Sample records for subsurface ocean temperature

  1. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  2. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    PubMed Central

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  3. Deglacial Tropical Atlantic subsurface warming links ocean circulation variability to the West African Monsoon.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Parker, Andrew O; Ji, Link; He, Feng

    2017-11-13

    Multiple lines of evidence show that cold stadials in the North Atlantic were accompanied by both reductions in Atlantic Meridional Overturning Circulation (AMOC) and collapses of the West African Monsoon (WAM). Although records of terrestrial change identify abrupt WAM variability across the deglaciation, few studies show how ocean temperatures evolved across the deglaciation. To identify the mechanism linking AMOC to the WAM, we generated a new record of subsurface temperature variability over the last 21 kyr based on Mg/Ca ratios in a sub-thermocline dwelling planktonic foraminifera in an Eastern Equatorial Atlantic (EEA) sediment core from the Niger Delta. Our subsurface temperature record shows abrupt subsurface warming during both the Younger Dryas (YD) and Heinrich Event 1. We also conducted a new transient coupled ocean-atmosphere model simulation across the YD that better resolves the western boundary current dynamics and find a strong negative correlation between AMOC strength and EEA subsurface temperatures caused by changes in ocean circulation and rainfall responses that are consistent with the observed WAM change. Our combined proxy and modeling results provide the first evidence that an oceanic teleconnection between AMOC strength and subsurface temperature in the EEA impacted the intensity of the WAM on millennial time scales.

  4. Seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies and Northern hemisphere climate

    NASA Astrophysics Data System (ADS)

    Sinha, Bablu; Blaker, Adam; Duchez, Aurelie; Grist, Jeremy; Hewitt, Helene; Hirschi, Joel; Hyder, Patrick; Josey, Simon; Maclachlan, Craig; New, Adrian

    2017-04-01

    A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control simulation is integrated from September 1 to 28 February and compared with a similar ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface (deeper than 180m) temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010, which is known to have re-emerged at the ocean surface in subsequent months. The perturbation is confined to the North Atlantic Ocean between the Equator and 65 degrees North. The model has 1/4 degree horizontal resolution in the ocean and the experiment is repeated for two atmosphere horizontal resolutions ( 60km and 25km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. The ensembles display a wide range of reemergence behaviour, in some cases re-emergence occurs by November, in others it is delayed or does not occur at all. A wide range of amplitudes of the re-emergent temperature anomalies is observed. In cases where re-emergence occurs, there is a marked effect on both the regional (North Atlantic and Europe) and hemispheric surface pressure and temperature patterns. The results highlight a potentially important process whereby ocean memory of conditions up to a year earlier can significantly enhance seasonal forecast skill.

  5. Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant

    2018-03-01

    In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily responsible for the strong subsurface warm bias over the EEIO. This study advocates the importance of understanding the ability of the models in representing the large scale air-sea interactions over the tropics and their impact on ocean biases for better monsoon forecast.

  6. Role of subsurface ocean in decadal climate predictability over the South Atlantic.

    PubMed

    Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K

    2018-06-04

    Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.

  7. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  8. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Su, Hua; Li, Wene; Yan, Xiao-Hai

    2018-01-01

    Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.

  9. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures

    PubMed Central

    Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.

    2012-01-01

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256

  10. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.

    PubMed

    Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L

    2012-09-04

    Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.

  11. Subsurface temperature estimation from climatology and satellite SST for the sea around Korean Peninsula 1Bong-Guk, Kim, 1Yang-Ki, Cho, 1Bong-Gwan, Kim, 1Young-Gi, Kim, 1Ji-Hoon, Jung 1School of Earth and Environmental Sciences, Seoul National University

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Guk; Cho, Yang-Ki; Kim, Bong-Gwan; Kim, Young-Gi; Jung, Ji-Hoon

    2015-04-01

    Subsurface temperature plays an important role in determining heat contents in the upper ocean which are crucial in long-term and short-term weather systems. Furthermore, subsurface temperature affects significantly ocean ecology. In this study, a simple and practical algorithm has proposed. If we assume that subsurface temperature changes are proportional to surface heating or cooling, subsurface temperature at each depth (Sub_temp) can be estimated as follows PIC whereiis depth index, Clm_temp is temperature from climatology, dif0 is temperature difference between satellite and climatology in the surface, and ratio is ratio of temperature variability in each depth to surface temperature variability. Subsurface temperatures using this algorithm from climatology (WOA2013) and satellite SST (OSTIA) where calculated in the sea around Korean peninsula. Validation result with in-situ observation data show good agreement in the upper 50 m layer with RMSE (root mean square error) less than 2 K. The RMSE is smallest with less than 1 K in winter when surface mixed layer is thick, and largest with about 2~3 K in summer when surface mixed layer is shallow. The strong thermocline and large variability of the mixed layer depth might result in large RMSE in summer. Applying of mixed layer depth information for the algorithm may improve subsurface temperature estimation in summer. Spatial-temporal details on the improvement and its causes will be discussed.

  12. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events

    NASA Astrophysics Data System (ADS)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.

    2008-12-01

    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  13. Simulating pathways of subsurface oil in the Faroe-Shetland Channel using an ocean general circulation model.

    PubMed

    Main, C E; Yool, A; Holliday, N P; Popova, E E; Jones, D O B; Ruhl, H A

    2017-01-15

    Little is known about the fate of subsurface hydrocarbon plumes from deep-sea oil well blowouts and their effects on processes and communities. As deepwater drilling expands in the Faroe-Shetland Channel (FSC), oil well blowouts are a possibility, and the unusual ocean circulation of this region presents challenges to understanding possible subsurface oil pathways in the event of a spill. Here, an ocean general circulation model was used with a particle tracking algorithm to assess temporal variability of the oil-plume distribution from a deep-sea oil well blowout in the FSC. The drift of particles was first tracked for one year following release. Then, ambient model temperatures were used to simulate temperature-mediated biodegradation, truncating the trajectories of particles accordingly. Release depth of the modeled subsurface plumes affected both their direction of transport and distance travelled from their release location, and there was considerable interannual variability in transport. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies

    NASA Astrophysics Data System (ADS)

    Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing

    2017-11-01

    The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.

  15. Detection of subsurface-intensified eddies from observations of the sea-surface: a case study for Mediterranean Water Eddies in a long-term high-resolution simulation

    NASA Astrophysics Data System (ADS)

    Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand

    2017-04-01

    Subsurface-intensified eddies are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these eddies are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified eddies can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the eddies positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface eddies generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying eddy. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water Eddies - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D eddies characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface eddies from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the Meddy potential vorticity structure at depth (around 1000 m below the sea-surface). Such anomalies were long-lived, mostly migrated exhibiting southwestward trajectories, their intensities were O(10 cm) and extended horizontally up to more than 300 km (around 1.5 times the Meddy diameter). On the other hand, the Meddies thermohaline surface signatures proved to be mostly dominated by the local surface conditions and their structure poorly correlated to the Meddy structure at depth (e.g. the Meddy volume-integrated salt and temperature content). These results point out that satellite altimetry is the most suitable approach to track subsurface-intensified eddies from observations of the sea-surface, also encouraging the use of future high-resolution altimetric observations (e.g. SWOT) to detect subsurface oceanic motions from satellite sensors.

  16. Western Arctic Ocean temperature variability during the last 8000 years

    USGS Publications Warehouse

    Farmer, Jesse R.; Cronin, Thomas M.; De Vernal, Anne; Dwyer, Gary S.; Keigwin, Loyd D.; Thunell, Robert C.

    2011-01-01

    We reconstructed subsurface (∼200–400 m) ocean temperature and sea-ice cover in the Canada Basin, western Arctic Ocean from foraminiferal δ18O, ostracode Mg/Ca ratios, and dinocyst assemblages from two sediment core records covering the last 8000 years. Results show mean temperature varied from −1 to 0.5°C and −0.5 to 1.5°C at 203 and 369 m water depths, respectively. Centennial-scale warm periods in subsurface temperature records correspond to reductions in summer sea-ice cover inferred from dinocyst assemblages around 6.5 ka, 3.5 ka, 1.8 ka and during the 15th century Common Era. These changes may reflect centennial changes in the temperature and/or strength of inflowing Atlantic Layer water originating in the eastern Arctic Ocean. By comparison, the 0.5 to 0.7°C warm temperature anomaly identified in oceanographic records from the Atlantic Layer of the Canada Basin exceeded reconstructed Atlantic Layer temperatures for the last 1200 years by about 0.5°C.

  17. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE PAGES

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...

    2016-07-18

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  18. Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.

    The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less

  19. Temperature Data Assimilation with Salinity Corrections: Validation for the NSIPP Ocean Data Assimilation System in the Tropical Pacific Ocean, 1993-1998

    NASA Technical Reports Server (NTRS)

    Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.

    2003-01-01

    The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.

  20. Subsurface conditions in hydrothermal vents inferred from diffuse flow composition, and models of reaction and transport

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.

    2015-08-01

    Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.

  1. Distinctive ocean interior changes during the recent warming slowdown

    PubMed Central

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-01-01

    The earth system experiences continuous heat input, but a “climate hiatus” of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1–100 m) temperature has decreased in this century, accompanied by warming in the 101–300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301–700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701–1500 m has experienced significant warming. PMID:26394551

  2. Distinctive ocean interior changes during the recent warming slowdown.

    PubMed

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-09-23

    The earth system experiences continuous heat input, but a "climate hiatus" of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1-100 m) temperature has decreased in this century, accompanied by warming in the 101-300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301-700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701-1500 m has experienced significant warming.

  3. Needs, opportunities and strategies for a long-term oceanic sciences satellite program

    NASA Technical Reports Server (NTRS)

    Ruttenberg, S. (Editor)

    1981-01-01

    Several areas of the National Oceanic Satellite System are addressed including Satellite-borne communication systems, subsurface remote sensing, data coordination, color scanners, formatting important historical data sets, and sea surface temperature observations.

  4. 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong

    2018-04-01

    In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.

  5. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses

    NASA Astrophysics Data System (ADS)

    Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin

    2018-04-01

    Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.

  6. Importance of solar subsurface heating in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.

    2001-12-01

    The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.

  7. El Nino and the Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Halpern, David

    1999-01-01

    Until a decade ago, an often-quoted expression in oceanography is that very few observations are recorded throughout the ocean. Now, the sentiment is no longer valid in the uppermost 10% of the tropical Pacific Ocean nor at the surface of the global ocean. One of the remarkable legacies of the 1985-1994 Tropical Oceans Global Atmosphere (TOGA) Program is an in situ marine meteorological and upper oceanographic measurement array throughout the equatorial Pacific to monitor the development and maintenance of El Nino episodes. The TOGA Observing System, which initially consisted of moored- and drifting-buoy arrays, a network of commercial ships, and coastal and island stations, now includes a constellation of satellites and data-assimilating models to simulate subsurface oceanographic conditions. The El Nino and La Nina tropical Pacific Ocean observing system represents the initial phase of an integrated global ocean observing system. Remarkable improvements have been made in ocean model simulation of subsurface currents, but some problems persist. For example, the simulation of the South Equatorial Current (SEC) remains an important challenge in the 2S-2N Pacific equatorial wave guide. During El Nino the SEC at the equator is reduced and sometimes the direction is reversed, becoming eastward. Both conditions allow warm water stored in the western Pacific to invade the eastern region, creating an El Nino episode. Assimilation of data is a tenet of faith to correct simulation errors caused by deficiencies in surface fluxes (especially wind stress) and parameterizations of subgrid-scale physical processes. In the first of two numerical experiments, the Pacific SEC was simulated with and without assimilation of subsurface temperature data. Along the equator, a very weak SEC occurred throughout the eastern Pacific, independent of assimilation of data. However, as displayed in the diagram, in the western Pacific there was no satisfactory agreement between the two simulations. To help determine reliability of the simulated SEC in the western Pacific, current measurements recorded during the 9-19 October 1994 voyage of the French research vessel L'Atalante are also shown in the diagram. With data assimilation, the simulated SEC was in much better agreement with L'Atalante observations. The simulated SEC with data assimilation was far from perfect, in part because of the sparsity of subsurface temperature observations. In the next experiment, TOPEX/POSEIDON sea surface height data in combination with subsurface temperatures will be assimilated to assess further improvement of the simulation of the SEC.

  8. A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño

    NASA Astrophysics Data System (ADS)

    Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu

    2001-02-01

    Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.

  9. Leading modes of tropical Pacific subsurface ocean temperature and associations with two types of El Niño.

    PubMed

    Zhang, Zhiyuan; Ren, Baohua; Zheng, Jianqiu

    2017-02-17

    Using empirical orthogonal function (EOF) analysis of the monthly tropical Pacific subsurface ocean temperature anomalies (SOTA) from 1979 to 2014, we detected three leading modes in the tropical Pacific subsurface temperature. The first mode has a dipole pattern, with warming in the eastern Pacific and cooling in the western Pacific, and is closely related to traditional El Niño. The second mode has a monopole pattern, with only warming in the central Pacific subsurface. The third mode has a zonal tripole pattern, with warming in the off-equatorial central Pacific and cooling in the far eastern Pacific and western Pacific. The second and third modes are both related to El Niño Modoki. Mode 1 is linked with a Kelvin wave that propagates from the central to the eastern Pacific and is induced by the anomalous westerlies that propagate from the western to the central Pacific. Mode 2 is also linked with a Kelvin wave that propagates from the western to the central Pacific induced by the enhancement of westerlies over the western Pacific. Mode 3 is linked with a Rossby wave that propagates from the central to the western Pacific driven by the anomalous easterlies over the eastern Pacific.

  10. How ice shelf morphology controls basal melting

    NASA Astrophysics Data System (ADS)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  11. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    PubMed Central

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  12. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong

    2007-09-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.

  13. A Statistical Approach for Determining Subsurface Thermal Structure from Sea Surface Temperature in the Northeast Pacific Ocean.

    DTIC Science & Technology

    1983-06-01

    DE ERMIuIATIC1N OF SUBSUEFACZE THERMAL STRUCTURE * The study of the oceans by satellites has become a sajc: *arena for sc-intific scrutiny and...between *satellite- de ~ived sea surface temperatu-res and vsrt.-cal *temperature profiles, then the areas of acoust-ical oceanicg- raphy and naval...based on dynamical principles and will ulti-mately provide the basis for pred-icting ocear,-c processes. Emp rical mq4thods have been de -termined i n the

  14. Predictability of Subsurface Temperature and the AMOC

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Schubert, S. D.

    2013-12-01

    GEOS 5 coupled model is extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. Using this model, we study the subsurface temperature initial value predictability, the variability of the Atlantic meridional overturning circulation (AMOC) and its impacts on the global climate. Our approach is to utilize the idealized data assimilation technology developed at the GMAO. The technique 'replay' allows us to assess, for example, the impact of the surface wind stresses and/or precipitation on the ocean in a very well controlled environment. By running the coupled model in replay mode we can in fact constrain the model using any existing reanalysis data set. We replay the model constraining (nudging) it to the MERRA reanalysis in various fields from 1948-2012. The fields, u,v,T,q,ps, are adjusted towards the 6-hourly analyzed fields in atmosphere. The simulated AMOC variability is studied with a 400-year-long segment of replay integration. The 84 cases of 10-year hindcasts are initialized from 4 different replay cycles. Here, the variability and predictability are examined further by a measure to quantify how much the subsurface temperature and AMOC variability has been influenced by atmospheric forcing and by ocean internal variability. The simulated impact of the AMOC on the multi-decadal variability of the SST, sea surface height (SSH) and sea ice extent is also studied.

  15. Ocean heat content and ocean energy budget: make better use of historical global subsurface temperature dataset

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Zhu, J.

    2016-02-01

    Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.

  16. Ocean response to typhoons in the western North Pacific: Composite results from Argo data

    NASA Astrophysics Data System (ADS)

    Lin, Sheng; Zhang, Wen-Zhou; Shang, Shao-Ping; Hong, Hua-Sheng

    2017-05-01

    Composite structures of ocean temperature and salinity anomalies caused by tropical cyclones (TCs) or typhoons in the western North Pacific Ocean were obtained from Argo data. These structures were used to analyze ocean responses to typhoons and the dynamic mechanisms inherent in those responses with a particular focus on upwelling. TC-induced cooling is often strongly rightward-biased in the surface layer, and shifts toward the typhoon track at depths exceeding roughly 100 m. In the central water column within approximately 75 km of the typhoon track, subsurface warming predicted by vertical mixing is restrained and replaced by cooling due to upwelling. Upwelling contributes 15% on average to temperature cooling in the near surface layer (10-30 m), 84% in the subsurface layer (30-250 m) and 94% in the deep layer (250-600 m) during the period of 0.5-2.5 days after the typhoon's passage. It is suggested that the sea surface cooling effect of vertical mixing can be enhanced by the upwelling. The effect of upwelling is also prominent in the salinity response to typhoons. The composite results from the Argo data clearly reveal basic ocean responses to typhoons and indicate the important role of upwelling therein.

  17. Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Hu,Yongxiang

    2009-01-01

    CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.

  18. Impact of glider data assimilation on the Monterey Bay model

    NASA Astrophysics Data System (ADS)

    Shulman, Igor; Rowley, Clark; Anderson, Stephanie; DeRada, Sergio; Kindle, John; Martin, Paul; Doyle, James; Cummings, James; Ramp, Steve; Chavez, Francisco; Fratantoni, David; Davis, Russ

    2009-02-01

    Glider observations were essential components of the observational program in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during summer of 2003. This paper is focused on the impact of the assimilation of glider temperature and salinity observations on the Navy Coastal Ocean Model (NCOM) predictions of surface and subsurface properties. The modeling system consists of an implementation of the NCOM model using a curvilinear, orthogonal grid with 1-4 km resolution, with finest resolution around the bay. The model receives open boundary conditions from a regional (9 km resolution) NCOM implementation for the California Current System, and surface fluxes from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model at 3 km resolution. The data assimilation component of the system is a version of the Navy Coupled Ocean Data Assimilation (NCODA) system, which is used for assimilation of the glider data into the NCOM model of the Monterey Bay area. The NCODA is a fully 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity. Assimilation of glider data improves the surface temperature at the mooring locations for the NCOM model hindcast and nowcasts, and for the short-range (1-1.5 days) forecasts. It is shown that it is critical to have accurate atmospheric forcing for more extended forecasts. Assimilation of glider data provided better agreement with independent observations (for example, with aircraft measured SSTs) of the model-predicted and observed spatial distributions of surface temperature and salinity. Mooring observations of subsurface temperature and salinity show sharp changes in the thermocline and halocline depths during transitions from upwelling to relaxation and vice versa. The non-assimilative run also shows these transitions in subsurface temperature; but they are not as well defined. For salinity, the non-assimilative run significantly differs from the observations. However, the glider data assimilating run is able to show comparable results with observations of thermocline as well as halocline depths during upwelling and relaxation events in the Monterey Bay area. It is also shown that during the relaxation of wind, the data assimilative run has higher value of subsurface velocity complex correlation with observations than the non-assimilative run.

  19. Wind-driven Sea-Ice Changes Intensify Subsurface Warm Water Intrusion into the West Antarctic Land Ice Front

    NASA Astrophysics Data System (ADS)

    Li, X.; Gille, S. T.; shang-Ping, X.; Xie, S. P.; Holland, D. M.; Holland, M. M.

    2016-12-01

    The climate change observed around Antarctica in recent decades is characterized by distinct zonally asymmetric patterns, with the strongest changes over West Antarctica. These changes are marked by strong land ice melting and sea ice redistribution around West Antarctica. This is associated with temperature and circulation anomalies in the ocean and atmosphere around the same area. In this study, we comprehensively examine the coherency between these changes using a combination of observations and numerical simulations. Results show that the atmospheric circulation changes distinctly drive the changes in ocean circulation and sea ice distribution. In addition, the atmospheric circulation induced sea ice changes play an important role in lifting the subsurface ocean temperature and salinity around the West Antarctica. During recent decades, the Amundsen Sea Low (ASL) has deepened, especially in austral autumn and winter. This deepened ASL has intensified the offshore wind near the coastal regions of the Ross Sea. Driven by these atmospheric changes, more sea ice has formed near West Antarctica in winter. In contrast, more sea ice melts during the summer. This strengthened sea ice seasonality has been observed and successfully reproduced in the model simulation. The wind-driven sea ice changes causes a surface freshening over the Ross and Amundsen Seas, with a subsurface salinity increase over the Ross Sea. The additional fresh/salt water fluxes thus further change the vertical distribution of salinity and strengthen the stratification in the Ross and Amundsen Seas. As a result of the above ice-ocean process, the mixed-layer depth around the Ross and Amundsen Seas shallows. By weakening the vertical heat transport near the surface layer, and inducing an upward movement of the circumpolar deep water (CDW), this process freshened and cooled the surface layer, while the salinity and temperature in the sub-surface ocean are increased, extending from 150 meters to >700 meters. Around the Amundsen Sea, warm water touches the continent, which could potentially contribute to the accelerated land ice melting over this area.

  20. Asymmetric Signature of Glacial Antarctic Intermediate Water in the Central South Pacific

    NASA Astrophysics Data System (ADS)

    Tapia, R.; Nuernberg, D.; Ho, S. L.; Lamy, F.; Ullermann, J.; Gersonde, R.; Tiedemann, R.

    2017-12-01

    Southern Ocean Intermediate Waters (SOIWs) play a key role in modulating the global climate on glacial-interglacial time scales as they connect the Southern Ocean and the tropics. Despite their importance, the past evolution of the SOIWs in the central South Pacific is largely unknown due to a dearth of sedimentary archives. Here we compare Mg/Ca-temperature, stable carbon and oxygen isotope records from surface-dwelling (G. bulloides) and deep-dwelling (G. inflata) planktic foraminifera at site PS75/059-2 (54°12.9' S, 125°25.53' W; recovery 13.98 m; 3.613 m water depth), located north of the modern Subantarctic Front. Our study focuses on the temperature and salinity variability controlled by SOIWs, which were subducted at the Subantarctic Front during the Last Glacial Maximum (LGM; 29-17ka BP) and the Penultimate Glacial Maximum (PGM; 180-150ka BP). During both glacial periods conditions at the subsurface ocean were colder and fresher relative to the Holocene (<10ka) suggesting an enhanced presence of SOIWs. In spite of the comparable subsurface cooling during both glacial, the subsurface ocean during the PGM was saltier and 0.35‰ more depleted in δ13C in comparison to the LGM. Interestingly, the mean δ13C value of the PGM is comparable to the Carbon Isotope Minimum Events, which might suggests a larger contribution of "old" low δ13C deep waters to the study site during the PGM. A Latitudinal comparison of subsurface proxies suggests glacial asymmetries in the advection of SOIWs into the central Pacific, plausibly related to glacial changes in the convection depth of SOIWs at the South Antarctic Front area rather than changes in production of the SOIWs.

  1. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    USGS Publications Warehouse

    Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.

    2007-01-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.

  2. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels the connection between equatorial Indian Ocean circulation and evolution and strengthening of IOD.

  3. Estimation of Global Subsurface Thermal Structure from Satellite Remote Sensing Observations Based on Machine Learning

    NASA Astrophysics Data System (ADS)

    Su, H.; Yan, X. H.

    2017-12-01

    Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.

  4. Habitability of enceladus: planetary conditions for life.

    PubMed

    Parkinson, Christopher D; Liang, Mao-Chang; Yung, Yuk L; Kirschivnk, Joseph L

    2008-08-01

    The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.

  5. A Reversal of Decadal Trends in the Equatorial and North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Thompson, P. R.; Merrifield, M. A.; McCreary, J. P., Jr.; Firing, E.; Piecuch, C. G.

    2016-02-01

    Sea level and upper ocean temperature trends in the Equatorial and North Indian Ocean (ENIO) reversed sign shortly after the turn of the century. The trend reversal is spatially coherent and characterized by subsurface cooling during 1993-2002 followed by subsurface warming during 2003-2012. Here we explore the dynamics and forcing of the decadal trend reversal, with a particular emphasis on the role of the Indian Ocean cross-equatorial cell (CEC) and anomalies transmitted from the Pacific basin to the ENIO via the Indonesian Throughflow (ITF). An examination of reanalysis wind-stress fields suggest that forcing of the CEC is enhanced during the cooling phase of the decadal fluctuation, which may account for the cooling trend below 100m in the ENIO during the first decade. In contrast, the subsurface warming during the second decade occurs at thermocline levels, which suggests a deepening of the thermocline during this period. Enhanced Pacific tradewinds since the early 1990s result in a deepening thermocline in the western tropical Pacific (WTP), which may be transmitted to the Indian Ocean basin via the ITF. We present results from simple model experiments that assess the potential for thermocline anomalies originating in the WTP to account for the deepening thermocline in the ENIO during the warming phase of the decadal fluctuation.

  6. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    NASA Astrophysics Data System (ADS)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  7. Zones of life in the subsurface of hydrothermal vents: A synthesis

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Houghton, J.; Meile, C. D.

    2011-12-01

    Subsurface microbial communities in Mid-ocean Ridge (MOR) hydrothermal systems host a wide array of unique metabolic strategies, but the spatial distribution of biogeochemical transformations is poorly constrained. Here we present an approach that reexamines chemical measurements from diffuse fluids with models of convective transport to delineate likely reaction zones. Chemical data have been compiled from bare basalt surfaces at a wide array of mid-ocean ridge systems, including 9°N, East Pacific Rise, Axial Seamount, Juan de Fuca, and Lucky Strike, Mid-Atlantic Ridge. Co-sampled end-member fluid from Ty (EPR) was used to constrain reaction path models that define diffuse fluid compositions as a function of temperature. The degree of mixing between hot vent fluid (350 deg. C) and seawater (2 deg. C) governs fluid temperature, Fe-oxide mineral precipitation is suppressed, and aqueous redox reactions are prevented from equilibrating, consistent with sluggish kinetics. Quartz and pyrite are predicted to precipitate, consistent with field observations. Most reported samples of diffuse fluids from EPR and Axial Seamount fall along the same predicted mixing line only when pyrite precipitation is suppressed, but Lucky Strike fluids do not follow the same trend. The predicted fluid composition as a function of temperature is then used to calculate the free energy available to autotrophic microorganisms for a variety of catabolic strategies in the subsurface. Finally, the relationships between temperature and free energy is combined with modeled temperature fields (Lowell et al., 2007 Geochem. Geophys., Geosys.) over a 500 m x 500 m region extending downward from the seafloor and outward from the high temperature focused hydrothermal flow to define areas that are energetically most favorable for a given metabolic process as well as below the upper temperature limit for life (~120 deg. C). In this way, we can expand the relevance of geochemical model predictions of bioenergetics by predicting functionally-defined 'Zones of Life' and placing them spatially within the boundary of the 120 deg. C isotherm, estimating the extent of subsurface biosphere beneath mid-ocean ridge hydrothermal systems. Preliminary results indicate that methanogenesis yields the most energy per kg of vent fluid, consistent with the elevated CH4(aq) seen at all three sites, but may be constrained by temperatures too hot for microbial life while available energy from the oxidation of Fe(II) peaks near regions of the crust that are more hospitable.

  8. Validation and Inter-comparison Against Observations of GODAE Ocean View Ocean Prediction Systems

    NASA Astrophysics Data System (ADS)

    Xu, J.; Davidson, F. J. M.; Smith, G. C.; Lu, Y.; Hernandez, F.; Regnier, C.; Drevillon, M.; Ryan, A.; Martin, M.; Spindler, T. D.; Brassington, G. B.; Oke, P. R.

    2016-02-01

    For weather forecasts, validation of forecast performance is done at the end user level as well as by the meteorological forecast centers. In the development of Ocean Prediction Capacity, the same level of care for ocean forecast performance and validation is needed. Herein we present results from a validation against observations of 6 Global Ocean Forecast Systems under the GODAE OceanView International Collaboration Network. These systems include the Global Ocean Ice Forecast System (GIOPS) developed by the Government of Canada, two systems PSY3 and PSY4 from the French Mercator-Ocean Ocean Forecasting Group, the FOAM system from UK met office, HYCOM-RTOFS from NOAA/NCEP/NWA of USA, and the Australian Bluelink-OceanMAPS system from the CSIRO, the Australian Meteorological Bureau and the Australian Navy.The observation data used in the comparison are sea surface temperature, sub-surface temperature, sub-surface salinity, sea level anomaly, and sea ice total concentration data. Results of the inter-comparison demonstrate forecast performance limits, strengths and weaknesses of each of the six systems. This work establishes validation protocols and routines by which all new prediction systems developed under the CONCEPTS Collaborative Network will be benchmarked prior to approval for operations. This includes anticipated delivery of CONCEPTS regional prediction systems over the next two years including a pan Canadian 1/12th degree resolution ice ocean prediction system and limited area 1/36th degree resolution prediction systems. The validation approach of comparing forecasts to observations at the time and location of the observation is called Class 4 metrics. It has been adopted by major international ocean prediction centers, and will be recommended to JCOMM-WMO as routine validation approach for operational oceanography worldwide.

  9. Quantifying the processes controlling intraseasonal mixed-layer temperature variability in the tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Halkides, D. J.; Waliser, Duane E.; Lee, Tong; Menemenlis, Dimitris; Guan, Bin

    2015-02-01

    Spatial and temporal variation of processes that determine ocean mixed-layer (ML) temperature (MLT) variability on the timescale of the Madden-Julian Oscillation (MJO) in the Tropical Indian Ocean (TIO) are examined in a heat-conserving ocean state estimate for years 1993-2011. We introduce a new metric for representing spatial variability of the relative importance of processes. In general, horizontal advection is most important at the Equator. Subsurface processes and surface heat flux are more important away from the Equator, with surface heat flux being the more dominant factor. Analyses at key sites are discussed in the context of local dynamics and literature. At 0°, 80.5°E, for MLT events > 2 standard deviations, ocean dynamics account for more than two thirds of the net tendency during cooling and warming phases. Zonal advection alone accounts for ˜40% of the net tendency. Moderate events (1-2 standard deviations) show more differences between events, and some are dominated by surface heat flux. At 8°S, 67°E in the Seychelles-Chagos Thermocline Ridge (SCTR) area, surface heat flux accounts for ˜70% of the tendency during strong cooling and warming phases; subsurface processes linked to ML depth (MLD) deepening (shoaling) during cooling (warming) account for ˜30%. MLT is more sensitive to subsurface processes in the SCTR, due to the thin MLD, thin barrier layer and raised thermocline. Results for 8°S, 67°E support assertions by Vialard et al. (2008) not previously confirmed due to measurement error that prevented budget closure and the small number of events studied. The roles of MLD, barrier layer thickness, and thermocline depth on different timescales are examined.

  10. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Jacobs, S. S.; Comiso, J. C.

    1989-12-01

    We have investigated the spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf, in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance heat flux to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical heat flux above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the air temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave sea ice data near continental boundaries.

  11. Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: Implications for upper-ocean stratification

    NASA Astrophysics Data System (ADS)

    Riethdorf, Jan-Rainer; Max, Lars; Nürnberg, Dirk; Lembke-Jene, Lester; Tiedemann, Ralf

    2013-01-01

    Based on models and proxy data, it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (δ18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases, our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.

  12. Retrieval of Ocean Subsurface Particulate Backscattering Coefficient from Space-Borne CALIOP Lidar Measurement

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Pelon, Jacques; Trepte, Chip; Liu, Katie; Rodier, Sharon; Zeng, Shan; Luckher, Patricia; Verhappen, Ron; Wilson, Jamie; hide

    2016-01-01

    A new approach has been proposed to determine ocean subsurface particulate backscattering coefficient bbp from CALIOP 30deg off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180deg scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies.

  13. Lessons Learned from Assimilating Altimeter Data into a Coupled General Circulation Model with the GMAO Augmented Ensemble Kalman Filter

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin

    2011-01-01

    Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly impressive for temperature, but not as satisfactory for salt.

  14. Effects of ocean initial perturbation on developing phase of ENSO in a coupled seasonal prediction model

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Kumar, Arun; Wang, Wanqiu

    2018-03-01

    Coupled prediction systems for seasonal and inter-annual variability in the tropical Pacific are initialized from ocean analyses. In ocean initial states, small scale perturbations are inevitably smoothed or distorted by the observational limits and data assimilation procedures, which tends to induce potential ocean initial errors for the El Nino-Southern Oscillation (ENSO) prediction. Here, the evolution and effects of ocean initial errors from the small scale perturbation on the developing phase of ENSO are investigated by an ensemble of coupled model predictions. Results show that the ocean initial errors at the thermocline in the western tropical Pacific grow rapidly to project on the first mode of equatorial Kelvin wave and propagate to the east along the thermocline. In boreal spring when the surface buoyancy flux weakens in the eastern tropical Pacific, the subsurface errors influence sea surface temperature variability and would account for the seasonal dependence of prediction skill in the NINO3 region. It is concluded that the ENSO prediction in the eastern tropical Pacific after boreal spring can be improved by increasing the observational accuracy of subsurface ocean initial states in the western tropical Pacific.

  15. Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-10-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.

  16. Corrigendum to "Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study" published in Clim. Past, 7, 1103-1122, 2011

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.

    2011-11-01

    Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.

  17. [Spatial-temporal distribution of bigeye tuna Thunnus obesus in the tropical Atlantic Ocean based on Argo data].

    PubMed

    Yang, Sheng-long; Jin, Shao-fei; Hua, Cheng-jun; Dai, Yang

    2015-02-01

    In order to analyze the correlation between spatial-temporal distribution of the bigeye tuna ( Thunnus obesus) and subsurface factors, the study explored the isothermal distribution of subsurface temperatures in the bigeye tuna fishing grounds in the tropical Atlantic Ocean, and built up the spatial overlay chart of the isothermal lines of 9, 12, 13 and 15 °C and monthly CPUE (catch per unit effort) from bigeye tuna long-lines. The results showed that the bigeye tuna mainly distributed in the water layer (150-450 m) below the lower boundary depth of thermocline. At the isothermal line of 12 °C, the bigeye tuna mainly lived in the water layer of 190-260 m, while few individuals were found at water depth more than 400 m. As to the 13 °C isothermal line, high CPUE often appeared at water depth less than 250 m, mainly between 150-230 m, while no CPUE appeared at water depth more than 300 m. The optimum range of subsurface factors calculated by frequency analysis and empirical cumulative distribution function (ECDF) exhibited that the optimum depth range of 12 °C isothermal depth was 190-260 m and the 13 °C isothermal depth was 160-240 m, while the optimum depth difference range of 12 °C isothermal depth was -10 to 100 m and the 13 °C isothermal depth was -40 to 60 m. The study explored the optimum range of subsurface factors (water temperature and depth) that drive horizontal and vertical distribution of bigeye tuna. The preliminary result would help to discover the central fishing ground, instruct fishing depth, and provide theoretical and practical references for the longline production and resource management of bigeye tuna in the Atlantic Ocean.

  18. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, C. A.

    2012-01-01

    Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.

  19. Response of the tropical Pacific Ocean to El Niño versus global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fukai; Luo, Yiyong; Lu, Jian

    Climate models project an El Niño-like SST response in the tropical Pacific Ocean to global warming (GW). By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component, Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of formation mechanism for the changes in the tropical Pacific Ocean under El Niño and GW. Results show that, despite sharing some similarities between the two scenarios, there are many significant distinctions between GW and El Niño: 1) the phase locking of the seasonal cycle reduction is more notable under GW compared withmore » El Niño, implying more extreme El Niño events in the future; 2) in contrast to the penetration of the equatorial subsurface temperature anomaly that appears to propagate in the form of an oceanic equatorial upwelling Kelvin wave during El Niño, the GW-induced subsurface temperature anomaly manifest in the form of off-equatorial upwelling Rossby waves; 3) while significant across-equator northward heat transport (NHT) is induced by the wind stress anomalies associated with El Niño, little NHT is found at the equator due to a symmetric change in the shallow meridional overturning circulation that appears to be weakened in both North and South Pacific under GW; and 4) the maintaining mechanisms for the eastern equatorial Pacific warming are also substantially different.« less

  20. Holocene evolution of the North Atlantic subsurface transport

    NASA Astrophysics Data System (ADS)

    Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph

    2017-04-01

    Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.

  1. Simulation of the ocean's spectral radiant thermal source and boundary conditions

    NASA Astrophysics Data System (ADS)

    Merzlikin, Vladimir; Krass, Maxim; Cheranev, Svyatoslav; Aloric, Aleksandra

    2013-05-01

    This article considers the analysis of radiant heat transfer for semitransparent natural and polluted seawaters and its physical interpretations. Technogenic or natural pollutions are considered as ensembles of selective scattering, absorbing and emitting particles with complex refractive indices in difference spectral ranges of external radiation. Simulation of spectral radiant thermal sources within short wavelength of solar penetrating radiation for upper oceanic depth was carried out for deep seawater on regions from ˜ 300 to ˜ 600 nm and for subsurface layers (not more ˜ 1 m) - on one ˜ 600 - 1200 nm. Model boundary conditions on exposed oceanic surface are defined by (1) emittance of atmosphere and seawater within long wavelength radiation ˜ 9000 nm, (2) convection, and (3) thermal losses due to evaporation. Spatial and temporal variability of inherent optical properties, temperature distributions of the upper overheated layer of seawater, the appearance of a subsurface temperature maximum and a cool surface skin layer in response to penetrating solar radiation are explained first of all by the effects of volumetric scattering (absorption) and surface cooling of polluted seawater. The suggested analysis can become an important and useful subject of research for oceanographers and climatologists.

  2. Use of Ocean Remote Sensing Data to Enhance Predictions with a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.

    1999-01-01

    Surface height, sea surface temperature and surface wind observations from satellites have given a detailed time sequence of the initiation and evolution of the 1997/98 El Nino. The data have beet complementary to the subsurface TAO moored data in their spatial resolution and extent. The impact of satellite observations on seasonal prediction in the tropical Pacific using a coupled ocean-atmosphere general circulation model will be presented.

  3. Subsurface Ocean Tides in Enceladus and Other Icy Moons

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  4. Phase diagram and density of fluids in the water-methanol system: experiments and implications for the crystallization and dynamics of subsurface oceans in icy moons

    NASA Astrophysics Data System (ADS)

    Yao, C.; Mantegazzi, D.; Deschamps, F.; Sanchez-Valle, C.

    2013-12-01

    Methanol, CH3OH, has been recently observed in several comets and at the surface of Saturn's icy moon Enceladus, [Hodyss et al., 2009]. Its plausible presence in the subsurface ocean could significantly affect the thermal and structural evolution of the satellite [Deschamps et al., 2010]. Methanol lowers the melting temperature of water ice [Vuillard & Sanchez, 1961; Miller & Carpenter, 1964], hence decreasing the efficiency of convective heat transfer through the outer ice Ih shell, and affects the subsurface ocean density and thermo-chemical evolution. However, the phase diagram and the fluid density of the H2O - CH3OH system remains largely unknown at the high pressures and low temperature conditions relevant for the icy moon interiors. In this study, we determined experimentally the liquidus temperature of Ice Ih and Ice VI and the fluid density in the binary water-methanol system (5, 10 and 20 w% CH3OH) from sound velocity measurments by Brillouin scattering spectroscopy over the P-T range 230 - 300 K and 10-4 - 1.2 GPa. The experiments were conducted using a membrane-type diamond anvil cell (mDAC) and an in-house designed Peltier cooling system to achieve the low temperatures of interest. Melting and crystallization in the system was visually monitored and confirmed from changes in the Brillouin spectra and in the pressure dependence of the measured sound velocities. The density of fluids ρ(P, T,x) in the binary system weas determined from the inversion of sound velocities measured in the fluids as a function of pressure along isotherms from 230 to 300 K. The results are used to propose a thermodynamic model for the CH3OH-H2O system over the investigated P-T range and further used to examine the effect of the methanol on the crystallization and thermo-chemical evolution of the subsurface ocean. The implications of these results for the thermal and structural evolution of icy moons, with particular applications to Titan, will be further discussed. References : Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J.I., Astrophys. J., 2010. Hodyss, R., Parkinson, C.D. Johnson, V.D., Stern, J.V., Goguen, J.D, Yung, Y.L., and Kanik, I., Geophys. Res. Lett., 1992. Miller, G.A., and Carpenter, D.A., J. Chem. Eng. Data, 1964. Vuillard, G., and Sanchez, M., Bull. Soc. Chim. France, 1961.

  5. Tidal Response of Europa's Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Comblen, R.; Deleersnijder, E.; Dehant, V. M.

    2010-12-01

    Time-variable tides in the subsurface oceans of icy satellites cause large periodic surface displacements and tidal dissipation can become a major energy source that can affect long-term orbital and internal evolution. In the present study, we investigate the response of the subsurface ocean of Europa to a time-varibale tidal potential. Two-dimensional nonlinear shallow water equations are solved on a sphere by means of a finite element code. The resulting ocean tidal flow velocities,dissipation and surface displacements will be presented.

  6. Identifying meaningful trends in Atlantic water temperature from sparse in situ hydrographic observations from the periphery of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Willis, J. K.; Rignot, E. J.

    2016-12-01

    Motivated by the need to understand the connection between the warming North Atlantic Ocean and increasing ice mass loss from the Greenland Ice Sheet, in 2015 we initiated "Oceans Melting Greenland" (OMG), a 5-year NASA sub-orbital mission. One component of OMG is a once-yearly sampling of full-depth vertical profiles of ocean temperature and salinity around Greenland's continental shelf at 250 locations. These measurements have the potential to provide an unprecedented view of ocean properties around Greenland, especially the warm, salty subsurface Atlantic Waters that have been implicated in tidewater glacier retreat, acceleration, and thinning. However, OMG'S ocean measurements are essentially large-scale synoptic snapshots of an ocean state whose characteristic scales of temporal and spatial variability around Greenland are largely unknown. In this talk we discuss how high-resolution numerical ocean modelling is being employed to quantitatively estimate the region's natural hydrographic variability for the dual purposes of (1) informing our pan-Greenland ocean sampling strategy and (2) informing our interpretation of temperature trends in the data. OMG hydrographic shelf data collected in ship-based CTDs (2015, 2016) and Airborne eXpendable CTDs (2016) will be examined in the context of this estimated ocean variability.

  7. Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Alory, Gaël; Wijffels, Susan; Meyers, Gary

    2007-01-01

    The linear trends in oceanic temperature from 1960 to 1999 are estimated using the new Indian Ocean Thermal Archive (IOTA), a compilation of historical temperature profiles. Widespread surface warming is found, as in other data sets, and reproduced in IPCC climate model simulations for the 20th century. This warming is particularly large in the subtropics, and extends down to 800 m around 40-50°S. Models suggest the deep-reaching subtropical warming is related to a 0.5° southward shift of the subtropical gyre driven by a strengthening of the westerly winds, and associated with an upward trend in the Southern Annular Mode index. In the tropics, IOTA shows a subsurface cooling corresponding to a shoaling of the thermocline and increasing vertical stratification. Most models suggest this trend in the tropical Indian thermocline is likely associated with the observed weakening of the Pacific trade winds and transmitted to the Indian Ocean by the Indonesian throughflow.

  8. Subsurface phytoplankton layers in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tremblay, J. E.

    2016-02-01

    Recent observations underscored the near-ubiquitous presence of subsurface chlorophyll maxima (SCM) and their potential importance for total primary production (PP) and pelagic food webs in perennially stratified waters of the Arctic Ocean. The contribution of SCM layers to annual PP is particularly important in oligotrophic areas, where modest nutrient supply to the upper euphotic zone results in weak or short-lived phytoplankton blooms near the surface. The large amount of nutrients present in the Pacific halocline relative to comparable depths in the Atlantic sector of the Arctic may also foster particularly productive SCM along the path of Pacific water. The association between strongly stratified conditions and the SCM in today's Arctic Ocean has broad relevance in providing a glimpse into the future of other oceans whose vertical stratification progressively rises with water temperature and freshwater content. In this regard, there is much to learn on the photosynthetic and nutritive ecology of SCM layers, whose biogeochemical significance depends on the extent to which they rely on allochthonous nitrogen (new production), their contribution to carbon biomass and their ability to influence air-sea CO2 exchange. Here we report on several years of eco-physiological investigations of SCM across the Arctic Ocean, with an aim to provide a basis of comparison with the ecology of SCM in other ocean areas.

  9. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models.

    PubMed

    Bopp, L; Resplandy, L; Untersee, A; Le Mezo, P; Kageyama, M

    2017-09-13

    All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O 2sat ) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O 2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O 2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  10. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models

    NASA Astrophysics Data System (ADS)

    Bopp, L.; Resplandy, L.; Untersee, A.; Le Mezo, P.; Kageyama, M.

    2017-08-01

    All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  11. Surface wave effect on the upper ocean in marine forecast

    NASA Astrophysics Data System (ADS)

    Wang, Guansuo; Qiao, Fangli; Xia, Changshui; Zhao, Chang

    2015-04-01

    An Operational Coupled Forecast System for the seas off China and adjacent (OCFS-C) is constructed based on the paralleled wave-circulation coupled model, which is tested with comprehensive experiments and operational since November 1st, 2007. The main feature of the system is that the wave-induced mixing is considered in circulation model. Daily analyses and three day forecasts of three-dimensional temperature, salinity, currents and wave height are produced. Coverage is global at 1/2 degreed resolution with nested models up to 1/24 degree resolution in China Sea. Daily remote sensing sea surface temperatures (SST) are taken to relax to an analytical product as hot restarting fields for OCFS-C by the Nudging techniques. Forecasting-data inter-comparisons are performed to measure the effectiveness of OCFS-C in predicting upper-ocean quantities including SST, mixed layer depth (MLD) and subsurface temperature. The variety of performance with lead time and real-time is discussed as well using the daily statistic results for SST between forecast and satellite data. Several buoy observations and many Argo profiles are used for this validation. Except the conventional statistical metrics, non-dimension skill scores (SS) is taken to estimate forecast skill. Model SST comparisons with more one year-long SST time series from 2 buoys given a large SS value (more than 0.90). And skill in predicting the seasonal variability of SST is confirmed. Model subsurface temperature comparisons with that from a lot of Argo profiles indicated that OCFS-C has low skill in predicting subsurface temperatures between 80m and 120m. Inter-comparisons of MLD reveal that MLD from model is shallower than that from Argo profiles by about 12m. QCFS-C is successful and steady in predicting MLD. The daily statistic results for SST between 1-d, 2-d and 3-d forecast and data is adopted to describe variability of Skill in predicting SST with lead time or real time. In a word QCFS-C shows reasonable accuracy over a series of studies designed to test ability to predict upper ocean conditions.

  12. Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum - a model study

    NASA Astrophysics Data System (ADS)

    Adloff, F.; Mikolajewicz, U.; Kucera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.

    2011-05-01

    Nine thousand years ago, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration with a minimum of the precession index. To assess the impact of the "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated in the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular a subsurface warming in the Cretan and Western Levantine areas. The comparison between the SST simulated for the HIM and the reconstructions from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. However, a reinterpretation of the reconstructions is proposed, to consider the conditions throughout the upper water column. Such a depth-integrated approach accounts for the vertical range of preferred habitat depths of the foraminifera used for the reconstructions and strongly improves the agreement between modelled and reconstructed temperature signal. The subsurface warming is recorded by both model and proxies, with a light shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the Western Levantine; this leads to an enhanced heat piracy in this region.

  13. SST Control by Subsurface Mixing During Indian Ocean Monsoons

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. SST Control by Subsurface Mixing during Indian Ocean ...quantify the variability in upper ocean mixing associated with changes in barrier layer thickness and strength across the BoB and under different...These objectives directly target the fundamental role that upper ocean dynamics play in the complex air-sea interactions of the northern Indian Ocean

  14. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto.

    PubMed

    Nimmo, F; Hamilton, D P; McKinnon, W B; Schenk, P M; Binzel, R P; Bierson, C J; Beyer, R A; Moore, J M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E

    2016-12-01

    The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

  15. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Hamilton, D. P.; McKinnon, W. B.; Schenk, P. M.; Binzel, R. P.; Bierson, C. J.; Beyer, R. A.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Binzel, R. P.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Ore, C. Dalle; Earle, A.; Gladstone, R.; Grundy, W.; Howard, A. D.; Lauer, T.; Linscott, I.; Nimmo, F.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D. P.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.

    2016-12-01

    The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto’s tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin’s present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.

  16. Clathrate hydrate stability models for Titan: implications for a global subsurface ocean

    NASA Astrophysics Data System (ADS)

    Basu Sarkar, D.; Elwood Madden, M.

    2013-12-01

    Titan is the only planetary body in the solar system, apart from the Earth, with liquid at its surface. Titan's changing rotational period suggests that a global subsurface ocean decouples the icy crust from the interior. Several studies predict the existence of such an internal ocean below an Ice I layer, ranging in depth between a few tens of kilometers to a few hundreds of kilometers, depending on the composition of the icy crust and liquid-ocean. While the overall density of Titan is well constrained, the degree of differentiation within the interior is unclear. These uncertainties lead to poor understanding of the volatile content of the moon. However, unlike other similar large icy moons like Ganymede and Callisto, Titan has a thick nitrogen atmosphere, with methane as the second most abundant constituent - 5% near the surface. Titan's atmosphere, surface, and interior are likely home to various compounds such as C2H6, CO2, Ar, N2 and CH4, capable of forming clathrate hydrates. In addition, the moon has low temperature and low-to-high pressure conditions required for clathrate formation. Therefore the occurrence of extensive multicomponent hydrates may effect the composition of near-surface materials, the subsurface ocean, as well as the atmosphere. This work uses models of hydrate stability for a number of plausible hydrate formers including CH4, C2H6, CH4 + C2H6 and CH4 + NH3, and equilibrium geothermal gradients for probable near-surface materials to delineate the lateral and vertical extent of clathrate hydrate stability zones for Titan. By comparing geothermal gradients with clathrate stability fields for these systems we investigate possible compositions of Titan's global subsurface ocean. Preliminary model results indicate that ethane hydrates or compound hydrates of ethane and methane could be destabilized within the proposed depth range of the internal ocean, while methane/ammonia or pure methane hydrates may not be affected. Therefore, ethane or ethane-methane clathrates may be a major component of Titan's icy shell. Modeled geothermal gradients and stability fields of possible clathrate formers with three different scenarios for an internal ocean from the recent literature. Geothermal gradients obtained from thermal conductivity and density representing water ice and pure CH4-C2H6 hydrate. Clathrate stability field determined using HYDOFF and recent publications of NH3 clathrate stability.

  17. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    NASA Astrophysics Data System (ADS)

    Zhu, Jieshun; Kumar, Arun

    2018-01-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  18. Impact of Seawater Nonlinearities on Nordic Seas Circulation

    NASA Astrophysics Data System (ADS)

    Helber, R. W.; Wallcraft, A. J.; Shriver, J. F.

    2017-12-01

    The Nordic Seas (Greenland, Iceland, and Norwegian Seas) form an ocean basin important for Arctic-mid-latitude climate linkages. Cold fresh water from the Arctic Ocean and warm salty water from the North Atlantic Ocean meet in the Nordic Seas, where a delicate balance between temperature and salinity variability results in deep water formation. Seawater non-linearities are stronger at low temperatures and salinities making high-latitude oceans highly subject to thermbaricity and cabbeling. This presentation highlights and quantifies the impact of seawater non-linearities on the Nordic Seas circulation. We use two layered ocean circulation models, the Hybrid Coordinate Ocean Model (HYOCM) and the Modular Ocean Model version 6 (MOM6), that enable accurate representation of processes along and across density or neutral density surfaces. Different equations-of-state and vertical coordinates are evaluated to clarify the impact of seawater non-linearities. Present Navy systems, however, do not capture some features in the Nrodic Seas vertical structure. For example, observations from the Greenland Sea reveal a subsurface temperature maximum that deepens from approximately 1500 m during 1998 to 1800 m during 2005. We demonstrate that in terms of density, salinity is the largest source of error in Nordic Seas Navy forecasts, regional scale models can represent mesoscale features driven by thermobaricity, vertical coordinates are a critical issue in Nordic Sea circulation modeling.

  19. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events

    PubMed Central

    Marcott, Shaun A.; Clark, Peter U.; Padman, Laurie; Klinkhammer, Gary P.; Springer, Scott R.; Liu, Zhengyu; Otto-Bliesner, Bette L.; Carlson, Anders E.; Ungerer, Andy; Padman, June; He, Feng; Cheng, Jun; Schmittner, Andreas

    2011-01-01

    Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminifera from an intermediate-depth site in the northwest Atlantic and results from a climate-model simulation that reveal basin-wide subsurface warming at the same time as large reductions in the AMOC, with temperature increasing by approximately 2 °C over a 1–2 kyr interval prior to a Heinrich event. In simulations with an ocean model coupled to a thermodynamically active ice shelf, the increase in subsurface temperature increases basal melt rate under an ice shelf fronting the HSIS by a factor of approximately 6. By analogy with recent observations in Antarctica, the resulting ice-shelf loss and attendant HSIS acceleration would produce a Heinrich event. PMID:21808034

  20. Big Jump of Record Warm Global Mean Surface Temperature in 2014-2016 Related to Unusually Large Oceanic Heat Releases

    NASA Astrophysics Data System (ADS)

    Yin, Jianjun; Overpeck, Jonathan; Peyser, Cheryl; Stouffer, Ronald

    2018-01-01

    A 0.24°C jump of record warm global mean surface temperature (GMST) over the past three consecutive record-breaking years (2014-2016) was highly unusual and largely a consequence of an El Niño that released unusually large amounts of ocean heat from the subsurface layer of the northwestern tropical Pacific. This heat had built up since the 1990s mainly due to greenhouse-gas (GHG) forcing and possible remote oceanic effects. Model simulations and projections suggest that the fundamental cause, and robust predictor of large record-breaking events of GMST in the 21st century, is GHG forcing rather than internal climate variability alone. Such events will increase in frequency, magnitude, and duration, as well as impact, in the future unless GHG forcing is reduced.

  1. Warm ocean processes and carbon cycling in the Eocene.

    PubMed

    John, Eleanor H; Pearson, Paul N; Coxall, Helen K; Birch, Heather; Wade, Bridget S; Foster, Gavin L

    2013-10-28

    Sea surface and subsurface temperatures over large parts of the ocean during the Eocene epoch (55.5-33.7 Ma) exceeded modern values by several degrees, which must have affected a number of oceanic processes. Here, we focus on the effect of elevated water column temperatures on the efficiency of the biological pump, particularly in relation to carbon and nutrient cycling. We use stable isotope values from exceptionally well-preserved planktonic foraminiferal calcite from Tanzania and Mexico to reconstruct vertical carbon isotope gradients in the upper water column, exploiting the fact that individual species lived and calcified at different depths. The oxygen isotope ratios of different species' tests are used to estimate the temperature of calcification, which we converted to absolute depths using Eocene temperature profiles generated by general circulation models. This approach, along with potential pitfalls, is illustrated using data from modern core-top assemblages from the same area. Our results indicate that, during the Early and Middle Eocene, carbon isotope gradients were steeper (and larger) through the upper thermocline than in the modern ocean. This is consistent with a shallower average depth of organic matter remineralization and supports previously proposed hypotheses that invoke high metabolic rates in a warm Eocene ocean, leading to more efficient recycling of organic matter and reduced burial rates of organic carbon.

  2. The Impact of Ocean Observations in Seasonal Climate Prediction

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele; Keppenne, Christian; Kovach, Robin; Marshak, Jelena

    2010-01-01

    The ocean provides the most significant memory for the climate system. Hence, a critical element in climate forecasting with coupled models is the initialization of the ocean with states from an ocean data assimilation system. Remotely-sensed ocean surface fields (e.g., sea surface topography, SST, winds) are now available for extensive periods and have been used to constrain ocean models to provide a record of climate variations. Since the ocean is virtually opaque to electromagnetic radiation, the assimilation of these satellite data is essential to extracting the maximum information content. More recently, the Argo drifters have provided unprecedented sampling of the subsurface temperature and salinity. Although the duration of this observation set has been too short to provide solid statistical evidence of its impact, there are indications that Argo improves the forecast skill of coupled systems. This presentation will address the impact these different observations have had on seasonal climate predictions with the GMAO's coupled model.

  3. Thickness Constraints on the Icy Shells of the Galilean Satellites from a Comparison of Crater Shapes

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    2002-01-01

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  4. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  5. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  6. Structure of analysis-minus-observation misfits within a global ocean reanalysis system: implications for atmospheric reanalyses

    NASA Astrophysics Data System (ADS)

    Carton, James; Chepurin, Gennady

    2017-04-01

    While atmospheric reanalyses do not ingest data from the subsurface ocean they must produce fluxes consistent with, for example, ocean storage and divergence of heat transport. Here we present a test of the consistency of two different atmospheric reanalyses with 2.5 million global ocean temperature observations during the data-rich eight year period 2007-2014. The examination is carried out by using atmospheric reanalysis variables to drive the SODA3 ocean reanalysis system, and then collecting and analyzing the temperature analysis increments (observation misfits). For the widely used MERRA2 and ERA-Int atmospheric reanalyses the temperature analysis increments reveal inconsistencies between those atmospheric fluxes and the ocean observations in the range of 10-30 W/m2. In the interior basins excess heat during a single assimilation cycle is stored primarily locally within the mixed layer, a simplification of the heat budget that allows us to identify the source of the error as the specified net surface heat flux. Along the equator the increments are primarily confined to thermocline depths indicating the primary source of the error is dominated by heat transport divergence. The error in equatorial heat transport divergence, in turn, can be traced to errors in the strength of the equatorial trade winds. We test our conclusions by introducing modifications of the atmospheric reanalyses based on analysis of ocean temperature analysis increments and repeating the ocean reanalysis experiments using the modified surface fluxes. Comparison of the experiments reveals that the modified fluxes reduce the misfit to ocean observations as well as the differences between the different atmospheric reanalyses.

  7. Genomic evidence for the Wood-Ljungdahl pathway for carbon fixation in warm basaltic ocean crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Fisk, M. R.; Mueller, R.; Colwell, F. S.; Mason, O. U.; Popa, R.

    2016-12-01

    Microbial life in the deep suboceanic aquifer can harness geochemical energy resulting from water-rock reactions and contribute to carbon cycling in the ocean via primary production, or chemosynthesis. Iron-bearing minerals such as olivine in oceanic crust can produce molecular hydrogen, small molecular weight hydrocarbons, and hydrogen sulfide as they react with seawater. Although this generally occurs in serpentinizing systems at very high temperatures deep in the subsurface, it has also been hypothesized to drive the subseafloor microbial ecosystems present in shallower basaltic aquifers. We present genome-based evidence for chemolithoautotrophic microbes present on the surface of olivine incubated in Juan de Fuca Ridge basaltic ocean crust for a 4-year period. These metagenome-derived genomes show dominant taxa capable of using both branches of the Wood-Ljungdahl pathway for carbon fixation and energy generation. This pathway uses molecular hydrogen potentially derived from the olivine surface as it reacts with seawater and CO2 which is inherent to seawater. These taxa were not reported from aquifer fluid samples, but have been found only in association with mineral surfaces in this study location. Most taxa in this simple community are distant relatives of cultured taxa; therefore this genome information is crucial to understanding how the subseafloor aquifer community is structured, how it obtains energy, how it cycles carbon, and gives us keys to help cultivate these organisms in the laboratory. Our findings also support the Subsurface Lithoautotrophic Microbial Ecosystem (SLiME) hypothesis and have implications for understanding life on early Earth and the potential for life in the Martian subsurface.

  8. SIIOS in Alaska: Testing an "In-Vault" Option for a Europa Lander Seismometer Experiment

    NASA Technical Reports Server (NTRS)

    Bray, Veronica J.; Weber, Renee C.; DellaGiustina, Daniella N.; Bailey, S. H. (Hop); Schmerr, Nicholas C.; Pettit, Erin C.; Avenson, Brad; Marusiak, Angela G.; Dahl, Peter; Carr, Christina; hide

    2017-01-01

    The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich silicate interiors, likely providing the three ingredients needed for life as we know it: liquid water, essential chemicals, and a source of energy. The possibility of life forming in their subsurface oceans relies in part on transfer of oxidants from the irradiated ice surface to the sheltered ocean below. Constraining the mechanisms and location of material exchange between the ice surface, the ice shell, and the subsurface ocean, however, is not possible without knowledge of ice thickness and liquid water depths. In a future lander-based experiment seismic measurements will be a key geophysical tool for obtaining this critical knowledge. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) field-tests flight-ready technologies and develops the analytical methods necessary to make a seismic study of Europa and Enceladus a reality. We have been performing small-array seismology with a flight-candidate sensor in analog environments that exploit passive sources. Determining the depth to a subsurface ocean and any intermediate bodies of water is a priority for Ocean Worlds missions as it allows assessment of the habitability of these worlds and provides vital information for evaluating the spacecraft technologies required to access their oceans.

  9. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N).

    PubMed

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk; K Ehn, Jens; Boone, Wieter; Galindo, Virginie; Hu, Yu-Bin; Dmitrenko, Igor A; Kirillov, Sergei A; Kjeldsen, Kristian K; Kristoffersen, Yngve; G Barber, David; Rysgaard, Søren

    2017-07-10

    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water.

  10. Crustal control of dissipative ocean tides in Enceladus and other icy moons

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  11. A more productive, but different, ocean after mitigation

    NASA Astrophysics Data System (ADS)

    John, Jasmin G.; Stock, Charles A.; Dunne, John P.

    2015-11-01

    Reversibility studies suggest a lagged recovery of global mean sea surface temperatures after mitigation, raising the question of whether a similar lag is likely for marine net primary production (NPP). Here we assess NPP reversibility with a mitigation scenario in which projected Representative Concentration Pathway (RCP) 8.5 forcings are applied out to 2100 and then reversed over the course of the following century in a fully coupled carbon-climate Earth System Model. In contrast to the temperature lag, we find a rapid increase in global mean NPP, including an overshoot to values above contemporary means. The enhanced NPP arises from a transient imbalance between the cooling surface ocean and continued warming in subsurface waters, which weakens upper ocean density gradients, resulting in deeper mixing and enhanced surface nitrate. We also find a marine ecosystem regime shift as persistent silicate depletion results in increased prevalence of large, non-diatom phytoplankton.

  12. Comparison of stimulated and spontaneous laser-radar methods for the remote sensing of ocean physical properties

    NASA Astrophysics Data System (ADS)

    Leonard, Donald A.; Sweeney, Harold E.

    1990-09-01

    The physical properties of ocean water, in the top few ten meters, are of great interest in the scientific, engineering, and general oceanographic communities. Subsurface profiles of temperature, salinity, and sound speed measured by laser radar in real time on a synoptic basis over a wide area from an airborne platform would provide valuable information complementary to the data that is now readily available. The laser-radar technique specifically applicable to ocean sensing uses spectroscopic analysis of the inelastic backscattered optical signal. Two methods have received considerable attention for remote sensing and both have been demonstrated in field experiments. These are spontaneous Raman1 and spontaneous Brillouin2 scattering. A discussion of these two processes and a comparison of their properties that are useful for remote sensing was presented3 at SPIE Ocean Optics IX. This paper compares ocean remote sensing using stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) processes with better known spontaneous methods. The results of laboratory measurements of temperature using SBS and some preliminary results of SRS are presented with extensions to performance estimates of potential field systems.

  13. Commercial applications of satellite oceanography

    NASA Technical Reports Server (NTRS)

    Montgomery, D. R.

    1981-01-01

    It is shown that in the next decade the oceans' commercial users will require an operational oceanographic satellite system or systems capable of maximizing real-time coverage over all ocean areas. Seasat studies suggest that three spacecraft are required to achieve this. Here, the sensor suite would measure surface winds, wave heights (and spectral energy distribution), ice characteristics, sea-surface temperature, ocean colorimetry, height of the geoid, salinity, and subsurface thermal structure. The importance of oceanographic data being distributed to commercial users within two hours of observation time is stressed. Also emphasized is the importance of creating a responsive oceanographic satellite data archive. An estimate of the potential dollar benefits of such an operational oceanographic satellite system is given.

  14. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  15. Aircraft remote sensing of phytoplankton spatial patterns during the 1989 Joint Global Ocean Flux Study (JGOFS) North Atlantic bloom experiment

    NASA Technical Reports Server (NTRS)

    Yoder, James A.; Hoge, Frank E.

    1991-01-01

    Mesoscale phytoplankton chlorophyll variability near the Joint Global Ocean Flux study sites along the 20 W meridian at 34 N, 47 N, and 59 N is discussed. The NASA P-3 aircraft and the Airborne Oceanographic Lidar (AOL) system provides remote sensing support for the North Atlantic Bloom Experiment. The principal instrument of the AOL system is the blue-green laser that stimulates fluorescence from photoplankton chlorophyll, the principal photosynthetic pigment. Other instruments on the NASA P-3 aircraft include up- and down-looking spectrometers, PRT-5 for infrared measurements to determine sea surface temperature, and a system to deploy and record AXBTs to measure subsurface temperature structure.

  16. Response of Antarctic ice shelf melt to SAM trend and possible feedbacks with the ice-dynamics

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert; Spence, Paul; Cornford, Stephen L.; Le Sommer, Julien; Durand, Gaël

    2017-04-01

    The observed positive trend in the Southern Annular Mode (SAM) may warm the Southern Ocean sub-surface through decreased Ekman downward pumping. Subsequent change in ice-shelves melt has been suggested to trigger glacier acceleration in West Antarctica. Here we use a regional ocean model configuration of the Amundsen Sea that includes interactive ice-shelf cavities. Our results show that the inclusion of ice-shelves changes the ocean response to the projected SAM trend, i.e. it typically inhibits a part of the SAM-induced subsurface warming. Heat budget analysis has been used to propose responsible mechanisms. Regarding Thwaites and Pine Island, sub ice-shelf melt increases above 400m by approximately 40% for Thwaites and 10% for Pine Island and decreases by up to 10% below in response to ocean temperature changes driven by the projected SAM trend. The melt sensitivity to poleward shifting winds is nonetheless small compared to the sensitivity to an ice-sheet instability, i.e. to a projected change in the shape of ice-shelf cavities. For instance, the sub ice-shelf melt are doubled near the grounding line of some glaciers in response to the largest grounding line retreat projected for 2100. Large increase in basal melt close to the grounding line could largely impact instability and glacier acceleration. Our work suggests the need for including ice shelves into ocean models, and to couple ocean models to ice-sheet models in climate projections.

  17. Cooling and drying in northeast Africa across the Pliocene

    NASA Astrophysics Data System (ADS)

    Liddy, Hannah M.; Feakins, Sarah J.; Tierney, Jessica E.

    2016-09-01

    Terrestrial records suggest that Northeast Africa experienced drying during the Pliocene; however, these records are often incomplete in time and space, and questions about this shift in climate remain. Here, we use marine sediments from Deep Sea Drilling Project (DSDP) Site 231 in the Gulf of Aden to generate a multi-proxy organic geochemical record of northeast African climate spanning 5.3-2 Ma. This new record provides a regional perspective on climate and serves as context for the fossil record of early hominin evolution. We measured leaf wax carbon (δ13Cwax) and hydrogen (δDwax) isotopic composition and TEX86 (tetraether index of 86 carbons) to investigate past changes in vegetation, aridity, and ocean temperature, respectively. In the earliest Pliocene, we infer warm subsurface ocean temperatures from TEX86, semi-arid conditions on land and extensive C4 grasslands based on δDwax, δ13Cwax and previously published pollen. After 5 Ma, ocean temperatures gradually cooled, and at 4.3 Ma there was a transition to arid conditions on land based on δDwax and pollen. Grasslands yielded to a mid Pliocene landscape of dry shrublands. This drying appears to be an atmospheric response to cooling ocean temperatures, which may reflect changes in tropical ocean circulation, the intensification of Indian Monsoon winds or perhaps other changes associated with Pliocene cooling.

  18. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  19. The Importance of Subsurface Production for Carbon Export - Evidence from Past Oceans

    NASA Astrophysics Data System (ADS)

    Kemp, A. E. S.

    2016-02-01

    The maxim of the geological concept of uniformitarianism is "the present is the key to the past", but in the context of our temporally and spatially minimal observational record of modern ocean biogeochemical processes, ancient ocean sediments may provide critical evidence of the key species involved in carbon flux. Specifically, laminated marine sediments that preserve the seasonal flux cycle represent "palaeo-sediment traps" that vastly expand our knowledge of the operations of the marine biological carbon pump. Several key subsurface-dwelling diatom taxa, hitherto thought to be biogeochemically insignificant, are dominant components of ancient marine sediments. For example, the sapropels and equivalent horizons that have accumulated in the Mediterranean over the past 5 million years, contain abundant rhizosolenid and hemiaulid diatoms. These deposits contain the highest concentrations of organic carbon and there is extensive evidence that this was produced by subsurface production in a deep chlorophyll maximum. The highly stratified conditions that led to this subsurface production and carbon flux are in contrast to prevailing views that have held upwelling systems as those with the highest potential for export in the global ocean. Similarly, studies of ancient "greenhouse" periods such as the Cretaceous, with highly stratified oceans and which are potential analogues for future climate change, show evidence for extensive subsurface production. Together with emerging evidence from stratified regions of the modern ocean, such as the subtropical gyres, insights from these ancient oceans suggest that a reappraisal is required of current views on key phytoplankton producers and their role the operation of the marine biological carbon pump.

  20. A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge

    2016-12-01

    A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

  1. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes.

    PubMed

    Schenk, Paul M

    2002-05-23

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  2. Physical forcing of late summer chlorophyll a blooms in the oligotrophic eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Toyoda, Takahiro; Okamoto, Suguru

    2017-03-01

    We investigated physical forcing of late summer chlorophyll a (chl a) blooms in the oligotrophic eastern North Pacific Ocean by using ocean reanalysis and satellite data. Relatively large chl a blooms as defined in this study occurred in August-October following sea surface temperature (SST) anomaly (SSTA) decreases, mixed layer deepening, and temperature and salinity increases at the bottom of the mixed layer. These physical conditions were apparently induced by the entrainment of subsurface water resulting from the destabilization of the surface layer caused by anomalous northward Ekman transport of subtropical waters of higher salinity. Salinity-normalized total alkalinity data provide supporting evidence for nutrient supply by the entrainment process. We next investigated the impact of including information about the entrainment on bloom identification. The results of analyses using reanalysis data and of those using only satellite data showed large SSTA decreases when the northward Ekman salinity transports were large, implying that the entrainment of subsurface water is well represented in both types of data. After surface-destabilizing conditions were established, relatively high surface chl a concentrations were observed. The use of SST information can further improve the detection of high chl a concentrations. Although the detection of high chl a concentrations would be enhanced by finer data resolution and the inclusion of biogeochemical parameters in the ocean reanalysis, our results obtained by using existing reanalysis data as well as recent satellite data are valuable for better understanding and prediction of lower trophic ecosystem variability.

  3. Deep Bering Sea Circulation and Variability, 2001-2016, From Argo Data

    NASA Astrophysics Data System (ADS)

    Johnson, Gregory C.; Stabeno, Phyllis J.

    2017-12-01

    The mean structure, seasonal cycle, and interannual variability of temperature and salinity are analyzed in the deep Bering Sea basin using Argo profile data collected from 2001 to 2016. Gyre transports are estimated using geostrophic stream function maps of Argo profile data referenced to a 1,000 dbar nondivergent absolute velocity stream function mapped from Argo parking pressure displacement data. Relatively warm and salty water from the North Pacific enters the basin through the Near Strait and passages between Aleutian Islands to the east. This water then flows in a cyclonic (counterclockwise) direction around the region, cooling (and freshening) along its path. Aleutian North Slope Current transports from 0 to 1,890 dbar are estimated at 3-6 Sverdrups (1 Sv = 106 m3 s-1) eastward, feeding into the northwestward Bering Slope Current with transports of mostly 5-6 Sv. The Kamchatka Current has transports of ˜6 Sv north of Shirshov Ridge, increasing to 14-16 Sv south of the ridge, where it is augmented by westward flow from Near Strait. Temperature exhibits strong interannual variations in the upper ocean, with warm periods in 2004-2005 and 2015-2016, and cold periods around 2009 and 2012. In contrast, upper ocean salinity generally decreases from 2001 to 2016. As a result of this salinity decrease, the density of the subsurface temperature minimum decreased over this time period, despite more interannual variability in the minimum temperature value. The subsurface temperature maximum also exhibits interannual variability, but with values generally warmer than those previously reported for the 1970s and 1980s.

  4. Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric

    2012-01-01

    It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.

  5. Skin Temperature Processes in the Presence of Sea Ice

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.

    2013-12-01

    Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence may affect the dissipation of turbulent kinetic energy.

  6. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, C.; Buch, A.; Raulin, F.; Coll, P.; Poch, O.; Ramirez, S.

    2013-09-01

    Titan, the largest moon of Saturn, is known for its dense and nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are objects of astrobiological interest. In this paper we focus on their potential chemical evolution when they reach the surface and interact with putative ammonia-water cryomagma[1]. In this context we have studied the evolution of alkaline pH hydrolysis of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at ambient and low temperature. However, we identified oxygenated molecules in non-hydrolyzed tholins meaning that oxygen gets in the PLASMA reactor during the tholins synthesis [2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. After confirming the non-presence of oxygen in tholins produced with this new experimental setup, the study of oxygen-free tholins' evolution has been carried out. A recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), as previously described by other teams [2,4]. Thus new hydrolysis experiments will take this lower value into account. Additionally, a new report [5] provides upper and lower limits for the bulk content of Titan's interior for various gas species. It also shows that most of them are likely stored and dissolved in the subsurface water ocean. But considering the plausible acido-alkaline properties of the ammonia-water ocean, additional species could be dissolved in the ocean and present in the magma. They were also included in our hydrolysis experiments. Taking into account these new data, four different hydrolysis have been applied to oxygen-free tholins. For each type of hydrolysis, we also follow the influence of the hydrolysis temperature on the organic molecules production. The preliminary qualitative and quantitative results of those experiments will be presented at EPSC.

  7. Cryovolcanism on Titan

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R. M.

    2008-12-01

    Remote sensing observations yield evidence for cryovolcanism on Titan, and evolutionary models support (but do not require) the presence of an ammonia-water subsurface ocean. The impetus for invoking ammonia as a constituent in an internal ocean and cryovolcanic magma comes from two factors. First, ammonia-water liquid has a lower freezing temperature than pure liquid water, enabling cryovolcanism under the low- temperature conditions prevalent in the outer Solar System. Second, pure water is negatively buoyant with respect to pure water ice, which discourages eruption from the subsurface ocean to the surface. In contrast, the addition of ammonia to the water decreases its density, hence lessening this problem of negative buoyancy. A marginally positive buoyant ammonia-water mixture might allow effusive eruptions from a subsurface ocean. If the subsurface ocean were positively buoyant, all the ammonia would have been erupted very early in Titan's history. Contrary to this scenario, Cassini-Huygens has so far observed neither a global abundance nor a complete dearth of cryovolcanic features. Further, an ancient cryovolcanic epoch cannot explain the relative youth of Titan's surface. Crucial to invoking ammonia-water resurfacing as the source of the apparently recent geological activity is not how to make ammonia-water volcanism work (because the near neutral buoyancy of the ammonia-water mixture encourages an explanation), but rather how to prevent eruption from occurring so easily that cryovolcanic activity is over early on. Although cryovolcanism by ammonia-water has been proposed as a resurfacing process on Titan, few models have specifically dealt with the problem of how to transport ammonia-water liquid onto the surface. We proposed a model of cryovolcanism that involve cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. While the ammonia-water pockets cannot easily become neutral buoyant and promote effusive eruptions, large scale tectonics stress (due to tides, non-synchronous rotation, satellite volume changes, and/or topography) may all promote resurfacing at localized times and spaces. Thermal convection in the ice-I shell can play an important role in ensuring recent cryovolcanism activity on Titan. Ammonia-water pockets trapped in the ice shell provides a possible mechanism for explaining episodic cryovolcanism. Our model has several advantages over more simplistic ones. Because of the relative inefficiency of trapping liquid in the shell and transporting it to the surface, our mechanism makes volcanism a marginal process. In this way we can explain why Titan did not lose all its ammonia into cryovolcanic flows early in Solar System history as would happen were ammonia-water liquid to be positively buoyant, hence making cryovolcanism too "easy". At the same time, our mechanism allows cryovolcanism to be an important process on regional scales: ammonia should be present at the surface and hence detectable so long as it is not buried by subsequent sedimentation of organic aerosols. Finally, because we posit that the cryovolcanic liquid comes from localized pockets rather than directly from the ocean, our scenario also allows the ocean to remain dilute in ammonia, hence much denser than the overlying ice and mechanically stable over the history of the Solar System.

  8. Climatology and seasonality of upper ocean salinity: a three-dimensional view from argo floats

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Peng, Lin; Ma, Chunyong

    2018-03-01

    Primarily due to the constraints of observation technologies (both field and satellite measurements), our understanding of ocean salinity is much less mature compared to ocean temperature. As a result, the characterizations of the two most important properties of the ocean are unfortunately out of step: the former is one generation behind the latter in terms of data availability and applicability. This situation has been substantially changed with the advent of the Argo floats which measure the two variables simultaneously on a global scale since early this century. The first decade of Argo-acquired salinity data are analyzed here in the context of climatology and seasonality, yielding the following main findings for the global upper oceans. First, the six well-defined "salty pools" observed around ±20° in each hemisphere of the Pacific, Atlantic and Indian Oceans are found to tilt westward vertically from the sea surface to about 600 m depth, forming six saline cores within the subsurface oceans. Second, while potential temperature climatology decreases monotonically to the bottom in most places of the ocean, the vertical distribution of salinity can be classified into two categories: A double-halocline type forming immediately above and below the local salinity maximum around 100-150 m depths in the tropical and subtropical oceans, and a single halocline type existing at about 100 m depth in the extratropical oceans. Third, in contrast to the midlatitude dominance for temperature, seasonal variability of salinity in the oceanic mixed layer has a clear tropical dominance. Meanwhile, it is found that a two-mode structure with annual and semiannual periodicities can effectively penetrate through the upper ocean into a depth of 2000 m. Fourth, signature of Rossby waves is identified in the annual phase map of ocean salinity within 200-600 m depths in the tropical oceans, revealing a strongly co-varying nature of ocean temperature and salinity at specific depths. These results serve as significant contributions to improving our knowledge on the haline aspect of the ocean climate.

  9. Satellite and Ocean Model Analysis of Thermal Conditions Affecting Coral Reefs in the Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Perez Delgado, Z.; Ummenhofer, C.; Swales, D. J.

    2016-02-01

    Corals are thought to be one of the smallest yet most productive ecosystems in the world. They have great economic and ecological value, but are increasingly affected by anthropogenic, biological and physical threats, such as a rise in sea surface temperature (SST) and ocean acidification due to an increase in CO2 in the atmosphere, among other factors. Here, specific events are investigated that likely exerted significant stress on corals, focusing particularly on unusual climatic conditions in the Western Indian Ocean during the 2001 to 2007 period as reflected by anomalies in degree heating weeks, hotspots and SST. Anomalous conditions in subsurface temperatures and mixed layer depth across the Indian Ocean region are also examined. We do this by using monthly, year-to-date, and annual composites of twice-weekly 50-km satellite coral bleaching monitoring products from the NOAA Coral Reef Watch and complementing it with output from a high-resolution global ocean model hindcast (1948-2007) forced with observed atmospheric forcing. Two years stand out in our analysis for the satellite data and model output: 2003 and 2005 exhibit strong warming in the Western Indian Ocean and cooling in the East. To establish the physical mechanisms giving rise to the unusual conditions and hotspot origins in 2003 and 2005 we also evaluate regional circulation changes in the Western Indian Ocean.

  10. Oceanic Channel of the IOD-ENSO teleconnection over the Indo-Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Wang, Jing; Zhao, Xia; Zhou, Hui; Xu, Tengfei; Xu, Peng

    2017-04-01

    The lag correlations of observations and model simulated data that participate the Coupled Model Intercomparison Project phase-5 (CMIP5) are used to study the precursory teleconnection between the Indian Ocean Dipole (IOD) and the Pacific ENSO one year later through the Indonesian seas. The results suggest that Indonesian Throughflow (ITF) play an important role in the IOD-ENSO teleconnection. Numerical simulations using a hierarchy of ocean models and climate coupled models have shown that the interannual sea level depressions in the southeastern Indian Ocean during IOD force enhanced ITF to transport warm water of the Pacific warm pool to the Indian Ocean, producing cold subsurface temperature anomalies, which propagate to the eastern equatorial Pacific and induce significant coupled ocean-atmosphere evolution. The teleconnection is found to have decadal variability. Similar decadal variability has also been identified in the historical simulations of the CMIP5 models. The dynamics of the inter-basin teleconnection during the positive phases of the decadal variability are diagnosed to be the interannual variations of the ITF associated with the Indian Ocean Dipole (IOD). During the negative phases, the thermocline in the eastern equatorial Pacific is anomalously deeper so that the sea surface temperature anomalies in the cold tongue are not sensitive to the thermocline depth changes. The IOD-ENSO teleconnection is found not affected significantly by the anthropogenic forcing.

  11. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  12. The Low-Frequency Variability of the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Mo, Kingtse C.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Upper ocean temperature variability in the tropical Atlantic is examined from the Comprehensive Ocean Atmosphere Data Set (COADS) as well as from an ocean model simulation forced by COADS anomalies appended to a monthly climatology. Our findings are as follows: Only the sea surface temperatures (SST) in the northern tropics are driven by heat fluxes, while the southern tropical variability arises from wind driven ocean circulation changes. The subsurface temperatures in the northern and southern tropics are found to have a strong linkage to buoyancy forcing changes in the northern North Atlantic. Evidence for Kelvin-like boundary wave propagation from the high latitudes is presented from the model simulation. This extratropical influence is associated with wintertime North Atlantic Oscillation (NAO) forcing and manifests itself in the northern and southern tropical temperature anomalies of the same sign at depth of 100-200 meters as result of a Rossby wave propagation away from the eastern boundary in the wake of the boundary wave passage. The most apparent association of the southern tropical sea surface temperature anomalies (STA) arises with the anomalous cross-equatorial winds which can be related to both NAO and the remote influence from the Pacific equatorial region. These teleconnections are seasonal so that the NAO impact on the tropical SST is the largest it mid-winter but in spring and early summer the Pacific remote influence competes with NAO. However, NAO appears to have a more substantial role than the Pacific influence at low frequencies during the last 50 years. The dynamic origin of STA is indirectly confirmed from the SST-heat flux relationship using ocean model experiments which remove either anomalous wind stress forcing or atmospheric forcing anomalies contributing to heat exchange.

  13. Ocean Observations of Climate Change

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  14. Design of a hydrophone for an Ocean World lander

    NASA Astrophysics Data System (ADS)

    Smith, Heather D.; Duncan, Andrew G.

    2017-10-01

    For this presentation we describe the science return, and design of a microphone on- board a Europa lander mission. In addition to the E/PO benefit of a hydrophone to listen to the Europa Ocean, a microphone also provides scientific data on the properties of the subsurface ocean.A hydrophone is a small light-weight instrument that could be used to achieve two of the three Europa Lander mission anticipated science goals of: 1) Asses the habitability (particularly through quantitative compositional measurements of Europa via in situ techniques uniquely available to a landed mission. And 2) Characterize surface properties at the scale of the lander to support future exploration, including the local geologic context.Acoustic properties of the ocean would lead to a better understanding of the water density, currents, seafloor topography and other physical properties of the ocean as well as lead to an understanding of the salinity of the ocean. Sound from water movement (tidal movement, currents, subsurface out-gassing, ocean homogeneity (clines), sub-surface morphology, and biological sounds.The engineering design of the hydrophone instrument will be designed to fit within a portion of the resource allocation of the current best estimates of the Europa lander payload (26.6 Kg, 24,900 cm3, 2,500 W-hrs and 2700 Mbits). The hydrophone package will be designed to ensure planetary protection is maintained and will function under the cur- rent Europa lander mission operations scenario of a two-year cruise phase, and 30-day surface operational phase on Europa.Although the microphone could be used on the surface, it is designed to be lowered into the subsurface ocean. As such, planetary protection (forward contamination) is a primary challenge for a subsurface microphone/ camera. The preliminary design is based on the Navy COTS optical microphone.Reference: Pappalardo, R. T., et al. "Science potential from a Europa lander." Astrobiology 13.8 (2013): 740-773.

  15. Advancing decadal-scale climate prediction in the North Atlantic sector.

    PubMed

    Keenlyside, N S; Latif, M; Jungclaus, J; Kornblueh, L; Roeckner, E

    2008-05-01

    The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.

  16. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability

    NASA Astrophysics Data System (ADS)

    Oliver, Eric C. J.; Lago, Véronique; Hobday, Alistair J.; Holbrook, Neil J.; Ling, Scott D.; Mundy, Craig N.

    2018-02-01

    Surface waters off eastern Tasmania are a global warming hotspot. Here, mean temperatures have been rising over several decades at nearly four times the global average rate, with concomitant changes in extreme temperatures - marine heatwaves. These changes have recently caused the marine biodiversity, fisheries and aquaculture industries off Tasmania's east coast to come under stress. In this study we quantify the long-term trends, variability and predictability of marine heatwaves off eastern Tasmania. We use a high-resolution ocean model for Tasmania's eastern continental shelf. The ocean state over the 1993-2015 period is hindcast, providing daily estimates of the three-dimensional temperature and circulation fields. Marine heatwaves are identified at the surface and subsurface from ocean temperature time series using a consistent definition. Trends in marine heatwave frequency are positive nearly everywhere and annual marine heatwave days and penetration depths indicate significant positive changes, particularly off southeastern Tasmania. A decomposition into modes of variability indicates that the East Australian Current is the dominant driver of marine heatwaves across the domain. Self-organising maps are used to identify 12 marine heatwave types, each with its own regionality, seasonality, and associated large-scale oceanic and atmospheric circulation patterns. The implications of this work for marine ecosystems and their management were revealed through review of past impacts and stakeholder discussions regarding use of these data.

  17. Helicopter- and ship-based measurements of mesoscale ocean color and thermal features in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Tanis, Fred J.; Manley, Thomas O.; Mitchell, Brian G.

    1990-09-01

    Eddies along the Polar Front/Marginal Ice Zone (MIZ) in Fram Strait are thought to make important contributions to nutrient flux and stimulation of primary productivity. During the Coordinated Eastern Arctic Regional Experiment (CEAREX) helicopter-based measurements of upwelling radiance were made in four visible spectral bands and in the thermal IR across mesoscale features associated with the MIZ. These structures were mapped by flying a grid pattern over the ocean surface to define eddy boundaries. Subsequently, the area was also sampled vertically with CTD and spectral radiometer profilers. Data obtained from a single structure were integrated to construct a three dimensional picture of physical and optical properties. Volume modeling of temperature, salinity, and density fields obtained from CTD survey define the subsurface eddy structure and are in good agreement with infrared derived characteristics. Maximum temperature in the core was found to be four degrees higher than the surrounding water. Volume modeling further indicates that a subsurface layer of Arctic Intermediate Water is intrinsically associated with the surface expression of the eddy. The ratio of upwelling radiances, L(44l)/L(565), was found to be correlated to surface chlorophyll, particulate absorption coefficient, and in water determinations of L using the optical profiling system. The remote sensing reflectance ratio along with the IR sea surface temperature were found to be useful to detect the surface expression of the eddy and to indicate near surface biological and physical processes.

  18. Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO

    NASA Astrophysics Data System (ADS)

    Taws, Sarah L.; Marsh, Robert; Wells, Neil C.; Hirschi, Joël

    2011-10-01

    Northern Europe was influenced by consecutive episodes of extreme winter weather at the start and end of the 2010 calendar year. A tripole pattern in North Atlantic sea surface temperature anomalies (SSTAs), associated with an exceptionally negative phase of the North Atlantic Oscillation (NAO), characterized both winter periods. This pattern was largely absent at the surface during the 2010 summer season; however equivalent sub-surface temperature anomalies were preserved within the seasonal thermocline throughout the year. Here, we present evidence for the re-emergence of late-winter 2009/10 SSTAs during the following early winter season of 2010/11. The observed re-emergence contributes toward the winter-to-winter persistence of the anomalous tripole pattern. Considering the active influence of the oceans upon leading modes of atmospheric circulation over seasonal timescales, associated with the memory of large-scale sea surface temperature anomaly patterns, the re-emergence of remnant temperature anomalies may have also contributed toward the persistence of a negative winter NAO, and the recurrence of extreme wintry conditions over the initial 2010/11 winter season.

  19. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic theories to estimate the crustal permeability, a fundamental property of subsurface hydrothermal circulation, from the phase shift of the tidal oscillations of venting temperature relative to ambient ocean tides. These results together shed light on the influences of seismic and oceanic processes on a seafloor hydrothermal system.

  20. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.

    PubMed

    Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H

    2014-09-29

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  1. Spatial variability of upper ocean POC export in the Bay of Bengal and the Indian Ocean determined using particle-reactive 234Th

    NASA Astrophysics Data System (ADS)

    Subha Anand, S.; Rengarajan, R.; Sarma, V. V. S. S.; Sudheer, A. K.; Bhushan, R.; Singh, S. K.

    2017-05-01

    The northern Indian Ocean is globally significant for its seasonally reversing winds, upwelled nutrients, high biological production, and expanding oxygen minimum zones. The region acts as sink and source for atmospheric CO2. However, the efficiency of the biological carbon pump to sequester atmospheric CO2 and export particulate organic carbon from the surface is not well known. To quantify the upper ocean carbon export flux and to estimate the efficiency of biological carbon pump in the Bay of Bengal and the Indian Ocean, seawater profiles of total 234Th were measured from surface to 300 m depth at 13 stations from 19.9°N to 25.3°S in a transect along 87°E, during spring intermonsoon period (March-April 2014). Results showed enhanced in situ primary production in the equatorial Indian Ocean and the central Bay of Bengal and varied from 13.2 to 173.8 mmol C m-2 d-1. POC export flux in this region varied from 0 to 7.7 mmol C m-2 d-1. Though high carbon export flux was found in the equatorial region, remineralization of organic carbon in the surface and subsurface waters considerably reduced organic carbon export in the Bay of Bengal. Annually recurring anticyclonic eddies enhanced organic carbon utilization and heterotrophy. Oxygen minimum zone developed due to stratification and poor ventilation was intensified by subsurface remineralization. 234Th-based carbon export fluxes were not comparable with empirical statistical model estimates based on primary production and temperature. Region-specific refinement of model parameters is required to accurately predict POC export fluxes.

  2. Dynamics of the Seychelles-Chagos Thermocline Ridge

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2016-02-01

    The southwest tropical Indian Ocean (SWTIO) features a unique, seasonal upwelling of the thermocline also known as the Seychelles-Chagos Thermocline Ridge (SCTR). More recently, this ridge or "dome"-like feature in the thermocline depth at (55°E-65°E, 5°S-12°S) in the SWTIO has been linked to interannual variability in the semi-annual Indian Ocean monsoon seasons as well as the Madden-Julian Oscillation (MJO) and El Niño Southern Oscillation (ENSO). The SCTR is a region where the MJO is associated with strong SST variability. Normally more cyclones are found generated in this SCTR region when the thermocline is deeper, which has a positive relation to the arrival of a downwelling Rossby wave from the southeast tropical Indian Ocean. Previous studies have focused their efforts solely on sea surface temperature (SST) because they determined salinity variability to be low, but with the Soil Moisture and Ocean Salinity (SMOS), and Aquarius salinity missions new insight can be shed on the effects that the seasonal upwelling of the thermocline has on Sea Surface Salinity (SSS). Seasonal SSS anomalies these missions will reveal the magnitude of seasonal SSS variability, while Argo depth profiles will show the link between changes in subsurface salinity and temperature structure. A seasonal increase in SST and a decrease in SSS associated with the downwelling of the thermocline have also been shown to occasionally generate MJO events, an extremely important part of climate variability in the Indian ocean. Satellite derives salinity and Argo data can help link changes in surface and subsurface salinity structure to the generation of the important MJO events. This study uses satellite derived salinity from Soil Moisture and Ocean Salinity (SMOS), and Aquarius to see if these satellites can yield new information on seasonal and interannual surface variability. In this study barrier layer thickness (BLT) estimates will be derived from satellite measurements using a multilinear regression model (MRM). This study will help to improve monsoon modeling and forecasting, two areas that remain highly inaccurate after decades of research work.

  3. Coupled assimilation for an intermediated coupled ENSO prediction model

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  4. The criterial optics of oceans and glaciers with technogenic pollutions

    NASA Astrophysics Data System (ADS)

    Merzlikin, V. G.; Ilushin, Ya. A.; Olenin, A. L.; Sidorov, O. V.; Tovstonog, V. A.

    2017-02-01

    Effective diagnostics of natural and technogenic pollutions of the ocean and forming snow-ice cover is considered on the basis of priority observation and registration of the changing optical characteristics of the seawater and glaciers. The paper discusses Influence of abnormal optical properties on overheating of the seawater subsurface layer and appearance of significant irradiated oceanic deep horizons up to 100 m. Additional heating of atmosphere, strengthening of hurricanes during a storm, tornadogenesis, generation of dehydrated convective air flows at a calm and effect of overcooling deep seawater is analyzed using the scheme of calculated heat budget and temperature distributions under combined solar and atmospheric exposure. The authors propose to use their unique deep hydrological multi-channel probe for synchronous and independent registration of optical, temperature and other standard hydro physical characteristics developed by Shirshov Institute of Oceanology. The paper presents calculation algorithm of real variability of spatial and temporal temperature field due to influence of registered concentration field of foreign substances in the seawater irrespective of its hydrodynamic conditions. Inphase or antiphase changes of fixed temperature gradients and transparency for polluted seawater has been explained as the result of the various contributions of scattering and absorption within attenuation processes of probing radiation for the local volume at a specified depth.

  5. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus

    PubMed Central

    Sekine, Yasuhito; Shibuya, Takazo; Postberg, Frank; Hsu, Hsiang-Wen; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Mori, Megumi; Hong, Peng K.; Yoshizaki, Motoko; Tachibana, Shogo; Sirono, Sin-iti

    2015-01-01

    It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life. PMID:26506464

  6. High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus.

    PubMed

    Sekine, Yasuhito; Shibuya, Takazo; Postberg, Frank; Hsu, Hsiang-Wen; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Mori, Megumi; Hong, Peng K; Yoshizaki, Motoko; Tachibana, Shogo; Sirono, Sin-iti

    2015-10-27

    It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life.

  7. ENSO regimes and the late 1970's climate shift: The role of synoptic weather and South Pacific ocean spiciness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Kane, Terence J.; Matear, Richard J.; Chamberlain, Matthew A.

    South Pacific subtropical density compensated temperature and salinity (spiciness) anomalies are known to be associated with decadal equatorial variability, however, the mechanisms by which such disturbances are generated, advect and the degree to which they modulate the equatorial thermocline remains controversial. During the late 1970's a climate regime transition preceded a period of strong and sustained El Nino events. Using an ocean general circulation model forced by the constituent mechanical and thermodynamic components of the reanalysed atmosphere we show that the late 1970's transition coincided with the arrival of a large-scale, subsurface cold and fresh water anomaly in the centralmore » tropical Pacific. An ocean reanalysis for the period 1990–2007 that assimilates subsurface Argo, XBT and CTD data, reveals that disturbances occur due to the subduction of negative surface salinity anomalies from near 30° S, 100° W which are advected along the σ=25–26 kgm{sup −3} isopycnal surfaces. These anomalies take, on average, seven years to reach the central equatorial Pacific where they may substantially perturb the thermocline before the remnants ultimately ventilate in the region of the western Pacific warm pool. Positive (warm–salty) disturbances, known to occur due to late winter diapycnal mixing and isopycnal outcropping, arise due to both subduction of subtropical mode waters and subsurface injection. On reaching the equatorial band (10° S–0° S) these disturbances tend to deepen the thermocline reducing the model's ENSO. In contrast the emergence of negative (cold–fresh) disturbances at the equator are associated with a shoaling of the thermocline and El Nino events. Process studies are used to show that the generation and advection of anomalous density compensated thermocline disturbances critically depend on stochastic forcing of the intrinsic ocean by weather. We further show that in the absence of the inter-annual component of the atmosphere forcing Central Pacific El Nino events are manifest.« less

  8. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat.

    PubMed

    Jin, F-F; Boucharel, J; Lin, I-I

    2014-12-04

    The El Niño Southern Oscillation (ENSO) creates strong variations in sea surface temperature in the eastern equatorial Pacific, leading to major climatic and societal impacts. In particular, ENSO influences the yearly variations of tropical cyclone (TC) activities in both the Pacific and Atlantic basins through atmospheric dynamical factors such as vertical wind shear and stability. Until recently, however, the direct ocean thermal control of ENSO on TCs has not been taken into consideration because of an apparent mismatch in both timing and location: ENSO peaks in winter and its surface warming occurs mostly along the Equator, a region without TC activity. Here we show that El Niño--the warm phase of an ENSO cycle--effectively discharges heat into the eastern North Pacific basin two to three seasons after its wintertime peak, leading to intensified TCs. This basin is characterized by abundant TC activity and is the second most active TC region in the world. As a result of the time involved in ocean transport, El Niño's equatorial subsurface 'heat reservoir', built up in boreal winter, appears in the eastern North Pacific several months later during peak TC season (boreal summer and autumn). By means of this delayed ocean transport mechanism, ENSO provides an additional heat supply favourable for the formation of strong hurricanes. This thermal control on intense TC variability has significant implications for seasonal predictions and long-term projections of TC activity over the eastern North Pacific.

  9. Assimilation of TOPEX/Poseidon altimeter data into a global ocean circulation model: How good are the results?

    NASA Astrophysics Data System (ADS)

    Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng; Chao, Yi

    1999-11-01

    The feasibility of assimilating satellite altimetry data into a global ocean general circulation model is studied. Three years of TOPEX/Poseidon data are analyzed using a global, three-dimensional, nonlinear primitive equation model. The assimilation's success is examined by analyzing its consistency and reliability measured by formal error estimates with respect to independent measurements. Improvements in model solution are demonstrated, in particular, properties not directly measured. Comparisons are performed with sea level measured by tide gauges, subsurface temperatures and currents from moorings, and bottom pressure measurements. Model representation errors dictate what can and cannot be resolved by assimilation, and its identification is emphasized.

  10. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

    NASA Astrophysics Data System (ADS)

    Levermann, A.; Winkelmann, R.; Nowicki, S.; Fastook, J. L.; Frieler, K.; Greve, R.; Hellmer, H. H.; Martin, M. A.; Meinshausen, M.; Mengel, M.; Payne, A. J.; Pollard, D.; Sato, T.; Timmermann, R.; Wang, W. L.; Bindschadler, R. A.

    2014-08-01

    The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02-0.14 m; 90% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04-0.21 m; 90% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04-0.17 m; 90% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07-0.28 m; 90% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.

  11. Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment

    NASA Technical Reports Server (NTRS)

    Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard

    2004-01-01

    Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of 7 km on 1) an ocean and 2) a layer of bedrock. Knowledge of the ionospheric contributions to the time delay of the low-frequency subsurface radar is shown to be important in obtaining accurate depth information.

  12. Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon

    NASA Astrophysics Data System (ADS)

    Chang, Ping; Zhang, Rong; Hazeleger, Wilco; Wen, Caihong; Wan, Xiuquan; Ji, Link; Haarsma, Reindert J.; Breugem, Wim-Paul; Seidel, Howard

    2008-07-01

    Abrupt changes in the African monsoon can have pronounced socioeconomic impacts on many West African countries. Evidence for both prolonged humid periods and monsoon failures have been identified throughout the late Pleistocene and early Holocene epochs. In particular, drought conditions in West Africa have occurred during periods of reduced North Atlantic thermohaline circulation, such as the Younger Dryas cold event. Here, we use an ocean-atmosphere general circulation model to examine the link between oceanographic changes in the North Atlantic Ocean and changes in the strength of the African monsoon. Our simulations show that when North Atlantic thermohaline circulation is substantially weakened, the flow of the subsurface North Brazil Current reverses. This leads to decreased upper tropical ocean stratification and warmer sea surface temperatures in the equatorial South Atlantic Ocean, and consequently reduces African summer monsoonal winds and rainfall over West Africa. This mechanism is in agreement with reconstructions of past climate. We therefore suggest that the interaction between thermohaline circulation in the North Atlantic Ocean and wind-driven currents in the tropical Atlantic Ocean contributes to the rapidity of African monsoon transitions during abrupt climate change events.

  13. Ceres’ Evolution and Potential Habitability

    NASA Astrophysics Data System (ADS)

    Raymond, Carol Anne; Ammannito, Eleonora; Bland, Michael T.; Castillo-Rogez, Julie; De Sanctis, Maria Cristina; Ermakov, Anton; Fu, Roger; McCord, Thomas; Park, Ryan; Prettyman, Thomas H.; Ruesch, Ottaviano; Russell, Christopher T.; Dawn Team

    2017-10-01

    Dawn’s observations at Ceres confirm it is a volatile-rich body that has undergone ice-rock differentiation and global alteration [1-4], indicating that, as predicted by pre-Dawn thermochemical models, Ceres harbored an ancient subsurface ocean [5,6]. Density and shape data indicate that at present, Ceres has a crust composed of silicate, salts, clathrates and ≤ 35% water ice, overlying a denser core of hydrated silicates [7,8,9,10], whereas the original ice-dominated outer shell was likely lost to impact-induced sublimation early in Ceres’ history [11]. The interior structure constrains the maximum internal temperature to have been only a few hundred degrees [9]; however, rather than indicating a late formation for Ceres, it may indicate that circulation of fluids within Ceres modulated the temperature [12].The extent and longevity of the ocean are debatable; however, the modern surface of Ceres shows evidence of brine extrusion [e.g., 13], indicating at least pockets of subsurface liquid remain. Carbonates are found to dominate the composition of the brightest deposits on the surface, attesting to transport of crystallized brine material to the surface [14]. These multiple lines of evidence point to a warm aqueous subsurface environment with complex chemistry early in Ceres’ history and processes that exchanged material between the muddy ocean layer and the surface. Such history and the presence of organic material in localized deposits [15, 16] make Ceres an enticing target for future exploration. [1] Russell et al., Science, 2016 [2] Prettyman et al., Science, 2017 [3] De Sanctis et al., 2015 10.1038/nature18290 [4] Ammannito et al., Science, 2016 [5] McCord and Sotin, JGR, 2005 [6] Castillo-Rogez and McCord, Icarus, 2010 [7] Park et al., Nature, 2016 [8] Ermakov et al., JGR, 2017 [9] Fu et al., EPSL, 2017 [10] Bland et al., Nat. GeoSci., 2016 [11] Castillo-Rogez et al., LPSC, 2016 [12] Travis et al., Icarus, subm. [13] Ruesch et al., Science, 2106 [14] De Sanctis et al., Nature, 2016 [15] De Sanctis et al., Science, 2017 [16] Marchi et al., this meeting. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA.

  14. Investigating the use of paired Uk'37 and TEX86 measurements to reconstruct past sea surface and subsurface (thermocline) temperatures (Invited)

    NASA Astrophysics Data System (ADS)

    Castaneda, I. S.; Urann, B.; Phu, V.

    2013-12-01

    Two organic geochemical temperature proxies widely applied to marine sediments are the Uk'37 Index, based on long-chain alkenones produced by haptophyte algae, and TEX86, based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), produced by Thaumarchaeota. At some locations, temperature reconstructions based on Uk'37 and TEX86 are in agreement within the calibration errors of each proxy, while at other sites absolute Uk'37 and TEX86 reconstructed temperatures differ but both proxies reveal similar overall trends (e.g. Caley et al., 2011). In contrast, at other locations Uk'37 and TEX86 temperature reconstructions from the same samples yield dramatically different overall trends. Differences observed between Uk'37 and TEX86 temperature reconstructions have been attributed to a variety of factors including seasonal production biases, differences in preservation and lateral transport, and differences related to the depth habitat of the source organisms. An increasing number of studies have provided evidence that TEX86 likely reflects a subsurface water temperature in certain areas of the world's oceans and have used paired Uk'37 and TEX86 measurements to simultaneously examine sea surface and subsurface (in some cases thermocline) temperature variability (e.g. Lopes dos Santos et al., 2010; Rommerskirchen et al., 2011; Li et al., 2013). In the tropical N Atlantic, a distinctive signature of Atlantic Meridional Overturning Circulation (AMOC) slowdown is anticorrelated variation between surface and subsurface water temperatures (e.g. Chang et al., 2008; Zhang et al., 2007) where sea surface temperature (SST) cooling is accompanied by shallow subsurface warming (e.g. Chang et al., 2008). Lopes dos Santos et al. (2010) examined a site in the tropical NE Atlantic where they showed that in the modern Uk'37 reflects SST while TEXH86 likely reflects a thermocline temperature. The authors noted several periods during the past 200 kyr when surface cooling and subsurface warming occurred, which they attributed to AMOC slowdown. In this study, we examine sediments from ODP site 660 (NE Atlantic), located near the site studied by Lopes dos Santos et al. (2010), and use paired Uk'37-TEXH86 temperature measurements to investigate changes in sea surface and thermocline temperature variability over the past 4 Ma. We find that following Pliocene warmth, the Uk'37 record indicates an overall cooling trend since ~2.2 Ma, superimposed on glacial-interglacial temperature fluctuations. In contrast, the TEX86 record, which yields consistently cooler temperatures in comparison to Uk'37, does not exhibit an overall cooling trend during the Pleistocene nor elevated warmth during the Pliocene. In portions of the record, anticorrelated variability between Uk'37 and TEX86 temperatures is observed, likely reflecting differences in SST and thermocline temperatures related to AMOC variability. In addition, we examine the carbon (δ13C) and deuterium (δD) isotopic composition of plant leaf waxes, proxies for vegetation type (C3 vs. C4) and precipitation amount, respectively, as several studies have demonstrated close ties between AMOC variability and hydrological conditions in N Africa during the late Pleistocene and Holocene.

  15. Chemistry and Spectroscopy of Frozen Chloride Salts on Icy Bodies

    NASA Astrophysics Data System (ADS)

    Johnson, P. V.; Thomas, E. C.; Hodyss, R. P.; Vu, T. H.; Choukroun, M.

    2016-12-01

    Understanding the habitability of Europa's ocean is of great interest to astrobiology and is the focus of missions currently being considered to explore Europa. Currently, our best means of constraining the subsurface ocean composition and its subsequent habitability is by further study of Europa's surface chemical composition. Analysis of existing (and future) remote sensing data is limited by the availability of spectral libraries of candidate materials under relevant conditions (temperature, thermal/radiation history, etc.). Geochemical predictions of Europa's ocean composition suggest that chloride salts are likely to exist on the surface of Europa as well as other ocean worlds. We have conducted a study of frozen chloride-salt brines prepared at temperatures, pressures and radiation conditions (UV) in order to simulate conditions on the surface of Europa and other airless bodies. Hydration states of various chloride salts as a function of temperature were determined using Raman spectroscopy. Near IR reflectance spectra of identically prepared samples were measured to provide reference spectra of the identified hydrated salts. We find that the freezing of NaCl at temperatures ranging from 80 K to 233 K forms hydrohalite. In contrast, KCl hydrates are not formed from the freezing of KCl brines. In addition, a stable hexahydrate forms from the freezing of MgCl2 solutions, while a hexahydrate, a tetrahydrate, and a dihydrate, form upon freezing of CaCl2 solutions. Salts were observed to dehydrated with increasing temperatures, leading to a succession of hydration states in the case of CaCl2. Irradiation with vacuum ultraviolet light was observed to lead to dehydration as well.

  16. Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots?

    NASA Astrophysics Data System (ADS)

    Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian

    2018-02-01

    Subsurface eddies are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global eddying (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived eddies propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.

  17. Prospects of passive radio detection of a subsurface ocean on Europa with a lander

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve

    2016-09-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  18. Ocean forcing drives glacier retreat sometimes

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Ultee, E.; Ma, Y.

    2015-12-01

    Observations show that marine-terminating glaciers respond to climate forcing nonlinearly, with periods of slow or negligible glacier advance punctuated by abrupt, rapid retreat. Once glacier retreat has initiated, glaciers can quickly stabilize with a new terminus position. Alternatively, retreat can be sustained for decades (or longer), as is the case for Columbia Glacier, Alaska where retreat initiated ~1984 and continues to this day. Surprisingly, patterns of glacier retreat show ambiguous or even contradictory correlations with atmospheric temperature and glacier surface mass balance. Despite these puzzles, observations increasingly show that intrusion of warm subsurface ocean water into fjords can lead to glacier erosion rates that can account for a substantial portion of the total mass lost from glaciers. Here we use a simplified flowline model to show that even relatively modest submarine melt rates (~100 m/a) near the terminus of grounded glaciers can trigger large increases in iceberg calving leading to rapid glacier retreat. However, the strength of the coupling between submarine melt and calving is a strong function of the geometry of the glacier (bed topography, ice thickness and glacier width). This can lead to irreversible retreat when the terminus is thick and grounded deeply beneath sea level or result in little change when the glacier is relatively thin, grounded in shallow water or pinned in a narrow fjord. Because of the strong dependence on glacier geometry, small perturbations in submarine melting can trigger glaciers in their most advanced—and geometrically precarious—state to undergo sudden retreat followed by much slower re-advance. Although many details remain speculative, our model hints that some glaciers are more sensitive than others to ocean forcing and that some of the nonlinearities of glacier response to climate change may be attributable to variations in difficult-to-detect subsurface water temperatures that need to be better understood.

  19. Radar Imaging of Europa's Subsurface Properties and Processes: The View from Earth

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Moore, W. B.; Young, D. A.; Peters, M. E.

    2007-12-01

    A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface. Another objective will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface. Achieving these objectives will require either direct or inferred knowledge of the position of any ice/water interfaces as well as any brine or layer pockets. We will review the hypothesized processes that control the thermal, compositional and structural (TCS) properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. Our approach will be to extract the TCS properties for various subsurface processes thought to control the formation of major surface (e.g., ridges/bands, lenticulae, chaos, cratering...) and subsurface (e.g., rigid shell eutectics, diapirs, accretionary lenses ...) features on Europa. We will then assess the spectrum of analog processes and TCS properties represented by Earth's cryosphere including both Arctic and Antarctic ice sheets, ice shelves and valley glaciers. There are few complete analogs over the full TCS space but, because of the wide range of ice thickness, impurities and strain rates for Earth's cryosphere, there are many more analogs than many Earth and planetary researchers might imagine for significant portions of this space (e.g., bottom crevasses, marine ice shelf/subglacial lake accretion, surging polythermal glaciers...).Our ultimate objective is to use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.

  20. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    NASA Astrophysics Data System (ADS)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the observed surface and subsurface temperature variations from early spring to summer during the years 2014 and 2015 over the Indo-Pacific region. This study highlights the importance of maintaining observing systems such as ARGO for accurate monsoon forecast.

  1. The 2015/16 El Niño Event in Context of the MERRA-2 Reanalysis: A Comparison of the Tropical Pacific with 1982/83 and 1997/98

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Kovach, Robin M.; Pawson, Steven; Vernieres, Guillaume

    2017-01-01

    The 2015-2016 El Nino is analyzed using atmospheric/oceanic analysis produced using the Goddard Earth Observing System (GEOS) data assimilation systems. As well as describing the structure of the event, a theme of the work is to compare and contrast it with two other strong El Ninos, in 1982/1983 and 1997/1998. These three El Nino events are included in the Modern-Era Retrospective analysis for Research and Applications (MERRA) and in the more recent MERRA-2 reanalyses. MERRA-2 allows a comparison of fields derived from the underlying GEOS model, facilitating a more detailed comparison of physical forcing mechanisms in the El Nino events. Various atmospheric/oceanic structures indicate that the 2015/2016 El Nino maximized in the Nino3.4 region, with the large region of warming over most of the Pacific and Indian Ocean. The eastern tropical Indian Ocean, Maritime Continent, and western tropical Pacific are found to be less dry in boreal winter, compared to the earlier two strong events. While the 2015/2016 El Nino had an earlier occurrence of the equatorial Pacific warming and was the strongest event on record in the central Pacific, the 1997/1998 event exhibited a more rapid growth due to stronger westerly wind bursts and Madden-Julian Oscillation during spring, making it the strongest El Nino in the eastern Pacific. Compared to 1982/1983 and 1997/1998, the 2015/2016 event has a shallower thermocline over the eastern Pacific with a weaker zonal contrast of sub-surface water temperatures along the equatorial Pacific. While the three major ENSO events have similarities, each are unique when looking at the atmosphere and ocean surface and sub-surface.

  2. Estimation of subsurface thermal structure using sea surface height and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2012-01-01

    A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

  3. Methylmercury Mass Budgets and Distribution Characteristics in the Western Pacific Ocean.

    PubMed

    Kim, Hyunji; Soerensen, Anne L; Hur, Jin; Heimbürger, Lars-Eric; Hahm, Doshik; Rhee, Tae Siek; Noh, Seam; Han, Seunghee

    2017-02-07

    Methylmercury (MeHg) accumulation in marine organisms poses serious ecosystem and human health risk, yet the sources of MeHg in the surface and subsurface ocean remain uncertain. Here, we report the first MeHg mass budgets for the Western Pacific Ocean estimated based on cruise observations. We found the major net source of MeHg in surface water to be vertical diffusion from the subsurface layer (1.8-12 nmol m -2  yr -1 ). A higher upward diffusion in the North Pacific (12 nmol m -2  yr -1 ) than in the Equatorial Pacific (1.8-5.7 nmol m -2  yr -1 ) caused elevated surface MeHg concentrations observed in the North Pacific. We furthermore found that the slope of the linear regression line for MeHg versus apparent oxygen utilization in the Equatorial Pacific was about 2-fold higher than that in the North Pacific. We suggest this could be explained by redistribution of surface water in the tropical convergence-divergence zone, supporting active organic carbon decomposition in the Equatorial Pacific Ocean. On the basis of this study, we predict oceanic regions with high organic carbon remineralization to have enhanced MeHg concentrations in both surface and subsurface waters.

  4. The PRISM3D paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may have provided the enhanced ocean heat transport necessary to move warm surface water to the Arctic. New deep ocean temperature data also suggests greater warmth and further southward penetration of paleo NADW.

  5. Large Scale EOF Analysis of Climate Data

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Gittens, A.; Kashinath, K.; Cavanaugh, N. R.; Mahoney, M.

    2016-12-01

    We present a distributed approach towards extracting EOFs from 3D climate data. We implement the method in Apache Spark, and process multi-TB sized datasets on O(1000-10,000) cores. We apply this method to latitude-weighted ocean temperature data from CSFR, a 2.2 terabyte-sized data set comprising ocean and subsurface reanalysis measurements collected at 41 levels in the ocean, at 6 hour intervals over 31 years. We extract the first 100 EOFs of this full data set and compare to the EOFs computed simply on the surface temperature field. Our analyses provide evidence of Kelvin and Rossy waves and components of large-scale modes of oscillation including the ENSO and PDO that are not visible in the usual SST EOFs. Further, they provide information on the the most influential parts of the ocean, such as the thermocline, that exist below the surface. Work is ongoing to understand the factors determining the depth-varying spatial patterns observed in the EOFs. We will experiment with weighting schemes to appropriately account for the differing depths of the observations. We also plan to apply the same distributed approach to analysis of analysis of 3D atmospheric climatic data sets, including multiple variables. Because the atmosphere changes on a quicker time-scale than the ocean, we expect that the results will demonstrate an even greater advantage to computing 3D EOFs in lieu of 2D EOFs.

  6. Influence of deep vortices on the ocean surface

    NASA Astrophysics Data System (ADS)

    Ciani, Daniele; Carton, Xavier; Bashmachnikov, Igor; Chapron, Bertrand

    2015-04-01

    The oceanic motion at mesoscale (20-200 km) and submesoscale (0.5-20 km) is highly populated by vortices. These recirculating structures are more energetic than the mean flow, they trap water masses from their origination areas and advect them across the ocean, with consequent impact on the 3D distribution of heat and tracers. Mesoscale and submesoscale structures characterize the ocean dynamics both at the sea-surface and at intrathermocline depths (0-1500 m), and are presently investigated by means of model outputs and satellite (surface) data, the latest being the only way to get high resolution and synoptic observations at planetary scale (e.g., thermal-band observations, future altimetric observations given by the SWOT mission). The scientific question arising from this context is related to the role of the ocean surface for inferring informations on mesoscale and submesoscale vortices at depth. This study has also been motivated by the recent detection of subsurface eddies east of the Arabian Peninsula (PHYSINDIEN experiment - 2011). Using analytical models in the frame of the quasi-geostrophic (QG) theory, we could describe the theoretical altimetric signature of non-drifting and of drifting subsurface eddies. Numerical experiments, using both QG and primitive equations models, allowed us to investigate the surface expression of intrathermocline eddies interacting with baroclinic currents or evolving under planetary beta-effect. The eddies' characteristics (radius, depth, thickness, velocity) were varied in order to represent various oceanic examples (Meddies, Swoddies, Reddies, Peddies, Leddies). Idealized simulations with the ROMS model, confirming theoretical estimates, showed that drifting subsurface-intensified vortices can induce dipolar sea level anomalies, up to 3 cm. This result, compatibly with future SWOT measurement accuracies (about 2 cm), represents a contribution for systematic and synoptic detection of subsurface vortices.

  7. Oscillatory and Propagating Modes of Temperature Variability at the 3-3.5- and 4-4.5-yr Time Scales in the Upper Southwest Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Holbrook, Neil J.; Chan, Peter S.-L.; Venegas, Silvia A.

    2005-03-01

    This paper investigates oscillatory and propagating patterns of normalized surface and subsurface temperature anomalies (from the seasonal cycle) in the southwest Pacific Ocean using an extended empirical orthogonal function (EEOF) analysis. The temperature data (and errors) are from the Digital Atlas of Southwest Pacific upper Ocean Temperatures (DASPOT). These data are 3 monthly in time (January, April, July, and October), 2° × 2° in space, and 5 m in the vertical to 450-m depths. The temperature anomalies in the EEOF analysis are normalized by the objective mapping temperature errors at each grid point. They are also Butterworth filtered in the 3-7-yr band to examine interannual variations in the temperature field. The oscillating and propagating patterns of the modes are examined across four vertical levels: the surface, and 100-, 250-, and 450-m depths.The dominant mode EEOF (70% of the total variance of the filtered data) oscillates in a 4-4.5-yr quasi-periodic manner that is consistent with El Niño-Southern Oscillation (ENSO). Anomalies peak first at the surface in the subtropics between New Caledonia and Fiji (centered around 17°S, 177°E), then 6 months later in the tropical far west centered around the Solomon Islands (5°S, 153°-157°E), with a maximum at the base of the mixed layer (100 m) and upper thermocline (250 m), and then eastward in the northeast of the southwest Pacific region (0°-10°S, 160°E-180°). Mode 2 (25% variance of the filtered data) has a periodicity of 3-3.5 yr, with centers of action in all four vertical levels. The mode-2 patterns are consistent with variations in the subtropical gyre circulation, including the East Australian Current and its separation, and are continuous with the Tasman Front. Two spatial dipoles are apparent: (i) one in sea surface temperature (SST) at about 5°S, straddling west-east either side of the Solomon Islands, consistent with the classic Pacific-wide ENSO SST anomaly mode, and (ii) a subsurface dipole pattern, with centers in the Solomon Islands region at 100- and 250-m depths, and the western Tasman Sea (27°-33°S, 157°-161°E) at 250- and 450-m depths, consistent with dynamic changes in the gyre intensity.

  8. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

    PubMed

    Richardson, Katherine; Bendtsen, Jørgen

    2017-09-13

    Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  9. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study

    NASA Astrophysics Data System (ADS)

    Richardson, Katherine; Bendtsen, Jørgen

    2017-08-01

    Photosynthetic O2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q10 = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O2 production in a warmer ocean. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  10. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  11. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1) cooling of the Southern Ocean, especially in the Western Hemisphere; (2) slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3) slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4) increasingly powerful storms; and (5) nonlinearly growing sea level rise, reaching several meters over a timescale of 50-150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.

  12. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; Velicogna, Isabella; Tormey, Blair; Donovan, Bailey; Kandiano, Evgeniya; von Schuckmann, Karina; Kharecha, Pushker; Legrande, Allegra N.; Bauer, Michael; Lo, Kwok-Wai

    2016-03-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6-9 m with evidence of extreme storms while Earth was less than 1 °C warmer than today. Ice melt cooling of the North Atlantic and Southern oceans increases atmospheric temperature gradients, eddy kinetic energy and baroclinicity, thus driving more powerful storms. The modeling, paleoclimate evidence, and ongoing observations together imply that 2 °C global warming above the preindustrial level could be dangerous. Continued high fossil fuel emissions this century are predicted to yield (1) cooling of the Southern Ocean, especially in the Western Hemisphere; (2) slowing of the Southern Ocean overturning circulation, warming of the ice shelves, and growing ice sheet mass loss; (3) slowdown and eventual shutdown of the Atlantic overturning circulation with cooling of the North Atlantic region; (4) increasingly powerful storms; and (5) nonlinearly growing sea level rise, reaching several meters over a timescale of 50-150 years. These predictions, especially the cooling in the Southern Ocean and North Atlantic with markedly reduced warming or even cooling in Europe, differ fundamentally from existing climate change assessments. We discuss observations and modeling studies needed to refute or clarify these assertions.

  13. An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2012-07-01

    To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.

  14. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary.

    PubMed

    Grayver, Alexander V; Schnepf, Neesha R; Kuvshinov, Alexey V; Sabaka, Terence J; Manoj, Chandrasekharan; Olsen, Nils

    2016-09-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  15. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids

    PubMed Central

    Baquiran, Jean-Paul M.; Ramírez, Gustavo A.; Haddad, Amanda G.; Toner, Brandy M.; Hulme, Samuel; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928

  16. On the relative role of meridional convergence and downwelling motion during the heat buildup leading to El Niño events

    NASA Astrophysics Data System (ADS)

    Ballester, Joan; Bordoni, Simona; Petrova, Desislava; Rodó, Xavier

    2015-04-01

    Despite steady progress in the understanding of El Niño-Southern Oscillation (ENSO) in the past decades, questions remain on the exact mechanisms leading to the onset of El Niño (EN) events. Several authors have highlighted how the subsurface heat buildup in the western tropical Pacific and the recharged phase in equatorial heat content are intrinsic elements of ENSO variability, leading to those changes in zonal wind stress, sea surface temperature and thermocline tilt that characterize the growing and mature phases of EN. Here we use an ensemble of ocean and atmosphere assimilation products to identify the mechanisms contributing to the heat buildup that precedes EN events by about 18-24 months on average. Anomalous equatorward subsurface mass convergence due to meridional Sverdrup transport is found to be an important mechanism of thermocline deepening near and to the east of the dateline. In the warm pool, instead, surface horizontal convergence and downwelling motion have a leading role in subsurface warming, since equatorward mass convergence is weaker and counterbalanced by subsurface zonal divergence. The picture emerging from our results highlights the complexity of the three dimensional dynamic and thermodynamic structure of the tropical Pacific during the heat buildup leading to EN events.

  17. Multivariate Error Covariance Estimates by Monte-Carlo Simulation for Assimilation Studies in the Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Borovikov, Anna; Rienecker, Michele M.; Keppenne, Christian; Johnson, Gregory C.

    2004-01-01

    One of the most difficult aspects of ocean state estimation is the prescription of the model forecast error covariances. The paucity of ocean observations limits our ability to estimate the covariance structures from model-observation differences. In most practical applications, simple covariances are usually prescribed. Rarely are cross-covariances between different model variables used. Here a comparison is made between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algorithm (MvOI) in the assimilation of ocean temperature. In the UOI case only temperature is updated using a Gaussian covariance function and in the MvOI salinity, zonal and meridional velocities as well as temperature, are updated using an empirically estimated multivariate covariance matrix. Earlier studies have shown that a univariate OI has a detrimental effect on the salinity and velocity fields of the model. Apparently, in a sequential framework it is important to analyze temperature and salinity together. For the MvOI an estimation of the model error statistics is made by Monte-Carlo techniques from an ensemble of model integrations. An important advantage of using an ensemble of ocean states is that it provides a natural way to estimate cross-covariances between the fields of different physical variables constituting the model state vector, at the same time incorporating the model's dynamical and thermodynamical constraints as well as the effects of physical boundaries. Only temperature observations from the Tropical Atmosphere-Ocean array have been assimilated in this study. In order to investigate the efficacy of the multivariate scheme two data assimilation experiments are validated with a large independent set of recently published subsurface observations of salinity, zonal velocity and temperature. For reference, a third control run with no data assimilation is used to check how the data assimilation affects systematic model errors. While the performance of the UOI and MvOI is similar with respect to the temperature field, the salinity and velocity fields are greatly improved when multivariate correction is used, as evident from the analyses of the rms differences of these fields and independent observations. The MvOI assimilation is found to improve upon the control run in generating the water masses with properties close to the observed, while the UOI failed to maintain the temperature and salinity structure.

  18. Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.

    2003-12-01

    Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2) What impact do subsurface microorganisms have on the surface biosphere? (3) And, what roles do the subsurface biosphere play in element cycling? will be answered by future drilling. The International Ocean Drilling Program (IODP) is in the enviable position of providing support to address these key questions about the Earth's subsurface biosphere.

  19. Jupiter's and Saturn's ice moons: geophysical aspects and opportunities of geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons

    NASA Astrophysics Data System (ADS)

    Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav

    2016-04-01

    This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone

  20. A multi-decadal study of Polar and Atlantic Water changes on the North Iceland shelf during the last Millennium

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein

    2017-04-01

    The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution to the North Iceland shelf that links to large-scale atmospheric and oceanic changes in the North Atlantic region. We find, during the time of the Medieval Climate Anomaly (MCA), an increased influence of Atlantic waters on surface water conditions, suggesting a stronger inflow of the NIIC, and thus of SPMW from the IC. This influence decreases markedly at the transition from the MCA to the Little Ice Age (LIA) and remains weak during the 20th Century, which likely relates to an enhanced inflow of cold/fresh Polar surface waters to the North Iceland shelf. During the MCA and LIA subsurface water conditions remain predominantly influenced by SPMW from the IC. However, from c. 1950 AD towards the present, this influence and thus likely subsurface water temperatures, decrease on the western North Iceland shelf.

  1. A modelling study of the influence of anomalous wind forcing over the Barents Sea on the Atlantic water flow to the Arctic Ocean in the period 1979-2004

    NASA Astrophysics Data System (ADS)

    Marciniak, Jakub; Schlichtholz, Pawel; Maslowski, Wieslaw

    2016-04-01

    Arctic climate system is influenced by oceanic heat transport with the Atlantic water (AW) streaming towards the Arctic Ocean in two branches, through the deep Fram Strait and the shallow Barents Sea. In Fram Strait, the AW submerges below the Polar surface water and then flows cyclonically along the margin of the Arctic Ocean as a subsurface water mass in the Arctic Slope Current. In contrast to the Fram Strait branch, which is the major source of heat for the Arctic Ocean, most of the heat influx to the Barents Sea through the Barents Sea opening (BSO) is passed to the atmosphere. Only cold remnants of AW outflow to the Arctic Ocean through the northeastern gate of the Barents Sea. Some AW entering the Barents Sea recirculates westward, contributing to an outflow from the Barents Sea through the BSO along the shelf slope south of Bear Island, in the Bear Island Slope Current. Even though the two-branched AW flow toward the Arctic Ocean has been known for more than a century, little is known about co-variability of heat fluxes in the two branches, its mechanisms and climatic implications. Recent studies indicate that the Bear Island Slope Current may play a role in this co-variability. Here, co-variability of the flow through the BSO and Fram Strait is investigated using a pan-Arctic coupled ice-ocean hindcast model run for the period 1979-2004 and forced with daily atmospheric data from the ECMWF. Significant wintertime co-variability between the volume transport in the Bear Island and Arctic slope currents and its link to wind forcing over the Barents Sea is confirmed. It is found that the volume transports in these currents are, however, not correlated in the annual mean and that the wintertime co-variability of these currents has no immediate effect on either the net heat flux through the BSO or the net heat flux divergence in the Barents Sea. It is shown that the main climatic effect of wind forcing over the northern Barents Sea shelf is to induce temperature anomalies in the Murman/West Novaya Zemlya current system on the eastern side of the Barents Sea. These anomalies affect sea ice in the eastern Barents Sea 1-3 months later, but are not completely lost on the interactions with the sea ice and local atmosphere. Statistically significant subsurface temperature anomalies driven by anomalous winds over the Barents Sea join, on their exit to the Arctic Ocean through St. Anna Trough, the Arctic Slope Current, in which they persist for several years.

  2. The stability against freezing of an internal liquid-water ocean in Callisto.

    PubMed

    Ruiz, J

    2001-07-26

    The discovery of the induced magnetic field of Callisto-one of Jupiter's moons-has been interpreted as evidence for a subsurface ocean, even though the presence of such an ocean is difficult to understand in the context of existing theoretical models. Tidal heating should not be significant for Callisto, and, in the absence of such heating, it is difficult to see how this internal ocean could have survived until today without freezing. Previous work indicated that an outer ice layer on the ocean would be unstable against solid-state convection, which once begun would lead to total freezing of liquid water in about 108 years. Here I show that when a methodology for more physically reasonable water ice viscosities (that is, stress-dependent non-newtonian viscosities, rather than the stress-independent newtonian viscosities considered previously) is adopted, the outer ice shell becomes stable against convection. This implies that a subsurface ocean could have survived up to the present, without the need for invoking antifreeze substances or other special conditions.

  3. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.

    2016-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  4. Global ocean monitoring for the World Climate Research Programme.

    PubMed

    Revelle, R; Bretherton, F

    1986-07-01

    Oceanic research and modelling for the World Climate Research Program will utilize several recently-developed instruments and measuring techniques as well as well-tested, long-used instruments. Ocean-scanning satellites will map the component of the ocean-surface topography related to ocean currents and mesoscale eddies and to fluctuating water volumes caused by ocean warming and cooling. Other satellite instruments will measure the direction and magnitude of wind stress on the sea surface, surface water temperatures, the distribution of chlorophyll and other photosynthetic pigments, the characteristics of internal waves, and possible precipitation over the ocean. Networks of acoustic transponders will obtain a three-dimensional picture of the distribution of temperature from the surface down to mid-depth and of long-term changes in temperature at depth. Ocean research vessels will determine the distribution and fate of geochemical tracers and will also make high-precision, deep hydrographic casts. Ships of opportunity, using expendable instruments, will measure temperature, salinity and currents in the upper water layers. Drifting and anchored buoys will also measure these properties as well as those of the air above the sea surface. Tide gauges installed on islands and exposed coastal locations will measure variations in monthly and shorter-period mean sea level. These tide gauges will provide 'ground truth' for the satellite maps of sea-surface topography, and will also determine variations in ocean currents and temperature.All these instruments will be used in several major programs, the most ambitious of which is the World Ocean Circulation Experiment (WOCE) designed to obtain global measurements of major currents throughout the world ocean, greater understanding of the transformation of water masses, and the role of advective, convective, and turbulent processes in exchange of properties between surface and deep-ocean layers.A five- to ten-year experiment-"Tropical Oceans and Global Atmosphere (TOGA)"-will be undertaken to sudy the sequence of events of air-sea interactions in the tropical oceans and their impact on climatic variations on land-for example, variations in the strength and location of the Indian Ocean monsoon, droughts in low latitudes, and climatic fluctuations in temperate latitudes.Experimental and continuing time series will be taken at fixed locations to obtain a better picture of the magnitude and causes of ocean climate variability. National and multinational systematic repeated measurements along selected ocean transects or in specific ocean areas will be taken to determine oceanic variability and teleconnections between oceanic and atmospheric processes. Examples are the long Japanese section along the meridian of 137° E and the 'Sections' program of the USSR and several other countries in Energy-Active zones.The results from this wide range of observations and experiments will be used to guide and define mathematical models of the ocean circulation and its interactions with the atmosphere.It can be shown that biogeochemical processes in the ocean play an important role in determining the carbon dioxide content of the atmosphere and thus in causing long-term climatic changes. Variations in the biological productivity of sub-surface waters cause variations in the effectveness of the biological pump which carries organic carbon down into deeper waters where it is oxidized. Studies of ice cores from 20 000 to 30 000 yr before the present indicate that atmospheric carbon dioxide varied by a factor of 2 within times of the order of 100 yr, and these variations were accompanied by large excursions in atmospheric temperature. Thus, ocean climatic monitoring must take into account measurements of both biological and physical variations in the ocean.

  5. Tropical North Atlantic subsurface temperature anomalies: evidence for AMOC variability across Dansgaard-Oscheger events?

    NASA Astrophysics Data System (ADS)

    Parker, A. O.; Schmidt, M. W.; Chang, P.

    2013-12-01

    A common mechanism often proposed to explain the abrupt climate events of Marine Isotope Stage 3 (MIS 3), known as Dansgaard-Oscheger (D-O) cycles, invokes variability in the strength of the Atlantic Meridional Overturning Circulation (AMOC). Although proxy evidence shows that D-O cycles resulted in large-scale changes in atmospheric circulation patterns around the planet, an understanding of how the AMOC varied across these events remains unclear. Coupled ocean-atmosphere models demonstrate that AMOC variability is linked to abrupt change in the tropical North Atlantic (TNA) through both oceanic and atmospheric processes. A reduction in AMOC causes a subsurface oceanic warming in the TNA as the western boundary current slows, allowing the warm salinity maximum waters to enter the deep tropics. Recently, Schmidt et al. (2012) identified an abrupt subsurface warming at the onset of AMOC slow down during both Heinrich 1 and the Younger Dryas, suggesting this signal may be a robust feature of AMOC variability in the TNA. In order to determine if AMOC variability was the driver of D-O cycles during MIS 3, we present new, high-resolution Mg/Ca and δ18O records from the near-surface dwelling planktonic foraminifera G. ruber and the lower-thermocline dwelling planktonic foraminifera G. crassaformis from 22 - 52 ka BP in southern Caribbean core VM12-107 (11.33oN, 66.63oW, 1079m depth). Sedimentation rates in VM12-107 average 24cm/kyr, providing high temporal resolution able to resolve millennial-scale events. The G. ruber δ18O record shows abrupt oscillations up to 1‰ as well as Mg/Ca-based SST changes of 1.5 - 2oC that are synchronous with some D-O cycles recorded in the Greenland ice cores. Given our ability to resolve D-O cycles in the planktonic record, we find that Mg/Ca ratios from G. crassaformis were, on average, 0.13 × 0.04 mmol/mol higher during stadials. This equates to a temperature increase during stadials of up to 1.5oC. These results imply that AMOC variability played an important role in at least some millennial-scale D-O cycles during MIS 3.

  6. Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?

    NASA Astrophysics Data System (ADS)

    Colwell, F. S.; Thurber, A. R.

    2016-12-01

    Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.

  7. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley

    PubMed Central

    Mikucki, J. A.; Auken, E.; Tulaczyk, S.; Virginia, R. A.; Schamper, C.; Sørensen, K. I.; Doran, P. T.; Dugan, H.; Foley, N.

    2015-01-01

    The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional-scale zones of low subsurface resistivity were detected that are inconsistent with the high resistivity of glacier ice or dry permafrost in this region. We interpret these results as an indication that liquid, with sufficiently high solute content, exists at temperatures well below freezing and considered within the range suitable for microbial life. These inferred brines are widespread within permafrost and extend below glaciers and lakes. One system emanates from below Taylor Glacier into Lake Bonney and a second system connects the ocean with the eastern 18 km of the valley. A connection between these two basins was not detected to the depth limitation of the AEM survey (∼350 m). PMID:25919365

  8. A biomarker perspective on dust, productivity, and sea surface temperature in the Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jaeschke, Andrea; Wengler, Marc; Hefter, Jens; Ronge, Thomas A.; Geibert, Walter; Mollenhauer, Gesine; Gersonde, Rainer; Lamy, Frank

    2017-05-01

    In this study, we present a new multiproxy data set of terrigenous input, marine productivity and sea surface temperature (SST) from 52 surface sediment samples collected along E-W transects in the Pacific sector of the Southern Ocean. Allochthonous terrigenous input was characterized by the distribution of plant wax n-alkanes and soil-derived branched glycerol dialkyl glycerol tetraethers (brGDGTs). 230Th-normalized burial of both compound groups were highest close to the potential sources in Australia and New Zealand and are strongly related to lithogenic contents (232Th), indicating common sources and transport. Detection of both long-chain n-alkanes and brGDGTs at the most remote sites in the open ocean strongly suggests a primarily eolian transport mechanism to at least 110°W, i.e. by prevailing westerly winds. Two independent organic SST proxies were used, the U37K‧ based on alkenones, and the TEX86 based on isoprenoid GDGTs. Both, U37K‧ and TEX86 indices show robust relationships with temperature over a temperature range between 0.5 and 20 °C, likely implying different seasonal and regional imprints on the temperature signal. Alkenone-based temperature estimates best reflect modern summer SST in the study area when using the polar calibration of Sikes et al. (1997). In contrast, TEX86-derived temperatures may reflect a subsurface signal rather than surface. 230Th-normalized burial of alkenones is highest close to the Subtropical Front and is positively related to the deposition of lithogenic material throughout the study area. In contrast, highest isoGDGT burial south of the Antarctic Polar Front may be largely controlled by diatom blooms, and thus high opal fluxes during austral summer.

  9. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    NASA Astrophysics Data System (ADS)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  10. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NASA Astrophysics Data System (ADS)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S. M.; Melling, H.; McLaughlin, F. A.; Kwok, R.; Smethie, W. M.; Schlosser, P.

    2013-09-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008-2010, the freshest surface waters in the western Lincoln Sea show water mass properties similar to fresh Canada Basin waters north of the Canadian Arctic Archipelago. In the northeastern Lincoln Sea fresh surface waters showed a strong link with those observed in the Makarov Basin near the North Pole. The freshening in the Lincoln Sea was associated with a return of a subsurface Pacific Water temperature signal although this was not as strong as observed in the early 1990s. Comparison of repeat stations from the 2000s with the data from the 1990s at 65°W showed an increase of the Atlantic temperature maximum which was associated with the arrival of warmer Atlantic water from the Eurasian Basin. Satellite-derived dynamic ocean topography of winter 2009 showed a ridge extending parallel to the Canadian Archipelago shelf as far as the Lincoln Sea, causing a strong flow toward Nares Strait and likely Fram Strait. The total volume of anomalous freshwater observed in the Lincoln Sea and exported by 2011 was close to 1100±250km3, approximately 13% of the total estimated FW increase in the Arctic in 2008.

  11. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.

    2017-12-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  12. Europe as a goal for colonization

    NASA Astrophysics Data System (ADS)

    Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    Europe as a target for human colonization has several advantages over many other bodies of the outer solar system. Although we point out on a few problems. So, Europe has a liquid ocean of water under the ice cover, but access to this water is a serious test. In this case, the abundance of water in Europe is an advantage for possible colonization. After all, ice, fresh lakes and the ocean itself can meet the needs of colonists in the water. It can also be divided into oxygen and hydrogen. It is believed that oxygen can accumulate as a result of radiolysis of ice on the surface, and then be transferred to the subsurface ocean. There, in the ocean, it may be enough of oxygen for using by some life form. Presence of liquid water below the ice surface of Europe, and the fact that the colonists will be spend most of their time under the ice shield in order to protect themselves from radiation, can somewhat alleviate the problems associated with low temperatures. And an unstable surface can be a potential problem.

  13. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    NASA Technical Reports Server (NTRS)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  14. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    PubMed Central

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Manoj, Chandrasekharan; Olsen, Nils

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. PMID:27704045

  15. Mean-state SST Response to global warming caused by the ENSO Nonlinearity

    NASA Astrophysics Data System (ADS)

    Kohyama, T.; Hartmann, D. L.

    2017-12-01

    The majority of the models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) exhibit El Niño-like trends under global warming. GFDL-ESM2M, however, is an exception that exhibits a La Niña-like response with strengthened trade winds. Our previous studies have shown that this La Niña-like trend could be a physically consistent warming response, and we proposed the Nonlinear ENSO Warming Suppression (NEWS) mechanism to explain this La Niña-like response to global warming. The most important necessary condition of NEWS is the ENSO skewness (El Niños are stronger than La Niñas). Most CMIP5 models do not reproduce the observed ENSO skewness, while GFDL-ESM2M exhibits the realistic ENSO skewness, which suggests that, despite being in the minority, the La Niña-like trend of GFDL-ESM2M could be a plausible equatorial Pacific response to warming. In this study, we introduce another interesting outlier, MIROC5, which reproduces the observed skewness, yet exhibits an El Niño-like response. By decomposing the source of the ENSO nonlinearity into the following three components: "SST anomalies modulate winds", "winds excite oceanic waves", and "oceanic waves modulate the subsurface temperature", we show that the large inter-model spread of the third component appears to explain the most important cause of the poor reproducibility of the ENSO nonlinearity in CMIP5 models. It is concluded that the change in the response of subsurface temperature to oceanic waves is the primary explanation for the different warming response of GFDL-ESM2M and MIROC5. Our analyses suggest that the difference of the warming response are caused by difference in the climatological thermal stratification. This study may shed new light on the fundamental question of why observed ENSO has a strong skewness and on the implications of this skewed ENSO for the mean-state sea surface temperature response to global warming.

  16. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  17. Acidification of subsurface coastal waters enhanced by eutrophication

    EPA Science Inventory

    Uptake of fossil-fuel carbon dioxide (CO2) from the atmosphere has acidified the surface ocean by ~0.1 pH units and driven down the carbonate saturation state. Ocean acidification is a threat to marine ecosystems and may alter key biogeochemical cycles. Coastal oceans have also b...

  18. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.

    2015-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  19. Radiation processing of organics and biological materials exposed to ocean world surface conditions.

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2017-12-01

    Assessing the habitability of ocean worlds, such as Europa and Enceladus, motivates a search for endogenous carbon compounds that could be indicative of a habitable, or even inhabited, subsurface liquid water environment. We have examined the role of destruction and synthesis of organic compounds via 10 keV electron bombardment of ices generated under temperature and pressure conditions comparable to Europa and Enceladus. Short-chain organics and ammonia, in combination with water, were exposed to Mrad to Grad doses and observed to evolve to a `lost' carbon fraction (CO and CO2) and a `retained' carbon fraction (consisting of a highly refractory `ocean world tholin' populated by highly radiation resistant carbonyl, aldehyde, and nitrile components). The retained fraction is of key importance as this likely represents the observable fraction for future spacecraft investigations. We also irradiated microbial spores (B. pumilis) to approximately 2 Grad and have found persistence of biomolecule fractions derived from proteins and nucleic acids.

  20. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  1. Ongoing hydrothermal activities within Enceladus

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-Iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-01

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical `footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  2. Sorting Out the Ocean Crust Deep Biosphere with Single Cell Omics Approaches

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; D'Angelo, T.; Goordial, J.; Jones, R. M.; Carr, S. A.

    2017-12-01

    Although oceanic crust comprises a large habitat for subsurface life, the structure, function, and dynamics of microbial communities living on rocks in the subsurface are poorly understood. Single cell level approaches can overcome limitations of low biomass in subsurface systems. Coupled with incubation experiments with amino acid orthologs, single cell level sorting can reveal high resolution information about identity, functional potential, and growth. Leveraging collaboration with the Single Cell Genomics Center and the Facility for Aquatic Cytometry at Bigelow Laboratory, we present recent results from single cell level sorting and -omics sequencing from several crustal environments, including the Atlantis Massif and the Juan de Fuca Ridge flank. We will also highlight new experiments conducted with samples recovered from the flank of the Mid-Atlantic Ridge.

  3. A balanced Kalman filter ocean data assimilation system with application to the South Australian Sea

    NASA Astrophysics Data System (ADS)

    Li, Yi; Toumi, Ralf

    2017-08-01

    In this paper, an Ensemble Kalman Filter (EnKF) based regional ocean data assimilation system has been developed and applied to the South Australian Sea. This system consists of the data assimilation algorithm provided by the NCAR Data Assimilation Research Testbed (DART) and the Regional Ocean Modelling System (ROMS). We describe the first implementation of the physical balance operator (temperature-salinity, hydrostatic and geostrophic balance) to DART, to reduce the spurious waves which may be introduced during the data assimilation process. The effect of the balance operator is validated in both an idealised shallow water model and the ROMS model real case study. In the shallow water model, the geostrophic balance operator eliminates spurious ageostrophic waves and produces a better sea surface height (SSH) and velocity analysis and forecast. Its impact increases as the sea surface height and wind stress increase. In the real case, satellite-observed sea surface temperature (SST) and SSH are assimilated in the South Australian Sea with 50 ensembles using the Ensemble Adjustment Kalman Filter (EAKF). Assimilating SSH and SST enhances the estimation of SSH and SST in the entire domain, respectively. Assimilation with the balance operator produces a more realistic simulation of surface currents and subsurface temperature profile. The best improvement is obtained when only SSH is assimilated with the balance operator. A case study with a storm suggests that the benefit of the balance operator is of particular importance under high wind stress conditions. Implementing the balance operator could be a general benefit to ocean data assimilation systems.

  4. Preserved Organic Matter in the Alpine Tethyan Ocean Continental Transition (Totalp unit, Eastern Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Mateeva, T.; Wolff, G. A.; Kusznir, N.; Wheeler, J.; Manatschal, G.

    2015-12-01

    Observations at hydrothermal systems in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems. An important question is whether such bio-systems are localised or are more pervasive in their association with serpentinized mantle in the subsurface. This has implications for the global importance of the hidden sub-surface bio-systems, the fate of methane and the carbon cycle. The Totalp unit, a remnant of a former Ocean Continent Transition (OCT) exposed in Alps of Eastern Switzerland, has been chosen to investigate the presence or absence of methanotrophic biosystems within serpentinized exhumed mantle in the Alpine Tethyan margin. The Totalp unit is made of serpentinized mantle and ophicalcites overlain by Upper Jurassic to Lower Cretaceous post-rift sediments. The Totalp unit has undergone little Alpine deformation and only a low-grade metamorphic overprint (<200°C). Totalp samples are characterized by total carbon contents of 0.02% to 12.90% and organic carbon contents of 1x10-4 % to 8%. This large range of values reflects the large lithological diversity of this area. The serpentinized peridotite, ophicalcite and post-rift sediments contain hydrocarbons in the form of n-alkanes in the range C20 - C40; isoprenoids, for example pristane and phytane are present in sediments. The organic biological marker distribution is consistent with the temperature history of the OCT (i.e.lower maximum temperature than 200°C). First results from Totalp show evidence for preservation of marine organic matter in the serpentinized mantle and overlying sediments, although there is no evidence that any organic matter is generated from methanotrophic bio-systems. Nevertheless, focussing on Tethyan hydrothermal systems and preserved hydrocarbons will be critical in understanding whether methanotrophic biomarkers can be preserved and if so whether the methane originated from serpentenization.

  5. Microbial life associated with low-temperature alteration of ultramafic rocks in the Leka ophiolite complex.

    PubMed

    Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B

    2013-07-01

    Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.

  6. Tidal dissipation in the subsurface ocean of Enceladus

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.

    2017-12-01

    Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power radiated from the south polar terrain requires shell thicknesses smaller than about 1 km, a value that is not consistent with recent libration, gravity and topography constraints.

  7. Mechanisms Controlling the Interannual Variation of Mixed Layer Temperature Averaged over the Nino-3 Region

    NASA Technical Reports Server (NTRS)

    Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro

    2007-01-01

    The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.

  8. An Examination of Issues Related to a Europa Subsurface Component for the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.; Wilcox, B. H.; Behar, A. E.; Holland, P. M.

    2003-01-01

    The Galileo Europa data set served to revolutionize our view of Europa. In particular the strong evidence of a large, cold, salty Ocean beneath 5-30 km of ice has profoundly altered the significance of Europa in our thinking, especially of context of habitability in the solar system. While much remains to be learned from spacecraft observations of several sorts, there are significant questions answerable only by in-situ techniques; these relate to the formation of Europa, the nature of its ocean, and the prospects for life in its ocean, sediments, and ice. We feel that wide-ranging discussion of an in-situ subsurface mission to Europa, as part of JIMO, should proceed. The science objective of the mission is to characterize the icy shell of Europa to resolve its provenance, estimate the composition of brine of the Europa ocean, and search for evidence of Earth-like life. Probably anyone would agree that an in-situ mission to Europa would be of great value, but he or she would also immediately take the position that such a mission is utterly impractical. We take the position here of defining the least complex mission that can nonetheless justify its cost and to argue that such a mission is realistic enough that it should be seriously considered. Our mission thinking has been: 1) Soft landing. A soft lander is required on a site sufficiently flat to offer a stable platform; no further site selectivity is required. 2) Subsurface exploration. The Europa subsurface must be examined. Surficial processes on Europa arguably have exposed the upper 200 m of shell to chemical effects from the Jovian radiation belts as well as cometary infall, etc; to examine native ice we must descend below that point to, for discussion, 300 m. At that depth we argue that the ice is characteristic of ice at depth and possibly is effectively sea ice. 3) Science data. A few simple measurements at various depths and at 300 m constitute a scientifically successful mission. Measurements would include analysis of meltwater for a few inorganic ions and amino acids and an optical examination of the borehole wall. 4) Communication. Transmission of data to an orbiter is essential, but we will constrain the landed mission to a daily communication over a few days. 5) Subsurface access. Drilling to 300 m is a significant challenge; it can be addressed by several means: Thermal Probe (Cryobot) which permits water to refreeze above the vehicle. This is our tentative choice with plutonium as the fuel to generate thermal energy for drilling and electrical power for operations. Open Hole Drill, a thermal system in which the meltwater is removed for greater thermal efficiency. Meltwater removal on Europa is both a complexity and a risk, but analysis is improved. Mechanical Drilling in which cutting or grinding generates ice chips which are removed. This is too complex at Europa temperatures. The measurement objectives for the mission will be: Obj. 1: Determine the concentration of simple inorganic salts in the Europa Ice Shell and, by extrapolation, of the ocean. These data will also validate spaceborne sensors. Obj. 2: Determine the nature and abundance of amino acids in the ice such that cometary infall material in the upper ice can be compared to material at depth. Obj. 3: Optically examine the ice to resolve inclusion structure, particulate content, and stratification. Access to 300 m depth is a significant if not audacious plan; we are aware that this has not been done on any planetary body. Our approach is the use of a plutonium heat source; to overcome Europa's surface temperature and to melt ice a significant amount of plutonium is needed, and significant shielding and other protective steps will be required. The quantity of plutonium is a key concern. The mission will require subsurface collection and processing of samples for in situ analysis, calling for a miniature, high pressure micro-sampling system designed to meet needs of instruments that require low presses for operation. The inlet system itself collects a micro-sample in the external high pressure environment, then transfers it into a protected low pressure environment for analysis.

  9. Comparison of Two Global Ocean Reanalyses, NRL Global Ocean Forecast System (GOFS) and U. Maryland Simple Ocean Data Assimilation (SODA)

    NASA Astrophysics Data System (ADS)

    Richman, J. G.; Shriver, J. F.; Metzger, E. J.; Hogan, P. J.; Smedstad, O. M.

    2017-12-01

    The Oceanography Division of the Naval Research Laboratory recently completed a 23-year (1993-2015) coupled ocean-sea ice reanalysis forced by NCEP CFS reanalysis fluxes. The reanalysis uses the Global Ocean Forecast System (GOFS) framework of the HYbrid Coordinate Ocean Model (HYCOM) and the Los Alamos Community Ice CodE (CICE) and the Navy Coupled Ocean Data Assimilation 3D Var system (NCODA). The ocean model has 41 layers and an equatorial resolution of 0.08° (8.8 km) on a tri-polar grid with the sea ice model on the same grid that reduces to 3.5 km at the North Pole. Sea surface temperature (SST), sea surface height (SSH) and temperature-salinity profile data are assimilated into the ocean every day. The SSH anomalies are converted into synthetic profiles of temperature and salinity prior to assimilation. Incremental analysis updating of geostrophically balanced increments is performed over a 6-hour insertion window. Sea ice concentration is assimilated into the sea ice model every day. Following the lead of the Ocean Reanalysis Intercomparison Project (ORA-IP), the monthly mean upper ocean heat and salt content from the surface to 300 m, 700m and 1500 m, the mixed layer depth, the depth of the 20°C isotherm, the steric sea surface height and the Atlantic Meridional Overturning Circulation for the GOFS reanalysis and the Simple Ocean Data Assimilation (SODA 3.3.1) eddy-permitting reanalysis have been compared on a global uniform 0.5° grid. The differences between the two ocean reanalyses in heat and salt content increase with increasing integration depth. Globally, GOFS trends to be colder than SODA at all depth. Warming trends are observed at all depths over the 23 year period. The correlation of the upper ocean heat content is significant above 700 m. Prior to 2004, differences in the data assimilated lead to larger biases. The GOFS reanalysis assimilates SSH as profile data, while SODA doesn't. Large differences are found in the Western Boundary Currents, Southern Ocean and equatorial regions. In the Indian Ocean, the Equatorial Counter Current extends to far to the east and the subsurface flow in the thermocline is too weak in GOFS. The 20°C isotherm is biased 2 m shallow in SODA compared to GOFS, but the monthly anomalies in the depth are highly correlated.

  10. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.

    PubMed

    Hubert, Casey; Loy, Alexander; Nickel, Maren; Arnosti, Carol; Baranyi, Christian; Brüchert, Volker; Ferdelman, Timothy; Finster, Kai; Christensen, Flemming Mønsted; Rosa de Rezende, Júlia; Vandieken, Verona; Jørgensen, Bo Barker

    2009-09-18

    Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis, fermentation, and sulfate reduction upon induction at 50 degrees C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may broadly influence microbial community composition in the marine environment.

  11. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Lindgren, Paula

    2010-07-01

    On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.

  12. Model Scaling of Hydrokinetic Ocean Renewable Energy Systems

    NASA Astrophysics Data System (ADS)

    von Ellenrieder, Karl; Valentine, William

    2013-11-01

    Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).

  13. Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Behrenfeld, Mike; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; Zhai, Pengwang; Weimer, Carl; Winker, David; Verhappen, Carolus C.; Butler, Carolyn; Liu, Zhaoyan; Hunt, Bill; Omar, Ali; Rodier, Sharon; Lifermann, Anne; Josset, Damien; Hou, Weilin; MacDonnell, David; Rhew, Ray

    2016-06-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30° off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  14. An Innovative Concept for Spacebased Lidar Measurement of Ocean Carbon Biomass

    NASA Technical Reports Server (NTRS)

    Hu, Yongxiang; Behrenfeld, Michael; Hostetler, Chris; Pelon, Jacques; Trepte, Charles; Hair, John; Slade, Wayne; Cetinic, Ivona; Vaughan, Mark; Lu, Xiaomei; hide

    2015-01-01

    Beam attenuation coefficient, c, provides an important optical index of plankton standing stocks, such as phytoplankton biomass and total particulate carbon concentration. Unfortunately, c has proven difficult to quantify through remote sensing. Here, we introduce an innovative approach for estimating c using lidar depolarization measurements and diffuse attenuation coefficients from ocean color products or lidar measurements of Brillouin scattering. The new approach is based on a theoretical formula established from Monte Carlo simulations that links the depolarization ratio of sea water to the ratio of diffuse attenuation Kd and beam attenuation C (i.e., a multiple scattering factor). On July 17, 2014, the CALIPSO satellite was tilted 30Âdeg off-nadir for one nighttime orbit in order to minimize ocean surface backscatter and demonstrate the lidar ocean subsurface measurement concept from space. Depolarization ratios of ocean subsurface backscatter are measured accurately. Beam attenuation coefficients computed from the depolarization ratio measurements compare well with empirical estimates from ocean color measurements. We further verify the beam attenuation coefficient retrievals using aircraft-based high spectral resolution lidar (HSRL) data that are collocated with in-water optical measurements.

  15. Cooling rates and the depth of detachment faulting at oceanic core complexes: Evidence from zircon Pb/U and (U-Th)/He ages

    USGS Publications Warehouse

    Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.

    2011-01-01

    Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.

  16. North Greenland's Ice Shelves and Ocean Warming

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Schauer, U.; Padman, L.; Melling, H.; Fricker, H. A.

    2014-12-01

    Rapid disintegration of ice shelves (the floating extensions of marine-terminating glaciers) can lead to increasing ice discharge, thinning upstream ice sheets, rising sea level. Pine Island Glacier, Antarctica, and Jacobshavn Isbrae, Greenland, provide prominent examples of these processes which evolve at decadal time scales. We here focus on three glacier systems north of 78 N in Greenland, each of which discharges more than 10 Gt per year of ice and had an extensive ice shelf a decade ago; Petermann Gletscher (PG), Niogshalvfjerdsfjorden (79N), and Zachariae Isstrom (ZI). We summarize and discuss direct observations of ocean and glacier properties for these systems as they have evolved in the northwest (PG) and northeast (79N and ZI) of Greenland over the last two decades. We use a combination of modern and historical snapshots of ocean temperature and salinity (PG, 79N, ZI), moored observations in Nares Strait (PG), and snapshots of temperature and velocity fields on the broad continental shelf off northeast Greenland (79N, ZI) collected between 1993 and 2014. Ocean warming adjacent to PG has been small relative to the ocean warming adjacent to 79N and ZI; however, ZI lost its entire ice shelf during the last decade while 79N, less than 70 km to the north of ZI, remained stable. In contrast, PG has thinned by about 10 m/y just prior to shedding two ice islands representing almost half its ice shelf area or a fifth by volume. At PG advective ice flux divergence explains about half of the dominantly basal melting while response to non-steady external forcing explains the other half. The observations at PG,79N, and ZI suggest that remotely sensed ambient surface ocean temperatures are poor proxies to explain ice shelf thinning and retreat. We posit that local dynamics of the subsurface ocean heat flux matters most. Ocean heat must first be delivered over the sill into the fjord and then within the ice shelf cavity to the base of the shelf near the grounding line. Models of glacier-ocean interaction must represent both bottom topography and closely related ocean dynamics and mixing at their dynamically relevant scales within a density stratified water column. Projects for such integrated ocean-glacier observations are in the planning stages for 79N and PG.

  17. Ocean Data Assimilation Systems for GODAE

    DTIC Science & Technology

    2009-09-01

    we describe some of the ocean data assimilation systems that have been developed within the Global Ocean Data Assimilation Experiment (GODAE...assimilation systems in the post-GODAF. time period beyond 2008. 15. SUBJECT TERMS Global Ocean Data Assimilation Experiment, ARGO, subsurface...E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4 yj ?>-* i o’ 1. Release of this paper is approved. 2. To the

  18. A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO

    NASA Astrophysics Data System (ADS)

    Bracco, Annalisa; Kucharski, Fred; Molteni, Franco; Hazeleger, Wilco; Severijns, Camiel

    2007-04-01

    This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.

  19. Assessment of lidar remote sensing capability of Raman water temperature from laboratory and field experiments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Josset, Damien B.; Hou, Weilin W.; Goode, Wesley; Matt, Silvia C.; Hu, Yongxiang

    2017-05-01

    Lidar remote sensing based on visible wavelength is one of the only way to penetrate the water surface and to obtain range resolved information of the ocean surface mixed layer at the synoptic scale. Accurate measurement of the mixed layer properties is important for ocean weather forecast and to assist the optimal deployment of military assets. Turbulence within the mixed layer also plays an important role in climate variability as it also influences ocean heat storage and algae photosynthesis (Sverdrup 1953, Behrenfeld 2010). As of today, mixed layer depth changes are represented in the models through various parameterizations constrained mostly by surface properties like wind speed, surface salinity and sea surface temperature. However, cooling by wind and rain can create strong gradients (0.5C) of temperature between the submillimeter surface layer and the subsurface layer (Soloviev and Lukas, 1997) which will manifest itself as a low temperature bias in the observations. Temperature and salinity profiles are typically used to characterize the mixed layer variability (de Boyer Montégut et al. 2004) and are both key components of turbulence characterization (Hou 2009). Recently, several research groups have been investigating ocean temperature profiling with laser remote sensing based either on Brillouin (Fry 2012, Rudolf and Walther 2014) or Raman scattering (Artlett and Pask 2015, Lednev et al. 2016). It is the continuity of promising research that started decades ago (Leonard et al. 1979, Guagliardo and Dufilho 1980, Hirschberg et al. 1984) and can benefit from the current state of laser and detector technology. One aspect of this research that has not been overlooked (Artlett and Pask 2012) but has yet to be revisited is the impact of temperature on vibrational Raman polarization (Chang and Young, 1972). The TURBulence Ocean Lidar is an experimental system, aimed at characterizing underwater turbulence by examining various Stokes parameters. Its multispectral capability in both emission (based on an optical parametric oscillator) and detection (optical filters) provide flexibility to measure the polarization signature of both elastic and inelastic scattering. We will present the characteristics of TURBOL and several results from our laboratory and field experiments with an emphasis on temperature profiling capabilities based on vibrational Raman polarization. We will also present other directions of research related to this activity.

  20. Microbe-mediated transformations of marine dissolved organic matter during 2,100 years of natural incubation in the cold, oxic crust of the Mid-Atlantic Ridge.

    NASA Astrophysics Data System (ADS)

    Shah Walter, S. R.; Jaekel, U.; Huber, J. A.; Dittmar, T.; Girguis, P. R.

    2015-12-01

    On the western flank of the Mid-Atlantic Ridge, oxic seawater from the deep ocean is downwelled into the basaltic crust, supplying the crustal aquifer with an initial inoculum of organic matter and electron acceptors. Studies have shown that fluids circulating within the crust are minimally altered from original seawater, making this subsurface environment a unique natural experiment in which the fate of marine organic matter and the limitations of microbial adaptability in the context of reduced carbon supply can be examined. To make the subsurface crustal aquifer accessible, two CORK (Circulation Obviation Retrofit Kit) observatories have been installed at North Pond, a sediment-filled depression beneath the oligotrophic Sargasso Sea. Radiocarbon analysis of dissolved inorganic (DIC) and organic carbon (DOC) in samples recovered from these observatories show uncoupled aging between DOC and DIC with Δ14C values of DOC as low as -933‰ despite isolation from the open ocean for, at most, 2,100 years. This extreme value is part of a general trend of decreasing DOC δ13C and Δ14C values with increasing incubation time within the aquifer. Combined with reduced concentrations of DOC, our results argue for selective microbial oxidation of the youngest, most 13C-enriched components of downwelled DOC, possibly identifying these as characteristics of the more bioavailable fractions of deep-ocean dissolved organic matter. They also suggest that microbial oxidation during low-temperature hydrothermal circulation could be an important sink for aged marine dissolved organic matter.

  1. A passive low frequency instrument for radio wave sounding the subsurface oceans of the Jovian icy moons: An instrument concept

    NASA Astrophysics Data System (ADS)

    Hartogh, P.; Ilyushin, Ya. A.

    2016-10-01

    Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.

  2. Responses of Basal Melting of Antarctic Ice Shelves to the Climatic Forcing of the Last Glacial Maximum and CO2 Doubling

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, A.; Obase, T.

    2017-12-01

    Basal melting of the Antarctic ice shelves is an important factor in determining the stability of the Antarctic ice sheet. This study used the climatic outputs of an atmosphere?ocean general circulation model to force a circumpolar ocean model that resolves ice shelf cavity circulation to investigate the response of Antarctic ice shelf melting to different climatic conditions, i.e., to an increase (doubling) of CO2 and the Last Glacial Maximum conditions. We also conducted sensitivity experiments to investigate the role of surface atmospheric change, which strongly affects sea ice production, and the change of oceanic lateral boundary conditions. We found that the rate of change of basal melt due to climate warming is much greater (by an order of magnitude) than due to cooling. This is mainly because the intrusion of warm water onto the continental shelves, linked to sea ice production and climate change, is crucial in determining the basal melt rate of many ice shelves. Sensitivity experiments showed that changes of atmospheric heat flux and ocean temperature are both important for warm and cold climates. The offshore wind change together with atmospheric heat flux change strongly affected the production of sea ice and high-density water, preventing warmer water approaching the ice shelves under a colder climate. These results reflect the importance of both water mass formation in the Antarctic shelf seas and subsurface ocean temperature in understanding the long-term response to climate change of the melting of Antarctic ice shelves.

  3. Coastal Permafrost Bluff Response to Summer Warming, Barter Island, NE Alaska

    NASA Astrophysics Data System (ADS)

    Richmond, B. M.; Gibbs, A.; Johnson, C. D.; Swarzenski, P. W.; Oberle, F. J.; Tulaczyk, S. M.; Lorenson, T. D.

    2016-12-01

    Observations of warming air and sea temperatures in the Arctic are leading to longer periods of permafrost thaw and ice-free conditions during summer, which lead to increased exposure to coastal storm surge, wave impacts, and heightened erosion. Recently collected air and soil (bluff) temperatures, atmospheric pressure, water levels, time-lapse photography, aerial photography and satellite imagery, and electrical resistivity tomography (ERT) surveys were used to document coastal bluff morphological response to seasonal warming. Data collection instruments and time-lapse cameras installed overlooking a bluff face on the exposed open ocean coast and within an erosional gully were used to create an archive of hourly air temperature, pressure, bluff morphology, and sea-state conditions allowing for documentation of individual bluff failure events and coincident meteorology. Permafrost boreholes as deep as 6 m from the upper bluff tundra surface were fitted with thermistor arrays to record a high resolution temperature record that spanned an initial frozen state, a summer thaw cycle, and subsequent re-freezing. Late summer ERT surveys were used to link temperature observations to subsurface electrical resistivities and active-layer dynamics. Preliminary observations suggest surface warming and active layer growth are responsible for a significant amount of bluff face failures that are exacerbated in the shore perpendicular gullies and along the exposed ocean coast. Electrical resistivity surveys and geochemical data reveal concentrated brines at depth, which likely contribute to enhanced, localized erosion in weakened strata.

  4. Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea

    NASA Astrophysics Data System (ADS)

    Kamidaira, Yuki; Uchiyama, Yusuke; Mitarai, Satoshi

    2017-07-01

    In this study, an oceanic downscaling model in a double-nested configuration was used to investigate the role played by the Kuroshio warm current in preserving and maintaining biological diversity in the coral coasts around the Ryukyu Islands (Japan). A comparison of the modeled data demonstrated that the innermost submesoscale eddy-resolving model successfully reproduced the synoptic and mesoscale oceanic structures even without data assimilation. The Kuroshio flows on the shelf break of the East China Sea approximately 150-200 km from the islands; therefore, eddy-induced transient processes are essential to the lateral transport of material within the strip between the Kuroshio and the islands. The model indicated an evident predominance of submesoscale anticyclonic eddies over cyclonic eddies near the surface of this strip. An energy conversion analysis relevant to the eddy-generation mechanisms revealed that a combination of both the shear instability due to the Kuroshio and the topography and baroclinic instability around the Kuroshio front jointly provoke these near-surface anticyclonic eddies, as well as the subsurface cyclonic eddies that are shed around the shelf break. Both surface and subsurface eddies fit within the submesoscale, and they are energized more as the grid resolution of the model is increased. An eddy heat flux (EHF) analysis was performed with decomposition into the divergent (dEHF) and rotational (rEHF) components. The rEHF vectors appeared along the temperature variance contours by following the Kuroshio, whereas the dEHF properly measured the transverse transport normal to the Kuroshio's path. The diagnostic EHF analysis demonstrated that an asymmetric dEHF occurs within the surface mixed layer, which promotes eastward transport toward the islands. Conversely, below the mixed layer, a negative dEHF tongue is formed that promotes the subsurface westward warm water transport.

  5. The impact of multi-decadal sub-surface circulation changes on sea surface chlorophyll patterns in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Busalacchi, A. J.; Smith, T. M.; Evans, M. N.; Brown, C.; Hackert, E. C.; Wang, X.

    2016-12-01

    The tropical Pacific is a region of strong forcing where physical oceanography primarily controls biological variability over the seasonal to interannual time scales observed since dedicated ocean color satellite remote sensing began in 1997. To quantify how multi-decadal, climate-scale changes impact marine biological dynamics, we used the correlation with sea-surface temperature and height to reconstruct a 50-year time series of surface chlorophyll concentrations. The reconstruction demonstrates greatest skill away from the coast and within 10o of the equator where chlorophyll variance is greatest and primarily associated with El Niño Southern Oscillation (ENSO) dynamics and secondarily associated with decadal variability. We observe significant basin-wide differences between east and central Pacific events when the El Niño events are strong: chlorophyll increases with La Niña and decreases with El Niño, with larger declines east of 180o for remotely-forced east Pacific events and west of 180o for locally-forced central Pacific events. Chlorophyll variations also reflect the physical dynamics of Pacific decadal variability with small but significant differences between cool and warm eras: consistent with advection variability west of 180o and likely driven by subsurface changes in the nutricline depth between 110-140oW. Comparisons with output from a fully-coupled biogeochemical model support the hypothesis that this anomalous region is controlled by lower frequency changes in subsurface circulation patterns that transport nutrients to the surface. Basin-wide chlorophyll distributions exhibiting spatial heterogeneity in response to multi-decadal climate forcing imply similar long-term changes in phytoplankton productivity, with implications for the marine food web and the ocean's role as a carbon sink.

  6. Contributions to Crustal Mechanics on Europa from Subterranean Ocean Vibrations

    NASA Astrophysics Data System (ADS)

    Hayes, Robert

    2016-03-01

    The recent discovery of subduction zones on Europa demonstrated a significant step forward in understanding the moon's surface mechanics. This work promotes the additional consideration that the surface mechanics have contributions from small relative pressure differentials in the subsurface ocean that create cracks in the surface which are then filled, sealed and healed. Crack formation can be small, as interior pressure can relatively easily breach the surface crust, generating cracks followed by common fracture formation backfilled with frozen liquid. This process will slowly increase the overall surface area of the moon with each sealed crack and fracture increasing the total surface area. This creeping growth of surface area monotonically decreases subsurface pressure which can eventually catastrophically subduct large areas of surface and so is consistent with current knowledge of observational topology on Europa. This tendency is attributed to a relatively lower energy threshold to crack the surface from interior overpressures, but a higher energy threshold to crush the spherical surface due to subsurface underpressures. Proposed mechanisms for pressure differentials include tidal forces whose Fourier components build up the resonant oscillatory modes of the subsurface ocean creating periodic under and overpressure events below the crust. This mechanism provides a means to continually reform the surface of the moon over short geological time scales. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.

  7. Water security and services in the ocean-aquifer system

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2011-12-01

    Coastal vulnerability and water security are both important research subjects on global environmental problems under the pressures of changing climate and societies. A six years research project by RIHN on the coastal subsurface environments in seven Asia cities revealed that subsurface environmental problems including saltwater intrusion, groundwater contamination and subsurface thermal anomalies occurred one after another depending on the development stage of the cities during the last 100 years. Exchanges of water between ocean and aquifer in the coastal cities depend on driving force from land of natural resources capacities such as groundwater recharge rate, and social changes such as excessive groundwater pumping due to industrialization. Risk assessments and managements for aquifers which are parts of water security have been made for seven Asian coastal cities. On the other hand, submarine groundwater discharge (SGD) into the ocean provides water services directly to the coastal ecosystem through nutrient transports from land to the ocean. Constant geophysical and geochemical conditions served by SGD provide sustainable services to the coastal environment. Flora and fauna which prefer brackish water in the coastal zone depend on not only river water discharge but also SGD. Ocean -aquifer interaction can be found in the coastal ecosystem including sea shell, sea grass and fishes in the coastal zone though SGD. In order to evaluate a coastal security and sustainable environment, not only risk assessments due to disasters but also water services are important, and the both are evaluated in Asian coastal zones.

  8. When Does the Warmest Water Reach Greenland?

    NASA Astrophysics Data System (ADS)

    Grist, J. P.; Josey, S. A.; Boehme, L.; Meredith, M. P.; Laidre, K. L.; Heide-Jørgensen, M. P.; Kovacs, K. M.; Lydersen, C.; Davidson, F. J. M.; Stenson, G. B.; Hammill, M. O.; Marsh, R.; Coward, A.

    2016-02-01

    The warmest water reaching the east and west coast of Greenland is found between 200 and 600 m, in the warm Atlantic Water Layer (WL). Temperature changes within the WL have been highlighted as a possible cause of accelerated melting of tidewater glaciers and therefore are an important consideration for understanding global sea level rise. However, a limited number of winter observations of the WL have prohibited determining its seasonal variability. To address this, temperature data from Argo profiling floats, a range of sources within the World Ocean Database, and unprecedented coverage from marine-mammal borne sensors have been analyzed for the period 2002-2011. A significant seasonal range in temperature ( 1-2°C) is found in the warm layer, in contrast to most of the surrounding ocean. The magnitude of the seasonal cycle is thus comparable with the 1990s warming that was associated with an increased melt rate in a marine terminating glacier of West Greenland. The phase of the seasonal cycle exhibits considerable spatial variability; with high-resolution ocean model trajectory analysis suggesting it is determined by the time taken for waters to be advected from the subduction site in the Irminger Basin. For western Greenland, the annual temperature maximum occurs near or after the turn of the calendar year. This is significant because a recent study suggested that it is in the non-summer months when fjord-shelf exchanges allow the WL to most strongly influence glacier melt rate. However this is also the time of the year when the WL is least well observed. It is therefore clear that year-round subsurface temperature measurements are still required for a complete description of the WL seasonality, and in particular to ensure that the ice-melting potential of the WL is not underestimated.

  9. The seasonal march of the equatorial Pacific upper-ocean and its El Niño variability

    NASA Astrophysics Data System (ADS)

    Gasparin, Florent; Roemmich, Dean

    2017-08-01

    Based on two modern data sets, the climatological seasonal march of the upper-ocean is examined in the equatorial Pacific for the period 2004-2014, because of its large contribution to the total variance, its relationship to El Niño, and its unique equatorial wave phenomena. Argo provides a broadscale view of the equatorial Pacific upper-ocean based on subsurface temperature and salinity measurements for the period 2004-2015, and satellite altimetry provides synoptic observations of the sea surface height (SSH) for the period 1993-2015. Using either 11-year (1993-2003/2004-2014) time-series for averaging, the seasonal Rossby waves stands out clearly and eastward intraseasonal Kelvin wave propagation is strong enough in individual years to leave residuals in the 11-year averages, particularly but not exclusively, during El Niño onset years. The agreement of altimetric SSH minus Argo steric height (SH) residuals with GRACE ocean mass estimates confirms the scale-matching of in situ variability with that of satellite observations. Surface layer and subsurface thermohaline variations are both important in determining SH and SSH basin-wide patterns. The SH/SSH October-November maximum in the central-eastern Pacific is primarily due to a downward deflection of the thermocline (∼20 m), causing a warm subsurface anomaly (>1 °C), in response to the phasing of downwelling intraseasonal Kelvin and seasonal Rossby waves. Compared with the climatology, the stronger October-November maximum in the 2004-2014 El Niño composites is due to higher intraseasonal oscillations and interannual variability. Associated with these equatorial wave patterns along the thermocline, the western warm/fresh pool waters move zonally at interannual timescales through zonal wind stress and pressure gradient fluctuations, and cause substantial fresh (up to 0.6 psu) and warm (∼1 °C higher than the climatology) anomalies in the western-central Pacific surface-layer during the El Niño onset year, and of the opposite sign during the termination year. These El Niño-related patterns are then analyzed focusing on the case of the onset of the strong 2015/2016 episode, and are seen to be around two times larger than that in the 2004-2014 El Niño composites. The present work exploits the capabilities of Argo and altimetry to update and improve the description of the physical state of the equatorial Pacific upper-ocean, and provides a benchmark for assessing the accuracy of models in representing equatorial Pacific variability.

  10. Proposed Perrier Ocean for Enceladus

    NASA Image and Video Library

    2010-10-04

    A graphic laid atop an image of Enceladus jets taken by NASA Cassini imaging cameras shows bubbles in seawater traveling through a passage in the ice crust to feed a geyser. Seawater flows back down to the subsurface ocean through cracks in the ice.

  11. The Effects of Tidal Dissipation on the Thermal Evolution of Triton

    NASA Astrophysics Data System (ADS)

    Gaeman, J.; Hier-Majumder, S.; Roberts, J. H.

    2009-12-01

    This work explores the coupled structural, thermal, and orbital evolution of Neptune's icy satellite, Triton. Recent geyser activity, ridge formation, and volatile transport, observed on Triton's surface, indicate possible activity within Triton's interior [1,2]. Triton is hypothesized to have been captured from an initially heliocentric orbit. During the circularization of Triton's orbit following its capture by Neptune, intense tidal heating likely contributed to the formation of a subsurface ocean [3]. Although the time of Triton's capture is not exactly known, it is likely that the event took place earlier in the history of our solar system, when the probability of binary capture was higher [4, 5]. This work examines the thermal evolution of Triton by employing a coupled tidal and two-phase thermal evolution model, for both an early and late capture scenario. Thermal evolution of a solid crust underlain by an H2O-NH3 mushy layer is driven by the evolution of tidal heating, as Triton's orbital eccentricity evolves following its capture. The governing equations for tidal heating are solved using the propagator matrix method [6, 7], while the governing equation for the coupled crust-multiphase layer thermal evolution were numerically solved using a finite volume discretization. The results indicate that the existence of a subsurface ocean is strongly dependent on ammonia content as larger concentrations of ammonia influence liquidus temperature and density contrast between solid and liquid phases [8]. Preliminary results indicate that an ocean likely exists for compositions containing a relatively high percentage of ammonia for both early and late capture of the satellite. In contrast, the subsurface ocean freezes completely for lower ammonia content. [1] Brown, R. H., Kirk, R. L. (1994). Journal of Geophysical Research 99, 1965-981. [2] Prockter, L. M., Nimmo, F., Pappalardo, R. T. (2005). Geophysical Research Letters 32, L14202. [3] Ross, M. N., Schubert, G. (1990). Geophysical Research Letters 17, 1749-752. [4] Agnor, C. B., Hamilton, D. P. (2006). Nature 441, 192-94. [5] Schenk, P. M., Zahnle, K. (2007). Icarus 192, 135-49. [6] Roberts, J. H., Nimmo, F. (2008). Icarus 194, 675-689. [7] Sabadini, R., Vermeersen, B., (2004). Global Dynamics of the Earth. Kluwer Academic Publishers. [8] Hogenboom, D. L., Kargel, J. S., Concolmagno, G. J., Holden, T. C., Lee, L., Buyyounouski, M. (1997). Icarus 128, 171-80.

  12. Interannual and Decadal Changes in Salinity in the Oceanic Subtropical Gyres

    NASA Astrophysics Data System (ADS)

    Bulusu, Subrahmanyam

    2017-04-01

    There is evidence that the global water cycle has been undergoing an intensification over several decades as a response to increasing atmospheric temperatures, particularly in regions with skewed evaporation - precipitation (E-P) patterns such as the oceanic subtropical gyres. Moreover, observational data (rain gauges, etc.) are quite sparse over such areas due to the inaccessibility of open ocean regions. In this work, a comparison of observational and model simulations are conducted to highlight the potential applications of satellite derived salinity from NASA Aquarius Salinity mission, NASA Soil Moisture and Ocean Salinity (SMOS), and ESA's Soil Moisture Active Passive (SMAP). We explored spatial and temporal salinity changes (and trends) in surface and subsurface in the oceanic subtropical gyres using Argo floats salinity data, Simple Ocean Data Assimilation (SODA) reanalysis, Estimating the Circulations & Climate of the Ocean GECCO (German ECCO) model simulations, and Hybrid Coordinate Ocean Model (HYCOM). Our results based on SODA reanalysis reveals that a positive rising trend in sea surface salinity in the subtropical gyres emphasizing evidence for decadal intensification in the surface forcing in these regions. Zonal drift in the location of the salinity maximum of the south Pacific, north Atlantic, and south Indian regions implies a change in the mean near-surface currents responsible for advecting high salinity waters into the region. Also we found out that an overall salinity increase within the mixed layer, and a subsurface salinity decrease at depths greater than 200m in the global subtropical gyres over 61 years. We determine that freshwater fluxes at the air-sea interface are the primary drivers of the sea surface salinity (SSS) signature over these open ocean regions by quantifying the advective contribution within the surface layer. This was demonstrated through a mixed layer salinity budget in each subtropical gyre based on the vertically integrated advection and entrainment of salt. Our analysis of decadal variability of fluxes into and out of the gyres reveals little change in the strength of the mean currents through this region despite an increase in the annual export of salt in all subtropical gyres, with the meridional component dominating the zonal. This study reveals that the salt content of E-P maximum waters advected into the subtropical gyres is increasing over time. A combination of increasing direct evaporation over the regions with increasing remote evaporation over nearby E-P maxima is believed to be the main driver in increasing salinity of the subtropical oceans, suggesting an intensification of the global water cycle over decadal timescales.

  13. Trace Element Inputs to the Upper West Pacific from Nd Isotopes and Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Behrens, M. K.; Pahnke, K.; Schnetger, B.; Brumsack, H. J.

    2015-12-01

    Neodymium isotopes (143Nd/144Nd, expressed as ɛNd) and rare earth element (REE) concentrations in the ocean trace water mass transport and margin-seawater exchange processes. The distinct ɛNd and REE signatures of the lithogenic components of margin sediments of the West Pacific allow characterization of trace element inputs to the Pacific Ocean. We present dissolved ɛNdand REE concentrations from twelve vertical profiles of a transect from South Korea to Fiji. Near South Korea, surface waters are marked by unradiogenic ɛNd (as low as -7.3), high REE concentrations (e.g., Nd = 15.3 pmol/kg) and low salinity. Towards the open ocean, these parameters gradually change towards typical Pacific open ocean values (ɛNd = -3.3, [Nd] = 5.55 pmol/kg). Subsurface waters show REE depletions, followed by the typical REE increase with increasing water depth. These distributions indicate trace element input near South Korea and enhanced subsurface scavenging, as indicated by strong heavy REE to light REE fractionation. In the tropical West Pacific (10°N-15°S), high surface and subsurface water ɛNd values (+0.7) and positive Eu anomalies trace the influence of volcanic islands. Yet, absolute REE concentrations are extremely low at these depths (e.g., Nd = 2.77 pmol/kg). Using shale-normalized Nd/Er and Ho/Dy ratios, that show a much stronger surface to subsurface decrease in coastal waters compared to the open ocean, we suggest enhanced scavenging in this area. Eastward flowing intermediate waters (NPIW, AAIW) have ɛNd values up to +1.9 (NPIW) and +3.7 (AAIW) higher than those entering the tropical West Pacific from north and south, respectively. Modified ɛNd at intermediate depths and no change in REE patterns suggest that boundary exchange along volcanic island margins modifies the seawater ɛNd without changing the REE budget.

  14. Interannual coherent variability of SSTA and SSHA in the Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Feng, J. Q.

    2012-01-01

    Sea surface height derived from the multiple ocean satellite altimeter missions (TOPEX/Poseidon, Jason-1, ERS, Envisat et al.) and sea surface temperature from National Centers for Environmental Prediction (NCEP) over 1993-2008 are analyzed to investigate the coherent patterns between the interannual variability of the sea surface and subsurface in the Tropical Indian Ocean, by jointly adopting Singular Value Decomposition (SVD) and Extended Associate Pattern Analysis (EAPA) methods. Results show that there are two dominant coherent modes with the nearly same main period of about 3-5 yr, accounting for 86 % of the total covariance in all, but 90° phase difference between them. The primary pattern is characterized by a east-west dipole mode associated with the mature phase of ENSO, and the second presents a sandwich mode having one sign anomalies along Sumatra-Java coast and northeast of Madagascar, whilst an opposite sign between the two regions. The robust correlations of the sea surface height anomaly (SSHA) with sea surface temperature anomaly (SSTA) in the leading modes indicate a strong interaction between them, though the highest correlation coefficient appears with a time lag. And there may be some physical significance with respect to ocean dynamics implied in SSHA variability. Analyzing results show that the features of oceanic waves with basin scale, of which the Rossby wave is prominent, are apparent in the dominant modes. It is further demonstrated from the EAPA that the equatorial eastward Kelvin wave and off-equatorial westward Rossby wave as well as their reflection in the east and west boundary, respectively, are important dynamic mechanisms in the evolution of the two leading coherent patterns. Results of the present study suggest that the upper ocean thermal variations on the timescale of interannual coherent with the ocean dynamics in spatial structure and temporal evolution are mainly attributed to the ocean waves.

  15. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

    NASA Astrophysics Data System (ADS)

    Yuan, Dongliang; Xu, Peng; Xu, Tengfei

    2017-01-01

    An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.

  16. Identifying and Investigating the Late-1960s Interhemispheric SST Shift

    NASA Astrophysics Data System (ADS)

    Friedman, A. R.; Lee, S. Y.; Liu, Y.; Chiang, J. C. H.

    2014-12-01

    The global north-south interhemispheric sea surface temperature (SST) difference experienced a pronounced and rapid decrease in the late 1960s, which has been linked to drying in the Sahel, South Asia, and East Asia. However, some basic questions about the interhemispheric SST shift remain unresolved, including its scale and whether the constituent changes in different basins were coordinated. In this study, we systematically investigate the spatial and temporal behavior of the late-1960s interhemispheric SST shift using ocean surface and subsurface observations. We also evaluate potential mechanisms using control and specific-forcing CMIP5 simulations. Using a regime shift detection technique, we identify the late-1960s shift as the most prominent in the historical observational SST record. We additionally examine the corresponding changes in upper-ocean heat content and salinity associated with the shift. We find that there were coordinated upper-ocean cooling and freshening in the subpolar North Atlantic, the region of the largest-magnitude SST decrease during the interhemispheric shift. These upper-ocean changes correspond to a weakened North Atlantic thermohaline circulation (THC). However, the THC decrease does not fully account for the rapid global interhemispheric SST shift, particularly the warming in the extratropical Southern Hemisphere.

  17. Ocean as the main driver of Antarctic ice sheet retreat during the Holocene

    NASA Astrophysics Data System (ADS)

    Crosta, Xavier; Crespin, Julien; Swingedouw, Didier; Marti, Olivier; Masson-Delmotte, Valérie; Etourneau, Johan; Goosse, Hugues; Braconnot, Pascale; Yam, Ruth; Brailovski, Irena; Shemesh, Aldo

    2018-07-01

    Ocean-driven basal melting has been shown to be the main ablation process responsible for the recession of many Antarctic ice shelves and marine-terminating glaciers over the last decades. However, much less is known about the drivers of ice shelf melt prior to the short instrumental era. Based on diatom oxygen isotope (δ18Odiatom; a proxy for glacial ice discharge in solid or liquid form) records from western Antarctic Peninsula (West Antarctica) and Adélie Land (East Antarctica), higher ocean temperatures were suggested to have been the main driver of enhanced ice melt during the Early-to-Mid Holocene while atmosphere temperatures were proposed to have been the main driver during the Late Holocene. Here, we present a new Holocene δ18Odiatom record from Prydz Bay, East Antarctica, also suggesting an increase in glacial ice discharge since 4500 years before present ( 4.5 kyr BP) as previously observed in Antarctic Peninsula and Adélie Land. Similar results from three different regions around Antarctica thus suggest common driving mechanisms. Combining marine and ice core records along with new transient accelerated simulations from the IPSL-CM5A-LR climate model, we rule out changes in air temperatures during the last 4.5 kyr as the main driver of enhanced glacial ice discharge. Conversely, our simulations evidence the potential for significant warmer subsurface waters in the Southern Ocean during the last 6 kyr in response to enhanced summer insolation south of 60°S and enhanced upwelling of Circumpolar Deep Water towards the Antarctic shelf. We conclude that ice front and basal melting may have played a dominant role in glacial discharge during the Late Holocene.

  18. Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone. The “Marginal Ice Zone Observations and Processes Experiment” (MIZOPEX) Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, P. J.; Hill, T. C.J.

    Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.« less

  19. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  20. Estimates of effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads and effective elastic thickness of subduction zones

    NASA Astrophysics Data System (ADS)

    Yang, A.; Yongtao, F.

    2016-12-01

    The effective elastic thickness (Te) is an important parameter that characterizes the long term strength of the lithosphere, which has great significance on understanding the mechanical properties and evolution of the lithosphere. In contrast with many controversies regarding elastic thickness of continent lithosphere, the Te of oceanic lithosphere is thought to be in a simple way that is dependent on the age of the plate. However, rescent studies show that there is no simple relationship between Te and age at time of loading for both seamounts and subduction zones. As subsurface loading is very importand and has large influence in the estimate of Te for continent lithosphere, and many oceanic features such as subduction zones also have considerable subsurface loading. We introduce the method to estimate the effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads by using free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). We use the multitaper spectral estimation method to calculate the power spectral density. Through tests with synthetic subduction zone like bathymetry and gravity data show that the Te can be recovered in an accurance similar to that in the continent and there is also a trade-off between spatial resolution and variance for different window sizes. We estimate Te of many subduction zones (Peru-Chile trench, Middle America trench, Caribbean trench, Kuril-Japan trench, Mariana trench, Tonga trench, Java trench, Ryukyu-Philippine trench) with an age range of 0-160 Myr to reassess the relationship between elastic thickness and the age of the lithosphere at the time of loading. The results do not show a simple relationship between Te and age.

  1. Heat balances of the surface mixed layer in the equatorial Atlantic and Indian Ocean during FGGE

    NASA Technical Reports Server (NTRS)

    Molinari, R. L.

    1985-01-01

    Surface meteorological and surface and subsurface oceanographic data collected during FGGE in the equatorial Atlantic and Indian Oceans are used to estimate the terms in a heat balance relation for the mixed layer. The first balance tested is between changes in mixed layer temperature (MLT) and surface energy fluxes. Away from regions of low variance in MLT time series and equatorial and coastal upwelling, surface fluxes can account for 75 percent of the variance in the observed time series. Differences between observed and estimated MLTs indicate that on the average, maximum errors in surface flux are of the order of 20 to 30 W/sq m. In the Atlantic, the addition of zonal advection does not significantly improve the estimates. However in regions of equatorial upwelling, the eastern Atlantic vertical mixing and meridional advection can play an important role in the evolution of MLTs.

  2. Thule Air Base Airfield White Painting and Permafrost Investigation. Phases I-IV

    DTIC Science & Technology

    2013-06-01

    Thaw settlement—fill thickness vs. box section .......................................................... 15  3.2.2  White Pavement ...33 Figure 29. Subsurface temperatures measured at the “White Pavement ” site ................................ 34 Figure 30. Subsurface...temperatures measured at “Black Pavement ” site. ...................................... 34 Figure 31. Subsurface temperatures at a permanent station in fill

  3. Thule Air Base Airfield White Painting and Permafrost Investigation. Phases 1-4

    DTIC Science & Technology

    2013-06-01

    Thaw settlement—fill thickness vs. box section .......................................................... 15  3.2.2  White Pavement ...33 Figure 29. Subsurface temperatures measured at the “White Pavement ” site ................................ 34 Figure 30. Subsurface...temperatures measured at “Black Pavement ” site. ...................................... 34 Figure 31. Subsurface temperatures at a permanent station in fill

  4. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  5. Strontium-90: concentrations in surface waters of the Atlantic Ocean.

    PubMed

    Bowen, V T; Noshkin, V E; Volchok, H L; Sugihara, T T

    1969-05-16

    From the large body of analyses of strontium-90 in surface waters of the Atlantic Ocean, annual average concentrations (from 10 degrees N to 70 degrees N) have been compared to those predicted. The data indicate higher fall-out over ocean than over land and confirm the rapid rates of down-mixing shown by most studies of subsurface strontium-90.

  6. The Role of Ocean Dynamical Thermostat in Delaying the El Niño–Like Response over the Equatorial Pacific to Climate Warming

    DOE PAGES

    Luo, Yiyong; Lu, Jian; Liu, Fukai; ...

    2017-03-27

    The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less

  7. The Role of Ocean Dynamical Thermostat in Delaying the El Niño–Like Response over the Equatorial Pacific to Climate Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiyong; Lu, Jian; Liu, Fukai

    The role of the ocean dynamics in the response of the equatorial Pacific Ocean to climate warming is investigated using both an atmosphere-ocean coupled climate system and its ocean component. Results show that the initial response (fast pattern) to an uniform heating imposed on to the ocean is a warming centered to the west of the dateline owing to the conventional ocean dynamical thermostat (ODT) mechanism in the eastern equatorial Pacific-a cooling effect arising from the up-gradient upwelling. In time, the warming pattern gradually propagates eastward, becoming more El Niño-like (slow pattern). The transition from the fast to the slowmore » patterns is likely resulted from i) the gradual warming of the equatorial thermocline temperature, which is associated with the arrival of the relatively warmer extratropical waters advected along the subsurface branch of the subtropical cells (STC) and ii) the reduction of the STC strength itself. A mixed layer heat budget analysis finds that it is the total ocean dynamical effect rather than the conventional ODT that holds the key for understanding the pattern of the SST in the equatorial Pacific and that the surface heat flux works mainly to compensate the ocean dynamics. Further passive tracer experiments with the ocean component of the coupled system verify the role of the ocean dynamical processes in initiating a La Niña-like SST warming and in setting the pace of the transition to an El Niño-like warming and identify an oceanic origin for the slow eastern Pacific warming independent of the weakening trade wind.« less

  8. Impact of topography on groundwater salinization due to ocean surge inundation

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Yang, Jie; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.

    2016-08-01

    Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.

  9. FREE TRANSLATIONAL OSCILLATIONS OF ICY BODIES WITH A SUBSURFACE OCEAN USING A VARIATIONAL APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escapa, A.; Fukushima, T.

    2011-03-15

    We analyze the influence of the interior structure of an icy body with an internal ocean on the relative translational motions of its solid constituents. We consider an isolated body differentiated into three homogeneous layers with spherical symmetry: an external ice-I layer, a subsurface ammonia-water ocean, and a rocky inner core. This composition represents icy bodies such as Europa, Titania, Oberon, and Triton, as well as Pluto, Eris, Sedna, and 2004 DW. We construct the equations of motion by assuming that the solid constituents are rigid and that the ocean is an ideal fluid, the internal motion being characterized bymore » the relative translations of the solids and the induced flow in the fluid. Then we determine the dynamics of the icy body using the methods of analytical mechanics, that is, we compute the kinetic energy and the gravitational potential energy, and obtain the Lagrangian function. The resulting solution of the Lagrange equations shows that the solid layers perform translational oscillations of different amplitudes with respect to the barycenter of the body. We derive the dependence of the frequency of the free oscillations of the system on the characteristics of each layer, expressing the period of the oscillations as a function of the densities and masses of the ocean and the rocky inner core, and the mass of the icy body. We apply these results to previously developed subsurface models and obtain numerical values for the period and the ratio between the amplitudes of the translational oscillations of the solid components. The features obtained are quite different from the cases of Earth and Mercury. Our analytical formulas satisfactorily explain the source of these differences. When models of the same icy body, compatible with the existence of an internal ocean, differ in the thickness of the ice-I layer, their associated periods experience a relative variation of at least 10%. In particular, the different models for Titania and Oberon exhibit a larger variation of about 37% and 30%. This indicates an absolute difference of the order of three and two hours, respectively. This suggests that the free period of the internal oscillations might provide a new procedure to constrain the internal structure of icy bodies with a subsurface ocean.« less

  10. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    NASA Astrophysics Data System (ADS)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial variability of surface ocean pCO2 to be mapped from satellite data in the southern region.

  11. Subsurface Exploration Technologies and Strategies for Europa

    NASA Technical Reports Server (NTRS)

    French, L. C.; Anderson, F. S.; Carsey, F. D.; Green, J. R.; Lane, A. L.; Zimmerman, W. F.

    2001-01-01

    The Galileo data from Europa has resulted in the strong suggestion of a large, cold, salty, old subglacial ocean and is of great importance. We have examined technology requirements for subsurface exploration of Europa and determined that scientific access to the hypothesized Europa ocean is a key requirement. By 'scientific access' we intend to direct attention to the fact that several aspects of exploration of a site such as Europa must be addressed at the system level. Specifically needed are a robotic vehicle that can descend through ice, scientific instrumentation that can interrogate the ice near the vehicle (but largely unaffected by its presence), scientific instrumentation for the subglacial ocean, communication for data and control, chemical analysis of the environment of the vehicle in the ice as well as the ocean, and methods for conducting the mission without contamination. We have embarked on a part of this extremely ambitious development sequence by developing the Active Thermal Probe, or Cryobot. Additional information is contained in the original extended abstract.

  12. Opportunities and challenges in studies of deep life (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.

    2010-12-01

    Over the past two decades, there has been an increasing awareness within the geological, microbiological, and oceanographic communities of the potentially vast microbial biosphere that is harbored beneath the surface of the Earth. With this awareness has come a mounting effort to study this potential biome - to better quantify biomass abundance, activity, and biogeochemical activity. In the Earth system, the largest deep subsurface biome is also the least accessible - the deep ocean subsurface biosphere. The oceanic deep biosphere also has greatest potential for influencing global scale biogeochemical processes -the carbon and energy cycles for example, and other elemental cycles. To address these topics and mount interdisciplinary efforts to study the deep subsurface marine biosphere, we have recently formed a center in support integrative, collaborative investigations. The national science foundation Center for Dark Biosphere Investigations (C-DEBI), has been initiated for the explicit purpose of resolving the extent, function, dynamics and implications of the subseafloor biosphere. This talk will discuss C-DEBI science, with focus on some of the opportunities and challenges in the study of deep life in the ocean, and the role that C-DEBI will play in meeting them

  13. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events

    NASA Astrophysics Data System (ADS)

    Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.

    2017-11-01

    Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.

  14. Are There Oceans Under the Ice of Small Saturnian and Uranian Moons?

    NASA Astrophysics Data System (ADS)

    England, C.

    2003-05-01

    Thermal analysis of the large outer-planetary moons (Titan, Callisto, Ganymede) argue strongly for substantial subsurface oceans if they are made up mostly of rock and ice, and if the rock exhibits radioactivity not too different from that of meteoric and lunar material [1]. For Titania, Rhea, Oberon and Iapetus (the TROI moons) with radii just over 700 km, the existence of oceans is less clear. In these bodies, a subsurface ocean may be likely if the rock has sunk to the center of the moon (i.e., the moon is differentiated) and (1) the radiogenic heating rate is on the higher end of that of lunar samples, (2) the bodies experience tidal heating, or (3) the oceans contain compounds such as ammonia that reduce the freezing point of the aqueous environment. A combination of these occurrences would weigh for a subsurface ocean, perhaps of substantial size. That outer-planetary moons with radii larger than about 200 km (e.g.; Enceladus at 250 km) are spherical argues for separation of light and heavy materials, especially in the larger bodies. Otherwise, the moon exhibits an irregular shape (e.g.; Hyperion at 133 km). Primordial radioactivity and collision events may have aided separation. If present-day radiogenicity is that of lunar samples, natural heating is available to maintain global aqueous environments on all of the TROI moons. The ammonia-water eutectics suggested for Titan [2] provide additional margin. The maintenance of oceans in smaller bodies depends on a balance of internal heat generation and thermal isolation by ice or other insulating material. The more important parameter may be the insulating ice, without which an outer-planetary ocean is not possible. The reduced thermal conductivity for impure ice [3] provides even more likelihood for oceans. Calculations for tidal heating within Europa due to orbital resonances [4] suggest that tidal heating amounts to over 40 times its internal radiogenic heating. A value equal only to natural radiogenic heating would be sufficient to maintain aqueous systems within TROI moons. Subsurface aqueous oceans are likely on Titania, Rhea, Oberon and Iapetus, but will be buried more than 300 km under insulating icy layers. Their existence, and that of an environment favorable for life, may be detectable from surface features or from remote surveys of their internal electromagnetic properties. [1] England C, DPS MEETING #34 Abstract #41.08, 9/2002 [2] Lorenz RD, Lunine JI, McKay CP, ENANTIOMER 6 (2-3): 83-96 2001 [3] Lorenz RD and Shandera SE, GEOPHYSICAL RESEARCH LETTERS 28 (2) 215-218 2001 [4] Ross MN, Schubert G, LUNAR AND PLANETARY SCIENCE XVII, PP. 724-725, 1986

  15. PDO modulation of the ENSO impact on the summer South Asian high

    NASA Astrophysics Data System (ADS)

    Xue, Xu; Chen, Wen; Chen, Shangfeng; Feng, Juan

    2018-02-01

    This study investigates modulation effects of the Pacific decadal oscillation (PDO) on the impact of boreal winter El Niño-Southern Oscillation (ENSO) on the South Asian high (SAH) variability in the following summer. In the El Niño together with positive PDO (EL/+PDO) or the La Niña together with negative PDO (LA/-PDO) years, boreal winter ENSO can influence the following summer SAH activity significantly. The SAH tends to be obviously strengthened (weakened) and located further south (north) during EL/+PDO (LA/-PDO). However, in the El Niño together with negative PDO (EL/-PDO) or the La Niña together with positive PDO (LA/+PDO) years, the influence of ENSO on the SAH tends to be weak. The strength and location of SAH are close to those in the climatology of 1950-2011 during the EL/-PDO or the LA/+PDO. Further analysis indicates that the PDO could exert pronounced influence on the ENSO-SAH connection via modulating the anomalous Walker circulation and charge effect over the tropical Indian Ocean (TIO). During the EL/+PDO or LA/-PDO, the anomalous Walker circulation associated with El Niño or La Niña is stronger and lasts for a longer time than those during the EL/-PDO or LA/+PDO. This leads to stronger descending (ascending) motion over the Maritime Continent and easterly (westerly) wind anomalies over the eastern Indian Ocean in the EL/+PDO (LA/-PDO), which further exert larger effects on the surface heat fluxes and subsurface ocean dynamical heating process over the Indian Ocean. As such, the induced warm (cold) sea surface temperature anomalies over the Indian Ocean are more significant and larger in the EL/+PDO (LA/-PDO). These larger sea surface temperature anomalies over the TIO could exert a more significant influence on the tropospheric temperature via moisture adjustment, which subsequently results in stronger SAH variability in the EL/+PDO or the LA/-PDO.

  16. Holocene Deep Ocean Variability Detected with Individual Benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Bova, S. C.; Herbert, T.; Fox-Kemper, B.

    2015-12-01

    Historical observations of deep ocean temperatures (>700 m water depth) show apparently unprecedented rates of warming over the past half century that parallel observed surface warming, on the order of 0.1°C/decade (Purkey and Johnson 2010). Most water masses below 700 m depth, however, have not been at the sea surface where they exchange heat and carbon with the atmosphere since well before industrialization (Gebbie and Huybers 2012). How then has the heat content of isolated deep water masses responded to climate change over the last century? In models, wave mechanisms propagate thermocline anomalies quickly (Masuda et al. 2010), but these dynamics are not fully understood. We therefore turn to the sedimentary record to constrain the bounds of earlier variability from Holocene anomalies. The oxygen isotopic composition (δ18O) of individual benthic foraminifera provide approximately month-long snapshots of the temperature and salinity of ambient deep water during calcification. We exploit the short lifespan of these organisms to reconstruct variability in δ18Oshell, and thus the variability in deep water temperature and salinity, during five 200-yr Holocene intervals at 1000 m water depth in the Eastern Equatorial Pacific (EEP). Modern variability in benthic foraminifer δ18O was too weak to detect but variability at 1000 m water depth in the EEP exceeded our detection limit during two Holocene intervals at high confidence (p<0.01), with δ18O anomalies up to ~0.6 ± 0.15‰ that persist for a month or longer. Although the source of these anomalies remains speculative, rapid communication between the surface and deep ocean that operates on human timescales, faster than previously recognized, or intrinsic variability that has not been active during the history of ocean observations are potential explanations. Further work combining models and high-resolution proxy data is needed to identify the mechanism and global extent of this type of subsurface variability in the global oceans.

  17. Subduction and Restratification Along an Eddy Edge: The Role of Ekman Dynamics and Submesoscale Processes

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Sengupta, D.; D'Asaro, E. A.; Nash, J. D.; Shroyer, E.; Mahadevan, A.; Tandon, A.; MacKinnon, J. A.; Pinkel, R.

    2016-02-01

    The exchange of heat between the atmosphere and ocean depends sensitively on the structure and extent of the oceanic boundary layer. Heat fluxes into and out of the ocean in turn influence atmospheric processes, and, in the northern Indian Ocean, impact the dominant regional weather pattern (the southwest Monsoon). In late 2015, measurements of the physical structure of the oceanic boundary layer were collected from a pair of research vessels and an array of autonomous assets in the Bay of Bengal as part of an India-U.S. scientific collaboration. Repeated CTD casts by a specialized shipboard system to 200m with a repeat rate of <3 min and a lateral spacing of < 200m, as well as near-surface sampling acoustic current profilers, showed how on the edge of an oceanic mesoscale eddy, the interaction of the mesoscale strain field, Ekman dynamics, and nonlinear submesoscale processes acted to subduct relative saline water under a very thin layer of fresher water derived from riverine sources. Our detailed surveys of the front between the overriding thin, fresh layer, and subducting adjacent more saline water demonstrated the important of small-scale physical dynamics to frontal slumping and the resulting re-stratification processes. These processes were strongly 3-dimensional and time-dependent. Such dynamics ultimately influence air-sea interactions by creating strongly stratified and very thin oceanic boundary layers in the Bay of Bengal, and allow the development of strong, persistent subsurface temperature maxima.

  18. Incorporating Density Properties of MgSO4 Brines Into Icy World Ocean Simulations

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Vance, S.

    2011-12-01

    The structure and flow of the subsurface oceans in icy worlds depends on the sources of buoyancy within these oceans. Buoyancy is determined by the equation of state, in which density is a nonlinear function of temperature, salinity, and pressure. Equations of state for terrestrial seawater (with Na and Cl as the principal dissolved species) are well-developed, but icy world oceans may contain a different balance of species, including Na, Mg, SO4, and NH4 (Kargel et al, 2000). Recent work by Vance and Brown (2011, pers. comm.) has mapped out the density and thermodynamic properties of MgSO4 brines under icy world conditions. We have developed code to incorporate this equation of state data for MgSO4 brines into two different ocean simulation models. First, we investigate a single-column convection model, which is able to find the equilibrium structure and heat transport of an icy world ocean. We explore the heat transport through the ocean subject to a variety of assumptions about ocean salinity and seafloor heat and salt flux. We resolve the paradox posed by Vance and Brown (2004): warm salty MgSO4 brine emitted by a seafloor hydrothermal system may be positively buoyant at the seafloor, but become negatively buoyant (sinking) at lower pressure. How does heat escape the ocean, if it cannot be transported by convection? Second, we add MgSO4 dynamics to a full 3-D time-dependent general circulation model (the MIT GCM), which is able to simulate both the global-scale circulation of the world's ocean and investigate the highly turbulent dynamics of buoyant hydrothermal systems. We ask, "Are buoyancy-driven flows in a MgSO4 brine ocean significantly different than similarly-driven flows in terrestrial seawater?"

  19. Estimating the recharge properties of the deep ocean using noble gases and helium isotopes

    NASA Astrophysics Data System (ADS)

    Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.

    2016-08-01

    The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.

  20. Sedimentary silicon isotope indicates the Kuroshio subsurface upwelling in the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Yang, S.; Su, N.

    2017-12-01

    The Kuroshio as the western boundary current of the North Pacific subtropical circulation, originates from east of the Philippine Islands, and flows northeastward along the eastern coast of Taiwan. It's subsurface water intrudes the East China Sea (ECS) and forms a typical upwelling on the inner shelf, which may play an important role in the material and heat transport, biogeochemical process and marine ecosystem of the ECS.To date, most previous studies on the Kuroshio subsurface upwelling focuse on the seasonal and interannual variations, and few researches touch on the upwelling evolution in the geologic past. In this study, eight short sediment cores were taken along the ECS inner shelf (upwelling area), which allow us to reconstruct the upwelling history over the last several hundred years. Although conventional indexes of oceanographic changes, such as salinity, temperature and hydrogen and oxygen isotope, provide valuable constraints on the modern oceanic circulation and water mass movements, how to reconstruct them from geologic records is always a challenging work. In this contribution, we present the data of stable silicon isotope, biogenic opal, diatom assemblages, element geochemistry and stable carbon and nitrogen isotopes of these core sediments, and aim to decipher the Kuroshio subsurface upwelling history on the ECS shelf. We will also illustrate the difference in δ30Si signals between small (<30 um) and large (>150 um) diatom fractions, and test whether it is an effective indicator for paleo-upwelling intensity.

  1. Continental Heat Gain in the Global Climate System

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Beltrami, H.; Pollack, H. N.; Huang, S.

    2001-12-01

    Observed increases in 20th century surface-air temperatures are one consequence of a net energy flux into all major components of the Earth climate system including the atmosphere, ocean, cryosphere, and lithosphere. Levitus et al. [2001] have estimated the heat gained by the atmosphere, ocean and cryosphere as 18.2x1022 J, 6.6x1021 J, and 8.1x1021 J, respectively, over the past half-century. However the heat gain of the lithosphere via a heat flux across the solid surface of the continents (30% of the Earth's surface) was not addressed in the Levitus analysis. Here we calculate that final component of Earth's changing energy budget, using ground-surface temperature reconstructions for the continents [Huang et al., 2000]. These reconstructions have shown a warming of at least 0.5 K in the 20th century and were used to determine the flux estimates presented here. In the last half-century, the interval of time considered by Levitus et al., there was an average flux of 40 mW/m2 across the land surface into the subsurface, leading to 9.2x1021 J absorbed by the ground. This amount of heat is significantly less than the energy transferred into the oceans, but of the same magnitude as the energy absorbed by the atmosphere or cryosphere. The heat inputs into all the major components of the climate system - atmosphere, ocean, cryosphere, lithosphere - conservatively sum to more than 20x1022 J during the last half-century, and reinforce the conclusion that the warming in this interval has been truly global. Huang, S., Pollack, H.N., and Shen, P.-Y. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature. 403. 756-758 Levitus, S., Antonov, J., Wang, J., Delworth, T. L., Dixon, K. and Broccoli, A. 2001. Anthropogenic warming of the Earth's climate system. Science, 292, 267-270

  2. Sulfur geochemistry and microbial sulfate reduction during low-temperature alteration of uplifted lower oceanic crust: Insights from ODP Hole 735B

    USGS Publications Warehouse

    Alford, Susan E.; Alt, Jeffrey C.; Shanks, Wayne C.

    2011-01-01

    Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/ΣS values (≤ 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100–1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures ≤ 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in δ34Ssulfide values (− 1.5 to + 16.3‰) and variable additions of sulfide are explained by variable εsulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/ΣS (≥ 0.46) and variable δ34Ssulfide (0.7 to 16.9‰). Negative δ34Ssulfate–δ34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide–sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.

  3. Magnetically-driven oceans on Jovian satellites

    NASA Astrophysics Data System (ADS)

    Gissinger, C.; Petitdemange, L.

    2017-12-01

    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  4. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  5. Operational Prediction of the Habitat Suitability Index (HSI) Distribution for Neon Flying Squid in Central North Pacific by Using FORA Dataset and a New Data Assimilation System SKUIDS

    NASA Astrophysics Data System (ADS)

    Igarashi, H.; Ishikawa, Y.; Wakamatsu, T.; Tanaka, Y.; Nishikawa, S.; Nishikawa, H.; Kamachi, M.; Kuragano, T.; Takatsuki, Y.; Fujii, Y.; Usui, N.; Toyoda, T.; Hirose, N.; Sakai, M.; Saitoh, S. I.; Imamura, Y.

    2016-02-01

    The neon flying squid (Ommastrephes bartramii) has a wide-spread distribution in subtropical and temperate waters in the North Pacific, which plays an important role in the pelagic ecosystem and is one of the major targets in Japanese squid fisheries. The main fishing areas for Japanese commercial vessels are located in the central North Pacific (35-45N, around the date line) in summer. In this study, we have developed several kinds of habitat suitability index (HSI) models of the neon flying squid for investigating the relationship between its potential habitat and the ocean state variations in the target area. For developing HSI models, we have used a new ocean reanalysis dataset FORA (4-dimensional variational Ocean Re-Analysis) produced by JAMSTEC/CEIST and MRI-JMA. The horizontal resolution is 0.1*0.1 degree of latitude and longitude with 54 vertical levels, which can provide realistic fields of 3-dimensional ocean circulation and environmental structures including meso-scale eddies. In addition, we have developed a new 4D-VAR (4-dimensional variational) ocean data assimilation system for predicting ocean environmental changes in the main fishing grounds. We call this system "SKUIDS" (Scalable Kit of Under-sea Information Delivery System). By using these prediction fields of temperature, salinity, sea surface height, horizontal current velocity, we produced daily HSI maps of the neon flying squid, and provided them to the Japanese commercial vessels in operation. Squid fishermen can access the web site for delivering the information of ocean environments in the fishing ground by using Inmarsat satellite communication on board, and show the predicted fields of subsurface temperatures and HSI. Here, we present the details of SKUIDS and the web-delivery system for squid fishery, and some preliminary results of the operational prediction.

  6. Role of the Southwest Tropical Indian Ocean on the Modulation of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Burns, J. M.; Bulusu, S.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR), located in the Indian Ocean and bound by 55°E-65°E and 5°S-12°S, is a key region for air-sea interaction. This feature inhabits one of the seven ocean basins where tropical cyclones regularly form and is unique in that the variability of the subsurface can influence cyclogenesis. Tropical cyclone days for this region span from November through April, with peaks in the months of January and February. The influence of thermocline variation is particularly strong during the months of December through May and it is known that a high correlation exists between the depth of the thermocline and sea surface temperature (key ingredient for cyclogenesis). Past research provides evidence that more tropical cyclone days are observed in Southwest Tropical Indian Ocean (SWTIO) during austral summers with a deep thermocline ridge than in austral summers when a shallow thermocline ridge exists. The formation and thickness of the Barrier layer (BL) have also been shown to impact tropical cyclones in this region. BL formation is an important parameter for surface heat exchange. The amount of salt in the boundary layer may also effect heat exchange and thus cyclones. Other ocean basins have verified that salt-stratified barrier layers influence the intensification of tropical cyclones, however, the role that salinity in SWTIO plays in the modulation of tropical cycles has still yet to be explored. This study further explores how the dynamic properties of the SCTR influence the modulation of cyclones. Primarily Argo observations of salinity and temperature along with Soil Moisture Ocean Salinity (SMOS) and Aquarius salinity, and Hybrid Coordinate Ocean Model (HYCOM) simulations are used to examine this influence of the BL and salinity on cyclone formation and intensity in this region. This study is progressed with a particular focus on the austral summer of 2012/2013 when seven tropical cyclones developed in the region.

  7. Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.

    2017-12-01

    Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.

  8. Electrokinetic Transduction of Acoustic Waves In Ocean Sediments

    DTIC Science & Technology

    2002-09-30

    acoustic —motion in ocean sediments. The Biot theory of poroelastic media captures much of the sediment physics left out by other models [2]. It fits...in subsurface acoustical imaging, Mine Counter- Measures, and Anti-Submarine Warfare. To obtain essential experimental data to support the modeling ...Electrokinetic Transduction of Acoustic Waves In Ocean Sediments Gareth I. Block Applied Research Laboratories, U.T. Austin P.O. Box 8029

  9. Insights on multivariate updates of physical and biogeochemical ocean variables using an Ensemble Kalman Filter and an idealized model of upwelling

    NASA Astrophysics Data System (ADS)

    Yu, Liuqian; Fennel, Katja; Bertino, Laurent; Gharamti, Mohamad El; Thompson, Keith R.

    2018-06-01

    Effective data assimilation methods for incorporating observations into marine biogeochemical models are required to improve hindcasts, nowcasts and forecasts of the ocean's biogeochemical state. Recent assimilation efforts have shown that updating model physics alone can degrade biogeochemical fields while only updating biogeochemical variables may not improve a model's predictive skill when the physical fields are inaccurate. Here we systematically investigate whether multivariate updates of physical and biogeochemical model states are superior to only updating either physical or biogeochemical variables. We conducted a series of twin experiments in an idealized ocean channel that experiences wind-driven upwelling. The forecast model was forced with biased wind stress and perturbed biogeochemical model parameters compared to the model run representing the "truth". Taking advantage of the multivariate nature of the deterministic Ensemble Kalman Filter (DEnKF), we assimilated different combinations of synthetic physical (sea surface height, sea surface temperature and temperature profiles) and biogeochemical (surface chlorophyll and nitrate profiles) observations. We show that when biogeochemical and physical properties are highly correlated (e.g., thermocline and nutricline), multivariate updates of both are essential for improving model skill and can be accomplished by assimilating either physical (e.g., temperature profiles) or biogeochemical (e.g., nutrient profiles) observations. In our idealized domain, the improvement is largely due to a better representation of nutrient upwelling, which results in a more accurate nutrient input into the euphotic zone. In contrast, assimilating surface chlorophyll improves the model state only slightly, because surface chlorophyll contains little information about the vertical density structure. We also show that a degradation of the correlation between observed subsurface temperature and nutrient fields, which has been an issue in several previous assimilation studies, can be reduced by multivariate updates of physical and biogeochemical fields.

  10. Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo

    DOE PAGES

    Burls, N. J.; Fedorov, A. V.

    2014-09-13

    We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less

  11. Along-axis hydrothermal flow at the axis of slow spreading Mid-Ocean Ridges: Insights from numerical models of the Lucky Strike vent field (MAR)

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Cannat, Mathilde; Escartin, Javier; Crawford, Wayne C.

    2014-07-01

    processes and efficiency of hydrothermal heat extraction along the axis of mid-ocean ridges are controlled by lithospheric thermal and permeability structures. Hydrothermal circulation models based on the structure of fast and intermediate spreading ridges predict that hydrothermal cell organization and vent site distribution are primarily controlled by the thermodynamics of high-temperature mid-ocean ridge hydrothermal fluids. Using recent constraints on shallow structure at the slow spreading Lucky Strike segment along the Mid-Atlantic Ridge, we present a physical model of hydrothermal cooling that incorporates the specificities of a magma-rich slow spreading environment. Using three-dimensional numerical models, we show that, in contrast to the aforementioned models, the subsurface flow at Lucky Strike is primarily controlled by across-axis permeability variations. Models with across-axis permeability gradients produce along-axis oriented hydrothermal cells and an alternating pattern of heat extraction highs and lows that match the distribution of microseismic clusters recorded at the Lucky Strike axial volcano. The flow is also influenced by temperature gradients at the base of the permeable hydrothermal domain. Although our models are based on the structure and seismicity of the Lucky Strike segment, across-axis permeability gradients are also likely to occur at faster spreading ridges and these results may also have important implications for the cooling of young crust at fast and intermediate spreading centers.

  12. The Sensitivity of Atlantic Meridional Overturning Circulation to Dynamical Framework in an Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Yu, Y.

    2016-12-01

    The horizontal coordinate systems commonly used in most global ocean models are the sphere latitude-longitude grid and displaced poles such as tripolar grid. The effect of the horizontal coordinate system on Atlantic Meridional Overturning Circulation (AMOC) is evaluated using an oceanic general circulation model (OGCM). Two experiments are conducted with the model using latitude-longitude grid (Lat_1) and tripolar grid (Tri). Results show that Tri simulates a stronger NADW than Lat_1, as more saline water masses enter into the GIN Seas in Tri. Two reasons can be attributed to the stronger NADW. One is the removal of zonal filter in Tri, which leads to an increasing of zonal gradient of temperature and salinity, thus strengthens the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because the realistic topography is applied in tripolar grid and the longitude-latitude grid employs an artificial island around the North Pole. In order to evaluate the effect of filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, enhanced filter can also increase the NADW, for more saline water is suppressed to go north and accumulated in the Labrador Sea, especially in the experiment with enhanced filter on salinity (Lat_2_S).

  13. Ocean Nitrogen Isotopic Change in the Early Eocene

    NASA Astrophysics Data System (ADS)

    Kast, E.; Stolper, D. A.; Higgins, J. A.; Ren, H. A.; Wang, X. T.; Sigman, D. M.

    2017-12-01

    The long term variability of the marine nitrogen (N) cycle is an open question. The Cenozoic provides a well-studied framework for investigating the marine N cycle over long time scales and across large climate transitions. However, only sparse bulk Cenozoic sediment δ15N data exist, the utility of which for reconstructing environmental conditions is unclear. We present a record of foraminifera-bound organic matter δ15N from the Paleocene to late Eocene. At three distant sites, foraminifera-bound δ15N decreases dramatically between 56 Ma and 50 Ma: from 14‰ to 2‰ in the northwest Pacific (ODP site 1209), from 12‰ to 4‰ in the southeast Atlantic (ODP site 1263), and from 9‰ to 4‰ in the northwest Atlantic (IODP site U1409). This foraminifera-bound δ15N change is on par, if not greater, than the largest changes that have been observed in bulk sediment δ15N over the last 600 million years. The shared change among the sites implies a change in mean δ15N of oceanic fixed N, which is thought to be sensitive to the ratio of water column to sedimentary denitrification, with a higher δ15N reflecting a greater proportion of denitrification occurring in the water column. Today, water column denitrification occurs in the shallow subsurface, in regions where these waters are suboxic. Thus, the δ15N decrease may reflect a slowing of water column denitrification, which can be generated by a decline in shallow subsurface suboxia. A key factor in the extent of shallow subsurface suboxia is the amount of "preformed oxygen," the initial concentration of dissolved O2 in the water that flows from the surface into the shallow subsurface: a decline in suboxia would require a rise in preformed oxygen from 56 to 50 Ma. The δ15N decline occurs before the onset of cooling in the Eocene, eliminating global temperature change as the driver of increased preformed oxygen. Instead we favor explanations that involve tectonically driven changes in continental configuration and shallow and mid-depth ocean bathymetry. Indeed, the δ15N decline appears coincident with the initiation of bathymetric effects from the collision of India with Asia. This category of explanation is consistent with the overlap of the δ15N decline with the previously identified increase in marine barite δ34S at 51 Ma.

  14. Evaluation of radiative fluxes over the north Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2018-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  15. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  16. On the edge of a deep biosphere: Real animals in extreme environments

    NASA Astrophysics Data System (ADS)

    Childress, James J.; Fisher, Charles F.; Felbeck, Horst; Girguis, Peter

    This paper considers the possibility of animals living in a subsurface environment on the global mid-ocean ridge system. It considers the possible environments and looks at the possibilities of animal inhabitants of the subsurface biosphere based on adaptations of animals to other extreme habitats. We conclude that there are known bridging inhabitants of the subsurface biosphere, that part-time inhabitants are extremely likely, and that there could be full-time inhabitants if conditions are stable within the tolerance limits of metazoans for time periods of months.

  17. The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias

    NASA Astrophysics Data System (ADS)

    Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.

    2016-02-01

    Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.

  18. Tropical Atlantic Impacts on the Decadal Climate Variability of the Tropical Ocean and Atmosphere.

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2015-12-01

    Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean. In particular, several recent works indicate that the Atlantic sea surface temperature (SST) may contribute to the climate variability over the equatorial Pacific. Inspired by these studies, our work aims at investigating the impact of the tropical Atlantic on the entire tropical climate system, and uncovering the physical dynamics under these tropical teleconnections. We first performed a 'pacemaker' simulation by restoring the satellite era tropical Atlantic SST changes in a fully coupled model - the CESM1. Results reveal that the Atlantic warming heats the Indo-Western Pacific and cools the Eastern Pacific, enhances the Walker circulation and drives the subsurface Pacific to a La Niña mode, contributing to 60-70% of the above tropical changes in the past 30 years. The same pan-tropical teleconnections have been validated by the statistics of observations and 106 CMIP5 control simulations. We then used a hierarchy of atmospheric and oceanic models with different complexities, to single out the roles of atmospheric dynamics, atmosphere-ocean fluxes, and oceanic dynamics in these teleconnections. With these simulations we established a two-step mechanism as shown in the schematic figure: 1) Atlantic warming generates an atmospheric deep convection and induces easterly wind anomalies over the Indo-Western Pacific in the form of Kelvin waves, and westerly wind anomalies over the eastern equatorial Pacific as Rossby waves, in line with Gill's solution. This circulation changes warms the Indo-Western Pacific and cools the Eastern Pacific with the wind-evaporation-SST effect, forming a temperature gradient over the Indo-Pacific basins. 2) The temperature gradient further generates a secondary atmospheric deep convection, which reinforces the easterly wind anomalies over the equatorial Pacific and enhances the Walker circulation, triggering the Pacific to a La Niña mode with Bjerknes ocean dynamical feedback. This mechanism contributes to the understanding of the global decadal climate variability and predictability. In particular, Atlantic contributes to the Eastern Pacific cooling, which is considered as an important source of the recent global warming hiatus.

  19. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidences from the Early Pleistocene (MIS 31-19)

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.

    2014-10-01

    Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used Mg / Ca-based temperatures of deep-dwelling (Neogloboquadrina pachyderma sinistral) planktonic foraminifera and paired Mg / Ca-δ18O measurements to estimate the subsurface temperatures and δ18O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and δ18O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to enhanced northward subsurface transport of subtropical waters during periods of AMOC reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Warm waters accumulated at subsurface would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the MIS3.

  20. Planetary science. Europa's ocean--the case strengthens.

    PubMed

    Stevenson, D

    2000-08-25

    The possibility of a subsurface ocean on Jupiter's moon Europa has been suggested on the basis of theoretical, geological, and spectroscopic arguments. But, as Stevenson explains in his Perspective, none of these arguments were compelling. In contrast, the magnetic field data obtained by the Galileo spacecraft and presented in the report by Kivelson et al., provide persuasive evidence for a conducting layer--most likely a global water ocean--near Europa's surface.

  1. Mixed Layer Heat and Fresh Water Balance in North Bay of Bengal (18N, 90E) Using a Seaglider and Mooring

    NASA Astrophysics Data System (ADS)

    Thangaprakash, V. P.; Girishkumar, M. S.; S, S.; Chaudhuri, D.; Sureshkumar, N.; Ravichandran, M.; Sengupta, D.; Weller, R. A.

    2016-02-01

    The Bay of Bengal (BoB) receives the large quantity of freshwater by excess precipitation over evaporation and runoff. This large freshwater flux into the BoB leads to strong haline stratification in the near surface layer, which have significant impact on the evolution of near thermo-haline structure and air-sea interactions process in those areas. However, lack of systematic measurements of observations, the factors that are modulating near mixed layer salinity and temperature in these freshwater pool in the northern BoB is not yet understood clearly. Under OMM - ASIRI (Ocean mixing and monsoon - Air sea interaction regional initiatives in the Northern Indian Ocean) programme, 3 month repeated hydrographic survey using seaglider in a butterfly (or bowtie) track centered around a mooring in the North Bay of Bengal (18N, 89E) equipped with near surface ASIMET sensors and subsurface temperature and salinity measurements, which provides unprecedental data source to quantify the relative contribution of different process on the evolution of near surface thermo-haline field through mixed layer heat and salt budget. The results of the analysis will be presented.

  2. Development and evaluation of a high-resolution reanalysis of the East Australian Current region using the Regional Ocean Modelling System (ROMS 3.4) and Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) data assimilation

    NASA Astrophysics Data System (ADS)

    Kerry, Colette; Powell, Brian; Roughan, Moninya; Oke, Peter

    2016-10-01

    As with other Western Boundary Currents globally, the East Australian Current (EAC) is highly variable making it a challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the BlueLink ReANalysis (BRAN3). For the data assimilation, we use an Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) scheme, which uses the model dynamics to perturb the initial conditions, atmospheric forcing, and boundary conditions, such that the modelled ocean state better fits and is in balance with the observations. This paper describes the data assimilative model configuration that achieves a significant reduction of the difference between the modelled solution and the observations to give a dynamically consistent "best estimate" of the ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It achieves mean spatially averaged root mean squared (rms) residuals with the observations of 7.6 cm for sea surface height (SSH) and 0.4 °C for sea surface temperature (SST) over the assimilation period. The time-mean rms residual for subsurface temperature measured by Argo floats is a maximum of 0.9 °C between water depths of 100 and 300 m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf moorings are well represented in the reanalysis with complex correlations between 0.8 and 1 for all observations in the upper 500 m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity estimates with complex correlations with observed velocities of 0.8-1 across the radar footprint. A comparison with independent (non-assimilated) shipboard conductivity temperature depth (CTD) cast observations shows a marked improvement in the representation of the subsurface ocean in the reanalysis, with the rms residual in potential density reduced to about half of the residual with the free-running model in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed variables to unobserved regions as the assimilation system uses the model dynamics to adjust the model state estimate. This is the first study to generate a reanalysis of the region at such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to study EAC dynamics, observation impact in state-estimation, and as forcing for a variety of downscaling studies.

  3. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.

  4. Subsurface Structure and Thermal History of Icy Satellites from Stereo Topography

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Hammond, N. P.; Roberts, J. H.; Nimmo, F.; Beyer, R. A.; robuchon, G.

    2012-12-01

    Stereo topography, in combination with numerical modeling, can be used to study the subsurface structure and thermal history of icy satellites. We are using stereo images of Saturn's icy satellites from the Cassini ISS instrument to construct digital elevation models (DEMs). We first extracted topographic profiles of impact craters on Dione and Rhea. Using the current crater depths, we then estimated the initial crater depth and calculated the viscous crater relaxation for each crater. Our results show that 100 km diameter craters on Rhea range from ~10-50% relaxed, while craters with D> 200 km have relaxations of 40-50%. In comparison, craters with D < 100 km on Dione are 30-50% relaxed, while craters with D >100 km were 60-75% relaxed. We then compared these observations with the results of a combined thermal and visco-elastic relaxation model based on the work of Robuchon et al. 2011 and Robuchon and Nimmo 2011. The model for Rhea predicts a maximum crater relaxation between 10% for smaller craters and 40% for larger craters. For Dione, which is modeled as differentiated, the maximum relaxation is even less: ~5% for smaller craters and ~10% for larger craters. Our model thus underpredicts the observed relaxation. We therefore require more heating early in the history of the satellites to produce the observed relaxation, requiring a subsurface ocean layer. Topographic profiles of tectonic features let us use flexure to estimate elastic thickness and therefore heat flux. We fit observations of the height and distance to observed flexural bulges at two sites on Dione to models of a flexing unbroken elastic plate, and found that the elastic thickness was ~2-5 km. This is consistent with work by Nimmo et al. (2011) that suggested an elastic thickness of 1.5-5 km based on long-wavelength topography. With a measurement of average strain of 0.03, we estimate a heat flux between 20-80 mW/m2. This is far higher than the heat flux of ~ 4 mW/m2 expected from radiogenic heating. A tidal heating model with a 50 km thick ocean for Dione (at the time these features were formed) can produce the observed heat flux with e~0.0022, the current value. Without an ocean, our observed heat flux would require a much higher eccentricity. Therefore, we present two lines of evidence that suggest that a subsurface ocean was present on Dione, and perhaps also Rhea, early in their histories. We are currently working on new thermal models that incorporate subsurface oceans. Preliminary results suggest that if the shells are conductive, the ice will be too stiff to permit the observed degree of relaxation, even if the ice shells are relatively thin (100 km). These results further suggest that the ice shells on Dione and Rhea were convecting at the time of crater formation. Subsurface oceans beneath convective ice shells may not have been long-lived, however, as convection cools the interior far more rapidly than it is heated by radioactive decay. Additional heat sources such as tidal dissipation or shock heating by the impacts themselves may be required to prevent oceans from freezing before relaxation is complete. This work was funded by a grant from the NASA Outer Planets Research Program. References: Robuchon, G., et al. Icarus 214, 82-90, 2011. Robuchon, G., and F. Nimmo. Icarus 216, 426-439, 2011. Nimmo, F. et al., GRL 116, E11001, 2011.

  5. High Winds and the Vertical Structure of Chl-a in the Southern Ocean: Insights from Remote Sensing and Novel in situ Sensors

    NASA Astrophysics Data System (ADS)

    Carranza, M. M.; Gille, S. T.; Franks, P. J. S.; Johnson, K. S.; Girton, J. B.

    2016-02-01

    The Southern Ocean is under the influence of strong atmospheric synoptic activity and contains some of the oceans deepest mixed layers. Deep mixed layers can transport phytoplankton below the euphotic zone, and phytoplankton growth is hypothesized to be co-limited by iron and light. Atmospheric forcing drives changes in the mixed-layer depth (MLD) that influence light levels and nutrient input to the euphotic zone. In summer, when the MLD is shallow and close to the euphotic depth, high satellite Chl-a correlate with high winds, consistent with wind-driven entrainment that can potentially increase nutrient concentrations in the euphotic zone. However, correlations between Chl-a and diurnal winds are largest at zero time lag. High winds can inject nutrients on short timescales (< 1 day), but in situ incubation experiments after iron addition indicate phytoplankton growth on slightly longer timescales (> 3-4 days), suggesting that the correlations are not a result of growth. High winds can also entrain Chl-a from a subsurface Chl-a maximum. Novel bio-optical sensors mounted on elephant seals and autonomous floats allow us to examine the vertical structure of Chl-a in the Southern Ocean. In this study, we investigate the occurrence of subsurface Chl-a maxima. We find that surface Chl-a is a relatively good proxy for depth-integrated Chl-a within the euphotic zone but gives an inadequate representation of biomass within the mixed layer, particularly in the summer. Subsurface Chl-a maxima are not uncommon and may occur in all seasons. Chl-a maxima that correlate with particle backscattering in summer and fall are found near the base of the mixed layer, closer to the nutrient maximum than the light maximum, suggesting that nutrient limitation (i.e., essentially iron) can play a greater role than light limitation in governing productivity, and that high winds potentially entrain a subsurface Chl-a maximum into the summer mixed layer.

  6. Incorporating Prognostic Marine Nitrogen Fixers and Related Bio-Physical Feedbacks in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Paulsen, H.; Ilyina, T.; Six, K. D.

    2016-02-01

    Marine nitrogen fixers play a fundamental role in the oceanic nitrogen and carbon cycles by providing a major source of `new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Furthermore, nitrogen fixers may regionally have a direct impact on ocean physics and hence the climate system as they form extensive surface mats which can increase light absorption and surface albedo and reduce the momentum input by wind. Resulting alterations in temperature and stratification may feed back on nitrogen fixers' growth itself.We incorporate nitrogen fixers as a prognostic 3D tracer in the ocean biogeochemical component (HAMOCC) of the Max Planck Institute Earth system model and assess for the first time the impact of related bio-physical feedbacks on biogeochemistry and the climate system.The model successfully reproduces recent estimates of global nitrogen fixation rates, as well as the observed distribution of nitrogen fixers, covering large parts of the tropical and subtropical oceans. First results indicate that including bio-physical feedbacks has considerable effects on the upper ocean physics in this region. Light absorption by nitrogen fixers leads locally to surface heating, subsurface cooling, and mixed layer depth shoaling in the subtropical gyres. As a result, equatorial upwelling is increased, leading to surface cooling at the equator. This signal is damped by the effect of the reduced wind stress due to the presence of cyanobacteria mats, which causes a reduction in the wind-driven circulation, and hence a reduction in equatorial upwelling. The increase in surface albedo due to nitrogen fixers has only inconsiderable effects. The response of nitrogen fixers' growth to the alterations in temperature and stratification varies regionally. Simulations with the fully coupled Earth system model are in progress to assess the implications of the biologically induced changes in upper ocean physics for the global climate system.

  7. Radiocesium in the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014.

    PubMed

    Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Nishino, Shigeto; Murata, Akihiko; Kikuchi, Takashi

    2017-08-01

    We measured radiocesium ( 134 Cs and 137 Cs) in seawater from the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014. Fukushima-derived 134 Cs in surface seawater was observed in the western subarctic area and Bering Sea but not in the Arctic Ocean. Vertical profile of 134 Cs in the Canada Basin of the Arctic Ocean implies that Fukushima-derived 134 Cs intruded into the basin from the Bering Sea through subsurface (150m depth) in 2014. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Enhanced open ocean storage of CO2 from shelf sea pumping.

    PubMed

    Thomas, Helmuth; Bozec, Yann; Elkalay, Khalid; de Baar, Hein J W

    2004-05-14

    Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide from the atmosphere to the North Atlantic Ocean. The bottom topography-controlled stratification separates production and respiration processes in the North Sea, causing a carbon dioxide increase in the subsurface layer that is ultimately exported to the North Atlantic Ocean. Globally extrapolated, the net uptake of carbon dioxide by coastal and marginal seas is about 20% of the world ocean's uptake of anthropogenic carbon dioxide, thus enhancing substantially the open ocean carbon dioxide storage.

  9. An overview of new insights from 6 years of salinity data from SMOS mission

    NASA Astrophysics Data System (ADS)

    Nicolas, R.

    2015-12-01

    Measurements of salt held in surface seawater are becoming ever-more important for oceanographers and climatologists to gain a deeper understanding of ocean circulation and Earth's water cycle. ESA's SMOS mission is proving essential for this aim. Launched in 2009, SMOS has provided the longest continuous record (now ~6 years) of sea-surface salinity measurements from space. The salinity of surface seawater is controlled largely by the balance between evaporation and precipitation, but freshwater from rivers and the freezing and melting of ice also cause changes in concentrations. Along with temperature, salinity drives ocean circulation - the thermohaline circulation - which, in turn, plays a key role in the global climate. With a wealth of salinity data from SMOS now in hand complemented by measurements from the NASA-CONAE Aquarius satellite, which uses a different measuring technique. In this talk we shall provide an overview of how the SMOS mission - now celebrating 6 years in orbit - is providing detailed global measurements of SSS. An ensemble of key ocean processes for climate and biochemistry can now be determined and monitored for the first time from space : the detailed salinity structure of tropical instability waves along the equator and the salt exchanged across major oceanic current fronts, the occurrences of large-scale salinity anomalies in the Pacific and Indian oceans related to important climate indexes are also well-evidenced in the six year-long data. In addition, the dispersal of freshwater into the ocean from the major large tropical rivers (Amazon, Orinoco and Congo), their impact on tropical cyclone (TC) intensification and the oceanic imprints of the intense rainfall in the ITCZ and under TC can now be regularly monitored to better understand the variability of the oceanic part of the global water cycle. We will present how SMOS data, along with concurrent in situ Argo ocean-profile data, other satellite observations of sea-surface temperature, sea-surface height, surface-wind stress and ocean colour, are now providing new opportunities to investigate the surface and subsurface ocean mesoscale dynamics. The talk will tentatively illustrate how this type of data synergy is the key to unlock further scientific insight and increase our knowledge of the hydrologic cycle.

  10. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Case, Anthony W.; Grey, Matthew P.; Kim, Cindy K.; Battista, Corina C.; Rymer, Abigail; Paty, Carol S.; Jia, Xianzhe; Stevens, Michael L.; Khurana, Krishan; Kivelson, Margaret G.; Slavin, James A.; Korth, Haje H.; Smith, Howard T.; Krupp, Norbert; Roussos, Elias; Saur, Joachim

    2016-10-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa.Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by accounting for contributions to the magnetic field from plasma currents.In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.

  11. The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim

    2017-10-01

    Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter’s magnetosphere and vice versa.In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.

  12. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, J. H.; McNutt, R. L., Jr.; Kasper, J. C.; Battista, C.; Case, A. W.; Cochrane, C.; Grey, M.; Jia, X.; Kivelson, M.; Kim, C.; Korth, H.; Khurana, K. K.; Krupp, N.; Paty, C. S.; Roussos, E.; Rymer, A. M.; Stevens, M. L.; Slavin, J. A.; Smith, H. T.; Saur, J.; Coren, D.

    2017-12-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa. Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by accounting for contributions to the magnetic field from plasma currents. In this presentation we describe the principles of PIMS operations, detail the PIMS science goals, and discuss how to assess Europa's induction response.

  13. Exploration of the Climate Change Frontier in Polar Regions at the Land Ice-Ocean Boundary.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.

    2014-12-01

    Ice sheets are the largest contributors to sea level rise at present, and responsible for the largest uncertainty in sea level projections. Ice sheets raised sea level 5 m per century 13.5 kyr ago during one period of rapid change. Leading regions for future rapid changes include the marine-based, retrograde bed parts of Greenland (north center and east), West Antarctica (Amundsen Sea), and East Antarctica (Filchner basin and Wilkes Land). Fast changes require an increase in ice melt from a warmer ocean and an increase in iceberg calving. Our understanding of both processes remains limited due to a lack of basic observations. Understanding ocean forcing requires observations on the continental shelf, along bays and glacial fjords and at ice-ocean boundaries, beneath kilometers of ice (Antarctica) or at near-vertical calving cliffs (Greenland), of ocean temperature and sea floor bathymetry. Where such observations exist, the sea floor is much deeper than anticipated because of the carving of deep channels by multiple glacier advances. Warm subsurface waters penetrate throughout the Amundsen Sea Embayment of West Antarctica, the southeast and probably the entire west coasts of Greenland. In Greenland, discharge of subglacial water from surface runoff at the glacier grounding line increases ice melting by the ocean even if the ocean temperature remains the same. Near ice-ocean boundaries, satellite observations are challenged, airborne observations and field surveys are limited, so advanced robotic techniques for cold, deep, remote environments are ultimately required in combination with advanced numerical modeling techniques. Until such technological advances take place and advanced networks are put in place, it is critical to conduct boat surveys, install moorings, and conduct extensive airborne campaigns (for instance, gravity-derived bathymetry and air-dropped CTDs), some of which is already taking place. In the meantime, projections of ice sheet evolution in a warmer climate will remain highly conservative and perhaps misleading. Furthermore, as glaciers destabilize, iceberg calving will take over. Calving depends on the height of the calving cliff, the fracturing of ice near the ice front by strain rates or water; but the jury is also out about defining a universal calving law.

  14. Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?

    NASA Technical Reports Server (NTRS)

    Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.; hide

    2013-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  15. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    PubMed

    Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples. © 2013 John Wiley & Sons Ltd.

  16. [Microbes on the edge of global biosphere].

    PubMed

    Naganuma, T

    2000-12-01

    The search for life on the edge of global biosphere is a frontier to bridge conventional bio/ecology and exo/astrobiology. This communication reviews the foci of microbiological studies on the inhabitants of the selected "edges", i.e., deep-sea, deep subsurface and Antarctic habitats. The deep-sea is characterized as the no-light (non-photosynthetic) habitat, and the primary production is mostly due to the chemosynthetic autotrophy at the hydrothermal vents and methane-rich seeps. Formation of the chemosynthesis-dependent animal communities in the deep leads to the idea that such communities may be found in "ocean" of the Jovian satellite, Europa. The oxygen minimal layer (OML) in mid-water provides another field of deep-sea research. Modern OML is a relatively thin layer, found between the water depth of 200 and 1000 m, but was much thicker during the periods of oceanic anoxia events (OAEs) in the past. The history of oceanic biosphere is regarded as the cycle of OAE and non-OAE periods, and the remnants of the past OAEs may be seen in the modem OML. Anoxic (no-O2) condition is also characteristic of deep subsurface biosphere. Microorganisms in deep subsurface biosphere exploit every available oxidant, or terminal electron acceptor (TEA), for anaerobic respiration. Sulfate, nitrate, iron (III) and CO2 are the representative TEAs in the deep subsurface. Subsurface of hydrothermal vents, or sub-vent biosphere, may house brine (high salt) habitats and halophilic microorganisms. Some sub-vent halophiles were phylogenetically closely similar to the ones found in the Antarctic habitats which are extremely dry by the liophilizing climate. Below the 3000-4000 m-thick glacier on Antarctica, there have been >70 lakes with liquid water located. One of such sub-glacial lakes, Lake Vostok, has been a target of "life in extreme environments" and is about to be drill-penetrated for microbiological studies. These 'microbiological platforms' will provide new knowledge about the diversity and potential of the Earth's life and facilitate the capability of astrobiologial exploration.

  17. Tropical Meridional Overturning Circulation Observed by Subsurface Moorings in the Western Pacific.

    PubMed

    Song, Lina; Li, Yuanlong; Wang, Jianing; Wang, Fan; Hu, Shijian; Liu, Chuanyu; Diao, Xinyuan; Guan, Cong

    2018-05-16

    Meridional ocean current in the northwestern Pacific was documented by seven subsurface moorings deployed at 142°E during August 2014-October 2015. A sandwich structure of the tropical meridional overturning circulation (TMOC) was revealed between 0-6°N that consists of a surface northward flow (0-80 m), a thermocline southward flow (80-260 m; 22.6-26.5 σ θ ), and a subthermocline northward flow (260-500 m; 26.5-26.9 σ θ ). Based on mooring data, along with satellite and reanalysis data, prominent seasonal-to-interannual variations were observed in all three layers, and the equatorial zonal winds were found to be a dominant cause of the variations. The TMOC is generally stronger in boreal winter and weaker in summer. During 2014-2015, the TMOC was greatly weakened by westerly wind anomalies associated with the El Niño condition. Further analysis suggests that the TMOC can affect equatorial surface temperature in the western Pacific through anomalous upwelling/downwelling and likely plays a vital role in the El Niño-Southern Oscillation (ENSO).

  18. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  19. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    PubMed

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  20. Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing.

    PubMed

    Moum, James N; Perlin, Alexander; Nash, Jonathan D; McPhaden, Michael J

    2013-08-01

    Sea surface temperature (SST) is a critical control on the atmosphere, and numerical models of atmosphere-ocean circulation emphasize its accurate prediction. Yet many models demonstrate large, systematic biases in simulated SST in the equatorial 'cold tongues' (expansive regions of net heat uptake from the atmosphere) of the Atlantic and Pacific oceans, particularly with regard to a central but little-understood feature of tropical oceans: a strong seasonal cycle. The biases may be related to the inability of models to constrain turbulent mixing realistically, given that turbulent mixing, combined with seasonal variations in atmospheric heating, determines SST. In temperate oceans, the seasonal SST cycle is clearly related to varying solar heating; in the tropics, however, SSTs vary seasonally in the absence of similar variations in solar inputs. Turbulent mixing has long been a likely explanation, but firm, long-term observational evidence has been absent. Here we show the existence of a distinctive seasonal cycle of subsurface cooling via mixing in the equatorial Pacific cold tongue, using multi-year measurements of turbulence in the ocean. In boreal spring, SST rises by 2 kelvin when heating of the upper ocean by the atmosphere exceeds cooling by mixing from below. In boreal summer, SST decreases because cooling from below exceeds heating from above. When the effects of lateral advection are considered, the magnitude of summer cooling via mixing (4 kelvin per month) is equivalent to that required to counter the heating terms. These results provide quantitative assessment of how mixing varies on timescales longer than a few weeks, clearly showing its controlling influence on seasonal cooling of SST in a critical oceanic regime.

  1. Internal Waves, South China Sea

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Subsurface ocean currents, frequently referred to as internal waves, are frequently seen from space under the right lighting conditions when depth penetration can be achieved. These internal waves observed in the South China Sea off the SE coast of the island of Hainan (18.5N, 110.5E) visibly demonstrate turbidity in the ocean's depths at the confluence of conflicting currents.

  2. Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean

    NASA Astrophysics Data System (ADS)

    Hartkorn, Oliver; Saur, Joachim

    2017-11-01

    We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.

  3. Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude

    PubMed Central

    Ballester, Joan; Petrova, Desislava; Bordoni, Simona; Ben Cash; García-Díez, Markel; Rodó, Xavier

    2016-01-01

    Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes. PMID:27808279

  4. Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude.

    PubMed

    Ballester, Joan; Petrova, Desislava; Bordoni, Simona; Ben Cash; García-Díez, Markel; Rodó, Xavier

    2016-11-03

    Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes.

  5. Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Beckmann, Aike; Hense, Inga

    2007-12-01

    This study considers an important biome in aquatic environments, the subsurface ecosystem that evolves under low mixing conditions, from a theoretical point of view. Employing a conceptual model that involves phytoplankton, a limiting nutrient and sinking detritus, we use a set of key characteristics (thickness, depth, biomass amplitude/productivity) to qualitatively and quantitatively describe subsurface biomass maximum layers (SBMLs) of phytoplankton. These SBMLs are defined by the existence of two community compensation depths in the water column, which confine the layer of net community production; their depth coincides with the upper nutricline. Analysing the results of a large ensemble of simulations with a one-dimensional numerical model, we explore the parameter dependencies to obtain fundamental steady-state relationships that connect primary production, mortality and grazing, remineralization, vertical diffusion and detrital sinking. As a main result, we find that we can distinguish between factors that determine the vertically integrated primary production and others that affect only depth and shape (thickness and biomass amplitude) of this subsurface production layer. A simple relationship is derived analytically, which can be used to estimate the steady-state primary productivity in the subsurface oligotrophic ocean. The fundamental nature of the results provides further insight into the dynamics of these “hidden” ecosystems and their role in marine nutrient cycling.

  6. Chemistry and Spectroscopy of Frozen Chloride Salts on Icy Bodies

    NASA Astrophysics Data System (ADS)

    Johnson, Paul; Thomas, Elena C.; Hodyss, Robert; Vu, Tuan; Choukroun, Mathieu

    2016-10-01

    Currently, our understanding of the chemical composition of Europa's surface is our best means of inferring constraints on the subsurface ocean composition and its subsequent habitability. The bulk of our knowledge of Europa surface chemistry can be traced to near infrared spectra recorded by the Near Infrared Mapping Spectrometer on the Galileo spacecraft. However, the usefulness of this and other remote sensing data is limited by the availability of spectral libraries of candidate materials under relevant conditions (temperature, thermal/radiation history, etc.). Chloride salts are expected to exist on the surface of Europa, and other icy bodies, based on geochemical predictions of the ocean composition. In order to help improve our understanding of Europa's surface composition, we have conducted a study of frozen chloride-salt brines prepared under simulated Europa surface conditions (vacuum, temperature, and UV irradiation) using both near IR and Raman spectroscopies. Specifically, Raman spectroscopy was used to determine the hydration states of various chloride salts as a function of temperature. Near IR spectroscopy of identically prepared samples was used to provide reference reflectance spectra of the identified hydrated salts. Our results indicate that at temperatures ranging from 80 K to 233 K, hydrohalite is formed from the freezing of NaCl brines, while the freezing of KCl solutions does not form KCl hydrates. In addition, the freezing of MgCl2 solutions forms a stable hexahydrate, and the freezing of CaCl2 solutions forms a hexahydrate, a tetrahydrate, and a dihydrate. Dehydration of the salts was observed as temperatures were increased, leading to a succession of hydration states in the case of CaCl2.

  7. A novel microbial habitat in the mid-ocean ridge subseafloor

    PubMed Central

    Summit, Melanie; Baross, John A.

    2001-01-01

    The subseafloor at the mid-ocean ridge is predicted to be an excellent microbial habitat, because there is abundant space, fluid flow, and geochemical energy in the porous, hydrothermally influenced oceanic crust. These characteristics also make it a good analog for potential subsurface extraterrestrial habitats. Subseafloor environments created by the mixing of hot hydrothermal fluids and seawater are predicted to be particularly energy-rich, and hyperthermophilic microorganisms that broadly reflect such predictions are ejected from these systems in low-temperature (≈15°C), basalt-hosted diffuse effluents. Seven hyperthermophilic heterotrophs isolated from low-temperature diffuse fluids exiting the basaltic crust in and near two hydrothermal vent fields on the Endeavour Segment, Juan de Fuca Ridge, were compared phylogenetically and physiologically to six similarly enriched hyperthermophiles from samples associated with seafloor metal sulfide structures. The 13 organisms fell into four distinct groups: one group of two organisms corresponding to the genus Pyrococcus and three groups corresponding to the genus Thermococcus. Of these three groups, one was composed solely of sulfide-derived organisms, and the other two related groups were composed of subseafloor organisms. There was no evidence of restricted exchange of organisms between sulfide and subseafloor habitats, and therefore this phylogenetic distinction indicates a selective force operating between the two habitats. Hypotheses regarding the habitat differences were generated through comparison of the physiology of the two groups of hyperthermophiles; some potential differences between these habitats include fluid flow stability, metal ion concentrations, and sources of complex organic matter. PMID:11226209

  8. Continued evolution of Europa subsurface exploration technologies

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Hecht, M. H.; Lane, A. L.; Mogensen, C.; Zimmerman, W.

    2002-01-01

    The Galileo results convincingly indicate that Europa has a deep salty ocean covered by a shell of water ice a few tens of kilometers thick; this physical description gives rise to a host of thoughtful speculation as to the nature of the ocean, its seafloor, and the likelihood of microbial life within it. We argue that this situation points to the high desirability of a series of in-situ missions to examine the ice and, ultimately, the ocean.

  9. Pathways of basal meltwater from Antarctic ice shelves: A model study

    NASA Astrophysics Data System (ADS)

    Kusahara, Kazuya; Hasumi, Hiroyasu

    2014-09-01

    We investigate spreading pathways of basal meltwater released from all Antarctic ice shelves using a circumpolar coupled ice shelf-sea ice-ocean model that reproduces major features of the Southern Ocean circulation, including the Antarctic Circumpolar Current (ACC). Several independent virtual tracers are used to identify detailed pathways of basal meltwaters. The spreading pathways of the meltwater tracers depend on formation sites, because the meltwaters are transported by local ambient ocean circulation. Meltwaters from ice shelves in the Weddell and Amundsen-Bellingshausen Seas in surface/subsurface layers are effectively advected to lower latitudes with the ACC. Although a large portion of the basal meltwaters is present in surface and subsurface layers, a part of the basal meltwaters penetrates into the bottom layer through active dense water formation along the Antarctic coastal margins. The signals at the seafloor extend along the topography, showing a horizontal distribution similar to the observed spreading of Antarctic Bottom Water. Meltwaters originating from ice shelves in the Weddell and Ross Seas and in the Indian sector significantly contribute to the bottom signals. A series of numerical experiments in which thermodynamic interaction between the ice shelf and ocean is neglected regionally demonstrates that the basal meltwater of each ice shelf impacts sea ice and/or ocean thermohaline circulation in the Southern Ocean. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  10. Influence of Assimilation of Subsurface Temperature Measurements on Simulations of Equatorial Undercurrent and South Equatorial Current Along the Pacific Equator

    NASA Technical Reports Server (NTRS)

    Halpern, David; Leetmaan, Ants; Reynolds, Richard W.; Ji, Ming

    1997-01-01

    Equatorial Pacific current and temperature fields were simulated with and without assimilation of subsurface temperature measurements for April 1992 - March 1995, and compared with moored bouy and research vessel current measurements.

  11. ENSO Prediction in the NASA GMAO GEOS-5 Seasonal Forecasting System

    NASA Astrophysics Data System (ADS)

    Kovach, R. M.; Borovikov, A.; Marshak, J.; Pawson, S.; Vernieres, G.

    2016-12-01

    Seasonal-to-Interannual coupled forecasts are conducted in near-real time with the Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model (AOGCM). A 30-year suite of 9-month hindcasts is available, initialized with the MERRA-Ocean, MERRA-Land, and MERRA atmospheric fields. These forecasts are used to predict the timing and magnitude of ENSO and other short-term climate variability. The 2015 El Niño peaked in November 2015 and was considered a "very strong" event with the Equatorial Pacific Ocean sea-surface-temperature (SST) anomalies higher than 2.0 °C. These very strong temperature anomalies began in Sep/Oct/Nov (SON) of 2015 and persisted through Dec/Jan/Feb (DJF) of 2016. The other two very strong El Niño events recently recorded occurred in 1981/82 and 1997/98. The GEOS-5 system began predicting a very strong El Niño for SON starting with the March 2015 forecast. At this time, the GMAO forecast was an outlier in both the NMME and IRI multi-model ensemble prediction plumes. The GMAO May 2015 forecast for the November 2015 peak in temperature anomaly in the Niño3.4 region was in excellent agreement with the real event, but in May this forecast was still one of the outliers in the multi-model forecasts. The GEOS-5 May 2015 forecast also correctly predicted the weakening of the Eastern Pacific (Niño1+2) anomalies for SON. We will present a summary of the NASA GMAO GEOS-5 Seasonal Forecast System skills based on historic hindcasts. Initial conditions, prediction of ocean surface and subsurface evolution for the 2015/16 El Niño will be compared to the 1998/97 event. GEOS-5 capability to predict the precipitation, i.e. to model the teleconnection patterns associated with El Niño will also be shown. To conclude, we will highlight some new developments in the GEOS forecasting system.

  12. Urban heat islands in the subsurface of German cities

    NASA Astrophysics Data System (ADS)

    Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.

    2012-04-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  13. Remote sensing of subsurface water temperature by Raman scattering.

    PubMed

    Leonard, D A; Caputo, B; Hoge, F E

    1979-06-01

    The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.

  14. Direct Laser Ice Penetrator for Exploring Icy Ocean Worlds: Design, Modeling and Test Results of a Proof-of-Concept Prototype

    NASA Astrophysics Data System (ADS)

    Hogan, B.; Stone, W.; Bramall, N. E.; Siegel, V.; Lelievre, S.; Rothhammer, B.; Richmond, K.; Flesher, C.

    2016-12-01

    Subsurface exploration of icy ocean worlds requires an efficient method of penetrating ice to significant depths under extreme environment conditions. Searching for extant life dictates descent to a depth which is habitable or where biomarkers can survive and allow detection. It's anticipated that several meters to 10s of meters of shielding is required to prevent cosmic background radiation and other energetic particles from destroying biomarker evidence. We have devised, developed and demonstrated an entirely novel ice penetrating technology utilizing laser light carried by an optical fiber tether and emitted from a probe's optical nose cone and radiated directly into the volume of ice preceding the penetrator. We have termed it a "Direct Laser Penetrator" or DLP. We present design details, modeling, and test data from preliminary proof-of-concept experiments conducted at Stone Aerospace with results exceeding expectations and achieving the fastest reported thermal probe descent rate to date (> 12 m / hr). DLP has critical benefits over conventional "hot point" melt probes, which must generate large temperature gradients to force heat by conduction through the nose cone, and layers of ice and water. Additionally, hot point melt probes tested under vacuum have shown extreme difficulty initiating penetration, as virtually no thermal contact exists between the probe nose and rough ice surface. The ice simply sublimates and any transferred heat is quickly dissipated due to the low power density and extreme cold. DLP requires NO thermal contact between the probe nose and the ice surface since the laser energy is radiated directly into the volume (vs. surface) of ice preceding the penetrator. A proposed key element of the DLP is the fiber optic tether, coupled with a dedicated sensor fiber, enables "optical access" to the subsurface environment by a lander's shared or DLP dedicated on-board instruments (Raman / Fluorescence / fiber / UV / VIS / NIR spectroscopy, etc). These sensors can search for extant life by detecting biomarkers as well as characterizing the radiation / light environment for subsurface habitability. The combination of a laser penetrator w/ integrated fiber coupled instruments could be an important tool for an icy ocean worlds lander. (Supported by NASA funded SAS projects VALKYRIE and SPINDLE)

  15. Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2008-12-01

    Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.

  16. Development and testing of instrumentation for ship-based UAV measurements of ocean surface processes and the marine atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.

    2012-12-01

    We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.

  17. Biomarker Records of Shelf Exposure in the Indo-Pacific Warm Pool for the Past 450,000 Years

    NASA Astrophysics Data System (ADS)

    Windler, G.; Tierney, J. E.; Zander, P. D.; Thunell, R.

    2017-12-01

    The Indo-Pacific warm pool (IPWP) is a major contributor of heat and moisture to the atmosphere and has a strong influence on tropical climate. Several mechanisms are thought to be responsible for changes in IPWP climate during the Late Quaternary: precessional forcing, which alters seasonal temperatures and rainfall, and sea level changes caused by glaciations, which expose the Sunda and Sahul shelves thereby triggering changes in both atmospheric and oceanic circulation via increased albedo. The "shelf exposure" mechanism is thought to have caused a Bjerknes feedback in the Indian Ocean and predicts that the exposed shelves would have caused severe drying in the western IPWP and a cooling and shoaling of the eastern Indian Ocean thermocline. To test this hypothesis, we are analyzing a suite of proxies from marine core MD98-2152, drilled from an upwelling zone near the southern coast of Sumatra. Specifically, we use the UK'37 (alkenone) index, the TEX86 (GDGT) index, and the deuterium content of terrestrial leaf wax lipids (δDwax) as proxies for the key aspects of the predicted Bjerknes feedback: sea surface temperature (SST), sub-surface temperature (Sub-T), and aridity, respectively. The core extends 450 ka, spanning several glacial/interglacial periods. Results have indicated cooling at both the surface and the thermocline during glacial periods. Surface cooling during some transitional periods is greater than typical changes in the tropics, at times cooling as much as 5° from interglacial to glacial. Preliminary δDwax results show few changes coherent with the timing of glacial or interglacial periods, indicating influences other than the amount effect. Precessional forcing also appears to play a role.

  18. Topographic variations in chaos on Europa: Implications for diapiric formation

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.; Pappalardo, Robert T.

    2004-01-01

    Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Cam et al., 1998; Greenberg et al., 19991, or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 20001. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.

  19. Topographic variations in chaos on Europa: Implications for diapiric formation

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.; Pappalardo, Robert T.

    2004-08-01

    Disrupted terrain, or chaos, on Europa, might have formed through melting of a floating ice shell from a subsurface ocean [Carr et al., 1998; Greenberg et al., 1999], or breakup by diapirs rising from the warm lower portion of the ice shell [Head and Pappalardo, 1999; Collins et al., 2000]. Each model makes specific and testable predictions for topographic expression within chaos and relative to surrounding terrains on local and regional scales. High-resolution stereo-controlled photoclinometric topography indicates that chaos topography, including the archetypal Conamara Chaos region, is uneven and commonly higher than surrounding plains by up to 250 m. Elevated and undulating topography is more consistent with diapiric uplift of deep material in a relatively thick ice shell, rather than melt-through and refreezing of regionally or globally thin ice by a subsurface ocean. Vertical and horizontal scales of topographic doming in Conamara Chaos are consistent with a total ice shell thickness >15 km. Contact between Europa's ocean and surface may most likely be indirectly via diapirism or convection.

  20. An intelligent subsurface buoy design for measuring ocean ambient noise

    NASA Astrophysics Data System (ADS)

    Li, Bing; Wang, Lei

    2012-11-01

    A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.

  1. El Nino-southern oscillation: A coupled response to the greenhouse effect?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, De-Zheng

    The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value,more » however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.« less

  2. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures

    NASA Astrophysics Data System (ADS)

    Narapusetty, Balachandrudu

    2017-06-01

    The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.

  3. Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Pant, V.; Prakash, K. R.

    2016-02-01

    Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.

  4. First oceanographic observations on the Wandel Sea shelf in Northeast Greenland: Tracing the Arctic Ocean outflow through the western Fram Strait

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Igor A.; Kirillov, Sergei A.; Rudels, Bert; Babb, David G.; Pedersen, Leif T.; Rysgaard, Soeren; Kristoffersen, Yngve; Barber, David G.

    2016-04-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in North Eastern Greenland were collected from the land-fast ice in April-May 2015 as a part of the Arctic Science Partnership collaboration during the first research campaign at the Villum Research Station. They were complemented by (i) the ice-tethered profiler (ITP) and Acoustic Dopler Current Profiler (ADCP) mooring observations in ~300 m of the tidewater glacier outlet from the Flade Isblink Ice Cap and (ii) CTDs taken in June-July 2015 along the Wandel Sea continental slope during the Norwegian FRAM 2014-15 sea ice drift. The CTD profiles deeper than 100 m are used to reveal the origin of water masses and determine the extent to which these water masses have interacted with ambient water from the continental slope. The subsurface water layer from ~20-70 m depth is comprised of freshened water (30-32 psu) that is likely associated with the Pacific Water outflow from the Arctic Ocean through the western Fram Strait. The underlying halocline layer centered at ~80 m (~33 psu) separates the Pacific Water layer from a deeper (<140 m) layer of modified Polar Water that has interacted with the warm Atlantic Water outflow through Fram Strait. The Atlantic Water layer with temperature above 0°C is recorded below 140 m. Over the outer shelf, the halocline layer shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient Polar Water mass across the continental slope. Mooring data shows an enhanced shelf-slope interaction responding the storm event in 23-24 April 2015 with northerly winds exceeding 10 m/s. The on-shelf transport of a cold and turbid water from the upper continental slope results in enhanced interleaving within the depth range of the halocline layer (~70-100 m). Our observations of Pacific Water in the Wandel Sea subsurface layer are set in the context of upstream observations in the Beaufort Sea for 2002-2011 and downstream observations from the Northeast Water Polynya (1992-1993), and clearly show the modification of Pacific Water during its advection across the Arctic Ocean from the Bering Strait to Fram Strait. Moreover, the Wandel Sea shelf and continental slope water shows a different water mass structure indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the Western Fram Strait.

  5. A comparison between modeled and measured permafrost temperatures at Ritigraben borehole, Switzerland

    NASA Astrophysics Data System (ADS)

    Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf

    2013-04-01

    The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro-meteorological 3-dimensional model Alpine 3D, which is based on a distributed application of SNOWPACK.

  6. On the Origin of Quasi-Periodic Temperature Variations in Kun-1 Well (Kunashir Island)

    NASA Astrophysics Data System (ADS)

    Demezhko, D. Yu.; Yurkov, A. K.

    2017-12-01

    The results of temperature monitoring in the 300-m kun-1 well (Kunashir Island) in 2011-2015 are considered. Quasi-periodic temperature variations with an amplitude of up to 0.3°C and a variation period of 14-26 h were added from November 2011 to the previously observed temperature variations caused by tidal deformations, free thermal convection, and deformation processes associated with the preparation and occurrence of tectonic earthquakes. Five cycles of such variations lasting from 2 to 6 months have been recorded. Each cycle was initiated by an earthquake with magnitude M > 2.5log( R), where R is the epicentral distance (km). According to their characteristics, the variations are unique and have not been described previously. Assumptions have been made about the possible connection of the registered variations with the inertial currents of the ocean or with hydrothermal processes in the Earth's subsurface. The phenomenon discovered requires further study not only as an object of fundamental science, but also as a feature of an earlier unknown type of geodynamic activity that can be a significant threat to the regional population.

  7. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31-19)

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.

    2015-04-01

    Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.

  8. The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations

    NASA Astrophysics Data System (ADS)

    Zaba, K. D.; Rudnick, D. L.

    2016-02-01

    During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will continue to measure the evolution of the shallow warm pool in the SCCS and its potential interaction with ENSO-related anomalies.

  9. Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario

    NASA Astrophysics Data System (ADS)

    Lehodey, P.; Senina, I.; Sibert, J.; Bopp, L.; Calmettes, B.; Hampton, J.; Murtugudde, R.

    2010-07-01

    An improved version of the spatial ecosystem and population dynamics model SEAPODYM was used to investigate the potential impacts of global warming on tuna populations. The model included an enhanced definition of habitat indices, movements, and accessibility of tuna predators to different vertically migrant and non-migrant micronekton functional groups. The simulations covered the Pacific basin (model domain) at a 2° × 2° geographic resolution. The structure of the model allows an evaluation from multiple data sources, and parameterization can be optimized by adjoint techniques and maximum likelihood using fishing data. A first such optimized parameterization was obtained for bigeye tuna ( Thunnus obesus) in the Pacific Ocean using historical catch data for the last 50 years and a hindcast from a coupled physical-biogeochemical model driven by the NCEP atmospheric reanalysis. The parameterization provided very plausible biological parameter values and a good fit to fishing data from the different fisheries, both within and outside the time period used for optimization. We then employed this model to forecast the future of bigeye tuna populations in the Pacific Ocean. The simulation was driven by the physical-biogeochemical fields predicted from a global marine biogeochemistry - climate simulation. This global simulation was performed with the IPSL climate model version 4 (IPSL-CM4) coupled to the oceanic biogeochemical model PISCES and forced by atmospheric CO 2, from historical records over 1860-2000, and under the SRES A2 IPCC scenario for the 21st century (i.e. atmospheric CO 2 concentration reaching 850 ppm in the year 2100). Potential future changes in distribution and abundance under the IPCC scenario are presented but without taking into account any fishing effort. The simulation showed an improvement in bigeye tuna spawning habitat both in subtropical latitudes and in the eastern tropical Pacific (ETP) where the surface temperature becomes optimal for bigeye tuna spawning. The adult feeding habitat also improved in the ETP due to the increase of dissolved oxygen concentration in the sub-surface allowing adults to access deeper forage. Conversely, in the Western Central Pacific the temperature becomes too warm for bigeye tuna spawning. The decrease in spawning is compensated by an increase of larvae biomass in subtropical regions. However, natural mortality of older stages increased due to lower habitat values (too warm surface temperatures, decreasing oxygen concentration in the sub-surface and less food). This increased mortality and the displacement of surviving fish to the eastern region led to stable then declining adult biomass at the end of the century.

  10. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru

    NASA Astrophysics Data System (ADS)

    Stramma, L.; Bange, H. W.; Czeschel, R.; Lorenzo, A.; Frank, M.

    2013-06-01

    Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study three eddies along a section at 16°45' S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water eddy, an open ocean mode water eddy and an open ocean cyclonic eddy have been identified and sampled in order to determine both their hydrographic properties and their influence on the biogeochemical setting of the ETSP. In the thermocline the temperature of the coastal anticyclonic eddy was up to 2 °C warmer, 0.2 more saline and the swirl velocity was up to 35 cm s-1. The observed temperature and salinity anomalies, as well as swirl velocities of both types of eddies were about twice as large as had been described for the mean eddies in the ETSP and the observed heat and salt anomalies (AHA, ASA) show a much larger variability than the mean AHA and ASA. We found that the eddies contributed significantly to productivity by maintaining pronounced subsurface maxima of chlorophyll. Based on a comparison of the coastal (young) mode water eddy and the open ocean (old) mode water eddy we conclude that the aging of eddies when they detach from the coast and move westward to the open ocean considerably influences the eddies' properties: chlorophyll maxima are weaker and nutrients are subducted. The coastal mode water eddy was found to be a hotspot of nitrogen loss in the OMZ, whereas, the open ocean cyclonic eddy was of negligible importance for nitrogen loss. Our results show that the important role the eddies play in the ETSP can only be fully deciphered and understood through dedicated high spatial and temporal resolution oceanographic/biogeochemical surveys.

  11. Long-term variations of SST and heat content in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Huonsou-gbo, Aubains; Servain, Jacques; Caniaux, Guy; Araujo, Moacyr; Bourlès, Bernard; Veleda, Doris

    2015-04-01

    Recent studies (eg. Wen et al. 2010; Servain et al. 2014) suggest that subsurface processes influence the interannual variability of sea surface temperature (SST) in the tropical Atlantic through the Meridional Overturning Circulation (MOC) with time lags of several months. In this study, we used observed SST and Ocean heat content to test such hypothesis during the period 1964-2013. First results indicate great similarities in the positive linear trends of monthly standardized anomalies of SST, upper ocean heat content (0-500m) and deeper ocean heat content (500-2000m) averaged over the whole Atlantic Ocean. Strong positive trends of SST and deeper heat content occurred in the equatorial Atlantic, while a strong positive trend of the upper heat content was observed in the northeast Atlantic. These positive trends were the highest during the last two decades. The lagged positive correlation patterns between upper heat content anomalies over the whole gridded Atlantic Ocean and SST anomalies averaged over the equatorial region (60°W-15°E; 10°N-10°S) show a slow temporal evolution, which is roughly in agreement with the upper MOC. More detailed works about the mechanism, as well as about the origin of the highest positive trend of the deeper heat content in the equatorial region, are presently under investigation. References Servain J., G. Caniaux, Y. K. Kouadio, M. J. McPhaden, M. Araujo (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, Vol. 43, 3071-3089, DOI 10.1007/s00382-014-2168-7.

  12. Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC

    NASA Astrophysics Data System (ADS)

    Ono, Jun; Tatebe, Hiroaki; Komuro, Yoshiki; Nodzu, Masato I.; Ishii, Masayoshi

    2018-02-01

    To assess the skill of seasonal to inter-annual predictions of the detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on 1 January, 1 April, 1 July and 1 October for each year from 1980 to 2011, for lead times up to three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialised with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to two months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian seas initialised in July, as suggested by previous studies.

  13. Forecasting the ocean optical environment in support of Navy mine warfare operations

    NASA Astrophysics Data System (ADS)

    Ladner, S. D.; Arnone, R.; Jolliff, J.; Casey, B.; Matulewski, K.

    2012-06-01

    A 3D ocean optical forecast system called TODS (Tactical Ocean Data System) has been developed to determine the performance of underwater LIDAR detection/identification systems. TODS fuses optical measurements from gliders, surface satellite optical properties, and 3D ocean forecast circulation models to extend the 2-dimensional surface satellite optics into a 3-dimensional optical volume including subsurface optical layers of beam attenuation coefficient (c) and diver visibility. Optical 3D nowcast and forecasts are combined with electro-optical identification (EOID) models to determine the underwater LIDAR imaging performance field used to identify subsurface mine threats in rapidly changing coastal regions. TODS was validated during a recent mine warfare exercise with Helicopter Mine Countermeasures Squadron (HM-14). Results include the uncertainties in the optical forecast and lidar performance and sensor tow height predictions that are based on visual detection and identification metrics using actual mine target images from the EOID system. TODS is a new capability of coupling the 3D optical environment and EOID system performance and is proving important for the MIW community as both a tactical decision aid and for use in operational planning, improving timeliness and efficiency in clearance operations.

  14. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms.

    PubMed

    Dreano, Denis; Raitsos, Dionysios E; Gittings, John; Krokos, George; Hoteit, Ibrahim

    2016-01-01

    Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)-the Ocean Color Climate Change Initiative (OC-CCI)-has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin's shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms.

  15. Impact of Intrathermocline eddies on seamount and oceanic island off Central Chile: Observation and modeling

    NASA Astrophysics Data System (ADS)

    Hormazabal, Samuel; Morales, Carmen; Cornejo, Marcela; Bento, Joaquim; Valencia, Luis; Auger, Pierre; Rodriguez, Angel; Correa, Marco; Anabalón, Valeria; Silva, Nelson

    2016-04-01

    In the Southeast Pacific, oceanographic processes that sustain the biological production necessary to maintain the ecosystems associated to seamounts and oceanic islands are still poorly understood. Recent studies suggest that the interaction of mesoscale and submesoescale eddies with oceanic islands and seamounts could be playing an important role in the time-space variability of primary production. In this work, research cruises, satellite data and Regional Ocean Modeling System (ROMS) results have been used to describe the main characteristics of intrathermocline eddies (ITE) and their impact on the Juan Fernández archipelago (JFA), off central Chile. The JFA is located off the coast of central Chile (33°S), and is composed of three main islands: Robinson Crusoe (RC), Alejandro Selkirk (AS) and Santa Clara (SC). Between the RC and AS are located the westernmost seamounts (JF6 and JF5) of the Juan Fernández archipelago. Satellite altimetry data (sea surface height from AVISO) were used to detect and track mesoscale eddies through eddy-tracking algorithm. Physical, chemical and biological parameters as temperature, salinity, dissolved oxygen and fluorescence were measured in the water column at JF5 and JF6, and along the coast off central Chile (30-40°S). Results from the research cruise exhibit the interaction between an ITE and the seamount JF6. Eddy-tracking results showed that the ITE observed at the JF6 was formed at the coast off central-southern Chile, traveled ~900 km seaward and after ~9 months reached the JF5 and JF6 region. Observations along the Chilean coast confirmed that the coast corresponds to the formation area of the observed ITE. In this region, ITEs are represented by subsurface lenses (~100 km diameter; 400 m thickness) of homogeneous salinity, nutrient rich and oxygen-poor equatorial subsurface water mass (ESSW) which is transported poleward by the Peru-Chile undercurrent in the coastal band and seaward by ITEs. The effect of ITEs on the ecosystem productivity around the Juan Fernández archipelago (JFA) is discussed.

  16. In situ study of the factors controlling Fe, Cu and Zn scavenging during the early mixing between hydrothermal fluids and seawater

    NASA Astrophysics Data System (ADS)

    Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.

    2016-12-01

    Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly titrated with the available Zinc early in the mixing. Our results indicate a clear control by subsurface mixing processes, at a very local scale: within a single vent field, temperature outflow of the hydrothermal fluid clearly drives Cu, Fe and Zn scavenging in the particulate phase, and controlling hence the iron stability and export.

  17. Exploring image data assimilation in the prospect of high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Verron, J. A.; Duran, M.; Gaultier, L.; Brankart, J. M.; Brasseur, P.

    2016-02-01

    Many recent works show the key importance of studying the ocean at fine scales including the meso- and submesoscales. Satellite observations such as ocean color data provide informations on a wide range of scales but do not directly provide information on ocean dynamics. Satellite altimetry provide informations on the ocean dynamic topography (SSH) but so far with a limited resolution in space and even more, in time. However, in the near future, high-resolution SSH data (e.g. SWOT) will give a vision of the dynamic topography at such fine space resolution. This raises some challenging issues for data assimilation in physical oceanography: develop reliable methodology to assimilate high resolution data, make integrated use of various data sets including biogeochemical data, and even more simply, solve the challenge of handling large amont of data and huge state vectors. In this work, we propose to consider structured information rather than pointwise data. First, we take an image data assimilation approach in studying the feasibility of inverting tracer observations from Sea Surface Temperature and/or Ocean Color datasets, to improve the description of mesoscale dynamics provided by altimetric observations. Finite Size Lyapunov Exponents are used as an image proxy. The inverse problem is formulated in a Bayesian framework and expressed in terms of a cost function measuring the misfits between the two images. Second, we explore the inversion of SWOT-like high resolution SSH data and more especially the various possible proxies of the actual SSH that could be used to control the ocean circulation at various scales. One focus is made on controlling the subsurface ocean from surface only data. A key point lies in the errors and uncertainties that are associated to SWOT data.

  18. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  19. Surface signature of Mediterranean water eddies in a long-term high-resolution simulation

    NASA Astrophysics Data System (ADS)

    Ciani, D.; Carton, X.; Barbosa Aguiar, A. C.; Peliz, A.; Bashmachnikov, I.; Ienna, F.; Chapron, B.; Santoleri, R.

    2017-12-01

    We study the surface signatures of Mediterranean water eddies (Meddies) in the context of a regional, primitive equations model simulation (using the Regional Oceanic Modeling System, ROMS). This model simulation was previously performed to study the mean characteristics and pathways of Meddies during their evolution in the Atlantic Ocean. The advantage of our approach is to take into account different physical mechanisms acting on the evolution of Meddies and their surface signature, having full information on the 3D distribution of all physical variables of interest. The evolution of around 90 long-lived Meddies (whose lifetimes exceeded one year) was investigated. In particular, their surface signature was determined in sea-surface height, temperature and salinity. The Meddy-induced anomalies were studied as a function of the Meddy structure and of the oceanic background. We show that the Meddies can generate positive anomalies in the elevation of the oceanic free-surface and that these anomalies are principally related to the Meddies potential vorticity structure at depth (around 1000 m below the sea-surface). On the contrary, the Meddies thermohaline surface signatures proved to be mostly dominated by local surface conditions and little correlated to the Meddy structure at depth. This work essentially points out that satellite altimetry is the most suitable approach to track subsurface vortices from observations of the sea-surface.

  20. Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Swingedouw, Didier; Rodehacke, Christian B.; Behrens, Erik; Menary, Matthew; Olsen, Steffen M.; Gao, Yongqi; Mikolajewicz, Uwe; Mignot, Juliette; Biastoch, Arne

    2013-08-01

    The recent increase in the rate of the Greenland ice sheet melting has raised with urgency the question of the impact of such a melting on the climate. As former model projections, based on a coarse representation of the melting, show very different sensitivity to this melting, it seems necessary to consider a multi-model ensemble to tackle this question. Here we use five coupled climate models and one ocean-only model to evaluate the impact of 0.1 Sv (1 Sv = 106 m3/s) of freshwater equally distributed around the coast of Greenland during the historical era 1965-2004. The ocean-only model helps to discriminate between oceanic and coupled responses. In this idealized framework, we find similar fingerprints in the fourth decade of hosing among the models, with a general weakening of the Atlantic Meridional Overturning Circulation (AMOC). Initially, the additional freshwater spreads along the main currents of the subpolar gyre. Part of the anomaly crosses the Atlantic eastward and enters into the Canary Current constituting a freshwater leakage tapping the subpolar gyre system. As a consequence, we show that the AMOC weakening is smaller if the leakage is larger. We argue that the magnitude of the freshwater leakage is related to the asymmetry between the subpolar-subtropical gyres in the control simulations, which may ultimately be a primary cause for the diversity of AMOC responses to the hosing in the multi-model ensemble. Another important fingerprint concerns a warming in the Nordic Seas in response to the re-emergence of Atlantic subsurface waters capped by the freshwater in the subpolar gyre. This subsurface heat anomaly reaches the Arctic where it emerges and induces a positive upper ocean salinity anomaly by introducing more Atlantic waters. We found similar climatic impacts in all the coupled ocean-atmosphere models with an atmospheric cooling of the North Atlantic except in the region around the Nordic Seas and a slight warming south of the equator in the Atlantic. This meridional gradient of temperature is associated with a southward shift of the tropical rains. The free surface models also show similar sea-level fingerprints notably with a comma-shape of high sea-level rise following the Canary Current.

  1. Subseasonal to Seasonal Forecasting at NASA in Support of the National Earth System Prediction Capability

    NASA Astrophysics Data System (ADS)

    Considine, D. B.; Pawson, S.; Koster, R. D.; Kovach, R. M.; Vernieres, G.; Schubert, S. D.

    2016-12-01

    NASA has developed and maintains, within the Goddard Modeling and Assimilation Office (GMAO), a seasonal-to-interannual prediction activity in support of the National ESPC, based on the GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). This system generates atmospheric, land, and ocean/ice analyses that are used to produce global forecasts. Each month, a 17-member ensemble of forecasts is made, from which various oceanic indices (e.g., El Niño, East Indian Dipole, Atlantic SST anomalies), are computed. Additionally, monthly and seasonal anomalies are computed for several variables from the atmosphere (e.g., 2-meter temperatures, precipitation, geopotential heights), land (drought indices), ocean (subsurface temperature anomalies), and sea ice. These forecasts are provided to the National Multi Model Ensemble (NMME) and the Study of Environmental Arctic Change (SEARCH) sea ice outlook. The quasi-operational nature of this system, with constant generation of products that are shared with the broader community, allows for continual assessment of the impacts of NASA observations on seasonal forecasts - a current example is the altimetry data from the JASON series of satellites. The GMAO's seasonal prediction system is currently being upgraded. Alongside typical enhancements, such as increased spatial resolution and use of more recent model versions with improved representation of physical processes, these developments are designed to enhance the use of NASA observations. One example is the use of aerosol information from NASA's EOS instruments (MODIS). A major motivation is also to include NASA's novel data types, such as soil-moisture from SMAP and other sources of oceanic information (such as salinity). This approach enables NASA to continue contributing to national seasonal forecasting efforts, while simultaneously introducing its novel observing capabilities into the seasonal system in a manner that can demonstrate their systematic impacts on the quality of the products.

  2. Water-Rock Differentiation on Ceres as Derived From Numerical Studies: Late Water Separation and Thick Undifferentiated Crust

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman

    2016-10-01

    Water-rock separation is a major factor in discriminating between models of Ceres' present-day state. We calculate differentiation models of Ceres to investigate how water-rock separation and convection influence its evolution. We expand on the presence of liquids and the possibility of cryovolcanism in order to explain surface features observed by Dawn[1,2].The model[3] includes accretion, reduction of the dust porosity, latent heat of ice melting, compaction driven water-rock separation, accretional heating, hydrothermal circulation, solid-state convection of ice, and convection in a water ocean.Accretion times considered cover 1-10 Ma rel. to CAIs. Compaction of the dust pores starts with ice at T≈180-240 K and proceeds with rock minerals at temperatures of up to 730 K. Sub-surface remains too cold to close these pores. The water-rock separation proceeds by water percolation in a rock matrix. Differentiation timing depends on the matrix deformation and no differentiation occurs in layers with leftover dust porosity. Compaction takes several hundred million years due to a slow temperature increase. The differentiation is extended according to this time scale even though liquid water is produced early. While the radionuclides are concentrated in the core no heat is produced in the ocean. If convection is neglected, the ocean is heated by the core and cooled through the crust, and remains totally liquid until the present day. Convection keeps the ocean cold and results in a colder present-day crust. Only a thin basal part of the ocean remains liquid, while the upper part freezes.In our models, a water ocean starts forming within 10 Ma after CAIs, but its completion is retarded relative to the melting of ice by up to O(0.1 Ga). The differentiation is partial and a porous outer layer is retained. Present-day temperatures calculated indicate that hydrated salts can be mobile at a depth of ≥1.5-5 km implying buoyancy of ice and salt-enriched crustal reservoirs. The impacts Haulani, Ikapati and Occator may have cut into these reservoirs triggering the mobility that formed cryovolcanic features[1,2].[1] Jaumann R et al. (2016) LPSC XLVII [2] Krohn K et al. (2016) LPSC XLVII. [3] Neumann W et al. (2015) A&A 584: A117.

  3. Finding the best windows: An apparent environmental threshold determines which diffuse flows are dominated by subsurface microbes

    NASA Astrophysics Data System (ADS)

    Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.

    2014-12-01

    Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.

  4. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    PubMed

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  5. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    PubMed Central

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915

  6. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    PubMed

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Terrestrial Subsurface Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free ofmore » microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our understanding of the subsurface is continually improving, it is clear that only a small fraction of microbial habitats have been sampled and studied. In this chapter, we will discuss these studies in the context of the distribution of microbial life in the subsurface, the stresses that microorganisms must overcome to survive in these environments, and the metabolic strategies that are employed to harness energy in a region of the planet far-removed from sunlight. Finally, we will consider both beneficial and deleterious effects of microbial activity in the subsurface on human activities in this environment.« less

  8. Evidence of a global magma ocean in Io's interior.

    PubMed

    Khurana, Krishan K; Jia, Xianzhe; Kivelson, Margaret G; Nimmo, Francis; Schubert, Gerald; Russell, Christopher T

    2011-06-03

    Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.

  9. The hydrothermal system associated with the Kilauea East Rift Zone, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.M.; Conrad, M.E.

    1997-12-31

    During the last twenty years drilling and fluid production on the Kilauea East Rift Zone (KERZ) has shown that an active hydrothermal system is associated with much of the rift. Well logging and fluid geochemistry indicate that reservoir temperatures exceed 360 C but are highly variable. Although neither well testing nor pressure decline data have clearly demonstrated the lateral limits of the reservoir, divergent fluid compositions over short distances suggest that the larger hydrothermal system is strongly compartmentalized across the rift zone. The chemical compositions of production fluids indicate that recharge is derived from ocean water and meteoric recharge andmore » isotopic data suggest that the latter may be derived from subsurface inflow from the flanks of Mauna Loa.« less

  10. Modelling Ocean Dissipation in Icy Satellites: A Comparison of Linear and Quadratic Friction

    NASA Astrophysics Data System (ADS)

    Hay, H.; Matsuyama, I.

    2015-12-01

    Although subsurface oceans are confirmed in Europa, Ganymede, Callisto, and strongly suspected in Enceladus and Titan, the exact mechanism required to heat and maintain these liquid reservoirs over Solar System history remains a mystery. Radiogenic heating can supply enough energy for large satellites whereas tidal dissipation provides the best explanation for the presence of oceans in small icy satellites. The amount of thermal energy actually contributed to the interiors of these icy satellites through oceanic tidal dissipation is largely unquantified. Presented here is a numerical model that builds upon previous work for quantifying tidally dissipated energy in the subsurface oceans of the icy satellites. Recent semi-analytical models (Tyler, 2008 and Matsuyama, 2014) have solved the Laplace Tidal Equations to estimate the time averaged energy flux over an orbital period in icy satellite oceans, neglecting the presence of a solid icy shell. These models are only able to consider linear Rayleigh friction. The numerical model presented here is compared to one of these semi-analytical models, finding excellent agreement between velocity and displacement solutions for all three terms to the tidal potential. Time averaged energy flux is within 2-6% of the analytical values. Quadratic (bottom) friction is then incorporated into the model, replacing linear friction. This approach is commonly applied to terrestrial ocean dissipation studies where dissipation scales nonlinearly with velocity. A suite of simulations are also run for the quadratic friction case which are then compared to and analysed against recent scaling laws developed by Chen and Nimmo (2013).

  11. Chlorophyll-a variability in the Seychelles-Chagos Thermocline Ridge: Analysis of a coupled biophysical model

    NASA Astrophysics Data System (ADS)

    Dilmahamod, A. F.; Hermes, J. C.; Reason, C. J. C.

    2016-02-01

    The biological variability of the upwelling region of the Seychelles-Chagos Thermocline Ridge (SCTR), both at surface and subsurface levels, is investigated using monthly outputs of a coupled biophysical model from 1958 to 2011. Owing to its large spatial distribution and sensitivity to climate variability, the SCTR is studied as three distinct regions; namely, sub-regions 1 (western; 5°S-12°S, 55°E-65°E), 2 (central; 5°S-12°S, 65°E-75°E) and 3 (eastern; 5°S-12°S, 75°E-90°E). Surface and subsurface chlorophyll-a (Chl-a) exhibit completely different response mechanisms in sub-region 3 compared to sub-regions 1 and 2 during El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events. During the intense 1997/1998 ENSO-IOD event, the high Chl-a tongue observed in the eastern Indian Ocean induces an increase in surface concentration in sub-region 3, whose subsurface variability is also substantially less (more) impacted by downwelling (upwelling) Rossby waves generated by El Niño (La Niña) forcing. After filtering out the annual signal, wavelet analysis of surface Chl-a revealed a significant 6 month periodicity in sub-regions 1 and 2 whereas a 5-year signal dominated in sub-region 3. The latter suggests that sub-region 3 is more prone to different ENSO/IOD influences, due to its proximity to the eastern Indian Ocean. In the unfiltered data, the subsurface Chl-a in sub-region 3 exhibits a strong signal near 1 year, with sub-regions 1 and 2 having a pronounced 6-year and 5-year signals respectively. These analyses show that the SCTR cannot be investigated as a single homogeneous region due to its large spatial distribution and different response mechanisms to climate events. Furthermore, changes in SST, thermocline depth, winds and Chl-a before and after the 1976-1977 climate shift differed across the SCTR, further highlighting the heterogeneity of this sensitive region in the Indian Ocean.

  12. Oceanographic applications of laser technology

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.

    1988-01-01

    Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.

  13. A preliminary 1-D model investigation of tidal variations of temperature and chlorinity at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Larson, B. I.; Bemis, K. G.; Lilley, Marvin D.

    2017-01-01

    Tidal oscillations of venting temperature and chlorinity have been observed in the long-term time series data recorded by the Benthic and Resistivity Sensors (BARS) at the Grotto mound on the Juan de Fuca Ridge. In this study, we use a one-dimensional two-layer poroelastic model to conduct a preliminary investigation of three hypothetical scenarios in which seafloor tidal loading can modulate the venting temperature and chlorinity at Grotto through the mechanisms of subsurface tidal mixing and/or subsurface tidal pumping. For the first scenario, our results demonstrate that it is unlikely for subsurface tidal mixing to cause coupled tidal oscillations in venting temperature and chlorinity of the observed amplitudes. For the second scenario, the model results suggest that it is plausible that the tidal oscillations in venting temperature and chlorinity are decoupled with the former caused by subsurface tidal pumping and the latter caused by subsurface tidal mixing, although the mixing depth is not well constrained. For the third scenario, our results suggest that it is plausible for subsurface tidal pumping to cause coupled tidal oscillations in venting temperature and chlorinity. In this case, the observed tidal phase lag between venting temperature and chlorinity is close to the poroelastic model prediction if brine storage occurs throughout the upflow zone under the premise that layers 2A and 2B have similar crustal permeabilities. However, the predicted phase lag is poorly constrained if brine storage is limited to layer 2B as would be expected when its crustal permeability is much smaller than that of layer 2A.

  14. Subsurface temperatures and surface heat flow in the Michigan Basin and their relationships to regional subsurface fluid movement

    USGS Publications Warehouse

    Vugrinovich, R.

    1989-01-01

    Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.

  15. The Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean).

    PubMed

    Jehle, Sofie; Bornemann, André; Deprez, Arne; Speijer, Robert P

    2015-01-01

    The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the "Latest Danian Event" ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4-0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE.

  16. The Impact of the Latest Danian Event on Planktic Foraminiferal Faunas at ODP Site 1210 (Shatsky Rise, Pacific Ocean)

    PubMed Central

    Jehle, Sofie; Bornemann, André; Deprez, Arne; Speijer, Robert P.

    2015-01-01

    The marine ecosystem has been severely disturbed by several transient paleoenvironmental events (<200 kyr duration) during the early Paleogene, of which the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most prominent. Over the last decade a number of similar events of Paleocene and Eocene age have been discovered. However, relatively little attention has been paid to pre-PETM events, such as the “Latest Danian Event” ("LDE", ~62.18 Ma), specifically from an open ocean perspective. Here we present new foraminiferal isotope (δ13C, δ18O) and faunal data from Ocean Drilling Program (ODP) Site 1210 at Shatsky Rise (Pacific Ocean) in order to reconstruct the prevailing paleoceanographic conditions. The studied five-meter-thick succession covers ~900 kyr and includes the 200-kyr-lasting LDE. All groups surface dwelling, subsurface dwelling and benthic foraminifera show a negative δ13C excursion of >0.6‰, similar in magnitude to the one previously reported from neighboring Site 1209 for benthic foraminifera. δ18O-inferred warming by 1.6 to 2.8°C (0.4–0.7‰ δ18O measured on benthic and planktic foraminiferal tests) of the entire water column accompanies the negative δ13C excursion. A well stratified upper ocean directly before and during the LDE is proposed based on the stable isotope gradients between surface and subsurface dwellers. The gradient is less well developed, but still enhanced after the event. Isotope data are supplemented by comprehensive planktic foraminiferal faunal analyses revealing a dominance of Morozovella species together with Parasubbotina species. Subsurface-dwelling Parasubbotina shows high abundances during the LDE tracing changes in the strength of the isotope gradients and, thus, may indicate optimal living conditions within a well stratified surface ocean for this taxon. In addition, distinct faunal changes are reported like the disappearance of Praemurica species right at the base of the LDE and the continuous replacement of M. praeangulata with M. angulata across the LDE. PMID:26606656

  17. Evidence of organic matter in the Ocean-Continent Transition of Alpine Tethys from Totalp, Eastern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Mateeva, Tsvetomila; Kusznir, Nick; Wolff, George; Wheeler, John; Manatschal, Gianreto

    2015-04-01

    Evidence from ocean ridge drilling and dredging and from the exhumed Tethyan continental margin in the Alps demonstrates that mantle serpentinization occurs at slow-spreading ocean ridges and magma-poor rifted continental margins. Observations at white smokers suggest that methane produced by serpentinization can support methanotrophic bio-systems which use methane as their only source of carbon. An important question is whether such biosystems are more generally pervasive in their association with serpentinized mantle in the subsurface. The answer to this question has important global implications for the importance of the hidden sub-surface bio-systems, the fate of methane and the carbon cycle. We examine whether serpentinized exhumed mantle at magma-poor rifted continental margins shows evidence for methanotrophy. Fieldwork sampling of km scale exposure of orogenically exhumed serpentinized mantle in the eastern Swiss Alps allows 3D mantle sampling not possible at ocean ridges and has the potential to answer the question regarding localized versus pervasive sub-surface methanotrophic biosystems. The Totalp massif in the eastern Swiss Alps has been chosen for an initial study to investigate the presence or absence of methanotrophic biosystem within serpentinized exhumed mantle in the Tethyan OCT. Totalp has little Alpine deformation and its metamorphism is no more than prehnite-pumpellyite grade. Hands specimens and cores have been taken from the Totalp area in order to sample serpentinization and its lithological diversity in the search for presence or absence of biomarkers. Thin sections analysis reveals multiple serpentinization events. XRD analysis shows complete serpentinization of the olivines and orthopyroxenes. The samples for bio-geochemical analysis were cut and ground to powder, processed by soxhlet extraction and then analysed by GC and GCMS in order to determine the full range of biomarkers. Total carbon and total organic carbon was also determined for the samples. Samples collected from the Totalp area show evidence of organic hydrocarbon in the form of alkanes. The majority of the samples contain n-alkanes in the range C20 - C32. Some samples contain isoprenoids in different concentrations dependent on their lithology, for example pristane and phytane are found in Totalp's sediments. The organic molecular distribution is consistent with the temperature history of the basin. Totalp samples are characterized by TC contents of 0.03% to 12.90% and TOC contents of 0.10% to 1.90%. This large range of values correlates with the large lithological diversity of this area. These first results from Totalp showing evidence for preserved organic matter and biosystems in the serpentinized mantle of the ancient Tethyan OCT are encouraging. Much more work is required to understand whether the organic matter is generated from methane-driven biosystems, and if so whether the methane originated from an organic or inorganic source?

  18. Diffusion and aggregation of subsurface radiation defects in lithium fluoride nanocrystals

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Stupak, A. P.; Runets, L. P.

    2015-09-01

    Lithium fluoride nanocrystals were irradiated by gamma rays at a temperature below the temperature corresponding to the mobility of anion vacancies. The kinetics of the aggregation of radiation-induced defects in subsurface layers of nanocrystals during annealing after irradiation was elucidated. The processes that could be used to determine the activation energy of the diffusion of anion vacancies were revealed. The value of this energy in subsurface layers was obtained. For subsurface layers, the concentrations ratio of vacancies and defects consisting of one vacancy and two electrons was found. The factors responsible for the differences in the values of the activation energies and concentration ratios in subsurface layers and in the bulk of the crystals were discussed.

  19. Applying Ensemble Kalman Filter to Regional Ocean Circulation Model in the East Asian Marginal Sea

    NASA Astrophysics Data System (ADS)

    Pak, Gyun-Do; Kim, Young Ho; Chang, Kyung-Il

    2010-05-01

    We successfully apply the ensemble Kalman filter (EnKF) data assimilation scheme to the East Sea Regional Ocean Model (ESROM). The ESROM solves the three dimensional ocean primitive equations with the hydrostatic and Boussinesq approximations. The domain of ESROM fully covers East Sea with grid intervals of approximately 0.1˚. The ESROM has one inflow port, the Korea Strait, and two outflow ports, the Tsugaru and Soya straits. High resolution bathymetry of 1/60˚ (Choi et al., 2002) is adopted for the model topography. The ESROM is initialized using hydrographic data from World Ocean Atlas (WOA), and forced by monthly mean surface and open boundary conditions supplied from European Centre for Medium-Range Weather Forecast data, WOA and so on. The EnKF system is composed of 16 ensembles and thousands of observation data are assimilated at every assimilation step into its parallel version, which significantly reduces the required memory and computational time more than 3-fold compared with its serial version. To prevent the collapse of ensembles due to rank deficiency, we employ various schemes such as localization and inflation of the background error covariance and disturbance of observations. Sea surface temperature from the Advanced Very High Resolution Radiometer and in-situ temperature profiles from various sources including Argo floats have been assimilated into the EnKF system. For cyclonic circulation in the northern East Sea and paths of the East Korean Warm Current and the Nearshore Branch, the EnKF system reproduces the mean surface circulation more realistically than that in the case without data assimilation. Simulated area-averaged vertical temperature profiles also agrees well with the Generalized Digital Environmental Model data, which indicates that the EnKF system corrects the warming of subsurface temperature and the erosion of the permanent thermocline that are usually observed in numerical models without data assimilation. We also quantitatively validate the EnKF system by comparing its results with observed temperatures at 100 m for two years in the southwestern East Sea. We find that spatial and temporal correlations are higher and root-mean-square errors are lower in the EnKF system as compared with those systems without data assimilation.

  20. Global oceanic production of nitrous oxide.

    PubMed

    Freing, Alina; Wallace, Douglas W R; Bange, Hermann W

    2012-05-05

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N(2)O) to estimate the concentration of biologically produced N(2)O and N(2)O production rates in the ocean on a global scale. Our approach to estimate the N(2)O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N(2)O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N(2)O are not taken into account in our study. The largest amount of subsurface N(2)O is produced in the upper 500 m of the water column. The estimated global annual subsurface N(2)O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr(-1). This is in agreement with estimates of the global N(2)O emissions to the atmosphere and indicates that a N(2)O source in the mixed layer is unlikely. The potential future development of the oceanic N(2)O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed.

  1. Quantification of the effect of temperature gradients in soils on subsurface radon signal

    NASA Astrophysics Data System (ADS)

    Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam

    2017-04-01

    Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.

  2. Influence of spatial and temporal variability of subsurface soil moisture and temperature on vapour intrusion

    NASA Astrophysics Data System (ADS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2014-05-01

    A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.

  3. Combined Geothermal Potential of Subsurface Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2016-04-01

    The subsurface urban heat island (SUHI) can be seen as a geothermal potential in form of elevated groundwater temperatures caused by anthropogenic heat fluxes into the subsurface. In this study, these fluxes are quantified for an annual timeframe in two German cities, Karlsruhe and Cologne. Our two-dimensional (2D) statistical analytical model determines the renewable and sustainable geothermal potential caused by six vertical anthropogenic heat fluxes into the subsurface: from (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that at present 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of heat are annually transported into the shallow groundwater of Karlsruhe and Cologne, respectively, due to anthropogenic heat fluxes into the subsurface. This is sufficient to sustainably cover 32% and 9% of the annual residential space heating demand of Karlsruhe and Cologne, respectively. However, most of the discussed anthropogenic fluxes into the subsurface are conductive heat fluxes and therefore dependent on the groundwater temperature itself. Accordingly, a decrease in groundwater temperature back to its natural (rural) state, achieved through the use of geothermal heat pumps, will increase these fluxes and with them the sustainable potential. Hence, we propose the introduction of a combined geothermal potential that maximizes the sustainability of urban shallow geothermal energy use and the efficiency of shallow geothermal systems by balancing groundwater temperature with anthropogenic heat fluxes into the subsurface. This will be a key element in the development of a demand-oriented, cost-efficient geothermal management tool with an additional focus on the sustainability of the urban heat sources.

  4. Sensitivity of Atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Yu, Yongqiang; Liu, Hailong; Lin, Pengfei

    2017-06-01

    The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude-longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude-longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland-Iceland-Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude-longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.

  5. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  6. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    NASA Astrophysics Data System (ADS)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  7. Flow pathways in the Slapton Wood catchment using temperature as a tracer

    NASA Astrophysics Data System (ADS)

    Birkinshaw, Stephen J.; Webb, Bruce

    2010-03-01

    SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.

  8. Impact disruption and recovery of the deep subsurface biosphere

    USGS Publications Warehouse

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaron L.; Finster, Kai; Kirshtein, Julie D.; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S.; Sanford, Ward E.; Horton, J. Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S.

    2012-01-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  9. Impact disruption and recovery of the deep subsurface biosphere.

    PubMed

    Cockell, Charles S; Voytek, Mary A; Gronstal, Aaron L; Finster, Kai; Kirshtein, Julie D; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S; Sanford, Ward E; Horton, J Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S

    2012-03-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ∼35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ∼35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  10. A Unified Model for Methylmercury Formation and Bioaccumulation in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schartup, A. T.; Soerensen, A.; Dutkiewicz, S.; Sunderland, E. M.

    2017-12-01

    Marine fish consumption is the main exposure pathway for methylmercury (MeHg), a neurotoxin, in many countries. The Hg in the ocean is mainly from atmospheric deposition in inorganic forms. How the deposited Hg is methylated and accumulated in biota remain an open question. We develop a 3D model (MITgcm) for MeHg formation and bioaccumulation in the global ocean and evaluate the driving factors. The model is based on a previous published inorganic Hg model and is coupled with the bioaccumulation model for marine methylmercury (BAM3) with ocean biogeochemistry from DARWIN model. We develop a unified scheme that scales methylation by microbe activity and assumes demethylation a function of short wave radiation and temperature. The model result agrees well with currently available observations at the 0-100 m (mod.: 43±52 fM vs obs.: 69±67 fM, 1 fM = 10-15 mol/L), 500 m (360±280 fM vs 340±260 fM), and 1000 m depth (260±170 fM vs 290±210 fM). In the surface ocean, we find the MeHg concentrations are a function of latitude, resulting from photodemethylation. The model reproduces the high concentrations observed over the sub-thermocline of Pacific Subarctic Gyre, which is associated with active microbe activity. On the other hand, both the model and observations suggest low concentrations over oligotrophic regions such as Indian Ocean Gyre. In the tropical oceans, the model predicts the highest MeHg concentrations, consistent with observation, and it is caused by the overlapping high atmospheric deposition and active microbe activities. The model captures the high concentrations in the subsurface of the Arctic and Southern Ocean where low temperature slows down abiotic demethylation. The modeled global average MeHg concentration in phytoplankton is 2.0 ng/g (by wet weight), within the same range of observations. High concentrations are modeled over tropical and high-latitude regions due to the dominance of small sized prochlorococcus and high seawater concentrations, respectively. Due to the different palatability of phytoplankton to zooplankton, the small zooplankton has 96% of MeHg grazed from picoplankton, but the large zooplankton mainly from microplankton (92%). The MeHg concentrations are higher in large zooplankton (9.3 ng/g) than small ones (2.6 ng/g) with spatial patterns influenced by their main food sources.

  11. Calculation of wind-driven surface currents in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Rees, T. H.; Turner, R. E.

    1976-01-01

    Calculations to simulate the wind driven near surface currents of the North Atlantic Ocean are described. The primitive equations were integrated on a finite difference grid with a horizontal resolution of 2.5 deg in longitude and latitude. The model ocean was homogeneous with a uniform depth of 100 m and with five levels in the vertical direction. A form of the rigid-lid approximation was applied. Generally, the computed surface current patterns agreed with observed currents. The development of a subsurface equatorial countercurrent was observed.

  12. The latest on hydrothermal activity on Enceladus from Cassini and Laboratory work

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-10-01

    Various observations from the Cassini spacecraft [1,2,3], suggest the existence of subsurface water beneath the south polar region of Saturn's geologically active icy moon Enceladus. They provide information on the composition and physical conditions of water reservoirs occurring at shallow depth from which the plumes emerge [1,2,4], and about the dimensions of the south polar ocean beneath the ice crust at a depth of about 50km [3]. However, constraints on the physical and chemical conditions at the interface of the rocky core and the deep ocean are sparse. We report in situ measurements of tiny grains, so called stream particles, by Cassini's Cosmic Dust Analyser (CDA) in the Saturnian system. CDA data shows that these nano-particles are composed of silica that were initially embedded in larger μm-sized icy grains emitted from Enceladus subsurface waters and released by sputter erosion in Saturn's E ring. Comprehensive long- term laboratory experiments and model calculations were carried out to investigate the reaction conditions at the bottom of Enceladus' ocean.

  13. Active subsurface cellular function in the Baltic Sea Basin, IODP Exp 347

    NASA Astrophysics Data System (ADS)

    Reese, B. K.; Zinke, L. A.; Bird, J. T.; Lloyd, K. G.; Marshall, I.; Amend, J.; Jørgensen, B. B.

    2016-12-01

    The Baltic Sea Basin is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of global temperature fluctuations over the course of several hundred thousand years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates (100-500 cm/1000 y) make this an ideal setting to understand the microbial structure of a deep biosphere community in a high-organic matter environment. The responses of deep sediment microbial communities to variations in conditions during and after deposition are poorly understood. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further define the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  14. Control of tropical instability waves in the Pacific

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Lawrence, S. P.; Murray, M. J.; Mutlow, C. T.; Stockdale, T. N.; Llewellyn-Jones, D. T.; Anderson, D. L. T.

    Westward-propagating waves with periods of 20-30 days and wavelengths of ˜ 1,100km are a prominent feature of sea-surface temperatures (SSTs) in the equatorial Pacific and Atlantic Oceans. They have been attributed to instabilities due to current shear. We compare SST observations from the spaceborne Along Track Scanning Radiometer (ATSR) and TOGA-TAO moored buoys with SSTs from a model of the tropical Pacific forced with observed daily windstress data. The phases of the strongest “Tropical Instability Waves” (TIWs) in the model are in closer correspondence with those observed than we would expect if these waves simply developed from infinitesimal disturbances (in which case their phases would be arbitrary). If we filter out the intraseasonal component of the windstress, all phase-correspondence is lost. We conclude that the phases of these waves are not arbitrary, but partially determined by the intraseasonal winds. The subsurface evolution of the model suggests a possible control mechanism is through interaction with remotely-forced subsurface Kelvin and Rossby waves. This is supported by an experiment which shows how zonal wind bursts in the west Pacific can modify the TIW field, but other mechanisms, such as local feedbacks, are also possible.

  15. Southern Ocean Convection and tropical telleconnections

    NASA Astrophysics Data System (ADS)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the tantalizing possibility that such large-scale changes in SO deep convection might have tropical and indeed global implications via atmospheric teleconnections. We advocate the collection of both paleo and modern proxies that can verify these model-derived mechanisms and global teleconnections.

  16. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  17. Subsurface Pressure-Temperature Conditions and H2(aq) Generation at the Piccard Hydro-Thermal Field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Scheuermann, P. P.; Seyfried, W. E.

    2018-05-01

    The subsurface pressure-temperature conditions at the Piccard hydrothermal field are constrained using the Si-Cl geothermobarometer. Ol-Mgt and Opx-Mgt are proposed as assemblages that buffer H2(aq) at Piccard.

  18. Cumulative Ocean Volume Estimates of the Solar System

    NASA Astrophysics Data System (ADS)

    Frank, E. A.; Mojzsis, S. J.

    2010-12-01

    Although there has been much consideration for habitability in silicate planets and icy bodies, this information has never been quantitatively gathered into a single approximation encompassing our solar system from star to cometary halo. Here we present an estimate for the total habitable volume of the solar system by constraining our definition of habitable environments to those to which terrestrial microbial extremophiles could theoretically be transplanted and yet survive. The documented terrestrial extremophile inventory stretches environmental constraints for habitable temperature and pH space of T ~ -15oC to 121oC and pH ~ 0 to 13.5, salinities >35% NaCl, and gamma radiation doses of 10,000 to 11,000 grays [1]. Pressure is likely not a limiting factor to life [2]. We applied these criteria in our analysis of the geophysical habitable potential of the icy satellites and small icy bodies. Given the broad spectrum of environmental tolerance, we are optimistic that our pessimistic estimates are conservative. Beyond the reaches of our inner solar system's conventional habitable zone (Earth, Mars and perhaps Venus) is Ceres, a dwarf planet in the habitable zone that could possess a significant liquid water ocean if that water contains anti-freezing species [3]. Yet further out, Europa is a small icy satellite that has generated much excitement for astrobiological potential due to its putative subsurface liquid water ocean. It is widely promulgated that the icy moons Enceladus, Triton, Callisto, Ganymede, and Titan likewise have also sustained liquid water oceans. If oceans in Europa, Enceladus, and Triton have direct contact with a rocky mantle hot enough to melt, hydrothermal vents could provide an energy source for chemotrophic organisms. Although oceans in the remaining icy satellites may be wedged between two layers of ice, their potential for life cannot be precluded. Relative to the Jovian style of icy satellites, trans-neptunian objects (TNOs) - icy bodies located beyond the orbit of Neptune - have received little consideration for their potential as abodes for life. Aided by radiogenic heating, the largest TNOs could still support subsurface liquid water oceans [4]. Calculations of the size and frequency of the largest (>500 km diameter) TNOs as well as the likely thermal histories of these objects suggest that the total volume of liquid water in these bodies may be greater than that of the rest of the solar system combined. [1] Baross et al. (2007) The Limits of Organic Life in Planetary Systems, National Academies Press, Washington, D.C. [2] Sharma et al. (2002) Nature 295, 1514-1516. [3] Castillo-Rogez, J.C. and T.B. McCord (2010) Icarus 205, 443-459. [4] Hussmann et al.(2006) Icarus 195. 258-273.

  19. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  20. (abstract) Seasonal Variability in Coastal Upwelling: A Comparison of Four Coastal Upwelling Sites from Space

    NASA Technical Reports Server (NTRS)

    Carr, Mary-Elena

    1996-01-01

    Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.

  1. The Gulf of Aden Intermediate Water Intrusion Regulates the Southern Red Sea Summer Phytoplankton Blooms

    PubMed Central

    Dreano, Denis; Raitsos, Dionysios E.; Gittings, John; Krokos, George; Hoteit, Ibrahim

    2016-01-01

    Knowledge on large-scale biological processes in the southern Red Sea is relatively limited, primarily due to the scarce in situ, and satellite-derived chlorophyll-a (Chl-a) datasets. During summer, adverse atmospheric conditions in the southern Red Sea (haze and clouds) have long severely limited the retrieval of satellite ocean colour observations. Recently, a new merged ocean colour product developed by the European Space Agency (ESA)—the Ocean Color Climate Change Initiative (OC-CCI)—has substantially improved the southern Red Sea coverage of Chl-a, allowing the discovery of unexpected intense summer blooms. Here we provide the first detailed description of their spatiotemporal distribution and report the mechanisms regulating them. During summer, the monsoon-driven wind reversal modifies the circulation dynamics at the Bab-el-Mandeb strait, leading to a subsurface influx of colder, fresher, nutrient-rich water from the Indian Ocean. Using satellite observations, model simulation outputs, and in situ datasets, we track the pathway of this intrusion into the extensive shallow areas and coral reef complexes along the basin’s shores. We also provide statistical evidence that the subsurface intrusion plays a key role in the development of the southern Red Sea phytoplankton blooms. PMID:28006006

  2. Millennial-Scale Variability in the Indian Monsoon and Links to Ocean Circulation

    NASA Astrophysics Data System (ADS)

    DeLong, K. A.; Came, R. E.; Johnson, J. E.; Giosan, L.

    2014-12-01

    Millennial-scale variability in the Indian monsoon was temporally linked to changes in global ocean circulation during the last glacial period, as evidenced by planktic-benthic foraminiferal stable isotope and trace element results from an intermediate depth sediment core from the northwestern Bay of Bengal. Paired planktic foraminiferal Mg/Ca and δ18Oc constrain sea surface temperatures and isolate millennial-scale variations in the δ18O of surface waters (δ18Osw), which resulted from changes in river runoff in the northwestern Bay. Concurrently with low δ18Osw events, benthic foraminiferal δ13C decreased, suggesting an increased influence of an aged water mass at this intermediate depth site during the low salinity events. Benthic foraminiferal Cd/Ca results support the identification of this water mass as aged Glacial Antarctic Intermediate Water (GAAIW). Lagged correlation analysis (r= 0.41) indicates that changes in subsurface properties led changes in surface properties by an average of 380 years. The implication is that Southern Hemisphere climate exerted a controlling influence on the Indian monsoon during the last glacial period.

  3. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state and possibly the intermediate states of the ice-ocean system as it evolved over time. This could help constrain the endogenic contribution of salts to the surface chemistry.

  4. How much does heat content of the western tropical Pacific Ocean modulate the South China Sea summer monsoon onset in the last four decades?

    NASA Astrophysics Data System (ADS)

    Feng, Junqiao; Hu, Dunxin

    2014-07-01

    The role of the western tropical Pacific Ocean heat content in the South China Sea summer monsoon (SCSSM) onset is investigated in the present paper, by using atmospheric data from NCEP and ocean subsurface temperature data from Japan Meteorology Agency. It is showed from the result that the heat content (HC) of the upper 400 m layer in the western tropical Pacific (WTP), especially in the region of (130°E-150°E, 0°N-14°N) in the last four decades, is a good predictive indicator for the SCSSM onset. Positive (negative) HC anomalies can induce a strong (weak) convection over the WTP, leading to stronger (weaker) Walker circulation and weaker (stronger) western North Pacific subtropical high (WNPSH) in the boreal spring. Consequently, the anomalous westerly (easterly) in the tropical Indian Ocean is favorable (unfavorable) for the airflow into the SCS and for an early (late) WNPSH retreat from the SCS and hence for an early (late) SCSSM onset. It is elucidated that the long-term trend of SCSSM onset changes its sign around 1993/94 from decline to rise, which is responding and attributed to the WTP HC trend. During the period of 1971-1993, the WTP HC shows a significant decrease trend. In particular, a significant decline trend is observed in the HC difference between the WTP and western tropical Indian Ocean, which causes an easterly trend in the SCS and strengthened WNPSH trend, leading to a late onset trend of SCSSM. The situation is reverse after 1993/94.

  5. Assessment of the simulation of Indian Ocean Dipole in the CESM—Impacts of atmospheric physics and model resolution

    NASA Astrophysics Data System (ADS)

    Yao, Zhixiong; Tang, Youmin; Chen, Dake; Zhou, Lei; Li, Xiaojing; Lian, Tao; Ul Islam, Siraj

    2016-12-01

    This study examines the possible impacts of coupling processes on simulations of the Indian Ocean Dipole (IOD). Emphasis is placed on the atmospheric model resolution and physics. Five experiments were conducted for this purpose, including one control run of the ocean-only model, four coupled experiments using two different versions of the Community Atmosphere Model (CAM4 and CAM5) and two different resolutions. The results show that the control run could effectively simulate various features of the IOD. The coupled experiments run at the higher resolution yielded more realistic IOD period and intensity than their counterparts at the low resolution. The coupled experiments using CAM5 generally showed a better simulation skill in the tropical Indian SST climatology and phase-locking than those using CAM4, but the wind anomalies were stronger and the IOD period were longer in the former experiments than in the latter. In all coupled experiments, the IOD intensity was much stronger than the observed intensity, which is attributable to wind-thermocline depth feedback and thermocline depth-subsurface temperature feedback. The CAM5 physics seems beneficial for the simulation of summer rainfall over the eastern equatorial Indian Ocean and the CAM4 physics tends to produce less biases over the western equatorial Indian Ocean, whereas the higher resolution tends to generate unrealistically strong meridional winds. The IOD-ENSO relationship was captured reasonably well in coupled experiments, with improvements in CAM5 relative to CAM4. However, the teleconnection of the IOD-Indian summer monsoon and ENSO-Indian summer monsoon was not realistically simulated in all experiments.

  6. Radio Sounding Science at High Powers

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W. L.; Cooper, J. F.; Garcia, L.; Markus, T.; Gallagher, D. L.

    2004-01-01

    Future space missions like the Jupiter Icy Moons Orbiter (JIMO) planned to orbit Callisto, Ganymede, and Europa can fully utilize a variable power radio sounder instrument. Radio sounding at 1 kHz to 10 MHz at medium power levels (10 W to kW) will provide long-range magnetospheric sounding (several Jovian radii) like those first pioneered by the radio plasma imager instrument on IMAGE at low power (less than l0 W) and much shorter distances (less than 5 R(sub E)). A radio sounder orbiting a Jovian icy moon would be able to globally measure time-variable electron densities in the moon ionosphere and the local magnetospheric environment. Near-spacecraft resonance and guided echoes respectively allow measurements of local field magnitude and local field line geometry, perturbed both by direct magnetospheric interactions and by induced components from subsurface oceans. JIMO would allow radio sounding transmissions at much higher powers (approx. 10 kW) making subsurface sounding of the Jovian icy moons possible at frequencies above the ionosphere peak plasma frequency. Subsurface variations in dielectric properties, can be probed for detection of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.

  7. Out is in

    NASA Astrophysics Data System (ADS)

    2018-06-01

    With moons holding subsurface oceans, the outer planets are back in focus as the most promising places to find life beyond Earth. In addition to future missions, ongoing data analysis from past missions has an important role to play.

  8. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.

  9. A Low-Cost, In Situ Resistivity and Temperature Monitoring System

    EPA Science Inventory

    We present a low-cost, reliable method for long-term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with close electrode spacing. Once i...

  10. Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review

    NASA Astrophysics Data System (ADS)

    Pettinelli, Elena; Cosciotti, Barbara; Di Paolo, Federico; Lauro, Sebastian Emanuel; Mattei, Elisabetta; Orosei, Roberto; Vannaroni, Giuliano

    2015-09-01

    The first European mission dedicated to the exploration of Jupiter and its icy moons (JUpiter ICy moons Explorer—JUICE) will be launched in 2022 and will reach its final destination in 2030. The main goals of this mission are to understand the internal structure of the icy crusts of three Galilean satellites (Europa, Ganymede, and Callisto) and, ultimately, to detect Europa's subsurface ocean, which is believed to be the closest to the surface among those hypothesized to exist on these moons. JUICE will be equipped with the 9 MHz subsurface-penetrating radar RIME (Radar for Icy Moon Exploration), which is designed to image the ice down to a depth of 9 km. Moreover, a parallel mission to Europa, which will host onboard REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) equipped with 9MHz and 60MHz antennas, has been recently approved by NASA. The success of these experiments strongly relies on the accurate prediction of the radar performance and on the optimal processing and interpretation of radar echoes that, in turn, depend on the dielectric properties of the materials composing the icy satellite crusts. In the present review we report a complete range of potential ice types that may occur on these icy satellites to understand how they may affect the results of the proposed missions. First, we discuss the experimental results on pure and doped water ice in the framework of the Jaccard theory, highlighting the critical aspects in terms of a lack of standard laboratory procedures and inconsistency in data interpretation. We then describe the dielectric behavior of extraterrestrial ice analogs like hydrates and icy mixtures, carbon dioxide ice and ammonia ice. Building on this review, we have selected the most suitable data to compute dielectric attenuation, velocity, vertical resolution, and reflection coefficients for such icy moon environments, with the final goal being to estimate the potential capabilities of the radar missions as a function of the frequency and temperature ranges of interest for the subsurface sounders. We present the different subsurface scenarios and associated radar signal attenuation models that have been proposed so far to simulate the structure of the crust of Europa and discuss the physical and geological nature of various dielectric targets potentially detectable with RIME. Finally, we briefly highlight several unresolved issues that should be addressed, in near future, to improve our capability to produce realistic electromagnetic models of icy moon crusts. The present review is of interest for the geophysical exploration of all solar system bodies, including the Earth, where ice can be present at the surface or at relatively shallow depths.

  11. Europa's induced magnetic field: How much of the signal is from the ocean?

    NASA Astrophysics Data System (ADS)

    Crary, F. J.; Dols, V. J.; Jia, X.; Paty, C. S.; Hale, J. M.

    2017-12-01

    The existence of a sub-surface ocean within Europa was demonstrated by the Galileo spacecraft's measurements of an induced dipole magnetic field. This field, produced by the time variable background magnetic field from Jupiter, is a result of currents flowing within an electrically conductive layer inside Europa, believed to be a liquid ocean. Unfortunately, interpretation of the Galileo results is complicated by the interaction between Jupiter's magnetosphere and Europa and its ionosphere. This interaction also produces magnetic field perturbations which add uncertainty and systematic errors to the determination of the induced field.Here, we estimate the contribution of the plasma interaction to the observed magnetic dipole, and discuss the implications for the properties of Europa's subsurface ocean. The Galileo data have primarily been analyzed by fitting a dipole to the observed magnetic field, without correcting for plasma effects. The data were fit to a dipole magnetic field, and the resulting magnetic moment is the sum of the induced moment from the ocean and a contribution from the plasma interaction. To estimate this contribution, we analyze the results of numerical simulations using exactly the same approach which has been used to analyze the real data. Since we know what ocean dipole was inserted in the models' boundary conditions, we therefore calculate the contribution from the plasma interaction. We have previously used this approach to estimate the sensitivity of the results to upstream plasma conditions. However, there is no assurance that one particular model is correct. In this work, we apply this approach to several different types of simulations, shedding light on the uncertainties in the ocean-induced signature.

  12. Analysis of continuous multi-seasonal in-situ subsurface temperature measurements on Mars

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Mäkinen, T.; Savijärvi, H.; Kemppinen, O.; Hagermann, A.

    2015-10-01

    Our investigations reveal the local thermal properties on the Martian surface at the Viking Lander 1 (VL-1) site. We achieved this by using the VL-1 footpad temperature sensor which was buried, and due to its location, was under shadow for extensive periods of time during each sol. Reconstruction of the surface and subsurface temperature history of the regolith in the vicinity of the temperature sensor was made using a 1-D atmospheric column model (UH-FMI) together with a thermal model of the lander. The results have implications for the interpretation of subsurface thermal measurements made close to a spacecraft or rock, interpretation of remote sensing measurements of thermal inertia and understanding the micro-scale behavior of the Martian atmosphere.

  13. Teaching of the subject "density difference caused by salinity", one of the reasons that plays role in the occurrence of currents in straits, seas and oceans by the use of a teaching material

    NASA Astrophysics Data System (ADS)

    Gumussoy, Verim

    2015-04-01

    Large masses of moving water in seas and oceans are called currents. Root causes of currents are steady winds that occur due to the global atmospheric system and the density differences caused by different heat and salinity levels of water masses. Different feeding and evaporation characteristics of seas and oceans result in salinity and density levels. As a result, subsurface currents occur in straits where seas with different salinity and density levels meet and in the nearby seas. The Bosporus in Istanbul where I live and the school I am working at is has these subsurface currents. In the Black Sea where the rivers the Danube, Dnieper, Don, Yesilirmak, Kizilirmak and Sakarya flow into and the evaporation level is less due to the latitude effect, salinity level is less compared to Marmara and Aegean Seas. As Marmara Sea has higher salt amount than Black Sea, there is a great density difference between these two seas. Marmara Sea has a higher concentration of salt and therefore a higher density than Black Sea. And this leads to occurrence of subsurface currents in the Bosporus. I get my students to carry out a small demonstration to help them understand the occurrence of ocean currents and currents in the seas and the Bosporus by the use of a material. We need very simple materials to carry out this demonstration. These are an aquarium, a bowl, water, salt, dye and a mixer. The demonstration is carried out as follows: we put water, salt and dye in the bowl and mix it well. The salt will increase the density of the water and the dye will help distinguish the salty water. Then we put tap water half way to the aquarium and pour the mixture in the bowl to the aquarium slowly. As a result, the colored salty water sinks down due to its higher density, setting an example of a subsurface current. Natural events occur in very long periods by great dynamic systems, making understanding of them difficult. It is important to use different kinds of materials that address to different senses in geography lessons to promote effective and fun learning. Thus, geography lessons should be based on teaching principles such as 'from concrete to abstract' and 'from near-to-far' principles. Also, teaching methods such as visualization, simulation and experiment should be applied during the lessons. The use of this material will help students comprehend how subsurface currents in the straits, seas and oceans occur. By this simple experiment, students will be able to see what kind of a movement takes place under the Bosporus on which they travel by ferry and they will have the opportunity to carry it out themselves, making the lesson more fun.

  14. Examining the Effect of Temperature, Pressure, Seismicity and Diffuse Fluid Flow on Floc Events at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Rahman, M.; Crone, T. J.; Knuth, F.; Garcia, C.; Soule, D. C.; Fatland, R.

    2017-12-01

    Flocculation (floc) events are characterized by the ejection of bacterial material, possibly associated with thermophiles originating from warmer sub-seafloor habitats, into the water column. These events are anecdotally linked to magmatic and tectonic processes common in mid-ocean ridge seafloor environments. However, little is known about the relationship between flocculation events and other potentially triggering processes. The Cabled Array at Axial Seamount provides a suite of interdisciplinary real-time datasets to examine system-level processes governing the volcanic marine environment. The eruption at Axial Seamount in 2015 creates an opportunity to study this volcanic system as it evolves post eruption and identify the relationships between the temperature, pressure, seismicity and the biological response. The Diffuse Vent Fluid 3-D Temperature Array (TMPSF), located within the ASHES hydrothermal vent field at Axial Seamount, uses 24 separate sensors to provide a 3-dimensional distribution of diffuse flow temperatures near the Mushroom hydrothermal vent. Preliminary analysis suggests that the temperature signal is strongly influenced by tides observed using the ocean bottom pressure sensors, which may be related to either gradual shifts in tidal currents above the seafloor, or related to subsurface flux. CamHD, also located within the ASHES field, produces high definition video data, which we analyze to identify changes in water column floc concentration. These data streams allow us to examine the controls on the temperature signal and the associated correlations with microbial seafloor processes. We are currently examining the flocculation event identified in Crone (2016) to determine its relationship to changes in seawater temperatures near the seafloor, seismic activity and seafloor pressure. We will use this proxy to examine other CamHD data and determine if subsequent flocculation events have occurred and if they have a similar relationship to local thermal and seismic activity.

  15. Deep subsurface microbiology of 64-71 million year old inactive seamounts along the Louisville Seamount Chain

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Morono, Y.; Grim, S.; Inagaki, F.; Edwards, K. J.

    2013-12-01

    One of the objectives of IODP Expedition 330, Louisville Seamount Trail, was to sample and learn about the subsurface biosphere in the Louisville Seamount Chain (LSC). Seamounts are volcanic constructs that are ubiquitous along the seafloor - models suggest there are >100,000 seamounts of >1 km in height globally (Wessel et al., 2010). Therefore, knowledge about microbiology in the LSC subsurface can broadly be interpreted as representative of much the seafloor. In addition, despite the fact that the vast majority of the sea floor is comprised of crust >10 Ma, the majority of work to date has focused on young sites with active hydrology. Our presentation summarizes work focusing on subsurface microbiology from two different LSC seamounts: holes U1374A (65-71 Ma) and U1376A (64 Ma). We here present data for microbial biomass in the LSC subsurface using a method we developed to quantify microbial biomass in subseafloor ocean crust. We also present results from pyrotag analysis of 15 samples from holes U1374A and holes U1376A, representing several different lithologies from 40-491 meters below seafloor (mbsf) in hole U1374A and from 29-174 mbsf in hole U1376A. Finally, we present preliminary analysis of metagenomic sequencing from three of the samples from Hole U1376A. Biomass was low in the subsurface of both seamounts, ranging from below detection to ~104 cells cm-3. Bacteria comprised >99% of the prokaryotic community in LSC subsurface samples, therefore, bacterial diversity was assessed through 454 pyrosequencing of the V4V6 region of the 16S rRNA gene. Rarefaction analysis indicates that bacterial communities from the LSC subsurface are low diversity, on the order of a few hundred operational taxonomic units per sample. The phyla Actinobacteria, Bacteroidetes, Firmicutes and the classes α-, β- and γ-Proteobacteria are most abundant in the LSC subsurface. Within these, the orders Actinomycetales, Sphingobacteriales, Bacillales and Burkholderiales are the most common. Samples from different lithologies in hole U1374A grouped together, indicating more similarity to each other than to samples from hole U1376A. However, samples from different lithologies in hole U1376A were not similar to other samples from the same site, indicating some differences in the microbial communities between the two seamounts. Preliminary analysis of the metagenomic data will provide further assessment of community structure and reveal likely metabolisms present in the LSC subsurface. Altogether, the biomass data, pyrotag analysis and metagenomic sequencing provide a well-balanced analysis of subsurface microbiology in an old oceanic crustal environment. Wessel, P., Sandwell, D. T. & Kim, S. S. (2010). The Global Seamount Census. Oceanography 23, 24-33.

  16. Monitoring an Induced Permafrost Warming Experiment Using ERT, Temperature, and NMR in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.

    2016-12-01

    As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.

  17. Global oceanic production of nitrous oxide

    PubMed Central

    Freing, Alina; Wallace, Douglas W. R.; Bange, Hermann W.

    2012-01-01

    We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass. We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1 ± 0.9 to 3.4 ± 0.9 Tg N yr−1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed. PMID:22451110

  18. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period

    NASA Astrophysics Data System (ADS)

    Skinner, L.; McCave, I. N.; Carter, L.; Fallon, S.; Scrivner, A. E.; Primeau, F.

    2015-02-01

    It has been proposed that the ventilation of the deep Pacific carbon pool was not significantly reduced during the last glacial period, posing a problem for canonical theories of glacial-interglacial CO2 change. However, using radiocarbon dates of marine tephra deposited off New Zealand, we show that deep- (> 2000 m) and shallow sub-surface ocean-atmosphere 14C age offsets (i.e. "reservoir-" or "ventilation" ages) in the southwest Pacific increased by ˜1089 and 337 yrs respectively, reaching ˜2689 and ˜1037 yrs during the late glacial. A comparison with other radiocarbon data from the southern high-latitudes suggests that broadly similar changes were experienced right across the Southern Ocean. If, like today, the Southern Ocean was the main source of water to the glacial ocean interior, these observations would imply a significant change in the global radiocarbon inventory during the last glacial period, possibly equivalent to an increase in the average radiocarbon age > 2 km of ˜ 700 yrs. Simple mass balance arguments and numerical model sensitivity tests suggest that such a change in the ocean's mean radiocarbon age would have had a major impact on the marine carbon inventory and atmospheric CO2, possibly accounting for nearly half of the glacial-interglacial CO2 change. If confirmed, these findings would underline the special role of high latitude shallow sub-surface mixing and air-sea gas exchange in regulating atmospheric CO2 during the late Pleistocene.

  19. Analyses of Oceanic Subsurface Features Using Space Based Radar Imagery

    DTIC Science & Technology

    1982-07-01

    The relationship of the history of the relative length, speed and height of waves as they approach shallow water is not as simple as indicated in...movement or geometric variation are not shown above and will generally make the construction of an image from collected doppler phase histories more 1...requirements. The design for a ocean mission will be very different from the design for a geologic , geographic or agricultural mission. Application arts

  20. Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China

    PubMed Central

    Shao, Jinchao; Han, Guoqi; Yang, Dezhou

    2015-01-01

    Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing. PMID:26407324

  1. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  2. Deep ventilation process in Patagonian fjord, Chile

    NASA Astrophysics Data System (ADS)

    Pérez-Santos, Iván; Silvan, Nelson; Castillo, Manuel; Mayorga, Nicolas; Schneider, Wolfgang; Montero, Paulina; Daneri, Giovanni; Valle-Levinson, Arnoldo; Pizarro, Oscar; Ramirez, Nadín; Igor, Gabriela; Navarro, Eduardo

    2017-04-01

    The Puyuhuapi Fjord (44.6° S) has previously been reported as one of the hypoxic fjords in Chilean Patagonia (dissolved oxygen -DO below 2 mL L-1). Hydrographic sampling between 1995-2016 confirmed hypoxia below 100 m depth, down to the bottom (250 m). A line of sensors at an oceanographic mooring in Puyuhuapi were deployed to continuously record the temporal-vertical behaviour of water column temperature and salinity from the surface down to 120 m, from February to July 2015. A multi-Parameter water quality sonde was deployed at the bottom of the line, with a DO optical sensor. From February to mid-May, hypoxia was sustained (1.4-1.6 mL L-1). However, from May until the end of June, DO values increased (2.8 mL L-1), exceeding the hypoxia threshold. This was the first event of deep ventilation reported in a Chilean Patagonian Fjord. During this time period, deep water temperatures increased by 1.3 °C, coinciding with the decreased in salinity from 33.6 to 32.8. The main cause of this event was attributed to the arrival of a new volume of mixed oceanic water into the fjord, transported by Modified Subantartic Water, with warm temperatures, lower salinities and slightly higher DO values, given its origin in the surface layer of the outer oceanic region. A new experiment was carried out during January-November, 2016 in order to corroborate the ventilation process and its connection with the adjacent ocean. Temperature, salinity and DO sensors were deployed in the outside fjords region close to the ocean (Melinka Channel) and in Puyuhuapi Fjord, to record the data at very high temporal resolution. The distance between both stations was 150 km. In the oceanic mooring the DO time series collected at 150 m depth showed hypoxia in summer related to the position of the Equatorial Sub-surface water, but from fall DO started to increase registering high values in August and September (4-5 mL/L) when the Subantartic Water arrive. The DO records in Puyuhuapi at 120 m showed a similar behaviour but with lower magnitude, confirmed the 2015 results. Winds and internal wave, registered with acoustic current profilers, contributed to this connection. The deep ventilation recorded in Patagonian Fjords would be helping to maintain their environmental health avoiding dead zones due to the increasing input of organic matter from salmon aquaculture.

  3. Arctic polynya and glacier interactions

    NASA Astrophysics Data System (ADS)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring tidewater glaciers. The work presented discusses preliminary satellite observations of concurrent changes in the North Water and Nares Strait polynyas and neighbouring tidewater glaciers in Greenland and the Canadian Arctic where notable thinning and acceleration of glaciers have been observed. Also included is an outline of how these observations will fit into a much wider project on the topic involving ocean, atmosphere and sea ice modelling and short-term and longer-term in-situ measurements.

  4. Percolation induced heat transfer in deep unsaturated zones

    USGS Publications Warehouse

    Lu, N.; LeCain, G.D.

    2003-01-01

    Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.

  5. Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields

    NASA Astrophysics Data System (ADS)

    Fairley, Jerry P.; Nicholson, Kirsten N.

    2006-04-01

    Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.

  6. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331).

    PubMed

    Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-10-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Microbial Community Stratification Controlled by the Subseafloor Fluid Flow and Geothermal Gradient at the Iheya North Hydrothermal Field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331)

    PubMed Central

    Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-01-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666

  8. Modification of Soil Temperature and Moisture Budgets by Snow Processes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P.

    2006-12-01

    Snow cover significantly influences the land surface energy and surface moisture budgets. Snow thermally insulates the soil column from large and rapid temperature fluctuations, and snow melting provides an important source for surface runoff and soil moisture. Therefore, it is important to accurately understand and predict the energy and moisture exchange between surface and subsurface associated with snow accumulation and ablation. The objective of this study is to understand the impact of land surface model soil layering treatment on the realistic simulation of soil temperature and soil moisture. We seek to understand how many soil layers are required to fully take into account soil thermodynamic properties and hydrological process while also honoring efficient calculation and inexpensive computation? This work attempts to address this question using field measurements from the Cold Land Processes Field Experiment (CLPX). In addition, to gain a better understanding of surface heat and surface moisture transfer process between land surface and deep soil involved in snow processes, numerical simulations were performed at several Meso-Cell Study Areas (MSAs) of CLPX using the Center for Ocean-Land-Atmosphere (COLA) Simplified Version of the Simple Biosphere Model (SSiB). Measurements of soil temperature and soil moisture were analyzed at several CLPX sites with different vegetation and soil features. The monthly mean vertical profile of soil temperature during October 2002 to July 2003 at North Park Illinois River exhibits a large near surface variation (<5 cm), reveals a significant transition zone from 5 cm to 25 cm, and becomes uniform beyond 25cm. This result shows us that three soil layers are reasonable in solving the vertical variation of soil temperature at these study sites. With 6 soil layers, SSiB also captures the vertical variation of soil temperature during entire winter season, featuring with six soil layers, but the bare soil temperature is underestimated and root-zone soil temperature is overestimated during snow melting; which leads to overestimated temperature variations down to 20 cm. This is caused by extra heat loss from upper soil level and insufficient heat transport from the deep soil. Further work will need to verify if soil temperature displays similar vertical thermal structure for different vegetation and soil types during snow season. This study provides insight to the surface and subsurface thermodynamic and hydrological processes involved in snow modeling which is important for accurate snow simulation.

  9. Development of specifications for surface and subsurface oceanic environmental data

    NASA Technical Reports Server (NTRS)

    Wolff, P. M.

    1976-01-01

    The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.

  10. Simulated laser fluorosensor signals from subsurface chlorophyll distributions

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Khatun, S.; Punjabi, A.; Poole, L.

    1986-01-01

    A semianalytic Monte Carlo model has been used to simulate laser fluorosensor signals returned from subsurface distributions of chlorophyll. This study assumes the only constituent of the ocean medium is the common coastal zone dinoflagellate Prorocentrum minimum. The concentration is represented by Gaussian distributions in which the location of the distribution maximum and the standard deviation are variable. Most of the qualitative features observed in the fluorescence signal for total chlorophyll concentrations up to 1.0 microg/liter can be accounted for with a simple analytic solution assuming a rectangular chlorophyll distribution function.

  11. Centennial- to millennial-scale ice-ocean interactions in the subpolar northeast Atlantic 18-41 kyr ago

    NASA Astrophysics Data System (ADS)

    Hall, I. R.; Colmenero-Hidalgo, E.; Zahn, R.; Peck, V. L.; Hemming, S. R.

    2011-06-01

    In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ˜41 and ˜18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ˜28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.

  12. Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments

    PubMed Central

    2016-01-01

    Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736

  13. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    PubMed Central

    Fichtel, Katja; Logemann, Jörn; Fichtel, Jörg; Rullkötter, Jürgen; Cypionka, Heribert; Engelen, Bert

    2015-01-01

    Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment–basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure. PMID:26500624

  14. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    NASA Astrophysics Data System (ADS)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur along the equator and coastal regions. A qualitative analysis of sea surface temperature (MODIS) and sea surface height (CCAR) shows that changes in Argo temperature and salinity data are associated with seasonal temperature and changes in evaporation as well as coastal upwelling. Eddy circulation is seen in the subsurface in the Oman Sea and Arabian Sea west of the Murray Ridge in addition to the seasonal influence of the Persian Gulf and Red Sea.

  15. Subsurface urban heat islands in German cities.

    PubMed

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. EnOI-IAU Initialization Scheme Designed for Decadal Climate Prediction System IAP-DecPreS

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Tianjun; Zheng, Fei

    2018-02-01

    A decadal climate prediction system named as IAP-DecPreS was constructed in the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, based on a fully coupled model FGOALS-s2 and a newly developed initialization scheme, referred to as EnOI-IAU. In this paper, we introduce the design of the EnOI-IAU scheme, assess the accuracies of initialization integrations using the EnOI-IAU and preliminarily evaluate hindcast skill of the IAP-DecPreS. The EnOI-IAU scheme integrates two conventional assimilation approaches, ensemble optimal interpolation (EnOI) and incremental analysis update (IAU). The EnOI and IAU were applied to calculate analysis increments and incorporate them into the model, respectively. Three continuous initialization (INIT) runs were conducted for the period of 1950-2015, in which observational sea surface temperature (SST) from the HadISST1.1 and subsurface ocean temperature profiles from the EN4.1.1 data set were assimilated. Then nine-member 10 year long hindcast runs initiated from the INIT runs were conducted for each year in the period of 1960-2005. The accuracies of the INIT runs are evaluated from the following three aspects: upper 700 m ocean temperature, temporal evolution of SST anomalies, and dominant interdecadal variability modes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). Finally, preliminary evaluation of the ensemble mean of the hindcast runs suggests that the IAP-DecPreS has skill in the prediction of the PDO-related SST anomalies in the midlatitude North Pacific and AMO-related SST anomalies in the tropical North Atlantic.

  17. Microbial Biogeography on the Legacies of Historical Events in the Arctic Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Han, Dukki; Nam, Seung-Il; Hur, Hor-Gil

    2017-04-01

    The Arctic marine environment consists of various microbial habitats. The niche preference of microbial assemblages in the Arctic Ocean has been surveyed with the modern environmental change by oceanographic traits such as sea-ice dynamics, current circulation, and sedimentation. The North Pacific inflow from the shallow and narrow Bering Strait is highly susceptible to sea-level fluctuations, and thus the water mass exchange mediated by the history of sea-ice between the North Pacific and the Chukchi Sea in the Arctic Ocean. Over geological timescale, the climate change may provide putative evidences for ecological niche for the Arctic microbial assemblages as well as geological records in response to the paleoclimate change. In the present study, the multidisciplinary approach, based on microbiology, geology, and geochemistry, was applied to survey the microbial assemblages in the Arctic subsurface sediments and help further integrate the microbial biogeography and biogeochemical patterns in the Arctic subsurface biosphere. Our results describe microbial assemblages with high-resolution paleoceanographic records in the Chukchi Sea sediment core (ARA02B/01A-GC; 5.4 mbsf) to show the processes that drive microbial biogeographic patterns in the Arctic subsurface sediments. We found microbial habitat preferences closely linked to Holocene paleoclimate records as well as geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. Especially, the vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota in the ARA02B/01A-GC consistent with the patterns of the known global SMTZs and Holocene sedimentary records, suggesting that in-depth microbiological profiles integrated with geological records may be indirectly useful for reconstructing Arctic paleoclimate changes. In the earliest phase of Mid Holocene in the ARA02B/01A-GC with concentrated crenarchaeol (a unique biomarker for Marine Group I Thaumarchaea), the most abundant archaeal population was Marine Group II Euryarchaeota rather than Marine Group I Thaumarchaea, suggesting that the interpretation of archaeal tetraether lipids in subsurface sediments needs careful consideration for paleoceanography. In conclusion, our findings have important implications for the availability of microbial biogeography in the sedimentary record. The present study offers a deeper understanding of the legacies of historical events during the Holocene and implies that the survey of microbial biogeography may be an appropriate tool to monitor potential effects from the climate change in the Arctic Ocean.

  18. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Haut, R; Jahn, G

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations.more » Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.« less

  19. An assessment of TropFlux and NCEP air-sea fluxes on ROMS simulations over the Bay of Bengal region

    NASA Astrophysics Data System (ADS)

    Dey, Dipanjan; Sil, Sourav; Jana, Sudip; Pramanik, Saikat; Pandey, P. C.

    2017-12-01

    This study presents an assessment of the TropFlux and the National Centers for Environmental Prediction (NCEP) reanalysis air-sea fluxes in simulating the surface and subsurface oceanic parameters over the Bay of Bengal (BoB) region during 2002-2014 using the Regional Ocean Modelling System (ROMS). The assessment has been made by comparing the simulated fields with in-situ and satellite observations. The simulated surface and subsurface temperatures in the TropFlux forced experiment (TropFlux-E) show better agreement with the Research Moored Array for African-Asian-Australian Monsoon Analysis (RAMA) and Argo observations than the NCEP forced experiment (NCEP-E). The BoB domain averaged sea surface temperature (SST) simulated in the NCEP-E is consistently cooler than the satellite SST, with a root mean square error (RMSE) of 0.79 °C. Moreover, NCEP-E shows a limitation in simulating the observed seasonal cycle of the SST due to substantial underestimation of the pre-monsoon SST peak. These limitations are mostly due to the lower values of the NCEP net heat flux. The seasonal and interannual variations of SST in the TropFlux-E are better comparable to the observations with correlations and skills more than 0.80 and 0.90 respectively. However, SST is overestimated during summer monsoon periods mainly due to higher net heat flux. The superiority of TropFlux forcing over the NCEP reanalysis can also be seen when simulating the interannual variabilities of the magnitude and vertical extent of Wyrtki jets at two equatorial RAMA buoy locations. The jet is weaker in the NCEP-E relative to the TropFlux-E and observations. The simulated sea surface height anomalies (SSHA) from both the experiments are able to capture the regions of positive and negative SSHA with respect to satellite-derived altimeter data with better performance in the TropFlux-E. The speed of the westward propagating Rossby wave along 18°N in the TropFlux-E is found to be about 4.7 cm/s, which is close to the theoretical phase speed of Rossby waves.

  20. Projected impacts of climate change and ocean acidification on the global biogeography of planktonic Foraminifera

    NASA Astrophysics Data System (ADS)

    Roy, T.; Lombard, F.; Bopp, L.; Gehlen, M.

    2015-05-01

    Planktonic Foraminifera are a major contributor to the deep carbonate flux and their microfossil deposits form one of the richest databases for reconstructing paleoenvironments, particularly through changes in their taxonomic and shell composition. Using an empirically based planktonic foraminifer model that incorporates three known major physiological drivers of their biogeography - temperature, food and light - we investigate (i) the global redistribution of planktonic Foraminifera under anthropogenic climate change and (ii) the alteration of the carbonate chemistry of foraminiferal habitat with ocean acidification. The present-day and future (2090-2100) 3-D distributions of Foraminifera are simulated using temperature, plankton biomass and light from an Earth system model forced with a historical and a future (IPCC A2) high CO2 emission scenario. Foraminiferal abundance and diversity are projected to decrease in the tropics and subpolar regions and increase in the subtropics and around the poles. Temperature is the dominant control on the future change in the biogeography of Foraminifera. Yet food availability acts to either reinforce or counteract the temperature-driven changes. In the tropics and subtropics the largely temperature-driven shift to depth is enhanced by the increased concentration of phytoplankton at depth. In the higher latitudes the food-driven response partly offsets the temperature-driven reduction both in the subsurface and across large geographical regions. The large-scale rearrangements in foraminiferal abundance and the reduction in the carbonate ion concentrations in the habitat range of planktonic foraminifers - from 10-30 μmol kg-1 in their polar and subpolar habitats to 30-70 μmol kg-1 in their subtropical and tropical habitats - would be expected to lead to changes in the marine carbonate flux. High-latitude species are most vulnerable to anthropogenic change: their abundance and available habitat decrease and up to 10% of the volume of their habitat drops below the calcite saturation horizon.

  1. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt

    PubMed Central

    Jungbluth, Sean P; Bowers, Robert M; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S

    2016-01-01

    Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. PMID:26872042

  2. A comprehensive estimate for loss of atmospheric carbon tetrachloride (CCl4) to the ocean

    NASA Astrophysics Data System (ADS)

    Butler, James H.; Yvon-Lewis, Shari A.; Lobert, Jurgen M.; King, Daniel B.; Montzka, Stephen A.; Bullister, John L.; Koropalov, Valentin; Elkins, James W.; Hall, Bradley D.; Hu, Lei; Liu, Yina

    2016-09-01

    Extensive undersaturations of carbon tetrachloride (CCl4) in Pacific, Atlantic, and Southern Ocean surface waters indicate that atmospheric CCl4 is consumed in large amounts by the ocean. Observations made on 16 research cruises between 1987 and 2010, ranging in latitude from 60° N to 77° S, show that negative saturations extend over most of the surface ocean. Corrected for physical effects associated with radiative heat flux, mixing, and air injection, these anomalies were commonly on the order of -5 to -10 %, with no clear relationship to temperature, productivity, or other gross surface water characteristics other than being more negative in association with upwelling. The atmospheric flux required to sustain these undersaturations is 12.4 (9.4-15.4) Gg yr-1, a loss rate implying a partial atmospheric lifetime with respect to the oceanic loss of 183 (147-241) yr and that ˜ 18 (14-22) % of atmospheric CCl4 is lost to the ocean. Although CCl4 hydrolyzes in seawater, published hydrolysis rates for this gas are too slow to support such large undersaturations, given our current understanding of air-sea gas exchange rates. The even larger undersaturations in intermediate depth waters associated with reduced oxygen levels, observed in this study and by other investigators, strongly suggest that CCl4 is ubiquitously consumed at mid-depth, presumably by microbiota. Although this subsurface sink creates a gradient that drives a downward flux of CCl4, the gradient alone is not sufficient to explain the observed surface undersaturations. Since known chemical losses are likewise insufficient to sustain the observed undersaturations, this suggests a possible biological sink for CCl4 in surface or near-surface waters of the ocean. The total atmospheric lifetime for CCl4, based on these results and the most recent studies of soil uptake and loss in the stratosphere is now 32 (26-43) yr.

  3. Seychelles Dome variability in a high resolution ocean model

    NASA Astrophysics Data System (ADS)

    Nyadjro, E. S.; Jensen, T.; Richman, J. G.; Shriver, J. F.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR; 5ºS-10ºS, 50ºE-80ºE) in the tropical Southwest Indian Ocean (SWIO) has been recognized as a region of prominence with regards to climate variability in the Indian Ocean. Convective activities in this region have regional consequences as it affect socio-economic livelihood of the people especially in the countries along the Indian Ocean rim. The SCTR is characterized by a quasi-permanent upwelling that is often associated with thermocline shoaling. This upwelling affects sea surface temperature (SST) variability. We present results on the variability and dynamics of the SCTR as simulated by the 1/12º high resolution HYbrid Coordinate Ocean Model (HYCOM). It is observed that locally, wind stress affects SST via Ekman pumping of cooler subsurface waters, mixing and anomalous zonal advection. Remotely, wind stress curl in the eastern equatorial Indian Ocean generates westward-propagating Rossby waves that impacts the depth of the thermocline which in turn impacts SST variability in the SCTR region. The variability of the contributions of these processes, especially with regard to the Indian Ocean Dipole (IOD) are further examined. In a typical positive IOD (PIOD) year, the net vertical velocity in the SCTR is negative year-round as easterlies along the region are intensified leading to a strong positive curl. This vertical velocity is caused mainly by anomalous local Ekman downwelling (with peak during September-November), a direct opposite to the climatology scenario when local Ekman pumping is positive (upwelling favorable) year-round. The anomalous remote contribution to the vertical velocity changes is minimal especially during the developing and peak stages of PIOD events. In a typical negative IOD (NIOD) year, anomalous vertical velocity is positive almost year-round with peaks in May and October. The remote contribution is positive, in contrast to the climatology and most of the PIOD years.

  4. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  5. Using electrical resistance tomography to map subsurface temperatures

    DOEpatents

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  6. Impacts of preferential flow on coastal groundwater-surface water interactions: The heterogeneous volcanic aquifer of Hawaii

    NASA Astrophysics Data System (ADS)

    Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.

    2017-12-01

    Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.

  7. Nitrogen Stimulates the Growth of Subsurface Basalt-associated Microorganisms at the Western Flank of the Mid-Atlantic Ridge

    PubMed Central

    Zhang, Xinxu; Fang, Jing; Bach, Wolfgang; Edwards, Katrina J.; Orcutt, Beth N.; Wang, Fengping

    2016-01-01

    Oceanic crust constitutes the largest aquifer system on Earth, and microbial activity in this environment has been inferred from various geochemical analyses. However, empirical documentation of microbial activity from subsurface basalts is still lacking, particularly in the cool (<25°C) regions of the crust, where are assumed to harbor active iron-oxidizing microbial communities. To test this hypothesis, we report the enrichment and isolation of crust-associated microorganisms from North Pond, a site of relatively young and cold basaltic basement on the western flank of the Mid-Atlantic Ridge that was sampled during Expedition 336 of the Integrated Ocean Drilling Program. Enrichment experiments with different carbon (bicarbonate, acetate, methane) and nitrogen (nitrate and ammonium) sources revealed significant cell growth (one magnitude higher cell abundance), higher intracellular DNA content, and increased Fe3+/ΣFe ratios only when nitrogen substrates were added. Furthermore, a Marinobacter strain with neutrophilic iron-oxidizing capabilities was isolated from the basalt. This work reveals that basalt-associated microorganisms at North Pond had the potential for activity and that microbial growth could be stimulated by in vitro nitrogen addition. Furthermore, iron oxidation is supported as an important process for microbial communities in subsurface basalts from young and cool ridge flank basement. PMID:27199959

  8. Where the oil from surface and subsurface plumes deposited during/after Deepwater Horizon oil spill?

    NASA Astrophysics Data System (ADS)

    Yan, B.

    2016-02-01

    The Deepwater Horizon (DwH) oil spill released an estimated 4.9 million barrels (about 200 million gallons) of crude oil into the Gulf of Mexico between April 20, 2010 and July 15, 2010. Though Valentine et al. has linked the elevated oil components in some sediments with the subsurface plume, the sites with fallout from the ocean surface plume has not been identified. This piece of information is critical not only for a comprehensive scientific understanding of the ecosystem response and fate of spill-related pollutants, but also for litigation purposes and future spill response and restoration planning. In this study we focus on testing the hypothesis that marine snow from the surface plume were deposited on the sea floor over a broad area. To do so, we use publicly available data generated as part of the ongoing Natural Resource Damage Assessment (NRDA) process to assess the spatial distribution of petroleum hydrocarbons in the water column and deep-ocean sediments of the Gulf of Mexico. Sensitive hydrocarbon markers are used to differentiate hydrocarbons from surface plume, deep subsurface plume, and in-situ burning. Preliminary results suggest the overlapping but different falling sites of these plumes and the sedimentation process was controlled by various biological, chemical, and physical factors.

  9. A New Approach for 3D Ocean Reconstruction from Limited Observations

    NASA Astrophysics Data System (ADS)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  10. Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2014-12-01

    Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.

  11. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  12. Interior pathways of the North Atlantic meridional overturning circulation.

    PubMed

    Bower, Amy S; Lozier, M Susan; Gary, Stefan F; Böning, Claus W

    2009-05-14

    To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.

  13. Biodiversity and Emerging Biogeography of the Neutrophilic Iron-Oxidizing Zetaproteobacteria ▿ †

    PubMed Central

    McAllister, Sean M.; Davis, Richard E.; McBeth, Joyce M.; Tebo, Bradley M.; Emerson, David; Moyer, Craig L.

    2011-01-01

    Members of the neutrophilic iron-oxidizing candidate class Zetaproteobacteria have predominantly been found at sites of microbially mediated iron oxidation in marine environments around the Pacific Ocean. Eighty-four full-length (>1,400-bp) and 48 partial-length Zetaproteobacteria small-subunit (SSU) rRNA gene sequences from five novel clone libraries, one novel Zetaproteobacteria isolate, and the GenBank database were analyzed to assess the biodiversity of this burgeoning class of the Proteobacteria and to investigate its biogeography between three major sampling regions in the Pacific Ocean: Loihi Seamount, the Southern Mariana Trough, and the Tonga Arc. Sequences were grouped into operational taxonomic units (OTUs) on the basis of a 97% minimum similarity. Of the 28 OTUs detected, 13 were found to be endemic to one of the three main sampling regions and 2 were ubiquitous throughout the Pacific Ocean. Additionally, two deeply rooted OTUs that potentially dominate communities of iron oxidizers originating in the deep subsurface were identified. Spatial autocorrelation analysis and analysis of molecular variance (AMOVA) showed that geographic distance played a significant role in the distribution of Zetaproteobacteria biodiversity, whereas environmental parameters, such as temperature, pH, or total Fe concentration, did not have a significant effect. These results, detected using the coarse resolution of the SSU rRNA gene, indicate that the Zetaproteobacteria have a strong biogeographic signal. PMID:21666021

  14. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  15. Measuring Subsurface Water Fluxes Using a Heat Pulse Sensor

    NASA Astrophysics Data System (ADS)

    Ochsner, T. E.; Wang, Q.; Horton, R.

    2001-12-01

    Subsurface water flux is an important parameter in studies of runoff, infiltration, groundwater recharge, and subsurface chemical transport. Heat pulse sensors have been proposed as promising tools for measuring subsurface water fluxes. Our heat pulse probe consists of three 4-cm stainless-steel needles embedded in a waterproof epoxy body. The needles contain resistance heaters and thermocouples. The probes are connected to an external datalogger and power supply and then installed in soil. To measure the water flux, a 15-s heat pulse is generated at the middle needle using the power supply and the resistance heater, and the temperature increases at the needles 6-mm upstream and downstream from the heater are recorded using the thermocouples and datalogger. To date, heat pulse methods have required cumbersome mathematical analysis to calculate soil water flux from this measured data. We present a new mathematical analysis showing that a simple relationship exists between water flux and the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the line heat source. The simplicity of this relationship makes heat pulse sensors a more attractive option for measuring subsurface water fluxes.

  16. Spaceborne Lidar in the Study of Marine Systems.

    PubMed

    Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A

    2018-01-03

    Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  17. Spaceborne Lidar in the Study of Marine Systems

    NASA Astrophysics Data System (ADS)

    Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.

    2018-01-01

    Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.

  18. Analysis of the 2015-16 El Niño Event Using NASA's GEOS Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Pawson, S.; Lim, Y. K.; Kovach, R. M.; Vernieres, G.

    2016-12-01

    The strong El Niño event that occurred in 2015/2016 is analyzed using atmospheric and oceanic analyses produced using the Goddard Earth Observing System (GEOS) systems. A theme of the work is to compare and contrast this event with two other strong El Niños, in 1982/1983 and 1997/1998, that are included in the satellite-data era of the MERRA and MERRA-2 reanalyses produced using the GEOS system. Distribution of the maximum anomalies of tropical sea-surface temperature (SST), precipitation, Walker circulation, and cloud fraction indicate that 2015/2016 is a Central Pacific (CP) El Niño. The event had an early onset compared to the 1997/1998 El Niño, with extremely strong warming and precipitation over the Central Pacific, and was the strongest in terms of central Pacific SST anomalies. The large region of warm temperature anomalies over most of the Pacific and Indian Ocean in the 2015-2016 event were due to the accumulative impacts of the El Niño event along with a positive phase of the Pacific Decadal Oscillation and a decadal warming trend over the western Pacific, Maritime Continent, and Indian Ocean. The relatively weak development of the 2015/2016 El Niño event over the Eastern Pacific was likely due to weaker westerly wind bursts and Madden-Julian Oscillation during spring, which in 1997/1998 served to drive the warm anomalies further East towards South America, making that event the strongest Eastern Pacific El Niño (in the recent data record). This is reflected in the 2015/2016 event having a shallower thermocline over the Eastern Pacific, with a weaker zonal gradient of sub-surface water temperatures along the equatorial Pacific. The major extra-tropical teleconnections associated with the El Niño in 2015/2016 are at least comparable to those in the 1982/1983 and 1997/1998 El Niño events. Specifically, the Pacific North American (PNA) teleconnection in 2015/2016 is the strongest of these three El Niño events, leading to larger extra-tropical anomalies of geopotential height, temperature, and precipitation over North America.

  19. The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Doney, Scott C.

    2010-06-01

    Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. Most of these perturbations, tied either directly or indirectly to human fossil fuel combustion, fertilizer use, and industrial activity, are projected to grow in coming decades, resulting in increasing negative impacts on ocean biota and marine resources.

  20. The growing human footprint on coastal and open-ocean biogeochemistry.

    PubMed

    Doney, Scott C

    2010-06-18

    Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. Most of these perturbations, tied either directly or indirectly to human fossil fuel combustion, fertilizer use, and industrial activity, are projected to grow in coming decades, resulting in increasing negative impacts on ocean biota and marine resources.

  1. Under the sea: microbial life in volcanic oceanic crust.

    PubMed

    Edwards, Katrina J; Wheat, C Geoffrey; Sylvan, Jason B

    2011-09-06

    Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.

  2. Urban heat fluxes in the subsurface of Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Bayer, P.; Blum, P.

    2012-04-01

    Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban heat island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic heat migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban heat fluxes in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy fluxes in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy fluxes within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and heat transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban heat flux that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface heat transport and temperature development is comprehensively discussed.

  3. Nematoda from the terrestrial deep subsurface of South Africa.

    PubMed

    Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C

    2011-06-02

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.

  4. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE PAGES

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...

    2016-04-25

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  5. Observations of seasonal exchange in the Celtic Sea slope region from underwater gilders

    NASA Astrophysics Data System (ADS)

    Porter, Marie; Inall, Mark; Smeed, David; Palmer, Matthew; Dumont, Estelle; Aleynik, Dmitry

    2015-04-01

    Between June 2012 and January 2013, four underwater gliders, profiling to a maximum depth of 1000m, occupied a transect between 47.6°N, 10.3°W and 48.4°N, 9.3°W, perpendicular to the Celtic Sea continental slope. Due to the significant and well-documented internal tide activity in this region and the relatively slow through-water speed of gliders it is first demonstrated that the chosen sampling methodology minimised aliasing of the internal tide. Gliders were flown along a repeat transect and care was taken to ensure that each location was sampled at a different phase of the tide on repeat occupations. Through monthly averaging of the transect data, the effects of the internal tide are minimised and the lower frequency processes made visible. In this presentation we highlight the importance of the lower frequency variability in contributing to cross-slope exchange. Analysis of monthly averaged glider transect data suggests two distinct regimes; 1) Summer, June - October, when the surface water was temperature stratified and, 2) Winter, from October to January, when the seasonal thermocline was mixed down to below the depth of the shelf break (200 m). During the stratified summer months a well-defined shelf break salinity front limits the exchange of water between the ocean and the shelf, preventing the spread of the more saline, sub-surface ocean water (centred at ~150m) onto the shelf. Nevertheless, some cross-slope flow is identified during these months: an intermediate depth salinity minimum (centred at ~600m) is observed to upwell (from 600m to 200-300m) up the slope, sometimes continuing onto the shelf. As the stratification is eroded during the winter months, subsurface upwelling switches to downwelling, and the intermediate depth salinity minimum (~600m) retreats away from the slope region removing it as a potential source of oceanic water on the shelf. Downwelling near to the slope does however allow for an intrusion of the shallower high salinity water onto the shelf reducing the control of the shelf break salinity front, although it has not been ascertained whether this extends further onto the shelf than the shelf break region.

  6. Energy, chemical disequilibrium, and geological constraints on Europa.

    PubMed

    Hand, Kevin P; Carlson, Robert W; Chyba, Christopher F

    2007-12-01

    Europa is a prime target for astrobiology. The presence of a global subsurface liquid water ocean and a composition likely to contain a suite of biogenic elements make it a compelling world in the search for a second origin of life. Critical to these factors, however, may be the availability of energy for biological processes on Europa. We have examined the production and availability of oxidants and carbon-containing reductants on Europa to better understand the habitability of the subsurface ocean. Data from the Galileo Near-Infrared Mapping Spectrometer were used to constrain the surface abundance of CO(2) to 0.036% by number relative to water. Laboratory results indicate that radiolytically processed CO(2)-rich ices yield CO and H(2)CO(3); the reductants H(2)CO, CH(3)OH, and CH(4) are at most minor species. We analyzed chemical sources and sinks and concluded that the radiolytically processed surface of Europa could serve to maintain an oxidized ocean even if the surface oxidants (O(2), H(2)O(2), CO(2), SO(2), and SO(4) (2)) are delivered only once every approximately 0.5 Gyr. If delivery periods are comparable to the observed surface age (30-70 Myr), then Europa's ocean could reach O(2) concentrations comparable to those found in terrestrial surface waters, even if approximately 10(9) moles yr(1) of hydrothermally delivered reductants consume most of the oxidant flux. Such an ocean would be energetically hospitable for terrestrial marine macrofauna. The availability of reductants could be the limiting factor for biologically useful chemical energy on Europa.

  7. Observations of Inner Shelf Flows Influenced by a Small-Scale River Plume in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.

    2016-02-01

    Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.

  8. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buss, Heather; Brantley, S. L.; Scatena, Fred

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world s oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g., soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed inmore » the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared to the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream.« less

  9. Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico

    USGS Publications Warehouse

    Buss, Heather L.; Brantley, Susan L.; Scatena, Fred; Bazilevskaya, Katya; Blum, Alex E.; Schulz, Marjorie S.; Jiménez, Rafael; White, Arthur F.; Rother, G.; Cole, D.

    2013-01-01

    Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream

  10. Multi-year predictability in a coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Power, Scott; Colman, Rob

    2006-02-01

    Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “ wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15-20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.

  11. On the impact of the resolution on the surface and subsurface Eastern Tropical Atlantic warm bias

    NASA Astrophysics Data System (ADS)

    Martín-Rey, Marta; Lazar, Alban

    2016-04-01

    The tropical variability has a great importance for the climate of adjacent areas. Its sea surface temperature anomalies (SSTA) affect in particular the Brazilian Nordeste and the Sahelian region, as well as the tropical Pacific or the Euro-Atlantic sector. Nevertheless, the state-of the art climate models exhibits very large systematic errors in reproducing the seasonal cycle and inter-annual variability in the equatorial and coastal Africa upwelling zones (up to several °C for SST). Theses biases exist already, in smaller proportions though, in forced ocean models (several 1/10th of °C), and affect not only the mixed layer but also the whole thermocline. Here, we present an analysis of the impact of horizontal and vertical resolution changes on these biases. Three different DRAKKAR NEMO OGCM simulations have been analysed, associated to the same forcing set (DFS4.4) with different grid resolutions: "REF" for reference (1/4°, 46 vertical levels), "HH" with a finer horizontal grid (1/12°, 46 v.l.) and "HV" with a finer vertical grid (1/4°, 75 v.l.). At the surface, a more realistic seasonal SST cycle is produced in HH in the three upwellings, where the warm bias decreases (by 10% - 20%) during boreal spring and summer. A notable result is that increasing vertical resolution in HV causes a shift (in advance) of the upwelling SST seasonal cycles. In order to better understand these results, we estimate the three upwelling subsurface temperature errors, using various in-situ datasets, and provide thus a three-dimensional view of the biases.

  12. Chemical Tracer Methods: Chapter 7

    USGS Publications Warehouse

    Healy, Richard W.

    2017-01-01

    Tracers have a wide variety of uses in hydrologic studies: providing quantitative or qualitative estimates of recharge, identifying sources of recharge, providing information on velocities and travel times of water movement, assessing the importance of preferential flow paths, providing information on hydrodynamic dispersion, and providing data for calibration of water flow and solute-transport models (Walker, 1998; Cook and Herczeg, 2000; Scanlon et al., 2002b). Tracers generally are ions, isotopes, or gases that move with water and that can be detected in the atmosphere, in surface waters, and in the subsurface. Heat also is transported by water; therefore, temperatures can be used to trace water movement. This chapter focuses on the use of chemical and isotopic tracers in the subsurface to estimate recharge. Tracer use in surface-water studies to determine groundwater discharge to streams is addressed in Chapter 4; the use of temperature as a tracer is described in Chapter 8.Following the nomenclature of Scanlon et al. (2002b), tracers are grouped into three categories: natural environmental tracers, historical tracers, and applied tracers. Natural environmental tracers are those that are transported to or created within the atmosphere under natural processes; these tracers are carried to the Earth’s surface as wet or dry atmospheric deposition. The most commonly used natural environmental tracer is chloride (Cl) (Allison and Hughes, 1978). Ocean water, through the process of evaporation, is the primary source of atmospheric Cl. Other tracers in this category include chlorine-36 (36Cl) and tritium (3H); these two isotopes are produced naturally in the Earth’s atmosphere; however, there are additional anthropogenic sources of them.

  13. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  14. Development of monitoring and modelling tools as basis for sustainable thermal management concepts of urban groundwater bodies

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter

    2015-04-01

    Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional groundwater wells, the multilevel observation wells and the different boundary conditions we characterize the groundwater temperature regimes using a regional groundwater heat-transport model. In the urban area of Basel, mean annual groundwater temperatures are significantly increasing with 0.05 K per year in the period of 1994 to 2014, which is most likely due to anthropogenic influences. Overall, mean annual groundwater temperatures of Basel are 3.0

  15. Effects of biochemical and physical processes on concentrations and size distributions of dimethylaminium and trimethylaminium in atmospheric particles from marginal seas of China to the northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Yao, X.; Qu, K.; Cui, Z.; Gao, H.; Xie, H.

    2017-12-01

    This study aim to assess the effects of concentrations and size distributions of aminium ions in atmospheric particles from offshore to open oceans. Size-segregated dimethylaminium (DMA+) and trimethylaminium (TMA+) in atmospheric particles were measured during March-May, 2014. One cruise was over marginal seas of China, in which the concentrations of DMA+ and TMA+ in PM0.056-10 varied from 0.08 nmol m-3 to 0.43 nmol m-3 and from 0.10 to 0.27 nmol m-3, respectively. The two ions both had good positive correlations with subsurface chlorophyll-a maximum and salinity, respectively. The highest concentrations of (DMA+ + TMA+) were observed during cyanobacteria bloom period which happened in subsurface water. The results implied that the concentrations of DMA+ (TMA+) in marine atmospheric particles might be influenced by phytoplankton quantities and species in subsurface seawater. Another cruise was carried out from marginal seas of China to the northwest Pacific Ocean (NWPO). The concentrations of DMA+ and TMA+ in PM0.056-1.8 varied from 0.19 nmol m-3 to 1.53 nmol m-3 and from 0.57 to 3.85 nmol m-3, respectively. The highest (lowest) concentrations of (DMA+ + TMA+) were observed near the cyclonic (anticyclonic) eddy, indicating that the cyclonic (anticyclonic) eddy with high (low) chlorophyll-a enhanced (suppressed) DMA+ (TMA+) production in atmospheric particles. In addition, the dominant particle modes less than 0.2 μm for DMA+ (TMA+) were observed, ie., 0.13±0.02 μm for DMA+ over marginal seas of China, and 0.08±0.00 μm for TMA+ in NWPO, but if they were emitted via bubble bursting needed to be further researched.

  16. An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll‐a based models

    PubMed Central

    Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Antoine, David; Ardyna, Mathieu; Asanuma, Ichio; Babin, Marcel; Bélanger, Simon; Benoît‐Gagné, Maxime; Devred, Emmanuel; Fernández‐Méndez, Mar; Gentili, Bernard; Hirawake, Toru; Kang, Sung‐Ho; Kameda, Takahiko; Katlein, Christian; Lee, Sang H.; Lee, Zhongping; Mélin, Frédéric; Scardi, Michele; Smyth, Tim J.; Tang, Shilin; Turpie, Kevin R.; Waters, Kirk J.; Westberry, Toby K.

    2015-01-01

    Abstract We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll‐a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed‐layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite‐derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low‐productivity seasons as well as in sea ice‐covered/deep‐water regions. Depth‐resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption‐based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll‐a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic‐relevant parameters. PMID:27668139

  17. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    PubMed

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  18. Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island

    NASA Astrophysics Data System (ADS)

    Römer, Miriam; Riedel, Michael; Scherwath, Martin; Heesemann, Martin; Spence, George D.

    2016-09-01

    Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant subsurface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.

  19. A Two Time-scale response of the Southern Ocean to the Ozone Hole: Regional Responses and Mechanisms

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, A.; Seviour, W.; Waugh, D.; Pradal, M. A. S.

    2016-12-01

    The impact of changing ozone on the climate of the Southern Ocean is evaluated using an ensemble of coupled climate models. By imposing a step change from 1860 to 2000 conditions we are able to estimate response functions associated with this change. Two time scales are found, an initial cooling centered in the Southwest Pacific followed by cooling in the Pacific sector and then warming in both sectors. The physical processes that drive this response are different across time periods and locations, as is the sign of the response itself. Initial cooling in the Pacific sector is not just driven by the increased winds pushing cold water northward, but also by a decrease in surface salinity reducing wintertime mixing and increased ice and clouds reflecting more shortwave radiation back to space. The decrease in salinity is primarily driven by a southward shift of precipitation associated with a shifting storm track, coupled with decreased evaporation associated with colder surface temperatures. A subsurface increase in heat associated with this reduction in mixing then upwells along the Antarctic coast, producing a subsequent warming. Similar changes in convective activity occur in the Weddell Sea but are offset in time.

  20. Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS

    NASA Astrophysics Data System (ADS)

    Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur

    2018-01-01

    The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.

  1. In-situ Planetary Subsurface Imaging System

    NASA Astrophysics Data System (ADS)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments spaced up to 100 meters apart, which in essence forms a small aperture seismic network. A pattern recognition technique based on Hidden Markov Models was able to characterize this dataset, and we are exploring how the RISI technology can be adapted for this dataset.

  2. Ocean feedback to pulses of the Madden–Julian Oscillation in the equatorial Indian Ocean

    PubMed Central

    Moum, James N.; Pujiana, Kandaga; Lien, Ren-Chieh; Smyth, William D.

    2016-01-01

    Dynamical understanding of the Madden–Julian Oscillation (MJO) has been elusive, and predictive capabilities therefore limited. New measurements of the ocean's response to the intense surface winds and cooling by two successive MJO pulses, separated by several weeks, show persistent ocean currents and subsurface mixing after pulse passage, thereby reducing ocean heat energy available for later pulses by an amount significantly greater than via atmospheric surface cooling alone. This suggests that thermal mixing in the upper ocean from a particular pulse might affect the amplitude of the following pulse. Here we test this hypothesis by comparing 18 pulse pairs, each separated by <55 days, measured over a 33-year period. We find a significant tendency for weak (strong) pulses, associated with low (high) cooling rates, to be followed by stronger (weaker) pulses. We therefore propose that the ocean introduces a memory effect into the MJO, whereby each event is governed in part by the previous event. PMID:27759016

  3. Detecting anthropogenic climate forcing in the ocean

    NASA Astrophysics Data System (ADS)

    Wijffels, S. A.

    2016-12-01

    Owing to its immense heat capacity, the global ocean is the fly-wheel of the climate system, absorbing, redistributing and storing heat on long timescales and over great distances. Of the extra heat trapped in the Earth System due to rising greenhouse gases, over 90% is being stored in the global oceans. Tracking this warming has been challenging due to past changes in the coverage and technology used in past ocean observations. Here, I'll review progress in estimating past warming rates and patterns. The warming of Earth's surface is also driving changes in the global hydrological cycle, which also intimately involves the oceans. Global ocean salinity changes reveal another footprint of a warming Earth. Some simple model runs that give insight into observed subsurface changes will also be described, along with an update on current warming rates and patterns as tracked by the global Argo programme. The prospects for the next advances in broadscale ocean monitoring will also be discussed.

  4. Biogenesis and early life on Earth and Europa: favored by an alkaline ocean?

    PubMed

    Kempe, Stephan; Kazmierczak, Jozef

    2002-01-01

    Recent discoveries about Europa--the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface--suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  5. Follow the Plume: Organic Molecules and Habitable Conditions in the Subsurface Ocean of Enceladus

    NASA Technical Reports Server (NTRS)

    Davila, Alfonso; McKay, Christopher P.; Willson, David; Eigenbrode, Jennifer; Hurford, Terry

    2018-01-01

    This white paper describes the astrobiological significance of the Enceladus plume, and makes a series of scientific and technological recommendations that would lead to a future mission that samples and analyzes plume materials, and searches for evidence of life.

  6. Faults and Fractures in the Subseafloor Environment tell a Different Story than They do at the Seafloor

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.

    2018-05-01

    Planetary studies can benefit from a lesson learned in the research of Mid-Ocean Ridges, wherein the subsurface view of faulting and fracturing contrasts with surface observations, important for the dynamics and chemistry of hydrothermal systems.

  7. Biodegradability Of Lingering Oil 19 Years After The EVOS Spill

    EPA Science Inventory

    In 2001 and 2004, scientists from the National Oceanic and Atmospheric Administration (NOAA) conducted geospatial surveys of lingering oil in Prince William Sound (PWS) and found that about 11 hectares of shoreline remain contaminated with nearly 56,000 kg of subsurface oil from ...

  8. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean.

    PubMed

    Desforges, Jean-Pierre W; Galbraith, Moira; Dangerfield, Neil; Ross, Peter S

    2014-02-15

    We document the abundance, composition and distribution of microplastics in sub-surface seawaters of the northeastern Pacific Ocean and coastal British Columbia. Samples were acid-digested and plastics were characterized using light microscopy by type (fibres or fragments) and size (<100, 100-500, 500-100 and >1000 μm). Microplastics concentrations ranged from 8 to 9200 particles/m(3); lowest concentrations were in offshore Pacific waters, and increased 6, 12 and 27-fold in west coast Vancouver Island, Strait of Georgia, and Queen Charlotte Sound, respectively. Fibres accounted for ∼ 75% of particles on average, although nearshore samples had more fibre content than offshore (p<0.05). While elevated microplastic concentrations near urban areas are consistent with land-based sources, the high levels in Queen Charlotte Sound appeared to be the result of oceanographic conditions that trap and concentrate debris. This assessment of microplastics in the NE Pacific is of interest in light of the on-coming debris from the 2011 Tohoku Tsunami. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.

    2015-12-01

    Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the deep oxic sediments of these two different areas. Given the global extent of this oxic subsurface studies of the diversity and metabolic potential of its biome, together with the analyses of porewater geochemical and isotopic composition, are beginning to reveal its role in global biogeochemical cycles.

  10. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.

  11. Changes in Eastern Equatorial Pacific Thermocline Structure across the Last Deglaciation: Evidence from the Carnegie Ridge

    NASA Astrophysics Data System (ADS)

    Glaubke, R.; Schmidt, M. W.; Warner, L.; Hertzberg, J. E.; Marcantonio, F.; Bianchi, T. S.

    2017-12-01

    The eastern equatorial Pacific (EEP) is an important climatological region given its influence in the modulation of the El Niño - Southern Oscillation (ENSO). The current climatic mean state of the EEP is characterized by cool sea surface temperatures (SST) and a strong, shallow thermocline. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale climate events of the last deglaciation. Here, we will present 21 kyrs of Mg/Ca paleotemperature data from the surface-dwelling foraminifera Globigerinoides ruber and the thermocline-dwelling foraminifera Neogloboquadrina dutertrei collected from piston core MV1014-02-17JC (00° 10.83'S, 85° 52.00'W; 2846 m depth) on the Carnegie Ridge. Initial results reveal a 1.3°C warming of the surface ocean from the early-Holocene until 6 kyrs, a trend present in other EEP SST reconstructions (Pena et al., 2008; Timmerman et al., 2014; Lea et al., 2000). The surface ocean subsequently cools from 6 kyrs and reaches present-day temperatures by 3.5 kyrs. The subsurface reveals a nearly monotonic cooling of 1.8°C from 10.8 kyrs to the present day, which suggest a gradual shoaling of the thermocline across the Holocene. Furthermore, an increase in the vertical temperature gradient occurs from the late- to mid-Holocene, with the sharpest temperature difference centered at 6 kyrs, coincident with the mid-Holocene peak in SSTs. Taken together, these data suggest a gradual shoaling of the thermocline across the Holocene, with the variations in SST primarily governing the intensity of the vertical temperature gradient. Future work includes extending this record back to the last glacial maximum (LGM) to assess tropical Pacific mean state change across the abrupt climate events that characterized the last deglaciation.

  12. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1970-01-01

    Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile components such as boron and ammonia. ?? 1971.

  13. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: Implications for deep subsurface life on Mars

    NASA Astrophysics Data System (ADS)

    Sinha, Navita; Nepal, Sudip; Kral, Timothy; Kumar, Pradeep

    2017-02-01

    Life as we know it requires liquid water and sufficient liquid water is highly unlikely on the surface of present-day Mars. However, according to thermal models there is a possibility of liquid water in the deep subsurface of Mars. Thus, the martian subsurface, where the pressure and temperature is higher, could potentially provide a hospitable environment for a biosphere. Also, methane has been detected in the Mars' atmosphere. Analogous to Earth's atmospheric methane, martian methane could also be biological in origin. The carbon and energy sources for methanogenesis in the subsurface of Mars could be available by downwelling of atmospheric CO2 into the regolith and water-rock reactions such as serpentinization, respectively. Corresponding analogs of the martian subsurface on Earth might be the active sites of serpentinization at depths where methanogenic thermophilic archaea are the dominant species. Methanogens residing in Earth's hydrothermal environments are usually exposed to a variety of physiological stresses including a wide range of pressures, temperatures, and pHs. Martian geochemical models imply that the pH of probable groundwater varies from 4.96 to 9.13. In this work, we used the thermophilic methanogen, Methanothermobacter wolfeii, which grows optimally at 55oC. Therefore, a temperature of 55oC was chosen for these experiments, possibly simulating Mars' subsurface temperature. A martian geophysical model suggests depth and pressure corresponding to a temperature of 55 °C would be between 1-30 km and 100-3,000 atm respectively. Here, we have simulated Mars deep subsurface pH, pressure, and temperature conditions and have investigated the survivability, growth rate, and morphology of M. wolfeii after exposure to a wide range of pH 5-9) and pressure (1-1200 atm) at a temperature of 55 °C. Interestingly, in this study we have found that M. wolfeii was able to survive at all the pressures and pHs tested at 55 °C. In order to understand the effect of different pHs and pressures on the metabolic activities of M. wolfeii, we also calculated their growth rate by measuring methane concentration in the headspace gas samples at regular intervals. In acidic conditions, the growth rate (γ) of M. wolfeii increased with the increase in pressure. In neutral and alkaline conditions, the growth rate (γ) of M. wolfeii initially increased with pressure, but decreased upon further increase of pressure. To investigate the effect of combined pH, pressure, and temperature on the morphology of M. wolfeii, we took phase contrast images of the cells. We did not find any obvious significant alteration in the morphology of M. wolfeii cells. Methanogens, chemolithoautotrophic anaerobic microorganisms, are considered as ideal model microorganisms for Mars. In light of research presented here, we suggest that at least one methanogen, M. wolfeii, could survive in the deep subsurface environment of Mars.

  14. The Effects of Glacial and Oceanic Advection on Spatial Patterns of Freshwater Contents and Temperatures of Small Fjords and Major Basins in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Gay, S. M., III

    2016-02-01

    Using spatial principal component (PC) analysis, the variation in freshwater contents and temperatures in the upper 100m are quantified for small fjords and primary basins within Prince William Sound, Alaska. Two EOF modes explain over 90% of the variance in the freshwater content anomalies (FWCA) giving the total magnitude and vertical structure of the FWCAs respectively. Large, positive PC amplitudes (PCAs) of modes 1 and 2 indicate stratification from surface freshening, shown also by negative surface salinity anomalies, whereas positive FWCA PCAs in conjunction with negative mode 2 amplitudes infer higher subsurface freshening due to either vertical mixing or advection. In contrast, basins with negative mode 1 amplitudes are typically salty to slightly brackish, but the mode 2 PCAs determine if the FWC is concentrated near the surface or mixed deeper in the water column. The vertical structure of the temperature anomalies (TA) is more complicated, and at least three EOF modes are required to explain over 90% of the variance. The reasons for this include differences in solar heating (i.e. local climates) modulated by cold alpine runoff and advection of cold, brackish surface and subsurface glacial water. Fjords and major basins influenced by the latter exhibit large, positive mode 1 amplitudes of FWCA and negative mode 1 and 2 PCAs of TA and FWCA respectively. In certain fjords, however, advection of glacial water into the outer basins enhances the total FWC, whereas other fjords exhibit atypically low FWC due to unusual topographic features of the watersheds and inner basins. This combination of factors leads to generally poor correlations between average FWC and watershed to fjord surface area ratios or hydrology. With exception of a few sites, gradients in FWC between the small fjords and major basins are relatively weak. Thus the main driver of baroclinic flow in northern and western PWS is cold, brackish surface and subsurface water propagating from large tidewater glacial fjords. The glacial water has a marked affect on the dynamic topography, which shows southerly baroclinic-geostrophic flows within the western sound. At Montague Strait and Hinchinbrook Entrance inflows may occur from either fresh or salty conditions; low water density of the latter being shown by negative (positive) FWCA (TA) PCAs respectively.

  15. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; Zhang, Xiaodong; Xiong, Yuanheng; Gray, Deric

    2017-11-01

    The subsurface remote sensing reflectance (rrs, sr-1), particularly its bidirectional reflectance distribution function (BRDF), depends fundamentally on the angular shape of the volume scattering functions (VSFs, m-1 sr-1). Recent technological advancement has greatly expanded the collection, and the knowledge of natural variability, of the VSFs of oceanic particles. This allows us to test the Zaneveld's theoretical rrs model that explicitly accounts for particle VSF shapes. We parameterized the rrs model based on HydroLight simulations using 114 VSFs measured in three coastal waters around the United States and in oceanic waters of North Atlantic Ocean. With the absorption coefficient (a), backscattering coefficient (bb), and VSF shape as inputs, the parameterized model is able to predict rrs with a root mean square relative error of ˜4% for solar zenith angles from 0 to 75°, viewing zenith angles from 0 to 60°, and viewing azimuth angles from 0 to 180°. A test with the field data indicates the performance of our model, when using only a and bb as inputs and selecting the VSF shape using bb, is comparable to or slightly better than the currently used models by Morel et al. and Lee et al. Explicitly expressing VSF shapes in rrs modeling has great potential to further constrain the uncertainty in the ocean color studies as our knowledge on the VSFs of natural particles continues to improve. Our study represents a first effort in this direction.

  16. Biologically induced initiation of Neoproterozoic snowball-Earth events.

    PubMed

    Tziperman, Eli; Halevy, Itay; Johnston, David T; Knoll, Andrew H; Schrag, Daniel P

    2011-09-13

    The glaciations of the Neoproterozoic Era (1,000 to 542 MyBP) were preceded by dramatically light C isotopic excursions preserved in preglacial deposits. Standard explanations of these excursions involve remineralization of isotopically light organic matter and imply strong enhancement of atmospheric CO(2) greenhouse gas concentration, apparently inconsistent with the glaciations that followed. We examine a scenario in which the isotopic signal, as well as the global glaciation, result from enhanced export of organic matter from the upper ocean into anoxic subsurface waters and sediments. The organic matter undergoes anoxic remineralization at depth via either sulfate- or iron-reducing bacteria. In both cases, this can lead to changes in carbonate alkalinity and dissolved inorganic pool that efficiently lower the atmospheric CO(2) concentration, possibly plunging Earth into an ice age. This scenario predicts enhanced deposition of calcium carbonate, the formation of siderite, and an increase in ocean pH, all of which are consistent with recent observations. Late Neoproterozoic diversification of marine eukaryotes may have facilitated the episodic enhancement of export of organic matter from the upper ocean, by causing a greater proportion of organic matter to be partitioned as particulate aggregates that can sink more efficiently, via increased cell size, biomineralization or increased CN of eukaryotic phytoplankton. The scenario explains isotopic excursions that are correlated or uncorrelated with snowball initiation, and suggests that increasing atmospheric oxygen concentrations and a progressive oxygenation of the subsurface ocean helped to prevent snowball glaciation on the Phanerozoic Earth.

  17. Biologically induced initiation of Neoproterozoic snowball-Earth events

    PubMed Central

    Tziperman, Eli; Halevy, Itay; Johnston, David T.; Knoll, Andrew H.; Schrag, Daniel P.

    2011-01-01

    The glaciations of the Neoproterozoic Era (1,000 to 542 MyBP) were preceded by dramatically light C isotopic excursions preserved in preglacial deposits. Standard explanations of these excursions involve remineralization of isotopically light organic matter and imply strong enhancement of atmospheric CO2 greenhouse gas concentration, apparently inconsistent with the glaciations that followed. We examine a scenario in which the isotopic signal, as well as the global glaciation, result from enhanced export of organic matter from the upper ocean into anoxic subsurface waters and sediments. The organic matter undergoes anoxic remineralization at depth via either sulfate- or iron-reducing bacteria. In both cases, this can lead to changes in carbonate alkalinity and dissolved inorganic pool that efficiently lower the atmospheric CO2 concentration, possibly plunging Earth into an ice age. This scenario predicts enhanced deposition of calcium carbonate, the formation of siderite, and an increase in ocean pH, all of which are consistent with recent observations. Late Neoproterozoic diversification of marine eukaryotes may have facilitated the episodic enhancement of export of organic matter from the upper ocean, by causing a greater proportion of organic matter to be partitioned as particulate aggregates that can sink more efficiently, via increased cell size, biomineralization or increased C∶N of eukaryotic phytoplankton. The scenario explains isotopic excursions that are correlated or uncorrelated with snowball initiation, and suggests that increasing atmospheric oxygen concentrations and a progressive oxygenation of the subsurface ocean helped to prevent snowball glaciation on the Phanerozoic Earth. PMID:21825156

  18. Observation-based estimate of the Fukushima radionuclide in the North Pacific

    NASA Astrophysics Data System (ADS)

    Yoshida, Sachiko; Jayne, Steven; Macdonald, Alison; Buesseler, Ken; Rypina, Irina

    2014-05-01

    Contaminated waters from Fukushima nuclear power plant (FNPP) were discharged directly into the North Pacific Ocean in March 2011. Coastal current system in this region and time scale of the water exchange with the open ocean is not well understood, however both observational evidence and numerical model simulation results indicate relatively rapid advection of contaminants eastward into the highly energetic mixed water region in the confluence of the Kuroshio and Oyashio. Surface drifters deployed near the FNPP in early summer 2011 show trajectories crossing the North Pacific generally following the large scale ocean circulation after one year. Previously obtained cesium (Cs) samples from multiple cruises near FNPP and off shore region between 2011 and 2013 are collected and evaluated to diagnose the propagating Cs signal crossing North Pacific Ocean. In this presentation, we use radionuclides of Fukushima origin as a tracer to understand the North Pacific circulation and mixing process after two years of release. Large numbers of the observation are repeatedly took place near shore where Cs shows still relatively higher about 10-30 Bq/m3 in 2013. Temperature-salinity (T-S) properties for the available hydrographic data indicate that the majority of the samples were obtained in the region where the water is highly influenced by the warm-salty Kuroshio origin water. Depth profiles of 35N section in March-May 2013 cruise of the U.S. Climate Variability and Predictability and Carbon (CLIVAR) repeat Hydrography sections are examined to track the radionuclide penetration into the subsurface ocean and the subduction pathways along isopycnal surfaces. Available large drifter datasets that accumulated over decades of field work can guide us in estimating the spread of these radionuclides. By applying an innovative statistical analysis to the drifter data, we investigate the spreading of radionuclides in the Pacific Ocean over 5-year time scales.

  19. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs

    PubMed Central

    Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493

  20. Prediction of future subsurface temperatures in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kim, S. K.; Jeong, J.; SHIN, E.

    2017-12-01

    The importance of climate change has been increasingly recognized because it has had the huge amount of impact on social, economic, and environmental aspect. For the reason, paleoclimate change has been studied intensively using different geological tools including borehole temperatures and future surface air temperatures (SATs) have been predicted for the local areas and the globe. Future subsurface temperatures can have also enormous impact on various areas and be predicted by an analytical method or a numerical simulation using measured and predicted SATs, and thermal diffusivity data of rocks. SATs have been measured at 73 meteorological observatories since 1907 in Korea and predicted at same locations up to the year of 2100. Measured SATs at the Seoul meteorological observatory increased by about 3.0 K from the year of 1907 to the present. Predicted SATs have 4 different scenarios depending on mainly CO2 concentration and national action plan on climate change in the future. The hottest scenario shows that SATs in Korea will increase by about 5.0 K from the present to the year of 2100. In addition, thermal diffusivity values have been measured on 2,903 rock samples collected from entire Korea. Data pretreatment based on autocorrelation analysis was conducted to control high frequency noise in thermal diffusivity data. Finally, future subsurface temperatures in Korea were predicted up to the year of 2100 by a FEM simulation code (COMSOL Multiphysics) using measured and predicted SATs, and thermal diffusivity data in Korea. At Seoul, the results of predictions show that subsurface temperatures will increase by about 5.4 K, 3.0 K, 1.5 K, and 0.2 K from the present to 2050 and then by about 7.9 K, 4.8 K, 2.5 K, and 0.5 K to 2100 at the depths of 10 m, 50 m, 100 m, and 200 m, respectively. We are now proceeding numerical simulations for subsurface temperature predictions for 73 locations in Korea.

  1. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt.

    PubMed

    Yamamoto-Kawai, Michiyo; McLaughlin, Fiona A; Carmack, Eddy C; Nishino, Shigeto; Shimada, Koji

    2009-11-20

    The increase in anthropogenic carbon dioxide emissions and attendant increase in ocean acidification and sea ice melt act together to decrease the saturation state of calcium carbonate in the Canada Basin of the Arctic Ocean. In 2008, surface waters were undersaturated with respect to aragonite, a relatively soluble form of calcium carbonate found in plankton and invertebrates. Undersaturation was found to be a direct consequence of the recent extensive melting of sea ice in the Canada Basin. In addition, the retreat of the ice edge well past the shelf-break has produced conditions favorable to enhanced upwelling of subsurface, aragonite-undersaturated water onto the Arctic continental shelf. Undersaturation will affect both planktonic and benthic calcifying biota and therefore the composition of the Arctic ecosystem.

  2. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    NASA Astrophysics Data System (ADS)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors within a Wave Glider aft payload dry box. The Wave Glider OA sensor suite includes the addition of a pCO2 standard tank not included within the current OA moorings. Communication links between MBARI electronics and Liquid Robotics Control and Communications were successfully established in the laboratory, however further steps to fully integrate and test the OA system into a Wave Glider ASV are still needed. In the future these ASVs will provide platforms for additional surface and subsurface instrumentation, particularly with MBARI's upcoming Controlled, Agile, and Novel, Observing Network (CANON) projects. The integration of the OA sensor package into a Wave Glider ASV will make it possible to continuously monitor the marine environment during adverse weather conditions which are often difficult to document but scientifically important.

  3. Comparison of surface freshwater fluxes from different climate forecasts produced through different ensemble generation schemes.

    NASA Astrophysics Data System (ADS)

    Romanova, Vanya; Hense, Andreas; Wahl, Sabrina; Brune, Sebastian; Baehr, Johanna

    2016-04-01

    The decadal variability and its predictability of the surface net freshwater fluxes is compared in a set of retrospective predictions, all using the same model setup, and only differing in the implemented ocean initialisation method and ensemble generation method. The basic aim is to deduce the differences between the initialization/ensemble generation methods in view of the uncertainty of the verifying observational data sets. The analysis will give an approximation of the uncertainties of the net freshwater fluxes, which up to now appear to be one of the most uncertain products in observational data and model outputs. All ensemble generation methods are implemented into the MPI-ESM earth system model in the framework of the ongoing MiKlip project (www.fona-miklip.de). Hindcast experiments are initialised annually between 2000-2004, and from each start year 10 ensemble members are initialized for 5 years each. Four different ensemble generation methods are compared: (i) a method based on the Anomaly Transform method (Romanova and Hense, 2015) in which the initial oceanic perturbations represent orthogonal and balanced anomaly structures in space and time and between the variables taken from a control run, (ii) one-day-lagged ocean states from the MPI-ESM-LR baseline system (iii) one-day-lagged of ocean and atmospheric states with preceding full-field nudging to re-analysis in both the atmospheric and the oceanic component of the system - the baseline one MPI-ESM-LR system, (iv) an Ensemble Kalman Filter (EnKF) implemented into oceanic part of MPI-ESM (Brune et al. 2015), assimilating monthly subsurface oceanic temperature and salinity (EN3) using the Parallel Data Assimilation Framework (PDAF). The hindcasts are evaluated probabilistically using fresh water flux data sets from four different reanalysis data sets: MERRA, NCEP-R1, GFDL ocean reanalysis and GECCO2. The assessments show no clear differences in the evaluations scores on regional scales. However, on the global scale the physically motivated methods (i) and (iv) provide probabilistic hindcasts with a consistently higher reliability than the lagged initialization methods (ii)/(iii) despite the large uncertainties in the verifying observations and in the simulations.

  4. Salinity anomaly as a trigger for ENSO events

    PubMed Central

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A.; Marx, Lawrence; Kinter III, James L.

    2014-01-01

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage. PMID:25352285

  5. Salinity anomaly as a trigger for ENSO events.

    PubMed

    Zhu, Jieshun; Huang, Bohua; Zhang, Rong-Hua; Hu, Zeng-Zhen; Kumar, Arun; Balmaseda, Magdalena A; Marx, Lawrence; Kinter, James L

    2014-10-29

    According to the classical theories of ENSO, subsurface anomalies in ocean thermal structure are precursors for ENSO events and their initial specification is essential for skillful ENSO forecast. Although ocean salinity in the tropical Pacific (particularly in the western Pacific warm pool) can vary in response to El Niño events, its effect on ENSO evolution and forecasts of ENSO has been less explored. Here we present evidence that, in addition to the passive response, salinity variability may also play an active role in ENSO evolution, and thus important in forecasting El Niño events. By comparing two forecast experiments in which the interannually variability of salinity in the ocean initial states is either included or excluded, the salinity variability is shown to be essential to correctly forecast the 2007/08 La Niña starting from April 2007. With realistic salinity initial states, the tendency to decay of the subsurface cold condition during the spring and early summer 2007 was interrupted by positive salinity anomalies in the upper central Pacific, which working together with the Bjerknes positive feedback, contributed to the development of the La Niña event. Our study suggests that ENSO forecasts will benefit from more accurate salinity observations with large-scale spatial coverage.

  6. Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.; Wheat, C. G.

    2010-12-01

    The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.

  7. Water World

    NASA Image and Video Library

    2015-11-30

    Although Enceladus and Saturn's rings are largely made up of water ice, they show very different characteristics. The small ring particles are too tiny to retain internal heat and have no way to get warm, so they are frozen and geologically dead. Enceladus, on the other hand, is subject to forces that heat its interior to this very day. This results in its famous south polar water jets, which are just visible above the moon's dark, southern limb, along with a sub-surface ocean. Recent work by Cassini scientists suggests that Enceladus (313 miles or 504 kilometers across) has a global ocean of liquid water under its surface. This discovery increases scientists' interest in Enceladus and the quest to understand the role of water in the development of life in the solar system. (For more on the sub-surface ocean, see this story.) This view looks toward the unilluminated side of the rings from about 0.3 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2015. The view was acquired at a distance of approximately 630,000 miles (1.0 million kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase angle of 155 degrees. Image scale is 4 miles (6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18343

  8. The 'Geosaucer' and beyond - 'The Future of Small Long-Lived Landing Systems for Titan'

    NASA Astrophysics Data System (ADS)

    Lange, Caroline; Richter, Lutz; Ho, Tra-Mi; Kroemer, Olaf; Sohl, Frank; Karatekin, Ozgur

    2010-05-01

    Within the framework of ESA's Cosmic Vision programme, the TandEM/TSSM mission to Saturn's moon Titan has been proposed and studied, using two in-situ elements (ISE's), i.e. a Montgolfière and a Lake lander. Emerging from the availability of unallocated mass and volume at the Montgolfière, a high risk, but feasible approach of using these margins has been proposed, that would allow to investigate geophysical properties of the solid surface and deep interior, which were not feasible by the other two ISE's. The proposed package of instruments was designed for limited lifetime, using its own dedicated power supply, thermal control and communication subsystem. It would have been integrated into the Montgolfière's heat shield and would have hitchhiked to the surface after the heat shield would have been separated from the Montgolfière, benefiting from atmospheric conditions that would have allowed impact conditions to be sufficiently benign to allow survival and later operation the package. Though the TandEM/TSSM mission has not been selected for further study within the Cosmic Vision framework, we will present the basic outcomes of the performed study, keeping in mind the importance of a long-lived geophysical lander for Titan exploration. Based on this, we will propose and evaluate future concepts for long-lived landing systems that could be comparable or inherently different from the ‘Geosaucer' concept, which was in a first mass allocation roughly 25 kg with a lifetime of 135 days. For this purpose we will look into general mission constraints, requirements and demands in technology development. Within this presentation we will also give an overview over the science rationale of such a geophysical lander. Evidently, long-time monitoring of geophysical processes on the large icy moons and especially on Titan will give new insights into the internal structure of these bodies, i.e. hinting to subsurface oceans. Consequently, the ‘Geosaucer' instrument package had been composed of a magnetometer, a Micro-seismometer and a radio science beacon, to address aspects of highest importance, related to i) the non-synchronous rotation state of the crust as a result of a putative subsurface ocean as suggested by Cassini observations, ii) tidally-induced deformations of the satellite's outer ice shell in the presence of a subsurface ocean, iii) the magnetic field induced in a subsurface ocean during Titan's passage within Saturn's magnetosphere, iv) Titan's internal structure.

  9. Tides and the Biosphere of Europa

    NASA Astrophysics Data System (ADS)

    Greenberg, Richard

    2002-01-01

    It's been suspected for at least a decade now that Jupiter's icy moon Europa harbors a global ocean of liquid water beneath its crust. To many scientists the presence of another ocean in our solar system immediately conjured up images of extraterrestrial lifeforms swimming in an alien sea. But what sorts of life could evolve in the dark waters of a subsurface ocean, and how would it derive the energy it needs to survive? Planetary scientist, Richard Greenberg has been studying the surface features of Europa, and he finds that the icy crust that covers the ocean may not be as thick as scientists had at first supposed. Cracks in Europa's surface suggest that the ocean waters may come very close to the surface. If so, the cracks themselves may provide a niche for life, and the light near the surface of the moon could provide energy for photosynthetic organisms.

  10. Recent tectonic activity on Pluto driven by phase changes in the ice shell

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.

    2016-07-01

    The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.

  11. Archaeal Viruses Contribute to the Novel Viral Assemblage Inhabiting Oceanic, Basalt-Hosted Deep Subsurface Crustal Fluids

    NASA Astrophysics Data System (ADS)

    Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.

    2015-12-01

    Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.

  12. Low temperature monitoring system for subsurface barriers

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  13. REASON for Europa

    NASA Astrophysics Data System (ADS)

    Patterson, Gerald Wesley; Blankenship, Don; Moussessian, Alina; Plaut, Jeffrey; Gim, Yonggyu; Schroeder, Dustin; Soderlund, Krista; Grima, Cyril; Chapin, Elaine

    2015-11-01

    The science goal of the Europa multiple flyby mission is to “explore Europa to investigate its habitability”. One of the primary instruments selected for the scientific payload is a multi-frequency, multi-channel ice penetrating radar system. This “Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)” would revolutionize our understanding of Europa’s ice shell by providing the first direct measurements of its surface character and subsurface structure. REASON will address key questions regarding Europa’s habitability, including the existence of any liquid water, through the innovative use of radar sounding, altimetry, reflectometry, and plasma/particles analyses. These investigations require a dual-frequency radar (HF and VHF frequencies) instrument with simultaneous shallow and deep sounding that is designed for performance robustness in the challenging environment of Europa. The flyby-centric mission configuration is an opportunity to collect and transmit minimally processed data back to Earth and exploit advanced processing approaches developed for terrestrial airborne data sets. The observation and characterization of subsurface features beneath Europa’s chaotic surface requires discriminating abundant surface clutter from a relatively weak subsurface signal. Finally, the mission plan also includes using REASON as a nadir altimeter capable of measuring tides to test ice shell and ocean hypotheses as well as characterizing roughness across the surface statistically to identify potential follow-on landing sites. We will present a variety of measurement concepts for addressing these challenges.

  14. REASON for Europa

    NASA Astrophysics Data System (ADS)

    Moussessian, A.; Blankenship, D. D.; Plaut, J. J.; Patterson, G. W.; Gim, Y.; Schroeder, D. M.; Soderlund, K. M.; Grima, C.; Young, D. A.; Chapin, E.

    2015-12-01

    The science goal of the Europa multiple flyby mission is to "explore Europa to investigate its habitability". One of the primary instruments selected for the scientific payload is a multi-frequency, multi-channel ice penetrating radar system. This "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" would revolutionize our understanding of Europa's ice shell by providing the first direct measurements of its surface character and subsurface structure. REASON addresses key questions regarding Europa's habitability, including the existence of any liquid water, through the innovative use of radar sounding, altimetry, reflectometry, and plasma/particles analyses. These investigations require a dual-frequency radar (HF and VHF frequencies) instrument with concurrent shallow and deep sounding that is designed for performance robustness in the challenging environment of Europa. The flyby-centric mission configuration is an opportunity to collect and transmit minimally processed data back to Earth and exploit advanced processing approaches developed for terrestrial airborne data sets. The observation and characterization of subsurface features beneath Europa's chaotic surface require discriminating abundant surface clutter from a relatively weak subsurface signal. Finally, the mission plan also includes using REASON as a nadir altimeter capable of measuring tides to test ice shell and ocean hypotheses as well as characterizing roughness across the surface statistically to identify potential follow-on landing sites. We will present a variety of measurement concepts for addressing these challenges.

  15. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.

  16. Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer

    NASA Astrophysics Data System (ADS)

    Naranjo, R. C.; Morway, E. D.; Healy, R. W.

    2016-12-01

    Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.

  17. Ice-Shelf Melt Response to Changing Winds and Glacier Dynamics in the Amundsen Sea Sector, Antarctica

    NASA Astrophysics Data System (ADS)

    Donat-Magnin, Marion; Jourdain, Nicolas C.; Spence, Paul; Le Sommer, Julien; Gallée, Hubert; Durand, Gaël.

    2017-12-01

    It has been suggested that the coastal Southern Ocean subsurface may warm over the 21st century in response to strengthening and poleward shifting winds, with potential adverse effects on West Antarctic glaciers. However, using a 1/12° ocean regional model that includes ice-shelf cavities, we find a more complex response to changing winds in the Amundsen Sea. Simulated offshore subsurface waters get colder under strengthened and poleward shifted winds representative of the SAM projected trend. The buoyancy-driven circulation induced by ice-shelf melt transports this cold offshore anomaly onto the continental shelf, leading to cooling and decreased melt below 450 m. In the vicinity of ice-shelf fronts, Ekman pumping contributes to raise the isotherms in response to changing winds. This effect overwhelms the horizontal transport of colder offshore waters at intermediate depths (between 200 and 450 m), and therefore increases melt rates in the upper part of the ice-shelf cavities, which reinforces the buoyancy-driven circulation and further contributes to raise the isotherms. Then, prescribing an extreme grounding line retreat projected for 2100, the total melt rates simulated underneath Thwaites and Pine Island are multiplied by 2.5. Such increase is explained by a larger ocean/ice interface exposed to CDW, which is then amplified by a stronger melt-induced circulation along the ice draft. Our main conclusions are that (1) outputs from ocean models that do not represent ice shelf cavities (e.g., CMIP5 models) should not be directly used to predict the thermal forcing of future ice shelf cavities; (2) coupled ocean/ice sheet models with a velocity-dependent melt formulation are needed for future projections of glaciers experiencing a significant grounding line retreat.

  18. Modelling Cryovolcanism Due to Subsurface Ocean Freezing on Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Conrad, J. W.; Nimmo, F.; Singer, K. N.

    2016-12-01

    The New Horizons spacecraft identified various possible cryovolcanic features on the surfaces of both Pluto and Charon [1]. However, there are major differences between the cryovolcanism on Pluto and Charon. Pluto has two mound-flanked depressions which are possibly cryovolcanic [2], while Charon's putative cryovolcanism is more widespread within its smooth southern plains. If Pluto or Charon have (or had) subsurface oceans, slow refreezing of these oceans would lead to extensional surface tectonics [3,4] and pressurization of the ocean [5]. Sufficiently large pressurization can overcome the overburden pressure and cause an eruption. We applied thermal evolution models based on [3] to determine likely freezing scenarios. Eruptions on Charon are possible under most conditions, and occur after tens of kilometers of freezing of an ice shell initially 100 km thick. This would produce an areal extensional strain of 1%. The implied globally-averaged thickness of erupted material is a few hundred meters and the critical crack width for propagation through the entire ice shell [6] is about half a meter for all eruption scenarios. Eruptions on Pluto require probably unrealistic freezing scenarios, because of the larger body size and higher overburden pressure. We conclude that ocean freezing is a possible source of cryovolcanism on Charon and may explain the smooth plains in its southern hemisphere [1]. Pluto, on the other hand, requires more complex models to explain the putative cryovolcanic features on its surface. [1] Moore et al., Science 351 (2016): 1284-1293. [2] Singer et al., LPSC 47 (2016): 2276 [3] Robuchon and Nimmo, Icarus 216 (2011): 426-439. [4] Hammond et al., GRL 43 (2016). [5] Manga and Wang, GRL 34 (2007). [6] Porco et al., The Astronomical Journal 148 (2014): 45.

  19. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models

    USGS Publications Warehouse

    Sunderland, E.M.; Krabbenhoft, D.P.; Moreau, J.W.; Strode, S.A.; Landing, W.M.

    2009-01-01

    Fish harvested from the Pacific Ocean are a major contributor to human methylmercury (MeHg) exposure. Limited oceanic mercury (Hg) data, particularly MeHg, has confounded our understanding of linkages between sources, methylation sites, and concentrations in marine food webs. Here we present methylated (MeHg and dimethylmercury (Me2Hg)) and total Hg concentrations from 16 hydrographie stations in the eastern North Pacific Ocean. We use these data in combination with information from previous cruises and coupled atmospheric-oceanic modeling results to better understand controls on Hg concentrations, distribution, and bioavailability. Total Hg concentrations (average 1.14 ?? 0.38 pM) are elevated relative to previous cruises. Modeling results agree with observed increases and suggest that at present atmospheric Hg deposition rates, basin-wide Hg concentrations will double relative to circa 1995 by 2050. Methylated Hg accounts for up to 29% of the total Hg in subsurface waters (average 260 ??114 fM). We observed lower ambient methylated Hg concentrations in the euphotic zone and older, deeper water masses, which likely result from decay of MeHg and Me2Hg when net production is not occurring. We found a significant, positive linear relationship between methylated Hg concentrations and rates of organic carbon remineralization (r2 = 0.66, p < 0.001). These results provide evidence for the importance of particulate organic carbon (POC) transport and remineralization on the production and distribution of methylated Hg species in marine waters. Specifically, settling POC provides a source of inorganic Hg(II) to microbially active subsurface waters and can also provide a substrate for microbial activity facilitating water column methylation. Copyright 2009 by the American Geophysical Union.

  20. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Mordensky, S.; Verba, Circe

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less

  1. Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James; hide

    2009-01-01

    Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.

  2. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa.

    PubMed

    Kivelson, M G; Khurana, K K; Russell, C T; Volwerk, M; Walker, R J; Zimmer, C

    2000-08-25

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  3. Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa

    NASA Astrophysics Data System (ADS)

    Kivelson, Margaret G.; Khurana, Krishan K.; Russell, Christopher T.; Volwerk, Martin; Walker, Raymond J.; Zimmer, Christophe

    2000-08-01

    On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.

  4. Subsurface thermal regime to delineate the paleo-groundwater flow system in an arid area, Al Kufra, Libya

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom El-Said

    2016-12-01

    The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.

  5. Indicators used to monitor subsurface oil during the Deepwater Horizon Event

    EPA Science Inventory

    The Gulf of Mexico Deepwater Horizon oil spill was the largest accidental marine spill in the history of the petroleum industry. The spill was also unprecedented due to the extreme depth of the wellhead leak within the ocean, posing unique challenges to the monitoring efforts, w...

  6. Relationships between Remotely-Sensed Surface Properties and Subsurface Structure in the Ocean.

    DTIC Science & Technology

    1988-01-06

    Investigacion Cientifica y de Educacion 0 Superior de Ensenada (CICESE) surveyed the Gulf of California from 25 October to 4 November 1985 aboard USNS De...north into the Gulf. However, there are many mesoscale variations around these trends, especially in chlorophyll. In the multiple regression analysis

  7. S-Wave Velocity Models Under the Saudi Arabian Portable Broadband Deployment: Evidence for Lithospheric Erosion Beneath the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Julià, J.; Ammon, C. J.; Herrmann, R. B.

    2002-12-01

    Models of crustal evolution strongly rely on our knowledge on the mineralogical composition of subsurface rocks, as well as pressure and temperature conditions. Direct sampling of subsurface rocks is often not possible, so that constraints have to be placed from indirect estimates of rock properties. Detailed seismic imaging of subsurface rocks has the potential for providing such constraints, and probe the extent at depth of surface geologic observations. In this study, we provide detailed S-wave velocity profiles for the crust and uppermost mantle beneath the Saudi Arabian Portable Broadband Deployment stations. Seismic velocities have been estimated from the joint inversion of receiver functions and fundamental mode group velocities. Receiver functions are sensitive to S-wave velocity contrasts and vertical travel times, and surface-wave dispersion is sensitive to vertical S-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with surface geology observations in the Arabian Shield and characterize its terranes at depth: the Asir terrane consists of a 10-km thick upper crust of 3.3~km/s overlying a lower crust with shear-wave velocities of 3.7-3.8 km/s; the Afif terrane is made of a 20-km thick upper crust with average velocity of 3.6 km/s and a lower crust with a shear-velocity of about 3.8~km/s; the Nabitah mobile belt has a gradational, 15-km thick upper crust up to 3.6 km/s overlying a gradational lower crust with velocities up to 4.0 km/s. The crust-mantle transition is sharper in terranes of continental affinity and more gradational beneath terranes of oceanic affinity. In the uppermost mantle, our models suggest a thin lid between up to 50-60 km depth overlying a low velocity zone beneath station TAIF, located close to a region of upwelling mantle material. Temperatures in the lid are estimated to be about 1000 C, which are in good agreement with independent xenolith data, and suggest that the lithosphere could be eroded to a thickness as little as 50~km under this station.

  8. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    NASA Astrophysics Data System (ADS)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime ice retreat should stimulate photosynthesis by exposing more of the AO to solar irradiance, total PP is ultimately limited by nutrient availability. Therefore, changes in AO PP will be forced by the balance between stratification and mixing, the effects of which are not yet quantified.

  9. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  10. Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive

    NASA Technical Reports Server (NTRS)

    DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.

    2000-01-01

    Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.

  11. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling.

    PubMed

    Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko

    2016-05-01

    Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site

    NASA Astrophysics Data System (ADS)

    Warren, Ean; Bekins, Barbara A.

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site.

  13. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.

    PubMed

    Warren, Ean; Bekins, Barbara A

    2018-04-01

    Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site. Published by Elsevier B.V.

  14. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  15. Impacts of microtopographic snow-redistribution and lateral subsurface processeson hydrologic and thermal states in an Arctic polygonal ground ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  16. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    DOE PAGES

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...

    2018-01-08

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  17. Impacts of microtopographic snow-redistribution and lateral subsurface processeson hydrologic and thermal states in an Arctic polygonal ground ecosystem

    DOE PAGES

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...

    2018-01-08

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less

  18. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    NASA Astrophysics Data System (ADS)

    Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; Dafflon, Baptiste; Yuan, Fengming; Romanovsky, Vladimir E.

    2018-01-01

    Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ˜ 10 cm shallower and ˜ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ˜ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.

  19. Penguin heat-retention structures evolved in a greenhouse Earth.

    PubMed

    Thomas, Daniel B; Ksepka, Daniel T; Fordyce, R Ewan

    2011-06-23

    Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a 'Greenhouse Earth' interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.

  20. Europa Plumes Located near Warm Spot on Europa

    NASA Image and Video Library

    2017-04-13

    These images of the surface of the Jovian moon Europa, taken by NASA's Galileo spacecraft, focus on a "region of interest" on the icy moon. The image at left traces the location of the erupting plumes of material, observed by NASA's Hubble Space Telescope in 2014 and again in 2016. The plumes are located inside the area surrounded by the green oval. The green oval also corresponds to a warm region on Europa's surface, as identified by the temperature map at right. The map is based on observations by the Galileo spacecraft. The warmest area is colored bright red. Researchers speculate these data offer circumstantial evidence for unusual activity that may be related to a subsurface ocean on Europa. The dark circle just below center in both images is a crater and is not thought to be related to the warm spot or the plume activity. https://photojournal.jpl.nasa.gov/catalog/PIA21444

Top