NASA Astrophysics Data System (ADS)
Emelko, M.; Stimson, J. R.; McLellan, N. L.; Mesquita, M.
2009-12-01
Prediction of the transport and fate of colloids and nanoparticles in porous media environments remains challenging because factors such as experimental scale, subsurface heterogeneity, and variable flow paths and fluxes have made it difficult to relate laboratory outcomes to field performance. Moreover, field studies have been plagued with inadequate consideration of ground water flow, reliance on unproven “surrogate” parameters, non-detects at the extraction well, and limited sampling. Riverbank filtration (RBF) is an example of an application for which some predictive capacity regarding colloid transport is desirable. RBF is a relatively low-cost, natural water treatment technology in which surface water contaminants are removed or degraded as the infiltrating water flows from a surface source to abstraction wells. RBF has been used for water treatment for at least 200 years and its potential to provide a significant barrier to microorganisms has been demonstrated. Assignment of microbial treatment credits for RBF remains a regulatory challenge because strategies for demonstrating effective subsurface filtration of organisms are not standardized. The potential passage of Giardia lamblia and Cryptosporidium parvum through RBF systems is of particular regulatory concern because these pathogens are known to be resistant to conventional disinfection processes. The transport or relatively small, pathogenic viruses through RBF systems is also a common concern. To comply with the U.S. Long Term 2 Enhanced Surface Water Treatment Rule, utilities with sufficiently high levels of Cryptosporidium oocysts in their source water must amend existing treatment by choosing from a ‘‘toolbox’’ of technologies, including RBF. Aerobic bacterial spores have been evaluated and proposed by some as surrogates for evaluating drinking water treatment plant performance; they also have been proposed as potential surrogates for Cryptosporidium removal during subsurface filtration processes such as RBF. Here, duplicate column studies were conducted to evaluate the transport of nano- and micro-sized polystyrene micropsheres, aerobic spores of Bacillus subtilis, PR772 bacteriophage, and pathogenic Salmonella typhimurium bacteria in a well-sorted fine sand (d 50 = 0.6 mm). A field validation experiment investigating transport of 1.5 µm polystyrene micropsheres and aerobic spores in and RBF system comprised of unconsolidated silty sand, gravel, and boulders was conducted. The column studies demonstrated that the presence of the aerobic spores resulted in increased removal of 4.5 µm microspheres from< 2 log to ~4 log, and 1.5 µm microsphere removal from <0.5 log to ~1 log removal. Microscopic examination of the samples also revealed extensive clumping of microspheres and microorganisms during the experiments conducted with aerobic spores. A field trial during which microspheres and spores of B. subtilis were injected into the subsurface provided corroborating evidence of a co-transport effect of aerobic spores by demonstrating ~1.6 log increase in 1.5 µm microsphere removal in the presence of aerobic spores.
Sorption of pathogens during sub-surface drip irrigation with wastewater
NASA Astrophysics Data System (ADS)
Levi, Laillach; Gillerman Gillerman, Leonid; Kalavrouziotis, Ioannis; Oron, Gideon
2017-04-01
Water scarcity continues to be one of the major threats to human survival in many regions worldwide, such as Africa, the Mediterranean Basin, the State of California in the US. Due to a mixture of factors such as population growth, reduction in water resources availability and higher demand for high quality waters in these regions these countries face water shortage issues that stem from overuse, extensive extraction of groundwater, and frequent drought events. In addition, there are increases in environmental and health awareness that have led to intensive efforts in the treatment and reuse of nonconventional water sources, mainly wastewater and greywater. One approach to water shortages issues is to use wastewater as means to close the gap between supply and demand. However, the need to treat wastewater and to disinfect it forces additional economic burden on the users, primarily for agricultural irrigation. A possible solution might be to use the soil as a sorbent for the contained pathogens. Under sub-surface drip irrigation, not allowing the wastewater to reach the soil surface, the pathogens will remain in the soil. It was as well shown in field experiments that the opening size of roots will not allow pathogens to penetrate into the plants. Additional advantages such as water saving, protection of the pipe systems and others are also important. Field experiments in commercial fields just emphasize the main advantages of sub-surface drip irrigation.
MOVEMENT AND LONGEVITY OF VIRUSES IN THE SUBSURFACE
Since human pathogens, in particular human enteric viruses, are not completely adsorbed or inactivated by conventional waste treatment facilities, sound management practices must be devised which rely on knowledge of the fate of these pollutant in the environment in order to prot...
Disinfection of sewage wastewater and sludge by electron treatment
NASA Astrophysics Data System (ADS)
Trump, J. G.; Merrill, E. W.; Wright, K. A.
The use of machine-accelerated electrons to disinfect sewage waterwaste and sludge is discussed. The method is shown to be practical and energy-efficient for the broad spectrum disinfection of pathogenic organisms in municipal wastewaters and sludge removed from them. Studies of biological, chemical and physical effects are reported. Electron treatment is suggested as an alternative to chlorination of municipal liquid wastes after electron treatment to provide disinfection. Disposal of sewage sludge is recommended as an agricultural resource by subsurface land injection, or as a nutrient for fish populations by widespread ocean dispersal.
NASA Astrophysics Data System (ADS)
Oudega, Thomas James; Derx, Julia; van Driezum, Inge; Cisneros, Anibal; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas; Blaschke, Alfred Paul
2017-04-01
Subsurface media are being used around the world as a means to mitigate microbial contamination, but vary widely in their ability to remove pathogens. To help to provide accurate risk assessments of microbial contamination of groundwaters, and establish safe setback distances between receiving waters and disposal fields, this study aims to use aquifer tracer tests to evaluate the ability of subsurface media to attenuate these pathogens. The novelty of this work is the use of a variety of different tracer substances (e.g. phages, spores, microspheres, conservative tracers) together in field experiments. This will be done by means of injecting these substances under a forced gradient in a sandy gravel aquifer in Lobau, Austria. The extraction of the tracers will be monitored in a pumping well at a distrance of 50m downgradient. This will be able to provide us with insight to the characteristics of microbial transport and how the microorganisms react to the subsurface in the study site. Subsequent numerical modelling of the experiments can tell us more about quantification of subsurface processes such as attachment/detachment, inactivation and die-off of these substances. The first field experiment with conservative tracers (NaCl) has been carried out in December 2016, and subsequent tests are being planned for the next months.
USDA-ARS?s Scientific Manuscript database
Transport of pathogenic bacteria in soils primarily occurs through soil mesopores and macropores (e.g., biopores and cracks). Field research has demonstrated that biopores and subsurface drains can be hydraulically connected. This research was conducted to investigate the importance of surface conne...
FATE OF PATHOGENIC MICROORGANISMS IN SOIL
In order to forecast the effect of viruses contaminating the ground water supply, sorption of pathogens on soil and subsurface materials was studied. Considering that change in free energy for the process is directly proportional to the degree of sorption, a model has been develo...
NASA Astrophysics Data System (ADS)
Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.
2010-12-01
The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears to minimize environmental stresses, like UV radiation, desiccation and temperature fluctuation, typically found on the soil surface. Our findings indicate that E. coli strains above the surface are largely diverse, until they enter subsurface environments where specific extracellular characteristics are likely advantageous for survival and/or transport.
Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich
2010-06-08
Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.
Page, Declan; Dillon, Peter; Toze, Simon; Bixio, Davide; Genthe, Bettina; Jiménez Cisneros, Blanca Elena; Wintgens, Thomas
2010-03-01
A quantitative microbial risk assessment (QMRA) was performed at four managed aquifer recharge (MAR) sites (Australia, South Africa, Belgium, Mexico) where reclaimed wastewater and stormwater is recycled via aquifers for drinking water supplies, using the same risk-based approach that is used for public water supplies. For each of the sites, the aquifer treatment barrier was assessed for its log(10) removal capacity much like for other water treatment technologies. This information was then integrated into a broader risk assessment to determine the human health burden from the four MAR sites. For the Australian and South African cases, managing the aquifer treatment barrier was found to be critical for the schemes to have low risk. For the Belgian case study, the large treatment trains both in terms of pre- and post-aquifer recharge ensures that the risk is always low. In the Mexico case study, the risk was high due to the lack of pre-treatment and the low residence times of the recharge water in the aquifer. A further sensitivity analysis demonstrated that human health risk can be managed if aquifers are integrated into a treatment train to attenuate pathogens. However, reduction in human health disease burden (as measured in disability adjusted life years, DALYs) varied depending upon the number of pathogens in the recharge source water. The beta-Poisson dose response curve used for translating rotavirus and Cryptosporidium numbers into DALYs coupled with their slow environmental decay rates means poor quality injectant leads to aquifers having reduced value to reduce DALYs. For these systems, like the Mexican case study, longer residence times are required to meet their DALYs guideline for drinking water. Nevertheless the results showed that the risks from pathogens can still be reduced and recharging via an aquifer is safer than discharging directly into surface water bodies. Copyright 2009 Elsevier Ltd. All rights reserved.
Li, Jiuyi; Zhao, Xiaokang; Tian, Xiujun; Li, Jin; Sjollema, Jelmer
2015-01-01
The fate and transport of pathogenic bacteria from wastewater treatment facilities in the Earth's subsurface have attracted extensive concern over recent decades, while the impact of treated-wastewater chemistry on bacterial viability and transport behavior remains unclear. The influence of retention time in effluent from a full-scale municipal wastewater treatment plant on the survival and deposition of Staphylococcus aureus and Escherichia coli strains in sand columns was investigated in this paper. In comparison to the bacteria cultivated in nutrient-rich growth media, retention in treated wastewater significantly reduced the viability of all strains. Bacterial surface properties, e.g., zeta potential, hydrophobicity, and surface charges, varied dramatically in treated wastewater, though no universal trend was found for different strains. Retention in treated wastewater effluent resulted in changes in bacterial deposition in sand columns. Longer retention periods in treated wastewater decreased bacterial deposition rates for the strains evaluated and elevated the transport potential in sand columns. We suggest that the wastewater quality should be taken into account in estimating the fate of pathogenic bacteria discharged from wastewater treatment facilities and the risks they pose in the aquatic environment. PMID:25595758
Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.
2009-01-01
Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this is the first report of C. meleagridis from Ireland. PMID:19411413
Goss, Michael; Richards, Charlene
2008-06-01
Source water protection planning (SWPP) is an approach to prevent contamination of ground and surface water in watersheds where these resources may be abstracted for drinking or used for recreation. For SWPP the hazards within a watershed that could contribute to water contamination are identified together with the pathways that link them to the water resource. In rural areas, farms are significant potential sources of pathogens. A risk-based index can be used to support the assessment of the potential for contamination following guidelines on safety and operational efficacy of processes and practices developed as beneficial approaches to agricultural land management. Evaluation of the health risk for a target population requires knowledge of the strength of the hazard with respect to the pathogen load (massxconcentration). Manure handling and on-site wastewater treatment systems form the most important hazards, and both can comprise confined and unconfined source elements. There is also a need to understand the modification of pathogen numbers (attenuation) together with characteristics of the established pathways (surface or subsurface), which allow the movement of the contaminant species from a source to a receptor (water source). Many practices for manure management have not been fully evaluated for their impact on pathogen survival and transport in the environment. A key component is the identification of potential pathways of contaminant transport. This requires the development of a suitable digital elevation model of the watershed for surface movement and information on local groundwater aquifer systems for subsurface flows. Both require detailed soils and geological information. The pathways to surface and groundwater resources can then be identified. Details of land management, farm management practices (including animal and manure management) and agronomic practices have to be obtained, possibly from questionnaires completed by each producer within the watershed. To confirm that potential pathways are active requires some microbial source tracking. One possibility is to identify the molecular types of Escherichia coli present in each hazard on a farm. An essential part of any such index is the identification of mitigation strategies and practices that can reduce the magnitude of the hazard or block open pathways.
Pathogens in Dairy Farming: Source Characterization and Groundwater Impacts
NASA Astrophysics Data System (ADS)
Atwill, E. R.; Watanabe, N.; Li, X.; Hou, L.; Harter, T.; Bergamaschi, B.
2007-12-01
Intense animal husbandry is of growing concern as a potential contamination source of enteric pathogens as well as antibiotics. To assess the public health risk from pathogens and their hydrologic pathways, we hypothesize that the animal farm is not a homogeneous diffuse source, but that pathogen loading to the soil and, therefore, to groundwater varies significantly between the various management units of a farm. A dairy farm, for example, may include an area with calf hutches, corrals for heifers of various ages, freestalls and exercise yards for milking cows, separate freestalls for dry cows, a hospital barn, a yard for collection of solid manure, a liquid manure storage lagoon, and fields receiving various amounts of liquid and solid manure. Pathogen shedding and, hence, therapeutic and preventive pharmaceutical treatments vary between these management units. We are implementing a field reconnaissance program to determine the occurrence of three different pathogens ( E. coli, Salmonella, Campylobacter) and one indicator organism ( Enterococcus) at the ground-surface and in shallow groundwater of seven different management units on each of two farms, and in each of four seasons (spring/dry season, summer/irrigation season, fall/dry season, winter/rainy season). Initial results indicate that significant differences exist in the occurrence of these pathogens between management units and between organisms. These differences are weakly reflected in their occurrence in groundwater, despite the similarity of the shallow geologic environment across these sites. Our results indicate the importance of differentiating sources within a dairy farm and the importance of understanding subsurface transport processes for these pathogens.
Survival of Escherichia coli in common garden mulches spiked with synthetic greywater.
Boyte, S; Quaife, S; Horswell, J; Siggins, A
2017-05-01
Reuse of domestic wastewater is increasingly practiced as a means to address global demands on fresh water. Greywater is primarily reused via subsurface irrigation of gardens, where the soil environment is seen to be an integral part of the treatment process. The fate of biological contaminants (i.e. pathogens) in the soil is reasonably well understood, but their persistence and survival in soil cover layers is largely unexplored. This study investigated the ability of Escherichia coli to survive in common soil cover layers. Three garden mulches were investigated: pea straw mulch, a bark-based mulch and a coconut husk mulch. Each mulch was treated with an E. coli solution, a synthetic greywater with E. coli, or a freshwater control. Escherichia coli was applied at 1 × 10 4 most probable number (MPN) per g dry weight mulch. Subsamples were temporally analysed for E. coli. The bark and coconut husk mulches showed a steady decline in E. coli numbers, while E. coli increased in the pea straw mulch for the duration of the 50 days experiment, peaking at 1·8 × 10 8 MPN per g dry weight mulch. This study highlighted the importance of selection of a suitable material for covering areas that are subsurface irrigated with greywater. Potential for microbial contamination is one of the limiting factors for domestic greywater reuse. Although subsurface irrigation is considered to be one of the lowest risk applications, there is still a possibility of microbes reaching the soil surface if the environmental conditions are not favourable or if soil movement inadvertently exposes the irrigation line. In these circumstances, the soil cover layer may be contaminated by greywater microbes. This study assesses the survival rates of the pathogen indicator organism Escherichia coli in three soil cover materials commonly used worldwide and makes clear recommendations to facilitate the safe reuse of domestic greywater. © 2017 The Society for Applied Microbiology.
Lamba, Jasmeet; Srivastava, Puneet; Way, Thomas R; Sen, Sumit; Wood, C Wesley; Yoo, Kyung H
2013-09-01
Subsurface band application of poultry litter has been shown to reduce the transport of nutrients from fields in surface runoff compared with conventional surface broadcast application. Little research has been conducted to determine the effects of surface broadcast application and subsurface banding of litter on nutrients in leachate. Therefore, a field experiment was conducted to determine the effects of subsurface band application and surface broadcast application of poultry litter on nutrient losses in leachate. Zero-tension pan and passive capillary fiberglass wick lysimeters were installed in situ 50 cm beneath the soil surface of an established tall fescue ( Schreb.) pasture on a sandy loam soil. The treatments were surface broadcast and subsurface-banded poultry litter at 5 Mg ha and an unfertilized control. Results of the rainfall simulations showed that the concentrations of PO-P and total phosphorus (TP) in leachate were reduced by 96 and 37%, respectively, in subsurface-banded litter treatment compared with the surface-applied litter treatment. There was no significant difference in PO-P concentration between control and subsurface-banded litter treatment in leachate. The trend in the loading of nutrients in leachate was similar to the trend in concentration. Concentration and loading of the nutrients (TP, PO-P, NH-N, and NO-N) in runoff from the subsurface-banded treatment were significantly less than for the surface-applied treatment and were similar to those from control plots. These results show that, compared with conventional surface broadcast application of litter, subsurface band application of litter can greatly reduce loss of P in surface runoff and leachate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius
2013-05-28
Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
Compositions produced using an in situ heat treatment process
Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX; Munsterman, Erwin Henh [Amsterdam, NL; Van Bergen, Petrus Franciscus [Amsterdam, NL; Van Den Berg, Franciscus Gondulfus Antonius
2009-10-20
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.
Double barrier system for an in situ conversion process
McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL
2009-05-05
A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.
BACTERIAL TRANSPORT THROUGH HOMOGENEOUS SOIL
The transport of microorganisms in soils is of major importance for bioremediation of subsurface polluted zones and for pollution of groundwater with pathogens. A procedure for evaluating the relative mobility and recovery of bacteria in the soil matrix was developed. In the meth...
Harvey, Ronald W.; Metge, David W.; LeBlanc, Denis R.
2017-01-01
Since 1986, fluorescent carboxylate-modified polystyrene/latex microspheres (FCM) have been co-injected into aquifers along with conservative tracers and viruses, bacteria, and (or) protozoa. Use of FCM has resulted in new information about subsurface transport behaviors of microorganisms in fractured crystalline rock, karst limestone, soils, and granular aquifers. FCM have been used as surrogates for oocysts of the pathogenic protist Cryptosporidium parvum in karst limestone and granular drinking-water aquifers. The advantages of FCM in subsurface transport studies are that they are safe in tracer applications, negatively charged, easy to detect, chemically inert, and available in wide range of sizes. The limitations of FCM are that the quantities needed for some field transport studies can be prohibitively expensive and that their surface characteristics may not match the microorganisms of interest. These limitations may be ameliorated, in part by using chemically modified FCM so that their surface characteristics are a better match to that of the organisms. Also, more sensitive methods of detection may allow using smaller quantities of FCM. To assess how the transport behaviors of FCM and pathogens might compare at the field scale, it is helpful to conduct side-by-side comparisons of their transport behaviors using the geologic media and site-specific conditions that characterize the field site.
Duggan, J; Bates, M P; Phillips, C A
2001-06-01
The use of poultry waste as a fertiliser on arable land is an accepted method of waste treatment. However, run-off from such practices may result in contamination of the watercourse by human pathogens. In this study the effectiveness of using constructed wetlands as an alternative treatment for poultry manure waste was evaluated. Enumeration of Campylobacter spp., Escherichia coli, total coliforms and total aerobes were carried out on influent and effluent samples from reed beds loaded with poultry waste. For both sequential loading and continuous loading there was a statistically significant mean log reduction of 3.56 and 4.25 for E. coli, 3.2 and 3.88 for coliforms, 3.85 and 4.2 for total aerobic counts and 3.13 and 2.96 for Campylobacter spp., respectively. This method, which has been previously recognised as cost-effective and environmentally acceptable, provides an efficient method for reducing numbers of these bacteria in poultry waste and therefore an effective alternative treatment for such waste or waters containing run off from land previously spread with poultry manure.
Teixeira, Erica C N; Ritter, André V; Thompson, Jeffrey Y; Leonard, Ralph H; Swift, Edward J
2004-12-01
To evaluate the effect of tray-based and trayless tooth whitening systems on surface and subsurface microhardness of human enamel. Enamel slabs were obtained from recently extracted human third molars. Specimens were randomly assigned to six groups according to tooth whitening treatment (n = 10): 6.0% hydrogen peroxide (HP) (Crest Whitestrips), 6.5% HP (Crest Professional Whitestrips), 7.5% HP (Day White Excel 3), 9.5% HP (Day White Excel 3), 10% carbamide peroxide (Opalescence), and a control group (untreated). Specimens were treated for 14 days following manufacturers' recommended protocols, and were immersed in artificial saliva between treatments. Enamel surface Knoop microhardness (KHN) was measured immediately before treatment, and at days 1, 7, and 14 of treatment. After treatment, subsurface microhardness was measured at depths of 50-500 microm. Data were analyzed for statistical significance using analysis of variance. Differences in microhardness for treated vs. untreated enamel surface were not statistically significant at any time interval. For 6.5% and 9.5% HP, there was a decrease in surface microhardness values during treatment, but at the end of treatment the microhardness values were not statistically different from the baseline values. For the enamel subsurface values, no differences were observed between treated vs. untreated specimens at each depth. Trayless and tray-based tooth whitening treatments do not significantly affect surface or subsurface enamel microhardness.
Gas injection to inhibit migration during an in situ heat treatment process
Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren
2010-11-30
Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.
Subsurface condition evaluation for asphalt pavement preservation treatments.
DOT National Transportation Integrated Search
2013-04-01
This report presents a case study on the SR70 section with microsurface for understanding its performance; a development of a : methodology for evaluating the asphalt pavement subsurface condition for applying pavement preservation treatments; and...
Collison, R S; Grismer, M E
2013-09-01
Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.
TRANSPORT AND SURVIVAL OF VIRUSES IN THE SUBSURFACE PROCESSES, EXPERIMENTS, AND SIMULATION MODELS
The remediation of ground water contaminated with waterborne pathogens, in particular with viruses, is based on their probable or actual ability to be transported from the source of origin to a point of withdrawal while maintaining the capacity to cause infections. The transport ...
IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS
Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...
Biogeochemical Stability of Contaminants in the Subsurface Following In Situ Treatment
In recent years, innovative treatment technologies have emerged to meet groundwater cleanup goals. In many cases these methods take advantage of the redox behavior of contaminant species. For example, remedial technologies that strategically manipulate subsurface redox conditio...
GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER
Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...
Blaustein, Ryan A; Pachepsky, Yakov A; Shelton, Daniel R; Hill, Robert L
2015-09-01
Microbial pathogens present a leading cause of impairment to rivers, bays, and estuaries in the United States, and agriculture is often viewed as the major contributor to such contamination. Microbial indicators and pathogens are released from land-applied animal manure during precipitation and irrigation events and are carried in overland and subsurface flow that can reach and contaminate surface waters and ground water used for human recreation and food production. Simulating the release and removal of manure-borne pathogens and indicator microorganisms is an essential component of microbial fate and transport modeling regarding food safety and water quality. Although microbial release controls the quantities of available pathogens and indicators that move toward human exposure, a literature review on this topic is lacking. This critical review on microbial release and subsequent removal from manure and animal waste application areas includes sections on microbial release processes and release-affecting factors, such as differences in the release of microbial species or groups; bacterial attachment in turbid suspensions; animal source; animal waste composition; waste aging; manure application method; manure treatment effect; rainfall intensity, duration, and energy; rainfall recurrence; dissolved salts and temperature; vegetation and soil; and spatial and temporal scale. Differences in microbial release from liquid and solid manures are illustrated, and the influential processes are discussed. Models used for simulating release and removal and current knowledge gaps are presented, and avenues for future research are suggested. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.
Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B
2007-01-01
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.
Pathogen removal from domestic and swine wastewater by experimental constructed wetlands.
Giácoman-Vallejos, G; Ponce-Caballero, C; Champagne, P
2015-01-01
This study examined the performance of subsurface flow horizontal wetlands in total coliforms, faecal coliforms, enterococci and Salmonella removal from swine and domestic wastewaters. The effects of organic loading rate, contact time (CT) and the presence of aquatic macrophytes, Typha dominguensis and Typha latifolia, on treatment performance were evaluated. In general, chemical oxygen demand (COD) and total suspended solids (TSS) were reduced by 66 and 72% after 24 h and 75 and 84% after 48 h in domestic wastewaters, and 73 and 71% after 24 h and 72 and 78% after 48 h in swine wastewater. Total coliform and faecal coliform reductions of 70-83% and 65-78% were observed in the vegetated systems after 24 h of CT, while after 48 h, total coliform and faecal coliform reductions of 80-82% and 86-91% were noted.
Seasonal pathogen removal by alternative on-site wastewater treatment systems.
Pundsack, J; Axler, R; Hicks, R; Henneck, J; Nordman, D; McCarthy, B
2001-01-01
Subsurface-flow constructed wetlands, sand filters, and peat filters near Duluth, Minnesota, were studied to determine their seasonal performance for removing pathogens from wastewater. Influent was a high-strength septic tank effluent (mean values of 5-day biochemical oxygen demand, total nitrogen, and total phosphorus were 294, 96, and 15 mg/L, respectively) at the Natural Resources Research Institute's alternative treatment system test facility in northern Minnesota. Each treatment system was inoculated with cultures of Salmonella choleraesuis (serotype typhimurium) for 5 to 7 consecutive days in summer and winter during 1998 to 1999. After the seeding, outflow samples were taken until Salmonella counts were sustained at background levels. The removal of Salmonella was calculated for each system, although the exact removal mechanisms were not determined. During the summer, the wetlands removed 99.6 to 99.999 4% (2.4 to 5.3 log10 reduction) of the culturable Salmonella. The sand filters demonstrated a greater than 7 log10 removal of Salmonella cells, whereas the peat filters were responsible for a greater than 8 log10 loss of cells. Fewer Salomonella cells were removed by all of these systems during the winter, although the pattern of removal was similar to their summer operation. During the winter, the wetlands and sand filters removed greater than 1 log10 of culturable cells, but the peat filters were responsible for a greater than 5 log10 loss of cells. Fecal coliform removal patterns reflected those for Salmonella by treatment systems for summer and winter periods. Based on Salmonella and fecal coliform removal, the peat filters operated most effectively followed by the sand filters and the constructed wetlands.
NASA Astrophysics Data System (ADS)
Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.
2017-12-01
The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ residence times to match reaction timescales and conditions of interest.
Badalamenti, Jonathan P; Erickson, Joshua D; Salomon, Christine E
2016-04-14
We sequenced and annotated the complete 7,170,504-bp genome of a novel secondary metabolite-producingStreptomycesstrain,Streptomyces albusSM254, isolated from copper-rich subsurface fluids at ~220-m depth within the Soudan Iron Mine (Soudan, MN, USA). Copyright © 2016 Badalamenti et al.
Biocolloid transport in water saturated columns packed with sand
NASA Astrophysics Data System (ADS)
Syngouna, V. I.; Chrysikopoulos, C.
2010-12-01
Protection of groundwater supplies from microbial contamination necessitates a solid understanding of the factors controlling the migration and retention of pathogenic organisms (biocolloids) in the subsurface. The transport behavior of three waterborne pathogens (Escherichia coli, MS2, and ΦΧ174) was investigated using laboratory-scale columns packed with clean quartz sand. Various grain sizes and pore water velocities were examined. Though coliform bacteria and coliphages are used worldwide to indicate fecal pollution of groundwater, the various parameters controlling the transport of Escherichia coli MS2 and ΦΧ174 in the subsurface are not fully understood. In this study, the attachment behavior of Escherichia coli, MS2, and ΦΧ174 onto ultra-pure quartz sand were evaluated. The mass recoveries of the three biocolloids examined were found to be proportional to the sand size. The observed mass recoveries were in the order: Escherichia coli > ΦΧ174 > MS2. To assess the importance of biocolloid attachment, the single collector removal efficiency, and the collision efficiency were quantified using the classical colloid filtration theory. Our results indicate that the secondary energy minimum plays an important role in biocolloid deposition even for smaller biocolloid particles (e.g. viruses).
Efficacy of different whitening modalities on bovine enamel and dentin.
Wiegand, Annette; Vollmer, Doreen; Foitzik, Magdalena; Attin, Rengin; Attin, Thomas
2005-06-01
Previous studies have shown that bleaching treatment may be efficient in both enamel and dentin, but it is still unknown how much the subsurface dentin contributes to the color change of teeth. This in vitro study evaluated the whitening effect of different external bleaching agents on enamel-dentin slabs and subsurface dentin. Ninety bovine teeth were distributed among six groups (A, Opalescence 10%; B, Opalescence PF 15%; C, Opalescence Quick; D, Opalescence Extra Boost; E, Rapid White; F, Whitestrips). Two enamel-dentin specimens were prepared from the labial surface of each teeth. In one of the specimens enamel was removed, resulting in a dentin (CD) disc of 1 mm high. The labial and the pulpal sides of the second specimen were ground until the remaining enamel and dentin layers of the enamel-dentin sample (ED) were 1 mm each. Whitening treatment of the ED specimens was performed according to manufacturers' instructions. Pre- and posttreatment Lab values of ED samples were analyzed using CIE-Lab. Baseline Lab values of dentin were analyzed by evaluation of the CD specimen. Finally, enamel of the ED specimens was removed and color change of the exposed dentin (D) was recorded. For all treatment agents significant color changes (DeltaE) were observed for enamel-dentin samples and subsurface dentin specimens compared to controls. In groups A-D DeltaE was significantly higher in dentin than enamel-dentin. Furthermore, L and b values of bleached enamel-dentin and subsurface dentin samples differed significantly from baseline. Treatment with the tested external whitening bleaching agents resulted in color change of both enamel-dentin and subsurface dentin samples. The results indicate that color change of treated teeth might be highly influenced by color change of the subsurface dentin.
Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines
NASA Astrophysics Data System (ADS)
Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja
2016-05-01
Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.
NASA Astrophysics Data System (ADS)
Astuti, A. D.; Lindu, M.; Yanidar, R.; Faruq, M.
2018-01-01
As environmental regulation has become stricter in recent years, there is an increasing concern about the issue of wastewater treatment in urban areas. Senior High School as center of student activity has a potential source to generated domestic wastewater from toilet, bathroom and canteen. Canteen wastewater contains high-organic content that to be treated before discharged. Based on previous research the subsurface constructed wetland-multilayer filtration with vertical flow is an attractive alternative to provide efficient treatment of canteen wastewater. The effluent concentration complied with regulation according to [9]. Due to limited land, addition of preliminary treatment such as the presence of biofilter was found to improve the performance. The aim of this study was to design combination biofilter and subsurface constructed wetland-multilayer filtration with vertical flow type using vetiveria zizanioides (akar wangi) treating canteen wastewater. Vetiveria zizanioides (akar wangi) is used because from previous research, subsurface constructed wetland-multilayer filtration (SCW-MLF) with vertical flow type using vetiveria zizanioides (akar wangi) can be an alternative canteen wastewater treatment that is uncomplicated in technology, low cost in operational and have a beautiful landscape view, besides no odors or insects were presented during the operation.
Sour gas injection for use with in situ heat treatment
Fowler, Thomas David [Houston, TX
2009-11-03
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.
Methods of producing transportation fuel
Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB
2011-12-27
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.
Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.
Kibet, Leonard C; Allen, Arthur L; Kleinman, Peter J A; Feyereisen, Gary W; Church, Clinton; Saporito, Lou S; Way, Thomas R
2011-01-01
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.
Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT
NASA Astrophysics Data System (ADS)
Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier
2017-04-01
Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.
Code of Federal Regulations, 2013 CFR
2013-07-01
... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...
Code of Federal Regulations, 2014 CFR
2014-07-01
... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...
Code of Federal Regulations, 2012 CFR
2012-07-01
... installed: (a) Cutting paraffin; (b) Removing and setting pump-through-type tubing plugs, gas-lift valves...) Corrosion inhibitor treatment; (i) Removing or replacing subsurface pumps; (j) Through-tubing logging (diagnostics); (k) Wireline fishing; and (l) Setting and retrieving other subsurface flow-control devices...
Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin
The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...
Haack, Sheridan Kidd; Duris, Joseph W.
2008-01-01
A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water-quality single-sample criterion of 235 colony forming units per 100 milliliters in only 3 of 56 samples. Of these three samples, two were collected within 1 day post-LDME application from the treatment receiving 8,000 gal/acre LDME with no tillage (NT8000). The third sample was from the rolling-tine aerator treatment with 4,000 gal/acre LDME application rate after the first significant rainfall. Two wastewater chemicals and two bacterial genes (eaeA and stx1) detected in the LDME, but absent in field blank or pre-application samples, were detected in the 4-hour or 1-day postapplication NT8000 samples. No LDME-associated chemicals were detected in later samples from the NT8000 treatment, and none were detected in samples from other treatments after the first significant rainfall. Results of this field trial were somewhat equivocal with respect to the influence of LDME concentration and tillage practices on subsurface-drain water quality, both immediately after LDME application and in the longer term, after significant rainfall. Interpretation of study findings is limited by the fact that treatments were not replicated, and flow rate or discharge from the subsurface drains was not measured. Nevertheless, study results provide useful information about nutrient and bacteria concentrations in subsurface drains during the non-growing season. In addition, study results demonstrate some potential for the use of chemical and microbiological indicators of LDME transport to subsurface drains.
Meutia, A A
2001-01-01
Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.
Luoma, James A.; Severson, Todd J.
2016-01-01
The efficacy of whole water column and subsurface applications of the biopesticide Zequanox®, a commercially prepared spray-dried powder formulation of Pseudomonas fluorescens (strain CL145A), were evaluated for controlling zebra mussels (Dreissena polymorpha) within 27-m2 enclosures in Lake Minnetonka (Deephaven, Minnesota). Five treatments consisting of (1) two whole water column Zequanox applications, (2) two subsurface Zequanox applications, and (3) an untreated control were completed on each of three independent treatment days during September 2014. The two types of samplers used in the study were (1) type 1 samplers, which were custom built multi-plate samplers (wood, perforated aluminum, and tile substrates) that were placed into Robinson’s Bay in June of 2013 to allow for natural colonization by zebra mussels, and (2) type 2 samplers, which consisted of zebra mussels adhering to perforated aluminum trays that were placed into mesh containment bags. One day prior to treatment, three individual samplers of each type were distributed to test enclosures and exposed to a randomly assigned treatment. Sampling to determine the zebra mussel biomass adhering to type 1 samplers and the survival assessments for zebra mussels contained in type 2 samplers were completed ~40 days after exposure. The zebra mussel biomass adhering to type 1 samplers and the survival of zebra mussels contained in type 2 samplers were significantly less in groups treated with the highest Zequanox concentrations and in groups that received whole water column applications than comparable groups treated with lower Zequanox concentrations and subsurface applications. However, standardization of biomass and survival results to the amount of Zequanox applied showed that the lower concentrations and subsurface applications were more cost efficient, with respect to product used, at reducing zebra mussel biomass and for inducing zebra mussel mortality. Although the subsurface application methods and lower treatment concentrations were more cost efficient, biological significance and management goals should be evaluated prior to selecting the application method. Development and refinement of additional application techniques may improve the utility of the subsurface Zequanox applications.
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
Environmental Electrokinetics for a sustainable subsurface.
Lima, A T; Hofmann, A; Reynolds, D; Ptacek, C J; Van Cappellen, P; Ottosen, L M; Pamukcu, S; Alshawabekh, A; O'Carroll, D M; Riis, C; Cox, E; Gent, D B; Landis, R; Wang, J; Chowdhury, A I A; Secord, E L; Sanchez-Hachair, A
2017-08-01
Soil and groundwater are key components in the sustainable management of the subsurface environment. Source contamination is one of its main threats and is commonly addressed using established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control contaminants in higher permeability subsurface materials such as sands, but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail. Electrokinetics (EK), a soil remediation technique mostly recognized in in-situ treatment of low permeability soils, has, for the last decade, been combined with more conventional techniques and can significantly enhance the performance of several of these remediation technologies, including ISCO, ISCR, EISB and phytoremediation. Herein, we discuss the use of emerging EK techniques in tandem with conventional remediation techniques, to achieve improved remediation performance. Furthermore, we highlight new EK applications that may come to play a role in the sustainable treatment of the contaminated subsurface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Álvarez, J A; Ávila, C; Otter, P; Kilian, R; Istenič, D; Rolletschek, M; Molle, P; Khalil, N; Ameršek, I; Mishra, V K; Jorgensen, C; Garfi, A; Carvalho, P; Brix, H; Arias, C A
2017-09-01
SWINGS was a cooperation project between the European Union and India, aiming at implementing state of the art low-cost technologies for the treatment and reuse of domestic wastewater in rural areas of India. The largest wastewater treatment plant consists of a high-rate anaerobic system, followed by vertical and horizontal subsurface flow constructed wetlands with a treatment area of around 1,900 m 2 and a final step consisting of solar-driven anodic oxidation (AO) and ultraviolet (UV) disinfection units allowing direct reuse of the treated water. The implementation and operation of two pilot plants in north (Aligarh Muslim University, AMU) and central India (Indira Gandhi National Tribal University, IGNTU) are shown in this study. The overall performance of AMU pilot plant during the first 7 months of operation showed organic matter removal efficiencies of 87% total suspended solids, 95% 5-day biological oxygen demand (BOD 5 ) and 90% chemical oxygen demand, while Kjeldahl nitrogen removal reached 89%. The UV disinfection unit produces water for irrigation and toilet flushing with pathogenic indicator bacteria well below WHO guidelines. On the other hand, the AO disinfection unit implemented at IGNTU and operated for almost a year has been shown to produce an effluent of sufficient quality to be reused by the local population for agriculture and irrigation.
Fackrell, Joseph K; Glenn, Craig R; Popp, Brian N; Whittier, Robert B; Dulai, Henrietta
2016-09-15
We utilize N and C species concentration data along with δ(15)N values of NO3(-) and δ(13)C values of dissolved inorganic C to evaluate the stoichiometry of biogeochemical reactions (mineralization, nitrification, anammox, and denitrification) occurring within a subsurface wastewater plume that originates as treated wastewater injection and enters the coastal waters of Maui as submarine groundwater discharge. Additionally, we compare wastewater effluent time-series data, injection rates, and treatment history with submarine spring discharge time-series data. We find that heterotrophic denitrification is the primary mechanism of N loss within the groundwater plume and that chlorination for pathogen disinfection suppresses microbial activity in the aquifer responsible for N loss, resulting in increased coastal ocean N loading. Replacement of chlorination with UV disinfection may restore biogeochemical reactions responsible for N loss within the aquifer and return N-attenuating conditions in the effluent plume, reducing N loading to coastal waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
2014-01-01
Background Constructed wetland is one of the natural methods of municipal and industrial wastewater treatments with low initial costs for construction and operation as well as easy maintenance. The main objective of this study is to determine the values of indicator bacteria removal, organic matter, TSS, ammonia and nitrate affecting the wetland removal efficiency. Results The average concentration of E. coli and total coliform in the input is 1.127 × 1014 and 4.41 × 1014 MPN/100 mL that reached 5.03 × 1012 and 1.13 × 1014 MPN/100 mL by reducing 95.5% and 74.4% in wetland 2. Fecal streptococcus reached from the average 5.88 × 1014 in raw wastewater to 9.69 × 1012 in the output of wetland 2. Wetland 2 could reduce 1.5 logarithmic units of E. coli. The removal efficiency of TSS for the wetlands is 68.87%, 71.4%, 57.3%, and 66% respectively. Conclusions The overall results show that wetlands in which herbs were planted had a high removal efficiency about the indicator pathogens, organic matter, LAS detergent in comparison to a control wetland (without canes) and could improve physicochemical parameters (DO, ammonia, nitrate, electrical conductivity, and pH) of wastewater. PMID:24581277
Culturable fungi in potting soils and compost.
Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F
2016-11-01
In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Samarajeewa, A D; Glasauer, S M; Lauzon, J D; O'Halloran, I P; Parkin, Gary W; Dunfield, K E
2012-05-01
A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.
Zhang, Jing; Lynch, Richard J M; Watson, Timothy F; Banerjee, Avijit
2018-05-01
To investigate the remineralisation of chitosan pre-treated enamel white spot lesions (WSLs) by bioglass in the presence of the pellicle layer. 50 artificial enamel white spot lesions were created by acidic gel. Two lesions were used to investigate the formation of the pellicle layer by treating with human whole saliva for 3 min. 48 lesions were assigned to 6 experimental groups (n = 8): (1) bioactive glass slurry, (2) bioactive glass containing polyacrylic acid (BG + PAA) slurry, (3) chitosan pre-treated WSLs with BG slurry (CS-BG), (4) chitosan pre-treated WSLs with BG + PAA slurry (CS-BG + PAA), (5) "standard" remineralisation solution (RS) and (6) de-ionised water (negative control, NC). Remineralisation was carried out using a pH-cycling model for 7 days. Before each treatment using remineralising agents, 3-min pellicle was formed on lesions' surfaces. Mineral content changes, surface and subsurface microhardness and ultrastructure were evaluated by Raman intensity mapping, Knoop microhardness and scanning electron microscopy, respectively. Data were statistically analysed using one-way ANOVA with Tukey's test (p < 0.05 is considered as significant). Despite the heterogeneously formed pellicle layer, all groups showed an increase in surface mineral content after pH-cycling. Chitosan pre-treatment enhanced the subsurface remineralisation of WSLs using bioglass as both pre-treated groups showed greater surface and subsurface microhardness compared to NC. CS-BG exhibited denser subsurface structure than BG, while in CS-BG + PAA the crystals were bigger in size but resemble more enamel-like compared to BG + PAA as shown in SEM observations. Remineralisation of RS was limited to the surface as no significant subsurface changes of mechanical properties and structure were found. Chitosan pre-treatment can enhance WSL remineralisation with bioglass biomaterials when a short-term salivary pellicle is present. A further investigation using a long-term pH-cycling model with mature pellicle is suggested with regards to clinical application. Chitosan pre-treatment has the potential in clinical application to remineralise subsurface lesions to achieve lesion consolidation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping
2013-01-01
Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.
Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...
Antibiotic resistance genes persist longer in soils with subsurface banded poultry litter
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the concentration of AR genes for sulfonamide (sulI), tetracycline (tetW), streptomycin (strpB) and for the class one integrase (intI1) gene in soils with subsurface banded PL. Field scale plots were established with triplicate treatments of either no fer...
Oxidative particle mixtures for groundwater treatment
Siegrist, Robert L.; Murdoch, Lawrence C.
2000-01-01
The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.
Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Philip E.; Yabusaki, Steven B.
2006-12-29
The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processesmore » and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.« less
Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel
2015-09-23
The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.
Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.
2014-01-01
Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4 3−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration. PMID:24950228
Pathogen transport in groundwater systems: contrasts with traditional solute transport
NASA Astrophysics Data System (ADS)
Hunt, Randall J.; Johnson, William P.
2017-06-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
He, Zhengdi; Chen, Lingling; Hu, Xuejuan; Shimada, Yasushi; Otsuki, Masayuki; Tagami, Junji; Ruan, Shuangchen
2017-10-01
The purpose of this study was to evaluate the chemical and mechanical modifications in subsurface dentin layer after Er: YAG (Erbium-Yttrium Aluminium Garnet) laser irradiation, as the guidance of new dental restorative materials specific for laser irradiated dentin. Dentin disks obtained from extracted human molars were prepared and exposed to a single pulse Er:YAG laser irradiation at 80mJ/pulse. After laser irradiation the mechanical and chemical characteristics of intertubular dentin in subsurface layer were studied using nanoindentation tester and micro-Raman spectromy (μ-RS). The dentin 5-50µm depth beneath the lased surface was determined as testing area. Two-way analysis of variance (ANOVA) were used to compare the mechanical values between lased and untreated subsurface dentin (P = 0.05). A laser affected subsurface dentin layer after Er:YAG laser treatment is present. The laser irradiation is considered to decrease the mechanical properties in the superficial subsurface layer (<15µm deep). There was no significant difference in nanohardness and Young's modulus between lased subsurface dentin and untreated dentin (p > 0.05) under the depth of 15µm. However, the dentin at 5µm and 10µm depth beneath the lased surface exhibited significantly lower (~ 47.8% and ~ 33.6% respectively) hardness (p < 0.05). Er:YAG laser irradiation affected both mineral and organic components in subsurface dentin layer, a higher degree of crystallinity and reduced organic compounds occurred in the lased subsurface dentin. Under the tested laser parameters, Er:YAG laser irradiation causes lower mechanical values and reduction of organic components in subsurface dentin, which has deleterious effects on resin adhesion to this area. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.
Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R
2013-01-01
Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel
2015-01-01
Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies. PMID:26404350
Transport of selected bacterial pathogens in agricultural soil and quartz sand.
Schinner, Tim; Letzner, Adrian; Liedtke, Stefan; Castro, Felipe D; Eydelnant, Irwin A; Tufenkji, Nathalie
2010-02-01
The protection of groundwater supplies from microbial contamination necessitates a solid understanding of the key factors controlling the migration and retention of pathogenic organisms through the subsurface environment. The transport behavior of five waterborne pathogens was examined using laboratory-scale columns packed with clean quartz at two solution ionic strengths (10 mM and 30 mM). Escherichia coli O157:H7 and Yersinia enterocolitica were selected as representative Gram-negative pathogens, Enterococcus faecalis was selected as a representative Gram-positive organism, and two cyanobacteria (Microcystis aeruginosa and Anabaena flos-aquae) were also studied. The five organisms exhibit differing attachment efficiencies to the quartz sand. The surface (zeta) potential of the microorganisms was characterized over a broad range of pH values (2-8) at two ionic strengths (10 mM and 30 mM). These measurements are used to evaluate the observed attachment behavior within the context of the DLVO theory of colloidal stability. To better understand the possible link between bacterial transport in model quartz sand systems and natural soil matrices, additional experiments were conducted with two of the selected organisms using columns packed with loamy sand obtained from an agricultural field. This investigation highlights the need for further characterization of waterborne pathogen surface properties and transport behavior over a broader range of environmentally relevant conditions. Copyright 2008 Elsevier Ltd. All rights reserved.
Over the past decade, there has been an increasing array of commercially available products for the treatment of nonpoint source pollution from urban stormwater. These products incorporate various approaches to stormwater treatment such as: in-line subsurface treatment chambers...
Assavasilavasukul, Prapakorn; Lau, Boris L T; Harrington, Gregory W; Hoffman, Rebecca M; Borchardt, Mark A
2008-05-01
The presence of waterborne enteric pathogens in municipal water supplies contributes risk to public health. To evaluate the removal of these pathogens in drinking water treatment processes, previous researchers have spiked raw waters with up to 10(6) pathogens/L in order to reliably detect the pathogens in treated water. These spike doses are 6-8 orders of magnitude higher than pathogen concentrations routinely observed in practice. In the present study, experiments were conducted with different sampling methods (i.e., grab versus continuous sampling) and initial pathogen concentrations ranging from 10(1) to 10(6) pathogens/L. Results showed that Cryptosporidium oocyst and Giardia cyst removal across conventional treatment were dependent on initial pathogen concentrations, with lower pathogen removals observed when lower initial pathogen spike doses were used. In addition, higher raw water turbidity appeared to result in higher log removal for both Cryptosporidium oocysts and Giardia cysts.
Removal of pathogens using riverbank filtration
NASA Astrophysics Data System (ADS)
Cote, M. M.; Emelko, M. B.; Thomson, N. R.
2003-04-01
Although more than hundred years old, in situ or Riverbank Filtration (RBF) has undergone a renewed interest in North America because of its potential as a surface water pre-treatment tool for removal of pathogenic microorganisms. A new RBF research field site has been constructed along the banks of the Grand River in Kitchener, Ontario, Canada to assess factors influencing pathogen removal in the subsurface. Implementation of RBF and appropriate design of subsequent treatment (UV, chlorination, etc.) processes requires successful quantification of in situ removals of Cryptosporidium parvum or a reliable surrogate parameter. C.~parvum is often present in surface water at low indigenous concentrations and can be difficult to detect in well effluents. Since releases of inactivated C.~parvum at concentrations high enough for detection in well effluents are cost prohibitive, other approaches for demonstrating effective in situ filtration of C.~parvum must be considered; these include the use of other microbial species or microspheres as indicators of C.~parvum transport in the environment. Spores of Bacillus subtilis may be considered reasonable indicators of C.~parvum removal by in situ filtration because of their size (˜1 μm in diameter), spherical shape, relatively high indigenous concentration is many surface waters, and relative ease of enumeration. Based on conventional particle filtration theory and assuming equivalent chemical interactions for all particle sizes, a 1 μm B.~subtilis spore will be removed less readily than a larger C. parvum oocyst (4-6 μm) in an ideal granular filter. Preliminary full-scale data obtained from a high rate RBF production well near the new RBF test site demonstrated greater than 1 log removal of B.~subtilis spores. This observed spore removal is higher than that prescribed by the proposed U.S. Long Term 2 Enhanced Surface Water Treatment Rule for C.~parvum. To further investigate the removal relationship between C.~parvum, Giardia lamblia and proposed surrogates such as B.~subtilis, detailed characterization of site hydrogeology, geochemistry, and water quality (MPA, particles, TOC, ionic strength) are underway. Particle counts are being measured in the bank filtrate to compare particle breakthrough with breakthrough of B.~subtilis spores. Particle counting has been suggested by some regulatory bodies as a real-time measure of in situ filtration performance; however, particle counting is a limited tool for assessing the efficacy of pathogen removal by in situ filtration because it is incapable of identifying discrete particles and can fail to detect microorganisms with refraction indexes close to that of water. Preliminary B.~subtilis removal data from the full scale RBF well and preliminary site characterization, particle count, and B.~subtilis removal data from the RBF test site are presented.
DAS Microseismic and Strain Monitoring During Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Kahn, D.; Karrenbach, M. H.; Cole, S.; Boone, K.; Ridge, A.; Rich, J.; Langton, D.; Silver, K.
2017-12-01
Hydraulic fracturing operations in unconventional subsurface reservoirs are typically monitored using geophones located either at the surface or in adjacent wellbores. A novel approach to record hydraulic stimulations utilizes fiber-optic Distributed Acoustic Sensing (DAS). A fiber-optic cable was installed in a treatment well in a subsurface reservoir (Meramec formation). DAS data were recorded during fluid injection of same fibered well and also during injection into a nearby treatment well at a distance of 350m. For both scenarios the DAS sensing array consisted of approximately 1000 channels at a fine spatial and temporal sampling and with a large sensing aperture. Thus, the full strain wave field is measured along the borehole over its entire length. A variety of physical effects, such as temperature, low-frequency strain and microseismicity were measured and correlated with the treatment program during hydraulic fracturing of the wells. These physical effects occur at various frequency scales and produce complementary measurements. Microseismic events in the magnitude range of -0.5 and -2.0 at a maximum distance of 500m were observed and analyzed for recordings from the fiber-equipped treatment well and also neighboring treatment well. The analysis of this DAS data set demonstrates that current fiber-optic sensing technology can provide enough sensitivity to detect a significant number of microseismic events and that these events can be integrated with temperature and strain measurements for an improved subsurface reservoir description.
NASA Astrophysics Data System (ADS)
Packman, A. I.; Lau, B. L.; Harter, T.; Atwill, E. R.
2007-12-01
Waterborne diseases are transmitted through numerous environmental pathways, and their migration is strongly mediated by interaction with a wide variety of sediments and other natural materials during transport. Here we provide an overview of factors that affect the fate of persistent water-borne pathogens, focusing particularly on the zoonotic pathogen Cryptosporidium parvum as an example. While individual microbial cells are both small and have low specific gravity, suggesting that they should be highly mobile and remain suspended for long periods of time, attachment to a variety of background materials can substantially reduce pathogen mobility. Cryptosporidium oocysts readily associate with both inorganic and organic particles, resulting in the formation of aggregates. This process tends to increase the effective settling velocity of C. parvum in surface waters. Similarly, pathogens readily become associated with the solid matrix during transport in groundwater, resulting in removal by filtration. However, this process is reversible with C. parvum, resulting in a slow long-term release following the initial deposition. Pathogens also become associated with biofilms, which are surface-attached communities of microorganisms in a gelatinous matrix. The presence of biofilms increases the immobilization and retention of Cryptosporidium on solid surfaces. All of these processes influence pathogen transmission in surface waters such as rivers and water-supply canals. In these environments, pathogens can be immobilized by deposition into stable sediment beds by a combination of gravitational sedimentation and advection into pore waters followed by subsurface filtration. Association with background suspended matter tends to increase pathogen deposition by sedimentation, and the presence of benthic (sedimentary) biofilms also tends to increase pathogen retention. For pathogens that remain viable for long periods of time in natural aquatic systems, as is the case with Cryptosporidium and other cyst-and spore-forming organisms, then the sediments and sedimentary biofilms become an environmental reservoir of pathogens. Cysts retained in biofilms appear to be relatively difficult to resuspend, but slow, long-term biological release and high-flow events that mobilize streambed sediments both deliver pathogens into transport.
The reuse of treated wastewater for agricultural purposes in Nicaragua; Central America.
Platzer, M; Cáceres, V; Fong, N
2004-01-01
The first subsurface flow wetland (SSFW) system for about 1,000 PE, was constructed in Nicaragua in 1996 to apply this technology in the form of an integral project, combining the treatment of domestic wastewater with its reuse for crop production in small and medium size communities. The SSFW-effluent meets all standards established in the national regulations for wastewater reuse in agriculture, except for faecal coliforms, existent at an average concentration of 7 x 10(4) MPN/100 ml. A conventional surface irrigation method was used to irrigate different crop species selected to establish their risk of contamination. To judge the potential health risk for consumers and farmers, samples of vegetables and fruits harvested in the dry seasons of the years 1997 to 2002, were analyzed for the presence of pathogenic microorganisms like faecal coliforms, salmonella and shigella. In addition, a yield comparison between crops irrigated with well water using chemical fertilizers, and crops irrigated with the effluent of the SSFW-system was made, to analyze the economical benefits of the wastewater reuse.
Vulnerability of bank filtration systems to climate change.
Sprenger, C; Lorenzen, G; Hülshoff, I; Grützmacher, G; Ronghang, M; Pekdeger, A
2011-01-15
Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important. Copyright © 2010 Elsevier B.V. All rights reserved.
Modeling Vertical Flow Treatment Wetland Hydraulics to Optimize Treatment Efficiency
2011-03-24
ammonia, such as landfill leachate and food processing wastes (Kadlec and Wallace, 2009). Figure 2: Typical Horizontal Subsurface Flow Treatment...51(9): 165-171, 2005. Williams, J.B. Phytoremediation in wetland ecosystems: Progress, problems, and potential. Critical Reviews in Plant Sciences
Fong, Theng-Theng; Mansfield, Linda S.; Wilson, David L.; Schwab, David J.; Molloy, Stephanie L.; Rose, Joan B.
2007-01-01
Background A groundwater-associated outbreak affected approximately 1,450 residents and visitors of South Bass Island, Ohio, between July and September 2004. Objectives To examine the microbiological quality of groundwater wells located on South Bass Island, we sampled 16 wells that provide potable water to public water systems 15–21 September 2004. Methods We tested groundwater wells for fecal indicators, enteric viruses and bacteria, and protozoa (Cryptosporidium and Giardia). The hydrodynamics of Lake Erie were examined to explore the possible surface water–groundwater interactions. Results All wells were positive for both total coliform and Escherichia coli. Seven wells tested positive for enterococci and Arcobacter (an emerging bacterial pathogen), and F+-specific coliphage was present in four wells. Three wells were positive for all three bacterial indicators, coliphages, and Arcobacter; adenovirus DNA was recovered from two of these wells. We found a cluster of the most contaminated wells at the southeast side of the island. Conclusions Massive groundwater contamination on the island was likely caused by transport of microbiological contaminants from wastewater treatment facilities and septic tanks to the lake and the subsurface, after extreme precipitation events in May–July 2004. This likely raised the water table, saturated the subsurface, and along with very strong Lake Erie currents on 24 July, forced a surge in water levels and rapid surface water–groundwater interchange throughout the island. Landsat images showed massive influx of organic material and turbidity surrounding the island before the peak of the outbreak. These combinations of factors and information can be used to examine vulnerabilities in other coastal systems. Both wastewater and drinking water issues are now being addressed by the Ohio Environmental Protection Agency and the Ohio Department of Health. PMID:17589591
NASA Astrophysics Data System (ADS)
Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor
2016-03-01
Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, R.J.; Stewart, D.L.
1988-03-01
The primary objective of this study was to evaluate the potential environmental effects (both adverse and beneficials) of aquifer thermal energy storage (ATES) technology pertaining to microbial communities indigenous to subsurface environments (i.e., aquifers) and the propagation, movement, and potential release of pathogenic microorganisms (specifically, Legionella) within ATES systems. Seasonal storage of thermal energy in aquifers shows great promise to reduce peak demand; reduce electric utility load problems; contribute to establishing favorable economics for district heating and cooling systems; and reduce pollution from extraction, refining, and combustion of fossil fuels. However, concerns that the widespread implementation of this technology maymore » have adverse effects on biological systems indigeneous to aquifers, as well as help to propagate and release pathogenic organisms that enter thee environments need to be resolved. 101 refs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Hoarfrost, Adrienne; Snider, Rachel; Arnosti, Carol
2017-02-01
Extracellular enzymatic activities initiate microbially-driven heterotrophic carbon cycling in subsurface sediments. While measurement of hydrolytic activities in sediments is fundamental to our understanding of carbon cycling, these measurements are often technically difficult due to sorption of organic substrates to the sediment matrix. Most methods that measure hydrolysis of organic substrates in sediments rely on recovery of a fluorophore or fluorescently-labeled target substrate from a sediment incubation. The tendency for substrates to sorb to sediments results in lower recovery of an added substrate, and can result in data that are unusable or difficult to interpret. We developed a treatment using competitive desorption of a fluorescently-labeled, high molecular weight organic substrate that improves recovery of the labeled substrate from sediment subsamples. Competitive desorption treatment improved recovery of the fluorescent substrate by a median of 66%, expanded the range of sediments for which activity measurements could be made, and was effective in sediments from a broad range of geochemical contexts. More reliable measurements of hydrolytic activities in sediments will yield usable and more easily interpretable data from a wider range of sedimentary environments, enabling better understanding of microbially-catalyzed carbon cycling in subsurface environments.
Pathogen transport in groundwater systems: Contrasts with traditional solute transport
Hunt, Randall J.; Johnson, William P.
2017-01-01
Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in “Colloid Filtration Theory”, a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.
Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...
Review of pathogen treatment reductions for onsite non ...
Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse of onsite-collected waters; the present work reviewed the relevant QMRA literature to prioritize knowledge gaps and identify health-protective pathogen treatment reduction targets. The review indicated that ingestion of untreated, onsite-collected graywater, rainwater, seepage water and stormwater from a variety of exposure routes resulted in gastrointestinal infection risks greater than the traditional acceptable level of risk. We found no QMRAs that estimated the pathogen risks associated with onsite, non-potable reuse of blackwater. Pathogen treatment reduction targets for non-potable, onsite reuse that included a suite of reference pathogens (i.e., including relevant bacterial, protozoan, and viral hazards) were limited to graywater (for a limited set of domestic uses) and stormwater (for domestic and municipal uses). These treatment reductions corresponded with the health benchmark of a probability of infection or illness of 10−3 per person per year or less. The pathogen treatment reduction targets varied depending on the target health benchmark, reference pathogen, source water, and water reuse application. Overall, there remains a need for pathogen reduction targets that are heal
Luong, Vu T; Cañas Kurz, Edgardo E; Hellriegel, Ulrich; Luu, Tran L; Hoinkis, Jan; Bundschuh, Jochen
2018-04-15
Arsenic contamination in groundwater is a critical issue and one that raises great concern around the world as the cause of many negative health impacts on the human body, including internal and external cancers. There are many ways to remove or immobilize arsenic, including membrane technologies, adsorption, sand filtration, ion exchange, and capacitive deionization. These exhibit many different advantages and disadvantages. Among these methods, in-situ subsurface arsenic immobilization by aeration and the subsequent removal of arsenic from the aqueous phase has shown to be very a promising, convenient technology with high treatment efficiency. In contrast to most of other As remediation technologies, in-situ subsurface immobilization offers the advantage of negligible waste production and hence has the potential of being a sustainable treatment option. This paper reviews the application of subsurface arsenic removal (SAR) technologies as well as current modeling approaches. Unlike subsurface iron removal (SIR), which has proven to be technically feasible in a variety of hydrogeochemical settings for many years, SAR is not yet an established solution since it shows vulnerability to diverse geochemical conditions such as pH, Fe:As ratio, and the presence of co-ions. In some situations, this makes it difficult to comply with the stringent guideline value for drinking water recommended by the WHO (10 μg L -1 ). In order to overcome its limitations, more theoretical and experimental studies are needed to show long-term application achievements and help the development of SAR processes into state-of-the-art technology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Baseline hydraulic performance of the Heathrow constructed wetlands subsurface flow system.
Richter, K M; Margetts, J R; Saul, A J; Guymer, I; Worrall, P
2003-01-01
A constructed wetland treatment system has been commissioned by BAA (formerly the British Airports Authority) in order to attenuate airfield runoff contaminated with de-icant and other potentially polluting materials from Heathrow Airport. Airfield runoff containing de-icants has the potential to impose significant oxygen demands on water bodies. The site consists of a number of integrated treatment systems, including a 1 ha rafted reed bed canal system and a 2 ha sub-surface flow gravel reed bed. This research project is concerned with the performance of the subsurface flow reed beds, though attention will be paid in this paper to the operation of the whole system. Prior to the planting of the subsurface flow reed beds, flow-tracing experiments were carried out on the three different types of subsurface flow beds, so that the baseline performance of the system could be quantified. In association, data regarding the soil organic matter content was also collected prior to the planting of the beds. As expected, soil organic matter content is observed to be negligible within the bed, though a small amount of build up was observed in localised areas on the surface of the beds. This was attributed to the growth of algae in depressions where standing water persisted during the construction phase. Few studies exist which provide detailed measurements into the cause and effect of variations in hydraulic conductivity within an operational reed bed system. The data presented here form the baseline results for an ongoing study into the investigation of the change in hydraulic conductivity of an operational reed bed system.
Seed treatments to control seedborne fungal pathogens of vegetable crops.
Mancini, Valeria; Romanazzi, Gianfranco
2014-06-01
Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping-off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non-target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry.
Respiratory Viruses and Treatment Failure in Children With Asthma Exacerbation.
Merckx, Joanna; Ducharme, Francine M; Martineau, Christine; Zemek, Roger; Gravel, Jocelyn; Chalut, Dominic; Poonai, Naveen; Quach, Caroline
2018-06-04
: media-1vid110.1542/5771275574001PEDS-VA_2017-4105 Video Abstract OBJECTIVES: Respiratory pathogens commonly trigger pediatric asthma exacerbations, but their impact on severity and treatment response remains unclear. We performed a secondary analysis of the Determinants of Oral Corticosteroid Responsiveness in Wheezing Asthmatic Youth (DOORWAY) study, a prospective cohort study of children (aged 1-17 years) presenting to the emergency department with moderate or severe exacerbations. Nasopharyngeal specimens were analyzed by RT-PCR for 27 respiratory pathogens. We investigated the association between pathogens and both exacerbation severity (assessed with the Pediatric Respiratory Assessment Measure) and treatment failure (hospital admission, emergency department stay >8 hours, or relapse) of a standardized severity-specific treatment. Logistic multivariate regressions were used to estimate average marginal effects (absolute risks and risk differences [RD]). Of 958 participants, 61.7% were positive for ≥1 pathogen (rhinovirus was the most prevalent [29.4%]) and 16.9% experienced treatment failure. The presence of any pathogen was not associated with higher baseline severity but with a higher risk of treatment failure (20.7% vs 12.5%; RD = 8.2% [95% confidence interval: 3.3% to 13.1%]) compared to the absence of a pathogen. Nonrhinovirus pathogens were associated with an increased absolute risk (RD) of treatment failure by 13.1% (95% confidence interval: 6.4% to 19.8%), specifically, by 8.8% for respiratory syncytial virus, 24.9% for influenza, and 34.1% for parainfluenza. Although respiratory pathogens were not associated with higher severity on presentation, they were associated with increased treatment failure risk, particularly in the presence of respiratory syncytial virus, influenza, and parainfluenza. This supports influenza prevention in asthmatic children, consideration of pathogen identification on presentation, and exploration of treatment intensification for infected patients at higher risk of treatment failure. Copyright © 2018 by the American Academy of Pediatrics.
3D Lifetime Tomography Reveals How CdCl 2 Improves Recombination Throughout CdTe Solar Cells
Barnard, Edward S.; Ursprung, Benedikt; Colegrove, Eric; ...
2016-11-15
When using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl 2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.
2003-04-04
processes in the subsurface. This substrate is typically molasses although these substrates can include high fructose corn syrup , whey, etc. (Suthersan...typically comprised of a carbohydrate such as molasses, whey, high fructose corn syrup , lactate, butyrate, or benzoate). Through periodic subsurface...this purpose; other carbohydrates such as high fructose corn syrup and whey can also be effective. This approach has been accepted by regulators and
P. Maloney; T. Smith; C. Jensen; J. Innes; D. Rizzo; M. North
2008-01-01
Fire and thinning restoration treatments in fire-suppressed forests often damage or stress leave trees, altering pathogen and insect affects. We compared types of insect- and pathogen-mediated mortality on mixed-conifer trees 3years after treatment. The number of bark beetle attacked trees was greater in burn treatments compared with no-burn treatments, and in some...
Winery wastewater treatment using the land filter technique.
Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S
2010-08-01
This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.
2017-08-01
Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests.
Shukla, Asmita; Shukla, Sanjay; Annable, Michael D; Hodges, Alan W
2017-08-01
Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497kg) and 95% (205kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1=368.3μg L -1 , Y2=230.4μg L -1 ) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be $341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests. Copyright © 2017. Published by Elsevier B.V.
Optimization of subsurface flow and associated treatment processes.
DOT National Transportation Integrated Search
2006-02-01
The Louisiana Department of Transportation and Development has long been interested in low maintenance waste treatment systems that can be used to treat small flows in situations where skilled operators are not available. The purpose of this project ...
2004-12-17
other substrates can also be used, including high fructose corn syrup , whey, etc. Through this subsurface molasses injection, the existing aerobic or...is not the only carbohydrate material that can be used for this purpose; other carbohydrates such as high fructose corn syrup and whey can also be... fructose corn syrup , lactate, butyrate, or benzoate). Through periodic subsurface substrate injection, the ERD technology alters existing aerobic or mildly
Bioremediation of contaminated groundwater
Hazen, T.C.; Fliermans, C.B.
1994-01-01
Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.
Lipp, E K; Farrah, S A; Rose, J B
2001-04-01
The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between < 5 and > 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.
COMBINATION OF IRON AND MIXED ANAEROBIC CULTURE FOR PERCHLOROETHENE DEGRADATION
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment option at severa...
COST ANALYSIS OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF GROUND WATER
ABSTRACT
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment...
Optimization of subsurface flow and associated treatment processes.
DOT National Transportation Integrated Search
2006-02-01
The objective of this study was to examine the use and performance of synthetic media (growth substrate) in a rock filter waste treatment system located at the Grand Prairie Rest Area. Specifically, this study examined the performance of the syntheti...
Hua, Guanghui; Salo, Morgan W; Schmit, Christopher G; Hay, Christopher H
2016-10-01
Woodchip bioreactors have been increasingly used as an edge-of-field treatment technology to reduce the nitrate loadings to surface waters from agricultural subsurface drainage. Recent studies have shown that subsurface drainage can also contribute substantially to the loss of phosphate from agricultural soils. The objective of this study was to investigate nitrate and phosphate removal in subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. The woodchip bioreactor demonstrated average nitrate removal efficiencies of 53.5-100% and removal rates of 10.1-21.6 g N/m(3)/d for an influent concentration of 20 mg N/L and hydraulic retention times (HRTs) of 6-24 h. When the influent nitrate concentration increased to 50 mg N/L, the bioreactor nitrate removal efficiency and rate averaged 75% and 18.9 g N/m(3)/d at an HRT of 24 h. Nitrate removal by the woodchips followed zero-order kinetics with rate constants of 1.42-1.80 mg N/L/h when nitrate was non-limiting. The steel byproduct filter effectively removed phosphate in the bioreactor effluent and the total phosphate adsorption capacity was 3.70 mg P/g under continuous flow conditions. Nitrite accumulation occurred in the woodchip bioreactor and the effluent nitrite concentrations increased with decreasing HRTs and increasing influent nitrate concentrations. The steel byproduct filter efficiently reduced the level of nitrite in the bioreactor effluent. Overall, the results of this study suggest that woodchip denitrification followed by steel byproduct filtration is an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Haochih Liu, Bernard; Li, Kun-Lin; Kang, Kai-Li; Huang, Wen-Ke; Liao, Jiunn-Der
2013-07-01
This work presents in situ biosensing approaches to study the nanomechanical and electrochemical behaviour of Streptococcus mutans biofilms under different cultivation conditions and microenvironments. The surface characteristics and sub-surface electrochemistry of the cell wall of S. mutans were measured by atomic force microscopy (AFM) based techniques to monitor the in situ biophysical status of biofilms under common anti-pathogenic procedures such as ultraviolet (UV) radiation and alcohol treatment. The AFM nanoindentation suggested a positive correlation between nanomechanical strength and the level of UV radiation of S. mutans; scanning impedance spectroscopy of dehydrated biofilms revealed reduced electrical resistance that is distinctive from that of living biofilms, which can be explained by the discharge of cytoplasm after alcohol treatment. Furthermore, the localized elastic moduli of four regions of the biofilm were studied: septum (Z-ring), cell wall, the interconnecting area between two cells and extracellular polymeric substance (EPS) area. The results indicated that cell walls exhibit the highest elastic modulus, followed by Z-ring, interconnect and EPS. Our approach provides an effective alternative for the characterization of the viability of living cells without the use of biochemical labelling tools such as fluorescence dyeing, and does not rely on surface binding or immobilization for detection. These AFM-based techniques can be very promising approaches when the conventional methods fall short.
Wang, Li-Jun; Liu, Yu-Zhong; Zhang, Lie-Yu; Xi, Bei-Dou; Xia, Xun-Feng; Liu, Ya-Ru
2013-08-01
In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.
Salunkhe, Vishal; van der Meer, Pieter F; de Korte, Dirk; Seghatchian, Jerard; Gutiérrez, Laura
2015-02-01
Transfusion-transmitted infections (TTI) have been greatly reduced in numbers due to the strict donor selection and screening procedures, i.e. the availability of technologies to test donors for endemic infections, and routine vigilance of regulatory authorities in every step of the blood supply chain (collection, processing and storage). However, safety improvement is still a matter of concern because infection zero-risk in transfusion medicine is non-existent. Alternatives are required to assure the safety of the transfusion product and to provide a substitution to systematic blood screening tests, especially in less-developed countries or at the war-field. Furthermore, the increasing mobility of the population due to traveling poses a new challenge in the endemic screening tests routinely used, because non-endemic pathogens might emerge in a specific population. Pathogen reduction treatments sum a plethora of active approaches to eliminate or reduce potential threatening pathogen load from blood transfusion products. Despite the success of pathogen reduction treatments applied to plasma products, there is still a long way to develop and deploy pathogen reduction treatments to cellular transfusion products (such as platelets, RBCs or even to whole blood) and there is divergence on its acceptance worldwide. While the use of pathogen reduction treatments in platelets is performed routinely in a fair number of European blood banks, most of these treatments are not (or just) licensed in the USA or elsewhere in the world. The development of pathogen reduction treatments for RBC and whole blood is still in its infancy and under clinical trials. In this review, we discuss the available and emerging pathogen reduction treatments and their advantages and disadvantages. Furthermore, we highlight the importance of characterizing standard transfusion products with current and emerging approaches (OMICS) and clinical outcome, and integrating this information on a database, thinking on the benefits it might bring in the future toward personalized transfusion therapies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong
2015-09-01
The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.
NASA Astrophysics Data System (ADS)
Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José
2016-04-01
Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1 treatment (Control) 7.3 Mg / ha and T4 treatment with 7.1 Mg / ha. Therefore, in the mixed system with two drains the best results were obtained.
In-Situ Groundwater Treatment Technology Using Biodegradation
1987-05-01
ice, Park Drive, P.O. Box 12297, Research Trianglc Pgrk: NC 1 ?770Q 17. . COSAI COOES IL. SUBJEC TERMS (Coas on MuWMz d1 naicnay &W MO uf by I I, a...OF TABLES v 1 . ABSTRACT 1 2. INTRODUCTION 2 3. SUBSURFACE MICROBIOLOGY 5 3.1 Subsurface Biological Activity 5 3.2 Environmental Factors 5 3.2.1...Sulfate during the First Five Months 30 5.2 Column 1 Effluent Versus Time Data for Carbon Tetrachloride, Bromodichloromethane, and Bromoform during the
Ujang, Z; Soedjono, E; Salim, M R; Shutes, R B
2005-01-01
Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.
Vasquez, A K; Nydam, D V; Capel, M B; Eicker, S; Virkler, P D
2017-04-01
The purpose was to compare immediate intramammary antimicrobial treatment of all cases of clinical mastitis with a selective treatment protocol based on 24-h culture results. The study was conducted at a 3,500-cow commercial farm in New York. Using a randomized design, mild to moderate clinical mastitis cases were assigned to either the blanket therapy or pathogen-based therapy group. Cows in the blanket therapy group received immediate on-label intramammary treatment with ceftiofur hydrochloride for 5 d. Upon receipt of 24 h culture results, cows in the pathogen-based group followed a protocol automatically assigned via Dairy Comp 305 (Valley Agricultural Software, Tulare, CA): Staphylococcus spp., Streptococcus spp., or Enterococcus spp. were administered on-label intramammary treatment with cephapirin sodium for 1 d. Others, including cows with no-growth or gram-negative results, received no treatment. A total of 725 cases of clinical mastitis were observed; 114 cows were not enrolled due to severity. An additional 122 cases did not meet inclusion criteria. Distribution of treatments for the 489 qualifying events was equal between groups (pathogen-based, n = 246; blanket, n = 243). The proportions of cases assigned to the blanket and pathogen-based groups that received intramammary therapy were 100 and 32%, respectively. No significant differences existed between blanket therapy and pathogen-based therapy in days to clinical cure; means were 4.8 and 4.5 d, respectively. The difference in post-event milk production between groups was not statistically significant (blanket therapy = 34.7 kg; pathogen-based = 35.4 kg). No differences were observed in test-day linear scores between groups; least squares means of linear scores was 4.3 for pathogen-based cows and 4.2 for blanket therapy cows. Odds of survival 30 d postenrollment was similar between groups (odds ratio of pathogen-based = 1.6; 95% confidence interval: 0.7-3.7) as was odds of survival to 60 d (odds ratio = 1.4; 95% confidence interval: 0.7-2.6). The one significant difference found for the effect of treatment was in hospital days; pathogen-based cows experienced, on average, 3 fewer days than blanket therapy cows. A majority (68.5%) of moderate and mild clinical cases would not have been treated if all cows on this trial were enrolled in a pathogen-based protocol. The use of a strategic treatment protocol based on 24-h postmastitis pathogen results has potential to efficiently reduce antimicrobial use. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Harvey, Ronald W.; Metge, David W.; Sheets, Rodney A.; Jasperse, Jay
2011-01-01
A major benefit of riverbank filtration (RBF) is that it provides a relatively effective means for pathogen removal. There is a need to conduct more injection-and-recovery transport studies at operating RBF sites in order to properly assess the combined effects of the site heterogeneities and ambient physicochemical conditions, which are difficult to replicate in the lab. For field transport studies involving pathogens, there is considerable interest in using fluorescent carboxylated microspheres (FCM) as surrogates, because they are chemically inert, negatively charged, easy to detect, available in a wide variety of sizes, and have been found to be nonhazardous in tracer applications. Although there have been a number of in-situ studies comparing the subsurface transport behaviors of FCM to those of bacteria and viruses, much less is known about their suitability for investigations of protozoa. Oocysts of the intestinal protozoan pathogen Cryptosporidium spp are of particular concern for many RBF operations because of their ubiquity and persistence in rivers and high resistance to chlorine disinfection. Although microspheres often have proven to be less-than-ideal analogs for capturing the abiotic transport behavior of viruses and bacteria, there is encouraging recent evidence regarding use of FCM as surrogates for C. parvum oocysts. This chapter discusses the potential of fluorescent microspheres as safe and easy-to-detect surrogates for evaluating the efficacy of RBF operations for removing pathogens, particularly Cryptosporidium, from source waters at different points along the flow path.
The value of pathogen information in treating clinical mastitis.
Cha, Elva; Smith, Rebecca L; Kristensen, Anders R; Hertl, Julia A; Schukken, Ynte H; Tauer, Loren W; Welcome, Frank L; Gröhn, Yrjö T
2016-11-01
The objective of this study was to determine the economic value of obtaining timely and more accurate clinical mastitis (CM) test results for optimal treatment of cows. Typically CM is first identified when the farmer observes recognisable outward signs. Further information of whether the pathogen causing CM is Gram-positive, Gram-negative or other (including no growth) can be determined by using on-farm culture methods. The most detailed level of information for mastitis diagnostics is obtainable by sending milk samples for culture to an external laboratory. Knowing the exact pathogen permits the treatment method to be specifically targeted to the causation pathogen, resulting in less discarded milk. The disadvantages are the additional waiting time to receive test results, which delays treating cows, and the cost of the culture test. Net returns per year (NR) for various levels of information were estimated using a dynamic programming model. The Value of Information (VOI) was then calculated as the difference in NR using a specific level of information as compared to more detailed information on the CM causative agent. The highest VOI was observed where the farmer assumed the pathogen causing CM was the one with the highest incidence in the herd and no pathogen specific CM information was obtained. The VOI of pathogen specific information, compared with non-optimal treatment of Staphylococcus aureus where recurrence and spread occurred due to lack of treatment efficacy, was $20.43 when the same incorrect treatment was applied to recurrent cases, and $30.52 when recurrent cases were assumed to be the next highest incidence pathogen and treated accordingly. This indicates that negative consequences associated with choosing the wrong CM treatment can make additional information cost-effective if pathogen identification is assessed at the generic information level and if the pathogen can spread to other cows if not treated appropriately.
Swain, S; Harnik, T; Mejia-Chang, M; Hayden, K; Bakx, W; Creque, J; Garbelotto, M
2006-10-01
To determine the effects of heat and composting treatments on the viability of the plant pathogen Phytophthora ramorum grown on both artificial and various natural substrates. Phytophthora ramorum was grown on V8 agar, inoculated on bay laurel leaves (Umbellularia californica) and on woody tissues of coast live oak (Quercus agrifolia). Effects on growth, viability and survival were measured as a result of treatment in ovens and compost piles. Direct plating onto PARP medium and pear-baiting techniques were used to determine post-treatment viability. No P. ramorum was recovered at the end of the composting process, regardless of the isolation technique used. By using a PCR assay designed to detect the DNA of P. ramorum, we were able to conclude the pathogen was absent from mature compost and not merely suppressed or dormant. Some heat and composting treatments eliminate P. ramorum to lower than detectable levels on all substrates tested. Composting is an effective treatment option for sanitization of P. ramorum-infected plant material. Assaying for pathogen viability in compost requires a direct test capable of differentiating between pathogen suppression and pathogen elimination.
Chen, Zhao; Jiang, Xiuping
2017-03-01
Animal wastes have high nutritional value as biological soil amendments of animal origin for plant cultivation in sustainable agriculture; however, they can be sources of some human pathogens. Although composting is an effective way to reduce pathogen levels in animal wastes, pathogens may still survive under certain conditions and persist in the composted products, which potentially could lead to fresh produce contamination. According to the U.S. Food and Drug Administration Food Safety Modernization Act, alternative treatments are recommended for reducing or eliminating human pathogens in raw animal manure. Physical heat treatments can be considered an effective method to inactivate pathogens in animal wastes. However, microbial inactivation in animal wastes can be affected by many factors, such as composition of animal wastes, type and physiological stage of the tested microorganism, and heat source. Following some current processing guidelines for physical heat treatments may not be adequate for completely eliminating pathogens from animal wastes. Therefore, this article primarily reviews the microbiological safety and economic value of physically heat-treated animal wastes as biological soil amendments.
Performance of a pilot showcase of different wetland systems in an urban setting in Singapore.
Quek, B S; He, Q H; Sim, C H
2015-01-01
The Alexandra Wetlands, part of PUB's Active, Beautiful, Clean Waters (ABC Waters) Programme, showcase a surface flow wetland, an aquatic pond and a sub-surface flow wetland on a 200 m deck built over an urban drainage canal. Water from the canal is pumped to a sedimentation basin, before flowing in parallel to the three wetlands. Water quality monitoring was carried out monthly from April 2011 to December 2012. The order of removal efficiency is sub-surface flow (81.3%) >aquatic pond (58.5%) >surface flow (50.7%) for total suspended solids (TSS); sub-surface (44.9%) >surface flow (31.9%) >aquatic pond (22.0%) for total nitrogen (TN); and surface flow (56.7%) >aquatic pond (39.8%) >sub-surface flow (5.4%) for total phosphorus (TP). All three wetlands achieved the Singapore stormwater treatment objectives (STO) for TP removal, but only the sub-surface flow wetland met the STO for TSS, and none met the STO for TN. Challenges in achieving satisfactory performance include inconsistent feed water quality, undesirable behaviour such as fishing, release of pets and feeding of animals in the wetlands, and canal dredging during part of the monitoring period. As a pilot showcase, the Alexandra Wetlands provide useful lessons for implementing multi-objective wetlands in an urban setting.
Contaminated environments in the subsurface and bioremediation: organic contaminants.
Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F
1997-07-01
Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.
LONG-TERM PERFORMANCE OF PERMEABLE REACTIVE BARRIERS: AN UPDATE ON A U.S. MULTI-AGENCY INITIATIVE
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are a potentially more cost effective treatment option at seve...
NASA Astrophysics Data System (ADS)
Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.
2015-02-01
Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.
NASA Astrophysics Data System (ADS)
Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.
2014-09-01
Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.
Controlling Fluid Flow in the Subsurface through Ureolysis-Controlled Mineral Precipitation
NASA Astrophysics Data System (ADS)
Gerlach, R.; Phillips, A. J.; Cunningham, A. B.; Spangler, L.
2016-12-01
In situ urea hydrolysis has been used by us successfully to manipulate the carbonate alkalinity and control the precipitation of carbonate minerals. Urea hydrolysis can be promoted using microbial cells, enzymes or thermal energy. This technology can be used to mitigate leakage pathways, seal fractures or control fluid transport in the subsurface in hydrocarbon production, enhanced geothermal energy storage, carbon sequestration, nuclear waste disposal, etc. We have completed two field demonstrations of the urea hydrolysis-controlled in situ mineral precipitation technology. The first demonstration showed fracture sealing was possible in a sandstone formation approx. 1120' below ground surface (bgs) and that the fracture had increased resistance to re-fracturing after mineralization treatment. The second field demonstration was performed in a well with an identified channel in the cement near the wellbore at approx. 1020' bgs. The in situ mineralization treatment resulted in reduced pressure decay during shut in periods and reduced injectivity. In addition, a noticeable difference was observed in the solids percentage in the ultrasonic imaging logs before and after biomineralization treatment. The presentation will summarize and put into context the field and our recent laboratory research focusing on permeability manipulation using the in situ ureolysis-driven mineralization technology under ambient and subsurface pressure conditions. We have demonstrated permeability reductions of 3-6 orders of magnitude in 100 µm to 4mm gaps between shale, sandstone and cement/steel interfaces.
Characterizing variable biogeochemical changes during the treatment of produced oilfield waste.
Hildenbrand, Zacariah L; Santos, Inês C; Liden, Tiffany; Carlton, Doug D; Varona-Torres, Emmanuel; Martin, Misty S; Reyes, Michelle L; Mulla, Safwan R; Schug, Kevin A
2018-09-01
At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management. Copyright © 2018 Elsevier B.V. All rights reserved.
Detection and treatment of chemical weapons and/or biological pathogens
Mariella Jr., Raymond P.
2004-09-07
A system for detection and treatment of chemical weapons and/or biological pathogens uses a detector system, an electrostatic precipitator or scrubber, a circulation system, and a control. The precipitator or scrubber is activated in response to a signal from the detector upon the detection of chemical weapons and/or biological pathogens.
Multidrug-Resistant Pathogens in Hospitalized Syrian Children
Kassem, Diana Faour; Hoffmann, Yoav; Shahar, Naama; Ocampo, Smadar; Salomon, Liora; Zonis, Zeev
2017-01-01
Since 2013, wounded and ill children from Syria have received treatment in Israel. Screening cultures indicated that multidrug-resistant (MDR) pathogens colonized 89 (83%) of 107 children. For 58% of MDR infections, the pathogen was similar to that identified during screening. MDR screening of these children is valuable for purposes of isolation and treatment. PMID:27618479
Multidrug-Resistant Pathogens in Hospitalized Syrian Children.
Kassem, Diana Faour; Hoffmann, Yoav; Shahar, Naama; Ocampo, Smadar; Salomon, Liora; Zonis, Zeev; Glikman, Daniel
2017-01-01
Since 2013, wounded and ill children from Syria have received treatment in Israel. Screening cultures indicated that multidrug-resistant (MDR) pathogens colonized 89 (83%) of 107 children. For 58% of MDR infections, the pathogen was similar to that identified during screening. MDR screening of these children is valuable for purposes of isolation and treatment.
Land Application of Wastes: An Educational Program. Pathogens - Module 9.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module is intended to help engineers evaluate the relative health risks from pathogens at land treatment sites versus conventional waste treatment systems. Among the topics considered are the following: (1) the relationship between survival time of pathogens and the chance of disease transmission to humans; (2) the factors that favor survival…
Cabrera, J Alfonso; Wang, Dong; Schneider, Sally M; Hanson, Bradley D
2012-05-01
Many California grape growers use preplant fumigation to ensure uniform and healthy grapevine establishment in replant situations. A field study was conducted to evaluate the performance of subsurface drip-applied chemical alternatives to methyl bromide on plant-parasitic nematodes, plant vigor and fruit yield during the 6 year period following replanting. Subsurface drip fumigation with 1,3-dichloropropene plus chloropicrin and with iodomethane plus chloropicrin had generally similar nematicide activity as methyl bromide in three grape types, while sodium azide was less effective. The combination of 1,3-dichloropropene plus chloropicrin enhanced vine vigor similarly to methyl bromide. However, all plots treated with alternative fumigants produced less fruit yield than methyl bromide over the 4 years of evaluation. Subsurface drip fumigation with alternative chemicals to methyl bromide generally provided adequate management of plant-parasitic nematodes during the vine establishment period. However, further research is required to increase the performance of alternative chemicals against other components of the replant problem, as grape yield in vines grown in the alternative treatments was lower than in methyl bromide. Copyright © 2011 Society of Chemical Industry.
Kessels, J A; Cha, E; Johnson, S K; Welcome, F L; Kristensen, A R; Gröhn, Y T
2016-05-01
This study used an existing dynamic optimization model to compare costs of common treatment protocols and J5 vaccination for clinical mastitis in US dairy herds. Clinical mastitis is an infection of the mammary gland causing major economic losses in dairy herds due to reduced milk production, reduced conception, and increased risk of mortality and culling for infected cows. Treatment protocols were developed to reflect common practices in dairy herds. These included targeted therapy following pathogen identification, and therapy without pathogen identification using a broad-spectrum antimicrobial or treating with the cheapest treatment option. The cost-benefit of J5 vaccination was also estimated. Effects of treatment were accounted for as changes in treatment costs, milk loss due to mastitis, milk discarded due to treatment, and mortality. Following ineffective treatments, secondary decisions included extending the current treatment, alternative treatment, discontinuing treatment, and pathogen identification followed by recommended treatment. Average net returns for treatment protocols and vaccination were generated using an existing dynamic programming model. This model incorporates cow and pathogen characteristics to optimize management decisions to treat, inseminate, or cull cows. Of the treatment protocols where 100% of cows received recommended treatment, pathogen-specific identification followed by recommended therapy yielded the highest average net returns per cow per year. Out of all treatment scenarios, the highest net returns were achieved with selecting the cheapest treatment option and discontinuing treatment, or alternate treatment with a similar spectrum therapy; however, this may not account for the full consequences of giving nonrecommended therapies to cows with clinical mastitis. Vaccination increased average net returns in all scenarios. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
High performance constructed wetlands for cold climates.
Jenssen, Petter D; Maehlum, Trend; Krogstad, Tore; Vråle, Lasse
2005-01-01
In 1991, the first subsurface flow constructed wetland for treatment of domestic wastewater was built in Norway. Today, this method is rapidly becoming a popular method for wastewater treatment in rural Norway. This is due to excellent performance even during winter and low maintenance. The systems can be constructed regardless of site conditions. The Norwegian concept for small constructed wetlands is based on the use of a septic tank followed by an aerobic vertical down-flow biofilter succeeded by a subsurface horizontal-flow constructed wetland. The aerobic biofilter, prior to the subsurface flow stage, is essential to remove BOD and achieve nitrification in a climate where the plants are dormant during the cold season. When designed according to present guidelines a consistent P-removal of > 90% can be expected for 15 years using natural iron or calcium rich sand or a new manufactured lightweight aggregate with P-sorption capacities, which exceeds most natural media. When the media is saturated with P it can be used as soil conditioner and P-fertilizer. Nitrogen removal in the range of 40-60% is achieved. Removal of indicator bacteria is high and < 1000 thermotolerant coliforms/100 ml is normally achieved.
2007-03-01
subsurface. The substrate is typically molasses, but other substrates can be used, including high fructose corn syrup , whey, etc. Through subsurface...solution, typically consisting of a carbohydrate such as molasses, whey, high fructose corn syrup , lactate, butyrate, or benzoate. The technology alters...lb of PCE Treated Molasses 0.20 – 0.35 0.16 Sugar ( corn syrup ) 0.25 – 0.30 0.4 Sodium Lactate 1.25 – 1.46 NA Whey (powdered, dry) 1.17 NA Whey
Feasibility of using ornamental plants in subsurface flow wetlands for domestic wastewater treatment
Marco A. Belmont
2000-01-01
Constructed wetlands are possible low-cost solutions for treating domestic and industrial wastewater in developing countries such as Mexico. However, treatment of wastewater is not a priority in most developing countries unless communities can derive economic benefit from the water resources that are created by the treatment process. As part of our studies directed at...
The integration of constructed wetlands into a treatment system for airport runoff.
Revitt, D M; Worral, P; Brewer, D
2001-01-01
A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6 degrees C and 20 degrees C.
Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems
Ezeuko, C C; Sen, A; Gates, I D
2013-01-01
Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434
NASA Astrophysics Data System (ADS)
Nelson, M.; Alling, A.; Dempster, W. F.; van Thillo, M.; Allen, John
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens ™" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.
UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water
Jones, Lisa A.; Worobo, Randy W.
2014-01-01
Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253
UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.
Jones, Lisa A; Worobo, Randy W; Smart, Christine D
2014-02-01
Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.
Alternative Treatment Technologies – Working With the Pathogen Equivalency Committee
Under current Federal regulations (40 CFR 503), municipal sludge must be treated prior to land application. The regulations identify two classes of treatment with respect to pathogen reduction: Class B (three alternatives) which provides a minimum acceptable level of treatment;...
NASA Astrophysics Data System (ADS)
Rust, C.; Schulze-Makuch, D.; Bowman, R.; Meier, D.
2005-12-01
Pathogenic bacteria, viruses, and protozoans tend to be negatively charged in the pH range of most ground waters. Thus, naturally occurring and modified materials such as surfactant-modified zeolites (SMZ), which have net positive surface charges and hydrophobic properties, are suitable as barriers to impede pathogen migration in aquifer systems. In our experiments SMZ has been used to remove E. coli and the bacteriophage MS-2 from sewage water with a high success rate ( E. coli 100%, MS-2 > 90%). Testing was conducted both in the laboratory and the field. Laboratory experiments were conducted to test the removal efficiency of SMZ for Giardia intestinales using the Giardia cysts and microsphere analogs. The SMZ was effective at removing Giardia intestinales cysts from the groundwater, but removal rates were not as high as for bacteria and viruses in the earlier experiments. The removal efficiency varied with the particular formulation of the SMZ used. The most effective SMZ formulation is being further tested at our field site using water amended with microspheres to simulate Giardia behavior. The field site is an existing multiple well site at the University of Idaho in Moscow. The wells are completed in the Lolo Basalt Formation; a highly heterogeneous and anisotropic fractured basalt aquifer system typical of the subsurface of most of eastern Washington and northeastern Oregon. The SMZ pathogen filter is installed directly in the well bore and the concentrations of microsphere-amended ground water are measured before and after filtration. Pumping over an extended period is continuing in order to test the lifetime of our prototype filter system. Our tests and results are targeted at developing a prototype filter system for removing a multitude of human pathogens in drinking water.
Contamination of produce with human pathogens: sources and solutions
USDA-ARS?s Scientific Manuscript database
Outbreaks of foodborne illnesses associated with the presence of human pathogens have led to increased concern about the prevalence of pathogens in the environment and the vulnerability of fresh produce to contamination by these pathogens. As the FDA strives to mandate treatments to reduce pathogen...
Balkhair, Khaled S.
2015-01-01
Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571
Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.
Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H
2011-01-01
Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p < 0.05); rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p < 0.05). Moreover, the increase of soil NO₃-N from early to late spring in rS was significantly lower than the S treatment (p < 0.05). This study suggests that kC and PF are effective in reducing NO₃-N loss, but these systems could lead to concerns relative to grain yield loss and change in farming practices. Management strategies for kC need further study to achieve reasonable corn yield. The effectiveness of rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability
NASA Astrophysics Data System (ADS)
Grimm, R. E.; Marchi, S.
2018-03-01
Intense bombardment is considered characteristic of the Hadean and early Archean eons, yet some detrital zircons indicate that near-surface water was present and thus at least intervals of clement conditions may have existed. We investigate the habitability of the top few kilometers of the subsurface by updating a prior approach to thermal evolution of the crust due to impact heating, using a revised bombardment history, a more accurate thermal model, and treatment of melt sheets from large projectiles (>100 km diameter). We find that subsurface habitable volume grows nearly continuously throughout the Hadean and early Archean (4.5-3.5 Ga) because impact heat is dissipated rapidly compared to the total duration and waning strength of the bombardment. Global sterilization was only achieved using an order of magnitude more projectiles in 1/10 the time. Melt sheets from large projectiles can completely resurface the Earth several times prior to ∼4.2 Ga but at most once since then. Even in the Hadean, melt sheets have little effect on habitability because cooling times are short compared to resurfacing intervals, allowing subsurface biospheres to be locally re-established by groundwater infiltration between major impacts. Therefore the subsurface is always habitable somewhere, and production of global steam or silicate-vapor atmospheres are the only remaining avenues to early surface sterilization by bombardment.
Design and hydrologic performance of a tile drainage treatment wetland in Minnesota, USA
USDA-ARS?s Scientific Manuscript database
Treatment wetlands are increasingly needed to remove nitrate from agricultural drainage water to protect downstream waters such as the Gulf of Mexico. A 0.10 ha wetland was designed,installed and monitored to treat subsurface drainage flow from farmland in Minnesota, USA. This project sought to deve...
Degradation of benzotriazole and benzothiazole in treatment wetlands and by artificial sunlight.
Felis, Ewa; Sochacki, Adam; Magiera, Sylwia
2016-11-01
Laboratory-scale experiments were performed using unsaturated subsurface-flow treatment wetlands and artificial sunlight (with and without TiO 2 ) to study the efficiency of benzotriazole and benzothiazole removal and possible integration of these treatment methods. Transformation products in the effluent from the treatment wetlands and the artificial sunlight reactor were identified by high performance liquid chromatography coupled with tandem mass spectrometry. The removal of benzothiazole in the vegetated treatment wetlands was 99.7%, whereas the removal of benzotriazole was 82.8%. The vegetation positively affected only the removal of benzothiazole. The major transformation products in the effluents from the treatment wetlands were methylated and hydroxylated derivatives of benzotriazole, and hydroxylated derivatives of benzothiazole. Hydroxylation was found to be the main process governing the transformation pathway for both compounds in the artificial sunlight experiment (with and without TiO 2 ). Benzotriazole was not found to be susceptible to photodegradation in the absence of TiO 2 . The integration of the sunlight-induced processes (with TiO 2 ) with subsurface-flow treatment wetlands caused further elimination of the compounds (42% for benzotriazole and 58% for benzothiazole). This was especially significant for the elimination of benzotriazole, because the removal of this compound was 96% in the coupled processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
PATHOGENIC MICROORGANISMS AND THEIR FATE ON/IN THE ENVIRONMENT
Major sources of human and animal pathogens in the environment originate from animal feeding operations, decentralized wastewater treatment systems (e.g., septic tanks), wastewater treatment plants, and sewage sludges (biosolids).
He, Zhengdi; Chen, Lingling; Shimada, Yasushi; Tagami, Junji; Ruan, Shuangchen
2017-03-31
This study aimed to investigate self-etching bonding systems penetrating in sub-surface dentin layer after Er:YAG laser irradiation and micro-shear bonding durability over a period of 1 year. Dentin slices obtained from extracted human third molars were prepared. Two self-etching adhesive systems were evaluated: Clearfil SE Bond and Clearfil Tri-S Bond. Specimens were tested for micro-shear bond strength with one of the following treatments: Er:YAG laser irradiation and 600-grit silicon paper polishing at 24 h, 7 days, 6 months and 1 year. The adhesive interfaces between bonding agents and lased cervical dentin were studied. No hybrid layer could be observed for lased dentin. The slim resin tags could be seen penetrating through the lased subsurface layer. Bond strength to lased dentin after 6 months and 1 year were significantly decreased (p<0.05).
Bioremediation of contaminated groundwater
Hazen, Terry C.; Fliermans, Carl B.
1995-01-01
An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.
Bioremediation of contaminated groundwater
Hazen, T.C.; Fliermans, C.B.
1995-01-24
An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.
NASA Astrophysics Data System (ADS)
Wildey, R. A.; Ballestero, T. P.; Roseen, R. M.; Houle, J.
2005-05-01
In our efforts to improve the quality of runoff entering our streams and waterways, stormwater management measures (or BMPs) are being implemented at a rapid pace. Usually designed to treat one or more specific types of contamination or loading, these measures may have unintended consequences that are not well understood. One issue that has not been fully explored is the potential effect these systems have on microbial contamination of the treated runoff. This study evaluates 11 types of treatment systems and their impact on E. coli and Enterococci contamination. Recent research has demonstrated that near-shore sediment may act as a continuous source of bacterial loading in the overlying waters, rather than bacterial loading being solely a temporal, storm-driven phenomenon. Similarly, stormwater management measures that utilize a soil media for filtration or incorporate a sediment sump may also provide conditions conducive to the incubation of fecal coliforms that can then be released into the environment during runoff events. Following with EPA regulatory guidelines for receiving waters, E. coli and Enterococci are used as surrogates for the presence of other potential disease-causing pathogens typically associated with mammalian and avian enteric bacteria. The stormwater management measures being investigated include: subsurface infiltration, surface sand filter, standard detention pond, bioretention area, hydrodynamic separation, subsurface gravel wetland, street sweeping, and vegetated swale. An adjacent porous parking area and a standard asphalt lot that drains to a tree filter are similarly monitored. Influent is supplied by runoff generated by a 9-acre commuter parking lot at the University of New Hampshire in Durham, NH. This influent is distributed equally to the different treatment devices that operate in parallel. Water quality parameters (DO, pH, specific conductivity, temperature) and flow are continuously monitored upstream from the distribution chamber (influent) and downstream from each device (effluent). Automated samplers are used to collect samples during storm events and grab samples are taken between storm events to evaluate the effect of each device or BMP on bacterial populations. Initial data indicate that influent concentrations of fecal coliforms for this parking area often exceed EPA limits for Class A waterbodies. Several of the treatment units appear to substantially reduce (>90% reduction) bacterial loading, while others appear to increase loading during some storm events (>500% increase). This study is on-going and additional sample events from the Spring of 2005 will also be presented.
Lu, Xin; Zhang, Xu-Xiang; Wang, Zhu; Huang, Kailong; Wang, Yuan; Liang, Weigang; Tan, Yunfei; Liu, Bo; Tang, Junying
2015-01-01
This study used 454 pyrosequencing, Illumina high-throughput sequencing and metagenomic analysis to investigate bacterial pathogens and their potential virulence in a sewage treatment plant (STP) applying both conventional and advanced treatment processes. Pyrosequencing and Illumina sequencing consistently demonstrated that Arcobacter genus occupied over 43.42% of total abundance of potential pathogens in the STP. At species level, potential pathogens Arcobacter butzleri, Aeromonas hydrophila and Klebsiella pneumonia dominated in raw sewage, which was also confirmed by quantitative real time PCR. Illumina sequencing also revealed prevalence of various types of pathogenicity islands and virulence proteins in the STP. Most of the potential pathogens and virulence factors were eliminated in the STP, and the removal efficiency mainly depended on oxidation ditch. Compared with sand filtration, magnetic resin seemed to have higher removals in most of the potential pathogens and virulence factors. However, presence of the residual A. butzleri in the final effluent still deserves more concerns. The findings indicate that sewage acts as an important source of environmental pathogens, but STPs can effectively control their spread in the environment. Joint use of the high-throughput sequencing technologies is considered a reliable method for deep and comprehensive overview of environmental bacterial virulence. PMID:25938416
NASA Astrophysics Data System (ADS)
Becker, T.; Clark, J. F.
2012-12-01
Coupled with the unpredictability of a changing climate, the projected growth in human population over the next century requires new and innovative ways to augment already-depleted water supplies. An increasingly popular and promising development is managed aquifer recharge (MAR), a cost-effective method of intentionally storing potable water in groundwater aquifers at engineered sites worldwide. Reclaimed (or recycled) water, defined as cleaned and treated wastewater, will account for a larger portion of MAR water in future years. A crucial component for managing groundwater recharged with reclaimed water is its subsurface travel time. The California Department of Public Health (CDPH), with the most recent draft of regulations issued on November 21, 2011, requires the application of groundwater tracers to demonstrate subsurface residence time. Residence time increases the quality of reclaimed water via soil-aquifer treatment (SAT), which includes mechanisms such as sorption, biological degradation, and microbial inactivation to remove potential contaminants or pathogens. This study addresses the need for an appropriate tracer to determine groundwater residence times near MAR facilities. Standard shallow groundwater dating techniques, such as T/3He and chlorofluorocarbon (CFC) methods, cannot be used because their uncertainties are typically ± 2 years, longer than the target CDPH retention time of ~6 months. These methods also cannot map preferential flow paths. Sulfur hexafluoride (SF6), a nonreactive synthetic gas, is well-established as a deliberate tracer for determining subsurface travel time; however, SF6 is a very strong greenhouse gas and the California Air Resources Board (CARB) is regulating its emission. Other tracers, such as noble gas isotopes, that have successfully determined subsurface retention times are impractical due to their high cost. A multi-tracer experiment at the San Gabriel Spreading Grounds test basin (Montebello Forebay, Los Angeles County, CA, USA) has been in progress since September 6, 2011, following injection of boric acid enriched in boron-10 (10B) and bromide (Br-) tracers. Tracer concentrations are collected at 9 monitoring wells that have pre-experiment estimated travel times between 0.5 to 180 days. Results indicate that 10B-enriched boric acid is an effective deliberate tracer at MAR sites; however, the ion's movement is slightly retarded relative to bromide by the substrate. 10B/Br- travel time ratios range from 1 to 1.4. In addition to the two deliberate geochemical tracers, heat is being evaluated as a possible intrinsic tracer at MAR sites. At the time of the experiment (late summer), reclaimed water was significantly warmer (~20°F) than the native groundwater as it entered the system. Time series are developed from loggers outfitted at each monitoring well, with measurements recorded hourly accurate to one thousandth of a degree. Results are similar to 10B & Br- travel times and validate the potential of heat as an intrinsic tracer.
Biswal, Basanta Kumar; Mazza, Alberto; Masson, Luke; Gehr, Ronald
2013-01-01
Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands. PMID:23160132
Endogenous System Microbes as Treatment Process ...
Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centralized systems to indicate the presence of fecal pathogens, but are ineffective decentralized treatment process indicators as they generally occur at levels too low to assess log reduction targets. System challenge testing by spiking with high loads of fecal indicator organisms, like MS2 coliphage, has limitations, especially for large systems. Microbes that are endogenous to the decentralized system, occur in high abundances and mimic removal rates of bacterial, viral and/or parasitic protozoan pathogens during treatment could serve as alternative treatment process indicators to verify log reduction targets. To identify abundant microbes in wastewater, the bacterial and viral communities were examined using deep sequencing. Building infrastructure-associated bacteria, like Zoogloea, were observed as dominant members of the bacterial community in graywater. In blackwater, bacteriophage of the order Caudovirales constituted the majority of contiguous sequences from the viral community. This study identifies candidate treatment process indicators in decentralized systems that could be used to verify log removal during treatment. The association of the presence of treatment process indic
Larson, Rebecca A; Safferman, Steven I
2012-01-01
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Bao, J; Huang, M
Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less
Blaschke, A P; Derx, J; Zessner, M; Kirnbauer, R; Kavka, G; Strelec, H; Farnleitner, A H; Pang, L
2016-12-15
Contamination of groundwater by pathogenic viruses from small biological wastewater treatment system discharges in remote areas is a major concern. To protect drinking water wells against virus contamination, safe setback distances are required between wastewater disposal fields and water supply wells. In this study, setback distances are calculated for alluvial sand and gravel aquifers for different vadose zone and aquifer thicknesses and horizontal groundwater gradients. This study applies to individual households and small settlements (1-20 persons) in decentralized locations without access to receiving surface waters but with the legal obligation of biological wastewater treatment. The calculations are based on Monte Carlo simulations using an analytical model that couples vertical unsaturated and horizontal saturated flow with virus transport. Hydraulic conductivities and water retention curves were selected from reported distribution functions depending on the type of subsurface media. The enteric virus concentration in effluent discharge was calculated based on reported ranges of enteric virus concentration in faeces, virus infectivity, suspension factor, and virus reduction by mechanical-biological wastewater treatment. To meet the risk target of <10 -4 infections/person/year, a 12 log 10 reduction was required, using a linear dose-response relationship for the total amount of enteric viruses, at very low exposure concentrations. The results of this study suggest that the horizontal setback distances vary widely ranging 39 to 144m in sand aquifers, 66-289m in gravel aquifers and 1-2.5km in coarse gravel aquifers. It also varies for the same aquifers, depending on the thickness of the vadose zones and the groundwater gradient. For vulnerable fast-flow alluvial aquifers like coarse gravels, the calculated setback distances were too large to achieve practically. Therefore, for this category of aquifer, a high level of treatment is recommended before the effluent is discharged to the ground surface. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Nelson, M; Alling, A; Dempster, W F; van Thillo, M; Allen, John
2003-01-01
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens (TM)" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Subsurface pollution is an environmental issue of great concern in the United States and around the world. Bioremediation has proven to be an effective and environmentally preferable treatment for biodegradable pollutants, such as methyl tertiary butyl ether, toluene, ethylbenze...
Transport and fate of microbial pathogens in agricultural settings
USDA-ARS?s Scientific Manuscript database
An understanding of the transport and survival of microbial pathogens (pathogens hereafter) in agricultural settings is needed to assess the risk of pathogen contamination to water and food resources, and to develop control strategies and treatment options. However, many knowledge gaps still remain ...
Zaller, Johann G; Wechselberger, Katharina F; Gorfer, Markus; Hann, Patrick; Frank, Thomas; Wanek, Wolfgang; Drapela, Thomas
Earthworms (Annelida: Oligochaeta) deposit several tons per hectare of casts enriched in nutrients and/or arbuscular mycorrhizal fungi (AMF) and create a spatial and temporal soil heterogeneity that can play a role in structuring plant communities. However, while we begin to understand the role of surface casts, it is still unclear to what extent plants utilize subsurface casts. We conducted a greenhouse experiment using large mesocosms (volume 45 l) to test whether (1) soil microsites consisting of earthworm casts with or without AMF (four Glomus taxa) affect the biomass production of 11 grassland plant species comprising the three functional groups grasses, forbs, and legumes, (2) different ecological groups of earthworms (soil dwellers- Aporrectodea caliginosa vs. vertical burrowers- Lumbricus terrestris ) alter potential influences of soil microsites (i.e., four earthworms × two subsurface microsites × two AMF treatments). Soil microsites were artificially inserted in a 25-cm depth, and afterwards, plant species were sown in a regular pattern; the experiment ran for 6 months. Our results show that minute amounts of subsurface casts (0.89 g kg -1 soil) decreased the shoot and root production of forbs and legumes, but not that of grasses. The presence of earthworms reduced root biomass of grasses only. Our data also suggest that subsurface casts provide microsites from which root AMF colonization can start. Ecological groups of earthworms did not differ in their effects on plant production or AMF distribution. Taken together, these findings suggest that subsurface earthworm casts might play a role in structuring plant communities by specifically affecting the growth of certain functional groups of plants.
Xu, Xiang-ru; Luo, Kun; Zhou, Bao-ku; Wang, Jing-kuan; Zhang, Wen-ju; Xu, Ming-gang
2015-07-01
The characteristics and changes of soil organic carbon (SOC) and total nitrogen (TN) in different size particles of soil under different agricultural practices are the basis for better understanding soil carbon sequestration of mollisols. Based on a 31-year long-term field experiment located at the Heilongjiang Academy of Agricultural Sciences (Harbin) , soil samples under six treatments were separated by size-fractionation method to explore changes and distribution of SOC and TN in coarse sand, fine sand, silt and clay from the top layer (0-20 cm) and subsurface layer (20-40 cm). Results showed that long-term application of manure (M) increased the percentages of SOC and TN in coarse sand and clay size fractions. In the top layer, application of nitrogen, phosphorus and potassium fertilizers combined with manure (NPKM) increased the percentages of SOC and TN in coarse sand by 191.3% and 179.3% compared with the control (CK), whereas M application increased the percentages of SOC and TN in clay by 45% and 47% respectively. For subsurface layers, the increase rates of SOC and TN in corresponding parts were lower than that in top layer. In the surface and subsurface layers, the percentages of SOC storage in silt size fraction accounted for 42%-63% and 48%-54%, TN storage accounted for 34%-59% and 41%-47%, respectively. The enrichment factors of SOC and TN in coarse sand and clay fractions of surface layers increased significantly under the treatments with manure. The SOC and TN enrichment factors were highest in the NPKM, being 2.30 and 1.88, respectively, while that in the clay fraction changed little in the subsurface layer.
Franke, Christiane; Rechenburg, Andrea; Baumanns, Susanne; Willkomm, Marlene; Christoffels, Ekkehard; Exner, Martin; Kistemann, Thomas
2009-05-01
Different land use patterns were investigated for their potential as non-point sources of coliphage emissions into surface waters. Water samples were taken regularly at five locations in the upper reaches of the river Swist, Germany. Samples of surface and subsurface run-off were taken within the same catchment area after rainfall events using a newly developed device that made it possible to collect current concentrations of the effluent compounds. The water quality was examined for the occurrence of somatic coliphages and F(+)-specific RNA-bacteriophages as well as for various bacteria over the period of a hydrological year. The potential of various bacteria as indicators for the occurrence of phages was evaluated using statistical correlations. The load of coliphages varied depending on the land use type, but it did not differ as much as the bacterial parameters. River sections in intensively used areas turned out to be more contaminated than in less intensively used regions. The concentrations of phages from surface and subsurface run-off in most samples were quite low for all land use types and did not show conspicuous variations of surface and subsurface run-off within one land use type. Therefore, high concentrations of phages in river water cannot be explained only by non-point effluent from open ground. Following consideration of the statistical results, conventional indicator bacteria seem not to be reliable indicator organisms for coliphages and subsequently for human pathogen viruses. The detected concentrations of coliphages in several water samples of river sections surrounded by intensively used areas underpin an existing health risk in the use of river water for e.g. recreational activities or irrigation.
PERFORMANCE GOALS CASE STUDY: ELIZABETH CITY, NC
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
CONSIDERATIONS FOR INNOVATIVE REMEDIATION TECHNOLOGY EVALUATION SAMPLING PLANS
Field trials of innovative subsurface cleanup technologies require the use of integrated site characterization approaches to obtain critical design parameters, to evaluate pre-treatment contaminant distributions, and to assess process efficiency. This review focuses on the trans...
NASA Astrophysics Data System (ADS)
Flynn, Brendan P.; D'Souza, Alisha V.; Kanick, Stephen C.; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.
2013-03-01
Aminolevulinic acid (ALA)-induced Protoporphyrin IX (PpIX)-based photodynamic therapy (PDT) is an effective treatment for skin cancers including basal cell carcinoma (BCC). Topically applied ALA promotes PpIX production preferentially in tumors, and many strategies have been developed to increase PpIX distribution and PDT treatment efficacy at depths > 1mm is not fully understood. While surface imaging techniques provide useful diagnosis, dosimetry, and efficacy information for superficial tumors, these methods cannot interrogate deeper tumors to provide in situ insight into spatial PpIX distributions. We have developed an ultrasound-guided, white-light-informed, tomographics spectroscopy system for the spatial measurement of subsurface PpIX. Detailed imaging system specifications, methodology, and optical-phantom-based characterization will be presented separately. Here we evaluate preliminary in vivo results using both full tomographic reconstruction and by plotting individual tomographic source-detector pair data against US images.
Cloth-covered chiropractic treatment tables as a source of allergens and pathogenic microbes.
Evans, Marion W; Campbell, Alan; Husbands, Chris; Breshears, Jennell; Ndetan, Harrison; Rupert, Ronald
2008-03-01
Vinyl chiropractic tables have been found to harbor pathogenic bacteria, but wiping with a simple disinfection agent can significantly reduce the risk of bacteria. The aim of this study was to assess the presence of microbes and other allergens or pathogens on cloth chiropractic tables. Cloth-covered tables in a chiropractic college teaching clinic were selected. Samples were taken from the facial piece and hand rests with RODAC plates containing nutrient agar, followed by confirmatory testing when indicated. Numerous microbacteria strains were found, including Staphylococcus aureus and Propionibacterium. Allergen-producing molds, including Candida, were also found. Cloth tables were shown to contain pathogenic microbacteria and allergens. The chiropractic profession should establish an infection control protocol relevant to treatment tables and discard use of cloth-covered treatment tables in this process.
USDA-ARS?s Scientific Manuscript database
Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to ...
Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim
2012-07-01
Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens.
Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim
2012-01-01
Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens. PMID:22722243
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-08-14
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.
Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya
2015-01-01
The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222
Ternes, Thomas A; Prasse, Carsten; Eversloh, Christian Lütke; Knopp, Gregor; Cornel, Peter; Schulte-Oehlmann, Ulrike; Schwartz, Thomas; Alexander, Johannes; Seitz, Wolfram; Coors, Anja; Oehlmann, Jörg
2017-01-03
A multidisciplinary concept has been developed to compare advanced wastewater treatment processes for their efficacy of eliminating micropollutants and pathogens. The concept is based on (i) the removal/formation of selected indicator substances and their transformation products (TPs), (ii) the assessment of ecotoxicity via in vitro tests, and (iii) the removal of pathogens and antibiotic resistant bacteria. It includes substances passing biological wastewater treatment plants regulated or proposed to be regulated in the European Water Framework Directive, TPs formed in biological processes or during ozonation, agonistic/antagonistic endocrine activities, mutagenic/genotoxic activities, cytotoxic activities, further activities like neurotoxicity as well as antibiotics resistance genes, and taxonomic gene markers for pathogens. At a pilot plant, ozonation of conventionally treated wastewater resulted in the removal of micropollutants and pathogens and the reduction of estrogenic effects, whereas the in vitro mutagenicity increased. Subsequent post-treatment of the ozonated water by granular activated carbon (GAC) significantly reduced the mutagenic effects as well as the concentrations of remaining micropollutants, whereas this was not the case for biofiltration. The results demonstrate the suitability of the evaluation concept to assess processes of advanced wastewater treatment including ozonation and GAC by considering chemical, ecotoxicological, and microbiological parameters.
Guan, Jun; Liu, Shaoze; Lin, Zhaofen; Li, Wenfang; Liu, Xuefeng; Chen, Dechang
2014-01-01
Infections caused by multidrug-resistant pathogens are frequent and life threatening in critically ill patients. To investigate whether severe sepsis affects gut colonization by resistant pathogens and genetic exchange between opportunistic pathogens, we tested the intestinal-colonization ability of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain carrying the SHV-18 resistance gene and the transfer ability of the resistance gene to endogenous Escherichia coli under ceftriaxone treatment in rats with burn injury only or severe sepsis induced by burns plus endotoxin exposure. Without ceftriaxone treatment, the K. pneumoniae strain colonized the intestine in both septic and burned rats for a short time, with clearance occurring earlier in burn-only rats but never in sham burn rats. In both burned and septic rats, the colonization level of the challenge strain dropped at the beginning and then later increased during ceftriaxone treatment, after which it declined gradually. This pattern coincided with the change in resistance of K. pneumoniae to ceftriaxone during and after ceftriaxone treatment. Compared with burn-only injury, severe sepsis had a more significant effect on the change in antimicrobial resistance to ceftriaxone. Only in septic rats was the resistance gene successfully transferred from the challenge strain to endogenous E. coli during ceftriaxone treatment; the gene persisted for at least 4 weeks after ceftriaxone treatment. We concluded that severe sepsis can facilitate intestinal colonization by an exogenous resistant pathogen and the transfer of the resistance gene to a potential endogenous pathogen during antimicrobial treatment.
Risk-Based Treatment Targets for Onsite Non-Potable Water ...
This presentation presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., municipal wastewater, locally-collected greywater, rainwater, and stormwater). A probabilistic, forward Quantitative Microbial Risk Assessment (QMRA) was used to derive the pathogen log10 reduction targets (LRTs) that corresponded with an infection risk of either 10-4 per person per year (ppy) or 10-2 ppy. The QMRA accounted for variation in pathogen concentration and sporadic pathogen occurrence (when data were available) in source waters for reference pathogens Rotavirus, Adenovirus, Norovirus, Campylobacter spp., Salmonella spp., Giardia spp., and Cryptosporidium spp.. Non-potable uses included indoor use (for toilet flushing and clothes washing) with accidental ingestion of treated non-potable water (or cross connection with potable water), and unrestricted irrigation for outdoor use. Various exposure scenarios captured the uncertainty from key inputs, i.e., the pathogen concentration in source water; the volume of water ingested; and for the indoor use, the frequency of and the fraction of the population exposed to accidental ingestion. Both potable and non-potable uses required pathogen treatment for the selected waters and the LRT was generally greater for potable use than nonpotable indoor use and unrestricted irrigation. The difference in treatment requirements among source waters was driven by th
A field test of emulsified zero valent iron (EZVI) nanoparticles was conducted at Parris Island, SC, USA and was monitored for two and half years to assess the treatment of subsurface-source zone chlorinated volatile organic compounds (CVOCs) dominated by tetrachloroethene (PCE) ...
Subsurface thermal coagulation of tissues using near infrared lasers
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung Jack
Noninvasive laser therapy is currently limited primarily to cosmetic dermatological applications such as skin resurfacing, hair removal, tattoo removal and treatment of vascular birthmarks. In order to expand applications of noninvasive laser therapy, deeper optical penetration of laser radiation in tissue as well as more aggressive cooling of the tissue surface is necessary. The near-infrared laser wavelength of 1075 nm was found to be the optimal laser wavelength for creation of deep subsurface thermal lesions in liver tissue, ex vivo, with contact cooling, preserving a surface tissue layer of 2 mm. Monte Carlo light transport, heat transfer, and Arrhenius integral thermal damage simulations were conducted at this wavelength, showing good agreement between experiment and simulations. Building on the initial results, our goal is to develop new noninvasive laser therapies for application in urology, specifically for treatment of female stress urinary incontinence (SUI). Various laser balloon probes including side-firing and diffusing fibers were designed and tested for both transvaginal and transurethral approaches to treatment. The transvaginal approach showed the highest feasibility. To further increase optical penetration depth, various types and concentrations of optical clearing agents were also explored. Three cadavers studies were performed to investigate and demonstrate the feasibility of laser treatment for SUI.
Alternate energy source usage methods for in situ heat treatment processes
Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James E
2014-10-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing power to one or more subsurface heaters is described herein. The method may include monitoring one or more operating parameters of the heaters, the intermittent power source, and a transformer coupled to the intermittent power source that transforms power from the intermittent power source to power with appropriate operating parameters for the heaters; and controlling the power output of the transformer so that a constant voltage is provided to the heaters regardless of the load of the heaters and the power output provided by the intermittent power source.
Holliday, S L; Scouten, A J; Beuchat, L R
2001-10-01
Alfalfa seeds are sometimes subjected to a scarification treatment to enhance water uptake, which results in more rapid and uniform germination during sprout production. It has been hypothesized that this mechanical abrasion treatment diminishes the efficacy of chemical treatments used to kill or remove pathogenic bacteria from seeds. A study was done to compare the effectiveness of chlorine (20,000 ppm), H2O, (8%), Ca(OH)2 (1%), Ca(OH)2 (1%) plus Tween 80 (1%), and Ca(OH)2 (1%) plus Span 20 (1%) treatments in killing Salmonella and Escherichia coli O157:H7 inoculated onto control, scarified, and polished alfalfa seeds obtained from two suppliers. The influence of the presence of organic material in the inoculum carrier on the efficacy of sanitizers was investigated. Overall, treatment with 1% Ca(OH)2 was the most effective in reducing populations of the pathogens. Reduction in populations of pathogens on seeds obtained from supplier I indicate that chemical treatments are less efficacious in eliminating the pathogens on scarified seeds compared to control seeds. However, the effectiveness of chemical treatment in removing Salmonella and E. coli O157:H7 from seeds obtained from supplier 2 was not markedly affected by scarification or polishing. The presence of organic material in the inoculum carrier did not have a marked influence on the efficacy of chemicals in reducing populations of test pathogens. Additional lots of control, scarified, and polished alfalfa seeds of additional varieties need to be tested before conclusions can be drawn concerning the impact of mechanical abrasion on the efficacy of chemical treatment in removing or killing Salmonella and E. coli O157:H7.
BACTERIAL WATERBORNE PATHOGENS
Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...
Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy
2015-10-20
Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.
Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy
2012-11-27
Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.
Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.
Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su
2012-03-01
This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.
Kline, David I; Vollmer, Steven V
2011-01-01
Diseases affecting coral reefs have increased exponentially over the last three decades and contributed to their decline, particularly in the Caribbean. In most cases, the responsible pathogens have not been isolated, often due to the difficulty in isolating and culturing marine bacteria. White Band Disease (WBD) has caused unprecedented declines in the Caribbean acroporid corals, resulting in their listings as threatened on the US Threatened and Endangered Species List and critically endangered on the IUCN Red List. Yet, despite the importance of WBD, the probable pathogen(s) have not yet been determined. Here we present in situ transmission data from a series of filtrate and antibiotic treatments of disease tissue that indicate that WBD is contagious and caused by bacterial pathogen(s). Additionally our data suggest that Ampicillin could be considered as a treatment for WBD (type I).
Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G
2016-08-01
This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. Copyright © 2016. Published by Elsevier B.V.
Cloth-covered chiropractic treatment tables as a source of allergens and pathogenic microbes☆
Evans, Marion W.; Campbell, Alan; Husbands, Chris; Breshears, Jennell; Ndetan, Harrison; Rupert, Ronald
2008-01-01
Abstract Objective Vinyl chiropractic tables have been found to harbor pathogenic bacteria, but wiping with a simple disinfection agent can significantly reduce the risk of bacteria. The aim of this study was to assess the presence of microbes and other allergens or pathogens on cloth chiropractic tables. Methods Cloth-covered tables in a chiropractic college teaching clinic were selected. Samples were taken from the facial piece and hand rests with RODAC plates containing nutrient agar, followed by confirmatory testing when indicated. Results Numerous microbacteria strains were found, including Staphylococcus aureus and Propionibacterium. Allergen-producing molds, including Candida, were also found. Conclusion Cloth tables were shown to contain pathogenic microbacteria and allergens. The chiropractic profession should establish an infection control protocol relevant to treatment tables and discard use of cloth-covered treatment tables in this process. PMID:19674718
USEPA PERSPECTIVE ON CONTROLLING PATHOGENS
EPA minimizes the risk of infectious diseases from the beneficial use of sludge by requiring its treatment to reduce pathogen levels below the detection limit. How new treatment processes can be shown equivalent to ones specified in 40CFR503 will be discussed together with ways t...
CONCERNS/ISSUES OF USEPA'S ORD PATHOGEN EQUIVALENCY COMMITTEE
USEPA/ORD's emphasis is on protection of public health and good science. EPA's approach of minimizing health risks of land application by reducing pathogens below the detection limit via Class A treatment or Class B treatment followed by natural attenuation is discussed. The June...
Endogenous System Microbes as Treatment Process Indicators for Decentralized Non-potable Water Reuse
Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centraliz...
[Modern concepts of etiology, pathogenesis and treatment approaches to endo-perio lesions].
Grudianov, A I; Makeeva, M K; Piatgorskaia, N V
2013-01-01
A combination ofperiodontitis and pulp or periapical tissues inflammation in one tooth is known as endo-periodontal lesions. Such kind of lesion is serious problem of modern dentistry. It was found that pathogenic microflora of periodontal pocket and root canal of tooth with eno-perio lesion is almost the equal and consist of anaerobic microorganisms. Pathogenic effects have not only microorganisms but also their life products. Apical foramen, lateral and additional canals are physiological ways for pathogens migration. Inflammatory processes in these structures complicate each other. Lack of information among dentists about treatment possibilities of endo-perio lesions is a main reasons of extraction such kind of teeth. Simultaneous elimination of pathogens both from periodontal pocket and root canal is a key factor for effective treatment. Periodontal status is main factor for prognosis of tooth with endo-perio lesion, because of it treatment of endo-perio lesions should consist of two stages: infection elimination and regeneration of tooth-supported structures.
In Situ Biotreatment of TBA with Recirculation/Oxygenation
North, Katharine P.; Mackay, Douglas M.; Kayne, Julian S.; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B.; Scow, Kate M.
2012-01-01
The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants. PMID:23358537
In Situ Biotreatment of TBA with Recirculation/Oxygenation.
North, Katharine P; Mackay, Douglas M; Kayne, Julian S; Petersen, Daniel; Rasa, Ehsan; Rastegarzadeh, Laleh; Holland, Reef B; Scow, Kate M
2012-01-01
The potential for in situ biodegradation of tert-butyl alcohol (TBA) by creation of aerobic conditions in the subsurface with recirculating well pairs was investigated in two field studies conducted at Vandenberg Air Force Base (VAFB). In the first experiment, a single recirculating well pair with bromide tracer and oxygen amendment successfully delivered oxygen to the subsurface for 42 days. TBA concentrations were reduced from approximately 500 μg/L to below the detection limit within the treatment zone and the treated water was detected in a monitoring transect several meters downgradient. In the second experiment, a site-calibrated model was used to design a double recirculating well pair with oxygen amendment, which successfully delivered oxygen to the subsurface for 291 days and also decreased TBA concentrations to below the detection limit. Methylibium petroleiphilum strain PM1, a known TBA-degrading bacterium, was detectable at the study site but addition of oxygen had little impact on the already low baseline population densities, suggesting that there was not enough carbon within the groundwater plume to support significant new growth in the PM1 population. Given favorable hydrogeologic and geochemical conditions, the use of recirculating well pairs to introduce dissolved oxygen into the subsurface is a viable method to stimulate in situ biodegradation of TBA or other aerobically-degradable aquifer contaminants.
Tormey, Christopher A; Santhanakrishnan, Manjula; Smith, Nicole H; Liu, Jingchun; Marschner, Susanne; Goodrich, Raymond P; Hendrickson, Jeanne E
2016-04-01
Ultraviolet (UV) illumination/pathogen reduction effectively inactivates white blood cells (WBCs) in whole blood. Given that cotransfused WBCs may impact recipient immune responses, we hypothesized that pathogen reduction of whole blood may alter responses to RBC antigens. Transgenic mice expressing a model (HOD) antigen, authentic human (hGPA or KEL) antigens, or natural fluorescence (uGFP) on their RBCs were utilized as blood donors. Recipients were transfused with fresh whole blood to which riboflavin had been added or fresh whole blood treated by UV illumination/pathogen reduction treatment after the addition of riboflavin. Posttransfusion RBC recovery, survival, and alloimmunization were measured by flow cytometry. UV illumination/pathogen reduction treatment did not alter RBC antigen expression, and recipients of treated syngeneic RBCs had persistently negative direct antiglobulin tests. Greater than 75% of treated and untreated syngeneic RBCs were recovered 24 hours posttransfusion in all experiments, although alterations in the long-term posttransfusion survival of treated RBCs were observed. Treated and untreated KEL RBCs induced similar recipient alloimmune responses, with all recipients making anti-KEL glycoprotein immunoglobulins (p > 0.05). Alloimmune responses to treated HOD or hGPA RBCs were no different from untreated RBCs (p > 0.05). Pathogen inactivation treatment of fresh whole murine blood with riboflavin and UV illumination does not impact the rate or magnitude of RBC alloimmunization to three distinct RBC antigens. Further, UV illumination/pathogen reduction appears safe from an immunohematologic standpoint, with no immunogenic neoantigens detected on treated murine RBCs. Future studies with fresh and stored human RBCs are warranted to confirm these findings. © 2015 AABB.
Implicit dosimetry of microorganism photodynamic inactivation
NASA Astrophysics Data System (ADS)
Tamošiūnas, Mindaugas; Kuliešienė, Neringa; Daugelavičius, Rimantas
2017-12-01
Photosensitization based antibacterial treatment is efficient against a broad range of pathogens but it utilizes suboptimal dosimetry with an explicit (and very broad range) determination of sensitizer concentration, light dose and fluence rates. In this study we verified the implicit dosimetry approach for pathogen photodynamic treatment, employing protoporphyrin IX (ppIX) photobleaching to assess the killing efficacy against Staphylococcus aureus and Candida albicans cells. The results show that there was an increased kill of S. aureus and C. albicans at higher degree of ppIX fluorescence decay. Therefore ppIX photobleaching can be incorporated into the PDI dose metric offering to predict the pathogen killing efficacy during photodynamic treatment.
Evaluation of constructed wetland treatment performance for winery wastewater.
Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L
2003-01-01
Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.
Li, Yuan; Niu, Wenquan; Dyck, Miles; Wang, Jingwei; Zou, Xiaoyang
2016-01-01
This study investigated the effects of 4 aeration levels (varied by injection of air to the soil through subsurface irrigation lines) at two subsurface irrigation line depths (15 and 40 cm) on plant growth, yield and nutritional quality of greenhouse tomato. In all experiments, fruit number, width and length, yield, vitamin C, lycopene and sugar/acid ratio of tomato markedly increased in response to the aeration treatments. Vitamin C, lycopene, and sugar/acid ratio increased by 41%, 2%, and 43%, respectively, in the 1.5 times standard aeration volume compared with the no-aeration treatment. An interaction between aeration level and depth of irrigation line was also observed with yield, fruit number, fruit length, vitamin C and sugar/acid ratio of greenhouse tomato increasing at each aeration level when irrigation lines were placed at 40 cm depth. However, when the irrigation lines were 15 cm deep, the trend of total fruit yields, fruit width, fruit length and sugar/acid ratio first increased and then decreased with increasing aeration level. Total soluble solids and titrable acid decreased with increasing aeration level both at 15 and 40 cm irrigation line placement. When all of the quality factors, yields and economic benefit are considered together, the combination of 40 cm line depth and “standard” aeration level was the optimum combination. PMID:27995970
PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF INORGANIC CONTAMINANTS
The permeable reactive barrier (PRB) technology is an in-situ approach for groundwater remediation that couples subsurface flow management with a passive chemical or biochemical treatment zone. The development and application of the PRB technology has progressed over the last de...
SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK
Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...
STATE OF THE ART IN TREATMENT AND SURVIVAL OF PATHOGENS IN BIOSOLIDS
This paper discusses the pathogen/stability concerns for municipal residuals and the applicability of current sludge treatment processes to control health risks potentially associated with the use or disposal of these residuals. In recent years, there has been a rise in public co...
Research Findings on Heat Treatment of Pathogens and Indicator Organisms
Heat or thermal treatment has been used for many years for reducing the densities of pathogens in food and beverages. Its application for disinfection of municipal sludges has occurred only recently. One method for achieving Class A biosolids is to thermally treat sludges either ...
Chahal, C; van den Akker, B; Young, F; Franco, C; Blackbeard, J; Monis, P
2016-01-01
Disinfection guidelines exist for pathogen inactivation in potable water and recycled water, but wastewater with high numbers of particles can be more difficult to disinfect, making compliance with the guidelines problematic. Disinfection guidelines specify that drinking water with turbidity ≥1 Nephelometric Turbidity Units (NTU) is not suitable for disinfection and therefore not fit for purpose. Treated wastewater typically has higher concentrations of particles (1-10NTU for secondary treated effluent). Two processes widely used for disinfecting wastewater are chlorination and ultraviolet radiation. In both cases, particles in wastewater can interfere with disinfection and can significantly increase treatment costs by increasing operational expenditure (chemical demand, power consumption) or infrastructure costs by requiring additional treatment processes to achieve the required levels of pathogen inactivation. Many microorganisms (viruses, bacteria, protozoans) associate with particles, which can allow them to survive disinfection processes and cause a health hazard. Improved understanding of this association will enable development of cost-effective treatment, which will become increasingly important as indirect and direct potable reuse of wastewater becomes more widespread in both developed and developing countries. This review provides an overview of wastewater and associated treatment processes, the pathogens in wastewater, the nature of particles in wastewater and how they interact with pathogens, and how particles can impact disinfection processes. Copyright © 2016 Elsevier Inc. All rights reserved.
TREATMENT OF MUNICIPAL SLUDGE FOR PATHOGEN REDUCTION
This presentation reviews the pathogenic microorganisms that may be found in municipal sewage sludge and the commonly employed Class A and B processes for controlling pathogens. It notes how extensively they are used and discusses issues and concerns with their application. The...
As the reuse of alternative water sources continues to gain popularity, public utilities and other stakeholders are seeking guidance on pathogen treatment requirements and monitoring approaches for nonpotable use of onsite collected waters. Given that alternative water...
Microbial pathogens in source and treated waters from drinking water treatment plants in the US
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...
A Spike Cocktail Approach to Improve Microbial Performance Monitoring for Water Reuse.
Zimmerman, Brian D; Korajkic, Asja; Brinkman, Nichole E; Grimm, Ann C; Ashbolt, Nicholas J; Garland, Jay L
Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable pathogen levels limit their utility for routine evaluation of health risks in water reuse systems. Therefore, there is a need to improve our understanding of the linkage between pathogens and more readily measured process indicators during treatment. This paper describes an approach for constructing spiking experiments to relate the behavior of viral, bacterial, and protozoan pathogens with relevant process indicators. General issues are reviewed, and the spiking protocol is applied as a case study example to improve microbial performance monitoring and health risk evaluation in a water reuse system. This approach provides a foundation for the development of novel approaches to improve real or near-real time performance monitoring of water recycling systems.
Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min
2012-07-01
Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.
Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min
2012-01-01
Background and Aims Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Methods Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Key Results Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. Conclusions The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks. PMID:22437662
Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang
2016-10-01
The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.
MINERALOGICAL PRESERVATION OF SOLID SAMPLES COLLECTED FROM ANOXIC SUBSURFACE ENVIRONMENTS
Remedial technologies utilized at hazardous waste sites for the treatment of metal and metalloid contaminants often take advantage of reduction-oxidation (redox) processes to reach ground water clean up goals. This is because redox reactions, in many cases, govern the biogeochem...
LONG TERM PERFORMANCE MONITORING OF A PRB FOR REMEDIATION OF CHLORINATED SOLVENTS AND CHROMIUM
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
Permeable reactive barriers (PRBs) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented ...
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
Settling and survival profile of enteric pathogens in the swine effluent for water reuse purpose.
Fongaro, G; Kunz, A; Magri, M E; Schissi, C D; Viancelli, A; Philippi, L S; Barardi, C R M
2016-11-01
The present study evaluated the pathogens persistence and settling profile in swine effluent. We determined the enteric pathogens settling characteristics, their survival and inactivation profile in swine effluent (for water reuse purpose) and in sludge (generated after aerobic treatment - during secondary settling process). The study was performed in laboratorial-scale and in full-scale (manure treatment plant). Enteric viruses and enteric bacteria were used as biomarkers. Results showed that these enteric pathogens were significantly reduced from swine effluent during secondary settling process, and enteric viruses removal was correlated with the suspended solids decantation. The design of secondary settlers can be adapted to improve pathogens removal, by diminishing the solids loading rate per area and time, ending in higher hydraulic retention times. Copyright © 2016 Elsevier GmbH. All rights reserved.
Waterborne Pathogens: Detection Methods and Challenges
Ramírez-Castillo, Flor Yazmín; Loera-Muro, Abraham; Jacques, Mario; Garneau, Philippe; Avelar-González, Francisco Javier; Harel, Josée; Guerrero-Barrera, Alma Lilián
2015-01-01
Waterborne pathogens and related diseases are a major public health concern worldwide, not only by the morbidity and mortality that they cause, but by the high cost that represents their prevention and treatment. These diseases are directly related to environmental deterioration and pollution. Despite the continued efforts to maintain water safety, waterborne outbreaks are still reported globally. Proper assessment of pathogens on water and water quality monitoring are key factors for decision-making regarding water distribution systems’ infrastructure, the choice of best water treatment and prevention waterborne outbreaks. Powerful, sensitive and reproducible diagnostic tools are developed to monitor pathogen contamination in water and be able to detect not only cultivable pathogens but also to detect the occurrence of viable but non-culturable microorganisms as well as the presence of pathogens on biofilms. Quantitative microbial risk assessment (QMRA) is a helpful tool to evaluate the scenarios for pathogen contamination that involve surveillance, detection methods, analysis and decision-making. This review aims to present a research outlook on waterborne outbreaks that have occurred in recent years. This review also focuses in the main molecular techniques for detection of waterborne pathogens and the use of QMRA approach to protect public health. PMID:26011827
Ritchie, S; Palmer, S; Ellis-Pegler, R
2007-01-01
International guidelines recommend routine microbiological assessment of patients with febrile neutropenia, but do not recommend a change from broad-spectrum antibiotic therapy to pathogen-specific therapy when a clinically relevant organism has been isolated. The aim of the study was to determine the aetiology of febrile neutropenia in adult haematology patients at Auckland City Hospital, to document the changes in treatment made following isolation of a clinically relevant organism and to assess adverse outcomes in any patient who received pathogen-specific therapy after a positive culture result. The results of all microbiological tests together with antibiotic therapy were recorded from consecutive patients with fever and a neutrophil count <0.5 x 10(9)/L over 1 year beginning in May 2003. One thousand one hundred and ninety-six specimens were collected from 81 patients during 116 episodes of febrile neutropenia. A pathogen was isolated from blood cultures in 40 episodes: Gram-positive cocci accounted for 46% of isolates and Gram-negative bacilli for 35%. Isolation of a pathogen from blood cultures resulted in a change of treatment in 25 of 40 (62.5%, 95%CI 46-77%) episodes. In 12 of these episodes, antibiotic therapy was optimized to a single pathogen-specific agent. No adverse events or subsequent changes in antibiotic therapy occurred in any of these 12 patients. Isolation of a pathogen from specimens other than blood seldom led to a change in therapy. Isolation of a pathogen from blood cultures often allows antibiotic therapy to be simplified to a pathogen-specific regimen. Further study of this approach is warranted.
Sumner, Andrew J; Plata, Desiree L
2018-02-21
Hydraulic fracturing coupled with horizontal drilling (HDHF) involves the deep-well injection of a fracturing fluid composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. Analyses of flowback wastewaters have revealed organic contamination from both geogenic and anthropogenic sources. The additional detections of undisclosed halogenated chemicals suggest unintended in situ transformation of reactive additives, but the formation pathways for these are unclear in subsurface brines. To develop an efficient experimental framework for investigating the complex shale-well parameter space, we have reviewed and synthesized geospatial well data detailing temperature, pressure, pH, and halide ion values as well as industrial chemical disclosure and concentration data. Our findings showed subsurface conditions can reach pressures up to 4500 psi (310 bars) and temperatures up to 95 °C, while at least 588 unique chemicals have been disclosed by industry, including reactive oxidants and acids. Given the extreme conditions necessary to simulate the subsurface, we briefly highlighted existing geochemical reactor systems rated to the necessary pressures and temperatures, identifying throughput as a key limitation. In response, we designed and developed a custom reactor system capable of achieving 5000 psi (345 bars) and 90 °C at low cost with 15 individual reactors that are readily turned over. To demonstrate the system's throughput, we simultaneously tested 12 disclosed HDHF chemicals against a radical initiator compound in simulated subsurface conditions, ruling out a dozen potential transformation pathways in a single experiment. This review outlines the dynamic and diverse parameter range experienced by HDHF chemical additives and provides an optimized framework and novel reactor system for the methodical study of subsurface transformation pathways. Ultimately, enabling such studies will provide urgently needed clarity for water treatment downstream or releases to the environment.
An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V
Mishurova, Tatiana; Cabeza, Sandra; Artzt, Katia; Haubrich, Jan; Klaus, Manuela; Genzel, Christoph; Requena, Guillermo; Bruno, Giovanni
2017-01-01
Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment. PMID:28772706
Alternate energy source usage for in situ heat treatment processes
Stone, Jr., Francis Marion; Goodwin, Charles R [League City, TX; Richard, Jr., James
2011-03-22
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.
Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A
2012-01-01
Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.
2009-05-01
recovery in their design. Electrodes have been constructed from steel pipe , copper plate for heating distinct zones, and sheet pile. Sheet pile...energy transfer/ heating in the subsurface) The components required to implement ERH include: • Electrodes (steel pipe , copper plate, well points...including piping , blower, and condenser • A vapor treatment system Electrical Resistance Heating (Smith) A-3 • An ERH power control unit to
Ishida, Tadashi; Ito, Akihiro; Washio, Yasuyoshi; Yamazaki, Akio; Noyama, Maki; Tokioka, Fumiaki; Arita, Machiko
2017-01-01
The new acronym, PES pathogens (Pseudomonas aeruginosa, Enterobacteriaceae extended-spectrum beta-lactamase-positive, and methicillin-resistant Staphylococcus aureus), was recently proposed to identify drug-resistant pathogens associated with community-acquired pneumonia. To evaluate the risk factors for antimicrobial-resistant pathogens in immunocompetent patients with pneumonia and to validate the role of PES pathogens. A retrospective analysis of a prospective observational study of immunocompetent patients with pneumonia between March 2009 and June 2015 was conducted. We clarified the risk factors for PES pathogens. Of the total 1559 patients, an etiological diagnosis was made in 705 (45.2%) patients. PES pathogens were identified in 51 (7.2%) patients, with 53 PES pathogens (P. aeruginosa, 34; ESBL-positive Enterobacteriaceae, 6; and MRSA, 13). Patients with PES pathogens had tendencies toward initial treatment failure, readmission within 30 days, and a prolonged hospital stay. Using multivariate analysis, female sex (adjusted odds ratio [AOR] 1.998, 95% confidence interval [CI] 1.047-3.810), admission within 90 days (AOR 2.827, 95% CI 1.250-6.397), poor performance status (AOR 2.380, 95% CI 1.047-5.413), and enteral feeding (AOR 5.808, 95% CI 1.813-18.613) were independent risk factors for infection with PES pathogens. The area under the receiver operating characteristics curve for the risk factors was 0.66 (95% CI 0.577-0.744). We believe the definition of PES pathogens is an appropriate description of drug-resistant pathogens associated with pneumonia in immunocompetent patients. The frequency of PES pathogens is quite low. However, recognition is critical because they can cause refractory pneumonia and different antimicrobial treatment is required. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Transport and fate of microbial pathogens in agricultural settings
Bradford, Scott A.; Morales, Veronica L.; Zhang, Wei; Harvey, Ronald W.; Packman, Aaron I.; Mohanram, Arvind; Welty, Claire
2013-01-01
An understanding of the transport and survival of microbial pathogens (pathogens hereafter) in agricultural settings is needed to assess the risk of pathogen contamination to water and food resources, and to develop control strategies and treatment options. However, many knowledge gaps still remain in predicting the fate and transport of pathogens in runoff water, and then through the shallow vadose zone and groundwater. A number of transport pathways, processes, factors, and mathematical models often are needed to describe pathogen fate in agricultural settings. The level of complexity is dramatically enhanced by soil heterogeneity, as well as by temporal variability in temperature, water inputs, and pathogen sources. There is substantial variability in pathogen migration pathways, leading to changes in the dominant processes that control pathogen transport over different spatial and temporal scales. For example, intense rainfall events can generate runoff and preferential flow that can rapidly transport pathogens. Pathogens that survive for extended periods of time have a greatly enhanced probability of remaining viable when subjected to such rapid-transport events. Conversely, in dry seasons, pathogen transport depends more strongly on retention at diverse environmental surfaces controlled by a multitude of coupled physical, chemical, and microbiological factors. These interactions are incompletely characterized, leading to a lack of consensus on the proper mathematical framework to model pathogen transport even at the column scale. In addition, little is known about how to quantify transport and survival parameters at the scale of agricultural fields or watersheds. This review summarizes current conceptual and quantitative models for pathogen transport and fate in agricultural settings over a wide range of spatial and temporal scales. The authors also discuss the benefits that can be realized by improved modeling, and potential treatments to mitigate the risk of waterborne disease transmission.
An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Aspe...
NATURAL ANTIMICROBIALS AND THEIR ROLE IN VAGINAL HEALTH: A SHORT REVIEW
Dover, S. E.; Aroutcheva, A. A.; Faro, S.; Chikindas, M. L.
2009-01-01
Lactobacillus species maintain the vaginal ecosystem in a healthy condition by production of antimicrobial substances. Depletion of lactobacilli in the vagina results in bacterial vaginosis (BV), where the normal flora is replaced by several bacterial pathogens, usually Gardnerella vaginalis and obligate anaerobes. BV may cause complications such as premature labor, low birth weight and increased risk of HIV acquisition. The currently recommended antibiotic treatments for BV are not always effective and often lead to reoccurrence of the infection. In many cases, this is due to the antibiotic-resistant forms of the pathogens. Therefore, there is an interest in the development of treatments using antimicrobials derived primarily from Lactobacillus spp., such as ribosomally produced antimicrobial peptides (bacteriocins) and lactic acid. These substances effectively inhibit pathogenic bacteria, are safe and do not pose any threat to healthy vaginal Lactobacillus spp. It may be possible to find an effective treatment against BV while reducing the infection’s reoccurrence and the treatment-related complications through hurdle technology. This would be achieved by combining antimicrobials produced by Lactobacillus spp. with different natural antimicrobials obtained from plants or other non-pathogenic organisms. PMID:20657710
2005-01-01
PA Ozone (full scale) Silty sand underlain by fractured schist and shale Petroleum hydrocarbons Former Wood Treatment Site, Sonoma County , CA...Wood Treatment Site, Sonoma County , California Contaminant: Pentachlorophenol and creosote (i.e., PAHs) Oxidant: Ozone Regulatory Agency Contact...topography is essentially flat and paved, and the facility is located on northern Sonoma County , California. The site subsurface consists of very
Park, Sang-Hyun; Kang, Dong-Hyun
2018-06-20
The objective of this study was to evaluate how treatment temperature influences the solubility of ClO 2 gas and the antimicrobial effect of ClO 2 gas against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on produce and food contact surfaces. Produce and food contact surfaces inoculated with a combined culture cocktail of three strains each of the three foodborne pathogens were processed in a treatment chamber with 20 ppmv ClO 2 gas at 15 or 25 °C under the same conditions of absolute humidity (11.2-12.3 g/m 3 ) for up to 30 min. As treatment time increased, ClO 2 gas treatment at 15 °C caused significantly more (p < 0.05) inactivation of the three pathogens than treatment at 25 °C. ClO 2 gas treatment at 25 °C for 30 min resulted in 1.15 to 1.54, 1.53 to 1.88, and 1.00 to 1.78 log reductions of the three pathogens on spinach leaves, tomatoes, and stainless steel No.4, respectively. ClO 2 gas treatment at 15 °C for 30 min caused 2.53 to 2.88, 2.82 to 3.23, and 2.37 to 3.03 log reductions of the three pathogens on spinach leaves, tomatoes, and stainless steel No.4, respectively. Treatment with ClO 2 gas at 25 °C for 20 min resulted in 1.88 to 2.31 log reductions of the three pathogens on glass while >5.91 to 6.82 log reductions of these pathogens occurred after 20 min when treated at 15 °C. Residual ClO 2 levels after gas treatment at 15 °C were significantly (p < 0.05) higher than those at 25 °C. The results of this study can help the food processing industry establish optimum ClO 2 gas treatment conditions for maximizing the antimicrobial efficacy of ClO 2 gas. Published by Elsevier B.V.
Permeable reactive barriers (PRB's) are an alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are being selected with increased frequency at waste sites (more than 40 f...
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
Permeable reactive barrier technology is an in-situ approach for remediating groundwater contamination that combines subsurface fluid flow management with passive chemical treatment. Factors such as the buildup of mineral precipitates, buildup of microbial biomass (bio-fouling...
Feasibility study of a rock plant filter wastewater treatment system.
DOT National Transportation Integrated Search
2000-07-01
In November of 1996 an interstate rest area was opened on I-49, approximately 20 miles north of Opelousas, Louisiana. Wastewater generated in the main building as well as that from an RV dump station is treated using subsurface flow, rock plant filte...
The research approach will involve hydrogeological and geochemical studies to provide information needed in order to select an appropriate design configuration and to evaluate the performance of a pilot-scale subsurface permeable reactive barrier to remediate arsenic-contaminated...
PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE
Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...
LIPID ANALYSIS TO DETERMINE THE EFFECT OF A SOURCE REMEDIAL TECHNOLOGY IN MICROBIAL ECOLOGY
Microbial community structures and related changes in the subsurface environment were investigated following in situ chemical oxidation (ISCO) treatment at Launch Complex 34, Cape Canaveral Air Station, Florida. The site has dense non-aqueous phase (DNAPL) concentrations of TCE ...
Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett T
2011-11-01
Human molars were subjected to demineralization in acid gel followed by incubation in remineralization solutions without or with fluoride (1 or 1000 ppm). Photothermal radiometry (PTR) and modulated luminescence (LUM) frequency scans were performed prior to and during de/remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion to determine mineral loss and lesion depth. The remineralization process illustrated a complex interplay between surface and subsurface mineral deposition, confining the thermal-wave centroid toward the dominating layer. Experimental amplitudes and phases were fitted to a coupled diffuse-photon-density-wave and thermal-wave theoretical model used to quantitatively evaluate evolving changes in thermal and optical properties of de/remineralized enamel lesions. Additional information obtained from the LUM data corroborated the remineralization kinetics affecting the PTR signals. The results pointed to enhanced effectiveness of subsurface lesion remineralization in the presence of fluoride. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hao, W; Hong, C X
2014-05-01
A new heat treatment for recycled irrigation water using 48 °C for 24 h to inactivate Phytophthora and bacterial plant pathogens is estimated to reduce fuel cost and environmental footprint by more than 50 % compared to current protocol (95 °C for 30 s). The objective of this study was to determine the impact of this new heat treatment temperature regime on bacterial community structure in water and its practical implications. Bacterial communities in irrigation water were analyzed before and after heat treatment using both culture-dependent and -independent strategies based on the 16S ribosomal DNA. A significant shift was observed in the bacterial community after heat treatment. Most importantly, bacteria with biological control potential--Bacillus and Paenibacillus, and Pseudomonas species became more abundant at both 48 and 42 °C. These findings imply that the new heat treatment procedure not only controls existing plant pathogens but also may make the heat-treated irrigation water a more antagonistic environment against plant pathogens, promoting sustainable disease management.
Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes
NASA Astrophysics Data System (ADS)
Al-Gheethi, A. A.; Efaq, A. N.; Bala, J. D.; Norli, I.; Abdel-Monem, M. O.; Ab. Kadir, M. O.
2018-05-01
The reuse of treated sewage for irrigation is considered as an important alternative water source in the new water management strategy of the countries that face a severe deficiency of water resources such as the Middle East countries. The organic material and fertilizing elements contained in biosolids are essential for maintaining soil fertility. However, both treated sewage and biosolids contain a large diversity of pathogens that would be transmitted to the environment and infect human directly or indirectly. Therefore, those pathogens should be reduced from the treated sewage and biosolids before the reuse in the agriculture. This paper reviews the considerations for reuse of treated sewage and biosolids in agriculture and further treatments used for reduction of pathogenic bacteria. The treatment methods used for the reduction of pathogens in these wastes have reviewed. It appeared that the main concern associated with the reduction of pathogenic bacteria lies in their ability to regrow in the treated sewage and biosolids. Therefore, the effective treatment method is that it has the potential to destruct pathogens cells and remove the nutrients to prevent the regrowth or recontamination from the surrounded environment. The removal of nutrients might be applicable in the sewage but not in the biosolids due to high nutrient contents. However, the reduction of health risk in the biosolids might be carried out by regulating the biosolid utilization and selecting the plant species grown in the fertilized soil with biosolids.
Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser
Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel
2014-01-01
Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037
[Principles of management in biological infections].
Płusa, Tadeusz
2012-11-01
The effectiveness of the management in respiratory infection is depending on the nature of the biological pathogen and the immune status of the patient. For this reason, providing assistance to victims the organ function support, similarly as defining the pathogen and targeted antibiotic therapy should be applied. Available diagnostic tests provide rapid ability to identify the pathogen and antibiotics are able to control infection. Lack of efficacy of treatment may indicate the diversity of the pathogen than previously known and raises suspicion of biological warfare pathogen.
Fang, Zhiwei; Yang, Yunqi; Chen, Xuan; Zhang, Weiwang; Xie, Yangmei; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien
2017-01-01
In this comprehensive article, we present an overview of some most common autoimmune antibodies believed to be potentially pathogenic for autoimmune epilepsies and elaborate their pathogenic mode of action in molecular levels based on the existing knowledge. Findings of the studies of immunemodulatory treatments for epilepsy are also discussed, and guidelines for immunotherapy are sorted out. We aim to summarize the emerging understanding of different pathogenic mechanisms of autoantibodies and clinical immunotherapy regimens to open up therapeutic possibilities for future optimum therapy. We conclude that early diagnosis of autoimmune epilepsy is of great significance, as early immune treatments have useful disease-modifying effects on some epilepsies and can facilitate the recovery. PMID:28487693
NASA Astrophysics Data System (ADS)
Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.
2017-12-01
The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.
USDA-ARS?s Scientific Manuscript database
Commercially-produced apple wedges have recently been associated with several recalls due to foodborne pathogen contamination. The fresh-cut industry faces a major technical challenge due to the incompatibility between chemicals used to control spoilage and pathogenic microorganisms (usually oxidize...
Cold plasma inactivation of human pathogens on foods and regulatory status update
USDA-ARS?s Scientific Manuscript database
Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and other pathogens is an ongoing challenge for growers and processors. In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut...
Modified Lipid Extraction Methods for Deep Subsurface Shale
Akondi, Rawlings N.; Trexler, Ryan V.; Pfiffner, Susan M.; Mouser, Paula J.; Sharma, Shikha
2017-01-01
Growing interest in the utilization of black shales for hydrocarbon development and environmental applications has spurred investigations of microbial functional diversity in the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for estimating biomass and characterizing the diversity of microbial communities. However, complex shale matrix properties create immense challenges for microbial lipid extraction procedures. Here, we test three different lipid extraction methods: modified Bligh and Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker yields were however highly variable within replicates for most extraction treatments, although the mBD + Phos + POPC treatment had relatively better reproducibility in the consistent fatty acid profiles. This variability across treatments which is associated with the highly complex nature of deeply buried shale matrix, further necessitates customized methodological developments for the improvement of lipid biomarker recovery. PMID:28790998
Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.
Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G
2007-07-15
A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.
Richter, A Y; Weaver, R W
2003-12-01
Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent.
von Sperling, M
2015-01-01
This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.
[Evidence-based aspects of clinical mastitis treatment].
Mansion-de Vries, E M; Hoedemaker, M; Krömker, V
2015-01-01
Mastitis is one of the most common and expensive diseases in dairy cattle. The decision to treat clinical mastitis is usually made without any knowledge of the etiology, and can therefore only be evidence-based to a limited extent. Evidence-based medicine relies essentially on a combination of one's own clinical competence and scientific findings. In mastitis therapy, those insights depend mostly on pathogen-specific factors. Therefore, in evidence-based therapeutic decision making the pathogen identification should serve as a basis for the consideration of scientifically validated therapeutic concepts. The present paper considers evidence-based treatment of clinical mastitis based on a literature review. The authors conclude that an anti-inflammatory treatment using an NSAID should be conducted regardless of the pathogen. However, the choice of an antibiotic therapy depends on the mastitis causative pathogen, clinical symptoms and the animal itself. In principle, a local antibiotic treatment should be chosen for mild and moderate mastitis. It should be noted, that the benefit of an antibiotic therapy for coliform infections is questionable. With knowledge concerning the pathogen, it appears entirely reasonable to refrain from an antibiotic therapy. For severe (i. e. feverish) mastitis, a parenteral antibiotic therapy should be selected. An extension of the antibiotic therapy beyond the manufacturer's information is only reasonable for streptococcal infections. It is important to make the decision on a prolonged antibiotic therapy only with the knowledge of the mastitis-causative pathogen. In terms of the therapy of a staphylococcus or streptococcus infection, a narrow-spectrum antibiotic from the penicillin family should be adopted when selecting the active agents.
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Wilson, Christopher R.; Fried, Nathaniel M.
2015-07-01
Lasers have been used in combination with applied cooling methods to preserve superficial skin layers (100's μm's) during cosmetic surgery. Preservation of a thicker tissue surface layer (millimeters) may also allow development of other noninvasive laser procedures. We are exploring noninvasive therapeutic laser applications in urology (e.g. laser vasectomy and laser treatment of female stress urinary incontinence), which require surface tissue preservation on the millimeter scale. In this preliminary study, four lasers were compared for noninvasive creation of deep subsurface thermal lesions. Laser energy from three diode lasers (650, 808, and 980 nm) and a Ytterbium fiber laser (1075 nm) was delivered through a custom built, side-firing, laser probe with integrated cooling. An alcohol-based solution at -5 °C was circulated through a flow cell, cooling a sapphire window, which in turn cooled the tissue surface. The probe was placed in contact with porcine liver tissue, ex vivo, kept hydrated in saline and maintained at ~ 35 °C. Incident laser power was 4.2 W, spot diameter was 5.3 mm, and treatment time was 60 s. The optimal laser wavelength tested for creation of deep subsurface thermal lesions during contact cooling of tissues was 1075 nm, which preserved a surface layer of ~ 2 mm. The Ytterbium fiber laser provides a compact, low maintenance, and high power alternative laser source to the Neodymium:YAG laser for noninvasive thermal therapy.
Historical disposal practices of chlorinated solvents have resulted in the widespread contamination of ground-water resources. These ground-water contaminants exist in the subsurface as free products, residual and vapor phases, and in solution. The remediation of these contamin...
USDA-ARS?s Scientific Manuscript database
Woodchip denitrification bioreactors, a relatively new technology for edge-of-field treatment of subsurface agricultural drainage water, have shown potential for nitrate removal. However, very few studies have evaluated the performance of these reactors under controlled conditions similar to the fie...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinegar, Harold J.; Carter, Ernest E.; Son, Jaime Santos
Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. A material including wax may be introduced into one or more wellbores. The material introduced into two or more wells may mix in the formation and congeal to form a barrier to fluid flow.
IMPACT OF COSOLVENT FLUSHING ON SUBSURFACE MICROBIAL ECOLOGY AT A FORMER DRY CLEANER SITE
The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at a former dry cleaner site in Jacksonville, FL where an area of tetrachloroethene (PCE) contamination was identified. The SERB technology is a treatment train approach to complete site restoration, wh...
IMPACT OF COSOLVENT FLUSHING ON SUBSURFACE MICROBIAL ECOLOGY AT THE FORMER SAGE'S DRY CLEANER SITE
The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at the former Sage's Dry Cleaner site in Jacksonville, FL where an area of tetrachloroethylene (PCE) contamination was identified. The SERB technology is a treatment train approach to complete site rest...
Bari, M L; Nei, D; Enomoto, K; Todoriki, S; Kawamoto, S
2009-03-01
In this study, the effectiveness of prolonged dry-heat treatment (50 degrees C) alone or in combination with chemical treatments (1% oxalic acid, 0.03% phytic acid, 50% ethanol, electrolyzed acidic water, and electrolyzed alkaline water) in eliminating Escherichia coli O157:H7 on laboratory-inoculated alfalfa, radish, broccoli, and mung bean seeds was compared with that of dry-heat treatment in combination with irradiation treatment. Dry-heat treatment for 17 or 24 h alone could reduce E. coli O157:H7 numbers to below detectable levels in radish, broccoli, and alfalfa seeds, but was unable to reduce the pathogen numbers to below the detectable level in mung bean seeds. In addition, dry-heat treatment for 17 h plus sanitizer treatments were effective in greatly reducing pathogen populations on radish, broccoli, and alfalfa seeds, without compromising the quality of the sprouts, but these treatments did not eliminate the pathogen from radish and alfalfa seeds. Seventeen hours of dry heat followed by a 1.0-kGy dose of irradiation completely eliminated E. coli O157:H7 from radish and mung bean seeds, whereas only a minimum radiation dose of 0.25 kGy was required to completely eliminate the pathogen from broccoli and alfalfa seeds. Dry heat in combination with radiation doses of up to 1.0 kGy did not negatively impact the seed germination rate or length of alfalfa, broccoli, and radish seeds or the length of alfalfa, broccoli, and radish sprouts, but did decrease the length of mung bean sprouts.
Immobilization and Natural Attenuation of Arsenic in Surface and Subsurface Sediments
NASA Astrophysics Data System (ADS)
O'Day, P. A.; Illera, V.; Choi, S.; Vlassopoulos, D.
2008-12-01
Understanding of molecular-scale biogeochemical processes that control the mobilization and distribution of As and other oxyanions can be used to develop remediation strategies that take advantage of natural geochemical and hydrologic gradients. Arsenic and other toxic oxyanions can be mobilized at low bulk sediment concentrations (ppm range) and thus, treatment technologies are challenged by low contaminant concentrations, widespread sources, variable pH and Eh conditions, and inaccessibility of subsurface environments. In situ chemical amendments to soils and sediments can be used to decrease the mobility and bioaccessibility of As and oxyanions through sorption to, or precipitation with, stabilizing phases. At a site near San Francisco Bay (CA, USA), treatment of As-contaminated soils with sulfate-cement amendments has effectively immobilized As. Laboratory experiments with field soils and spectroscopic characterizations showed that in high pH cement-type treatments, As is precipitated in ettringite-type phases (Ca-Al sulfates), whereas in low pH ferrous sulfate treatments, As is associated with an iron-arsenate phase (angellelite). The presence of As-associated ettringite-type phases in field sediments amended more than a decade ago indicates long-term stability of these neophases, as long as environmental conditions are relatively constant. At sites of subsurface contamination, monitored natural attenuation (MNA) as a remediation approach for As is gaining interest and acceptance. Successful implementation of MNA requires a mechanistic understanding of As sequestration processes and of the subsurface conditions that may enhance or reduce long-term effectiveness. At a former military site (MA, USA), naturally occurring As was mobilized from sediments as a result of reducing conditions from addition of organic carbon as a biodegradation treatment of chlorinated solvents. Elevated As concentrations were not detected further than about 30 m downgradient of the injection, indicating that As sequestration was also occurring by natural processes in the aquifer. Laboratory experiments with aquifer sediments and spectroscopic characterization of reaction products were used to quantify the extent of As(III) sorption and abiotic oxidation to As(V), probably by Mn(III,IV) present in sediment minerals. Interrogation by XANES spectroscopy and analysis of uptake data indicated that sediments have a limited abiotic oxidation capacity for As(III), which did not exceed 30% of the total amount of As sorbed and was estimated at 0.025 to 0.4 mmol/kg sediment. Results indicate that pH-controlled sorption is the primary mechanism for As uptake and sediment capacity for oxidative sorption is limited. As such, MNA may be temporarily effective at this site, depending on the size of the contaminant plume and the rate of groundwater flow.
Risk-based enteric pathogen reduction targets for non-potable ...
This paper presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., locally-collected greywater, roof runoff, and stormwater). A probabilistic Quantitative Microbial Risk Assessment (QMRA) was used to derive the pathogen log10 reduction targets (LRTs) that corresponded with an infection risk of either 10−4 per person per year (ppy) or 10−2 ppy. The QMRA accounted for variation in pathogen concentration and sporadic pathogen occurrence (when data were available) in source waters for reference pathogens in the genera Rotavirus, Mastadenovirus (human adenoviruses), Norovirus, Campylobacter, Salmonella, Giardia and Cryptosporidium. Non-potable uses included indoor use (for toilet flushing and clothes washing) with occasional accidental ingestion of treated non-potable water (or cross-connection with potable water), and unrestricted irrigation for outdoor use. Various exposure scenarios captured the uncertainty from key inputs, i.e., the pathogen concentration in source water; the volume of water ingested; and for the indoor use, the frequency of and the fraction of the population exposed to accidental ingestion. Both potable and non-potable uses required pathogen treatment for the selected waters and the LRT was generally greater for potable use than non-potable indoor use and unrestricted irrigation. The difference in treatment requirements among source waters was driven by the
Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A
2016-02-01
The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fan, Dongying; Li, Yanfang; Zhao, Lingyun; Li, Zhengpeng; Huang, Lili; Yan, Xia
2016-01-01
The mechanism of biocontrol agent Saccharothrix yanglingensis Hhs.015 action against Valsa mali, a major apple Valsa canker pathogen, was examined using a novel, sensitive (minimum detection limit 100 pg/μL) and reliably RT-qPCR technique. Prior to lesion formation, total concentration of V. mali in the bark showed a significant decrease (p<0.05) after 24 h of Hhs.015 treatment. This was more pronounced at 48 and 96 h post treatment. After lesion formation, levels of V. mali remained constant at the boundary between infected and uninfected bark tissues, although the relative expansion rate of the lesion was significantly reduced (p<0.05). Gene expression levels of endo-polygalacturonase, a marker for fungal pathogenicity, were sharply reduced while host induced resistance callose synthase levels increased significantly (p<0.05) at the boundary bark at 9 d after Hhs.015 treatment. The results showed that biocontrol agent Hhs.015 prevented infection of V. mali by inhibiting pathogen growth, down-regulating pathogenicity factor expression and inducing a high level of host resistance. PMID:27611855
Gervasi, Stephanie; Gondhalekar, Carmen; Olson, Deanna H.; Blaustein, Andrew R.
2013-01-01
Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed “dose-dependent” responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits. PMID:23382904
Sandiumenge, Alberto; Rello, Jordi
2012-05-01
Despite important geographical variations, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species (ESKAPE) pathogens constitute more than 80% of ventilator-associated pneumonia (VAP) episodes. Their clinical importance relies on their virulence and ability in developing mechanisms to decrease susceptibility to antimicrobials, increasing inappropriate therapy and affecting negatively on ICU patients' outcome. This review updates information on VAP due to ESKAPE pathogens. Although methicillin-resistant Staphylococcus aureus VAP may be clinically similar to that caused by susceptible strains, it is associated with poorer outcomes despite adequate treatment. Local colonization determines treatment options. The contribution of tracheobronchitis is an important issue. Minimum inhibitory concentration should be considered for nonfermentative Gram-negative bacteria VAP to prescribe extended infusion β-lactam treatment due to an increase of resistant strains. Strategies promoting antimicrobial diversity may protect against emergence and spread of resistance by ESKAPE pathogens. VAP due to ESKAPE pathogens represents a global challenge that can be prevented using stewardship programmes promoting diversity.
Lekshmi, Manjusha; Ammini, Parvathi; Kumar, Sanath; Varela, Manuel F
2017-03-14
Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.
Annamanedi, Madhavi; Varma, Gajapati Y. N.; Anuradha, K.; Kalle, Arunasree M.
2017-01-01
Treatment of multidrug resistant bacterial infections has been a great challenge globally. Previous studies including our study have highlighted the use of celecoxib, a non-steroidal anti-inflammatory drug in combination with antibiotic has decreased the minimal inhibitory concentration to limit Staphylococcus aureus infection. However, the efficacy of this combinatorial treatment against various pathogenic bacteria is not determined. Therefore, we have evaluated the potential use of celecoxib in combination with low doses of antibiotic in limiting Gram-positive and Gram-negative bacteria in vivo in murine polymicrobial sepsis developed by cecum ligation and puncture (CLP) method and against clinically isolated human ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The in vivo results clearly demonstrated a significant reduction in the bacterial load in different organs and in the inflammatory markers such as COX-2 and NF-κB via activation of SIRT1 in mice treated with imipenem, a choice of antibiotic for polymicrobial sepsis treatment. Combinatorial treatment of ampicillin and celecoxib was effective on clinical isolates of ESKAPE pathogens, 45% of tested clinical isolates showed more than 50% reduction in the colony forming units when compared to ampicillin alone. In conclusion, this non-traditional treatment strategy might be effective in clinic to reduce the dose of antibiotic to treat drug-resistant bacterial infections. PMID:28533769
Annamanedi, Madhavi; Varma, Gajapati Y N; Anuradha, K; Kalle, Arunasree M
2017-01-01
Treatment of multidrug resistant bacterial infections has been a great challenge globally. Previous studies including our study have highlighted the use of celecoxib, a non-steroidal anti-inflammatory drug in combination with antibiotic has decreased the minimal inhibitory concentration to limit Staphylococcus aureus infection. However, the efficacy of this combinatorial treatment against various pathogenic bacteria is not determined. Therefore, we have evaluated the potential use of celecoxib in combination with low doses of antibiotic in limiting Gram-positive and Gram-negative bacteria in vivo in murine polymicrobial sepsis developed by cecum ligation and puncture (CLP) method and against clinically isolated human ESKAPE pathogens ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa , and Enterobacter species). The in vivo results clearly demonstrated a significant reduction in the bacterial load in different organs and in the inflammatory markers such as COX-2 and NF-κB via activation of SIRT1 in mice treated with imipenem, a choice of antibiotic for polymicrobial sepsis treatment. Combinatorial treatment of ampicillin and celecoxib was effective on clinical isolates of ESKAPE pathogens, 45% of tested clinical isolates showed more than 50% reduction in the colony forming units when compared to ampicillin alone. In conclusion, this non-traditional treatment strategy might be effective in clinic to reduce the dose of antibiotic to treat drug-resistant bacterial infections.
Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar
2017-06-01
Waste management strategies for organic residues, such as composting and vermicomposting, have been implemented in some developed and developing countries to solve the problem of organic solid waste (OSW). Yet, these biological treatment technologies do not always result in good quality compost or vermicompost with regards to sanitation capacity owing to the presence of bacterial pathogenic substances in objectionable concentrations. The presence of pathogens in soil conditioners poses a potential health hazard and their occurrence is of particular significance in composts and/or vermicomposts produced from organic materials. Past and present researches demonstrated a high-degree of agreement that various pathogens survive after the composting of certain OSW but whether similar changes in bacterial pathogenic loads arise during vermitechnology has not been thoroughly elucidated. This review garners information regarding the status of various pathogenic bacteria which survived or diffused after the composting process compared to the status of these pathogens after the vermicomposting of OSW with the aim of achieving sanitation goals. This work is also indispensable for the specification of compost quality guidelines concerning pathogen loads which would be specific to treatment technology. It was hypothesized that vermicomposting process for OSW can be efficacious in sustaining the existence of pathogenic organisms most specifically; human pathogens under safety levels. In summary, earthworms can be regarded as a way of obliterating pathogenic bacteria from OSW in a manner equivalent to earthworm gut transit mechanism which classifies vermicomposting as a promising sanitation technique in comparison to composting processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Efficient Method for Subsurface Treatments, Including Squeeze Treatments
2000-03-03
microstructures suitable for use in the present invention. The most common of these is halloysite , an inorganic aluminosilicate belonging to the kaolinite group...of clay minerals. See generally, Bates et al., "Morphology and structure of endellite and halloysite ", American 20 Minerologists 35 463-85...1950), which remains the definitive paper on halloysite . The mineral has 10 10 15 SSSn^.a,. PATHNTAPPHCATION the chemical formula Al203-2Si02
NASA Technical Reports Server (NTRS)
Kminek, Gerhard; Bada, Jeffrey L.; Pogliano, Kit; Ward, John F.
2003-01-01
When claims for the long-term survival of viable organisms are made, either within terrestrial minerals or on Mars, considerations should be made of the limitations imposed by the naturally occurring radiation dose to which they have been exposed. We investigated the effect of ionizing radiation on different bacterial spores by measuring the inactivation constants for B. subtilis and s. marismortui spores in solution as well as for dry spores of B. subtilis and B. thuringiensis. S. marismortui is a halophilic spore that is genetically similar to the recently discovered 2-9-3 bacterium from a halite fluid inclusion, claimed to be 250 million years old, B. thuringiensis is a soil bacterium that is genetically similar to the human pathogens B. anthracis and B. cereus. To relate the inactivation constant to some realistic environments, we calculated the radiation regimen in a halite fluid inclusion and in the Martian subsurface over time. Our conclusion is that the ionizing dose of radiation in those environments limits the survival of viable bacterial spores over long periods. In the absence of an active repair mechanism in the dormant state, the long-term survival of spores is limited to less than 109 million years in halite fluid inclusions, to 100 to 160 million years in the Martian subsurface below 3 m, and to less than 600,000 years in the upper-most meter of Mars.
Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.
NASA Astrophysics Data System (ADS)
Zhu, J.
2017-12-01
US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.
Grewal, Sukhbir K.; Rajeev, Sreekumari; Sreevatsan, Srinand; Michel, Frederick C.
2006-01-01
Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55°C, manure packing at 25°C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 106 CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55°C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M. paratuberculosis was detected by standard culture only on day 0 in all the treatments, but was undetectable in any treatment at 3 and 7 days. On days 14, 28, and 56, M. paratuberculosis was detected in the liquid storage treatment but remained undetectable in the compost and pack treatments. However, M. paratuberculosis DNA was detectable through day 56 in all treatments and up to day 175 in liquid storage treatments. Taken together, the results indicate that high-temperature composting is more effective than pack storage or liquid storage of manure in reducing these pathogens in dairy manure. Therefore, thermophilic composting is recommended for treatment of manures destined for pathogen-sensitive environments such as those for vegetable production, residential gardening, or application to rapidly draining fields. PMID:16391093
NASA Astrophysics Data System (ADS)
Sayegh, Samir I.; Taghian, Alphonse
2013-03-01
Breast cancer-related lymphedema (BCRL) can be irreversible with profound negative impact on patients' quality of life. Programs that provide screening and active surveillance for BCRL are essential to determine whether early detection and intervention influences the course of lymphedema development. Established methods of quantitatively assessing lymphedema at early stages include "volume" methods such as perometry and bioimpedance spectroscopy. Here we demonstrate 1) Use of topographical techniques analogous to those used in corneal topography 2) Development of point-of-care lymphedema detection and characterization based on off-the-shelf hardward 3) The role of subsurface imaging 4) Multimodal diagnostics and integration yielding higher sensitivity/ specificity.
Hoe, Fernanda G H; Ruegg, Pamela L
2005-11-01
To determine whether there was any association between results of in vitro antimicrobial susceptibility testing of pathogens isolated from cows with mild or moderate clinical mastitis and outcome of treatment. Observational study. 133 cows with mild or moderate mastitis in a single quarter. Cows were treated by means of intramammary infusion of pirlimycin (50 mg) in the affected quarter once daily for 2 days; additional intramammary treatments with the same product were administered if the milk continued to appear abnormal. Duration of treatment and days until clinical cure were recorded. Bacterial isolates were tested for antimicrobial susceptibility by means of a broth micro-dilution technique. Environmental streptococci, coliforms, and coagulase-negative Staphylococcus spp were the most commonly isolated pathogens. Duration of treatment and days until clinical cure were not significantly different for cows from which pathogens that were susceptible or resistant to pirlimycin were isolated. Bacteriologic cure rates 14 and 21 days after treatment were not significantly different for cows with mastitis caused by susceptible or resistant bacteria. Similar results were found when data only from cows with mastitis caused by gram-positive isolates were analyzed. In the present study, differences in clinical outcome for cows with mild or moderate mastitis that could be attributed to differences in results of in vitro susceptibility testing were not identified. The use of in vitro susceptibility testing to guide intramammary mastitis treatment cannot be recommended on the basis of results of this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Szecsody, James E.; Zhong, Lirong
Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of thismore » technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.« less
2009-01-01
Borrelia burgdorferi sensu lato is the causative agent of Lyme borreliosis in humans. This inflammatory disease can affect the skin, the peripheral and central nervous system, the musculoskeletal and cardiovascular system and rarely the eyes. Early stages are directly associated with viable bacteria at the site of inflammation. The pathogen-host interaction is complex and has been elucidated only in part. B. burgdorferi is highly susceptible to antibiotic treatment and the majority of patients profit from this treatment. Some patients develop chronic persistent disease despite repeated antibiotics. Whether this is a sequel of pathogen persistence or a status of chronic auto-inflammation, auto-immunity or a form of fibromyalgia is highly debated. Since vaccination is not available, prevention of a tick bite or chemoprophylaxis is important. If the infection is manifest, then treatment strategies should target not only the pathogen by using antibiotics but also the chronic inflammation by using anti-inflammatory drugs. PMID:20067594
BEACH Act amendment to Clean Water Act requires EPA to establish more expeditious methods for the timely detection of pathogens and pathogen indicators in coastal waters New methods should demonstrate utility for and be compatible with all CWA 304(a) criteria needs including:...
THE US POSITION AND FATE OF PATHOGENS IN SEWAGE SLUDGE AND THE US 40CFR503 REGULATION
This paper reviews the pathogenic microorganisms that may be found in sewage sludge and the commonly employed Class A and B treatment processes for controlling pathogens. It notes how extensively they are used and discusses issues and concerns with them. Preliminary findings of a...
Bacterial reproductive pathogens of cats and dogs.
Graham, Elizabeth M; Taylor, David J
2012-05-01
With the notable exception of Brucella canis, exogenous bacterial pathogens are uncommon causes of reproductive disease in cats and dogs. Most bacterial reproductive infections are endogenous, and predisposing factors for infection are important. This article reviews the etiology, pathogenesis, clinical presentation, diagnosis, treatment, and public health significance of bacterial reproductive pathogens in cats and dogs.
Fister, Andrew S; O'Neil, Shawn T; Shi, Zi; Zhang, Yufan; Tyler, Brett M; Guiltinan, Mark J; Maximova, Siela N
2015-10-01
Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Fister, Andrew S.; O’Neil, Shawn T.; Shi, Zi; Zhang, Yufan; Tyler, Brett M.; Guiltinan, Mark J.; Maximova, Siela N.
2015-01-01
Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. PMID:26163705
Pinzón-Sánchez, C; Cabrera, V E; Ruegg, P L
2011-04-01
The objective of this study was to develop a decision tree to evaluate the economic impact of different durations of intramammary treatment for the first case of mild or moderate clinical mastitis (CM) occurring in early lactation with various scenarios of pathogen distributions and use of on-farm culture. The tree included 2 decision and 3 probability events. The first decision evaluated use of on-farm culture (OFC; 2 programs using OFC and 1 not using OFC) and the second decision evaluated treatment strategies (no intramammary antimicrobials or antimicrobials administered for 2, 5, or 8 d). The tree included probabilities for the distribution of etiologies (gram-positive, gram-negative, or no growth), bacteriological cure, and recurrence. The economic consequences of mastitis included costs of diagnosis and initial treatment, additional treatments, labor, discarded milk, milk production losses due to clinical and subclinical mastitis, culling, and transmission of infection to other cows (only for CM caused by Staphylococcus aureus). Pathogen-specific estimates for bacteriological cure and milk losses were used. The economically optimal path for several scenarios was determined by comparison of expected monetary values. For most scenarios, the optimal economic strategy was to treat CM caused by gram-positive pathogens for 2 d and to avoid antimicrobials for CM cases caused by gram-negative pathogens or when no pathogen was recovered. Use of extended intramammary antimicrobial therapy (5 or 8 d) resulted in the least expected monetary values. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...
40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...
40 CFR Appendix D to Part 300 - Appropriate Actions and Methods of Remedying Releases
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Neutralization. (D) Equalization. (E) Chemical oxidation. (iii) Physical methods, including the following: (A... treatment. (F) Wet air oxidation. (G) Solidification. (H) Encapsulation. (I) Soil washing or flushing. (J... containment. (iv) Leachate control, including the following: (A) Subsurface drains. (B) Drainage ditches. (C...
20 CFR 654.406 - Excreta and liquid waste disposal.
Code of Federal Regulations, 2014 CFR
2014-04-01
... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...
20 CFR 654.406 - Excreta and liquid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...
20 CFR 654.406 - Excreta and liquid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...
20 CFR 654.406 - Excreta and liquid waste disposal.
Code of Federal Regulations, 2012 CFR
2012-04-01
... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...
20 CFR 654.406 - Excreta and liquid waste disposal.
Code of Federal Regulations, 2013 CFR
2013-04-01
... subsurface septic tank-seepage system or other type of liquid waste treatment and disposal system, privies or... RESPONSIBILITIES OF THE EMPLOYMENT SERVICE SYSTEM Housing for Agricultural Workers Housing Standards § 654.406... accumulate on the ground surface. (b) Where public sewer systems are available, all facilities for disposal...
Permeable reactive barrier (PRB) technology is gradually being accepted as a viable alternative to conventional groundwater remediation systems such as pump and treat. PRB technology involves the placement or formation of a reactive treatment zone in the path of a dissolved conta...
Geochemical and microbiological factors that control long-term performance of subsurface permeable reactive barriers were evaluated at the Elizabeth City, NC and the Denver Federal Center, CO sites. These groundwater treatment systems use zero-valent iron filings to intercept an...
Moridis, George J.; Oldenburg, Curtis M.
2001-01-01
Disclosed are processes for monitoring and control of underground contamination, which involve the application of ferrofluids. Two broad uses of ferrofluids are described: (1) to control liquid movement by the application of strong external magnetic fields; and (2) to image liquids by standard geophysical methods.
Evaluation of the impact of lime softening waste disposal in natural environments
Drinking water treatment residues (WTR), generated from the lime softening processes, are commonly reused or disposed of in a number of applications; these include use as a soil amendment or a subsurface fill. Recently questions were posed by the Florida regulatory community on w...
Update on the main MDR pathogens: prevalence and treatment options.
Esposito, Silvano; De Simone, Giuseppe
2017-12-01
In recent years the proportion of multi-drug resistance (MDR) among the bacterial pathogens causing infections, particularly those acquired in healthcare settings, has risen worryingly worldwide. It poses a serious public health threat as the multiple patterns of resistance limit the effective treatment options for such infections. Although many bacterial species have developed reduced susceptibility to a wide array of antimicrobial molecules, a particular group of pathogens acronymically referred to as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) plays a clinically relevant role in the aetiology of life-threatening nosocomial infections. In this review, we represent the rise of MDR among the ESKAPE pathogens over the decades and report studies from each continent showing the current prevalence and burden of such infections worldwide.
NASA Astrophysics Data System (ADS)
Jia, Nan; Ding, Li; Liu, Yu-Jing; Hu, Ping
2018-07-01
In this paper, we consider two interacting pathogens spreading on multiplex networks. Each pathogen spreads only on its single layer, and different layers have the same individuals but different network topology. A state-dependent infectious rate is proposed to describe the nonlinear mutual interaction during the propagation of two pathogens. Then a novel epidemic spreading model incorporating treatment control strategy is established. We investigate the global asymptotic stability of the equilibrium points by using Dulac's criterion, Poincaré-Bendixson theorem and Lyapunov method. Furthermore, we discuss an optimal strategy to minimize the total number of the infected individuals and the cost associated with treatment control for both spreading of two pathogens. Finally, numerical simulations are presented to show the validity and efficiency of our results.
Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu
2013-01-01
In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...
Frawley, Alean; Powell, Lauren; McQuiston, John R; Gulvik, Christopher A; Bégué, Rodolfo E
2018-04-23
Chromobacterium violaceum is a rare, potentially serious pathogen. Most clinicians have no experience with its clinical appearance or treatment. We describe a case of a child presenting with necrotizing pneumonia caused by C. violaceum . We describe case complexities, including the need for a multidisciplinary approach to diagnosis and treatment.
Methods of hydrotreating a liquid stream to remove clogging compounds
Minderhoud, Johannes Kornelis [Amsterdam, NL; Nelson, Richard Gene [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Nair, Vijay [Katy, TX
2009-09-22
A method includes producing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a gas stream. At least a portion of the liquid stream is provided to a hydrotreating unit. At least a portion of selected in situ heat treatment clogging compositions in the liquid stream are removed to produce a hydrotreated liquid stream by hydrotreating at least a portion of the liquid stream at conditions sufficient to remove the selected in situ heat treatment clogging compositions.
Tomazi, T; Lopes, T A F; Masson, V; Swinkels, J M; Santos, M V
2018-05-16
The general objective of this study was to evaluate whether cephapirin sodium is noninferior compared with a positive control broad-spectrum product formulated with a combination of antimicrobials for intramammary treatment of nonsevere clinical mastitis. In addition, we compared the efficacy of treatments on the cure risks of pathogen groups (gram-positive, gram-negative, and cultures with no growth) based on culture results. A total of 346 cows distributed in 31 commercial dairy herds were selected to participate in the study, although only 236 met the criteria for evaluation of microbiological cure. Coagulase-negative staphylococci were the most isolated gram-positive pathogens in pretreatment milk samples, whereas the most common gram-negative bacterium was Escherichia coli. Cows attending the postadmission criteria were treated with 4 intramammary infusions (12 h apart) of one of the following antimicrobials: 300 mg of cephapirin sodium + 20 mg of prednisolone (CS), or the positive control treatment formulated with a combination of antimicrobials (200 mg of tetracycline + 250 mg of neomycin + 28 mg of bacitracin + 10 mg of prednisolone; TNB). Noninferiority analysis and mixed regression models (overall and considering the pathogen groups) were performed for the following outcomes: bacteriological cure (absence of the causative pathogens in cultures performed in milk samples collected at 14 and 21 ± 3 d after enrollment), pathogen cure (absence of any pathogen on both follow-up samples), clinical cure (absence of clinical sign in the milk and mammary gland at 48 h after the last antimicrobial infusion), extended clinical cure (normal milk and normal gland on the second posttreatment sample collection (d 21), and linear score of somatic cell count cure [linear score of somatic cell count recovery (≤4.0) on d 21 ± 3 after enrollment]. No significant differences were observed between treatments regarding any of the evaluated outcomes in both regression models (overall and considering the pathogen groups). Noninferiority of CS relative to TNB was inconclusive for bacteriological cure (CS = 0.68; TNB = 0.73) and clinical cure (CS = 0.88; TNB = 0.94), as the confidence intervals crossed the pre-stated margin of noninferiority (Δ = -0.15). Cephapirin sodium was noninferior compared with TNB for pathogen cure (CS = 0.36; TNB = 0.35), extended clinical cure (CS = 0.93; TNB = 0.92), and linear score of somatic cell count cure (CS = 0.29; TNB = 0.28). In conclusion, the use of intramammary CS for treatment of nonsevere clinical mastitis has similar efficacy as a treatment regimen with a combination of antimicrobial agents (tetracycline + neomycin + bacitracin), although noninferiority analysis showed inconclusive results for bacteriological and clinical cures. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chapman, C M C; Gibson, G R; Rowland, I
2014-06-01
There is increasing evidence that probiotic bacteria can inhibit and/or prevent urinary tract infections. Possible mechanisms include prevention of adhesion of pathogens to the bladder epithelium and inhibition of biofilm formation. Currently there is interest in the comparative efficacy of single probiotics vs. strain mixtures. We have therefore tested the inhibitory activity of four single probiotics and four probiotic mixtures towards the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. Inhibition of biofilm formation by cell-free supernatants was tested using the Crystal Violet assay, while prevention of pathogen adhesion to host cells was tested by using bladder cancer cells as a model for the human urinary tract. Under pH-controlled conditions, there was no significant inhibition of biofilm formation by any treatment. Without pH control, 5/8 treatments significantly inhibited biofilm production by E. coli, while 5/8 treatments inhibited production by E. faecalis. Using data from all Crystal Violet assays, there was no significant difference in the ability of single- and multi-strain probiotics to inhibit biofilm formation. In the cell culture assays, all treatments were able to significantly reduce numbers of pathogenic cells adhering to host cells by 2.5-3.5 logs. No significant difference was observed between the displacement caused by single strains and mixtures for either pathogen. Inhibition of biofilm seems to be a major mechanism of urinary tract pathogen exclusion, related to, and possibly dependent upon, the probiotic ability to reduce environmental pH. Exclusion via competition of binding sites is a possible in vivo mechanism for these probiotics. If an additive or synergistic effect exists between strains within a mixture, it does not manifest itself in a greater effect through these two inhibitory mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit
2016-08-15
Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) - a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0-9.7×10(4)CFUm(-2)h(-1)) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1m away from the GW systems. At the 5m distance amounts of these bacteria were not statistically different (p>0.05) from background concentrations tested over 50m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques to provide more accurate quantification of small amounts of viable, aerosolized bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.
Brooks, Lauren E; Ul-Hasan, Sabah; Chan, Benjamin K; Sistrom, Mark J
2018-01-01
Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection-representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments-specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date. Our study evaluates an often-underappreciated aspect of resistance-the impact of evolutionary selection. We evaluate selection on all annotated efflux genes in all sequenced ESKAPE pathogens, providing critical context for and insight into current and future development of efflux-targeting treatments for resistant bacterial infections.
Carvajal, Guido; Roser, David J; Sisson, Scott A; Keegan, Alexandra; Khan, Stuart J
2015-11-15
Risk management for wastewater treatment and reuse have led to growing interest in understanding and optimising pathogen reduction during biological treatment processes. However, modelling pathogen reduction is often limited by poor characterization of the relationships between variables and incomplete knowledge of removal mechanisms. The aim of this paper was to assess the applicability of Bayesian belief network models to represent associations between pathogen reduction, and operating conditions and monitoring parameters and predict AS performance. Naïve Bayes and semi-naïve Bayes networks were constructed from an activated sludge dataset including operating and monitoring parameters, and removal efficiencies for two pathogens (native Giardia lamblia and seeded Cryptosporidium parvum) and five native microbial indicators (F-RNA bacteriophage, Clostridium perfringens, Escherichia coli, coliforms and enterococci). First we defined the Bayesian network structures for the two pathogen log10 reduction values (LRVs) class nodes discretized into two states (< and ≥ 1 LRV) using two different learning algorithms. Eight metrics, such as Prediction Accuracy (PA) and Area Under the receiver operating Curve (AUC), provided a comparison of model prediction performance, certainty and goodness of fit. This comparison was used to select the optimum models. The optimum Tree Augmented naïve models predicted removal efficiency with high AUC when all system parameters were used simultaneously (AUCs for C. parvum and G. lamblia LRVs of 0.95 and 0.87 respectively). However, metrics for individual system parameters showed only the C. parvum model was reliable. By contrast individual parameters for G. lamblia LRV prediction typically obtained low AUC scores (AUC < 0.81). Useful predictors for C. parvum LRV included solids retention time, turbidity and total coliform LRV. The methodology developed appears applicable for predicting pathogen removal efficiency in water treatment systems generally. Copyright © 2015 Elsevier Ltd. All rights reserved.
Use of cefoperazone/sulbactam in neonates.
Ovali, Fahri; Gursoy, Tugba; Sari, Ilkay; Divrikli, Demet; Aktas, Alev
2012-02-01
Neonates are at high risk for nosocomial infections due to multidrug-resistant pathogens. The use of β-lactamase inhibitors in combination with β-lactam antibiotics broadens the antimicrobial spectrum. Cefoperazone/sulbactam is used in children but there are limited data on its usage in neonates. The purpose of the present study was therefore to evaluate the use of cefoperazone/sulbactam in the treatment of neonatal infections caused by multidrug-resistant pathogens. The records of neonates who were hospitalized and who received cefoperazone/sulbactam were reviewed. There were 90 infants who received cefoperazone/sulbactam. A pathogen could be isolated in 41 (45.6%) of the infants. In total, 17.1% of isolated pathogens were resistant to cefoperazone/sulbactam. Side-effects were seen in four of the infants. Two infants had cholestasis, one infant had neutropenia and one had superinfection with candida. Cefoperazone/sulbactam can be used in the treatment of nosocomial infections caused by multidrug-resistant pathogens in neonates. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.
Pathogen reduction of blood components.
Solheim, Bjarte G
2008-08-01
Thanks to many blood safety interventions introduced in developed countries the risk of transfusion transmitted infections has become exceedingly small in these countries. However, emerging pathogens still represent a serious challenge, as demonstrated by West Nile virus in the US and more recently by Chikungunya virus in the Indian Ocean. In addition bacterial contamination, particularly in platelets, and protozoa transmitted by blood components still represent sizeable risks in developed countries. In developing countries the risk of all transfusion transmitted infections is still high due to insufficient funding and organisation of the health service. Pathogen reduction of pooled plasma products has virtually eliminated the risk of transfusion transmitted infections, without compromising the quality of the products significantly. Pathogen reduction of blood components has been much more challenging. Solvent detergent treatment which has been so successfully applied for plasma products dissolves cell membranes, and can, therefore, only be applied for plasma and not for cellular blood components. Targeting of nucleic acids has been another method for pathogen inactivation of plasma and the only approach possible for cellular blood products. As documented in more than 15 year's track record, solvent detergent treatment of pooled plasma can yield high quality plasma. The increased risk for contamination by unknown viruses due to pooling is out weighed by elimination of TRALI, significant reduction in allergic reactions and standardisation of the product. Recently, a promising method for solvent detergent treatment of single donor plasma units has been published. Methylene blue light treatment of single donor plasma units has a similar long track record as pooled solvent detergent treated plasma; but the method is less well documented and affects coagulation factor activity more. Psoralen light treated plasma has only recently been introduced (CE marked in Europe, but not licensed by the FDA), while the method of Riboflavin light treatment of plasma still is under development. In addition to pathogen reduction the methods, however, result in some reduction of coagulation factor activity. For platelets only Psoralen and Riboflavin light treatment have been implemented. Both are CE marked products in Europe but only approved for clinical trials in the USA. The methods affect platelet activity, but result in clinically acceptable platelets with only slightly reduced CCI and increased demand for platelet transfusions. Pathogen reduction of red blood cells with FRALE (S-303) or INACTINE (PEN110) has so far resulted in the formation of antibodies against neo-epitopes on red blood cells. A promising method for Riboflavin treatment of red blood cells is under development. This manuscript reviews the current experience and discusses future trends.
Antaki, Elizabeth M; Vellidis, George; Harris, Casey; Aminabadi, Peiman; Levy, Karen; Jay-Russell, Michele T
2016-10-01
Studies have shown that irrigation water can be a vector for pathogenic bacteria. Due to this, the Food Safety Modernization Act's (FSMA) produce safety rule requires that agricultural water directly applied to produce be safe and of adequate sanitary quality for use, which may pose a challenge for some farmers. The purpose of this research was to assess the presence and concentration of Salmonella and generic Escherichia coli in irrigation water from distribution systems in a mixed produce production region of southern Georgia. Water samples were collected during three growing seasons at three farms irrigating crops with surface water (Pond 1, Pond 2) or groundwater (Well) during 2012-2013. Salmonella and generic E. coli populations were monitored by culture and Most Probable Number (MPN). Confirmed isolates were characterized by pulsed-field gel electrophoresis and serotyping. In Pond 1, Salmonella was detected in 2/21 surface, 5/26 subsurface, 10/50 center pivot, and 0/16 solid set sprinkler head water samples. In Pond 2, Salmonella was detected in 2/18 surface, 1/18 subsurface, 6/36 drip line start, and 8/36 drip line end water samples. Twenty-six well pumps and 64 associated drip line water samples were negative. The overall mean Salmonella concentration for positive water samples was 0.03 MPN/100 mL (range <0.0011-1.8 MPN/100 mL). Nine Salmonella serovars comprising 22 pulsotypes were identified. Identical serovars and subtypes were found three times on the same day and location: Pond 1-Pivot-Cantaloupe (serovar Rubislaw), Pond 1-Pivot-Peanut (serovar Saintpaul), and Pond 2-Drip Line Start-Drip Line End-Yellow Squash (serovar III_16z10:e,n,x,z15). Generic E. coli was detected in water from both farm ponds and irrigation distribution systems, but the concentrations met FSMA microbial water quality criteria. The results from this study will allow producers in southern Georgia to better understand how potential pathogens move through irrigation distribution systems.
NASA Astrophysics Data System (ADS)
He, Xiao Dong
This thesis studies light scattering processes off rough surfaces. Analytic models for reflection, transmission and subsurface scattering of light are developed. The results are applicable to realistic image generation in computer graphics. The investigation focuses on the basic issue of how light is scattered locally by general surfaces which are neither diffuse nor specular; Physical optics is employed to account for diffraction and interference which play a crucial role in the scattering of light for most surfaces. The thesis presents: (1) A new reflectance model; (2) A new transmittance model; (3) A new subsurface scattering model. All of these models are physically-based, depend on only physical parameters, apply to a wide range of materials and surface finishes and more importantly, provide a smooth transition from diffuse-like to specular reflection as the wavelength and incidence angle are increased or the surface roughness is decreased. The reflectance and transmittance models are based on the Kirchhoff Theory and the subsurface scattering model is based on Energy Transport Theory. They are valid only for surfaces with shallow slopes. The thesis shows that predicted reflectance distributions given by the reflectance model compare favorably with experiment. The thesis also investigates and implements fast ways of computing the reflectance and transmittance models. Furthermore, the thesis demonstrates that a high level of realistic image generation can be achieved due to the physically -correct treatment of the scattering processes by the reflectance model.
NASA Astrophysics Data System (ADS)
Jung, Koo; Yoon, Minchul; Park, Hae-Jun; Youll Lee, Kwang; Jeong, Rae-Dong; Song, Beom-Seok; Lee, Ju-Woon
2014-06-01
Phytosanitary treatments are required to disinfest quarantine pests and pathogens in agricultural commodities. Gray mold in fruit is caused by Botrytis cinerea, which is one of the major postharvest pathogen of apple and pear. Irradiation treatment is a viable alternative for phytosanitary purposes and a useful nonchemical method for controlling pests and postharvest pathogens. An irradiation dose of over 0.4 kGy is used for the control of insects and fungal disease in fresh fruit, but a loss of firmness occurs. Combined treatments are needed to reduce the irradiation dose in phytosanitary irradiation processing. This study focuses on the application of combined treatments to reduce the loss of fruit quality when fresh fruit is irradiated for phytosanitary purposes. Comparing the antifungal activity against B. cinerea, while gamma irradiation showed no antifungal activity at a dose of 1.0 kGy, combined treatments (nano Ag particle, nano-sized silica silver) at a dose of 1.0 kGy showed the strongest antifungal activity. This study demonstrates the synergistic impacts of combined treatments in phytosanitary irradiation processing. Taken together, the combined treatments may affect reduction of fruit injury that occurred with irradiation only, meaning that the use of combined treatments with gamma irradiation is significantly effective for the preservation of fruit quality.
Wells, J E; Berry, E D; Guerini, M N; Varel, V H
2015-02-01
To evaluate natural terpene compounds for antimicrobial activities and determine whether these compounds could be used to control microbial activities and pathogens in production animal facilities. Thymol, geraniol, glydox, linalool, pine oil, plinol and terpineol were tested in laboratory studies for ability to control the production of odorous volatile fatty acid compounds and reduce pathogen levels in manure slurry preparations. Thymol is a terpene phenolic compound and was most effective for reducing fermentation products and pathogen levels (P < 0.05), followed by the extracts linalool, pine oil and terpineol, which are terpene alcohols. Select compounds thymol, linalool and pine oil were further evaluated in two separate studies by applying the agents to feedlot surfaces in cattle pens. Feedlot surface material (FSM; manure and soil) was collected and analysed for fermentation products, levels of coliforms and total Escherichia coli, and the presence of E. coli O157:H7, Campylobacter, Salmonella, Listeria and L. monocytogenes. The reduction in fermentation products but not pathogens was dependent on the moisture present in the FSM. Treatment with 2000 ppm thymol reduced the prevalence of E. coli O157:H7 but not Listeria. In a separate study, treatment with 4000 ppm pine oil reduced E. coli O157:H7, Listeria and Campylobacter (P < 0.05). Linalool was tested at two levels (2000 and 4000 ppm) and did not affect pathogen levels at either concentration. Natural compounds bearing terpenes can control pathogenic bacteria in treated manures and when applied to the feedlot surface in production cattle systems. Pine oil is a cheaper alternative to thymol and may be a useful treatment for controlling pathogens. The control of bacterial pathogens in animal productions systems is an important step in preharvest food safety. Waste products, such as pine oil extract, from the pulp wood industry may have application for treating feedlot pens and manures to reduce the pathogen load. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Fundamental Studies of Transient, Atmospheric-Pressure, Small-Scale Plasmas
2017-01-23
e.g. plasma brush) were explored for surface decontamination against pathogenic bacteria and biofilms , as well as for treatment of cervical cancer , in...pressure plasma jets and jet arrays (e.g. plasma brush) were explored for surface decontamination against pathogenic bacteria and biofilms , as well as...for treatment of cervical cancer , in vitro. 4) Other studies involving portable nanosecond pulsed power generation based gas switches or
Development of Novel Antibiotics for the Treatment of Acinetobacter and Related Pathogens
2012-07-07
1 was determined against liquid culture of each bacterial strain as recommended by the CLSI guidelines.අ Figure 1. Antibacterial activity of ABTZ...to enhance antibacterial activity were incorporated into compounds 28 and 29, and those known to attenuate antibacterial activity were incorporated ...Project objectives Our objectives were to identify novel antibacterial agents and strategies for the treatment of problematic bacterial pathogens
Acute bacterial and viral meningitis.
Bartt, Russell
2012-12-01
Most cases of acute meningitis are infectious and result from a potentially wide range of bacterial and viral pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Acute meningitis is infectious in most cases and caused by a potentially wide range of bacterial and viral pathogens. Shifts in the epidemiology of bacterial pathogens have been influenced by changes in vaccines and their implementation. Seasonal and environmental changes influence the likely viral and rickettsial pathogens. The organized approach to the patient with suspected meningitis enables the prompt administration of antibiotics, possibly corticosteroids, and diagnostic testing with neuroimaging and spinal fluid analysis. Pertinent testing and treatment can vary with the clinical presentation, season, and possible exposures. This article reviews the epidemiology, clinical presentation, diagnosis, and treatment of acute meningitis.
Pathogen Treatment Guidance and Monitoring Approaches fro ...
On-site non-potable water reuse is increasingly used to augment water supplies, but traditional fecal indicator approaches for defining and monitoring exposure risks are limited when applied to these decentralized options. This session emphasizes risk-based modeling to define pathogen log-reduction requirements coupled with alternative targets for monitoring enabled by genomic sequencing (i.e., the microbiome of reuse systems). 1. Discuss risk-based modeling to define pathogen log-reduction requirements 2. Review alternative targets for monitoring 3. Gain an understanding of how new tools can help improve successful development of sustainable on-site non-potable water reuse Presented at the Water Wastewater Equipment Treatment & Transport Show.
The subsurface record for the Anthropocene based on the global analysis of deep wells
NASA Astrophysics Data System (ADS)
Rose, K.
2016-12-01
While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.
Treatment of acute otitis media - challenges in the era of antibiotic resistance.
Dagan, R
2000-12-08
The last decade is characterized by the increase in antibiotic resistance among respiratory bacterial pathogens in the presence of only modest progress in the development of new antibacterial agents to overcome this resistance. A series of recent studies show clearly that the increased resistance among the main AOM pathogens (namely Streptococcus pneumoniae and Haemophilus influenzae) is associated with a dramatic decrease in bacteriologic response to antibiotic treatment, which in turn has an impact on clinical response. Thus, the individual patient is affected by the increasing antibiotic resistance. Moreover, the society as a whole is now also affected because the carriage and spread of antibiotic resistant AOM pathogens is remarkably impacted by antibiotic treatment. New studies show the remarkable ability of antibiotics to rapidly promote nasopharyngeal carriage and spread of antibiotic-resistant AOM pathogens. In these studies, the increase in carriage of antibiotic resistant S. pneumoniae is shown already after 3-4 days from initiation of antibiotic treatment and may last for weeks to months after treatment. Children carrying antibiotic-resistant organisms transmit those organisms to their family and to their day care centers and thus a vicious cycle is created in which increased antibiotic resistance with decreased response leads to increased antibiotic use, which in turn leads to further increase in resistance. New antibiotics are not likely to improve this situation. It is clear that the challenge in the next decade is to prevent AOM rather than to treat it. Efforts to prevent AOM include improved environmental factors, immunization with bacterial and viral vaccines and some creative measures such as prevention of colonization and attachment to epithelium of AOM pathogens. Whether these efforts will prove successful or, even if successful, will only modify the clinical and bacteriologic picture presenting new challenges, only time will tell.
Samsó, Roger; García, Joan
2014-03-01
Despite the fact that horizontal subsurface flow constructed wetlands have been in operation for several decades now, there is still no clear understanding of some of their most basic internal functioning patterns. To fill this knowledge gap, on this paper we present what we call "The Cartridge Theory". This theory was derived from simulation results obtained with the BIO_PORE model and explains the functioning of urban wastewater treatment wetlands based on the interaction between bacterial communities and the accumulated solids leading to clogging. In this paper we start by discussing some changes applied to the biokinetic model implemented in BIO_PORE (CWM1) so that the growth of bacterial communities is consistent with a well-known population dynamics models. This discussion, combined with simulation results for a pilot wetland system, led to the introduction of "The Cartridge Theory", which states that the granular media of horizontal subsurface flow wetlands can be assimilated to a generic cartridge which is progressively consumed (clogged) with inert solids from inlet to outlet. Simulations also revealed that bacterial communities are poorly distributed within the system and that their location is not static but changes over time, moving towards the outlet as a consequence of the progressive clogging of the granular media. According to these findings, the life-span of constructed wetlands corresponds to the time when bacterial communities are pushed as much towards the outlet that their biomass is not anymore sufficient to remove the desirable proportion of the influent pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of recirculation on organic matter removal in a hybrid constructed wetland system.
Ayaz, S C; Findik, N; Akça, L; Erdoğan, N; Kinaci, C
2011-01-01
This research project aimed to determine the technologically feasible and applicable wastewater treatment systems which will be constructed to solve environmental problems caused by small communities in Turkey. Pilot-scale treatment of a small community's wastewater was performed over a period of more than 2 years in order to show applicability of these systems. The present study involves removal of organic matter and suspended solids in serially operated horizontal (HFCW) and vertical (VFCW) sub-surface flow constructed wetlands. The pilot-scale wetland was constructed downstream of anaerobic reactors at the campus of TUBITAK-MRC. Anaerobically pretreated wastewater was introduced into this hybrid two-stage sub-surface flow wetland system (TSCW). Wastewater was first introduced into the horizontal sub-surface flow system and then the vertical flow system before being discharged. Recirculation of the effluent was tested in the system. When the recirculation ratio was 100%, average removal efficiencies for TSCW were 91 +/- 4% for COD, 83 +/- 10% for BOD and 96 +/- 3% for suspended solids with average effluent concentrations of 9 +/- 5 mg/L COD, 6 +/- 3 mg/L BOD and 1 mg/L for suspended solids. Comparing non-recirculation and recirculation periods, the lowest effluent concentrations were obtained with a 100% recirculation ratio. The effluent concentrations met the Turkish regulations for discharge limits of COD, BOD and TSS in each case. The study showed that a hybrid constructed wetland system with recirculation is a very effective method of obtaining very low effluent organic matter and suspended solids concentrations downstream of anaerobic pretreatment of domestic wastewaters in small communities.
A Spike Cocktail Approach to Improve Microbial Performance ...
Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable pathogen levels limit their utility for routine evaluation of health risks in water reuse systems. Therefore, there is a need to improve our understanding of the linkage between pathogens and more readily measured process indicators during treatment. This paper describes an approach for constructing spiking experiments to relate the behavior of viral, bacterial, and protozoan pathogens with relevant process indicators. General issues are reviewed, and the spiking protocol is applied as a case study example to improve microbial performance monitoring and health risk evaluation in a water reuse system. This approach provides a foundation for the development of novel approaches to improve real or near-real time performance monitoring of water recycling systems. This manuscrupt details an approach for developing "spike cocktail", a mixture of microorganisms that can be used to evaluate the performance of engineered and natural systems.
Muchesa, P.; Mwamba, O.; Barnard, T. G.; Bartie, C.
2014-01-01
Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria. PMID:25530964
The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, N.
New technologies were used to cost-effectively remediate several hundred feet of radioactively contaminated subsurface drain pipes at the General Motors site in Adrian, Michigan, and to conduct post-remedial verification surveys. Supplemental cleanup criteria were applied to inaccessible areas of the project, and inexpensive treatment technology was used to treat wastewater generated. Application of these methods resulted in substantial cost savings.
A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatmen...
Boog, Johannes; Nivala, Jaime; Aubron, Thomas; Wallace, Scott; van Afferden, Manfred; Müller, Roland Arno
2014-06-01
In this study, a side-by-side comparison of two pilot-scale vertical subsurface flow constructed wetlands (6.2 m(2)×0.85 m, q(i)=95 L/m(2) d, τ(n)=3.5 d) handling primary treated domestic sewage was conducted. One system (VA-i) was set to intermittent aeration while the other was aerated continuously (VAp-c). Intermittent aeration was provided to VA-i in an 8 h on/4 h off pattern. The intermittently aerated wetland, VA-i, was observed to have 70% less nitrate nitrogen mass outflow than the continuously aerated wetland, VAp-c. Intermittent aeration was shown to increase treatment performance for TN while saving 33% of running energy cost for aeration. Parallel tracer experiments in the two wetlands showed hydraulic characteristics similar to one Continuously Stirred Tank Reactor (CSTR). Intermittent aeration did not significantly affect the hydraulic functioning of the system. Hydraulic efficiencies were 78% for VAp-c and 76% for VA-i. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Chunhui; Ning, Ke; Zhang, Wenwen; Guo, Yuanjie; Chen, Jun; Liang, Chen
2013-04-01
Increased attention is currently being directed towards the potential negative effects of antibiotics and other PPCPs discharged into the aquatic environment via municipal WWTP secondary effluents. A number of analytical methods, such as high performance liquid chromatography technologies, including a high performance liquid chromatography-fluorescence method (HPLC-FLD), high performance liquid chromatography-UV detection method (HPLC-UV) and high performance liquid chromatography-mass spectrometry method (HPLC-MS), have been suggested as determination technologies for antibiotic residues in water. In this study, we implement a HPLC-MS/MS combined method to detect and analyze antibiotics in WWTP secondary effluent and apply a horizontal subsurface flow constructed wetland (CW) as an advanced wastewater treatment for removing antibiotics in the WWTP secondary effluent. The results show that there were 2 macrolides, 2 quinolones and 5 sulfas in WWTP secondary effluent among all the 22 antibiotics considered. After the CW advanced treatment, the concentration removal efficiencies and removal loads of 9 antibiotics were 53-100% and 0.004-0.7307 μg m(-2) per day, respectively.
Arbaeen, Ahmad F; Schubert, Peter; Serrano, Katherine; Carter, Cedric J; Culibrk, Brankica; Devine, Dana V
2017-05-01
Trauma transfusion packages for hemorrhage control consist of red blood cells, plasma, and platelets at a set ratio. Although pathogen reduction improves the transfusion safety of platelet and plasma units, there is an associated reduction in quality. This study aimed to investigate the impact of riboflavin/ultraviolet light-treated plasma or platelets in transfusion trauma packages composed of red blood cell, plasma, and platelet units in a ratio of 1:1:1 in vitro by modeling transfusion scenarios for trauma patients and assessing function by rotational thromboelastometry. Pathogen-reduced or untreated plasma and buffy coat platelet concentrate units produced in plasma were used in different combinations with red blood cells in trauma transfusion packages. After reconstitution of these packages with hemodiluted blood, the hemostatic functionality was analyzed by rotational thromboelastometry. Hemostatic profiles of pathogen-inactivated buffy coat platelet concentrate and plasma indicated decreased activity compared with their respective controls. Reconstitution of hemodiluted blood (hematocrit = 20%) with packages that contained treated or nontreated components resulted in increased alpha and maximum clot firmness and enhanced clot-formation time. Simulating transfusion scenarios based on 30% blood replacement with a transfusion trauma package resulted in a nonsignificant difference in rotational thromboelastometry parameters between packages containing treated and nontreated blood components (p ≥ 0.05). Effects of pathogen inactivation treatment were evident when the trauma package percentage was 50% or greater and contained both pathogen inactivation-treated plasma and buffy coat platelet concentrate. Rotational thromboelastometry investigations suggest that there is relatively little impact of pathogen inactivation treatment on whole blood clot formation unless large amounts of treated components are used. © 2017 AABB.
Steinmann, Eike; Gravemann, Ute; Friesland, Martina; Doerrbecker, Juliane; Müller, Thomas H; Pietschmann, Thomas; Seltsam, Axel
2013-05-01
Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. Inactivation studies were performed with cell culture-derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture-grown viruses. After treatment of the blood units with MB plus light (Theraflex MB-Plasma system, MacoPharma) or UVC (Theraflex UV-Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion-transmitted HCV infections. © 2012 American Association of Blood Banks.
Active cooling-based surface confinement system for thermal soil treatment
Aines, R.D.; Newmark, R.L.
1997-10-28
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.
Active cooling-based surface confinement system for thermal soil treatment
Aines, Roger D.; Newmark, Robin L.
1997-01-01
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.
Antimicrobial resistance of mastitis pathogens.
Oliver, Stephen P; Murinda, Shelton E
2012-07-01
Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period. An increase in the incidence of disease in a herd generally results in increased use of antimicrobials, which in turn increases the potential for antibiotic residues in milk and the potential for increased bacterial resistance to antimicrobials. Continued use of antibiotics in the treatment and prevention of diseases of dairy cows will continue to be scrutinized. It is clear that strategies employing the prudent use of antimicrobials are needed. This clearly illustrates the importance of effective herd disease prevention and control programs. Based on studies published to date, scientific evidence does not support widespread, emerging resistance among mastitis pathogens to antibacterial drugs even though many of these antibiotics have been used in the dairy industry for treatment and prevention of disease for several decades. However, it is clear that use of antibiotics in dairy cows can contribute to increased antimicrobial resistance. While antimicrobial resistance does occur, we are of the opinion that the advantages of using antibiotics for the treatment of mastitis far outweigh the disadvantages. The clinical consequences of antimicrobial resistance of dairy pathogens affecting humans appear small. Antimicrobial resistance among dairy pathogens, particularly those found in milk, is likely not a human health concern as long as the milk is pasteurized. However, there are an increasing number of people who choose to consume raw milk. Transmission of an antimicrobial-resistant mastitis pathogen and/or foodborne pathogen to humans could occur if contaminated unpasteurized milk is consumed, which is another important reason why people should not consume raw milk. Likewise, resistant bacteria contaminating meat from dairy cows should not be a significant human health concern if the meat is cooked properly. Prudent use of antibiotics in the dairy industry is important, worthwhile, and necessary. Use of antibiotics at times when animals are susceptible to new infection such as the dry period is a sound management decision and a prudent use of antibiotics on the farm. Strategies involving prudent use of antibiotics for treatment encompass identification of the pathogen causing the infection, determining the susceptibility/resistance of the pathogen to assess the most appropriate antibiotic to use for treatment, and a sufficient treatment duration to ensure effective concentrations of the antibiotic to eliminate the pathogen. As the debate on the use of antibiotics in animal agriculture continues, we need to consider the consequences of, “What would happen if antibiotics are banned for use in the dairy industry and in other food-producing animals?” The implications of this question are far reaching and include such aspects as animal welfare, health, and well-being and impacts on food quantity, quality, and food costs. This question should be an important aspect in this ongoing and controversial debate!
The primary goal of the disinfection process in drinking water treatment is the inactivation of microbial pathogens. These pathogens comprise a diverse group of organisms which serve as the etiological agents of waterborne disease. Included in this group are bacterial, viral and ...
Reconstruction of a constructed wetland with horizontal subsurface flow after 18 years of operation.
Hudcová, Tereza; Vymazal, Jan; Dunajský, Michal Kriška
2013-01-01
The constructed wetland (CW) for 326 PE with horizontal subsurface flow at Kotenčice, Central Bohemia, Czech Republic, was built in 1994. Despite the relatively high efficiency of the CW, the filtration beds suffered from clogging, and therefore it was decided in 2011 to rebuild the whole system. The new treatment system was built as an experimental system consisting of four different combinations of horizontal and vertical beds. The major aim of the design was to determine the best hybrid combination which then could be used in the future for refurbishment of older horizontal flow CWs or for the new systems. The mechanical pretreatment consists of mechanical bar screens, a new Imhoff tank, and the original settling tank which has been converted into the accumulation tank from where the wastewater is pumped into the wetlands. The filters are planted with Phragmites australis, Phalaris arundinacea, Iris pseudacorus, Iris sibirica, Glyceria maxima and Lythrum salicaria in order to evaluate and compare various plant species' effect on the treatment process. The new technology includes a tertiary treatment which consists of a greenhouse with a photo-reactor for the cultivation of algae and hydroponic systems (residual nutrients removal), sludge reed-beds and a composting field.
Natural water purification and water management by artificial groundwater recharge
Balke, Klaus-Dieter; Zhu, Yan
2008-01-01
Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624
Ultrafast laser ablation for targeted atherosclerotic plaque removal
NASA Astrophysics Data System (ADS)
Lanvin, Thomas; Conkey, Donald B.; Descloux, Laurent; Frobert, Aurelien; Valentin, Jeremy; Goy, Jean-Jacques; Cook, Stéphane; Giraud, Marie-Noelle; Psaltis, Demetri
2015-07-01
Coronary artery disease, the main cause of heart disease, develops as immune cells and lipids accumulate into plaques within the coronary arterial wall. As a plaque grows, the tissue layer (fibrous cap) separating it from the blood flow becomes thinner and increasingly susceptible to rupturing and causing a potentially lethal thrombosis. The stabilization and/or treatment of atherosclerotic plaque is required to prevent rupturing and remains an unsolved medical problem. Here we show for the first time targeted, subsurface ablation of atherosclerotic plaque using ultrafast laser pulses. Excised atherosclerotic mouse aortas were ablated with ultrafast near-infrared (NIR) laser pulses. The physical damage was characterized with histological sections of the ablated atherosclerotic arteries from six different mice. The ultrafast ablation system was integrated with optical coherence tomography (OCT) imaging for plaque-specific targeting and monitoring of the resulting ablation volume. We find that ultrafast ablation of plaque just below the surface is possible without causing damage to the fibrous cap, which indicates the potential use of ultrafast ablation for subsurface atherosclerotic plaque removal. We further demonstrate ex vivo subsurface ablation of a plaque volume through a catheter device with the high-energy ultrafast pulse delivered via hollow-core photonic crystal fiber.
Natural water purification and water management by artificial groundwater recharge.
Balke, Klaus-Dieter; Zhu, Yan
2008-03-01
Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.
Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa
2017-01-01
The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.
Righi, Elda; Carnelutti, Alessia; Vena, Antonio; Bassetti, Matteo
2018-01-01
The increase in hospitalization due to acute bacterial skin and skin structure infections (ABSSSI) caused by resistant pathogens supports the need for new treatment options. Antimicrobial options for ABSSSI that provide broad-spectrum coverage, including gram-negative pathogens and multidrug-resistant gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), are limited. Delafloxacin is a novel fluoroquinolone available as intravenous and oral formulations and is characterized by an increased efficacy in acidic environments and activity on bacterial biofilm. Delafloxacin displays enhanced in vitro activity against MRSA, and enterococci, while maintaining efficacy against gram-negative pathogens and anaerobes. Delafloxacin has been studied for the treatment of ABSSSI and respiratory infections. Phase III studies have demonstrated noninferiority of delafloxacin compared to vancomycin, linezolid, tigecycline, and the combination of vancomycin plus aztreonam in the treatment of ABSSSI. Due to its favorable pharmacokinetic characteristics, the wide spectrum of action, and the potential for sequential therapy, delafloxacin represents a promising option in the empirical and targeted treatment of ABSSSI, both in hospital- and in community-based care. PMID:29670380
Righi, Elda; Carnelutti, Alessia; Vena, Antonio; Bassetti, Matteo
2018-01-01
The increase in hospitalization due to acute bacterial skin and skin structure infections (ABSSSI) caused by resistant pathogens supports the need for new treatment options. Antimicrobial options for ABSSSI that provide broad-spectrum coverage, including gram-negative pathogens and multidrug-resistant gram-positive bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), are limited. Delafloxacin is a novel fluoroquinolone available as intravenous and oral formulations and is characterized by an increased efficacy in acidic environments and activity on bacterial biofilm. Delafloxacin displays enhanced in vitro activity against MRSA, and enterococci, while maintaining efficacy against gram-negative pathogens and anaerobes. Delafloxacin has been studied for the treatment of ABSSSI and respiratory infections. Phase III studies have demonstrated noninferiority of delafloxacin compared to vancomycin, linezolid, tigecycline, and the combination of vancomycin plus aztreonam in the treatment of ABSSSI. Due to its favorable pharmacokinetic characteristics, the wide spectrum of action, and the potential for sequential therapy, delafloxacin represents a promising option in the empirical and targeted treatment of ABSSSI, both in hospital- and in community-based care.
Wet-dry cycles impact DOM retention in subsurface soils
NASA Astrophysics Data System (ADS)
Olshansky, Yaniv; Root, Robert A.; Chorover, Jon
2018-02-01
Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry
treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet
treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil environment, where wet-dry cycles occur at different frequencies from site to site and along the soil profile, different interactions between DOM and soil surfaces are expected and need to be considered for the overall assessment of carbon dynamics.
Future research needs involving pathogens in groundwater
NASA Astrophysics Data System (ADS)
Bradford, Scott A.; Harvey, Ronald W.
2017-06-01
Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.
Future research needs involving pathogens in groundwater
Bradford, Scott A.; Harvey, Ronald W.
2017-01-01
Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important prerequisites for preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to identify, and existing approaches for pathogen detection are costly and only provide semi-quantitative information. Microbial indicators that are readily quantified often do not correlate with the presence of pathogens. Pathogens of emerging concern and increasing detections of antibiotic resistance among bacterial pathogens in groundwater are topics of growing concern. Adequate removal of pathogens during soil passage is therefore critical for safe groundwater extraction. Processes that enhance pathogen transport (e.g., high velocity zones and preferential flow) and diminish pathogen removal (e.g., reversible retention and enhanced survival) are of special concern because they increase the risk of groundwater contamination, but are still incompletely understood. Improved theory and modeling tools are needed to analyze experimental data, test hypotheses, understand coupled processes and controlling mechanisms, predict spatial and/or temporal variability in model parameters and uncertainty in pathogen concentrations, assess risk, and develop mitigation and best management approaches to protect groundwater.
Sulfur barrier for use with in situ processes for treating formations
Vinegar, Harold J [Bellaire, TX; Christensen, Del Scot [Friendswood, TX
2009-12-15
Methods for forming a barrier around at least a portion of a treatment area in a subsurface formation are described herein. Sulfur may be introduced into one or more wellbores located inside a perimeter of a treatment area in the formation having a permeability of at least 0.1 darcy. At least some of the sulfur is allowed to move towards portions of the formation cooler than the melting point of sulfur to solidify the sulfur in the formation to form the barrier.
NASA Astrophysics Data System (ADS)
Penton, C. R.; Bruland, G. L.; Popp, B. N.; Engstrom, P.; Tiedje, J.; Brown, G. A.; Deenik, J. L.
2010-12-01
We developed a new whole-core perfusion technique for tracking the fate of 15NH4+ added to intact vegetated cores. Taro plants (Colocasia esculenta) were field-grown in (20 cm diameter) cores for three months, which allowed exchange with natural porewater, then harvested. Following core extraction, surface and porewater were removed and 15NH4+ labeled porewater was slowly re-introduced to the core through a perfusion cap in the laboratory. Mini porewater equilibrators were placed in 1 cm increments through the sediment profile for porewater extraction during incubation. We also independently tested the ability of taro roots to oxygenate the subsurface by growing plants in nutrient agar and measuring O2 flux with a microelectrode. In the agar experiment, diurnal O2 transport was monitored and the application of wind across the taro leaves was found necessary to develop an oxygenated zone at the root tips. Using this information, the harvested taro were incubated in growth chambers after perfusion using three treatments: Vegetated without wind, vegetated with wind, and a non-vegetated control. Porewater was analyzed for 29+30N2, 15NH4+, 15NO3-, and unlabeled nitrate and ammonium species. Plant uptake of 15NH4+ was also determined. Quantitative PCR was performed on the sediment profiles of functional genes involved in nitrogen cycling for correlation to N transformations. The major pathway of N loss was root-mediated nitrification/denitrification followed by a flow of 29+30N2 through the aerenchyma. The vegetated wind treatment exhibited the highest concentrations of labeled N2 in the subsurface during all time periods. In contrast, the vegetated no wind treatment had much higher aerenchyma 29+30N2 concentration, accounting for ~100% of the subsurface N2 accumulation by day three of the incubation. Surface water N2 concentrations were also highest in the no wind treatment. After nine days the 29+30N2 concentrations dropped by ~70%, with little difference remaining among the treatments, indicating limitation by 15NH4+ diffusion. These results indicate that N2 is preferentially transported through the aerenchyma in taro and probably other plants grown in flooded agricultural fields. However, increased wind stress reduced transport through the aerenchyma and resulted in greater N2 accumulation in the subsurface, which indicates the importance of mass flow transport of air and its effect on oxygenation at the root tips. The results indicate that the complexity of N cycling in flooded agricultural systems may confound attempts to estimate in-situ N losses through porewater modeling, ‘classic’ isotope pairing techniques, or N flux chambers. The whole-core technique presented here allows for the measurement of multiple N pools and fates while minimizing system disturbance and more accurately representing field conditions.
Chronic Azithromycin Use in Cystic Fibrosis and Risk of Treatment-Emergent Respiratory Pathogens.
Cogen, Jonathan D; Onchiri, Frankline; Emerson, Julia; Gibson, Ronald L; Hoffman, Lucas R; Nichols, David P; Rosenfeld, Margaret
2018-02-23
Azithromycin has been shown to improve lung function and reduce the number of pulmonary exacerbations in cystic fibrosis patients. Concerns remain, however, regarding the potential emergence of treatment-related respiratory pathogens. To determine if chronic azithromycin use (defined as thrice weekly administration) is associated with increased rates of detection of eight specific respiratory pathogens. We performed a new-user, propensity-score matched retrospective cohort study utilizing data from the Cystic Fibrosis Foundation Patient Registry. Incident azithromycin users were propensity-score matched 1:1 with contemporaneous non-users. Kaplan-Meier curves and Cox proportional hazards regression were used to evaluate the association between chronic azithromycin use and incident respiratory pathogen detection. Analyses were performed separately for each pathogen, limited to patients among whom that pathogen had not been isolated in the two years prior to cohort entry. After propensity score matching, mean age of the cohorts was ~12 years. Chronic azithromycin users had a significantly lower risk of detection of new methicillin-resistant Staphylococcus aureus, non-tuberculous mycobacteria, and Burkholderia cepacia complex compared to non-users. The risk of acquiring the remaining five pathogens was not significantly different between users and non-users. Using an innovative new-user, propensity-score matched study design to minimize indication and selection biases, we found in a predominantly pediatric cohort that chronic azithromycin users had a lower risk of acquiring several cystic fibrosis-related respiratory pathogens. These results may ease concerns that chronic azithromycin exposure increases the risk of acquiring new respiratory pathogens among pediatric cystic fibrosis patients.
Park, Sang-Hyun; Kang, Dong-Hyun
2015-08-17
The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.
Meeting Regulatory Requirements
Domestic wastewater is made up of sanitary wastes from homes, commercial businesses and industry, and includes beneficial, commensal and pathogenic microorganisms. The extent to which a given strain of pathogen may be found within a waste treatment system is largely dependant up...
Flynn, Padrig B; Higginbotham, Sarah; Alshraiedeh, Nid'a H; Gorman, Sean P; Graham, William G; Gilmore, Brendan F
2015-07-01
The emergence of multidrug-resistant pathogens within the clinical environment is presenting a mounting problem in hospitals worldwide. The 'ESKAPE' pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) have been highlighted as a group of causative organisms in a majority of nosocomial infections, presenting a serious health risk due to widespread antimicrobial resistance. The stagnating pipeline of new antibiotics requires alternative approaches to the control and treatment of nosocomial infections. Atmospheric pressure non-thermal plasma (APNTP) is attracting growing interest as an alternative infection control approach within the clinical setting. This study presents a comprehensive bactericidal assessment of an in-house-designed APNTP jet both against biofilms and planktonic bacteria of the ESKAPE pathogens. Standard plate counts and the XTT metabolic assay were used to evaluate the antibacterial effect of APNTP, with both methods demonstrating comparable eradication times. APNTP exhibited rapid antimicrobial activity against all of the ESKAPE pathogens in the planktonic mode of growth and provided efficient and complete eradication of ESKAPE pathogens in the biofilm mode of growth within 360s, with the exception of A. baumannii where a >4log reduction in biofilm viability was observed. This demonstrates its effectiveness as a bactericidal treatment against these pathogens and further highlights its potential application in the clinical environment for the control of highly antimicrobial-resistant pathogens. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Wittebole, Xavier; De Roock, Sophie; Opal, Steven M
2014-01-01
The seemingly inexorable spread of antibiotic resistance genes among microbial pathogens now threatens the long-term viability of our current antimicrobial therapy to treat severe bacterial infections such as sepsis. Antibiotic resistance is reaching a crisis situation in some bacterial pathogens where few therapeutic alternatives remain and pan-resistant strains are becoming more prevalent. Non-antibiotic therapies to treat bacterial infections are now under serious consideration and one possible option is the therapeutic use of specific phage particles that target bacterial pathogens. Bacteriophage therapy has essentially been re-discovered by modern medicine after widespread use of phage therapy in the pre-antibiotic era lost favor, at least in Western countries, after the introduction of antibiotics. We review the current therapeutic rationale and clinical experience with phage therapy as a treatment for invasive bacterial infection as novel alternative to antimicrobial chemotherapy. PMID:23973944
NASA Astrophysics Data System (ADS)
Majewski, Peter; Keegan, Alexandra
2012-01-01
This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/gsilica. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 102 and 104 cfu/mL.
Nanomedicine as an emerging approach against intracellular pathogens
Armstead, Andrea L; Li, Bingyun
2011-01-01
Diseases such as tuberculosis, hepatitis, and HIV/AIDS are caused by intracellular pathogens and are a major burden to the global medical community. Conventional treatments for these diseases typically consist of long-term therapy with a combination of drugs, which may lead to side effects and contribute to low patient compliance. The pathogens reside within intracellular compartments of the cell, which provide additional barriers to effective treatment. Therefore, there is a need for improved and more effective therapies for such intracellular diseases. This review will summarize, for the first time, the intracellular compartments in which pathogens can reside and discuss how nanomedicine has the potential to improve intracellular disease therapy by offering properties such as targeting, sustained drug release, and drug delivery to the pathogen’s intracellular location. The characteristics of nanomedicine may prove advantageous in developing improved or alternative therapies for intracellular diseases. PMID:22228996
Targeting the host-pathogen interface for treatment of Staphylococcus aureus infection.
Park, Bonggoo; Liu, George Y
2012-03-01
Recent emergence of methicillin-resistant Staphylococcus aureus both within and outside healthcare settings has accelerated the use of once reserved last line antibiotics such as vancomycin. With increased use of antibiotics, there has been a rapid rise in the rate of resistance development to the anti-MRSA drugs. As the antibiotic pipeline becomes strained, alternative strategies are being sought for future treatment of S. aureus. Here, we review several novel anti-staphylococcal strategies that, unlike conventional antibiotics, do not target essential gene products elaborated by the pathogen. The approaches seek instead to weaken the S. aureus defense by neutralizing its virulence factors or boosting host immunity. Other strategies target commensal bacteria that naturally colonize the human host to inhibit S. aureus colonization. Ultimately, the aim is to shift the balance between host defense and pathogen virulence in favor of inhibition of S. aureus pathogenic activities.
Control of Thermal Meat Processing
NASA Astrophysics Data System (ADS)
Griffis, Carl L.; Osaili, Tareq M.
The recent growth of the market for ready-to-eat (RTE) meat and poultry products has led to serious concern over foodborne illnesses due to the presence of pathogens, particularly Salmonella spp, Listeria monocytogenes and Escherichia coli O157:H7 in meat and poultry products. Emphasis has been placed on thermal processing since heat treatment is still considered the primary means of eliminating foodborne pathogens from raw meat and poultry products (Juneja, Eblen, & Ransom, 2001). Inadequate time/temperature exposure during cooking is a contributing factor in food poisoning outbreaks. Optimal heat treatment is required not only to destroy pathogenic microorganisms in meat and poultry products but also to maintain desirable food quality and product yield.
A Brief Overview of Tauopathy: Causes, Consequences, and Therapeutic Strategies.
Orr, Miranda E; Sullivan, A Campbell; Frost, Bess
2017-07-01
There are currently no disease-modifying therapies for the treatment of tauopathies, a group of progressive neurodegenerative disorders that are pathologically defined by the presence of tau protein aggregates in the brain. Current challenges for the treatment of tauopathies include the inability to diagnose early and to confidently discriminate between distinct tauopathies in patients, alongside an incomplete understanding of the cellular mechanisms involved in pathogenic tau-induced neuronal death and dysfunction. In this review, we describe current diagnostic and therapeutic strategies, known drivers of pathogenic tau formation, recent contributions to our current mechanistic understanding of how pathogenic tau induces neuronal death, and potential diagnostic and therapeutic approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Duration of Antimicrobial Treatment for Bacteremia in Canadian Critically Ill Patients.
Daneman, Nick; Rishu, Asgar H; Xiong, Wei; Bagshaw, Sean M; Dodek, Peter; Hall, Richard; Kumar, Anand; Lamontagne, Francois; Lauzier, Francois; Marshall, John; Martin, Claudio M; McIntyre, Lauralyn; Muscedere, John; Reynolds, Steve; Stelfox, Henry T; Cook, Deborah J; Fowler, Robert A
2016-02-01
The optimum duration of antimicrobial treatment for patients with bacteremia is unknown. Our objectives were to determine duration of antimicrobial treatment provided to patients who have bacteremia in ICUs, to assess pathogen/patient factors related to treatment duration, and to assess the relationship between treatment duration and survival. Retrospective cohort study. Fourteen ICUs across Canada. Patients with bacteremia and were present in the ICU at the time culture reported positive. Duration of antimicrobial treatment for patients who had bacteremia in ICU. Among 1,202 ICU patients with bacteremia, the median duration of treatment was 14 days, but with wide variability (interquartile range, 9-17.5). Most patient characteristics were not associated with treatment duration. Coagulase-negative staphylococci were the only pathogens associated with shorter treatment (odds ratio, 2.82; 95% CI, 1.51-5.26). The urinary tract was the only source of infection associated with a trend toward lower likelihood of shorter treatment (odds ratio, 0.67; 95% CI, 0.42-1.08); an unknown source of infection was associated with a greater likelihood of shorter treatment (odds ratio, 2.14; 95% CI, 1.17-3.91). The association of treatment duration and survival was unstable when analyzed based on timing of death. Critically ill patients who have bacteremia typically receive long courses of antimicrobials. Most patient/pathogen characteristics are not associated with treatment duration; survivor bias precludes a valid assessment of the association between treatment duration and survival. A definitive randomized controlled trial is needed to compare shorter versus longer antimicrobial treatment in patients who have bacteremia.
The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Baik, H.; Kim, J.
2017-07-01
The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.
ANAEROBIC SOIL DISINFESTATION IN MICROCOSMS OF TWO SANDY SOILS.
Stremińska, M A; Runia, W T; Termorshuizen, A J; Feil, H; Van Der Wurff, A W G
2014-01-01
In recent years, anaerobic soil disinfestation (ASD) has been proposed as an alternative control method of soil-borne plant pathogens. It involves adding a labile carbon source, irrigating the soil to stimulate decomposition of organic material and then covering the soil with air-tight plastic to limit gas exchange. During the ASD process, soil microorganisms switch from aerobic to anaerobic metabolism. As a result, by-products of anaerobic metabolism are released into the soil environment such as various organic acids and gases. These by-products are reported to have a negative effect on survival of soil-borne plant pathogens. However, the efficacy of ASD to reduce soil-borne pathogens in practice may vary significantly. Therefore, we studied the efficacy of the ASD process in two different soils. In addition, it was investigated whether a pre-treatment with an anaerobic bacterial inoculum prior to ASD affected the efficacy of the process. Two sandy soils (dune sand and glacial sand) were inoculated in 2 L soil microcosms. We tested the efficacy of ASD treatment against the potato cyst nematode Globodera pallida. For each soil, three treatments were used: control treatment (no Herbie addition, aerobic incubation), ASD 1 (organic substrate addition, anaerobic incubation) and ASD 2 (organic substrate and anaerobic bacterial inoculum addition, anaerobic incubation). Soil microcosms were incubated in the dark at 20°C for two weeks. We observed that anaerobic soil disinfestation treatments were highly effective against Potato Cyst Nematode (PCN), with pathogen being eradicated totally in all but one ASD treatment (glacial sand ASD2) within two weeks. The relative abundance of Firmicutes (spore-forming bacteria, often fermentative) in total bacteria increased significantly in ASD treated soils. Numbers of these bacteria correlated positively with increased concentrations of acetic and butyric acids in soil water phase in ASD treatments.
Fukuyama, Hajime; Yamashiro, Shin; Kinjo, Kiyoshi; Tamaki, Hitoshi; Kishaba, Tomoo
2014-10-18
The usefulness of sputum Gram stain in patients with community-acquired pneumonia (CAP) is controversial. There has been no study to evaluate the diagnostic value of this method in patients with healthcare-associated pneumonia (HCAP). The purpose of this study was to evaluate the usefulness of sputum Gram stain in etiological diagnosis and pathogen-targeted antibiotic treatment of CAP and HCAP. We conducted a prospective observational study on hospitalized patients with pneumonia admitted to our hospital from August 2010 to July 2012. Before administering antibiotics on admission, Gram stain was performed and examined by trained physicians immediately after sputum samples were obtained. We analyzed the quality of sputum samples and the diagnostic performance of Gram stain. We also compared pathogen-targeted antibiotic treatment guided by sputum Gram stain with empirical treatment. Of 670 patients with pneumonia, 328 were CAP and 342 were HCAP. Sputum samples were obtained from 591 patients, of these 478 samples were good quality. The sensitivity and specificity of sputum Gram stain were 62.5% and 91.5% for Streptococcus pneumoniae, 60.9% and 95.1% for Haemophilus influenzae, 68.2% and 96.1% for Moraxella catarrhalis, 39.5% and 98.2% for Klebsiella pneumoniae, 22.2% and 99.8% for Pseudomonas aeruginosa, 9.1% and 100% for Staphylococcus aureus. The diagnostic yield decreased in patients who had received antibiotics or patients with suspected aspiration pneumonia. Pathogen-targeted treatment provided similar efficacy with a decrease in adverse events compared to empirical treatment. Sputum Gram stain is highly specific for the etiologic diagnosis and useful in guiding pathogen-targeted antibiotic treatment of CAP and HCAP.
Adenoid Reservoir for Pathogenic Biofilm Bacteria▿
Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J. M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J. E.; Post, J. C.; Lonergan, S.; Sampath, R.; Hu, F. Z.; Ehrlich, G. D.; Stoodley, P.; Hall-Stoodley, L.
2011-01-01
Biofilms of pathogenic bacteria are present on the middle ear mucosa of children with chronic otitis media (COM) and may contribute to the persistence of pathogens and the recalcitrance of COM to antibiotic treatment. Controlled studies indicate that adenoidectomy is effective in the treatment of COM, suggesting that the adenoids may act as a reservoir for COM pathogens. To investigate the bacterial community in the adenoid, samples were obtained from 35 children undergoing adenoidectomy for chronic OM or obstructive sleep apnea. We used a novel, culture-independent molecular diagnostic methodology, followed by confocal microscopy, to investigate the in situ distribution and organization of pathogens in the adenoids to determine whether pathogenic bacteria exhibited criteria characteristic of biofilms. The Ibis T5000 Universal Biosensor System was used to interrogate the extent of the microbial diversity within adenoid biopsy specimens. Using a suite of 16 broad-range bacterial primers, we demonstrated that adenoids from both diagnostic groups were colonized with polymicrobial biofilms. Haemophilus influenzae was present in more adenoids from the COM group (P = 0.005), but there was no significant difference between the two patient groups for Streptococcus pneumoniae or Staphylococcus aureus. Fluorescence in situ hybridization, lectin binding, and the use of antibodies specific for host epithelial cells demonstrated that pathogens were aggregated, surrounded by a carbohydrate matrix, and localized on and within the epithelial cell surface, which is consistent with criteria for bacterial biofilms. PMID:21307211
Ashbolt, Nicholas J.
2015-01-01
Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens. PMID:26102291
Ranasinghe, L; Jayawardena, B; Abeywickrama, K
2002-01-01
To develop a post-harvest treatment system against post-harvest fungal pathogens of banana using natural products. Colletotrichum musae was isolated and identified as the causative agent responsible for anthracnose peel blemishes while three fungi, namely Lasiodiplodia theobromae, C. musae and Fusarium proliferatum, were identified as causative agents responsible for crown rot. During the liquid bioassay, cinnamon [Cinnamomum zeylanicum (L.)] leaf, bark and clove [Syzygium aromaticum (L.)] oils were tested against the anthracnose and crown rot pathogens. The test oils were fungistatic and fungicidal against the test pathogens within a range of 0.03-0.11% (v/v). Cinnamon and clove essential oils could be used as antifungal agents to manage post harvest fungal diseases of banana. Cinnamon and clove essential oil could be used as alternative post-harvest treatments on banana. Banana treated with essential oil is chemically safe and acceptable to consumers. Benomyl (Benlate), which is currently used to manage fungal pathogens, can cause adverse health effects and could be replaced with volatile essential oils.
Treatment of Gram-negative bacterial infections by potentiation of antibiotics.
Zabawa, Thomas P; Pucci, Michael J; Parr, Thomas R; Lister, Troy
2016-10-01
Infections caused by antibiotic-resistant pathogens, particularly Gram-negative bacteria, represent significant treatment challenges for physicians resulting in high rates of morbidity and mortality. The outer membrane of Gram-negative bacteria acts as a permeability barrier to many compounds that would otherwise be effective antibacterial agents, including those effective against Gram-positive pathogens. Potentiator molecules disrupt this barrier allowing entry of otherwise impermeant molecules, thus providing a strategy to render multi-drug resistant pathogens susceptible to a broader range of antibiotics. Potentiator molecules are cationic and the mechanism of disruption involves interaction with the negatively charged outer membrane. This physical attribute, along with an often high degree of lipophilicity typically endears these molecules with unacceptable toxicity. Presented herein are examples of advanced potentiator molecules being evaluated for use in combination therapy for the treatment of resistant Gram-negative infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
MICROBES, MONITORING AND HUMAN HEALTH
There are about 20,000 wastewater treatment plants in the United States. These plants discharge about 50 trillion gallons of wastewater daily into the nation's surface waters. Most wastewater contains human feces, which are a potential source of microbial pathogens. Pathogens ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... fumigation of cottonseed for the fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (FOV). In a... to neutralize the fungal pathogen Fusarium oxysporum f. sp. vasinfectum (FOV) on cottonseed...
Alternatives to antibiotics: why and how
USDA-ARS?s Scientific Manuscript database
The antibiotic resistance problem is the mobilization of genes that confer resistance to medically important antibiotics into human pathogens. The acquisition of such resistance genes by pathogens prevents disease treatment, increases health care costs, and increases morbidity and mortality. As ant...
CHARACTERIZING AND MITIGATING PATHOGENIC ORGANISMS RELATED TO CAFOS
CHARACTERIZING AND MITIGATING PATHOGENIC ORGANISMS RELATED TO CAFOs John Haines and Shane Rogers NRMRL Science Questions MYP Science Ouestion: What BMP treatment systems and restoration technologies are most effective options for watershed management? For mixed land use wa...
Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees
Shaffer, Zack; Moran, Nancy A.
2017-01-01
Gut microbiomes play crucial roles in animal health, and shifts in the gut microbial community structure can have detrimental impacts on hosts. Studies with vertebrate models and human subjects suggest that antibiotic treatments greatly perturb the native gut community, thereby facilitating proliferation of pathogens. In fact, persistent infections following antibiotic treatment are a major medical issue. In apiculture, antibiotics are frequently used to prevent bacterial infections of larval bees, but the impact of antibiotic-induced dysbiosis (microbial imbalance) on bee health and susceptibility to disease has not been fully elucidated. Here, we evaluated the effects of antibiotic exposure on the size and composition of honeybee gut communities. We monitored the survivorship of bees following antibiotic treatment in order to determine if dysbiosis of the gut microbiome impacts honeybee health, and we performed experiments to determine whether antibiotic exposure increases susceptibility to infection by opportunistic pathogens. Our results show that antibiotic treatment can have persistent effects on both the size and composition of the honeybee gut microbiome. Antibiotic exposure resulted in decreased survivorship, both in the hive and in laboratory experiments in which bees were exposed to opportunistic bacterial pathogens. Together, these results suggest that dysbiosis resulting from antibiotic exposure affects bee health, in part due to increased susceptibility to ubiquitous opportunistic pathogens. Not only do our results highlight the importance of the gut microbiome in honeybee health, but they also provide insights into how antibiotic treatment affects microbial communities and host health. PMID:28291793
USDA-ARS?s Scientific Manuscript database
The direct discharge of untreated domestic wastewater represents a major source of nutrients entering into aquatic environments, which may cause serious ecological problems, e.g., eutrophication. In this regard, low-cost and easily managed technologies such as constructed wetlands (CWs) provide a go...
Pre-treatment zones (PTZs) composed of sand, 10% zero-valent iron [Fe(0)]/sand, and 10% pyrite (FeS2)/sand were examined for their ability to prolong Fe(0) reactivity in aboveground column reactors and a subsurface permeable reactive barrier (PRB). The test site had an acidic, o...
Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.
Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He
2009-05-11
Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.
We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...
Wang, Yanping; Wiatrowski, Heather A; John, Ria; Lin, Chu-Ching; Young, Lily Y; Kerkhof, Lee J; Yee, Nathan; Barkay, Tamar
2013-02-01
The contamination of groundwater with mercury (Hg) is an increasing problem worldwide. Yet, little is known about the interactions of Hg with microorganisms and their processes in subsurface environments. We tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge Integrated Field Research Challenge site, where nitrate is a major contaminant and where bioremediation efforts are in progress. We observed an inverse relationship between Hg concentrations and onset and rates of denitrification in nitrate enrichment cultures containing between 53 and 1.1 μM of inorganic Hg; higher Hg concentrations increasingly extended the time to onset of denitrification and inhibited denitrification rates. Microbial community complexity, as indicated by terminal restriction fragment length polymorphism (tRFLP) analysis of the 16S rRNA genes, declined with increasing Hg concentrations; at the 312 nM Hg treatment, a single tRFLP peak was detected representing a culture of Bradyrhizobium sp. that possessed the merA gene indicating a potential for Hg reduction. A culture identified as Bradyrhizobium sp. strain FRC01 with an identical 16S rRNA sequence to that of the enriched peak in the tRFLP patterns, reduced Hg(II) to Hg(0) and carried merA whose amino acid sequence has 97 % identity to merA from the Proteobacteria and Firmicutes. This study demonstrates that in subsurface sediment incubations, Hg may inhibit denitrification and that inhibition may be alleviated when Hg resistant denitrifying Bradyrhizobium spp. detoxify Hg by its reduction to the volatile elemental form.
Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia
2014-09-01
A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.
Bayesian Model Selection in Geophysics: The evidence
NASA Astrophysics Data System (ADS)
Vrugt, J. A.
2016-12-01
Bayesian inference has found widespread application and use in science and engineering to reconcile Earth system models with data, including prediction in space (interpolation), prediction in time (forecasting), assimilation of observations and deterministic/stochastic model output, and inference of the model parameters. Per Bayes theorem, the posterior probability, , P(H|D), of a hypothesis, H, given the data D, is equivalent to the product of its prior probability, P(H), and likelihood, L(H|D), divided by a normalization constant, P(D). In geophysics, the hypothesis, H, often constitutes a description (parameterization) of the subsurface for some entity of interest (e.g. porosity, moisture content). The normalization constant, P(D), is not required for inference of the subsurface structure, yet of great value for model selection. Unfortunately, it is not particularly easy to estimate P(D) in practice. Here, I will introduce the various building blocks of a general purpose method which provides robust and unbiased estimates of the evidence, P(D). This method uses multi-dimensional numerical integration of the posterior (parameter) distribution. I will then illustrate this new estimator by application to three competing subsurface models (hypothesis) using GPR travel time data from the South Oyster Bacterial Transport Site, in Virginia, USA. The three subsurface models differ in their treatment of the porosity distribution and use (a) horizontal layering with fixed layer thicknesses, (b) vertical layering with fixed layer thicknesses and (c) a multi-Gaussian field. The results of the new estimator are compared against the brute force Monte Carlo method, and the Laplace-Metropolis method.
Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui
2015-05-18
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.
Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui
2015-01-01
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028
NASA Astrophysics Data System (ADS)
Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.
2016-12-01
Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.
Reksen, O; Sølverød, L; Branscum, A J; Osterås, O
2006-08-01
In quarter milk samples from 2,492 randomly sampled cows that were selected without regard to their current or previous udder health status, the relationships between the following outcome variables were studied: treatment of clinical mastitis; the joint event of either treatment or culling for mastitis; culling for all reasons; culling specifically for mastitis; and the covariates of positive milk culture for Staphylococcus aureus, Streptococcus spp., and coagulase-negative Staphylococcus spp., or other pathogens, or of negative culture for mastitis pathogens. Microbiological diagnoses were assigned at the cow level, and altogether 3,075 diagnoses were related to the outcome variables. The relation between the absence of pathogens and rich (>1,500 cfu/mL of milk) or sparse (
Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Secody, R. E.; Huang, J.; Hatzinger, P. B.
2007-12-01
Perchlorate-contaminated groundwater is a significant national problem. An innovative technology was recently developed which uses a pair of dual-screened treatment wells to mix an electron donor into perchlorate- contaminated groundwater in order to effect in situ bioremediation of the perchlorate by indigenous perchlorate reducing bacteria (PRB) without the need to extract the contaminated water from the subsurface. The two treatment wells work in tandem to establish a groundwater recirculation zone in the subsurface. Electron donor is added and mixed into perchlorate-contaminated groundwater flowing through each well. The donor serves to stimulate biodegradation of the perchlorate by PRB in bioactive zones that form adjacent to the injection screens of the treatment wells. In this study, a model that simulates operation of the technology was calibrated using concentration data obtained from a field-scale technology evaluation project at a perchlorate-contaminated site. The model simulates transport of perchlorate, the electron donor (citrate, for this study), and competing electron acceptors (oxygen and nitrate) in the groundwater flow field induced by operation of the treatment well pair. A genetic algorithm was used to derive a set of best-fit model parameters to describe the perchlorate reduction kinetics in this field-scale evaluation project. The calibrated parameter values were then used to predict technology performance. The model qualitatively predicted the salient characteristics of the observed data. It appears the model may be a useful tool for designing and operating this technology at other perchlorate-contaminated sites.
NASA Astrophysics Data System (ADS)
Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.
2014-12-01
Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.
Ghrabi, Ahmed; Bousselmi, Latifa; Masi, Fabio; Regelsberger, Martin
2011-01-01
The paper presents the detailed design and some preliminary results obtained from a study regarding a wastewater treatment pilot plant (WWTPP), serving as a multistage constructed wetland (CW) located at the rural settlement of 'Chorfech 24' (Tunisia). The WWTPP implemented at Chorfech 24 is mainly designed as a demonstration of sustainable water management solutions (low-cost wastewater treatment), in order to prove the efficiency of these solutions working under real Tunisian conditions and ultimately allow the further spreading of the demonstrated techniques. The pilot activity also aims to help gain experience with the implemented techniques and to improve them when necessary to be recommended for wide application in rural settlements in Tunisia and similar situations worldwide. The selected WWTPP at Chorfech 24 (rural settlement of 50 houses counting 350 inhabitants) consists of one Imhoff tank for pre-treatment, and three stages in series: as first stage a horizontal subsurface flow CW system, as second stage a subsurface vertical flow CW system, and a third horizontal flow CW. The sludge of the Imhoff tank is treated in a sludge composting bed. The performances of the different components as well as the whole treatment system were presented based on 3 months monitoring. The results shown in this paper are related to carbon, nitrogen and phosphorus removal as well as to reduction of micro-organisms. The mean overall removal rates of the Chorfech WWTPP during the monitored period have been, respectively, equal to 97% for total suspended solids and biochemical oxygen demand (BOD5), 95% for chemical oxygen demand, 71% for total nitrogen and 82% for P-PO4. The removal of E. coli by the whole system is 2.5 log units.
Ding, Fang; Meng, Huan-xin; Li, Qi-qiang; Zhao, Yi-bing; Feng, Xiang-hui; Zhang, Li
2010-04-18
To evaluate the subgingival prevalent rates of 6 periodontal pathogenic bacteria in gingival crevicular fluids of CP patients before and after treatment, to analyze the relationship between the prevalent variance and periodontal clinical parameters, and to provide a microbiologic method of evaluating curative effect and estimating the prognosis. Gingival crevicular fluids of 13 CP patients were collected at baseline, 2 weeks, 2 months and 4 months after periodontal mechanical treatment. Also, gingival crevicular fluids were collected from 11 healthy subjects. Six periodontal pathogenic bacteria including Actinobacillus actinomycetemcomitans (Aa), Porphyromonas gingivalis(Pg), Tannerella forsythensis (Tf), Prevotella intermedia (Pi), Fusobacterium nucleatum(Fn), Prevotella nigrescens (Pn) were detected by 16S rRNA based PCR. The PLI, PD, BI of the CP patients 2 months and 4 months after periodontal mechanical treatment were evidently less than those before treatment. These 4 months after treatment were a little more than those 2 months after. The six bacteria were more frequently detected in the CP patients at baseline than in healthy controls. The prevalent rates of Tf (42.1%, 73.7%, 70.2%), Pg (47.4%, 68.4%, 77.2%), Aa (15.8%, 22.8%, 7.0%), Pn (38.6%, 57.9%, 64.9%), Pi(15.8%, 38.6%, 42.1%) 2 weeks, 2 months and 4 months following treatment were significantly lower than those at baseline (Tf 96.5%, Pg 93.0%, Aa 36.8%, Pn 86.0%, Pi 84.2%), but the prevalent rates of all the detected bacteria 2 months after treatment were higher than those at 2 weeks after. Tf, Pg, Aa, Pn and Pi may cooperate in the development of CP. The changes of periodontal pathogenic bacteria could be detected before the changes of clinical parameters and the patients should be re-evaluated and re-treated regularly within 2 months after treatment.
Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lively, J.W.
2012-07-01
The U.S. Nuclear Regulatory Commission (NRC) and other federal agencies currently approve the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) as guidance for licensees who are conducting final radiological status surveys in support of decommissioning. MARSSIM provides a method to demonstrate compliance with the applicable regulation by comparing residual radioactivity in surface soils with derived concentration guideline levels (DCGLs), but specifically discounts its applicability to subsurface soils. Many sites and facilities undergoing decommissioning contain subsurface soils that are potentially impacted by radiological constituents. In the absence of specific guidance designed to address the derivation of subsurface soil DCGLs andmore » compliance demonstration, decommissioning facilities have attempted to apply DCGLs and final status survey techniques designed specifically for surface soils to subsurface soils. The decision to apply surface soil limits and surface soil compliance metrics to subsurface soils typically results in significant over-excavation with associated cost escalation. MACTEC, Inc. has developed the overarching concepts and principles found in recent NRC decommissioning guidance in NUREG 1757 to establish a functional method to derive dose-based subsurface soil DCGLs. The subsurface soil method developed by MACTEC also establishes a rigorous set of criterion-based data evaluation metrics (with analogs to the MARSSIM methodology) that can be used to demonstrate compliance with the developed subsurface soil DCGLs. The method establishes a continuum of volume factors that relate the size and depth of a volume of subsurface soil having elevated concentrations of residual radioactivity with its ability to produce dose. The method integrates the subsurface soil sampling regime with the derivation of the subsurface soil DCGL such that a self-regulating optimization is naturally sought by both the responsible party and regulator. This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the traditional approach of applying surface soil DCGLs to subsurface soils. Furthermore, while yet untested, MACTEC believes that the concepts and methods embodied in this approach could readily be applied to other types of contamination found in subsurface soils. (author)« less
Mycoplasma genitalium: An Overlooked Sexually Transmitted Pathogen in Women?
Ona, Samsiya; Molina, Rose L.; Diouf, Khady
2016-01-01
Mycoplasma genitalium is a facultative anaerobic organism and a recognized cause of nongonococcal urethritis in men. In women, M. genitalium has been associated with cervicitis, endometritis, pelvic inflammatory disease (PID), infertility, susceptibility to human immunodeficiency virus (HIV), and adverse birth outcomes, indicating a consistent relationship with female genital tract pathology. The global prevalence of M. genitalium among symptomatic and asymptomatic sexually active women ranges between 1 and 6.4%. M. genitalium may play a role in pathogenesis as an independent sexually transmitted pathogen or by facilitating coinfection with another pathogen. The long-term reproductive consequences of M. genitalium infection in asymptomatic individuals need to be investigated further. Though screening for this pathogen is not currently recommended, it should be considered in high-risk populations. Recent guidelines from the Centers for Disease Control regarding first-line treatment for PID do not cover M. genitalium but recommend considering treatment in patients without improvement on standard PID regimens. Prospective studies on the prevalence, pathophysiology, and long-term reproductive consequences of M. genitalium infection in the general population are needed to determine if screening protocols are necessary. New treatment regimens need to be investigated due to increasing drug resistance. PMID:27212873
2017-01-01
Managing the disposal of infectious animal carcasses from routine and catastrophic disease outbreaks is a global concern. Recent research suggests that burial in lined and aerated trenches provides the rapid pathogen containment provided by burial, while reducing air and water pollution potential and the length of time that land is taken out of agricultural production. Survival of pathogens in the digestate remains a concern, however. A potential answer is a ‘dual’-barrier approach in which ammonia is used as a secondary barrier treatment to reduce the risk of pathogen contamination when trench liners ultimately leak. Results of this study showed that the minimum inhibitory concentration (MIC) of NH3 is 0.1 M (~1,468 NH3-N mg/L), and 0.5 M NH3 (~7,340 NH3-N mg/L) for ST4232 & MRSA43300, respectively at 24 h and pH = 9±0.1 and inactivation was increased by increasing NH3 concentration and/or treatment time. Results for digestate treated with NH3 were consistent with the MICs, and both pathogens were completely inactivated within 24 h. PMID:28475586
This 71 - page Technology Transfer Environmental Regulations and echnology publication describes the Federal requirements promulgated in 1979 for reducing pathogens n wastewater sludge and provides guidance in determining whether individual sludge treatment andated or particular ...
Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung
2018-02-01
Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ueki, Atsuko; Kaku, Nobuo; Ueki, Katsuji
2018-06-01
Biological soil disinfestation (BSD) or reductive soil disinfestation (RSD) is an environmental biotechnology to eliminate soil-borne plant pathogens based on functions of indigenous microbes. BSD treatments using different types of organic materials have been reported to effectively control a wide range of plant pathogens. Various studies have shown that development of reducing or anoxic conditions in soil is the most important aspect for effective BSD treatments. Substances such as organic acids, FeS, or phenolic compounds generated in the treated soil have been suggested to contribute to inactivation of pathogens. Additionally, anaerobic bacteria grown in the BSD-treated soil may produce and release enzymes with anti-pathogenic activities in soil. Clone library analyses as well as a next-generation sequence analysis based on 16S rRNA genes have revealed prosperity of obligate anaerobic bacteria from the class Clostridia in differently treated BSD soils. Two anaerobic bacterial strains isolated from BSD-treated soil samples and identified as Clostridium beijerinckii were found to decompose major cell wall polysaccharides of ascomycetous fungi, chitosan and β-1,3-glucan. C. beijerinckii is a species most frequently detected in the clone library analyses for various BSD-treated soils as a closely related species. The two anaerobic isolates severely degraded mycelial cells of the Fusarium pathogen of spinach wilt disease during anaerobic co-incubation of each isolate and the Fusarium pathogen. These reports suggest that antifungal enzymes produced by predominant anaerobic bacteria grown in the BSD-treated soil play important roles to control soil-borne fungal pathogens. Further studies using different bacterial isolates from BSD-treated soils are expected to know their anti-pathogenic abilities.
Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing.
Ye, Lin; Zhang, Tong
2011-09-01
This study applied 454 high-throughput pyrosequencing to analyze potentially pathogenic bacteria in activated sludge from 14 municipal wastewater treatment plants (WWTPs) across four countries (China, U.S., Canada, and Singapore), plus the influent and effluent of one of the 14 WWTPs. A total of 370,870 16S rRNA gene sequences with average length of 207 bps were obtained and all of them were assigned to corresponding taxonomic ranks by using RDP classifier and MEGAN. It was found that the most abundant potentially pathogenic bacteria in the WWTPs were affiliated with the genera of Aeromonas and Clostridium. Aeromonas veronii, Aeromonas hydrophila, and Clostridium perfringens were species most similar to the potentially pathogenic bacteria found in this study. Some sequences highly similar (>99%) to Corynebacterium diphtheriae were found in the influent and activated sludge samples from a saline WWTP. Overall, the percentage of the sequences closely related (>99%) to known pathogenic bacteria sequences was about 0.16% of the total sequences. Additionally, a platform-independent Java application (BAND) was developed for graphical visualization of the data of microbial abundance generated by high-throughput pyrosequencing. The approach demonstrated in this study could examine most of the potentially pathogenic bacteria simultaneously instead of one-by-one detection by other methods.
Biofilm formation by pathogenic Prototheca algae.
Kwiecinski, J
2015-12-01
Prototheca microalgae are the only plants known to cause infections in humans and animals. The mechanisms of Prototheca infections are poorly understood, and no good treatments are available. Biofilms-surface-attached, three-dimensional microbial communities contributing to chronic infections-are formed by many pathogenic bacteria and fungi, but it is not known if Prototheca algae also have this ability. This study shows that various Prototheca species form biofilms composed of surface-attached cells in all growth phases, linked together by matrix containing DNA and polysaccharides. Biofilm formation was modulated by the presence of host plasma or milk. Compared to planktonic cells, Prototheca biofilms caused decreased release of IL-6 by mononuclear immune cells and responded differently to treatment with antimicrobials. Prototheca biofilms possibly contribute to chronic and hard-to-treat character of those algal infections. Prototheca algae are the only existing pathogenic plants. Almost nothing is known about mechanisms of Prototheca infections. This study identifies that, similar to pathogenic bacteria and fungi, Prototheca algae can form biofilms. These biofilms induce reduced immune cell activation relative to planktonic cells, and are also less susceptible to antimicrobials. Biofilm formation by Prototheca could be the first in vitro correlate of pathogenicity, opening a new research field for this pathogen. © 2015 The Society for Applied Microbiology.
75 FR 1276 - Requirements for Subsurface Safety Valve Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
...-0066] RIN 1010-AD45 Requirements for Subsurface Safety Valve Equipment AGENCY: Minerals Management... Edition of the American Petroleum Institute's Specification for Subsurface Safety Valve Equipment (API... 14A, Specification for Subsurface Safety Valve Equipment, Eleventh Edition, October 2005, Effective...
Hurst, C. J.
1991-01-01
A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273
Subsurface cadmium loss from a stony soil-effect of cow urine application.
Gray, Colin William; Chrystal, Jane Marie; Monaghan, Ross Martin; Cavanagh, Jo-Anne
2017-05-01
Cadmium (Cd) losses in subsurface flow from stony soils that have received cow urine are potentially important, but poorly understood. This study investigated Cd loss from a soil under a winter dairy-grazed forage crop that was grazed either conventionally (24 h) or with restricted grazing (6 h). This provided an opportunity to test the hypothesis that urine inputs could increase Cd concentrations in drainage. It was thought this would be a result of cow urine either (i) enhancing dissolved organic carbon (DOC) concentrations via an increase in soil pH, resulting in the formation of soluble Cd-organic carbon complexes and, or (ii) greater inputs of chloride (Cl) via cow urine, promoting the formation of soluble Cd-Cl complexes. Cadmium concentrations in subsurface flow were generally low, with a spike above the water quality guidelines for a month after the 24-h grazing. Cadmium fluxes were on average 0.30 g Cd ha -1 year -1 (0.27-0.32 g Cd ha -1 year -1 ), in line with previous estimates for agricultural soils. The mean Cd concentration in drainage from the 24-h grazed plots was significantly higher (P < 0.05) than 6-h plots. No increase in DOC concentrations between the treatments was found. However, Cl concentrations in drainage were significantly higher (P < 0.001) from the 24-h than the 6-h grazed treatment plots, and positively correlated with Cd concentrations, and therefore, a possible mechanism increasing Cd mobility in soil. Further study is warranted to confirm the mechanisms involved and quantities of Cd lost from other systems.
Transport and Retention of Concentrated Oil-in-Water Emulsions in Sandy Porous Media
NASA Astrophysics Data System (ADS)
Muller, K.; Esahani, S. G.; Steven, C. C.; Ramsburg, A.
2015-12-01
Oil-in-water emulsions are widely employed to promote biotic reduction of contaminants; however, emulsions can also be used to encapsulate and deliver active ingredients required for long-term subsurface treatment. Our research focuses on encapsulating alkalinity-releasing particles in oil-in-water emulsions for sustained control of subsurface pH. Typical characteristics of these emulsions include kinetically stable for >20 hr; 20% soybean oil; 1 g/mL density; 8-10 cP viscosity; and 1.5 μm droplet d50, with emulsions developed for favorable subsurface delivery. The viscosity of the oil-in-water emulsions was found to be a function of oil content. Ultimately we aim to model both emulsion delivery and alkalinity release (from retained emulsion droplets) to provide a description of pH treatment. Emulsion transport and retention was investigated via a series of 1-d column experiments using varying particle size fractions of Ottawa sand. Emulsions were introduced for approximately two pore volumes followed by a flush of background solution (approx. ρ=1 g/mL; μ=1cP). Emulsion breakthrough curves exhibit an early fall on the backside of the breakthrough curve along with tailing. Deposition profiles are found to be hyper-exponential and unaffected by extended periods of background flow. Particle transport models established for dilute suspensions are unable to describe the transport of the concentrated emulsions considered here. Thus, we explore the relative importance of additional processes driving concentrated droplet transport and retention. Focus is placed on evaluating the role of attachment-detachment-straining processes, as well as the influence of mixing from both viscous instabilities and variable water saturation due to deposited mass.
Yoo, S; Ghafoor, K; Kim, S; Sun, Y W; Kim, J U; Yang, K; Lee, D-U; Shahbaz, H M; Park, J
2015-09-01
The aim of this study was to study inactivation of different pathogenic bacteria on agar model surface using TiO2-UV photocatalysis (TUVP). A unified food surface model was simulated using Bacto(™) agar, a routinely used microbial medium. The foodborne pathogenic bacteria Escherichia coli K12 (as a surrogate for E. coli O157:H7), Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes were inoculated onto the agar surface, followed by investigation of TUVP-assisted inactivation and morphological changes in bacterial cells. The TUVP process showed higher bacterial inactivation, particularly for Gram-negative bacteria, than UVC alone and a control (dark reaction). A TUVP treatment of 17·2 mW cm(-2) (30% lower than the UVC light intensity) reduced the microbial load on the agar surface by 4·5-6·0 log CFU cm(-2). UVC treatment of 23·7 mW cm(-2) caused 3·0-5·3 log CFU cm(-2) reduction. The use of agar model surface is effective for investigation of bacterial disinfection and TUVP is a promising nonthermal technique. The results showing effects of photocatalysis and other treatments for inactivation of bacterial pathogens on model surface can be useful for applying such processes for disinfection of fruit, vegetables and other similar surfaces. © 2015 The Society for Applied Microbiology.
Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens.
Behroozian, Shekooh; Svensson, Sarah L; Davies, Julian
2016-01-26
The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. More than 50 years of misuse and overuse of antibiotics has led to a plague of antibiotic resistance that threatens to reduce the efficacy of antimicrobial agents available for the treatment of infections due to resistant organisms. The main threat is nosocomial infections in which certain pathogens, notably the ESKAPE organisms, are essentially untreatable and contribute to increasing mortality and morbidity in surgical wards. The pipeline of novel antimicrobials in the pharmaceutical industry is essentially empty. Thus, there is a great need to seek for new sources for the treatment of recalcitrant infectious diseases. We describe experiments that demonstrate the efficacy of a "natural" medicine, Kisameet clay, against all of the ESKAPE strains. We suggest that this material is worthy of clinical investigation for the treatment of infections due to multidrug-resistant organisms. Copyright © 2016 Behroozian et al.
Soil Microbiome Is More Heterogeneous in Organic Than in Conventional Farming System
Lupatini, Manoeli; Korthals, Gerard W.; de Hollander, Mattias; Janssens, Thierry K. S.; Kuramae, Eiko E.
2017-01-01
Organic farming system and sustainable management of soil pathogens aim at reducing the use of agricultural chemicals in order to improve ecosystem health. Despite the essential role of microbial communities in agro-ecosystems, we still have limited understanding of the complex response of microbial diversity and composition to organic and conventional farming systems and to alternative methods for controlling plant pathogens. In this study we assessed the microbial community structure, diversity and richness using 16S rRNA gene next generation sequences and report that conventional and organic farming systems had major influence on soil microbial diversity and community composition while the effects of the soil health treatments (sustainable alternatives for chemical control) in both farming systems were of smaller magnitude. Organically managed system increased taxonomic and phylogenetic richness, diversity and heterogeneity of the soil microbiota when compared with conventional farming system. The composition of microbial communities, but not the diversity nor heterogeneity, were altered by soil health treatments. Soil health treatments exhibited an overrepresentation of specific microbial taxa which are known to be involved in soil suppressiveness to pathogens (plant-parasitic nematodes and soil-borne fungi). Our results provide a comprehensive survey on the response of microbial communities to different agricultural systems and to soil treatments for controlling plant pathogens and give novel insights to improve the sustainability of agro-ecosystems by means of beneficial microorganisms. PMID:28101080
Kim, Binna; Yun, Hyejeong; Jung, Samooel; Jung, Yeonkook; Jung, Heesoo; Choe, Wonho; Jo, Cheorun
2011-02-01
Atmospheric pressure plasma (APP) is an emerging non-thermal pasteurization method for the enhancement of food safety. In this study, the effect of APP on the inactivation of pathogens inoculated onto bacon was observed. Sliced bacon was inoculated with Listeria monocytogenes (KCTC 3596), Escherichia coli (KCTC 1682), and Salmonella Typhimurium (KCTC 1925). The samples were treated with APP at 75, 100, and 125 W of input power for 60 and 90 s. Two gases, helium (10 lpm) or a mixture of helium and oxygen, (10 lpm and 10 sccm, respectively) were used for the plasma generation. Plasma with helium could only reduce the number of inoculated pathogens by about 1-2 Log cycles. On the other hand, the helium/oxygen gas mixture was able to achieve microbial reduction of about 2-3 Log cycles. The number of total aerobic bacteria showed 1.89 and 4.58 decimal reductions after plasma treatment with helium and the helium/oxygen mixture, respectively. Microscopic observation of the bacon after plasma treatment did not find any significant changes, except that the L∗-value of the bacon surface was increased. These results clearly indicate that APP treatment is effective for the inactivation of the three pathogens used in this study, although further investigation is needed for elucidating quality changes after treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hong, Chi Eun; Ha, Young-Im; Choi, Hyoju; Moon, Ju Yeon; Lee, Jiyoung; Shin, Ah-Young; Park, Chang Jin; Yoon, Gyeong Mee; Kwon, Suk-Yoon; Jo, Ick-Hyun; Park, Jeong Mee
2017-03-01
Alpha-dioxygenases (α-DOX) catalyzing the primary oxygenation of fatty acids to oxylipins were recently found in plants. Here, the biological roles of the pepper α-DOX (Ca-DOX) gene, which is strongly induced during non-host pathogen infection in chili pepper, were examined. Virus-induced gene silencing demonstrated that down-regulation of Ca-DOX enhanced susceptibility to bacterial pathogens and suppressed the hypersensitive response via the suppression of pathogenesis-related genes such as PR4, proteinase inhibitor II and lipid transfer protein (PR14). Ca-DOX-silenced pepper plants also exhibited more retarded growth with lower epidermal cell numbers and reduced cell wall thickness than control plants. To better understand regulation of Ca-DOX, transgenic Arabidopsis plants harboring the β-glucuronidase (GUS) reporter gene driven from a putative Ca-DOX promoter were generated. GUS expression was significantly induced upon avirulent pathogen infection in transgenic Arabidopsis leaves, whereas GUS induction was relatively weak upon virulent pathogen treatment. After treatment with plant hormones, early and strong GUS expression was seen after treatment of salicylic acid, whereas ethylene and methyl jasmonate treatments produced relatively weak and late GUS signals. These results will enable us to further understand the role of α-DOX, which is important in lipid metabolism, defense responses, and growth development in plants.
Pathogen inactivation techniques.
Pelletier, J P R; Transue, S; Snyder, E L
2006-01-01
The desire to rid the blood supply of pathogens of all types has led to the development of many technologies aimed at the same goal--eradication of the pathogen(s) without harming the blood cells or generating toxic chemical agents. This is a very ambitious goal, and one that has yet to be achieved. One approach is to shun the 'one size fits all' concept and to target pathogen-reduction agents at the Individual component types. This permits the development of technologies that might be compatible with, for example, plasma products but that would be cytocidal and thus incompatible with platelet concentrates or red blood cell units. The technologies to be discussed include solvent detergent and methylene blue treatments--designed to inactivate plasma components and derivatives; psoralens (S-59--amotosalen) designed to pathogen-reduce units of platelets; and two products aimed at red blood cells, S-303 (a Frale--frangible anchor-linker effector compound) and Inactine (a binary ethyleneimine). A final pathogen-reduction material that might actually allow one material to inactivate all three blood components--riboflavin (vitamin B2)--is also under development. The sites of action of the amotosalen (S-59), the S-303 Frale, Inactine, and riboflavin are all localized in the nucleic acid part of the pathogen. Solvent detergent materials act by dissolving the plasma envelope, thus compromising the integrity of the pathogen membrane and rendering it non-infectious. By disrupting the pathogen's ability to replicate or survive, its infectivity is removed. The degree to which bacteria and viruses are affected by a particular pathogen-reducing technology relates to its Gram-positive or Gram-negative status, to the sporulation characteristics for bacteria, and the presence of lipid or protein envelopes for viruses. Concerns related to photoproducts and other breakdown products of these technologies remain, and the toxicology of pathogen-reduction treatments is a major ongoing area of investigation. Clearly, regulatory agencies have a major role to play in the evaluation of these new technologies. This chapter will cover the several types of pathogen-reduction systems, mechanisms of action, the inactivation efficacy for specific types of pathogens, toxicology of the various systems and the published research and clinical trial data supporting their potential usefulness. Due to the nature of the field, pathogen reduction is a work in progress and this review should be considered as a snapshot in time rather than a clear picture of what the future will bring.
Mobilization of microspheres from a fractured soil during intermittent infiltration events
Mohanty, Sanjay; Bulicek, Mark; Metge, David W.; Harvey, Ronald W.; Ryan, Joseph N.; Boehm, Alexandria B.
2015-01-01
Pathogens or biocolloids mobilized in the vadose zone may consequently contaminate groundwater. We found that microspheres were mobilized from a fractured soil during intermittent rainfall and the mobilization was greater when the microsphere size was larger and when the soil had greater water permeability.The vadose zone filters pathogenic microbes from infiltrating water and consequently protects the groundwater from possible contamination. In some cases, however, the deposited microbes may be mobilized during rainfall and migrate into the groundwater. We examined the mobilization of microspheres, surrogates for microbes, in an intact core of a fractured soil by intermittent simulated rainfall. Fluorescent polystyrene microspheres of two sizes (0.5 and 1.8 mm) and Br− were first applied to the core to deposit the microspheres, and then the core was subjected to three intermittent infiltration events to mobilize the deposited microspheres. Collecting effluent samples through a 19-port sampler at the base of the core, we found that water flowed through only five ports, and the flow rates varied among the ports by a factor of 12. These results suggest that flow paths leading to the ports had different permeabilities, partly due to macropores. Although 40 to 69% of injected microspheres were retained in the core during their application, 12 to 30% of the retained microspheres were mobilized during three intermittent infiltration events. The extent of microsphere mobilization was greater in flow paths with greater permeability, which indicates that macropores could enhance colloid mobilization during intermittent infiltration events. In all ports, the 1.8-mm microspheres were mobilized to a greater extent than the 0.5-mm microspheres, suggesting that larger colloids are more likely to mobilize. These results are useful in assessing the potential of pathogen mobilization and colloid-facilitated transport of contaminants in the subsurface under natural infiltration events.
Stine, Scott W; Song, Inhong; Choi, Christopher Y; Gerba, Charles P
2005-05-01
Microbial contamination of the surfaces of cantaloupe, iceberg lettuce, and bell peppers via contact with irrigation water was investigated to aid in the development of irrigation water quality standards for enteric bacteria and viruses. Furrow and subsurface drip irrigation methods were evaluated with the use of nonpathogenic surrogates, coliphage PRD1, and Escherichia coli ATCC 25922. The concentrations of hepatitis A virus (HAV) and Salmonella in irrigation water necessary to achieve a 1:10,000 annual risk of infection, the acceptable level of risk used for drinking water by the U.S. Environmental Protection Agency, were calculated with a quantitative microbial risk assessment approach. These calculations were based on the transfer of the selected nonpathogenic surrogates to fresh produce via irrigation water, as well as previously determined preharvest inactivation rates of pathogenic microorganisms on the surfaces of fresh produce. The risk of infection was found to be variable depending on type of crop, irrigation method, and days between last irrigation event and harvest. The worst-case scenario, in which produce is harvested and consumed the day after the last irrigation event and maximum exposure is assumed, indicated that concentrations of 2.5 CFU/100 ml of Salmonella and 2.5 x 10(-5) most probable number per 100 ml of HAV in irrigation water would result in an annual risk of 1:10,000 when the crop was consumed. If 14 days elapsed before harvest, allowing for die-off of the pathogens, the concentrations were increased to 5.7 x 10(3) Salmonella per 100 ml and 9.9 x 10(-3) HAV per 100 ml.
Myrmel, M; Modahl, I; Nygaard, H; Lie, K M
2014-04-01
The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries. © 2013 John Wiley & Sons Ltd.
Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils
NASA Astrophysics Data System (ADS)
Carte, J.; Fantle, M. S.
2017-12-01
An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.
Ammonia disinfection of hatchery waste for elimination of single-stranded RNA viruses.
Emmoth, Eva; Ottoson, Jakob; Albihn, Ann; Belák, Sándor; Vinnerås, Björn
2011-06-01
Hatchery waste, an animal by-product of the poultry industry, needs sanitation treatment before further use as fertilizer or as a substrate in biogas or composting plants, owing to the potential presence of opportunistic pathogens, including zoonotic viruses. Effective sanitation is also important in viral epizootic outbreaks and as a routine, ensuring high hygiene standards on farms. This study examined the use of ammonia at different concentrations and temperatures to disinfect hatchery waste. Inactivation kinetics of high-pathogenic avian influenza virus H7N1 and low-pathogenic avian influenza virus H5N3, as representatives of notifiable avian viral diseases, were determined in spiked hatchery waste. Bovine parainfluenza virus type 3, feline coronavirus, and feline calicivirus were used as models for other important avian pathogens, such as Newcastle disease virus, infectious bronchitis virus, and avian hepatitis E virus. Bacteriophage MS2 was also monitored as a stable indicator. Coronavirus was the most sensitive virus, with decimal reduction (D) values of 1.2 and 0.63 h after addition of 0.5% (wt/wt) ammonia at 14 and 25°C, respectively. Under similar conditions, high-pathogenic avian influenza H7N1 was the most resistant, with D values of 3.0 and 1.4 h. MS2 was more resistant than the viruses to all treatments and proved to be a suitable indicator of viral inactivation. The results indicate that ammonia treatment of hatchery waste is efficient in inactivating enveloped and naked single-stranded RNA viruses. Based on the D values and confidence intervals obtained, guidelines for treatment were proposed, and one was successfully validated at full scale at a hatchery, with MS2 added to hatchery waste.
Causative Pathogens of Febrile Neutropaenia in Children Treated for Acute Lymphoblastic Leukaemia.
Lam, Joyce Cm; Chai, Jie Yang; Wong, Yi Ling; Tan, Natalie Wh; Ha, Christina Tt; Chan, Mei Yoke; Tan, Ah Moy
2015-11-01
Treatment of acute lymphoblastic leukaemia (ALL) using intensive chemotherapy has resulted in high cure rates but also substantial morbidity. Infective complications represent a significant proportion of treatment-related toxicity. The objective of this study was to describe the microbiological aetiology and clinical outcome of episodes of chemotherapy-induced febrile neutropaenia in a cohort of children treated for ALL at our institution. Patients with ALL were treated with either the HKSGALL93 or the Malaysia-Singapore (Ma-Spore) 2003 chemotherapy protocols. The records of 197 patients who completed the intensive phase of treatment, defined as the period of treatment from induction, central nervous system (CNS)-directed therapy to reinduction from June 2000 to January 2010 were retrospectively reviewed. There were a total of 587 episodes of febrile neutropaenia in 197 patients, translating to an overall rate of 2.98 episodes per patient. A causative pathogen was isolated in 22.7% of episodes. An equal proportion of Gram-positive bacteria (36.4%) and Gram-negative bacteria (36.4%) were most frequently isolated followed by viral pathogens (17.4%), fungal pathogens (8.4%) and other bacteria (1.2%). Fungal organisms accounted for a higher proportion of clinically severe episodes of febrile neutropaenia requiring admission to the high-dependency or intensive care unit (23.1%). The overall mortality rate from all episodes was 1.5%. Febrile neutropaenia continues to be of concern in ALL patients undergoing intensive chemotherapy. The majority of episodes will not have an identifiable causative organism. Gram-positive bacteria and Gram-negative bacteria were the most common causative pathogens identified. With appropriate antimicrobial therapy and supportive management, the overall risk of mortality from febrile neutropaenia is extremely low.
A SYSTEMATIC STUDY ON THE SURFACE CHARGE OF MICROORGANISMS IN DRINKING WATER
The removal of microbiological pathogens from drinking water is an important function of water treatment. The mechanisms of particle and pathogen removal during coagulation/flocculation/filtration processes are well known. Surface charge is particularly important in particle dest...
AUTOMATED MONITORING OF WASTEWATER TREATMENT EFFICIENCY - PHASE I
Jeon, Soo Jin; Oh, Manhwan; Yeo, Won-Sik; Galvão, Klibs N.; Jeong, Kwang Cheol
2014-01-01
The emergence of antibiotic resistant microorganisms is a great public health concern and has triggered an urgent need to develop alternative antibiotics. Chitosan microparticles (CM), derived from chitosan, have been shown to reduce E. coli O157:H7 shedding in a cattle model, indicating potential use as an alternative antimicrobial agent. However, the underlying mechanism of CM on reducing the shedding of this pathogen remains unclear. To understand the mode of action, we studied molecular mechanisms of antimicrobial activity of CM using in vitro and in vivo methods. We report that CM are an effective bactericidal agent with capability to disrupt cell membranes. Binding assays and genetic studies with an ompA mutant strain demonstrated that outer membrane protein OmpA of E. coli O157:H7 is critical for CM binding, and this binding activity is coupled with a bactericidal effect of CM. This activity was also demonstrated in an animal model using cows with uterine diseases. CM treatment effectively reduced shedding of intrauterine pathogenic E. coli (IUPEC) in the uterus compared to antibiotic treatment. Since Shiga-toxins encoded in the genome of bacteriophage is often overexpressed during antibiotic treatment, antibiotic therapy is generally not recommended because of high risk of hemolytic uremic syndrome. However, CM treatment did not induce bacteriophage or Shiga-toxins in E. coli O157:H7; suggesting that CM can be a potential candidate to treat infections caused by this pathogen. This work establishes an underlying mechanism whereby CM exert antimicrobial activity in vitro and in vivo, providing significant insight for the treatment of diseases caused by a broad spectrum of pathogens including antibiotic resistant microorganisms. PMID:24658463
Ul-Hasan, Sabah; Chan, Benjamin K.; Sistrom, Mark J.
2018-01-01
ABSTRACT Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection—representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments—specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date. Our study evaluates an often-underappreciated aspect of resistance—the impact of evolutionary selection. We evaluate selection on all annotated efflux genes in all sequenced ESKAPE pathogens, providing critical context for and insight into current and future development of efflux-targeting treatments for resistant bacterial infections. PMID:29719870
Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.
Simone-Finstrom, Michael; Aronstein, Kate; Goblirsch, Michael; Rinkevich, Frank; de Guzman, Lilia
2018-03-01
Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity. Published by Elsevier Inc.
Lhorente, Jean Paul; Gallardo, José A; Villanueva, Beatriz; Carabaño, María J; Neira, Roberto
2014-01-01
Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1) coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2) coinfection resistance is a heritable trait that does not correlate with resistance to a single infection. In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI) of P. salmonis (primary pathogen) or coinfection with C. rogercresseyi (secondary pathogen). Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish). Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections. C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545). Heritability estimates for resistance to P. salmonis were similar and of medium magnitude in all treatments (h2SI = 0.23 ± 0.07; h2LC = 0.17 ± 0.08; h2HC = 0.24 ± 0.07). A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.99 ± 0.01) but not between the single and coinfection treatments (rg SI-LC = -0.14 ± 0.33; rg SI-HC = 0.32 ± 0.34). C. rogercresseyi, as a secondary pathogen, reduces the resistance of Atlantic salmon to the pathogen P. salmonis. Resistance to coinfection of Piscirickettsia salmonis and Caligus rogercresseyi in Atlantic salmon is a heritable trait. The absence of a genetic correlation between resistance to a single infection and resistance to coinfection indicates that different genes control these processes. Coinfection of different pathogens and resistance to coinfection needs to be considered in future research on salmon farming, selective breeding and conservation.
Nei, Daisuke; Enomoto, Katsuyoshi; Nakamura, Nobutaka
2015-08-01
Contamination of spices by pathogenic and/or spoilage bacteria can be deleterious to consumer's health and cause deterioration of foods, and inactivation of such bacteria is necessary for the food industry. The present study examined the effect of gaseous acetic acid treatment in reducing Escherichia coli O157:H7, Salmonella Enteritidis and Bacillus subtilis populations inoculated on fenugreek seeds and black pepper. Treatment with gaseous acetic acid at 0.3 mmol/L, 0.6 mmol/L and 4.7 mmol/L for 1-3 h significantly reduced the populations of E. coli O157:H7 and Salmonella Enteritidis on black pepper and fenugreek seeds at 55 °C (p < 0.05). The gas treatments at 4.7 mmol/L were more effective in inactivating the pathogens than the treatment at 0.3 mmol/L. An approximately 5.0 log reduction was obtained after 3 h of treatment with 4.7 mmol/L acetic acid. No significant reductions in the population of B. subtilis spores inoculated on fenugreek seeds and black pepper were obtained after the gas treatments at 0.3 mmol/L or 0.6 mmol/L (p > 0.05). However, the gas treatment at 4.7 mmol/L significantly reduced B. subtilis spores (p < 0.05), and 4.0 log CFU/g and 3.5 log CFU/g reductions on fenugreek seeds and black pepper, respectively, were obtained after 3 h of treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chahin, Abdullah; Opal, Steven M
2017-03-01
Severe legionella pneumonia poses a diagnostic challenge and requires early intervention. Legionnaire's disease can have several presenting signs, symptoms, and laboratory abnormalities that suggest that Legionella pneumophila is the pathogen, but none of these are sufficient to distinguish L pneumophila pneumonia from other respiratory pathogens. L pneumophila is primarily an intracellular pathogen and needs treatment with antibiotics that efficiently enter the intracellular space. Copyright © 2016 Elsevier Inc. All rights reserved.
Challenges in Fusarium, a Trans-Kingdom Pathogen.
van Diepeningen, Anne D; de Hoog, G Sybren
2016-04-01
Fusarium species are emerging human pathogens, next to being plant pathogens. Problems with Fusarium are in their diagnostics and in their difficult treatment, but also in what are actual Fusarium species or rather Fusarium-like species. In this issue Guevara-Suarez et al. (Mycopathologia. doi: 10.1007/s11046-016-9983-9 , 2016) characterized 89 isolates of Fusarium from Colombia showing especially lineages within the Fusarium solani and oxysporum species complexes to be responsible for onychomycosis.
NASA Astrophysics Data System (ADS)
Barboza, Adriana L. Lemos; Kang, Kyung Won; Bonetto, Rita D.; Llorente, Carlos L.; Bilmes, Pablo D.; Gervasi, Claudio A.
2015-01-01
Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.
Experience in non-conventional wastewater treatment techniques used in the Czech Republic.
Felberova, L; Kucera, J; Mlejnska, E
2007-01-01
Among the most common non-conventional wastewater treatment techniques used in the Czech Republic are waste stabilisation ponds (WSP), subsurface horizontal flow constructed wetlands (CW) and vertical flow groundfilters (GF). These extensive systems can be advantageously used for treatment of waters coming from sewerages where the ballast weighting commonly makes more than half of dry-weather flow. The monitoring was focused at 14 different extensive systems. Organics removal efficiencies were favourable (CW-82%; GF-88%); in the case of WSP only 57% due to the algal bloom. Total nitrogen removal efficiencies were 43 and 47% for WSP and GF; in the case of CW only 32% due to often occurring anaerobic conditions in filter beds. Total phosphorus removal efficiencies were 37, 35 and 22% for WSP, GF and CW, respectively. Often occurring problems are the ice-blockage of surface aerators at WSP during wintertimes, the pond duckweed-cover or the algal bloom at WSP during summers; a gradual colmatage of filter systems; and the oxygen deficiency in beds of subsurface horizontal flow constructed wetlands. Czech legal regulations do not allow treated wastewater disposal into underground waters. There is only an exception for individual family houses. Up to now, knowledge gained by monitoring of a village (which uses the infiltration upon a permission issued according to earlier legal regulations) have not shown an unacceptable groundwater quality deterioration into the infiltration areas.
Zilbermintz, Leeor; Leonardi, William; Jeong, Sun-Young; Sjodt, Megan; McComb, Ryan; Ho, Chi-Lee C; Retterer, Cary; Gharaibeh, Dima; Zamani, Rouzbeh; Soloveva, Veronica; Bavari, Sina; Levitin, Anastasia; West, Joel; Bradley, Kenneth A; Clubb, Robert T; Cohen, Stanley N; Gupta, Vivek; Martchenko, Mikhail
2015-08-27
A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.
A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...
Remedial Investigation/Feasibility Study (RI/FS) Report, David Global Communications Site. Volume 2
1994-02-23
adequately and prevent continued contamiuation of the groundwater. Groundwater containment systems would inhibit off-site migration of groundwater.) Response...and treatment would inhibit offsite movement of groundwater contamination and serve to remediate subsurface contamination to levels accepted by the...would inhibit oft-site migration of groundwater.) 3. xvii Glossar• of Terms Please define the following: anaerobic dohaloqenatiou - halogen
A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...
Modeling subsurface stormflow initiation in low-relief landscapes
NASA Astrophysics Data System (ADS)
Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.
2015-04-01
Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition, we also ran a longer-term simulation, using daily climate data for a nine year period to include more variable climate conditions in the threshold analysis. The model captured the observed subsurface flow instances very well. The threshold analysis indicated that the occurrence of subsurface stormflow uncommon, with a large proportion of the water perching above the clay layer percolating vertically into the clay layer. Event sizes of approximately 70-80 mm were required for initiating subsurface stormflow. The hourly data from 2009-2010 was subsequently used to test if the actual spatial distribution of depth to clay is a major control for the occurrence and magnitude of lateral subsurface flow. Results suggest that in this low-relief landscape also a spatially uniform mean depth to clay reproduces well the hydrologic behavior.
Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas
2014-02-18
While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.
Bar-Hillel, Rita; Feuerstein, Osnat; Tickotsky, Nili; Shapira, Joseph; Moskovitz, Moti
2012-01-01
Amorphous calcium phosphate, stabilized by casein phosphopeptides, has been found to enhance remineralization of subsurface lesions in permanent teeth. The purpose of the present in vitro study was to evaluate the potential of GC Tooth Mousse to enhance remineralization of initial demineralized enamel sites in primary teeth. Forty-four demineralization sites were created in 22 extracted primary teeth. Samples were randomly assigned to 6 treatment groups (GC Tooth Mousse covering, GC Tooth Mousse covering and demineralization, and control groups). The mineral content of each sample was evaluated using energy dispersive X-ray analysis, performed from the enamel surface of each lesion inwards. The results were analyzed using analysis of variance, with a significance level P<.05. Samples treated with GC Tooth Mousse demonstrated an increase in the calcium-phosphate ratio by approximately 2% near the surface, a minimal increase of 1% at a depth over 60 μm, and no change at a depth from 40 to 60 μm, with no statistically significant differences (P>.05). This study demonstrates a minimal increase in the subsurface calcium-phosphate ratio following GC Tooth Mousse treatment, especially in demineralized enamel tissue.
Air-induction aspirator-aerators cut heat loss to the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodel, A.E.
1993-04-01
The efficiency of biological treatment at the Amoco Chemical's Cedar Bayou plant's activated-sludge wastewater-treatment system was reduced when outdoor temperatures fell below 65[degrees]F. Amoco experienced microbe fragmenting and failure to settle in final clarification, especially during winter. Meeting permit standards during winter was a concern. With mechanical aerators, water is pumped upward and thrown into the air. Much heat loss in the aerated basin was from evaporation and conduction of the mechanical aerator spray. The plant's wastewater staff decided to replace the aerators with subsurface, propeller-type aerator-mixers. These air-induction, aspirating aerator-mixers employ a system that eliminates the spray action throughmore » which evaporation and conduction can occur. The aspirator-aeration systems also have saved energy. The units do not have to overcome the forces of gravity, as with mechanical, surface splasher aerators, which required more horsepower and higher energy consumption to throw the water up into the air. The new units can be conveniently turned on and off to match a fluctuating flow. Since the Cedar Bayou plant installed the system, the aspirator-aerators' subsurface mixing capabilities have made winter permit compliance a steadfast routine.« less
Crystal structure of laser-induced subsurface modifications in Si
NASA Astrophysics Data System (ADS)
Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in't Veld, A. J.
2015-08-01
Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this work, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. In addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si -iii/Si -xii occur as a result of the laser irradiation.
Subsurface fate and transport of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol
Barber, L.B.; Meyer, M.T.; LeBlanc, D.R.; Kolpin, Dana W.; Radley, Paul; Chapelle, F.; Rubio, F.
2008-01-01
Subsurface fate and transport of the antibiotic sulfamethoxazole (SX), the non-ionic surfactant degradation product 4-nonylphenol (NP), and the sex hormone 17β-estradiol (E2) were evaluated in a plume of contaminated groundwater at Cape Cod, Massachusetts, USA. The plume is the result of 60 years of wastewater treatment plant effluent disposal into rapid infiltration beds. Natural-gradient, in situ tracer experiments were used to evaluate subsurface transport of SX, NP, and E2 (injected at 300, 530, and 0.55 µg/L, respectively) relative to the conservative tracer bromide. Two geochemical zones were evaluated: (1) uncontaminated groundwater overlying the plume, and (2) contaminated groundwater within the plume that has recently become oxic after decades of anoxic conditions. The uncontaminated groundwater is characterized by a microbial community unacclimated to treated wastewater, whereas the contaminated groundwater is characterized by microbes acclimated to wastewater contaminants. Results from the tracer tests in both zones showed that the antibiotic SX was co-transported with the conservative tracer bromide, with little retardation or mass removal. In contrast, NP and E2, which are more hydrophobic and biodegradable, showed sorption (relative retardation factors ranged up to 5.9) and mass loss at both the uncontaminated and contaminated sites.
Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Tuan, Nguyen Anh; Tan, Soon Keat
2012-04-01
Determining the fate of emerging organic contaminants in an aquatic ecosystem is important for developing constructed wetlands (CWs) treatment technology. Experiments were carried out in subsurface flow CWs in Singapore to evaluate the fate and transport of eight pharmaceutical compounds. The CW system included three parallel horizontal subsurface flow CWs and three parallel unplanted beds fed continuously with synthetic wastewater at different hydraulic retention times (HRTs). The findings of the tests at 2-6 d HRTs showed that the pharmaceuticals could be categorized as (i) efficiently removed compounds with removal higher than 85% (ketoprofen and salicylic acid); (ii) moderately removed compounds with removal efficiencies between 50% and 85% (naproxen, ibuprofen and caffeine); and (iii) poorly removed compounds with efficiency rate lower than 50% (carbamazepine, diclofenac, and clofibric acid). Except for carbamazepine and salicylic acid, removal efficiencies of the selected pharmaceuticals showed significant (p<0.05) enhancement in planted beds as compared to the unplanted beds. Removal of caffeine, ketoprofen and clofibric acid were found to follow first order decay kinetics with decay constants higher in the planted beds than the unplanted beds. Correlations between pharmaceutical removal efficiencies and log K(ow) were not significant (p>0.05), implying that their removal is not well related to the compound's hydrophobicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Forbes, Margaret G; Dickson, Kenneth R; Golden, Teresa D; Hudak, Paul; Doyle, Robert D
2004-02-01
Using surface flow constructed wetlands for long-term phosphorus (P) retention presents a challenge due to the fact that P is stored primarily in the sediments. Subsurface flow wetlands have the potential to greatly increase P retention; however, the substrate needs to have both high hydraulic conductivity and high P sorption capacity. The objective of our study was to assess the P retention capacity of two substrates, masonry sand and lightweight expanded shale. We used sorption/desorption isotherms, flow-through column experiments, and pilot-scale wetlands to quantify P retained from treated municipal wastewater. Langmuir sorption isotherms predicted that the expanded shale has a maximum sorption capacity of 971 mg/kg and the masonry sand 58.8 mg/kg. In column desorption and column flow-through experiments, the masonry sand desorbed P when exposed to dilute P solutions. The expanded shale, however, had very little desorption and phosphorus did not break through the columns during our experiment. In pilot cells, masonry sand retained (mean +/- standard deviation) 45 +/- 62 g P/m2/yr and expanded shale retained 164 +/- 110 g P/m2/yr. We conclude that only the expanded shale would be a suitable substrate for retaining P in a subsurface flow wetland.
de Vet, W W J M; Kleerebezem, R; van der Wielen, P W J J; Rietveld, L C; van Loosdrecht, M C M
2011-07-01
In groundwater treatment for drinking water production, the causes of nitrification problems and the effectiveness of process optimization in rapid sand filters are often not clear. To assess both issues, the performance of a full-scale groundwater filter with nitrification problems and another filter with complete nitrification and pretreatment by subsurface aeration was monitored over nine months. Quantitative real-time polymerase chain reaction (qPCR) targeting the amoA gene of bacteria and archaea and activity measurements of ammonia oxidation were used to regularly evaluate water and filter sand samples. Results demonstrated that subsurface aeration stimulated the growth of ammonia-oxidizing prokaryotes (AOP) in the aquifer. Cell balances, using qPCR counts of AOP for each filter, showed that the inoculated AOP numbers from the aquifer were marginal compared with AOP numbers detected in the filter. Excessive washout of AOP was not observed and did not cause the nitrification problems. Ammonia-oxidizing archaea grew in both filters, but only in low numbers compared to bacteria. The cell-specific nitrification rate in the sand and backwash water samples was high for the subsurface aerated filter, but systematically much lower for the filter with nitrification problems. From this, we conclude that incomplete nitrification was caused by nutrient limitation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bahuguna, Rajeev Nayan; Joshi, Rohit; Shukla, Alok; Pandey, Mayank; Kumar, J
2012-08-01
A novel pathogen defense strategy by thiamine priming was evaluated for its efficacy against sheath blight pathogen, Rhizoctonia solani AG-1A, of rice and compared with that of systemic fungicide, carbendazim (BCM). Seeds of semidwarf, high yielding, basmati rice variety Vasumati were treated with thiamine (50 mM) and BCM (4 mM). The pot cultured plants were challenge inoculated with R. solani after 40 days of sowing and effect of thiamine and BCM on rice growth and yield traits was examined. Higher hydrogen peroxide content, total phenolics accumulation, phenylalanine ammonia lyase (PAL) activity and superoxide dismutase (SOD) activity under thiamine treatment displayed elevated level of systemic resistance, which was further augmented under challenging pathogen infection. High transcript level of phenylalanine ammonia lyase (PAL) and manganese superoxide dismutase (MnSOD) validated mode of thiamine primed defense. Though minimum disease severity was observed under BCM treatment, thiamine produced comparable results, with 18.12 per cent lower efficacy. Along with fortifying defense components and minor influence on photosynthetic pigments and nitrate reductase (NR) activity, thiamine treatment significantly reduced pathogen-induced loss in photosynthesis, stomatal conductance, chlorophyll fluorescence, NR activity and NR transcript level. Physiological traits affected under pathogen infection were found signatory for characterizing plant's response under disease and were detectable at early stage of infection. These findings provide a novel paradigm for developing alternative, environmentally safe strategies to control plant diseases. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Ha, Jae-Won; Ryu, Sang-Ryeol; Kang, Dong-Hyun
2012-09-01
This study was conducted to investigate the efficacy of near-infrared (NIR) heating to reduce Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham compared to conventional convective heating, and the effect of NIR heating on quality was determined by measuring the color and texture change. A cocktail of three pathogens was inoculated on the exposed or protected surfaces of ham slices, followed by NIR or conventional heating at 1.8 kW. NIR heating for 50 s achieved 4.1-, 4.19-, and 3.38-log reductions in surface-inoculated S. Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively, whereas convective heating needed 180 s to attain comparable reductions for each pathogen. There were no statistically significant (P > 0.05) differences in reduction between surface- and internally inoculated pathogens at the end of NIR treatment (50 s). However, when treated with conventional convective heating, significant (P < 0.05) differences were observed at the final stages of the treatment (150 and 180 s). Color values and texture parameters of NIR-treated (50-s treatment) ham slices were not significantly (P > 0.05) different from those of nontreated samples. These results suggest that NIR heating can be applied to control internalized pathogens as well as surface-adhering pathogens in RTE sliced meats without affecting product quality.
Ha, Jae-Won; Ryu, Sang-Ryeol
2012-01-01
This study was conducted to investigate the efficacy of near-infrared (NIR) heating to reduce Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham compared to conventional convective heating, and the effect of NIR heating on quality was determined by measuring the color and texture change. A cocktail of three pathogens was inoculated on the exposed or protected surfaces of ham slices, followed by NIR or conventional heating at 1.8 kW. NIR heating for 50 s achieved 4.1-, 4.19-, and 3.38-log reductions in surface-inoculated S. Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively, whereas convective heating needed 180 s to attain comparable reductions for each pathogen. There were no statistically significant (P > 0.05) differences in reduction between surface- and internally inoculated pathogens at the end of NIR treatment (50 s). However, when treated with conventional convective heating, significant (P < 0.05) differences were observed at the final stages of the treatment (150 and 180 s). Color values and texture parameters of NIR-treated (50-s treatment) ham slices were not significantly (P > 0.05) different from those of nontreated samples. These results suggest that NIR heating can be applied to control internalized pathogens as well as surface-adhering pathogens in RTE sliced meats without affecting product quality. PMID:22773635
Wilson, P; Lambert, C; Carr, S B; Pao, C
2014-07-01
The study aims were to assess the association of microflora between the paranasal sinus and the lower airways of children attending a regional paediatric cystic fibrosis centre and to determine the performance of an eradication treatment protocol for positive paranasal sinus samples. Paired nasal lavage and lower airway samples (cough swabs or sputum) were taken from 54 children with cystic fibrosis (median age 11 years). Positive paranasal sinus samples received eradication treatment, using oral and sinonasal nebulised antibiotics. A correlation between paranasal sinus and lower airways was detected in 33/54 paired timed samples (p<0.02). Of 4/54 children who reported sinus symptoms, only 2 had paranasal sinus positive samples. 28 positive nasal lavage samples cultured 8 Pseudomonas aeruginosa (PA), 8 Staphylococcus aureus (SA) and 12 other bacterial pathogens. Eradication using sinonasal nebulised antibiotics and oral antibiotics showed a success of 14/21 (67%) treated paranasal sinus positive samples at 1 month & 3 months after treatment. Success rate was 75% in the PA group and 71% in the SA group. Ongoing monitoring with nasal lavage will continue. There was agreement between pathogens or lack of them found in the paranasal sinus and lower airways. Paranasal infection is often asymptomatic in children with cystic fibrosis. The eradication protocol for paranasal sinus pathogens had a good success rate. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
Ye, Mingzhi; Wei, Wei; Yang, Zhikai; Li, Yingzhen; Cheng, Shaomin; Wang, Kang; Zhou, Tianliangwen; Sun, Jingmeng; Liu, Sha; Ni, Na; Jiang, Hui; Jiang, Hua
2016-01-08
The rapid determination of pathogenic agent is very important to clinician for guiding their clinical medication. However, current diagnostic methods are of limitation in many aspects, such as detecting range, time-consuming, specificity and sensitivity. In this report, we apply our new-developing pathogen detection method to clarify that Propionibacterium acnes is the causative agent of a two-year-old boy with juvenile myelomonocytic leukemia presenting clinical symptoms including serious rash and hyperpyrexia while traditional clinical methods of diagnosis fail to detect the pathogenic agent and multiple antimicrobial drugs are almost ineffective Propionibacterium acnes is confirmed to be the infectious agent by quantitative real-time polymerase chain reaction. After haploidentical hematopoietic stem cell transplantation, a two-year-old boy with juvenile myelomonocytic leukemia presented to a pediatrist in a medical facility with hyperpyrexia and red skin rash which later changed to black skin rash all over his body. Traditional diagnostic assays were unrevealing, and several routine antimicrobial treatments were ineffective, including the vancomycin, meropenem, tobramycin, cefepime and rifampin. In this case, pediatrist resorted to the next-generation sequencing technology for uncovering potential pathogens so as to direct their use of specific drugs against pathogenic bacteria. Therefore, based on the BGISEQ100 (Ion Proton System) which performed sequencing-by-synthesis, with electrochemical detection of synthesis, and each such reaction coupled to its own sensor, which are in turn organized into a massively parallel sensor array on a complementary metal-oxidesemiconductor chip, we detect and identify the potential pathogens. As a result, we detected a significantly higher abundance of skin bacteria Propionibacterium acnes in patient's blood than controls. It had been reported that patients infected by Propionibacterium acnes almost always had history of immunodeficiency, trauma or surgery. Considering this possible cause, antimicrobial treatment was adjusted to target this rare opportunistic pathogen. Fever and black skin rashes were rapidly reduced after administrating specific drugs against Propionibacterium acnes. This case showed our new-developing pathogen detection method was a powerful tool in assisting clinical diagnosis and treatment. And it should be paid more attention to Propionibacterium acnes infection in clinical cases.
Soller, Jeffrey A; Eftim, Sorina E; Nappier, Sharon P
2018-01-01
Understanding pathogen risks is a critically important consideration in the design of water treatment, particularly for potable reuse projects. As an extension to our published microbial risk assessment methodology to estimate infection risks associated with Direct Potable Reuse (DPR) treatment train unit process combinations, herein, we (1) provide an updated compilation of pathogen density data in raw wastewater and dose-response models; (2) conduct a series of sensitivity analyses to consider potential risk implications using updated data; (3) evaluate the risks associated with log credit allocations in the United States; and (4) identify reference pathogen reductions needed to consistently meet currently applied benchmark risk levels. Sensitivity analyses illustrated changes in cumulative annual risks estimates, the significance of which depends on the pathogen group driving the risk for a given treatment train. For example, updates to norovirus (NoV) raw wastewater values and use of a NoV dose-response approach, capturing the full range of uncertainty, increased risks associated with one of the treatment trains evaluated, but not the other. Additionally, compared to traditional log-credit allocation approaches, our results indicate that the risk methodology provides more nuanced information about how consistently public health benchmarks are achieved. Our results indicate that viruses need to be reduced by 14 logs or more to consistently achieve currently applied benchmark levels of protection associated with DPR. The refined methodology, updated model inputs, and log credit allocation comparisons will be useful to regulators considering DPR projects and design engineers as they consider which unit treatment processes should be employed for particular projects. Published by Elsevier Ltd.
Kendall, Patricia; Scharff, Robert; Baker, Susan; LeJeune, Jeffrey; Sofos, John; Medeiros, Lydia
2017-08-01
Objective This study compared knowledge and food-handling behavior after pathogen-specific (experimental treatment) versus basic food safety instruction (active control) presented during nutrition education classes for low-income English- and Spanish-language pregnant women. Methods Subjects (n = 550) were randomly assigned to treatment groups in two different locations in the United States. Food safety instruction was part of an 8-lesson curriculum. Food safety knowledge and behavior were measured pre/post intervention. Descriptive data were analyzed by Chi-Square or ANOVA; changes after intervention were analyzed by regression analysis. Results Knowledge improved after intervention in the pathogen-specific treatment group compared to active control, especially among Spanish-language women. Behavior change after intervention for the pathogen-specific treatment group improved for thermometer usage, refrigeration and consumption of foods at high risk for safety; however, all other improvements in behavior were accounted for by intervention regardless of treatment group. As expected, higher pre-instruction behavioral competency limited potential gain in behavior post-instruction due to a ceiling effect. This effect was more dominant among English-language women. Improvements were also linked to formal education completed, a partner at home, and other children in the home. Conclusions for Practice This study demonstrated that pathogen-specific food safety instruction leads to enhance knowledge and food handling behaviors that may improve the public health of pregnant women and their unborn children, especially among Spanish-language women. More importantly, food safety instruction, even at the most basic level, benefited pregnant women's food safety knowledge and food-handling behavior after intervention.
Delivery of gene biotechnologies to plants: Pathogen and pest control
USDA-ARS?s Scientific Manuscript database
Treatment of oligonucleotides to plants for host delivered suppression of microbes and insect pests of citrus was successful. FANA_ASO, (2'-deoxy-2'-fluoro-D- arabinonucleic acid)_( antisense oligonucleotides- AUM LifeTech) designed to: Asian citrus psyllid; Citrus plant bacterial pathogen of citru...
Purpose of reviewThis review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transm...
Allopatric tuberculosis host–pathogen relationships are associated with greater pulmonary impairment
Pasipanodya, Jotam G.; Moonan, Patrick K.; Vecino, Edgar; Miller, Thaddeus L.; Fernandez, Michel; Slocum, Philip; Drewyer, Gerry; Weis, Stephen E.
2015-01-01
Background Host pathogen relationships can be classified as allopatric, when the pathogens originated from separate, non-overlapping geographic areas from the host; or sympatric, when host and pathogen shared a common ancestral geographic location. It remains unclear if host–pathogen relationships, as defined by phylogenetic lineage, influence clinical outcome. We sought to examine the association between allopatric and sympatric phylogenetic Mycobacterium tuberculosis lineages and pulmonary impairment after tuberculosis (PIAT). Methods Pulmonary function tests were performed on patients 16 years of age and older who had received ≥20 weeks of treatment for culture-confirmed M. tuberculosis complex. Forced Expiratory Volume in 1 min (FEV1) ≥80%, Forced Vital Capacity (FVC) ≥80% and FEV1/FVC >70% of predicted were considered normal. Other results defined pulmonary impairment. Spoligotype and 12-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) were used to assign phylogenetic lineage. PIAT severity was compared between host–pathogen relationships which were defined by geography and ethnic population. We used multivariate logistic regression modeling to calculate adjusted odds ratios (aOR) between phylogenetic lineage and PIAT. Results Self-reported continental ancestry was correlated with Mycobacterium. tuberculosis lineage (p < 0.001). In multivariate analyses adjusting for phylogenetic lineage, age and smoking, the overall aOR for subjects with allopatric host–pathogen relationships and PIAT was 1.8 (95% confidence interval [CI]: 1.1, 2.9) compared to sympatric relationships. Smoking >30 pack-years was also associated with PIAT (aOR: 3.2; 95% CI: 1.5, 7.2) relative to smoking <1 pack-years. Conclusions PIAT frequency and severity varies by host–pathogen relationship and heavy cigarette consumption, but not phylogenetic lineage alone. Patients who had disease resulting from allopatric–host–pathogen relationship were more likely to have PIAT than patients with disease from sympatric–host–pathogen relationship infection. Further study of this association may identify ways that treatment and preventive efforts can be tailored to specific lineages and racial/ethnic populations. PMID:23501297
McIntosh, Toneya L; Lee, Anthony J; Sidari, Morgan J; Stower, Rebecca E; Sherlock, James M; Dixson, Barnaby J W
2017-01-01
Women's preferences for men's androgen dependent secondary sexual traits are proposed to be phenotypically plastic in response to exposure to pathogens and pathogen disgust. While previous studies report that masculinity in facial shape is more attractive to women who have recently been exposed to pathogenic cues and who are high in self-reported pathogen disgust, facial hair may reduce male attractiveness under conditions of high pathogens as beards are a possible breeding ground for disease carrying ectoparasites. In the present study, we test whether women's preferences for beardedness and facial masculinity vary due to exposure to different pathogenic cues. Participants (N = 688, mean age + 1SD = 31.94 years, SD = 6.69, range = 18-67) rated the attractiveness of facial composite stimuli of men when they were clean-shaven or fully bearded. These stimuli were also manipulated in order to vary sexual dimorphism by ±50%. Ratings were conducted before and after exposure to one of four experimental treatments in which participants were primed to either high pathogens (e.g. infected cuts), ectoparasites (e.g. body lice), a mixture of pathogens and ectoparasites, or a control condition (e.g. innocuous liquids). Participants then completed the three-domain disgust scale measuring attitudes to moral, sexual and pathogen disgust. We predicted that women would prefer facial masculinity following exposure to pathogenic cues, but would show reduced preferences for facial hair following exposure to ectoparasites. Women preferred full beards over clean-shaven faces and masculinised over feminised faces. However, none of the experimental treatments influenced the direction of preferences for facial masculinity or beardedness. We also found no association between women's self-reported pathogen disgust and their preferences for facial masculinity. However, there was a weak positive association between moral disgust scores and preferences for facial masculinity, which might reflect conservatism and preferences for gender typicality in faces. Women's preferences for beards were positively associated with their pathogen disgust, which runs contrary to our predictions and may reflect preferences for high quality individuals who can withstand any costs of beardedness, although further replications are necessary before firm conclusions can be made. We conclude that there is little support for pathogenic exposure being a mechanism that underpins women's directional preferences for masculine traits.
McIntosh, Toneya L.; Lee, Anthony J.; Sidari, Morgan J.; Stower, Rebecca E.; Sherlock, James M.
2017-01-01
Women’s preferences for men’s androgen dependent secondary sexual traits are proposed to be phenotypically plastic in response to exposure to pathogens and pathogen disgust. While previous studies report that masculinity in facial shape is more attractive to women who have recently been exposed to pathogenic cues and who are high in self-reported pathogen disgust, facial hair may reduce male attractiveness under conditions of high pathogens as beards are a possible breeding ground for disease carrying ectoparasites. In the present study, we test whether women’s preferences for beardedness and facial masculinity vary due to exposure to different pathogenic cues. Participants (N = 688, mean age + 1SD = 31.94 years, SD = 6.69, range = 18–67) rated the attractiveness of facial composite stimuli of men when they were clean-shaven or fully bearded. These stimuli were also manipulated in order to vary sexual dimorphism by ±50%. Ratings were conducted before and after exposure to one of four experimental treatments in which participants were primed to either high pathogens (e.g. infected cuts), ectoparasites (e.g. body lice), a mixture of pathogens and ectoparasites, or a control condition (e.g. innocuous liquids). Participants then completed the three-domain disgust scale measuring attitudes to moral, sexual and pathogen disgust. We predicted that women would prefer facial masculinity following exposure to pathogenic cues, but would show reduced preferences for facial hair following exposure to ectoparasites. Women preferred full beards over clean-shaven faces and masculinised over feminised faces. However, none of the experimental treatments influenced the direction of preferences for facial masculinity or beardedness. We also found no association between women’s self-reported pathogen disgust and their preferences for facial masculinity. However, there was a weak positive association between moral disgust scores and preferences for facial masculinity, which might reflect conservatism and preferences for gender typicality in faces. Women’s preferences for beards were positively associated with their pathogen disgust, which runs contrary to our predictions and may reflect preferences for high quality individuals who can withstand any costs of beardedness, although further replications are necessary before firm conclusions can be made. We conclude that there is little support for pathogenic exposure being a mechanism that underpins women’s directional preferences for masculine traits. PMID:28594843
Effect of Galla chinensis on the remineralization of two bovine root lesions morphous in vitro.
Guo, Bin; Que, Ke-Hua; Jing Yang; Wang, Bo; Liang, Qian-Qian; Xie, Hong-Hui
2012-09-01
The present study aims to evaluate the effect of Galla chinensis compounds on the remineralization of two artificial root lesions morphous in vitro. Sixty bovine dentine blocks were divided into two groups and individually treated with two levels of demineralization solutions to form erosive and subsurface artificial carious lesions in vitro. Each group was then divided into three subgroups, each of which were treated with a remineralization solution (positive control), deionized water (negative control), or 4 000 mg⋅L(-1) aqueous solutions of Galla chinensis extract. The dentine blocks were then subjected to a pH-cycling regime for 7 days. During the first 4 days, the daily cycle included 21-h deal and 3-h demineralization applications. The dentine blocks were dealt with the entire day during the remaining 3 days. Two specimens from each of the treatment groups were selected and observed under a polarized light microscope. Data collected using a laser scanning confocal microscope were computerized and analyzed. Galla chinensis extract clearly enhanced the remineralization of both erosive lesion and subsurface lesion patterns in the specimens (P<0.05). The level of remineralization of the erosive lesion by Galla chinensis extract was lower than that of the subsurface lesion (P<0.05). In addition, the remineralization of the subsurface lesion by Galla chinensis extract was higher than that of the remineralization solution (P<0.05). No significant difference between the remineralization of erosive lesions by Galla chinensis extract and the remineralization solution was observed (P>0.05). So Galla chinensis extract has the potential to improve the remineralization of artificial root lesions under dynamic pH-cyclic conditions, indicating its potential use as a natural remineralization medicine.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
NASA Astrophysics Data System (ADS)
Xiong, S.; Muller, J.-P.; Carretero, R. C.
2017-09-01
Subsurface layers are preserved in the polar regions on Mars, representing a record of past climate changes on Mars. Orbital radar instruments, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard ESA Mars Express (MEX) and the SHAllow RADar (SHARAD) onboard the Mars Reconnaissance Orbiter (MRO), transmit radar signals to Mars and receive a set of return signals from these subsurface regions. Layering is a prominent subsurface feature, which has been revealed by both MARSIS and SHARAD radargrams over both polar regions on Mars. Automatic extraction of these subsurface layering is becoming increasingly important as there is now over ten years' of data archived. In this study, we investigate two different methods for extracting these subsurface layers from SHARAD data and compare the results against delineated layers derived manually to validate which methods is better for extracting these layers automatically.
NASA Astrophysics Data System (ADS)
Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui
2012-01-01
The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Z.M.; Cohen, S.J.; Taylor, J.R.
1994-10-01
An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less
Crystal structure of laser-induced subsurface modifications in Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.
2015-06-04
Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less
Brack, A; Clancy, P; Fitton, B; Hoffmann, B; Horneck, G; Kurat, G; Maxwell, J; Ori, G; Pillinger, C; Raulin, F; Thomas, N; Westall, F
1998-06-01
A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.
OCCURRENCE OF PATHOGENS IN MUNICIPAL WASTEWATER AND THEIR SURVIVAL DURING WASTEWATER TREATMENT
Pathogens can enter municipal wastewaters from several sources including homes, hospitals and slaughter houses. They are identified, typical levels found in sludges are given along with infectious doses, and their survival on crops and in the soil presented. As wastewater is clea...
As decentralized water reuse continues to gain popularity, risk-based treatment guidance is increasingly sought for the protection of public health. However, efforts to evaluate pathogen risks and log-reduction requirements have been hindered by an incomplete understanding of pat...
Nitro-treatment of composted poultry litter, effects on Salmonella, E. coli and nitrogen
USDA-ARS?s Scientific Manuscript database
Poultry litter is a potentially valuable crude protein feed for ruminants whose gut microbes transform the nitrogen in uric acid into microbial protein. However, poultry litter must be treated to kill pathogens before feeding. Composting effectively kills pathogens but risks volatilization losses ...
Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng
2017-02-01
In this study, two lab-scale baffled subsurface-flow constructed wetlands (BSFCWs), including gravel-wood chips-slag and gravel-slag-wood chips, were operated at different intermittent aeration to evaluate the effect of artificial aeration and slow-released carbon source on the treatment efficiency of high-strength nitrogen wastewater. Results indicated that gravel-slag-wood chips extended aerobic/anaerobic alternating environment to gravel and slag zones and maintained anaerobic condition in the subsequent wood chip section. The order of gravel-slag-wood chip was more beneficial to pollutant removal. Sufficient carbon source supply resulted from wood-chip-framework substrate simultaneously obtained high removals of COD (97%), NH 4 + -N (95%), and TN (94%) in BSFCWs at 2 h aeration per day. The results suggest that intermittent aeration combined with wood chips could achieve high nitrogen removal in BSFCWs.
Review of intraoperative optical coherence tomography: technology and applications [Invited
Carrasco-Zevallos, Oscar M.; Viehland, Christian; Keller, Brenton; Draelos, Mark; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.
2017-01-01
During microsurgery, en face imaging of the surgical field through the operating microscope limits the surgeon’s depth perception and visualization of instruments and sub-surface anatomy. Surgical procedures outside microsurgery, such as breast tumor resections, may also benefit from visualization of the sub-surface tissue structures. The widespread clinical adoption of optical coherence tomography (OCT) in ophthalmology and its growing prominence in other fields, such as cancer imaging, has motivated the development of intraoperative OCT for real-time tomographic visualization of surgical interventions. This article reviews key technological developments in intraoperative OCT and their applications in human surgery. We focus on handheld OCT probes, microscope-integrated OCT systems, and OCT-guided laser treatment platforms designed for intraoperative use. Moreover, we discuss intraoperative OCT adjuncts and processing techniques currently under development to optimize the surgical feedback derivable from OCT data. Lastly, we survey salient clinical studies of intraoperative OCT for human surgery. PMID:28663853
Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring
NASA Astrophysics Data System (ADS)
Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.
2017-12-01
The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.
NASA Astrophysics Data System (ADS)
Hu, Hai-xiang; Qi, Erhui; Cole, Glen; Hu, Hai-fei; Luo, Xiao; Zhang, Xue-jun
2016-10-01
Large flat mirrors play important roles in large aperture telescopes. However, they also introduce unpredictable problems. The surface errors created during manufacturing, testing, and supporting are all combined during measurement, thus making understanding difficult for diagnosis and treatment. Examining a high diameter-to-thickness ratio flat mirror, TMT M3MP, and its unexpected deformation during processing, we proposed a strain model of subsurface damage to explain the observed phenomenon. We designed a set of experiment, and checked the validity of our diagnosis. On that basis, we theoretical predicted the trend of this strain and its scale effect on Zerodur®, and checked the validity on another piece experimentally. This work guided the grinding-polishing process of M3MP, and will be used as reference for M3M processing as well.
Kang, Seog Jin; Cho, Yong Il; Kim, Ki Hyun; Cho, Eun Seok
2016-05-01
Silver ions act as a powerful, broad-spectrum antimicrobial agent and are known to kill over 650 different kinds of pathogens. We investigated the protein expression pattern and identity after silver ion treatment in Escherichia coli and Staphylococcus aureus, which are primarily responsible for the majority of bovine mastitis cases using proteomics. Two-dimensional electrophoresis showed that silver ion treatment significantly reduced 5 spot's density in E. coli and S. aureus, respectively. We identified 10 proteins (alkyl hydroperoxide reductase C22 subunit, phosphoglucomutase, fructose-1-phosphate kinase, putative carbamoyl transferase, alpha-galactosidase, carbamate kinase, ornithine transcarbamoylase, fumarate hydratase class II, alcohol dehydrogenase, and conserved hypothetical protein) by matrix-assisted laser desorption ionization time of flight (MALDI-TOF). These results demonstrated that silver ions have bactericidal effects through energy deprivation, inhibition of DNA replication, and accumulation of oxidants in bovine mastitis pathogens and suggested that silver ions can be applied for the treatment of bovine mastitis.
Corey, G. Ralph; Rubinstein, Ethan; Stryjewski, Martin E.; Bassetti, Matteo; Barriere, Steven L.
2015-01-01
Staphylococcus aureus bacteremia (SAB) is one of the most common serious bacterial infections and the most frequent invasive infection due to methicillin-resistant S. aureus (MRSA). Treatment is challenging, particularly for MRSA, because of limited treatment options. Telavancin is a bactericidal lipoglycopeptide antibiotic that is active against a range of clinically relevant gram-positive pathogens including MRSA. In experimental animal models of sepsis telavancin was shown to be more effective than vancomycin. In clinically evaluable patients enrolled in a pilot study of uncomplicated SAB, cure rates were 88% for telavancin and 89% for standard therapy. Among patients with infection due to only gram-positive pathogens enrolled in the 2 phase 3 studies of telavancin for treatment of hospital-acquired pneumonia, cure rates for those with bacteremic S. aureus pneumonia were 41% (9/22, telavancin) and 40% (10/25, vancomycin) with identical mortality rates. These data support further evaluation of telavancin in larger, prospective studies of SAB. PMID:25472944
Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun
2015-12-01
Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.
Lin, Shang-Yi; Huang, Chung-Hao; Ko, Wen-Chien; Chen, Yen-Hsu; Hsueh, Po-Ren
2016-01-01
Treatment of complicated intra-abdominal infections (cIAIs) is becoming increasingly difficult because of the widespread emergence of multidrug-resistant organisms. In this review, we discuss the effectiveness of several new antibiotics for the treatment of cIAIs, including new β-lactamase inhibitor combinations (BLICs) and tetracycline-class drugs, recently developed aminoglycosides and quinolones, and novel lipoglycopeptides and oxazolidinones. Of the new BLICs, ceftolozane/tazobactam is associated with adequate clinical cure rates in patients with cIAIs. Currently, two new β-lactamase inhibitors, namely avibactam and MK-7655, are under development for clinical use in the treatment of cIAIs. Eravacycline, a novel, fully synthetic tetracycline-class drug, has been shown in Phase II and III clinical trials to be more potent than tigecycline against a significant number of multidrug-resistant organisms causing cIAIs. Plazomicin, a next-generation aminoglycoside, is a promising agent for treatment of cIAIs due to multidrug-resistant pathogens. Of the recently developed quinolones, delafloxacin and finafloxacin have been shown to be effective against pathogens that survive and multiply in mildly acidic environments, although further clinical studies examining their clinical utility in the treatment of cIAIs are warranted. Oritavancin, a new semisynthetic lipoglycopeptide agent, has been demonstrated to be a potent antibiotic in the treatment of cIAIs due to drug-resistant Gram-positive organisms. Several other new antibiotics in development also show promise and will hopefully broaden the possibilities for treatment of complicated intra-abdominal infections due to MDR pathogens.
Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587
An Update on Clinical Burden, Diagnostic Tools, and Therapeutic Options of Staphylococcus aureus
Reddy, Prakash Narayana; Srirama, Krupanidhi; Dirisala, Vijaya R
2017-01-01
Staphylococcus aureus is an important pathogen responsible for a variety of diseases ranging from mild skin and soft tissue infections, food poisoning to highly serious diseases such as osteomyelitis, endocarditis, and toxic shock syndrome. Proper diagnosis of pathogen and virulence factors is important for providing timely intervention in the therapy. Owing to the invasive nature of infections and the limited treatment options due to rampant spread of antibiotic-resistant strains, the trend for development of vaccines and antibody therapy is increasing at rapid rate than development of new antibiotics. In this article, we have discussed elaborately about the host-pathogen interactions, clinical burden due to S aureus infections, status of diagnostic tools, and treatment options in terms of prophylaxis and therapy. PMID:28579798
Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens
Pamer, Eric G.
2016-01-01
The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care–associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, J. E.; Jackson, L. M.
2001-10-13
This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatmentmore » of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.« less
Zhang, Dong-Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern
2015-04-01
Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems. Copyright © 2015. Published by Elsevier B.V.
Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun
2017-01-01
Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507
Long-Term Transport of Cryptosporidium Parvum
NASA Astrophysics Data System (ADS)
Andrea, C.; Harter, T.; Hou, L.; Atwill, E. R.; Packman, A.; Woodrow-Mumford, K.; Maldonado, S.
2005-12-01
The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Subsurface transport and filtration in natural and artificial porous media are important components of the environmental pathway of this pathogen. It has been shown that the oocysts of C. parvum show distinct colloidal properties. We conducted a series of laboratory studies on sand columns (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). Breakthrough curves were measured over relatively long time-periods (hundreds to thousands of pore volumes). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough, but it is inadequate to explain the significant tailing observed in the breakthrough of C. parvum oocyst through sand columns. We discuss the application of the Continuous Time Random Walk approach to account for the strong tailing that was observed in our experiments. The CTRW is generalized transport modeling framework, which includes the classic advection-dispersion equation (ADE), the fractional ADE, and the multi-rate mass transfer model as special cases. Within this conceptual framework, it is possible to distinguish between the contributions of pore-scale geometrical (physical) disorder and of pore-scale physico-chemical heterogeneities (e.g., of the filtration, sorption, desorption processes) to the transport of C. parvum oocysts.
Anjum, Reshma; Grohmann, Elisabeth; Krakat, Niclas
2017-02-01
Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sokolow, S. H.; Ngonghala, C. N.; Jocque, M.; Lund, A.; Barry, M.; Mordecai, E. A.; Daily, G. C.; Andrews, J. R.; Bendavid, E.; Luby, S. P.; LaBeaud, A. D.; Seetah, K.; Guégan, J. F.; De Leo, G. A.
2017-01-01
Reducing the burden of neglected tropical diseases (NTDs) is one of the key strategic targets advanced by the Sustainable Development Goals. Despite the unprecedented effort deployed for NTD elimination in the past decade, their control, mainly through drug administration, remains particularly challenging: persistent poverty and repeated exposure to pathogens embedded in the environment limit the efficacy of strategies focused exclusively on human treatment or medical care. Here, we present a simple modelling framework to illustrate the relative role of ecological and socio-economic drivers of environmentally transmitted parasites and pathogens. Through the analysis of system dynamics, we show that periodic drug treatments that lead to the elimination of directly transmitted diseases may fail to do so in the case of human pathogens with an environmental reservoir. Control of environmentally transmitted diseases can be more effective when human treatment is complemented with interventions targeting the environmental reservoir of the pathogen. We present mechanisms through which the environment can influence the dynamics of poverty via disease feedbacks. For illustration, we present the case studies of Buruli ulcer and schistosomiasis, two devastating waterborne NTDs for which control is particularly challenging. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438917
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, M.B.; Brokaw, J.K.; Brokaw, J.K.
1996-11-01
This paper provides the results of a study of two U.S. Army installation drinking water sources and treatment systems for the removal of Giardia and Cryptosporidium. Sampling was conducted monthly for one year commencing in late March 1994 and concluding at the end of February 1995. Results of this detailed study include examination of turbidity, particle counts, and total and fecal coliforms as well as the enumeration of Giardia cysts and Cryptosporidium oocysts. Our goal, in addition to determining the levels of these pathogens in both raw and product waters, was to determine if typical operating parameters would be helpfulmore » in identifying either elevated raw water protozoa or breakthrough of either pathogen in the product water from the treatment facilities. A data summary for the results of the protozoa enumeration is a Table 1. Our results indicate frequent contamination of the raw waters at both sites by either or both pathogens. Further, we observed sporadic breakthrough of low levels of Cryptosporidium in the filtered waters of both sites. The method employed to concentrate, purify and enumerate the pathogenic protozoa is also discussed and comparisons are made to the proposed Information Collection Rule (ICR) method for detection of these microorganisms.« less
Singh, Seema; Gupta, Shilpi; Singh, Bharat; Sharma, Sunil K; Gupta, Vijay K; Sharma, Gainda L
2012-06-01
A synthetic coumarin, N,N,N-triethyl-11-(4-methyl-2-oxo-2H-chromen-7-yloxy)-11-oxoundecan-1-aminium bromide (SCD-1), having potent activity against pathogenic Aspergilli (MIC90 15.62 μg/mL), was investigated to identify its molecular targets in the pathogen. The proteome of Aspergillus fumigatus was developed after treatment with sublethal doses of compound and analyzed. The results demonstrated 143 differentially expressed proteins on treatment with SCD-1. The expression of four proteins, namely cell division control protein, ubiquitin-like activating enzyme, vacuolar ATP synthase catalytic subunit A, and UTP-glucose-1-phosphate uridylyltransferase of A. fumigatus, was completely inhibited, whereas there were 13 newly expressed and 96 overexpressed proteins, mainly belonging to stress pathway. The treatment of A. fumigatus with SCD-1 also led to attenuation of proteins involved in cell replication and other important biosynthetic processes, including riboflavin biosynthesis, which has been pathogen-specific. In addition to key enzymatic players and antioxidants, nine hypothetical proteins were also identified, seven of which have been novel, being described for the first time. As no cellular functions have yet been described for these hypothetical proteins, their alteration in response to SCD-1 provides significant information about their putative roles in pathogen defense.
DEVELOPMENT OF AN ANTIBIOTIC OPTIONS INDEX FOR ANTIBIOTIC RESISTANCE MONITORING.
Manomayitthikan, Taweesuk; Borlace, Glenn N; Kessomboon, Nusaraporn
2016-11-01
Using antibiogram data to indicate the overall antibiotic resistance of a pathogen is complicated by the multiple antibiotic susceptibilities reported in the antibiogram. The objectives of this study were to develop and determine the benefits of an Antibiotic Options Index (AOI); an index that summarizes antibiotic susceptibility data for a pathogen by presenting it as the availability of antibiotic treatment options. The AOI was calculated using antibiogram data for the seven most commonly isolated pathogens from the National Antimicrobial Resistance Surveillance Center of Thailand between 1998 and 2014 and was classified as acceptable (AOI ≥ 0.8) or unacceptable (AOI < 0.8) based on the availability of treatment options. The AOI identified two problematic pathogens: Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA). For A. baumannii, the probability of having at least two viable antibiotic treatment options (AOIm2) decreased from an acceptable level (0.93) in 1998 to an unacceptable level (0.53) in 2014 and for MRSA the AOIm2 decreased from an acceptable level (0.82) in 1998 to an unacceptable level (0.47) in 2014. By including the idea that the problem with increasing antibiotic resistance is a problem with treating infections, the AOI effectively compiles susceptibility data to present it as the probability of having effective antibiotic treatment. This index is calculated from widely available antibiogram data, making it more suitable to be used to monitor antibiotic resistance at the hospital, provincial and national levels.
Ewig, S; Torres, A; El-Ebiary, M; Fábregas, N; Hernández, C; González, J; Nicolás, J M; Soto, L
1999-01-01
We prospectively evaluated the relation of upper airway, lower airway, and gastric colonization patterns with the development of pneumonia and its etiology in 48 patients with surgical (n = 25) and medical (n = 23) head injury. Initial colonization was assessed by cultures of nasal and pharyngeal swabs, tracheobronchial aspirates, gastric juice, and bronchoscopically retrieved protected specimen brush. Follow-up colonization was determined until the end points extubation, suspected ventilator-associated pneumonia (VAP), or death. The initial colonization rate at any site at ICU admission was 39/47 (83%). It mainly accounted for Group I pathogens (Streptococcus pneumoniae, Staphylococcus aureus, Hemophilus influenzae) of the upper and lower airways. At follow-up, colonization rates with Group II pathogens (Gram-negative enteric bacilli and Pseudomonas spp.) increased significantly. The high initial bacterial load with Group I pathogens of the upper airways and trachea decreased during Days 2 to 4, whereas that of Group II pathogens increased. Upper airway colonization was an independent predictor of follow-up tracheobronchial colonization (odds ratio [OR], 9.9; 95% confidence interval [CI], 1.8 to 56.3 for initial colonization with Group I pathogens; OR, 23.9; 95% CI, 3.8 to 153.3 for follow-up colonization with Group II pathogens). Previous (short-term) antibiotics had a protective effect against colonization with Group I pathogens of the lower respiratory tract (OR, 0.2; 95% CI, 0.05 to 0.86), but they were a risk factor for colonization with Group II pathogens (OR, 6.1; 95% CI, 1.3 to 29). Initial tracheobronchial colonization with Group I pathogens was associated with a higher probability of early onset pneumonia (OR, 4. 1; 95% CI, 0.7 to 23.3), whereas prolonged antibiotic treatment (> 24 h) independently predicted late-onset pneumonia (OR, 9.2; 95% CI, 1.7 to 51.3). We conclude that patients with head injury are colonized in the airways mainly by Group I pathogens early in the evolution of illness. The upper airways represent the main reservoir for subsequent lower airway colonization with Group I pathogens. Previous (short-term) antibiotic treatment is protective against initial tracheobronchial colonization with Group I pathogens, but it represents a risk factor for subsequent lower airway colonization by Group II pathogens.
Sinha, Ranjita; Gupta, Aarti; Senthil-Kumar, Muthappa
2017-01-01
Chickpea (Cicer arietinum); the second largest legume grown worldwide is prone to drought and various pathogen infections. These drought and pathogen stresses often occur concurrently in the field conditions. However, the molecular events in response to that are largely unknown. The present study examines the transcriptome dynamics in chickpea plants exposed to a combination of water-deficit stress and Ralstonia solanacearum infection. R. solanacearum is a potential wilt disease causing pathogen in chickpea. Drought stressed chickpea plants were infected with this pathogen and the plants were allowed to experience progressive drought with 2 and 4 days of R. solanacearum infection called short duration stress (SD stresses) and long duration stress (LD stresses), respectively. Our study showed that R. solanacearum multiplication decreased under SD-combined stress compared to SD-pathogen but there was no significant change in LD-combined stress compared to LD-pathogen. The microarray analysis during these conditions showed that 821 and 1039 differentially expressed genes (DEGs) were unique to SD- and LD-combined stresses, respectively, when compared with individual stress conditions. Three and fifteen genes were common among all the SD-stress treatments and LD-stress treatments, respectively. Genes involved in secondary cell wall biosynthesis, alkaloid biosynthesis, defense related proteins, and osmo-protectants were up-regulated during combined stress. The expression of genes involved in lignin and cellulose biosynthesis were specifically up-regulated in SD-combined, LD-combined, and LD-pathogen stress. A close transcriptomic association of LD-pathogen stress with SD-combined stress was observed in this study which indicates that R. solanacearum infection also exerts drought stress along with pathogen stress thus mimics combined stress effect. Furthermore the expression profiling of candidate genes using real-time quantitative PCR validated the microarray data. The study showed that down-regulation of defense-related genes during LD-combined stress resulted in an increased bacterial multiplication as compared to SD-combined stress. Overall, our study highlights a sub-set of DEGs uniquely expressed in response to combined stress, which serve as potential candidates for further functional characterization to delineate the molecular response of the plant to concurrent drought-pathogen stress. PMID:28382041
Herd diagnosis of low pathogen diarrhoea in growing pigs - a pilot study.
Pedersen, Ken Steen; Johansen, Markku; Angen, Oystein; Jorsal, Sven Erik; Nielsen, Jens Peter; Jensen, Tim K; Guedes, Roberto; Ståhl, Marie; Bækbo, Poul
2014-01-01
The major indication for antibiotic use in Danish pigs is treatment of intestinal diseases post weaning. Clinical decisions on antibiotic batch medication are often based on inspection of diarrhoeic pools on the pen floor. In some of these treated diarrhoea outbreaks, intestinal pathogens can only be demonstrated in a small number of pigs within the treated group (low pathogen diarrhoea). Termination of antibiotic batch medication in herds suffering from such diarrhoea could potentially reduce the consumption of antibiotics in the pig industry. The objective of the present pilot study was to suggest criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. Data previously collected from 20 Danish herds were used to create a case series of clinical diarrhoea outbreaks normally subjected to antibiotic treatment. In the present study, these diarrhoea outbreaks were classified as low pathogen (<15% of the pigs having bacterial intestinal disease) (n =5 outbreaks) or high pathogen (≥15% of the pigs having bacterial intestinal disease) (n =15 outbreaks). Based on the case series, different diagnostic procedures were explored, and criteria for herd diagnosis of low pathogen diarrhoea were suggested. The effect of sampling variation was explored by simulation. The diagnostic procedure with the highest combined herd-level sensitivity and specificity was qPCR testing of a pooled sample containing 20 randomly selected faecal samples. The criteria for a positive test result (high pathogen diarrhoea outbreak) were an average of 1.5 diarrhoeic faecal pools on the floor of each pen in the room under investigation and a pathogenic bacterial load ≥35,000 per gram in the faecal pool tested by qPCR. The bacterial load was the sum of Lawsonia intracellularis, Brachyspira pilosicoli and Escherichia coli F4 and F18 bacteria per gram faeces. The herd-diagnostic performance was (herd-level) diagnostic sensitivity =0.99, diagnostic specificity =0.80, positive predictive value =0.94 and negative predictive value =0.96. The pilot study suggests criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. The suggested criteria should now be evaluated, and the effect of terminating antibiotic batch medication in herds identified as suffering from low pathogen diarrhoea should be explored.
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
25 CFR 211.22 - Leases for subsurface storage of oil or gas.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Leases for subsurface storage of oil or gas. 211.22... TRIBAL LANDS FOR MINERAL DEVELOPMENT How To Acquire Leases § 211.22 Leases for subsurface storage of oil... subsurface storage of oil or gas, irrespective of the lands from which production is initially obtained. The...
Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.
Brix, H; Koottatep, T; Laugesen, C H
2007-01-01
The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.
Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment
NASA Astrophysics Data System (ADS)
Perdana, M. C.; Sutanto, H. B.; Prihatmo, G.
2018-04-01
Vertical Subsurface Flow Constructed Wetland (VSSF) is appraised to become an alternative solution for treating domestic wastewater effectively and efficiently. The system which imitates the natural wetland concept is able to reduce organic material and nutrients in wastewater; therefore, it will be more feasible to be discharged to the environment. This study aimed to compare which species is more recommended to be applied for reducing organic material and nutrients in domestic wastewater. This experimental study applied four treatments, i.e 1) control (unplanted), 2) single species Iris pseudacorus, 3) single species Echinodorus palaefolius, and 4) combination (Iris pseudacorus and Echinodorus palaefolius) with three days of retention time. The application of those plants aims for holding the role in increasing wastewater quality and adding aesthetic impression at once. The plants were planted on VSSF media, in relatively same of weight and size to compare their effectiveness in decreasing organic and inorganic load. The parameters measured pervade TDS, pH, BOD5, COD, Nitrate, and Phosphate. The plants’ condition was also observed during and after the system worked. The result showed that the best average value of effectiveness for each of parameters: COD by combination treatment (50.76%), BOD5 by single I. pseudacorus (30.15%), Nitrate by single E. palaefolius (58.06%), Phosphate by single E. palaefolius (99.5%), and TDS by E.palaefolius (3.25%). The result showed that there was a significant difference of Nitrate and Phosphate reduction between control and three other treatments, while pH parameter showed non-significant change among them. In term of performance, I.pseudacorus seemed showed a preferable achievement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... determine whether the sewage sludge contains viable helminth ova. (B) When the density of viable helminth ova in the sewage sludge prior to pathogen treatment is less than one per four grams of total solids (dry weight basis), the sewage sludge is Class A with respect to viable helminth ova until the next...
Code of Federal Regulations, 2014 CFR
2014-07-01
... determine whether the sewage sludge contains viable helminth ova. (B) When the density of viable helminth ova in the sewage sludge prior to pathogen treatment is less than one per four grams of total solids (dry weight basis), the sewage sludge is Class A with respect to viable helminth ova until the next...
Management of bull’s eye rot using preharvest and postharvest fungicides
USDA-ARS?s Scientific Manuscript database
Neofabraea perennans and N. kienholzii are major causal pathogens of bull’s eye rot in apple in Eastern WA. These fungi cause significant economic loss to the Washington State apple industry and have been listed as quarantine pathogens. Previous experiments indicate that fungicide treatments contain...
USDA-ARS?s Scientific Manuscript database
Outbreaks of salmonellosis by Salmonella Poona and listeriosis by Listeria monocytogenes have been associated with the consumption of cantaloupes. Commercial washing processes for cantaloupes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop...
Systemic fungicidal activity of 1,4-oxathiin derivatives.
Schmeling, B V; Kulka, M
1966-04-29
Treatment of pinto bean and barley seed with 1,4-oxathiin derivatives gave disease control by systemic fungicidal action of such pathogenic fungi as Uromyces phaseoli and Ustilago nuda. The two chemicals, D735 and F461, were highly specific and selective against the pathogens without injury of the hosts.
Physical and chemical interventions to mitigate risk associated with leafy greens
USDA-ARS?s Scientific Manuscript database
Contamination of leafy green vegetables with human pathogens is a source of ongoing concern for consumers. Conventional treatments have typically been able to achieve 1-2 logs reductions of such pathogens as Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes. Novel approaches and treatm...
USDA-ARS?s Scientific Manuscript database
Ground poultry products are frequently contaminated with foodborne pathogens. With increased regulatory guidelines from USDA-FSIS, it is important to employ sufficient intervention strategies to control pathogen levels effectively. In this research, antimicrobials including 50 ppm chlorine and 1,2...
Pasteurization of chicken litter with steam and quicklime to reduce Salmonella Typhimurium
USDA-ARS?s Scientific Manuscript database
The nursery industry pasteurizes soil with steam and quicklime to reduce plant pathogens. The mechanism of action for quicklime is the resulting exothermic reaction that occurs when the chemical interacts with water, and its ability to increase pH levels. These treatments may also reduce pathogens...
Biosolids are nutrient rich organic residuals that are currently in use to amend soils for food production. Treatment requirements to inactivate pathogens for production of Class A biosolids are energy intensive. One less energy intensive alternative is to treat biosolids to Cl...
Review of pathogen treatment reductions for onsite non-potable reuse of alternative source waters
Communities face a challenge when implementing onsite reuse of collected waters for non-potable purposes given the lack of national microbial standards. Quantitative Microbial Risk Assessment (QMRA) can be used to predict the pathogen risks associated with the non-potable reuse o...
Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.
Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun
2016-05-25
Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents.
Carere, Jason; Colgrave, Michelle L; Stiller, Jiri; Liu, Chunji; Manners, John M; Kazan, Kemal; Gardiner, Donald M
2016-11-01
Plants produce a variety of secondary metabolites to defend themselves from pathogen attack, while pathogens have evolved to overcome plant defences by producing enzymes that degrade or modify these defence compounds. However, many compounds targeted by pathogen enzymes currently remain enigmatic. Identifying host compounds targeted by pathogen enzymes would enable us to understand the potential importance of such compounds in plant defence and modify them to make them insensitive to pathogen enzymes. Here, a proof of concept metabolomics-based method was developed to discover plant defence compounds modified by pathogens using two pathogen enzymes with known targets in wheat and tomato. Plant extracts treated with purified pathogen enzymes were subjected to LC-MS, and the relative abundance of metabolites before and after treatment were comparatively analysed. Using two enzymes from different pathogens the in planta targets could be found by combining relatively simple enzymology with the power of untargeted metabolomics. Key to the method is dataset simplification based on natural isotope occurrence and statistical filtering, which can be scripted. The method presented here will aid in our understanding of plant-pathogen interactions and may lead to the development of new plant protection strategies. © 2016 CSIRO. New Phytologist © 2016 New Phytologist Trust.
Sarrazin, Sandrine; Redelberger, David
2016-01-01
Myeloablative treatment preceding hematopoietic stem cell (HSC) and progenitor cell (HS/PC) transplantation results in severe myeloid cytopenia and susceptibility to infections in the lag period before hematopoietic recovery. We have previously shown that macrophage colony-stimulating factor (CSF-1; M-CSF) directly instructed myeloid commitment in HSCs. In this study, we tested whether this effect had therapeutic benefit in improving protection against pathogens after HS/PC transplantation. M-CSF treatment resulted in an increased production of mature myeloid donor cells and an increased survival of recipient mice infected with lethal doses of clinically relevant opportunistic pathogens, namely the bacteria Pseudomonas aeruginosa and the fungus Aspergillus fumigatus. M-CSF treatment during engraftment or after infection efficiently protected from these pathogens as early as 3 days after transplantation and was effective as a single dose. It was more efficient than granulocyte CSF (G-CSF), a common treatment of severe neutropenia, which showed no protective effect under the tested conditions. M-CSF treatment showed no adverse effect on long-term lineage contribution or stem cell activity and, unlike G-CSF, did not impede recovery of HS/PCs, thrombocyte numbers, or glucose metabolism. These results encourage potential clinical applications of M-CSF to prevent severe infections after HS/PC transplantation. PMID:27811055
Comparative in vitro inhibition of urinary tract pathogens by single- and multi-strain probiotics.
Chapman, C M C; Gibson, G R; Todd, S; Rowland, I
2013-09-01
Multi-species probiotic preparations have been suggested as having a wide spectrum of application, although few studies have compared their efficacy with that of individual component strains at equal concentrations. We therefore tested the ability of 4 single probiotics and 4 probiotic mixtures to inhibit the urinary tract pathogens Escherichia coli NCTC 9001 and Enterococcus faecalis NCTC 00775. We used an agar spot test to test the ability of viable cells to inhibit pathogens, while a broth inhibition assay was used to assess inhibition by cell-free probiotic supernatants in both pH-neutralised and non-neutralised forms. In the agar spot test, all probiotic treatments showed inhibition, L. acidophilus was the most inhibitory single strain against E. faecalis, L. fermentum the most inhibitory against E. coli. A commercially available mixture of 14 strains (Bio-Kult(®)) was the most effective mixture, against E. faecalis, the 3-lactobacillus mixture the most inhibitory against E. coli. Mixtures were not significantly more inhibitory than single strains. In the broth inhibition assays, all probiotic supernatants inhibited both pathogens when pH was not controlled, with only 2 treatments causing inhibition at a neutral pH. Both viable cells of probiotics and supernatants of probiotic cultures were able to inhibit growth of two urinary tract pathogens. Probiotic mixtures prevented the growth of urinary tract pathogens but were not significantly more inhibitory than single strains. Probiotics appear to produce metabolites that are inhibitory towards urinary tract pathogens. Probiotics display potential to reduce the incidence of urinary tract infections via inhibition of colonisation.
Gajera, H P; Savaliya, Disha D; Patel, S V; Golakiya, B A
2015-08-01
The study examine induction of defense enzymes involved in phenylpropanoid pathway and accumulation of pathogenesis related proteins in rot pathogen (Aspergillus niger Van Tieghem) challenged groundnut seedlings in response to Trichoderma viride JAU60. Seeds of five groundnut varieties differing in collar rot susceptibility were sown under non-infested, pathogen infested and pathogen+T. viride JAU60 seed treatment. Collar rot disease evident between 31.0% (J-11, GG-2) and 67.4% (GG-20) in different groundnut varieties under pathogen infested which was significantly reduced from 58.1% (J-11, GG-2) to 51.6% (GG-20) by Trichoderma treatment. The specific activities of polyphenol oxidase (EC 1.14.18.1) and β-1,3 glucanase (EC 3.2.1.6) elevated 3.5 and 2.3-fold, respectively, at 3 days; phenylalanine ammonia lyase (EC 4.3.1.5) evident 1.6-fold higher at 6 days; and chitinase (EC 3.2.1.14) sustained 2.3-2.8 folds up to 9 days in Trichoderma treated+pathogen infested seedlings of tolerant varieties (J-11, GG-2) compared with moderate and susceptible (GAUG-10, GG-13, GG-20). T. viride JAU60 induces defense enzymes in a different way for tolerant and susceptible varieties to combat the disease. This study indicates the synergism activation of defense enzymes under the pathogenic conditions or induced resistance by T. viride JAU60 in a different groundnut varieties susceptible to collar rot disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Host-pathogen-interaction reconstituted in 3-dimensional cocultures of mucosa and C. albicans.
Buchs, Romina; Lehner, Bruno; Meuwly, Phillippe; Schnyder, Bruno
2018-06-14
C. albicans frequently causes recurrent intimal infectious disease (ID). This demands the treatment of multiple phases of the infection. The objective of this study was to uncover the host-pathogen-interaction using 2D epithelium cell-barrier and 3D subepithelium tissue cells of human mucosa. The 2D cell cultures assessed C. albicans adhesion. Addition of the anti-fungal drug Fluconazol did not inhibit the adhesion, despite its pathogen growth inhibition (MIC value 0.08μg/mL). A 3D tissue was engineered in multi-transwells by placing human fibroblast cultures on a thick porous scaffold. This contained the yeast placed in the top compartment and prevented passive penetration. After 28h the pathogen transmigrated the barrier and was collected in the bottom compartment. A change in pathogen morphology was observed where hypha formed and grew to be 231μm long after 28h. The hypha was thus long enough to cross the 200μm thick 3D tissue. The 3D infection was inhibited by addition of Fluconazol (0.08μg/mL), confirming that penetration is dependent on pathogen growth. In conclusion, ID was reconstituted step-by-step on 2D epithelium surface and in 3D connective tissue of human mucosa. Fluconazol growth-inhibition of the pathogen C. albicans was confirmed in the 3D tissue. We thus propose that this ID in vitro test is suitable for the identification and characterization of new treatments against C. albicans..
Evaluation of fumigation and surface seal methods on fumigant emissions in an orchard replant field.
Gao, Suduan; Trout, Thomas J; Schneider, Sally
2008-01-01
Soil fumigation is an important management practice for controlling soil pests and enabling successful replanting of orchards. Reducing emissions is required to minimize the possible worker and bystander risk and the contribution of fumigants to the atmosphere as volatile organic compounds that lead to the formation of ground-level ozone. A field trial was conducted in a peach orchard replant field to investigate the effects of fumigation method (shank-injection vs. subsurface drip-application treatments) and surface treatments (water applications and plastic tarps) on emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from shank-injection of Telone C-35 and drip application of InLine. Treatments included control (no water or soil surface treatment); standard high-density polyethylene (HDPE) tarp, virtually impermeable film (VIF) tarp, and pre-irrigation, all over shank injection; and HDPE tarp over and irrigation with micro-sprinklers before and after the drip application. The highest 1,3-D and CP emission losses over a 2-wk monitoring period were from the control (36% 1,3-D and 30% CP) and HDPE tarp (43% 1,3-D and 17% CP) over shank injection. The pre-irrigation 4 d before fumigation and VIF tarp over shank injection had similar total emission losses (19% 1,3-D and 8-9% CP). The HDPE tarp and irrigations over subsurface drip-application treatments resulted in similar and the lowest emission losses (12-13% 1,3-D, and 2-3% CP). Lower fumigant concentrations in the soil-gas phase were observed with drip-application than in the shank-injection treatments; however, all treatments provided 100% kill to citrus nematodes in bags buried from 30 to 90 cm depth. Pre-irrigation and drip application seem to be effective to minimize emissions of 1,3-D and CP.
Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Yinbo; Qin, Lu; Liao, Xing
2015-10-01
Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. A multicomponent treatment that consisted of the residual rice straw remaining after rice harvest and Trichoderma sp. Tri-1 (Tri-1) formulated with the oilseed rape seedcake fertilizer was used in field soil infested with S. sclerotiorum. This treatment resulted in oilseed rape seed yield that was significantly greater than the nontreated control or when the fungicide carbendizem was used in the presence of this pathogen in field trials. Yield data suggested that the rice straw, oilseed rape seedcake, and Tri-1 components of this treatment all contributed incrementally. Similar treatment results were obtained regarding reduction in disease incidence. Slight improvements in yield and disease incidence were detected when this multicomponent treatment was combined with a fungicide spray. Inhibition of sclerotial germination by this multicomponent treatment trended greater than the nontreated control at 90, 120, and 150 days in field studies but was not significantly different from this control. This multicomponent treatment resulted in increased yield relative to the nontreated control in the absence of pathogen in a greenhouse pot study, while the straw alone and the straw plus oilseed rape seedcake treatments did not; suggesting that Tri-1 was capable of promoting growth. Experiments reported here indicate that a treatment containing components of a rice-oilseed rape production system augmented with Tri-1 can control S. sclerotiorum on oilseed rape, be used in integrated strategies containing fungicide sprays for control of this pathogen, and promote plant growth.
Fernández-Baca, Cristina P; Truhlar, Allison M; Omar, Amir-Eldin H; Rahm, Brian G; Walter, M Todd; Richardson, Ruth E
2018-05-31
Onsite septic systems use soil microbial communities to treat wastewater, in the process creating potent greenhouse gases (GHGs): methane (CH 4 ) and nitrous oxide (N 2 O). Subsurface soil dispersal systems of septic tank overflow, known as leach fields, are an important part of wastewater treatment and have the potential to contribute significantly to GHG cycling. This study aimed to characterize soil microbial communities associated with leach field systems and quantify the abundance and distribution of microbial populations involved in CH 4 and N 2 O cycling. Functional genes were used to target populations producing and consuming GHGs, specifically methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) for CH 4 and nitric oxide reductase (cnorB) and nitrous oxide reductase (nosZ) for N 2 O. All biomarker genes were found in all soil samples regardless of treatment (leach field, sand filter, or control) or depth (surface or subsurface). In general, biomarker genes were more abundant in surface soils than subsurface soils suggesting the majority of GHG cycling is occurring in near-surface soils. Ratios of production to consumption gene abundances showed a positive relationship with CH 4 emissions (mcrA:pmoA, p < 0.001) but not with N 2 O emission (cnorB:nosZ, p > 0.05). Of the three measured soil parameters (volumetric water content (VWC), temperature, and conductivity), only VWC was significantly correlated to a biomarker gene, mcrA (p = 0.0398) but not pmoA or either of the N 2 O cycling genes (p > 0.05 for cnorB and nosZ). 16S rRNA amplicon library sequencing results revealed soil VWC, CH 4 flux and N 2 O flux together explained 64% of the microbial community diversity between samples. Sequencing of mcrA and pmoA amplicon libraries revealed treatment had little effect on diversity of CH 4 cycling organisms. Overall, these results suggest GHG cycling occurs in all soils regardless of whether or not they are associated with a leach field system. Copyright © 2018 Elsevier B.V. All rights reserved.