R.W.
1984-01-01
A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.
AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration.
Schreiber, Lukas; Elshatshat, Salem; Koch, Kerstin; Lin, Jinxing; Santrucek, Jiri
2006-01-01
Counter diffusion of chloride, applied as NaCl at the inner side of isolated cuticles, and silver, applied as AgNO(3) at the outer side, lead to the formation of insoluble AgCl precipitates in isolated cuticles. AgCl precipitates could be visualized by light and scanning electron microscopy. The presence of AgCl precipitates in isolated cuticles was verified by energy dispersive X-ray analysis. It is argued that insoluble AgCl precipitates formed in polar pores of cuticles and as a consequence, cuticular transpiration of 13 out of 15 investigated species was significantly reduced up to three-fold. Water as a small and uncharged but polar molecule penetrates cuticles via two parallel paths: a lipophilic path, formed by lipophilic cutin and wax domains, and a aqueous pathe, formed by polar pores. Thus, permeances P (m s(-1)) of water, which is composed of the two quantities P (Lipid) and P (Pore), decreased, since water transport across polar pores was affected by AgCl precipitates. Cuticles with initially high rates of cuticular transpiration were generally more sensitive towards AgCl precipitates compared to cuticles with initially low rates of transpiration. Results presented here, significantly improves the current model of the structure of the cuticular transpiration barrier, since the pronounced heterogeneity of the cuticular transport barrier, composed of lipophilic as well as polar paths of diffusion, has to be taken into account in future.
Long-Term Drainage from the Riprap Side Slope of a Surface Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhuanfang
Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Sitemore » in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.« less
Farmers’ Intentions to Implement Foot and Mouth Disease Control Measures in Ethiopia
Jemberu, Wudu T.; Mourits, M. C. M.; Hogeveen, H.
2015-01-01
The objectives of this study were to explore farmers’ intentions to implement foot and mouth disease (FMD) control in Ethiopia, and to identify perceptions about the disease and its control measures that influence these intentions using the Health Belief Model (HBM) framework. Data were collected using questionnaires from 293 farmers in three different production systems. The influence of perceptions on the intentions to implement control measures were analyzed using binary logistic regression. The effect of socio-demographic and husbandry variables on perceptions that were found to significantly influence the intentions were analyzed using ordinal logistic regression. Almost all farmers (99%) intended to implement FMD vaccination free of charge. The majority of farmers in the pastoral (94%) and market oriented (92%) systems also had the intention to implement vaccination with charge but only 42% of the crop-livestock mixed farmers had the intention to do so. Only 2% of pastoral and 18% of crop-livestock mixed farmers had the intention to implement herd isolation and animal movement restriction continuously. These proportions increased to 11% for pastoral and 50% for crop-livestock mixed farmers when the measure is applied only during an outbreak. The majority of farmers in the market oriented system (>80%) had the intention to implement herd isolation and animal movement restriction measure, both continuously and during an outbreak. Among the HBM perception constructs, perceived barrier was found to be the only significant predictor of the intention to implement vaccination. Perceived susceptibility, perceived benefit and perceived barrier were the significant predictors of the intention for herd isolation and animal movement restriction measure. In turn, the predicting perceived barrier on vaccination control varied significantly with the production system and the age of farmers. The significant HBM perception predictors on herd isolation and animal movement restriction control were significantly influenced only by the type of production system. The results of this study indicate that farmers’ intentions to apply FMD control measures are variable among production systems, an insight which is relevant in the development of future control programs. Promotion programs aimed at increasing farmers’ motivation to participate in FMD control by charged vaccination or animal movement restriction should give attention to the perceived barriers influencing the intentions to apply these measures. PMID:26375391
Farmers' Intentions to Implement Foot and Mouth Disease Control Measures in Ethiopia.
Jemberu, Wudu T; Mourits, M C M; Hogeveen, H
2015-01-01
The objectives of this study were to explore farmers' intentions to implement foot and mouth disease (FMD) control in Ethiopia, and to identify perceptions about the disease and its control measures that influence these intentions using the Health Belief Model (HBM) framework. Data were collected using questionnaires from 293 farmers in three different production systems. The influence of perceptions on the intentions to implement control measures were analyzed using binary logistic regression. The effect of socio-demographic and husbandry variables on perceptions that were found to significantly influence the intentions were analyzed using ordinal logistic regression. Almost all farmers (99%) intended to implement FMD vaccination free of charge. The majority of farmers in the pastoral (94%) and market oriented (92%) systems also had the intention to implement vaccination with charge but only 42% of the crop-livestock mixed farmers had the intention to do so. Only 2% of pastoral and 18% of crop-livestock mixed farmers had the intention to implement herd isolation and animal movement restriction continuously. These proportions increased to 11% for pastoral and 50% for crop-livestock mixed farmers when the measure is applied only during an outbreak. The majority of farmers in the market oriented system (>80%) had the intention to implement herd isolation and animal movement restriction measure, both continuously and during an outbreak. Among the HBM perception constructs, perceived barrier was found to be the only significant predictor of the intention to implement vaccination. Perceived susceptibility, perceived benefit and perceived barrier were the significant predictors of the intention for herd isolation and animal movement restriction measure. In turn, the predicting perceived barrier on vaccination control varied significantly with the production system and the age of farmers. The significant HBM perception predictors on herd isolation and animal movement restriction control were significantly influenced only by the type of production system. The results of this study indicate that farmers' intentions to apply FMD control measures are variable among production systems, an insight which is relevant in the development of future control programs. Promotion programs aimed at increasing farmers' motivation to participate in FMD control by charged vaccination or animal movement restriction should give attention to the perceived barriers influencing the intentions to apply these measures.
Graham, Crystal L; Phillips, Shannon M; Newman, Susan D; Atz, Teresa W
2016-01-01
This integrative review synthesized baccalaureate minority nursing students' perceptions of their clinical experiences. The diversity of the nursing workforce does not mirror the United States population. Attrition rates of minority nursing students remain higher than rates for White students. Literature examining facilitators and barriers to minority student success predominantly focuses on academic factors, excluding those relevant to clinical education. An integrative review using literature from nursing and education. Three common perceived barriers were identified: discrimination from faculty, peers, nursing staff, and patients; bias in faculty grading practices; and isolation. Although little is known about the relationship between clinical failures and overall attrition, this review provides evidence that minority students encounter significant barriers in clinical education. To increase the diversity of the nursing workforce, faculty must address these issues and make modifications to ensure an equal opportunity at a quality education for all students.
Bridging the Gender Divide: Facilitating the Educational Path for Men in Nursing.
Hodges, Eric A; Rowsey, Pamela Johnson; Gray, Tamryn Fowler; Kneipp, Shawn M; Giscombe, Cheryl Woods; Foster, Beverly B; Alexander, G Rumay; Kowlowitz, Vicki
2017-05-01
Although the number of men entering the nursing profession over the past century has increased incrementally, the proportion of men remains low in contrast to the U.S. On matriculation into nursing school, men face stereotypes about the nursing profession and the characteristics of the men who enter it. Men may also face a number of gender-based barriers, including lack of history about men in nursing, lack of role models, role strain, gender discrimination, and isolation. This article describes each of these barriers and provides strategies to improve male students' learning experience. The efforts of one nursing school to address many of these barriers are also described. Through acknowledging gender barriers and taking intentional steps to address them with prenursing and nursing students, schools of nursing may create a more inclusive environment and enhance the profession's diversity. [J Nurs Educ. 2017;56(5):295-299.]. Copyright 2017, SLACK Incorporated.
Long-term isolation of a highly mobile seabird on the Galapagos
Hailer, Frank; Schreiber, E.A.; Miller, Joshua M.; Levin, Iris I.; Parker, Patricia G.; Chesser, R. Terry; Fleischer, Robert C.
2011-01-01
The Galapagos Islands are renowned for their high degree of endemism. Marine taxa inhabiting the archipelago might be expected to be an exception, because of their utilization of pelagic habitats--the dispersal barrier for terrestrial taxa--as foraging grounds. Magnificent frigatebirds (Fregata magnificens) have a highly vagile lifestyle and wide geographical distribution around the South and Central American coasts. Given the potentially high levels of gene flow among populations, the species provides a good test of the effectiveness of the Galapagos ecosystem in isolating populations of highly dispersive marine species. We studied patterns of genetic (mitochondrial DNA, microsatellites and nuclear introns) and morphological variation across the distribution of magnificent frigatebirds. Concordant with predictions from life-history traits, we found signatures of extensive gene flow over most of the range, even across the Isthmus of Panama, which is a major barrier to gene flow in other tropical seabirds. In contrast, individuals from the Galapagos were strongly differentiated from all conspecifics, and have probably been isolated for several hundred thousand years. Our finding is a powerful testimony to the evolutionary uniqueness of the taxa inhabiting the Galapagos archipelago and its associated marine ecosystems.
Ortiz-Ramírez, Marco F; Andersen, Michael J; Zaldívar-Riverón, Alejandro; Ornelas, Juan Francisco; Navarro-Sigüenza, Adolfo G
2016-01-01
Montane barriers influence the evolutionary history of lineages by promoting isolation of populations. The effects of these historical processes are evident in patterns of differentiation among extant populations, which are often expressed as genetic and behavioral variation between populations. We investigated the effects of geographic barriers on the evolutionary history of a Mesoamerican bird by studying patterns of genetic and vocal variation in the Ruddy-capped Nightingale-Thrush (Turdidae: Catharus frantzii), a non-migratory oscine bird that inhabits montane forests from central Mexico to Panama. We reconstructed the phylogeographic history and estimated divergence times between populations using Bayesian and maximum likelihood methods. We found strong support for the existence of four mitochondrial lineages of C. frantzii corresponding to isolated mountain ranges: Sierra Madre Oriental; Sierra Madre del Sur; the highlands of Chiapas, Guatemala, and El Salvador; and the Talamanca Cordillera. Vocal features in C. frantzii were highly variable among the four observed clades, but vocal variation and genetic variation were uncorrelated. Song variation in C. frantzii suggests that sexual selection and cultural drift could be important factors driving song differentiation in C. frantzii. Copyright © 2015 Elsevier Inc. All rights reserved.
Evolution of Islet Transplantation for the Last 30 Years.
Farney, Alan C; Sutherland, David E R; Opara, Emmanuel C
2016-01-01
In this article, we will review the changes that have occurred in islet transplantation at the birth of Pancreas 30 years ago. The first attempts at β-cell replacement in humans, pancreas and islet transplantation, were performed in the 1960s and 1970s. Although pancreas transplantation has been an accepted treatment for severe labile diabetes predating the emergence of the journal, allogeneic islet transplantation remains experimental. Current investigations within islet transplantation focus to improve islet function after transplantation. Improving islet viability during isolation, exploring ways to increase engraftment, and protection from the host immune system are some of the goals of these investigative efforts. The major barriers to clinical islet transplantation are shortage of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. It is generally accepted that islet encapsulation is an immunoisolation tool with good potential to address the first 2 of those barriers. We have therefore devoted a major part of this review to the critical factors needed to make it a clinical reality. With improved islet isolation techniques and determination of the best site of engraftment as well as improved encapsulation techniques, we hope that islet transplantation could someday achieve routine clinical use.
Long-term isolation of a highly mobile seabird on the Galapagos
Hailer, Frank; Schreiber, E. A.; Miller, Joshua M.; Levin, Iris I.; Parker, Patricia G.; Chesser, R. Terry; Fleischer, Robert C.
2011-01-01
The Galapagos Islands are renowned for their high degree of endemism. Marine taxa inhabiting the archipelago might be expected to be an exception, because of their utilization of pelagic habitats—the dispersal barrier for terrestrial taxa—as foraging grounds. Magnificent frigatebirds (Fregata magnificens) have a highly vagile lifestyle and wide geographical distribution around the South and Central American coasts. Given the potentially high levels of gene flow among populations, the species provides a good test of the effectiveness of the Galapagos ecosystem in isolating populations of highly dispersive marine species. We studied patterns of genetic (mitochondrial DNA, microsatellites and nuclear introns) and morphological variation across the distribution of magnificent frigatebirds. Concordant with predictions from life-history traits, we found signatures of extensive gene flow over most of the range, even across the Isthmus of Panama, which is a major barrier to gene flow in other tropical seabirds. In contrast, individuals from the Galapagos were strongly differentiated from all conspecifics, and have probably been isolated for several hundred thousand years. Our finding is a powerful testimony to the evolutionary uniqueness of the taxa inhabiting the Galapagos archipelago and its associated marine ecosystems. PMID:20861041
Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.
2011-01-01
Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.
GROUNDWATER REMEDIATION SOLUTIONS AT HANFORD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Tyler J.; Truex, Michael J.; Williams, Mark D.
2007-02-26
In 2006, Congress provided funding to the U. S. Department of Energy (DOE) to study new technologies that could be used to treat contamination from the Hanford Site that might impact the Columbia River. The contaminants of concern are primarily metals and radionuclides, which are byproducts of Hanford’s cold war mission to produce plutonium for atomic weapons. The DOE asked Pacific Northwest National Laboratory (PNNL) to consider this problem and develop approaches to address the contamination that threatens the river. DOE identified three high priority sites that had groundwater contamination migrating towards the Columbia river for remediation. The contaminants includedmore » strontium-90, uranium and chromium. Remediation techniques for metals and radionuclides focus primarily on altering the oxidation state of the contaminant chemically or biologically, isolating the contaminants from the environment through adsorption or encapsulation or concentrating the contaminants for removal. A natural systems approach was taken that uses a mass balance concept to frame the problem and determine the most appropriate remedial approach. This approach provides for a scientifically based remedial decision. The technologies selected to address these contaminants included an apatite adsorption barrier coupled with a phytoremediation to address the strontium-90 contamination, injection of polyphosphate into the subsurface to sequester uranium, and a bioremediation approach to reduce chromium contamination in the groundwater. The ability to provide scientifically based approaches is in large part due to work developed under previous DOE Office of Science and Office of Environmental Management projects. For example, the polyphosphate and the bioremediation techniques, were developed by PNNL under the EMSP and NABIR programs. Contaminated groundwater under the Hanford Site poses a potential risk to humans and the Columbia River. These new technologies holds great promise for effectively remediating the residual waste that threatens the environment.« less
HYPOTONIC SWELLING OF SALICYLATE-TREATED COCHLEAR OUTER HAIR CELLS
Zhi, Man; Ratnanather, J. Tilak; Ceyhan, Elvan; Popel, Aleksander S.; Brownell, William E.
2007-01-01
The outer hair cell (OHC) is a hydrostat with a low hydraulic conductivity of Pf = 3×10−4 cm/s across the plasma membrane (PM) and subsurface cisterna (SSC) that make up the OHC's lateral wall. The SSC is structurally and functionally a transport barrier in normal cells that is known to be disrupted by salicylate. The effect of sodium salicylate on Pf is determined from osmotic experiments in which isolated, control and salicylate-treated OHCs were exposed to hypotonic solutions in a constant flow chamber. The value of Pf = 3.5±0.5 ×10−4 cm/s (mean ± s.e.m, n = 34) for salicylate-treated OHCs was not significantly different from Pf = 2.4±0.3 ×10−4 cm/s (mean ± s.e.m, n = 31) for untreated OHCs (p=.3302). Thus Pf is determined by the PM and is unaffected by salicylate treatment. The ratio of longitudinal strain to radial strain εz/εc = −0.76 for salicylate-treated OHCs was significantly smaller (p = .0143) from −0.72 for untreated OHCs, and is also independent of the magnitude of the applied osmotic challenge. Salicylate-treated OHCs took longer to attain a steady-state volume which is larger than that for untreated OHCs and increased in volume by 8-15% prior to hypotonic perfusion unlike sodium α-ketoglutarate treated OHCs. It is suggested that depolymerization of cytoskeletal proteins and/or glycogen maybe responsible for the large volume increase in salicylate-treated OHCs as well as the different responses to different modes of application of the hypotonic solution. PMID:17400411
NASA Astrophysics Data System (ADS)
Samson, C.; Mah, J.; Haltigin, T.; Holladay, S.; Ralchenko, M.; Pollard, W.; Monteiro Santos, F. A.
2017-05-01
Perennial springs at the Gypsum Hill site on Axel Heiberg Island in the Canadian Arctic (79°24‧N, 90°44‧W) represent a high-fidelity analogue to hydrothermal systems that might exist on Mars. The springs were surveyed using an electromagnetic induction sounder (EMIS) and ground penetrating radar (GPR). Both instruments probed the subsurface to a depth of approximately 3 m. Lateral EMIS soundings were performed every metre along a 400 m long reconnaissance line roughly oriented SW-NE and extending through 23 active springs and 1 dry outlet to measure electrical conductivity. Two distinct zones were identified within the survey area on the basis of these data: in the southwest portion, sharp conductivity peaks correspond to isolated springs with well-defined outlets, flowing over dry rocky soil; in the northeast portion, the springs are fed by a pervasive network of saline fluids, resulting in high background readings and muddy surface conditions. These observations are consistent with vertical EMIS sounding data which showed that the brine body feeding the saline springs can be found closer to the ground surface towards the northeast portion of the survey site. In areas of high electrical conductivity, the GPR data exhibits strong scattering. The noisy areas are sharply defined and interpreted to correspond to narrow vertical conduits feeding individual spring outlets. The EMIS is a rugged instrument that could be included as payload in future rover-based Mars exploration missions aiming at probing the shallow subsurface for the presence of brine pockets.
Enzymatic hydrolysis, grease permeation, and water barrier properties of zein isolate coated paper.
Parris, N; Dickey, L C; Wiles, J L; Moreau, R A; Cooke, P H
2000-03-01
An inexpensive zein-lipid mixture was isolated from yellow dent, dry-milled corn. Grease permeation through zein isolate applied to brown Kraft paper was found to be independent of loading levels at zein isolate levels above 30 mg/16 in.(2). The data shows that water vapor transmission rates depended on the amount of coating applied. Triacylglycerols were the most abundant lipid in milled corn but were absent in the zein isolate (perhaps due to hydrolysis by lipases). Zein from the paper was hydrolyzed enzymatically and the hydrolysis monitored by SDS-capillary electrophoresis. At an E:S ratio of 1:100 no further increase in the hydrolysate peak occurred after 10 and 30 min for alpha-chymotrypsin and pancreatin 8 x; however, zein and lipid were still present 1 h after hydrolysis by pancreatin 1 x.
Real-time oxide evolution of copper protected by graphene and boron nitride barriers.
Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L
2017-01-09
Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.
Social barriers to pathogen transmission in wild animal populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loehle, C.
Diseases and pathogens are receiving increasing recognition as sources of mortality in animal populations. Immune system strength is clearly important in fending off pathogen attack. Physical barriers to pathogen entry are also important. Various individual behaviors are efficacious in reducing contact with diseases and pests. This paper focuses on a fourth mode of defense: social barriers to transmission. Various social behaviors have pathogen transmission consequences. Selective pressures on these social behaviors may therefore exist. Effects on pathogen transmission of mating strategies, social avoidance, group size, group isolation, and other behaviors are explored. It is concluded that many of these behaviorsmore » may have been affected by selection pressures to reduce transmission of pathogens. 84 refs., 1 tab.« less
Sant'Anna, Juliane R; Miyamoto, Cláudia T; Rosada, Lúcia J; Franco, Claudinéia C S; Kaneshima, Edilson N; Castro-Prado, Marialba A A
2010-01-01
The genetic variation among nine soybean-originating isolates of Colletotrichum truncatum from different Brazilian states was studied. Nitrate non-utilizing (nit) mutants were obtained with potassium chlorate and used to characterize vegetative compatibility reactions, heterokaryosis and RAPD profile. Based on pairings of nit mutants from the different isolates, five vegetative complementation groups (VCG) were identified, and barriers to the formation of heterokaryons were observed among isolates derived from the same geographic area. No complementation was observed among any of the nit mutants recovered from the isolate A, which was designed heterokaryon-self-incompatible. Based on RAPD analysis, a polymorphism was detected among the wild isolate C and their nit1 and NitM mutants. RAPD amplification, with five different primers, also showed polymorphic profiles among Brazilian C. truncatum isolates. Dendrogram analysis resulted in a similarity degree ranging between 0.331 and 0.882 among isolates and identified three RAPD groups. Despite the lack of a correlation between the RAPD analysis and the vegetative compatibility grouping, results demonstrated the potential of VCG analysis to differentiate C. truncatum isolates genotypically similar when compared by RAPD.
Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu
2013-01-01
In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...
Walkner, Tammy J; Weare, Andrea M; Tully, Melissa
2017-04-04
Social isolation is a problem facing many older women. Isolation can contribute to poor health as adults age without social support. Increased and tailored communication offers service organizations more opportunities to provide social support to these adults. This research examines perceptions of aging to explore communication behaviors, barriers, and opportunities for improved communication and service provision for aging women. Using data from focus groups and interviews, this study finds that participants from community organizations rely on word of mouth and traditional media to communicate with their aging constituents, despite opportunities to use digital communication and to develop communication plans for this population.
Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane; Mousseau, Normand
Adsorption and dissociation of gaseous carbon monoxide (CO) on metal surfaces is one of the most frequently occurring processes of carburisation, known as primary initiator of metal dusting corrosion. Among the various factors that can significantly influence the carburisation process are the intrinsic surface defects such as single surface vacancies occurring at high concentrations due to their low formation energy. Intuitively, adsorption and dissociation barriers of CO are expected to be lowered in the vicinity of a surface vacancy, due to the strong attractive interaction between the vacancy and the C atom. Here the adsorption energies and dissociation pathways ofmore » CO on clean and defective Fe 110 surface are explored by means of density functional theory. Interestingly, we find that the O adatom, resulting from the CO dissociation, is unstable in the electron-deficit neighbourhood of the vacancy due to its large electron affinity, and raises the barrier of the carburisation pathway. Still, a full comparative study between the clean surface and the vacancy-defected surface reveals that the complete process of carburisation, starting from adsorption to subsurface diffusion of C, is more favourable in the vicinity of a vacancy defect.« less
Ahn, Joo Sung; Chon, Chul-Min; Moon, Hi-Soo; Kim, Kyoung-Woong
2003-05-01
Steel manufacturing byproducts were tested as a means of treating mine tailing leachate with a high As concentration. Byproduct materials can be placed in situ as permeable reactive barriers to control the subsurface release of leachate from tailing containment systems. The tested materials had various compositions of elemental Fe, Fe oxides, Ca-Fe oxides and Ca hydroxides typical of different steel manufacturing processes. Among these materials, evaporation cooler dust (ECD), oxygen gas sludge (OGS), basic oxygen furnace slag (BOFS) and to a lesser degree, electrostatic precipitator dust (EPD) effectively removed both As(V) and As(III) during batch experiments. ECD, OGS and BOFS reduced As concentrations to <0.5mg/l from 25mg/l As(V) or As(III) solution in 72 h, exhibiting higher removal capacities than zero-valent iron. High Ca concentrations and alkaline conditions (pH ca. 12) provided by the dissolution of Ca hydroxides may promote the formation of stable, sparingly soluble Ca-As compounds. When initial pH conditions were adjusted to 4, As reduction was enhanced, probably by adsorption onto iron oxides. The elution rate of retained As from OGS and ECD decreased with treatment time, and increasing the residence time in a permeable barrier strategy would be beneficial for the immobilization of As. When applied to real tailing leachate, ECD was found to be the most efficient barrier material to increase pH and to remove As and dissolved metals.
2014-06-19
excited by a sine -wave signal with peak- to-peak amplitudes between 7.2 kV and 10 kV, and frequencies of 2.5 kHz and 4 kHz. The results indicate that the...side length of 0.68 m, made of transparent PMMA, to isolate it from ambient disturbances. The plasma actuator was excited by a sine -wave signal, which... Portugal , 2008. 6Hanson, R., Houser, N., and Lavoie, P., “Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators
Kurzbaum, Eyal; Kirzhner, Felix; Sela, Shlomo; Zimmels, Yoram; Armon, Robert
2010-09-01
In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze
2008-08-01
The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.
Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze
2008-01-01
The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously. PMID:18445026
Rasmussen, L. D.; Zawadsky, C.; Binnerup, S. J.; Øregaard, G.; Sørensen, S. J.; Kroer, N.
2008-01-01
Mercury-resistant bacteria may be important players in mercury biogeochemistry. To assess the potential for mercury reduction by two subsurface microbial communities, resistant subpopulations and their merA genes were characterized by a combined molecular and cultivation-dependent approach. The cultivation method simulated natural conditions by using polycarbonate membranes as a growth support and a nonsterile soil slurry as a culture medium. Resistant bacteria were pregrown to microcolony-forming units (mCFU) before being plated on standard medium. Compared to direct plating, culturability was increased up to 2,800 times and numbers of mCFU were similar to the total number of mercury-resistant bacteria in the soils. Denaturing gradient gel electrophoresis analysis of DNA extracted from membranes suggested stimulation of growth of hard-to-culture bacteria during the preincubation. A total of 25 different 16S rRNA gene sequences were observed, including Alpha-, Beta-, and Gammaproteobacteria; Actinobacteria; Firmicutes; and Bacteroidetes. The diversity of isolates obtained by direct plating included eight different 16S rRNA gene sequences (Alpha- and Betaproteobacteria and Actinobacteria). Partial sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One of the sequences did not result in a match in the BLAST search. The results illustrate the power of integrating advanced cultivation methodology with molecular techniques for the characterization of the diversity of mercury-resistant populations and assessing the potential for mercury reduction in contaminated environments. PMID:18441111
Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality.
Tashakor, Mahsa; Modabberi, Soroush; van der Ent, Antony; Echevarria, Guillaume
2018-05-08
This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al 2 O 3 and Fe 2 O 3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na 2 O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.
Near Two-Decade Instrument Performance for Hydrological Monitoring at the Prototype Hanford Barrier
NASA Astrophysics Data System (ADS)
Zhang, Z. F.; Strickland, C. E.; Clayton, R. E.
2012-12-01
Surface barriers have been proposed for use at the Department of Energy's Hanford Site as a means to isolate certain radioactive waste sites that, for reasons of cost or worker safety, may not be exhumed. The Hanford Prototype Barrier was constructed in 1994 using mostly natural materials to demonstrate its long-term performance. The barrier is expected to perform for at least 1000 years by limiting water, plant, animal, and human intrusion and minimizing erosion. Extensive instrumentation is used to monitor the hydrological regime above, within, below, and around the barrier. Specifically, natural precipitation and irrigation are measured with rain gauges, runoff water with a runoff flume, soil water content within the barrier at 12 stations with a neutron probe, a capacitance probe, and time-domain-reflectometry probes, and soil water pressure with gypsum blocks and heat-dissipation-units. Drainage through the barrier and the side slopes is measured with 12 water collection vaults, respectively, for 12 zones. Each drainage vault is equipped with a dosing siphon, a dose counter, a pressure transducer to measure the water level, and a tipping bucket to measure the inflow. During the near two-decade monitoring period, some of the instruments stopped functioning, while others still function normally till present. This presentation will summarize the performance of these instruments. Recommendations for future barrier monitoring will be given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahnood, Arman, E-mail: arman.ahnood@unimelb.edu.au; Ganesan, Kumaravelu; Stacey, Alastair
Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamondmore » nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm{sup −2}, charge injection capacity of 0.01 mC cm{sup −2} is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.« less
NASA Astrophysics Data System (ADS)
Tuttle, L. F., II; Wernette, P. A.; Houser, C.
2016-12-01
Framework geology has been demonstrated to influence the geomorphology and affect the response of barrier islands to extreme storm events. Therefore, it is vital that we understand the framework geology before we can accurately assess the vulnerability and resiliency of the coast. Geophysical surveys consisting of ground-penetrating radar (GPR) and electromagnetic inductance (EMI) were collected along the length of Padre Island National Seashore (PAIS) to map subsurface infilled paleochannels identified in previous research. The most extensive published survey of PAIS framework geology was conducted in the 1950s as part of dredging the Intracoastal Waterway through Laguna Madre. Using cores and seismic surveys the previous study identified a series of relict infilled paleochannels in dissecting PAIS. The sediment cores presented in our poster were collected in Fall 2016 with a Geoprobe 6712DT. Cores were stored and processed using an X-ray fluorescence (XRF) scanner at the International Ocean Discovery Program repository in College Station, Texas. The XRF data was used to examine mineralogical differences that provide valuable insight into the evolutionary history of the island. This poster presents results from sediment cores collected to validate the geophysical survey data. The broader purpose of this research is to validate the subsurface framework geology features (i.e. infilled paleochannels) in order to more accurately predict future changes to the environmental and economic longevity of PAIS.
Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution
NASA Astrophysics Data System (ADS)
Ahnood, Arman; Simonov, Alexandr N.; Laird, Jamie S.; Maturana, Matias I.; Ganesan, Kumaravelu; Stacey, Alastair; Ibbotson, Michael R.; Spiccia, Leone; Prawer, Steven
2016-03-01
Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamond nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm-2, charge injection capacity of 0.01 mC cm-2 is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.
The Role of Surface Protection for High-Temperature Performance of TiAl Alloys
NASA Astrophysics Data System (ADS)
Schütze, Michael
2017-12-01
In the temperature range where TiAl alloys are currently being used in jet engine and automotive industries, surface reaction with the operating environment is not yet a critical issue. Surface treatment may, however, be needed in order to provide improved abrasion resistance. Development routes currently aim at a further increase in operation temperatures in gas turbines up to 800°C and higher, and in automotive applications for turbocharger rotors, even up to 1050°C. In this case, oxidation rates may reach levels where significant metal consumption of the load-bearing cross-section can occur. Another possibly even more critical issue can be high-temperature-induced oxygen and nitrogen up-take into the metal subsurface zone with subsequent massive ambient temperature embrittlement. Solutions for these problems are based on a deliberate phase change of the metal subsurface zone by diffusion treatments and by using effects such as the halogen effect to change the oxidation mechanism at high temperatures. Other topics of relevance for the use of TiAl alloys in high-temperature applications can be high-temperature abrasion resistance, thermal barrier coatings on TiAl and surface quality in additive manufacturing, in all these cases-focusing on the role of the operation environment. This paper addresses the recent developments in these areas and the requirements for future work.