Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio
USDA-ARS?s Scientific Manuscript database
Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...
An analytical solution for predicting the transient seepage from a subsurface drainage system
NASA Astrophysics Data System (ADS)
Xin, Pei; Dan, Han-Cheng; Zhou, Tingzhang; Lu, Chunhui; Kong, Jun; Li, Ling
2016-05-01
Subsurface drainage systems have been widely used to deal with soil salinization and waterlogging problems around the world. In this paper, a mathematical model was introduced to quantify the transient behavior of the groundwater table and the seepage from a subsurface drainage system. Based on the assumption of a hydrostatic pressure distribution, the model considered the pore-water flow in both the phreatic and vadose soil zones. An approximate analytical solution for the model was derived to quantify the drainage of soils which were initially water-saturated. The analytical solution was validated against laboratory experiments and a 2-D Richards equation-based model, and found to predict well the transient water seepage from the subsurface drainage system. A saturated flow-based model was also tested and found to over-predict the time required for drainage and the total water seepage by nearly one order of magnitude, in comparison with the experimental results and the present analytical solution. During drainage, a vadose zone with a significant water storage capacity developed above the phreatic surface. A considerable amount of water still remained in the vadose zone at the steady state with the water table situated at the drain bottom. Sensitivity analyses demonstrated that effects of the vadose zone were intensified with an increased thickness of capillary fringe, capillary rise and/or burying depth of drains, in terms of the required drainage time and total water seepage. The analytical solution provides guidance for assessing the capillary effects on the effectiveness and efficiency of subsurface drainage systems for combating soil salinization and waterlogging problems.
Fractal topography and subsurface water flows from fluvial bedforms to the continental shield
Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.
2007-01-01
Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Karatekin, O.; Gloesener, E.; Dehant, V. M. A.
2017-12-01
In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.
USDA-ARS?s Scientific Manuscript database
Characterization of soil water dynamics in the root zone under subsurface drip irrigated (SDI) is complicated by the three dimensional nature of water fluxes from drip emitters plus the fluxes, if any, of water from precipitation. In addition, soil water sensing systems may differ in their operating...
Corn yield under subirrigation and future climate scenarios in the Maumee river basin
USDA-ARS?s Scientific Manuscript database
Subirrigation has been proposed as a water table management practice to maintain appropriate soil water content during periods of high crop water demand on subsurface drained croplands in the Corn Belt. Subirrigation takes advantage of the subsurface drainage systems already installed on drained agr...
Performance of Subsurface Tube Drainage System in Saline Soils: A Case Study
NASA Astrophysics Data System (ADS)
Pali, A. K.
2015-06-01
In order to improve the saline and water logged soils caused due to groundwater table rise, installation of subsurface drainage system is considered as one of the best remedies. However, the design of the drainage system has to be accurate so that the field performance results conform to the designed results. In this investigation, the field performance of subsurface tube drainage system installed at the study area was evaluated. The performance was evaluated on the basis of comparison of the designed value of water table drop as 30 cm after 2 days of drainage and predicted and field measured hydraulic heads for a consecutive drainage period of 14 days. The investigation revealed that the actual drop of water table after 2 days of drainage was 25 cm, about 17 % less than the designed value of 30 cm after 2 days of drainage. The comparison of hydraulic heads predicted by Van Schilfgaarde equation of unsteady drainage with the field-measured hydraulic heads showed that the deviation of predicted hydraulic heads varied within a range of ±8 % indicating high acceptability of Van Schlifgaarde equation for designing subsurface drainage system in saline and water logged soils resembling to that of the study area.
Robust Representation of Integrated Surface-subsurface Hydrology at Watershed Scales
NASA Astrophysics Data System (ADS)
Painter, S. L.; Tang, G.; Collier, N.; Jan, A.; Karra, S.
2015-12-01
A representation of integrated surface-subsurface hydrology is the central component to process-rich watershed models that are emerging as alternatives to traditional reduced complexity models. These physically based systems are important for assessing potential impacts of climate change and human activities on groundwater-dependent ecosystems and water supply and quality. Integrated surface-subsurface models typically couple three-dimensional solutions for variably saturated flow in the subsurface with the kinematic- or diffusion-wave equation for surface flows. The computational scheme for coupling the surface and subsurface systems is key to the robustness, computational performance, and ease-of-implementation of the integrated system. A new, robust approach for coupling the subsurface and surface systems is developed from the assumption that the vertical gradient in head is negligible at the surface. This tight-coupling assumption allows the surface flow system to be incorporated directly into the subsurface system; effects of surface flow and surface water accumulation are represented as modifications to the subsurface flow and accumulation terms but are not triggered until the subsurface pressure reaches a threshold value corresponding to the appearance of water on the surface. The new approach has been implemented in the highly parallel PFLOTRAN (www.pflotran.org) code. Several synthetic examples and three-dimensional examples from the Walker Branch Watershed in Oak Ridge TN demonstrate the utility and robustness of the new approach using unstructured computational meshes. Representation of solute transport in the new approach is also discussed. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.
Assessment of the subsurface hydrology of the UIC-NARL main camp, near Barrow, Alaska, 1993-94
McCarthy, K.A.; Solin, G.L.
1995-01-01
Imikpuk Lake serves as the drinking-water source for the Ukpeagvik Inupiat Corporation-National Arctic Research Laboratory (UIC-NARL, formerly known as the Naval Arctic Research Laboratory) near Barrow, Alaska. Previously acceptable hazardous-waste disposal practices and accidental releases of various fuels and solvents during the past several decades have resulted in contamination of soil and ground water in the vicinity of the lake. As part of an assessment of the risk that subsurface contamination poses to the quality of water in the lake, the subsurface hydrology of the UIC-NARL main camp was examined. The study area is located approximately 530 kilometers north of the Arctic Circle, on the northern coast of Alaska, and the short annual thaw season and the presence of shallow, areally continuous permafrost restrict hydrologic processes. A transient ground-water system is present within the active layer-the shallow subsurface layer that thaws each summer and refreezes each winter. Water-level and thaw-depth data collected during the summers of 1993 and 1994 show that the configurations of both the water table and the subsurface frost govern the ground- water flow system in the UIC-NARL main camp and indicate that recharge to and discharge from the system are small. Spatial irregularities in the vertical extent of the active layer result from variations in land-surface elevation, variations in soil type, and the presence of buildings and other structures that either act as a heat source or block heat transfer to and from the subsurface. Distinct features in the active-layer hydrologic system in the UIC-NARL main camp include a permafrost ridge, which generally acts as a flow-system divide between the Arctic Ocean and inland water bodies; a mound in the water table, which indicates increased impedance to ground- water flow toward Imikpuk Lake and acts as a flow-system divide between the lake and Middle Salt Lagoon; and a depression in the water table, which suggests a local breach in the permafrost ridge that allows some ground water to flow directly from the main camp to the Arctic Ocean. Similar thaw depths and water-table elevations were measured during the summers of 1993 and 1994, and little change occurred in the thickness of the ground-water zone between mid- and late-thaw- season measurements. These data suggest that the system is in a state of quasi-equilibrium and that ground-water discharge is small. The observed drop in the water table as the active layer develops over the summer is probably largely the result of evapotranspiration losses rather than system outflow.
Data on subsurface storage of liquid waste near Pensacola, Florida, 1963-1980
Hull, R.W.; Martin, J.B.
1982-01-01
Since 1963, when industrial waste was first injected into the subsurface in northwest Florida, considerable data have been collected relating to the geochemistry of subsurface waste storage. This report presents hydrogeologic data on two subsurface waste storage. This report presents hydrogeologic data on two subsurface storage systems near Pensacola, Fla., which inject liquid industrial waste through deep wells into a saline aquifer. Injection sites are described giving a history of well construction, injection, and testing; geologic data from cores and grab samples; hydrographs of injection rates, volume, pressure, and water levels; and chemical and physical data from water-quality samples collected from injection and monitor wells. (USGS)
NASA Technical Reports Server (NTRS)
1982-01-01
An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.
NASA Astrophysics Data System (ADS)
Mansour, Khamis; Omar, Khaled; Ali, Kamal; Abdel Zaher, Mohamed
2018-06-01
The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults) notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m) is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES's) were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area.
The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability
Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...
Paul, J. H.; Rose, J. B.; Brown, J.; Shinn, E. A.; Miller, S.; Farrah, S. R.
1995-01-01
Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046
Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R
1995-06-01
Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.
Effect of subsurface heterogeneity on free-product recovery from unconfined aquifers
NASA Astrophysics Data System (ADS)
Kaluarachchi, Jagath J.
1996-03-01
Free-product record system designs for light-hydrocarbon-contaminated sites were investigated to evaluate the effects of subsurface heterogeneity using a vertically integrated three-phase flow model. The input stochastic variable of the areal flow analysis was the log-intrinsic permeability and it was generated using the Turning Band method. The results of a series of hypothetical field-scale simulations showed that subsurface heterogeneity has a substantial effect on free-product recovery predictions. As the heterogeneity increased, the recoverable oil volume decreased and the residual trapped oil volume increased. As the subsurface anisotropy increased, these effects together with free- and total-oil contaminated areas were further enhanced. The use of multiple-stage water pumping was found to be insignificant compared to steady uniform pumping due to reduced recovery efficiency and increased residual oil volume. This observation was opposite to that produced under homogeneous scenarios. The effect of subsurface heterogeneity was enhanced at relatively low water pumping rates. The difference in results produced by homogeneous and heterogeneous simulations was substantial, indicating greater attention should be paid in modeling free-product recovery systems with appropriate subsurface heterogeneity.
Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.
Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B
2007-01-01
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.
A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.
NASA Astrophysics Data System (ADS)
Stoker, C. R.
2003-12-01
Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto. The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.
Nutrient transport through a Vegetative Filter Strip with subsurface drainage.
Bhattarai, Rabin; Kalita, Prasanta Kumar; Patel, Mita Kanu
2009-04-01
The transport of nutrients and soil sediments in runoff has been recognized as a noteworthy environmental issue. Vegetative Filter Strips (VFS) have been used as one of the best management practices (BMPs) for retaining nutrients and sediments from surface runoff, thus preventing the pollutants from reaching receiving waters. However, the effectiveness of a VFS when combined with a subsurface drainage system has not been investigated previously. This study was undertaken to monitor the retention and transport of nutrients within a VFS that had a subsurface drainage system installed at a depth of 1.2 m below the soil surface. Nutrient concentrations of NO(3)-N (Nitrate Nitrogen), PO(-)(4) (Orthophosphorus), and TP (Total Phosphorus) were measured in surface water samples (entering and leaving the VFS), and subsurface outflow. Soil samples were collected and analyzed for plant available Phosphorus (Bray P1) and NO(3)-N concentrations. Results showed that PO(-)(4), NO(3)-N, and TP concentrations decreased in surface flow through the VFS. Many surface outflow water samples from the VFS showed concentration reductions of as much as 75% for PO(-)(4) and 70% for TP. For subsurface outflow water samples through the drainage system, concentrations of PO(-)(4) and TP decreased but NO(3)-N concentrations increased in comparison to concentrations in surface inflow samples. Soil samples that were collected from various depths in the VFS showed a minimal buildup of nutrients in the top soil profile but indicated a gradual buildup of nutrients at the depth of the subsurface drain. Results demonstrate that although a VFS can be very effective in reducing runoff and nutrients from surface flow, the presence of a subsurface drain underneath the VFS may not be environmentally beneficial. Such a combination may increase NO(3)-N transport from the VFS, thus invalidating the purpose of the BMP.
NASA Astrophysics Data System (ADS)
Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten
2017-04-01
Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.
NASA Technical Reports Server (NTRS)
1975-01-01
Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.
Subsurface phosphorus transport through a no-till field in the semi arid Palouse region
NASA Astrophysics Data System (ADS)
Norby, J. C.; Brooks, E. S.; Strawn, D. G.
2017-12-01
Excess application of fertilizers containing nitrogen and phosphorus for farming use has led to ongoing water quality issues in the United States. When these nutrients leave agronomic systems, and enter water bodies in large quantities, algal bloom and eutrophication can occur. Extensive studies focusing on phosphorus as a pollutant from agronomic systems have been conducted in the many regions of the United States; however, there has been a lack of studies completed in the semiarid Palouse region of eastern Washington and western Idaho. The goal of this research study was to better understand how no-till farm management has altered soil P temporally and the current availability for off-site transport of P throughout an artificially drained catchment at the Cook Agronomy Farm in Pullman, WA. We also attempted to determine the processes responsible for subsurface flow of phosphorus, specifically through preferential flow pathways. Dissolved reactive P (DRP)concentrations of subsurface drainage from a artificial drain exceeded TMDL threshold concentrations during numerous seasonal high flow events over the two-year study time frame. Soil analyses show a highly variable distribution of water-extractable P across the sub-catchment area and initial results suggest a translocation of P species deeper into the soil profile after implementing no-till practices in 1998. We hypothesized that a greater network of macropores from lack of soil disturbance allow for preferential flow of nutrient-laden water deeper into the subsurface and to the artificial drain system. Simulated flow experiments on soil cores from the study site showed large-scale macropore development, extreme variability in soil conductivity, and high P adsorption potential for the soils, suggesting a disconnect between P movement through macropore soil and subsurface drainage water rich in DRP at the artificial drain line outlet.
NASA Astrophysics Data System (ADS)
Frampton, Andrew
2017-04-01
There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Loritz, Ralf; Ehret, Uwe; Westhoff, Martijn; Kleidon, Axel; Savenije, Hubert
2017-04-01
It is flabbergasting to note that catchment systems often behave almost linearly, despite of the strong non-linearity of point scale soil water characteristics. In the present study we provide evidence that a thermodynamic treatment of environmental system dynamics is the key to understand how particularly a stronger spatial organization of catchments leads to a more linear rainfall runoff behavior. Our starting point is that water fluxes in a catchment are associated with fluxes of kinetic and potential energy while changes in subsurface water stocks go along with changes in potential energy and chemical energy of subsurface water. Steady state/local equilibrium of the entire system can be defined as a state of minimum free energy, reflecting an equilibrium subsurface water storage, which is determined catchment topography, soil water characteristics and water levels in the stream. Dynamics of the entire system, i.e. deviations from equilibrium storage, are 'pseudo' oscillations in a thermodynamic state space. Either to an excess potential energy in case of wetting while subsequent relaxation back to equilibrium requires drainage/water export. Or to an excess in capillary binding energy in case of driving, while relaxation back to equilibrium requires recharge of the subsurface water stock. While system dynamics is highly non-linear on the 'too dry branch' it is essentially linear on the 'too wet branch' in case of potential energy excess. A steepened topography, which reflects a stronger spatial organization, reduces the equilibrium storage of the catchment system to smaller values, thereby it increases the range of states where the systems behaves linearly due to an excess in potential energy. Contrarily to this a shift to finer textured soils increases the equilibrium storage, which implies that the range of states where the systems behaves linearly is reduced. In this context it is important to note that an increased internal organization of the system due to an elevated density of the preferential flow paths, imply a less non-linear system behavior. This is because they avoid persistence of very dry states system states by facilitating recharge of the soil moisture stock. Based on the proposed approach we compare dynamics of four distinctly different catchments in their respective state space and demonstrate the feasibility of the approach to explain differences and similarities in their rainfall runoff regimes.
NASA Astrophysics Data System (ADS)
Meyerhoff, Steven B.
Groundwater and surface water historically have been treated as different entities. Due to this, planning and development of groundwater and surface water resources, both quantity and quality are often also treated separately. Recently, there has been work to characterize groundwater and surface water as a single system. Karstic systems are widely influenced by these interactions due to varying permeability, fracture geometry and porosity. Here, three different approaches are used to characterize groundwater surface water interactions in karstic environments. 1) A hydrologic model, ParFlow, is conditioned with known subsurface data to determine whether a reduction in subsurface uncertainty will enhance the prediction of surface water variables. A reduction in subsurface uncertainty resulted in substantial reductions in uncertainty in Hortonian runoff and less reductions in Dunne runoff. 2) Geophysical data is collected at a field site in O'leno State Park, Florida to visualize groundwater and surface water interactions in karstic environments. Significant changes in resistivity are seen through time at two locations. It is hypothesized that these changes are related to changing fluid source waters (e.g groundwater or surface water). 3). To confirm these observations an ensemble of synthetic forward models are simulated, inverted and compared directly with field observations and End-Member-Mixing-Analysis (EMMA). Field observations and synthetic models have comparable resistivity anomalies patterns and mixing fractions. This allows us to characterize and quantify subsurface mixing of groundwater and surface in karst environments. These three approaches (hydrologic models, field data and forward model experiments), (1) show the complexity and dynamics of groundwater and surface mixing in karstic environments in varying flow conditions, (2) showcase a novel geophysical technique to visualize groundwater and surface water interactions and (3) confirm hypothesis of flow and mixing in subsurface karst environments.
NASA Technical Reports Server (NTRS)
Latorraca, G. A.; Bannister, L. H.
1974-01-01
Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.
Relevance of Tidal Heating on Large TNOs
NASA Technical Reports Server (NTRS)
Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry A.
2017-01-01
We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100 s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.
Relevance of tidal heating on large TNOs
NASA Astrophysics Data System (ADS)
Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry
2018-03-01
We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. We find cases where TNO systems experience tidal heating that is a significant proportion of, or greater than radiogenic heating for periods ranging from100‧s of millions to a billion years. For subsurface oceans that contain a small antifreeze component, tidal heating due to very high initial spin states may enable liquid water to be preserved right up to the present day. Of particular interest is the Eris-Dysnomia system, which in those cases may exhibit extant cryovolcanism.
NASA Astrophysics Data System (ADS)
Silva, Nelson; Rojas, Nora; Fedele, Aldo
2009-07-01
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.
DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION
Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...
McCarthy, Kathleen A.; Solin, Gary L.; Trabant, Dennis
1994-01-01
Imikpuk Lake serves as the drinking water source for the Ukpeagvik Inupiat Corporation-National Arctic Research Laboratory (UIC-NARL), formerly known as the Naval Arctic Research Laboratory, near Barrow, Alaska. During the 1970's and 1980's, accidental releases of more than 1,300 cubic meters of various types of fuel occurred at the airstrip site adjacent to the lake. To aid an assessment of the potential risk 10 the quality of water in the lake posed by fuel remaining in the subsurface, the hydrologic interaction between the lake and ground water at the airstrip site was examined. The study area lies within the region of continuous permafrost where hydrologic processes are largely controlled by the short annual thaw season and the presence of near-surface permafrost. Runoff occurs for only a short period each year, typically from early or mid-June to late September, and a shallow ground- water system develops during approximately the same period as a result of shallow thawing of the subsurface. During the spring and summer of 1993, snowpack and surface-water data were collected throughout the Imikpuk Lake basin, and subsurface- flow-system data were collected at the airstrip site. The total annual inflow to the lake was estimated 10 be approximately 300,000 cubic meters per year, based on four methods of estimation. The ground-water flow system at the airstrip site is complex, primarily because of variations in local land-surface topography. Subsurface frost-elevation data indicate that a permafrost ridge exists beneath one of the elevated building pads at the site. Similar ridges beneath elevated roadways at the site may act as impediments to ground-water flow, reducing the flux of subsurface water to Imikpuk Lake. However, on the basis of the assumption that such impediments do not reduce flux substantially, the ground-water flux from the airstrip site was estimated to be approximately 173 cubic meters per year--less than 0.1 percent of the estimated annual inflow to Imikpuk Lake.
Performance of a pilot showcase of different wetland systems in an urban setting in Singapore.
Quek, B S; He, Q H; Sim, C H
2015-01-01
The Alexandra Wetlands, part of PUB's Active, Beautiful, Clean Waters (ABC Waters) Programme, showcase a surface flow wetland, an aquatic pond and a sub-surface flow wetland on a 200 m deck built over an urban drainage canal. Water from the canal is pumped to a sedimentation basin, before flowing in parallel to the three wetlands. Water quality monitoring was carried out monthly from April 2011 to December 2012. The order of removal efficiency is sub-surface flow (81.3%) >aquatic pond (58.5%) >surface flow (50.7%) for total suspended solids (TSS); sub-surface (44.9%) >surface flow (31.9%) >aquatic pond (22.0%) for total nitrogen (TN); and surface flow (56.7%) >aquatic pond (39.8%) >sub-surface flow (5.4%) for total phosphorus (TP). All three wetlands achieved the Singapore stormwater treatment objectives (STO) for TP removal, but only the sub-surface flow wetland met the STO for TSS, and none met the STO for TN. Challenges in achieving satisfactory performance include inconsistent feed water quality, undesirable behaviour such as fishing, release of pets and feeding of animals in the wetlands, and canal dredging during part of the monitoring period. As a pilot showcase, the Alexandra Wetlands provide useful lessons for implementing multi-objective wetlands in an urban setting.
Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James
2016-02-16
This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.
STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.
Burton, James S.; ,
1985-01-01
This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.
NASA Astrophysics Data System (ADS)
Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.
2015-12-01
Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.
Nematoda from the terrestrial deep subsurface of South Africa.
Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C
2011-06-02
Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.
Baseline hydraulic performance of the Heathrow constructed wetlands subsurface flow system.
Richter, K M; Margetts, J R; Saul, A J; Guymer, I; Worrall, P
2003-01-01
A constructed wetland treatment system has been commissioned by BAA (formerly the British Airports Authority) in order to attenuate airfield runoff contaminated with de-icant and other potentially polluting materials from Heathrow Airport. Airfield runoff containing de-icants has the potential to impose significant oxygen demands on water bodies. The site consists of a number of integrated treatment systems, including a 1 ha rafted reed bed canal system and a 2 ha sub-surface flow gravel reed bed. This research project is concerned with the performance of the subsurface flow reed beds, though attention will be paid in this paper to the operation of the whole system. Prior to the planting of the subsurface flow reed beds, flow-tracing experiments were carried out on the three different types of subsurface flow beds, so that the baseline performance of the system could be quantified. In association, data regarding the soil organic matter content was also collected prior to the planting of the beds. As expected, soil organic matter content is observed to be negligible within the bed, though a small amount of build up was observed in localised areas on the surface of the beds. This was attributed to the growth of algae in depressions where standing water persisted during the construction phase. Few studies exist which provide detailed measurements into the cause and effect of variations in hydraulic conductivity within an operational reed bed system. The data presented here form the baseline results for an ongoing study into the investigation of the change in hydraulic conductivity of an operational reed bed system.
NASA Technical Reports Server (NTRS)
Wallace, J. W.; Lovelady, R. W.; Ferguson, R. L.
1981-01-01
A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a subsurface unit for multiple depth capability and security from vandalism; (3) an acoustic data link for communications between the subsurface unit and the surface control unit; (4) eight water quality parameter sensors; (5) a nonvolatile magnetic bubble memory which prevents data loss in the event of power interruption; (6) a rechargeable power supply sufficient for 2 weeks of unattended operation; (7) a water sampler which can collect samples for laboratory analysis; (8) data output in direct engineering units on printed tape or through a computer compatible link; (9) internal electronic calibration eliminating external sensor adjustment; and (10) acoustic location and recovery systems. Data obtained in Saginaw Bay, Lake Huron are tabulated.
Active Serpentinization and the Potential for a Diverse Subsurface Biosphere
NASA Astrophysics Data System (ADS)
Canovas, P. A.; Shock, E.
2013-12-01
The ubiquitous nature of serpentinization and the unique fluids it generates have major consequences for habitat generation, abiotic organic synthesis, and biosynthesis. The production of hydrogen from the anaerobic hydrolysis of ultramafic minerals sets the redox state of serpentinizing fluids to be thermodynamically favorable for these processes. Consequently, a host of specialized microbial populations and metabolisms can be sustained. Active low-temperature serpentinizing systems, such as the Samail ophiolite in Oman, offer an ideal opportunity to investigate biogeochemical processes during the alteration of ultramafic minerals. At the Samail ophiolite in particular, serpentinization may provide the potential for an active subsurface microbial community shielded from potentially unfavorable surface conditions. Support for this assertion comes from geochemical data including Mg, Ca, CH4 (aq), and H2 (aq) abundances indicating that methane is a product of serpentinization. To further investigate viable metabolic strategies, affinity calculations were performed on both the surface waters and the hyperalkaline springs, which may be considered as messengers of processes occurring in the subsurface. Almost all sites yield positive affinities (i.e., are thermodynamically favorable) for a diverse suite of serpentinization metabolisms including methanogenesis, anammox, and carbon monoxide, nitrate, and sulfate reduction with hydrogen, as well as anaerobic methanotrophy coupled to nitrate, nitrite, and sulfate reduction. Reaction path modeling was performed to ascertain the extent to which serpentinization and mixing of surface waters with hyperalkaline spring waters in the subsurface can generate suitable habitats. The serpentinization model simulates the reaction of pristine Oman harzburgite with surface water to quantify the redox state and generation of hyperalkaline spring water. Preliminary results show that water-rock ratios as high as 100 could effectively reduce the system and create a thermodynamic drive sufficient to convert all of the dissolved inorganic carbon into methane. This indicates that the system is poised to create the reducing conditions necessary to support a subsurface biosphere very early in the serpentinizing process, and that the subsurface biosphere could extend upwards to very near the surface. The mixing model simulates the percolation of surface water into the active serpentinization zone. During the mixing process, methane is calculated to be more stable than carbonate species until approximately 100g of surface water have been added to 1 kg of the serpentinizing fluid. These results suggest that unreacted surface water flowing directly into the serpentinizing zone can create the disequilibria necessary for methanogenesis, and possibly other metabolisms, to proceed while still maintaining the low redox state of the system. As long as the recharge to the hyperalkaline reservoir does not exceed ten percent of the reservoir, methanogenesis and other serpentinization metabolisms can thrive off the disequilibria generated through mixing.
NASA Astrophysics Data System (ADS)
Hartmann, A. J.; Gleeson, T. P.; Wagener, T.; Wada, Y.
2016-12-01
Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.
Untangling the effects of urban development on subsurface storage in Baltimore
NASA Astrophysics Data System (ADS)
Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.
2015-02-01
The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.
The subsurface record for the Anthropocene based on the global analysis of deep wells
NASA Astrophysics Data System (ADS)
Rose, K.
2016-12-01
While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.
Analysing the origin of rain- and subsurface water in seasonal wetlands of north-central Namibia
NASA Astrophysics Data System (ADS)
Hiyama, Tetsuya; Kanamori, Hironari; Kambatuku, Jack R.; Kotani, Ayumi; Asai, Kazuyoshi; Mizuochi, Hiroki; Fujioka, Yuichiro; Iijima, Morio
2017-03-01
We investigated the origins of rain- and subsurface waters of north-central Namibia’s seasonal wetlands, which are critical to the region’s water and food security. The region includes the southern part of the Cuvelai system seasonal wetlands (CSSWs) of the Cuvelai Basin, a transboundary river basin covering southern Angola and northern Namibia. We analysed stable water isotopes (SWIs) of hydrogen (HDO) and oxygen (H2 18O) in rainwater, surface water and shallow groundwater. Rainwater samples were collected during every rainfall event of the rainy season from October 2013 to April 2014. The isotopic ratios of HDO (δD) and oxygen H2 18O (δ 18O) were analysed in each rainwater sample and then used to derive the annual mean value of (δD, δ 18O) in precipitation weighted by each rainfall volume. Using delta diagrams (plotting δD vs. δ 18O), we showed that the annual mean value was a good indicator for determining the origins of subsurface waters in the CSSWs. To confirm the origins of rainwater and to explain the variations in isotopic ratios, we conducted atmospheric water budget analysis using Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) data and ERA-Interim atmospheric reanalysis data. The results showed that around three-fourths of rainwater was derived from recycled water at local-regional scales. Satellite-observed outgoing longwave radiation (OLR) and complementary satellite data from MODerate-resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer (AMSR) series implied that the isotopic ratios in rainwater were affected by evaporation of raindrops falling from convective clouds. Consequently, integrated SWI analysis of rain-, surface and subsurface waters, together with the atmospheric water budget analysis, revealed that shallow groundwater of small wetlands in this region was very likely to be recharged from surface waters originating from local rainfall, which was temporarily pooled in small wetlands. This was also supported by tritium (3H) counting of the current rain- and subsurface waters in the region. We highly recommend that shallow groundwater not be pumped intensively to conserve surface and subsurface waters, both of which are important water resources in the region.
Reducing water inputs with subsurface drip irrigation may improve alfalfa nutritive value
USDA-ARS?s Scientific Manuscript database
Irrigated alfalfa (Medicago sativa L.) is an important forage crop for western Kansas dairy producers. Concerns over decreasing groundwater supplies have prompted the need to develop more efficient methods of irrigation. We investigated the effects of a subsurface drip irrigation system at three lev...
USDA-ARS?s Scientific Manuscript database
Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computati...
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.
2013-12-01
Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.
May cause environmental damage the diversion of the Danube in the Szigetköz area, Hungary?
NASA Astrophysics Data System (ADS)
Novak, Brigitta
2009-04-01
Summary The floodplain area between the main channel of Danube and its branch river Mosoni-Duna is called the Szigetköz. This wetland area has special flora and fauna, and it is a natural protection area. Underneath of the Szigetköz, there are a thick (several hundreds meters) sedimentary sequence, the so called Kisalföld Quaternary Aquifer. This aquifer system is fed by the surface river system of Danube and supplies excellent quality drinking water for several hundred thousands of people in Hungary and Slovakia. The Szigetköz Monitoring Network was established in 1991 to describe the environmental effects of the Bős-Nagymaros Dam System, which was partly built in 1992 on the Slovakian part of the Danube. The dam diverts three-quarter of the Danube runoff to a 40 km long artificial concrete channel north of the original river bed. The effect of this diversion is spectacular on the wetland area. Water level in the meandering channels have decreased significantly, part of the wetland area frequently becomes dry. The natural flow pattern has disappeared. As a consequence, the channel characteristics of the river network, therefore the flow pattern, the quantity and quality of surface and subsurface water on the upper region of the Danube have significantly changed. The aim of our research is to describe the relationship between surface water and groundwater and considering the variable geology of the area, to describe trends in chemistry and to find the possible reasons for extreme values. Also to detect possible connection between the extreme values and the changes in flow pattern caused by the human intervention. Water sample pairs from surface water and shallow and deeper ground water were taken in every season at 18 locations. To sample shallow ground-water 1,5 m long, screened metal probes were derived into the sediment at the possible nearest point to the surface water. On the field pH, temperature, dissolved oxygen, specific conductivity, and in the wells redox potential were measured. Samples were taken for further laboratory analyses (major and trace components, nitrate. The chemical parameters of surface and subsurface water show seasonal changes, due to the changes of temperature, of precipitation, of biological and microbiological activity. At the monitoring points along the main channel the surface and subsurface water is closely related, and the velocity of groundwater can be calculated by the seasonal periodical dislocation. At the monitoring points on the north-western part of the study area (point 1), subsurface water replenished by the rivers, and water level in the probes follow the surface water level changes with short shift. Practically water quality is the same in the probe as in the surface. It is the same on the south-eastern part of the study area, where the diverted channel rejoins to the original river channel (point 10). The middle section (at points 4 and 5) of the study area, water level in the probes is higher than surface water level. Also concentrations of some chemical components are higher in the subsurface water here. These components are typically the results of water - sediment interaction. Based on these observations, the study area can be differentiated by the hydrochemical composition for losing and gaining sections. At the monitoring points along the meandering sub-branch system, water in the probes is reductive, the connection between surface and subsurface water is week, furthermore at some point is non-existent. At some points surface water has slow flow, or it is even stagnant. This means reductive environments, and high concentrations of some components, especially at the monitoring points of 31 and 41. For example, concentrations of ammonium, sulphate, phosphate, magnesium, iron, manganese are extremely high in the shallow groundwater. Originally the Danube supplied fresh, oxygen-rich water to the area, while nowadays at these locations surface water and subsurface water almost has no connection, and these sections of river bed already turned muddy, and organic material accumulated in the sediment, which further increase the rate of reduction and decrease the flow rate. The extreme values, and values not following the trend in the time series of chemical parameters can be explained only by further detailed examination. On the whole, it is unambiguously clear, since the diversion of Danube the water replenishment of the meandering sub-branch system is poorer, causing unfavourable changes in water chemistry both in surface and subsurface water. Other research teams of the monitoring system, studying ecology, have found that the water regulation has major adverse effects on the biology as well. The typical floodplain vegetation is changing toward species tolerating dryness. In the water flora and fauna alters gradually as well, due to the changing chemical characteristic of water and the decreasing flow. Considering that the abiotic environment react slower than the biotic to the anthropologic influence, we do not have a clear view how the water quality will deteriorate on the long run. Furthermore, the changes in flora and fauna have already caused changes in water chemistry, and these changes will persist causing a slow but continuous diversion from the original, natural values. In Szigetköz area, the decreased flow and the deteriorating quality of surface water will endanger the important subsurface drinking water aquifer on the long-term.
Working Smarter Not Harder - Developing a Virtual Subsurface Data Framework for U.S. Energy R&D
NASA Astrophysics Data System (ADS)
Rose, K.; Baker, D.; Bauer, J.; Dehlin, M.; Jones, T. J.; Rowan, C.
2017-12-01
The data revolution has resulted in a proliferation of resources that span beyond commercial and social networking domains. Research, scientific, and engineering data resources, including subsurface characterization, modeling, and analytical datasets, are increasingly available through online portals, warehouses, and systems. Data for subsurface systems is still challenging to access, discontinuous, and varies in resolution. However, with the proliferation of online data there are significant opportunities to advance access and knowledge of subsurface systems. The Energy Data eXchange (EDX) is an online platform designed to address research data needs by improving access to energy R&D products through advanced search capabilities. In addition, EDX hosts private, virtualized computational workspaces in support of multi-organizational R&D. These collaborative workspaces allow teams to share working data resources and connect to a growing number of analytical tools to support research efforts. One recent application, a team digital data notebook tool, called DataBook, was introduced within EDX workspaces to allow teams to capture contextual and structured data resources. Starting with DOE's subsurface R&D community, the EDX team has been developing DataBook to support scientists and engineers working on subsurface energy research, allowing them to contribute and curate both structured and unstructured data and knowledge about subsurface systems. These resources span petrophysical, geologic, engineering, geophysical, interpretations, models, and analyses associated with carbon storage, water, oil, gas, geothermal, induced seismicity and other subsurface systems to support the development of a virtual subsurface data framework. The integration of EDX and DataBook allows for these systems to leverage each other's best features, such as the ability to interact with other systems (Earthcube, OpenEI.net, NGDS, etc.) and leverage custom machine learning algorithms and capabilities to enhance user experience, make access and connection to relevant subsurface data resources more efficient for research teams to use, analyze and draw insights. Ultimately, the public and private resources in EDX seek to make subsurface energy research more efficient, reduce redundancy, and drive innovation.
A water-quality monitoring network for Vallecitos Valley, Alameda County, California
Farrar, C.D.
1980-01-01
A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. In Vallecitos Valley, the Livermore Gravel and the overlying alluvium constitute the ground-water reservoir. There is no subsurface inflow from adjacent ground-water basins. Ground-water flow in the Vallecitos subbasin is toward the southwest.The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring.
A multi-scale experimental and simulation approach for fractured subsurface systems
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.
2017-12-01
Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.
Riparian corridors in upland watersheds in the Great Basin of central Nevada contain the majority of the region's biodiversity. Water, in both surface and subsurface flow regimes, is an important resource sustaining these sensitive ecosystems and other similar riparian ecosystem...
Crop water productivity and irrigation management
USDA-ARS?s Scientific Manuscript database
Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...
Total water storage dynamics derived from tree-ring records and terrestrial gravity observations
NASA Astrophysics Data System (ADS)
Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno
2015-10-01
For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.
Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines
NASA Astrophysics Data System (ADS)
Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja
2016-05-01
Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.
Mason, James L.; Kipp, Kenneth L.
1998-01-01
This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.
NASA Astrophysics Data System (ADS)
Nelson, M.; Alling, A.; Dempster, W. F.; van Thillo, M.; Allen, John
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens ™" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.
Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer
NASA Astrophysics Data System (ADS)
Abidoye, L. K.; Bello, A. A.
2017-03-01
The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noted that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.
Identification and characterization of natural pipe systems in forested tropical soils
NASA Astrophysics Data System (ADS)
Bovi, Renata Cristina; Moreira, Cesar Augusto; Stucchi Boschi, Raquel; Cooper, Miguel
2017-04-01
Erosive processes on soil surface have been well studied and comprehended by several researchers, however little is known about subsurface erosive processes (piping). Piping is a type of subsurface erosion caused by water flowing in the subsurface and is still considered one of the most difficult erosive processes to be studied. Several processes have been considered as resposible for subsurface erosion and their interaction is complex and difficult to be studied separately. Surface investigations on their own may underestimate the erosion processes, due to the possible occurrence of subsurface processes that are not yet exposed on the surface. The network of subsurface processes should also be understood to better control erosion. Conservation practices that focus on water runoff control may be inefficient if the subsurface flow is not considered. In this study, we aimed to identify and characterize subsurface cavities in the field, as well as understand the network of these cavities, by using geophysical methods (electrical tomography). The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. The soil of the area was classified as Hapludults. The area presents several erosive features, ranging from laminar to permanent gullies and subsurface erosions. The geophysical equipment used was the Terrameter LS resistivity meter, manufactured by ABEM Instruments. The method of electrical tomography was efficient to detect collapsed and non-collapsed pipes. The results presented valuable information to detect areas of risk.
Reducing phosphorus loss in tile water with managed drainage in a claypan soil.
Nash, Patrick R; Nelson, Kelly A; Motavalli, Peter P; Nathan, Manjula; Dudenhoeffer, Chris
2015-03-01
Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Gusyev, Maksym; Yamazaki, Yusuke; Morgenstern, Uwe; Stewart, Mike; Kashiwaya, Kazuhisa; Hirai, Yasuyuki; Kuribayashi, Daisuke; Sawano, Hisaya
2015-04-01
The goal of this study is to estimate subsurface water transit times and volumes in headwater catchments of Hokkaido, Japan, using the New Zealand high-accuracy tritium analysis technique. Transit time provides insights into the subsurface water storage and therefore provides a robust and quick approach to quantifying the subsurface groundwater volume. Our method is based on tritium measurements in river water. Tritium is a component of meteoric water, decays with a half-life of 12.32 years, and is inert in the subsurface after the water enters the groundwater system. Therefore, tritium is ideally suited for characterization of the catchment's responses and can provide information on mean water transit times up to 200 years. Only in recent years has it become possible to use tritium for dating of stream and river water, due to the fading impact of the bomb-tritium from thermo-nuclear weapons testing, and due to improved measurement accuracy for the extremely low natural tritium concentrations. Transit time of the water discharge is one of the most crucial parameters for understanding the response of catchments and estimating subsurface water volume. While many tritium transit time studies have been conducted in New Zealand, only a limited number of tritium studies have been conducted in Japan. In addition, the meteorological, orographic and geological conditions of Hokkaido Island are similar to those in parts of New Zealand, allowing for comparison between these regions. In 2014, three field trips were conducted in Hokkaido in June, July and October to sample river water at river gauging stations operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). These stations have altitudes between 36 m and 860 m MSL and drainage areas between 45 and 377 km2. Each sampled point is located upstream of MLIT dams, with hourly measurements of precipitation and river water levels enabling us to distinguish between the snow melt and baseflow contributions to the river discharge. For the June sampling, the tritium and stable isotope results indicate below normal river discharges with a strong contribution of snow melt at some sampling points, and relatively short groundwater transit times. The tritium concentration results are used to interpret mean transit times (MTTs) for each sampling point using a tritium input curve constructed from historical International Atomic Energy Agency and available Japanese data, and subsurface volumes are estimated from the MTTs and measured river discharges.
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...
Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics
NASA Astrophysics Data System (ADS)
Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.
2012-04-01
Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily controlled by total water storage in the subsurface. But high uncertainties intervals of the correlation coefficient urges for the extension of the measurement period. This multi-disciplinary study, combining hydrology, dendrochronology and geodesy shows that temporal gravimeter measurements may give us the unique opportunity to retrieve the information of total water storage contained in tree-ring records to reconstruct total water storage dynamics. Knowing the relationship of water storage and tree-ring growth can also support the reconstruction of other climate records based on tree-ring series, help with hydrological model testing and can improve our knowledge of long-term variations of water storage in the past.
Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.
1992-01-01
Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors
Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).
Sources of dissolved salts in the central Murray Basin, Australia
Jones, B.F.; Hanor, J.S.; Evans, W.R.
1994-01-01
Large areas of the Australian continent contain scattered saline lakes underlain by shallow saline groundwaters of regional extent and debated origin. The normative salt composition of subsurface pore fluids extracted by squeezing cores collected during deep drilling at Piangil West 2 in the central Murray Basin in southeastern Australia, and of surface and shallow subsurface brines produced by subaerial evaporation in the nearby Lake Tyrrell systems, helps constrain interpretation of the origin of dissolved solutes in the groundwaters of this part of the continent. Although regional sedimentation in the Murray Basin has been dominantly continental except for a marine transgression in Oligocene-Pliocene time, most of the solutes in saline surface and subsurface waters in the central Murray Basin have a distinctly marine character. Some of the Tyrrell waters, to the southwest of Piangil West 2, show the increase in NaCl and decrease in sulfate salts expected with evaporative concentration and gypsum precipitation in an ephemeral saline lake or playa environment. The salt norms for most of the subsurface saline waters at Piangil West 2 are compatible with the dilution of variably fractionated marine bitterns slightly depleted in sodium salts, similar to the more evolved brines at Lake Tyrrell, which have recharged downward after evaporation at the surface and then dissolved a variable amount of gypsum at depth. Apparently over the last 0.5 Ma significant quantities of marine salt have been blown into the Murray Basin as aerosols which have subsequently been leached into shallow regional groundwater systems basin-wide, and have been transported laterally into areas of large evaporative loss in the central part of the basin. This origin for the solutes helps explain why the isotopic compositions of most of the subsurface saline waters at Piangil West 2 have a strong meteoric signature, whereas the dissolved salts in these waters appear similar to a marine assemblage. ?? 1994.
The Search for Carbonates on Mars
NASA Technical Reports Server (NTRS)
Farmer, Jack D.; DesMarais, David J.; Morrison, David (Technical Monitor)
1994-01-01
Liquid water is presently unstable at the Martian surface, where the mean atmospheric pressure is 6 mbar (due to CO2) and the winter diurnal temperature ranges from 150 K at the pole to 220 K at the equator. Liquid water is widely regarded as a basic requirement for living systems, suggesting that life as we know it is not possible in present surface environments on Mars. However, life may survive within "oases" where liquid water is present. Potential oases on Mars include subsurface hydrothermal systems or deeply buried aquifers where chemoautolithotrophic microorganisms may exist. Potential metabolic strategies for primary production in such environments on Mars (and for the microbial mediation of geologic processes!) encompass the full range presently known for subsurface environments on the Earth (e.g. sulphate reduction, methanogenesis, acetogenesis, etc).
NASA Astrophysics Data System (ADS)
Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.
2005-12-01
Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results of this experiment have important implications for the strategy for searching for life on Mars.
NASA Astrophysics Data System (ADS)
Frenger, Ivy; Bianchi, Daniele; Stührenberg, Carolin; Oschlies, Andreas; Dunne, John; Deutsch, Curtis; Galbraith, Eric; Schütte, Florian
2018-02-01
Subsurface eddies are known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here we use a global eddying (0.1°) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS) and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of hundreds of kilometers, a small fraction (<5%) of long-lived eddies propagates over distances greater than 1,000 km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these nonlocal effects in global climate models, which typically include noneddying oceans, would require dedicated parameterizations.
Model Scaling of Hydrokinetic Ocean Renewable Energy Systems
NASA Astrophysics Data System (ADS)
von Ellenrieder, Karl; Valentine, William
2013-11-01
Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).
Nelson, M; Alling, A; Dempster, W F; van Thillo, M; Allen, John
2003-01-01
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens (TM)" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Non-linear hydraulic properties of woodchips necessary to design denitrification beds
USDA-ARS?s Scientific Manuscript database
Denitrification beds are being used to reduce the transport of water-soluble nitrate via subsurface drainage systems to surface water. Only recently has the non-linearity of water flow through woodchips been ascertained. To successfully design and model denitrification beds for optimum nitrate remov...
Can we treat enough water to meet water quality goals
USDA-ARS?s Scientific Manuscript database
Denitrifying woodchip bioreactors are sized to treat a portion of subsurface drainage flow from a given system. Over sizing them can create conditions under which unintended consequences could occur. A potential solution for treating additional water is to use a cascading series of bioreactor cell...
Regolith-atmosphere exchange of water in Mars' recent past
NASA Astrophysics Data System (ADS)
Steele, Liam J.; Balme, Matthew R.; Lewis, Stephen R.
2017-03-01
We investigate the exchange of water vapour between the regolith and atmosphere of Mars, and how it varies with different orbital parameters, atmospheric dust contents and surface water ice reservoirs. This is achieved through the coupling of a global circulation model (GCM) and a regolith diffusion model. GCM simulations are performed for hundreds of Mars years, with additional one-dimensional simulations performed for 50 kyr. At obliquities ɛ =15∘ and 30°, the thermal inertia and albedo of the regolith have more control on the subsurface water distribution than changes to the eccentricity or solar longitude of perihelion. At ɛ =45∘ , atmospheric water vapour abundances become much larger, allowing stable subsurface ice to form in the tropics and mid-latitudes. The circulation of the atmosphere is important in producing the subsurface water distribution, with increased water content in various locations due to vapour transport by topographically-steered flows and stationary waves. As these circulation patterns are due to topographic features, it is likely the same regions will also experience locally large amounts of subsurface water at different epochs. The dustiness of the atmosphere plays an important role in the distribution of subsurface water, with a dusty atmosphere resulting in a wetter water cycle and increased stability of subsurface ice deposits.
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.
Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars
NASA Technical Reports Server (NTRS)
Gulick, Virginia C
1998-01-01
Numerical models of Martian hydrothermal systems demonstrate that systems associated with magmatic intrusions greater than several hundred cubic kilometers can provide sufficient groundwater outflow to form the observed fluvial valleys, if subsurface permeability exceeds about 1.0 darcy. Groundwater outflow increases with increasing intrusion volume and subsurface permeability and is relatively insensitive to intrusion depth and subsurface porosity within the range considered here. Hydrothermally-derived fluids can melt through 1 to 2 km thick ice-rich permafrost layers in several thousand years. Hydrothermal systems thus provide a viable alternative to rainfall for providing surface water for valley formation. This mechanism can form fluvial valleys not only during the postulated early warm, wet climatic epoch, but also during more recent epochs when atmospheric conditions did not favor atmospheric cycling of water. The clustered distribution of the valley networks on a given geologic surface or terrain unit of Mars may also be more compatible with localized, hydrothermally-driven groundwater outflow than regional rainfall. Hydrothermal centers on Mars may have provided appropriate environments for the initiation of life or final oases for the long-term persistence of life.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.
2015-12-01
Quantifying water and heat fluxes in the subsurface is crucial for managing water resources and for understanding the terrestrial ecosystem where hydrological properties drive a variety of biogeochemical processes across a large range of spatial and temporal scales. Here, we present the development of an advanced monitoring strategy where hydro-thermal-geophysical datasets are continuously acquired and further involved in a novel inverse modeling framework to estimate the hydraulic and thermal parameter that control heat and water dynamics in the subsurface and further influence surface processes such as evapotranspiration and vegetation growth. The measured and estimated soil properties are also used to investigate co-interaction between subsurface and surface dynamics by using above-ground aerial imaging. The value of this approach is demonstrated at two different sites, one in the polygonal shaped Arctic tundra where water and heat dynamics have a strong impact on freeze-thaw processes, vegetation and biogeochemical processes, and one in a floodplain along the Colorado River where hydrological fluxes between compartments of the system (surface, vadose zone and groundwater) drive biogeochemical transformations. Results show that the developed strategy using geophysical, point-scale and aerial measurements is successful to delineate the spatial distribution of hydrostratigraphic units having distinct physicochemical properties, to monitor and quantify in high resolution water and heat distribution and its linkage with vegetation, geomorphology and weather conditions, and to estimate hydraulic and thermal parameters for enhanced predictions of water and heat fluxes as well as evapotranspiration. Further, in the Colorado floodplain, results document the potential presence of only periodic infiltration pulses as a key hot moment controlling soil hydro and biogeochemical functioning. In the arctic, results show the strong linkage between soil water content, thermal parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.
ALMA Thermal Mapping of Ceres – Search for Subsurface Water Ice
NASA Astrophysics Data System (ADS)
Moullet, Arielle; Li, Jian-Yang; Titus, Timothy N.; Sykes, Mark V.; Hsieh, Henry H.
2018-06-01
Spectroscopic observations of the surface of Ceres by Dawn have demonstrated that hydrated minerals are ubiquitous, but only few smaller sites are enriched with water ice. This is somewhat surprising as Ceres is believed to host a large amount a water in its interior.The possibility of inhomogeneous subsurface water distribution can be investigated by tracing thermal inertia distribution. To that effect, we mapped the temperature of Ceres using 1.3mm maps of the whole surface obtained with the Atacama Large Millimeter Array (ALMA) over three different epochs during one Ceres’ year. Assessing the thermal conditions at the depths probed by sub millimeter observations (a few cm below the surface, within the annual thermal skin depth) is critical to constrain the effective thermal inertia, and hence the status of subsurface water ice. We will present preliminary results in terms of temperature features and the corresponding thermal inertia derived based on comparisons from the KRC thermal model which has been extensively used for Mars. Initial analysis is consistent with the presence of near-surface high thermal inertia layer, presumably water ice, in the north polar region.This work is supported by the NASA Solar System Observations Program NNX15AE02G.
NASA Astrophysics Data System (ADS)
Geng, X.; Kreyns, P.; Koneshloo, M.; Michael, H. A.
2017-12-01
Groundwater flow and salt transport processes are important for protection of coastal water resources and ecosystems. Geological heterogeneity has been recognized as a key factor affecting rates and patterns of groundwater flow and the evolution of subsurface salinity distributions in coastal aquifers. The hydrogeologic system of the volcanic Hawaiian Islands is characterized by lava flows that can form continuous, connected geologic structures in subsurface. Understanding the role of geological heterogeneity in aquifer salinization and water exchange between aquifers and the ocean is essential for effective assessment and management of water resources in the Hawaii islands. In this study, surface-based geostatistical techniques were adopted to generate geologically-realistic, statistically equivalent model realizations of the hydrogeologic system on the Big Island of Hawaii. The density-dependent groundwater flow and solute transport code SEAWAT was used to perform 3D simulations to investigate subsurface flow and salt transport through these random realizations. Flux across the aquifer-ocean interface, aquifer salinization, and groundwater flow pathways and associated transit times were quantified. Numerical simulations of groundwater pumping at various positions in the aquifers were also conducted, and associated impacts on saltwater intrusion rates were evaluated. Results indicate the impacts of continuous geologic features on large-scale groundwater processes in coastal aquifers.
Effects of subsurface drainage systems on water and nitrogen footprints simulated with RZWQM2
USDA-ARS?s Scientific Manuscript database
When considering the use of drainage water management (DWM) in the Midwest to reduce nutrient contributions to the Northern Gulf of Mexico Hypoxic Zone, it is essential to understand the long-term performance of these systems. Few studies have evaluated long-term impacts of DWM and the simulation of...
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.
2015-12-01
The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate the hydrological dynamics of the Delaware River basin will be assessed by comparing the model results (both hydrological performance and numerical efficiency) with the standard setup of the NOAH-MP model and a high-resolution (1km) version of NOAH-MP, which also explicitly accounts for lateral subsurface and overland flow.
James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.
2010-01-01
As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sternberg, B.K.; Thomas, S.J.
1992-12-01
The overall objective of the project was to apply a new high-resolution imaging system to water resource investigations. This imaging system measures the ellipticity of received magnetic-field components. The source of the magnetic field is a long-line transmitter emitting frequencies from 30 Hz to 30 kHz. A new high-accuracy calibration method was used to enhance the resolution of the measurements. The specific objectives included: (1) refine the system hardware and software based on these investigations, (2) learn the limitations of this technology in practical water resource investigations, and (3) improve interpretation techniques to extract the highest possible resolution. Successful fieldmore » surveys were run at: (1) San Xavier Mine, Arizona - flow of injected fluid was monitored with the system. (2) Avra Valley, Arizona - subsurface stratigraphy was imaged. A survey at a third site was less successful; interpreted resistivity section does not agree with nearby well logs. Surveys are continuing at this site.« less
Monitoring of subsurface injection of wastes, Florida
Vecchioli, John
1979-01-01
Injection of waste liquids into Florida's subsurface is physically feasible in many places but should be accompanied by monitoring of the waste-receiving aquifer system in addition to the injection facility. Monitoring of the interaction of factors including hydrogeologic conditions, well construction, waste volumes and characteristics, and potable-water sources is desirable to assure that fresh-water resources are not being adversely affected. An effective aquifer-system monitoring program includes on-site wells located close to an injection well and open to the next-higher permeable stratum, satellite wells located hundreds to several thousands of feet from an injection well and open to the receiving aquifer, and regional wells located miles from individual injection wells and open to the receiving aquifer. An extensive aquifer-system monitoring program associated with two waste-injection facilities near Pensacola, Florida, has provided data which have aided hydrologists to understand the aquifer system's response to the injection and, accordingly, to evaluate the potential for affecting the area's fresh-water resources.
Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D
NASA Astrophysics Data System (ADS)
Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels
2016-04-01
Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects of various model parameters on simulated overland flow (while considering or neglecting the effects of subsurface flow) was carried out to verify the applicability of the model to different problems. The model produced reasonable results in describing the diffusion wave approximation and its interactions with subsurface flow processes. The model could handle coupled surface-subsurface processes for conditions involving runoff generated by infiltration excess, saturation excess, or run-on, as well as a combination of these runoff generating processes. Several standard features of the HYDRUS 2D model, such as root water uptake and evaporation from the soil surface, as well as evaporation from runoff layer, can still be considered by the new model. The code required relatively small time steps when overland flow was active, resulting in long simulation times, and sometimes produced poor mass balance. The model nevertheless showed potential to be a useful tool for addressing various issues related to irrigation research and to natural generation of overland flow at the hillslope scale. Maxwell, R., Putti, M., Meyerhoff, S., Delf, J., Ferguson, I., Ivanov, V., Kim, J., Kolditz, O., Kollet, S., Kumar, M., Lopez, S., Niu, J., Paniconi, C., Park, Y.-J., Phanikumar, M., Shen, C., Sudicky, E., and Sulis, M. (2014). Surface-subsurface model intercomparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resourc. Res., 50:1531-1549. Šimůnek, J., van Genuchten, M. T., and Šejna, M. (2011). The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual, Version 2.0, PC Progress, Prague, Czech Republic. Takizawa, K., Bazilevs Y., Tezduyar, T. E., Long, C.C., Marsden, A. L. and Schjodt.K., Patient-Specific Cardiovascular Fluid Mechanics Analysis with the ST and ALE-VMS Method in Idelsohn, S. R. (2014). Numerical Simulations of Coupled Problems in Engineering. Springer. Weill, S., Mouche, E., and Patin, J. (2009). A generalized Richards equation for surface/subsurface flow modelling. Journal of Hydrology, 366:9-20.
NASA Astrophysics Data System (ADS)
Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.
2017-12-01
The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.
Painter, Scott L.; Coon, Ethan T.; Atchley, Adam L.; ...
2016-08-11
The need to understand potential climate impacts and feedbacks in Arctic regions has prompted recent interest in modeling of permafrost dynamics in a warming climate. A new fine-scale integrated surface/subsurface thermal hydrology modeling capability is described and demonstrated in proof-of-concept simulations. The new modeling capability combines a surface energy balance model with recently developed three-dimensional subsurface thermal hydrology models and new models for nonisothermal surface water flows and snow distribution in the microtopography. Surface water flows are modeled using the diffusion wave equation extended to include energy transport and phase change of ponded water. Variation of snow depth in themore » microtopography, physically the result of wind scour, is also modeled heuristically with a diffusion wave equation. The multiple surface and subsurface processes are implemented by leveraging highly parallel community software. Fully integrated thermal hydrology simulations on the tilted open book catchment, an important test case for integrated surface/subsurface flow modeling, are presented. Fine-scale 100-year projections of the integrated permafrost thermal hydrological system on an ice wedge polygon at Barrow Alaska in a warming climate are also presented. Finally, these simulations demonstrate the feasibility of microtopography-resolving, process-rich simulations as a tool to help understand possible future evolution of the carbon-rich Arctic tundra in a warming climate.« less
Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan
NASA Astrophysics Data System (ADS)
Fang, H. T.
2015-12-01
The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface to input parameter. The simulation of water level and chloride concentration already showed the real situation, and the result can be applied to the future study of the Chi-Ken subsurface reservoir salinity problems.
NASA Astrophysics Data System (ADS)
Park, C.; Lee, J.; Koo, M.
2011-12-01
Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is developed with an object-oriented language - Python. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model after calibration was successful and results showed reliable water balance and interaction between the surface and subsurface hydrologic systems.
NASA Astrophysics Data System (ADS)
Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland
2016-03-01
Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.
NASA Astrophysics Data System (ADS)
Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith
2017-04-01
Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.
NASA Technical Reports Server (NTRS)
Sheives, T. C.
1974-01-01
Remote identification and measurement of subsurface water turbidity and oil on water was accomplished with analytical models which describe the backscatter from smooth surface turbid water, including single scatter and multiple scatter effects. Lidar measurements from natural waterways are also presented and compared with ground observations of several physical water quality parameters.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Johnson, Raymond H.; Yager, Douglas B.
2006-01-01
In the late nineteenth century, San Juan County, Colorado, was the center of a metal mining boom in the San Juan Mountains. Although most mining activity ceased by the 1990s, the effects of historical mining continue to contribute metals to ground water and surface water. Previous research by the U.S. Geological Survey identified ground-water discharge as a significant pathway for the loading of metals to surface water from both acid-mine drainage and acid-rock drainage. In an effort to understand the ground-water flow system in the upper Animas River watershed, Prospect Gulch was selected for further study because of the amount of previous data provided in and around that particular watershed. In support of this ground-water research effort, wells and piezometers were installed to allow for coring during installation, subsurface hydrologic testing, and the monitoring of ground-water hydraulic heads and geochemistry. This report summarizes the data that were collected during and after the installation of these wells and piezometers and includes (1) subsurface completion details, (2) locations and elevations, (3) geologic logs and elemental data, (4) slug test data for the estimation of subsurface hydraulic conductives, and (5) hydraulic head data.
EVALUATION OF CONTAINMENT SYSTEMS USING HYDRAULIC HEAD DATA
Subsurface vertical barriers have been used as components of containment systems to prevent or reduce the impact of containment sources on ground-water resources. Many containment systems also include a low permeability cover to prevent the infiltration-/recharge of precipitatio...
NASA Astrophysics Data System (ADS)
Kenjabaev, S.; Forkutsa, I.; Dukhovny, V.; Frede, H. G.
2012-04-01
Leaching of nitrate-N (NO3-) from irrigated agricultural land and water contamination have become a worldwide concern. This study was conducted to investigate amount of nitrate-N leached to groundwater and surface water from irrigated cotton, winter wheat and maize fields in the Fergana Valley (Uzbekistan). Therefore at two sites ("Akbarabad" and "Azizbek") equipped with closed horizontal drainage system during 2010-2011 vegetation seasons we monitored water flow, nutrient concentrations and salinity at surface and subsurface drains, at irrigation canals and groundwater. We also applied stable isotopes (δ2H and δ18O) method in order to investigate the source of drainage water runoff. Discussed are results of 2010. Farmers fertilized cotton fields with ammonium nitrate of 350-450 kg ha-1 in "Akbarabad" and 700 kg ha-1 in "Azizbek" sites. In winter wheat and maize fields (in "Akbarabad") about 500 kg ha-1 of ammonium nitrate were applied. Cotton fields were irrigated with 2700 m3 ha-1 ("Akbarabad") and 3500 m3 ha-1 ("Azizbek"). In winter wheat and maize fields applied irrigation water amounted to 3900 m3 ha-1 and 723 m3 ha-1, respectively. Frequent groundwater and subsurface drainage water sampling revealed that nitrate leaching occurred mostly during and right after the irrigation events. The estimated average nitrate-N concentration in subsurface drainage water in "Akbarabad" was slightly higher (9 mg l-1) than in "Azizbek" (8 mg l-1). During July-November (2010), in average, nitrate-N losses through subsurface drainage amounted to 24 kg ha-1 in "Akbarabad" and 18 kg ha-1 in "Azizbek". The salinity of drainage water at both sites was similar and varied between 2.3-2.7 dS m-1. Preliminary results of isotope signals of studied water (precipitation, drainage, irrigation and ground water) indicate that the source of drainage water runoff comes from the irrigation water, while the contribution of rainfall is negligible. It is planned to run simulations with DRAINMOD model for further investigation of water and N balances of the selected sites. Developed recommendations for farmers on optimum irrigation water amounts and N fertilization will allow reducing environmental risks in agricultural lands of the Fergana Valley.
Water quality in organic systems
USDA-ARS?s Scientific Manuscript database
Non-point source contamination is a major water quality concern in the upper Midwestern USA, where plant nutrients, especially NO3-N, are susceptible to leaching due to extensive subsurface draining of the highly productive, but poorly drained, soils found in this region. Environmental impacts assoc...
Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005
Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.
2009-01-01
The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and stable isotopes of hydrogen and oxygen. Water samples from all 36 wells were analyzed for dissolved-gas concentration including noble gases and tritium/helium-3. Within the basin fill, dissolved-solids concentration generally increases with distance along flowpaths from recharge areas, and shallower flowpaths tend to have higher concentrations than deeper flowpaths. Nitrate concentrations generally are at or below natural background levels. Dissolved-gas recharge temperature data support the conceptual model of the basin-fill aquifers and highlight complexities of recharge patterns in different parts of the valley. Dissolved-gas data indicate that the highest elevation recharge sources for the basin-fill aquifer are subsurface inflow derived from recharge in the adjacent mountain block between the mouths of American Fork and Provo Canyons. Apparent ground-water ages in the basin-fill aquifer, as calculated using tritium/helium-3 data, range from 2 to more than 50 years. The youngest waters in the valley occur near the mountain fronts with apparent ages generally increasing near the valley lowlands and discharge area around Utah Lake. Flowpaths are controlled by aquifer properties and the location of the predominant recharge sources, including subsurface inflow and recharge along the mountain front. Subsurface inflow is distributed over a larger area across the interface of the subsurface mountain block and basin-fill deposits. Subsurface inflow occurs at a depth deeper than that at which mountain-front recharge occurs. Recharge along the mountain front is often localized and focused over areas where streams and creeks enter the valley, and recharge is enhanced by the associated irrigation canals.
NASA Astrophysics Data System (ADS)
CUI, W.; Chui, T. F. M.
2016-12-01
Subsurface lateral water and energy exchanges are often ignored in methods involving a surface energy balance under the homogeneity assumption, which may affect the estimation of evapotranspiration over a heterogeneous surface. Wetlands, however, are heterogeneous with vegetated areas and open water, making it difficult to accurately measure and estimate evapotranspiration. This study estimated the subsurface lateral energy exchange between the reed bed and shallow open water of a wetland within Mai Po Nature Reserve in Hong Kong, and further discussed its relative importance to the ground heat flux and energy balance over the wetland surface. An array of water level and temperature sensors were installed in the reed bed and the adjacent water, together with an eddy covariance system. The results suggested that the lateral energy exchange was over 30% of ground heat flux for half of the monitoring period, and should therefore be accounted for during the measurement of ground heat flux. However, the lateral energy exchange could not explain the energy balance disclosure at the site, as the variation was in phase with the residual of energy budget during the summer but was out of phase during the winter. Furthermore, this study developed a convolution model to estimate the lateral energy exchange based on air temperature which is readily available at many sites worldwide. This study overall enhanced our understanding of the subsurface lateral energy exchange, and possibly our estimation of evapotranspiration in heterogeneous environment.
EVALUATION OF A MATRIX INTERFERENCE IN GROUND WATER ARSENIC MEASUREMENT BY ICP-OES
Arsenic enters ground water systems by either the weathering of naturally occurring subsurface materials or human activities such as mining and pesticide manufacturing. The current EPA drinking water limit for arsenic is set at 50 ug/L, with the reduction to 10 ug/L in 2006. The...
Bopp, L; Resplandy, L; Untersee, A; Le Mezo, P; Kageyama, M
2017-09-13
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O 2sat ) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O 2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O 2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Bopp, L.; Resplandy, L.; Untersee, A.; Le Mezo, P.; Kageyama, M.
2017-08-01
All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2015-04-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.
Open inlet conversion: Water quality benefits of two designs
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentr...
Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.
2000-01-01
Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.
Water resources of the Cook Inlet Basin, Alaska
Freethey, Geoffrey W.; Scully, David R.
1980-01-01
Ground-water and surface-water systems of Cook Inlet basin, Alaska, are analyzed. Geologic and topographic features that control the movement and regional availability of ground water are explained and illustrated. Five aquifer systems beneath the most populous areas are described. Estimates of ground-water yield were determined for the region by using ground-water data for the populated areas and by extrapolating known subsurface conditions and interpreting subsurface conditions from surficial features in the other areas. Area maps of generalized geology, Quaternary sediment thickness, and general availability of ground water are shown. Surface-water resources are summarized by describing how basin characteristics affect the discharge in streams. Seasonal trend of streamflow for three types of streams is described. Regression equations for 4 streamflow characteristics (annual, monthly minimum, and maximum discharge) were obtained by using gaging station streamflow characteristics and 10 basin characteristics. In the 24 regression equations presented, drainage area is the most significant basin characteristic, but 5 others are used. Maps of mean annual unit runoff and minimum unit yield for 7 consecutive days with a recurrence interval of 10 years are shown. Historic discharge data at gaging stations is tabulated and representative low-flow and flood-flow frequency curves are shown. (USGS)
The role of permafrost and seasonal frost in the hydrology of northern wetlands in North America
Woo, M.-K.; Winter, Thomas C.
1993-01-01
Wetlands are a common landscape feature in the Arctic, Subarctic, and north Temperate zones of North America. In all three-zones, the occurrnce of seasonal frost results in similar surface-water processes in the early spring. For example, surface ice and snow generally melt before the soil frost thaws, causing melt water to flow into depressions, over the land surface and at times, across low topographic divides. However, evapotranspiration and ground-water movement differ among the three climatic zones because they are more affected by permafrost than seasonal frost. The water source for plants in the Arctic is restricted to the small volume of subsurface water lying above the permafrost. Although this is also true in the Subarctic where permafrost exists, where it does not, plants may receive and possibly reflect, more regional ground-water sources. Where permafrost exists, the interaction of wetlands with subsurface water is largely restricted to shallow local flow systems. But where permafrost is absent in parts of the Subarctic and all of the Temperature zone, wetlands may have a complex interaction with ground-water-flow systems of all magnitudes.
NASA Astrophysics Data System (ADS)
Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi
2015-04-01
Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2014-10-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used Mg / Ca-based temperatures of deep-dwelling (Neogloboquadrina pachyderma sinistral) planktonic foraminifera and paired Mg / Ca-δ18O measurements to estimate the subsurface temperatures and δ18O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and δ18O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to enhanced northward subsurface transport of subtropical waters during periods of AMOC reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Warm waters accumulated at subsurface would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the MIS3.
Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation
Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.
2015-01-01
This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations
Genome-to-Watershed Predictive Understanding of Terrestrial Environments
NASA Astrophysics Data System (ADS)
Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.
2014-12-01
Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and nitrogen cycling; geophysical identification of floodplain hotspots that are useful for model parameterization; and GEWaSC demonstration of how incorporation of identified microbial metabolic processes improves prediction of the larger system biogeochemical behavior.
NASA Astrophysics Data System (ADS)
Park, Y.-J.; Sudicky, E. A.; Brookfield, A. E.; Jones, J. P.
2011-12-01
Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study.
Zheng, Yucong; Wang, Xiaochang; Xiong, Jiaqing; Liu, Yongjun; Zhao, Yaqian
2014-04-01
A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger river in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface-and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m(3)/(m(2)·day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ± 4.5%, 93.4% ± 2.1%, 54.0% ± 6.3%, 53.9% ± 6.0% and 69.4% ± 4.6%, respectively, which brought about an effective improvement of the river water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Park, Y.-J.; Sudicky, E.A.; Brookfield, A.E.; Jones, J.P.
2011-01-01
Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Wei, X.; Bailey, R. T.
2017-12-01
Agricultural irrigated watersheds in semi-arid regions face challenges such as waterlogging, high soil salinity, reduced crop yield, and leaching of chemical species due to extreme shallow water tables resulting from long-term intensive irrigation. Hydrologic models can be used to evaluate the impact of land management practices on water yields and groundwater-surface water interactions in such regions. In this study, the newly developed SWAT-MODFLOW, a coupled surface/subsurface hydrologic model, is applied to a 950 km2 watershed in the Lower Arkansas River Valley (southeastern Colorado). The model accounts for the influence of canal diversions, irrigation applications, groundwater pumping, and earth canal seepage losses. The model provides a detailed description of surface and subsurface flow processes, thereby enabling detailed description of watershed processes such as runoff, infiltration, in-streamflow, three-dimensional groundwater flow in a heterogeneous aquifer system with sources and sinks (e.g. pumping, seepage to subsurface drains), and spatially-variable surface and groundwater exchange. The model was calibrated and tested against stream discharge from 5 stream gauges in the Arkansas River and its tributaries, groundwater levels from 70 observation wells, and evapotranspiration (ET) data estimated from satellite (ReSET) data during the 1999 to 2007 period. Since the water-use patterns within the study area are typical of many other irrigated river valleys in the United States and elsewhere, this modeling approach is transferable to other regions.
Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.
2014-01-01
Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near-surface geology and hydrology of the study area. The geophysical data are consistent between surveys using different techniques and between surveys carried out at different times from 2007 through 2011. This paper summarizes geophysical results from the 4-year monitoring study of the SDI system.
USDA-ARS?s Scientific Manuscript database
Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...
NASA Astrophysics Data System (ADS)
Chiu, C.; Bowling, L. C.
2011-12-01
The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.
Cotton production as affected by irrigation level and transitioning tillage systems
USDA-ARS?s Scientific Manuscript database
Identifying management practices that conserve and protect water resources are very important to a wide variety of stakeholders within semi-arid environments. The objective of this research was to develop conservation tillage and water management strategies that enhance lint yields in subsurface dri...
Hydrology and Water Quality from Managed Turf
USDA-ARS?s Scientific Manuscript database
Quantification of nutrient and pesticide losses from managed turf systems (golf courses) is scant. A study was initiated at Northland Country Club in Duluth, MN, in 2003 to quantify nutrient and pesticide losses in surface and subsurface discharge waters. Based on the four years of data collected at...
A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...
Remote sensing of subsurface water temperature by Raman scattering.
Leonard, D A; Caputo, B; Hoge, F E
1979-06-01
The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the Mars Polar Lander is prepared to receive a number of microprobes being added to the spacecraft. Scheduled to be launched on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
Thermal Impact of Medium Deep Borehole Thermal Energy Storage on the Shallow Subsurface
NASA Astrophysics Data System (ADS)
Welsch, Bastian; Schulte, Daniel O.; Rühaak, Wolfram; Bär, Kristian; Sass, Ingo
2017-04-01
Borehole heat exchanger arrays are a well-suited and already widely applied method for exploiting the shallow subsurface as seasonal heat storage. However, in most of the populated regions the shallow subsurface also comprises an important aquifer system used for drinking water production. Thus, the operation of shallow geothermal heat storage systems leads to a significant increase in groundwater temperatures in the proximity of the borehole heat exchanger array. The magnitude of the impact on groundwater quality and microbiology associated with this temperature rise is controversially discussed. Nevertheless, the protection of shallow groundwater resources has priority. Accordingly, water authorities often follow restrictive permission policies for building such storage systems. An alternative approach to avoid this issue is the application of medium deep borehole heat exchanger arrays instead of shallow ones. The thermal impact on shallow aquifers can be significantly reduced as heat is stored at larger depth. Moreover, it can be further diminished by the installation of a thermally insulating materials in the upper section of the borehole heat exchangers. Based on a numerical simulation study, the advantageous effects of medium deep borehole thermal energy storage are demonstrated and quantified. A finite element software is used to model the heat transport in the subsurface in 3D, while the heat transport in the borehole heat exchangers is solved analytically in 1D. For this purpose, an extended analytical solution is implemented, which also allows for the consideration of a thermally insulating borehole section.
NASA Astrophysics Data System (ADS)
Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong
2018-04-01
In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.
2017-12-01
The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving predictions of environmental and human impacts on water quality and riverine ecosystems, and supporting environmentally responsible management of linked energy-water systems.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.
Sorption of pathogens during sub-surface drip irrigation with wastewater
NASA Astrophysics Data System (ADS)
Levi, Laillach; Gillerman Gillerman, Leonid; Kalavrouziotis, Ioannis; Oron, Gideon
2017-04-01
Water scarcity continues to be one of the major threats to human survival in many regions worldwide, such as Africa, the Mediterranean Basin, the State of California in the US. Due to a mixture of factors such as population growth, reduction in water resources availability and higher demand for high quality waters in these regions these countries face water shortage issues that stem from overuse, extensive extraction of groundwater, and frequent drought events. In addition, there are increases in environmental and health awareness that have led to intensive efforts in the treatment and reuse of nonconventional water sources, mainly wastewater and greywater. One approach to water shortages issues is to use wastewater as means to close the gap between supply and demand. However, the need to treat wastewater and to disinfect it forces additional economic burden on the users, primarily for agricultural irrigation. A possible solution might be to use the soil as a sorbent for the contained pathogens. Under sub-surface drip irrigation, not allowing the wastewater to reach the soil surface, the pathogens will remain in the soil. It was as well shown in field experiments that the opening size of roots will not allow pathogens to penetrate into the plants. Additional advantages such as water saving, protection of the pipe systems and others are also important. Field experiments in commercial fields just emphasize the main advantages of sub-surface drip irrigation.
Self-accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel
NASA Astrophysics Data System (ADS)
Avni, Yoav; Lensky, Nadav; Dente, Elad; Shviro, Maayan; Arav, Reuma; Gavrieli, Ittai; Yechieli, Yoseph; Abelson, Meir; Lutzky, Hallel; Filin, Sagi; Haviv, Itai; Baer, Gidon
2016-01-01
We document and analyze the rapid development of a real-time karst system within the subsurface salt layers of the Ze'elim Fan, Dead Sea, Israel by a multidisciplinary study that combines interferometric synthetic aperture radar and light detection and ranging measurements, sinkhole mapping, time-lapse camera monitoring, groundwater level measurements and chemical and isotopic analyses of surface runoff and groundwater. The >1 m/yr drop of Dead Sea water level and the subsequent change in the adjacent groundwater system since the 1960s resulted in flushing of the coastal aquifer by fresh groundwater, subsurface salt dissolution, gradual land subsidence and formation of sinkholes. Since 2010 this process accelerated dramatically as flash floods at the Ze'elim Fan were drained by newly formed sinkholes. During and immediately after these flood events the dissolution rates of the subsurface salt layer increased dramatically, the overlying ground surface subsided, a large number of sinkholes developed over short time periods (hours to days), and salt-saturated water resurged downstream. Groundwater flow velocities increased by more than 2 orders of magnitudes compared to previously measured velocities along the Dead Sea. The process is self-accelerating as salt dissolution enhances subsidence and sinkhole formation, which in turn increase the ponding areas of flood water and generate additional draining conduits to the subsurface. The rapid terrain response is predominantly due to the highly soluble salt. It is enhanced by the shallow depth of the salt layer, the low competence of the newly exposed unconsolidated overburden and the moderate topographic gradients of the Ze'elim Fan.
NASA Astrophysics Data System (ADS)
Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.
2017-12-01
Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.
Measuring Subsurface Water Fluxes Using a Heat Pulse Sensor
NASA Astrophysics Data System (ADS)
Ochsner, T. E.; Wang, Q.; Horton, R.
2001-12-01
Subsurface water flux is an important parameter in studies of runoff, infiltration, groundwater recharge, and subsurface chemical transport. Heat pulse sensors have been proposed as promising tools for measuring subsurface water fluxes. Our heat pulse probe consists of three 4-cm stainless-steel needles embedded in a waterproof epoxy body. The needles contain resistance heaters and thermocouples. The probes are connected to an external datalogger and power supply and then installed in soil. To measure the water flux, a 15-s heat pulse is generated at the middle needle using the power supply and the resistance heater, and the temperature increases at the needles 6-mm upstream and downstream from the heater are recorded using the thermocouples and datalogger. To date, heat pulse methods have required cumbersome mathematical analysis to calculate soil water flux from this measured data. We present a new mathematical analysis showing that a simple relationship exists between water flux and the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the line heat source. The simplicity of this relationship makes heat pulse sensors a more attractive option for measuring subsurface water fluxes.
Evaluating rice cultivars using subsurface drip irrigation (SDI)
USDA-ARS?s Scientific Manuscript database
Nearly 2.6 million acres of rice in the USA are produced using a flooded paddy system. However due to depletion of ground water, climate patterns that have resulted in reduced precipitation, and increasing competition with urban areas for water resources, the future of rice production in parts of th...
SDI increases water use efficiency of grain crops in the Southern High Plains
USDA-ARS?s Scientific Manuscript database
In the semi-arid Southern High Plains, nearly all irrigation water is derived from the declining High Plains (Ogallala) aquifer. As well capacities likewise decline, one tactic for continued irrigation is to install subsurface drip irrigation (SDI) systems with zones sized to accommodate the limited...
Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake
USDA-ARS?s Scientific Manuscript database
Plants are known to adjust their root systems to adapt to changing subsurface water conditions. However, most current land surface models (LSMs) use a prescribed, static root profile, which cuts off the interactions between soil moisture and root dynamics. In this paper, we implemented an optimality...
NASA Astrophysics Data System (ADS)
Tijerina, D.; Gochis, D.; Condon, L. E.; Maxwell, R. M.
2017-12-01
Development of integrated hydrology modeling systems that couple atmospheric, land surface, and subsurface flow is growing trend in hydrologic modeling. Using an integrated modeling framework, subsurface hydrologic processes, such as lateral flow and soil moisture redistribution, are represented in a single cohesive framework with surface processes like overland flow and evapotranspiration. There is a need for these more intricate models in comprehensive hydrologic forecasting and water management over large spatial areas, specifically the Continental US (CONUS). Currently, two high-resolution, coupled hydrologic modeling applications have been developed for this domain: CONUS-ParFlow built using the integrated hydrologic model ParFlow and the National Water Model that uses the NCAR Weather Research and Forecasting hydrological extension package (WRF-Hydro). Both ParFlow and WRF-Hydro include land surface models, overland flow, and take advantage of parallelization and high-performance computing (HPC) capabilities; however, they have different approaches to overland subsurface flow and groundwater-surface water interactions. Accurately representing large domains remains a challenge considering the difficult task of representing complex hydrologic processes, computational expense, and extensive data needs; both models have accomplished this, but have differences in approach and continue to be difficult to validate. A further exploration of effective methodology to accurately represent large-scale hydrology with integrated models is needed to advance this growing field. Here we compare the outputs of CONUS-ParFlow and the National Water Model to each other and with observations to study the performance of hyper-resolution models over large domains. Models were compared over a range of scales for major watersheds within the CONUS with a specific focus on the Mississippi, Ohio, and Colorado River basins. We use a novel set of approaches and analysis for this comparison to better understand differences in process and bias. This intercomparison is a step toward better understanding how much water we have and interactions between surface and subsurface. Our goal is to advance our understanding and simulation of the hydrologic system and ultimately improve hydrologic forecasts.
Athapattu, B C L; Thalgaspitiya, T W L R; Yasaratne, U L S; Vithanage, Meththika
2017-12-01
The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20-85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K + , Ca +2 , Mg +2 , etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.
NASA Astrophysics Data System (ADS)
Zhen, Xing-wei; Huang, Yi
2017-10-01
This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.
NASA Astrophysics Data System (ADS)
Wilson, Jack T.; Eke, Vincent R.; Massey, Richard J.; Elphic, Richard C.; Feldman, William C.; Maurice, Sylvestre; Teodoro, Luís F. A.
2018-01-01
We present a map of the near subsurface hydrogen distribution on Mars, based on epithermal neutron data from the Mars Odyssey Neutron Spectrometer. The map's spatial resolution is approximately improved two-fold via a new form of the pixon image reconstruction technique. We discover hydrogen-rich mineralogy far from the poles, including ∼10 wt.% water equivalent hydrogen (WEH) on the flanks of the Tharsis Montes and >40 wt.% WEH at the Medusae Fossae Formation (MFF). The high WEH abundance at the MFF implies the presence of bulk water ice. This supports the hypothesis of recent periods of high orbital obliquity during which water ice was stable on the surface. We find the young undivided channel system material in southern Elysium Planitia to be distinct from its surroundings and exceptionally dry; there is no evidence of hydration at the location in Elysium Planitia suggested to contain a buried water ice sea. Finally, we find that the sites of recurring slope lineae (RSL) do not correlate with subsurface hydration. This implies that RSL are not fed by large, near-subsurface aquifers, but are instead the result of either small ( < 120 km diameter) aquifers, deliquescence of perchlorate and chlorate salts or dry, granular flows.
Wells for In Situ Extraction of Volatiles from Regolith (WIEVR)
NASA Technical Reports Server (NTRS)
Walton, Otis R.
2013-01-01
A document discusses WIEVRs, a means to extract water ice more efficiently than previous approaches. This water may exist in subsurface deposits on the Moon, in many NEOs (Near- Earth Objects), and on Mars. The WIEVR approach utilizes heat from the Sun to vaporize subsurface ice; the water (or other volatile) vapor is transported to a surface collection vessel where it is condensed (and collected). The method does not involve mining and extracting regolith before removing the frozen volatiles, so it uses less energy and is less costly than approaches that require mining of regolith. The only drilling required for establishing the WIEVR collection/recovery system is a well-bore drill hole. In its simplest form, the WIEVRs will function without pumps, compressors, or other gas-moving equipment, relying instead on diffusive transport and thermally induced convection of the vaporized volatiles for transport to the collection location(s). These volatile extraction wells could represent a significant advance in extraction efficiency for recovery of frozen volatiles in subsurface deposits on the Moon, Mars, or other extraterrestrial bodies.
Underground Habitats in the Río Tinto Basin: A Model for Subsurface Life Habitats on Mars
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Gómez, Felipe; Amils, Ricardo; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g. , pO2, pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO2, CH4, and H2. SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.
Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars.
Fernández-Remolar, David C; Prieto-Ballesteros, Olga; Rodríguez, Nuria; Gómez, Felipe; Amils, Ricardo; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
A search for evidence of cryptic life in the subsurface region of a fractured Paleozoic volcanosedimentary deposit near the source waters of the Río Tinto River (Iberian pyrite belt, southwest Spain) was carried out by Mars Astrobiology Research and Technology Experiment (MARTE) project investigators in 2003 and 2004. This conventional deep-drilling experiment is referred to as the MARTE ground truth drilling project. Boreholes were drilled at three sites, and samples from extracted cores were analyzed with light microscopy, scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy. Core leachates were analyzed with ion chromatography, and borehole fluids were analyzed with ion and gas chromatography. Key variables of the groundwater system (e.g., pO(2), pH, and salinity) exhibit huge ranges probably due to surficial oxygenation of overall reducing waters, physical mixing of waters, and biologically mediated water-rock interactions. Mineral distribution is mainly driven by the pH of subsurface solutions, which range from highly acidic to neutral. Borehole fluids contain dissolved gases such as CO(2), CH(4), and H(2). SEM-EDS analyses of core samples revealed evidence of microbes attacking pyrite. The Río Tinto alteration mechanisms may be similar to subsurface weathering of the martian crust and provide insights into the possible (bio)geochemical cycles that may have accompanied underground habitats in extensive early Mars volcanic regions and associated sulfide ores.
Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah.
Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.
1996-01-01
Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate the steady-state conditions of 1949, multi-year transient-state conditions during 1949-92, and seasonal transient-state conditions during 1992-94. Calibration parameters were adjusted until model-computed water levels reasonably matched measured water levels. Parameters important to the calibration process include horizontal hydraulic conductivity, transmissivity, and the spatial distribution and amount of recharge from subsurface inflow and seepage from ephemeral streams to the east side of Juab Valley.
BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS
The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...
NASA Astrophysics Data System (ADS)
Ameli, Ali; McDonnell, Jeffrey; Laudon, Hjalmar; Bishop, Kevin
2017-04-01
The stable isotopes of water have served science well as hydrological tracers which have demonstrated that there is often a large component of "old" water in stream runoff. It has been more problematic to define the full transit time distribution of that stream water. Non-linear mixing of previous precipitation signals that is stored for extended periods and slowly travel through the subsurface before reaching the stream results in a large range of possible transit times. It difficult to find tracers can represent this, especially if all that one has is data on the precipitation input and the stream runoff. In this paper, we explicitly characterize this "old water" displacement using a novel quasi-steady physically-based flow and transport model in the well-studied S-Transect hillslope in Sweden where the concentration of hydrological tracers in the subsurface and stream has been measured. We explore how subsurface conductivity profile impacts the characteristics of old water displacement, and then test these scenarios against the observed dynamics of conservative hydrological tracers in both the stream and subsurface. This work explores the efficiency of convolution-based approaches in the estimation of stream "young water" fraction and time-variant mean transit times. We also suggest how celerity and velocity differ with landscape structure
Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B
2013-07-01
Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.
Holocene evolution of the North Atlantic subsurface transport
NASA Astrophysics Data System (ADS)
Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph
2017-04-01
Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.
Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.
Morari, F; Lugato, E; Borin, M
2003-01-01
An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.
Illinois drainage water management demonstration project
Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,
2004-01-01
Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary monitoring results, and other observations.
Subsurface injection of liquid waste in Florida, United States of America
Vecchioli, John
1981-01-01
In 1979, liquid waste was injected into the subsurface of Florida by 10 injection systems at an aggregate average rate of 165,000 m3/d. All the systems inject into carbonate rocks that contain salty water. Extensive precautions are taken in the construction of the injection wells and in the monitoring of their operation to provide assurance that overlying and laterally contiguous freshwater resources do not become contaminated with either the injected waste or the saltwater displaced by the waste. Several concerns relating to the effectiveness of the confining bed above the injection zone for containing the injected wastes have arisen over the years. These concerns accentuate the value of a well-planned and implemented monitoring program from which one can evaluate the potential impact of waste injection on the subsurface environment.
Water security and services in the ocean-aquifer system
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2011-12-01
Coastal vulnerability and water security are both important research subjects on global environmental problems under the pressures of changing climate and societies. A six years research project by RIHN on the coastal subsurface environments in seven Asia cities revealed that subsurface environmental problems including saltwater intrusion, groundwater contamination and subsurface thermal anomalies occurred one after another depending on the development stage of the cities during the last 100 years. Exchanges of water between ocean and aquifer in the coastal cities depend on driving force from land of natural resources capacities such as groundwater recharge rate, and social changes such as excessive groundwater pumping due to industrialization. Risk assessments and managements for aquifers which are parts of water security have been made for seven Asian coastal cities. On the other hand, submarine groundwater discharge (SGD) into the ocean provides water services directly to the coastal ecosystem through nutrient transports from land to the ocean. Constant geophysical and geochemical conditions served by SGD provide sustainable services to the coastal environment. Flora and fauna which prefer brackish water in the coastal zone depend on not only river water discharge but also SGD. Ocean -aquifer interaction can be found in the coastal ecosystem including sea shell, sea grass and fishes in the coastal zone though SGD. In order to evaluate a coastal security and sustainable environment, not only risk assessments due to disasters but also water services are important, and the both are evaluated in Asian coastal zones.
40 CFR 264.221 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the... the attenuative capacity and thickness of the liners and soils present between the impoundment and...
40 CFR 264.221 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the... the attenuative capacity and thickness of the liners and soils present between the impoundment and...
40 CFR 264.221 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the... the attenuative capacity and thickness of the liners and soils present between the impoundment and...
NASA Astrophysics Data System (ADS)
Klos, P. Z.; Goulden, M.; Riebe, C. S.; Tague, C.; O'Geen, A. T.; Flinchum, B. A.; Safeeq, M.; Conklin, M. H.; Hart, S. C.; Asefaw Berhe, A.; Hartsough, P. C.; Holbrook, S.; Bales, R. C.
2017-12-01
Enhanced understanding of subsurface water storage, and the below-ground architecture and processes that create it, will advance our ability to predict how the impacts of climate change - including drought, forest mortality, wildland fire, and strained water security - will take form in the decades to come. Previous research has examined the importance of plant-accessible water in soil, but in upland landscapes within Mediterranean climates the soil is often only the upper extent of subsurface water storage. We draw insights from both this previous research and a case study of the Southern Sierra Critical Zone Observatory to: define attributes of subsurface storage, review observed patterns in its distribution, highlight nested methods for its estimation across scales, and showcase the fundamental processes controlling its formation. We observe that forest ecosystems at our sites subsist on lasting plant-accessible stores of subsurface water during the summer dry period and during multi-year droughts. This indicates that trees in these forest ecosystems are rooted deeply in the weathered, highly porous saprolite, which reaches up to 10-20 m beneath the surface. This confirms the importance of large volumes of subsurface water in supporting ecosystem resistance to climate and landscape change across a range of spatiotemporal scales. This research enhances the ability to predict the extent of deep subsurface storage across landscapes; aiding in the advancement of both critical zone science and the management of natural resources emanating from similar mountain ecosystems worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhi; Zhang, Mingli; Ma, Wei
Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less
Geophysical characterisation of the groundwater-surface water interface
NASA Astrophysics Data System (ADS)
McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.
2017-11-01
Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.
APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER
Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requ...
Stottlemyer, R.; Troendle, C.A.
1999-01-01
Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca2+ flux at shallow depths increased from 5 to 12%, SO42- 5.4 to 12%, HCO3- from 5.6 to 8.7%, K+ from 6 to 35%, and NO3- from 2.7 to 17%. The increases in Ca2+ and SO42- flux were proportional to the increase in water flux, the flux of HCO3- increased proportionally less than water flux, and NO3- and K+ were proportionally greater than water flux. Increased subsurface flow accounted for most of the increase in non-limiting nutrient loss. For limiting nutrients, loss of plant uptake and increased shallow subsurface flow accounted for the greater loss. Seasonal ion concentration patterns in streamwater and subsurface flow were similar.Research on the effects of vegetation manipulation on snowpack, soil water, and streamwater chemistry and flux has been underway at the Fraser Experimental Forest (FEF), CO, since 1982. Greater than 95% of FEF snowmelt passes through watersheds as subsurface flow where soil processes significantly alter meltwater chemistry. To better understand the mechanisms accounting for annual variation in watershed streamwater ion concentration and flux with snowmelt, we studied subsurface water flow, its ion concentration, and flux in conterminous forested and clear cut plots. Repetitive patterns in subsurface flow and chemistry were apparent. Control plot subsurface flow chemistry had the highest ion concentrations in late winter and fall. When shallow subsurface flow occurred, its Ca2+, SO42-, and HCO3- concentrations were lower and K+ higher than deep flow. The percentage of Ca2+, NO3-, SO42-, and HCO3- flux in shallow depths was less and K+ slightly greater than the percentage of total flow. Canopy removal increased precipitation reaching the forest floor by about 40%, increased peak snowpack water equivalent (SWE) > 35%, increased the average snowpack Ca2+, NO3-, and NH4+ content, reduced the snowpack K+ content, and increased the runoff four-fold. Clear cutting doubled the percentage of subsurface flow at shallow depths, and increased K+ concentration in shallow subsurface flow and NO3- concentrations in both shallow and deep flow. The percentage change in total Ca2+, SO42-, and HCO3- flux in shallow depths was less than the change in water flux, while that of K+ and NO3- flux was greater. Relative to the control, in the clear cut the percentage of total Ca
Localized rapid warming of West Antarctic subsurface waters by remote winds
NASA Astrophysics Data System (ADS)
Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.
2017-08-01
The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.
The effect of soil heterogeneity on ATES performance
NASA Astrophysics Data System (ADS)
Sommer, W.; Rijnaarts, H.; Grotenhuis, T.; van Gaans, P.
2012-04-01
Due to an increasing demand for sustainable energy, application of Aquifer Thermal Energy Storage (ATES) is growing rapidly. Large-scale application of ATES is limited by the space that is available in the subsurface. Especially in urban areas, suboptimal performance is expected due to thermal interference between individual wells of a single system, or interference with other ATES systems or groundwater abstractions. To avoid thermal interference there are guidelines on well spacing. However, these guidelines, and also design calculations, are based on the assumption of a homogeneous subsurface, while studies report a standard deviation in logpermeability of 1 to 2 for unconsolidated aquifers (Gelhar, 1993). Such heterogeneity may create preferential pathways, reducing ATES performance due to increased advective heat loss or interference between ATES wells. The role of hydraulic heterogeneity of the subsurface related to ATES performance has received little attention in literature. Previous research shows that even small amounts of heterogeneity can result in considerable uncertainty in the distribution of thermal energy in the subsurface and an increased radius of influence (Ferguson, 2007). This is supported by subsurface temperature measurements around ATES wells, which suggest heterogeneity gives rise to preferential pathways and short-circuiting between ATES wells (Bridger and Allen, 2010). Using 3-dimensional stochastic heat transport modeling, we quantified the influence of heterogeneity on the performance of a doublet well energy storage system. The following key parameters are varied to study their influence on thermal recovery and thermal balance: 1) regional flow velocity, 2) distance between wells and 3) characteristics of the heterogeneity. Results show that heterogeneity at the scale of a doublet ATES system introduces an uncertainty up to 18% in expected thermal recovery. The uncertainty increases with decreasing distance between ATES wells. The uncertainty in the thermal balance ratio related to heterogeneity is limited (smaller than 3%). If thermal interference should be avoided, wells in heterogeneous aquifers should be placed further apart than in homogeneous aquifers, leading to larger volume claim in the subsurface. By relating the number of ATES systems in an area to their expected performance, these results can be used to optimize regional application of ATES. Bridger, D. W. and D. M. Allen (2010). "Heat transport simulations in a heterogeneous aquifer used for aquifer thermal energy storage (ATES)." Canadian Geotechnical Journal 47(1): 96-115. Ferguson, G. (2007). "Heterogeneity and thermal modeling of ground water." Ground Water 45(4): 485-490. Gelhar, L. W. (1993). Stochastic Subsurface Hydrology, Prentice Hall.
4-D Model of CO2 Deposition at North and South of Mars from HEND/Odyssey and MOLA/MGS
NASA Technical Reports Server (NTRS)
Litvak, M. L.; Mitrofanov, I. G.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V.; Smith, D. E.; Zuber, M. T.; Boynton, W. V.; Hamara, D. K.; Shinohara, C.
2003-01-01
The first 1.5 year of neutron mapping measurements onboard Mars Odyssey spacecraft are presented based on High Energy Neutron Detector (HEND) observations. HEND instrument is a part of GRS suite responsible for registration of epithermal and fast neutrons originating in Mars subsurface layer. The scattering of fast neutrons in Mars surface caused by primary cosmic rays is strongly sensitive to presence of hydrogen atoms. Even several percents of subsurface water significantly depress epithermal and fast neutron flux. It turns orbit neutron spectroscopy into one of most efficient methods for finding distribution of subsurface water. The Mars Odyssey observations revealed huge water- ice regions above 60N and 60S latitudes. It was founded that distribution of subsurface water has layered structure at these regions. It is thought that more than 50% wt water ice covered by relatively dry layer with different thickness.
NASA Astrophysics Data System (ADS)
Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.
2014-12-01
Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.
Continual in situ monitoring of pore water stable isotopes in the subsurface
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Weiler, M.
2014-05-01
Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.
Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water
USDA-ARS?s Scientific Manuscript database
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...
USDA-ARS?s Scientific Manuscript database
The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...
USDA-ARS?s Scientific Manuscript database
Locating buried agricultural drainage pipes is a difficult problem confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal ...
NASA Astrophysics Data System (ADS)
Emelko, M.; Stimson, J. R.; McLellan, N. L.; Mesquita, M.
2009-12-01
Prediction of the transport and fate of colloids and nanoparticles in porous media environments remains challenging because factors such as experimental scale, subsurface heterogeneity, and variable flow paths and fluxes have made it difficult to relate laboratory outcomes to field performance. Moreover, field studies have been plagued with inadequate consideration of ground water flow, reliance on unproven “surrogate” parameters, non-detects at the extraction well, and limited sampling. Riverbank filtration (RBF) is an example of an application for which some predictive capacity regarding colloid transport is desirable. RBF is a relatively low-cost, natural water treatment technology in which surface water contaminants are removed or degraded as the infiltrating water flows from a surface source to abstraction wells. RBF has been used for water treatment for at least 200 years and its potential to provide a significant barrier to microorganisms has been demonstrated. Assignment of microbial treatment credits for RBF remains a regulatory challenge because strategies for demonstrating effective subsurface filtration of organisms are not standardized. The potential passage of Giardia lamblia and Cryptosporidium parvum through RBF systems is of particular regulatory concern because these pathogens are known to be resistant to conventional disinfection processes. The transport or relatively small, pathogenic viruses through RBF systems is also a common concern. To comply with the U.S. Long Term 2 Enhanced Surface Water Treatment Rule, utilities with sufficiently high levels of Cryptosporidium oocysts in their source water must amend existing treatment by choosing from a ‘‘toolbox’’ of technologies, including RBF. Aerobic bacterial spores have been evaluated and proposed by some as surrogates for evaluating drinking water treatment plant performance; they also have been proposed as potential surrogates for Cryptosporidium removal during subsurface filtration processes such as RBF. Here, duplicate column studies were conducted to evaluate the transport of nano- and micro-sized polystyrene micropsheres, aerobic spores of Bacillus subtilis, PR772 bacteriophage, and pathogenic Salmonella typhimurium bacteria in a well-sorted fine sand (d 50 = 0.6 mm). A field validation experiment investigating transport of 1.5 µm polystyrene micropsheres and aerobic spores in and RBF system comprised of unconsolidated silty sand, gravel, and boulders was conducted. The column studies demonstrated that the presence of the aerobic spores resulted in increased removal of 4.5 µm microspheres from< 2 log to ~4 log, and 1.5 µm microsphere removal from <0.5 log to ~1 log removal. Microscopic examination of the samples also revealed extensive clumping of microspheres and microorganisms during the experiments conducted with aerobic spores. A field trial during which microspheres and spores of B. subtilis were injected into the subsurface provided corroborating evidence of a co-transport effect of aerobic spores by demonstrating ~1.6 log increase in 1.5 µm microsphere removal in the presence of aerobic spores.
NASA Technical Reports Server (NTRS)
1989-01-01
Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.
40 CFR 264.221 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... subsurface soil or ground water or surface water at any time during the active life (including the closure... into the liner (but not into the adjacent subsurface soil or ground water or surface water) during the..., climatic conditions, the stress of installation, and the stress of daily operation; (2) Placed upon a...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the waste pile. The liner may... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface water at any time during the active life (including the closure period) of the waste pile. The liner may... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
40 CFR 264.251 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... any migration of wastes out of the pile into the adjacent subsurface soil or ground water or surface... adjacent subsurface soil or ground water or surface water) during the active life of the facility. The... attenuative capacity and thickness of the liners and soils present between the pile and ground water or...
Dissolved Organic Matter in Groundwater: a Shadow of its Former Self
NASA Astrophysics Data System (ADS)
Chapelle, F.
2017-12-01
The occurrence and dynamics of dissolved organic matter (DOM) are fundamentally different between ground- and surface water systems. The most obvious difference is that primary production, an important source of DOM to many surface waters, it is wholly absent from groundwater systems. Because of that, the composition and bioavailability of DOM is functionally linked to its residence time within the subsurface. While sorption/desorption processes segregate chemical fractions of DOM in both ground- and surface water systems, their effects are magnified by the much higher sediment/water mass ratio characteristic of groundwater systems. These differences, which often act in concert with each other, explain many observed characteristics of DOM in groundwater systems including (1) the low and nearly uniform DOM concentrations (0.5-1.0 mg/L) characteristic of many aquifers, (2) the progressive loss of carbohydrate and amino acid DOM and the enrichment of aromatic DOM, with increasing aquifer residence time (3) the progressive loss of VIS/UV absorption capacity (color) of DOM with increasing aquifer residence time, (4) the negative correlation between dissolved oxygen concentrations and DOM bioavailability, and (5) the positive correlation between DOM bioavailability and the final products of anoxic redox processes. Thus, while the principal sources of DOM to many groundwater systems are surface-derived, the dynamics unique to subsurface environments tend to render that DOM a shadow of its former self.
Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
Vienken, T; Schelenz, S; Rink, K; Dietrich, P
2015-01-01
Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.
2015-12-01
Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.
Enzymatic activity in the surface microlayer and subsurface water in the harbour channel
NASA Astrophysics Data System (ADS)
Perliński, Piotr; Mudryk, Zbigniew J.; Antonowicz, Józef
2017-09-01
Hydrolytic activity of eight extracellular enzymes was determined spectrofluorimetric method in the surface microlayer and subsurface water in the harbour channel in Ustka. The ranking order of the potential enzyme activity rates in the studied water layers was as follows: lipase > phosphatase > aminopeptidase > β-glucosidase > α-glucosidase > xylanase > cellulase > chitinase. The level of activity of all studied hydrolases was higher in the surface microlayer than subsurface water. No clear gradients in the level of enzymatic activity were determined along the horizontal profile of the studied channel. Activity of extracellular enzymes was strongly influenced by the season.
NASA Astrophysics Data System (ADS)
Ling, Zhen; Li, Jie
2018-03-01
Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.
NASA Astrophysics Data System (ADS)
Camporese, M.; Botto, A.
2017-12-01
Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows for direct integration of multisource observation data in modeling predictions and uncertainty reduction. For this reason, data assimilation has been recently the focus of much attention also for integrated surface-subsurface hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant. Here, the model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. We assimilate pressure head, soil moisture, and subsurface outflow with EnKF in a number of assimilation scenarios and discuss the challenges, issues, and tradeoffs arising from the assimilation of multisource data in a real-world test case, with particular focus on the capability of DA to update the subsurface parameters.
Is Europa's Subsurface Water Ocean Warm?
NASA Technical Reports Server (NTRS)
Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.
2002-01-01
Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.
Natural dissolved organic matter dynamics in karstic aquifer: O'Leno Sink-Rise system, Florida, USA
NASA Astrophysics Data System (ADS)
Jin, J.; Zimmerman, A. R.
2010-12-01
Natural dissolved organic matter (NDOM) dynamics in karstic aquifer remain poorly understood due to the inaccessibility and heterogeneity of the subsurface. Because the Santa Fe River sinks into the Floridan Aquifer and emerges 6 km down gradient, the O'Leno Sink-Rise system in Northern Florida provides an ideal setting to study NDOM transformation in groundwater. Water samples were collected at both high and low temporal resolutions over 3 years from the River Sink, Rise, and a series of shallow and deep wells. Analyses of dissolved organic and inorganic carbon, stable isotopic, and spectrophotometry (excitation-emission matrix or EEM) show that reversals of hydrologic head gradient in the conduit and matrix are closely related to the delivery of NDOM to the aquifer. In addition, the relative influence of biotic and abiotic processes varies along spatiotemporal gradients; regions of the aquifer with greatest connectivity to surface water (new NDOM and terminal electron acceptor supply) see the most microbial transformation of NDOM, while those with least connectivity see relatively greater abiotic transformation of NDOM. A source water mixing model was established for the Sink-Rise system using Mg2+ and SO42- concentrations from three end-members identified as allogenic recharge, upwelling deep water, and shallow groundwater of the Upper Floridan Aquifer. Biogeochemical processes were quantified after accounting for changes that occurred due to source water mixing, according to the model. In addition to NDOM remineralization by subsurface microbes which occurred mostly during wet periods, adsorption of NDOM onto aquifer materials as well as release of NDOM from aquifer materials was also observed. During wet periods when DOC-rich conduit water entered the matrix, progressive NDOM remineralization was found along the preferential flow paths from the conduits into the matrices. Both biotic and abiotic NDOM transformation processes were found to control channel dissolution and thus the subsurface geomorphology, all of which are linked to hydrology and climate patterns.
Hydrological responses to channelization and the formation of valley plugs and shoals
Pierce, Aaron R.; King, Sammy L.
2017-01-01
Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.
NASA Astrophysics Data System (ADS)
Chen, Yan; Yang, Gui-Peng; Wu, Guan-Wei; Gao, Xian-Chi; Xia, Qing-Yan
2013-01-01
A total of 19 sea-surface microlayer and corresponding subsurface samples collected from the Bohai Sea, China in April 2010 were analyzed for chlorophyll a, dissolved organic carbon (DOC) and its major compound classes including total dissolved carbohydrates (TDCHO, including monosaccharides, MCHO, and polysaccharides, PCHO) and total hydrolysable amino acids (THAA, including dissolved free, DFAA, and combined fraction, DCAA). The concentrations of DOC in the subsurface water ranged from 130.2 to 407.7 μM C, with an average of 225.9±75.4 μM C, while those in the surface microlayer varied between 140.1 and 330.9 μM C, with an average of 217.8±56.8 μM C. The concentrations of chlorophyll a, DOC, TDCHO and THAA in the microlayer were, respectively correlated with their subsurface water concentrations, implying that there was a strong exchange effect between the microlayer and subsurface water. The concentrations of DOC and TDCHO were negatively correlated with salinity, respectively, indicating that water mixing might play an important role in controlling the distribution of DOC and TDCHO in the water column. Major constituents of DCAA and DFAA present in the study area were glycine, alanine, glutamic acid, serine and histidine. Principal component analysis (PCA) was applied to examine the complex compositional differences that existed among the sampling sites. Our results showed that DFAA had higher mole percentages of glycine, valine and serine in the microlayer than in the subsurface water, while DCAA tended to have higher mole percentages of glutamic acid, aspartic acid, threonine, arginine, alanine, tyrosine, phenylalanine and leucine in the microlayer. The yields of TDCHO and THAA exhibited similar trends between the microlayer and subsurface water. Carbohydrate species displayed significant enrichment in the microlayer, whereas the DFAA and DCAA exhibited non-uniform enrichment in the microlayer.
NASA Astrophysics Data System (ADS)
Lizama, K.; Jaque, I.; Ayala, J.
2016-12-01
Arsenic is well known for its chronic toxicity. Millions of people around the world are currently at risk, drinking water with As concentrations above 10 ppb, the WHO drinking water guideline. Although different treatment options exist, they are often limited by elevated costs and maintenance requirements. Constructed wetlands are a natural water treatment system, capable to remove metals and metalloids -including As- via different physical, chemical and biological processes. The use of alternative supporting media to enhance As removal in subsurface flow wetlands has been recommended, but not sufficiently studied. Limestone and zeolite have been identified as effective supporting media in subsurface flow wetlands aiming As removal. However, there are still key aspects to be addressed, such as the implications of using these media, the speciation in the solid phase, the role of vegetation, etc. This study investigated the performance of limestone and zeolite in three types of experiments: batch, column and as main supporting media in a bench scale horizontal subsurface flow wetland system. Synthetic water resembling a contaminated river in Chile (As concentration=3 mg/L, Fe concentration= 100 mg/L, pH=2) was used in all experiments. In the batch experiments, the As concentration, the mass of media and the contact time were varied. The column system consisted of three limestone columns and three zeolite columns, operated under a hydraulic loading of 20 mm/d. The wetland system consisted of twelve PVC cells: six filled with zeolite and six with limestone. Phragmites australis were planted in three cells of each media type, as control cells. From the batch experiments, maximum As sorption capacities as indicated by Langmuir model were 1.3 mg/g for limestone and 0.17 mg/g for zeolite, at 18 h contact time and 6.3 g/L medium concentration. EDS and XPS analyses revealed that As and Fe were retained in zeolite at the end of the batch experiments. Zeolite and limestone columns presented As removal >99.5% on average. In the wetland system, As removal percentages were also similar between media types, regardless of the presence of vegetation: For limestone, removal percentages were 99.7% and 99.6%, for vegetated and non-vegetated cells respectively; whereas for zeolite, removal percentages were 99.8% and 99.7% respectively.
Wireless sensor network effectively controls center pivot irrigation of sorghum
USDA-ARS?s Scientific Manuscript database
Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...
Possible Habilability of Martian Regolity and Research of Ancient Life "Biomarkers"
NASA Astrophysics Data System (ADS)
Pavlov, A. K.
2017-05-01
We consider environments of modern subsurface martian regolith layer as possible habitats of the terrestrial like microorganisms. Recent experimental studies demonstrate that low atmospheric pressure, low temperature and high level of cosmic rays ionizing radiation are not able to sterilize the subsurface layer of Mars. Even nonextremofile microorganisms can reproduce in martian regolith using films of liquid water which are produced by absorption of water vapor of subsurface ice sublimation. Areas of possible seasonal subsurface water flow (recurring slope lineae, dark dune spots) and methane emission regions are discussed as perspective sites for discovering of modern life on Mars. Degradation of "biomarkers" (complex organic molecules and isotopic ratio 13C/12C) in martian soil under high level of cosmic rays radiation is analyzed. We show the ancient biomarkers are effectively destroyed within period 108 -109 years. As result, probability of its discovering in shallow subsurface martian layer is low.
Potential effects of alpha-recoil on uranium-series dating of calcrete
Neymark, L.A.
2011-01-01
Evaluation of paleosol ages in the vicinity of Yucca Mountain, Nevada, at the time the site of a proposed high-level nuclear waste repository, is important for fault-displacement hazard assessment. Uranium-series isotope data were obtained for surface and subsurface calcrete samples from trenches and boreholes in Midway Valley, Nevada, adjacent to Yucca Mountain. 230Th/U ages of 33 surface samples range from 1.3 to 423 thousand years (ka) and the back-calculated 234U/238U initial activity ratios (AR) are relatively constant with a mean value of 1.54 ± 0.15 (1σ), which is consistent with the closed-system behavior. Subsurface calcrete samples are too old to be dated by the 230Th/U method. U-Pb data for post-pedogenic botryoidal opal from a subsurface calcrete sample show that these subsurface calcrete samples are older than ~ 1.65 million years (Ma), old enough to have attained secular equilibrium had their U-Th systems remained closed. However, subsurface calcrete samples show U-series disequilibrium indicating open-system behavior of 238U daughter isotopes, in contrast with the surface calcrete, where open-system behavior is not evident. Data for 21 subsurface calcrete samples yielded calculable 234U/238U model ages ranging from 130 to 1875 ka (assuming an initial AR of 1.54 ± 0.15, the mean value calculated for the surface calcrete samples). A simple model describing continuous α-recoil loss predicts that the 234U/238U and 230Th/238U ARs reach steady-state values ~ 2 Ma after calcrete formation. Potential effects of open-system behavior on 230Th/U ages and initial 234U/238U ARs for younger surface calcrete were estimated using data for old subsurface calcrete samples with the 234U loss and assuming that the total time of water-rock interaction is the only difference between these soils. The difference between the conventional closed-system and open-system ages may exceed errors of the calculated conventional ages for samples older than ~ 250 ka, but is negligible for younger soils.
Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD
NASA Astrophysics Data System (ADS)
Saadat, S.; Bowling, L. C.; Frankenberger, J.
2017-12-01
Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), JPL workers prepare to mount a Mars microprobe onto the Mars Polar Lander. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (front) watches while Satish Krishnan (back) places a Mars microprobe on a workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Satish Krishnan (right) from the Jet Propulsion Laboratory places a Mars microprobe on a workstand. In the background, Chris Voorhees watches. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees (left) and Satish Krishnan (right), from the Jet Propulsion Laboratory, remove the second Mars microprobe from a drum. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), Chris Voorhees and Satish Krishnan from the Jet Propulsion Laboratory remove a microprobe which will hitchhike on the Mars Polar Lander. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker checks the Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), the two Mars microprobes are shown mounted on opposite sides of the Mars Polar Lander. The two microprobes and the lander are scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), two JPL workers measure a Mars microprobe. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-12
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), a JPL worker carries a Mars microprobe to the Mars Polar Lander at left. Two microprobes will hitchhike on the lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
Slimak, K M
1978-12-01
The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.
Puente, Celso; Atkins, John T.
1989-01-01
Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of the water budget for Drawdy Creek basin indicate that total annual runoff during 1972-73 averaged only 43 percent of average annual precipitation--the lowest of all study basins; annual evapotranspiration losses averaged 49 percent, and interbasin transfer of ground-water losses averaged about 8 percent. Of the total annual runoff, approximately 74 percent was surface and subsurface flow and 26 percent was ground-water discharge. The low total annual runoff at Drawdy Creek probably reflects increased recharge of precipitation and surface and subsurface flow losses to ground water. Most of the increase in ground-water storage is, in turn, lost to a ground-water sink--namely, interbasin transfer of ground water by gravity drainage and (or) mine pumpage from underground mines that extend to adjacent basins. Hypothetical mining situations were posed for model analysis to determine the effects of increased mining on streamflow in the mined basins. Results of model simulations indicate that streamflow characteristics, the water budget, and the seasonal distribution of streamflow would be significantly modified in response to an increase in mining in the basins. Simulations indicate that (1) total annual runoff in the basins would decrease because of increased surface- and subsurface-flow losses and increased recharge of precipitation to ground water (these losses would tend to reduce medium to high flows mainly during winter and spring when losses would be greatest), (2) extreme high flows in response to intense rainstorms would be negligibly affected, regardless of the magnitude of mining in the basins, (3) ground-water discharge also would decrease during winter and spring, but the amount and duration of low flows during summer and fall would substantially increase in response to increased ground-water storage in rocks and in underground mines, and (4) the increase in ground-water storage in the basins would be depleted, mostly by increased losses to a grou
NASA Astrophysics Data System (ADS)
Silva, A. L. B. O.; Pires, R. C. M.; Ribeiro, R. V.; Machado, E. C.; Rolim, G. S.; Magalhães Filho, J. R.; Marchiori, P. E. R.
2012-04-01
The biofuel production is a growing concern on modern society due to the agricultural sustainability, in which both food and energy supplying should be take into account. The agroclimatic zoning indicates that sugarcane expansion in Brazil can only take place in marginal lands, where water deficit occurs and irrigation is necessary. The aim of this work was to evaluate water consumption and the water use efficiency of two sugarcane genotypes irrigated by a subsurface drip irrigation system. The field experiment was carried out in Campinas SP Brazil, with IACSP95-5000 and SP79-1011 varieties. Those varieties have different canopy characteristics and development, with IACSP95-5000 being more responsive to soil water availability and presenting higher light interception when compared to SP79-1011. Crop evapotranspiration (ETc) was calculated through field water balance from August 2010 to March 2011. Soil water content was evaluated by using a capacitance probe, sampling different depths in soil profile until 1-m. IACSP95-5000 had higher water consumption than SP79-1011. The mean ETc value of IACSP95-5000 was 5.0 mm day-1, whereas SP79-1011 showed 3.7 mm day-1. ETc values were positively correlated to biomass production, with IACSP95-5000 exhibiting higher growth and water use efficiency than SP79-1011.
DOT National Transportation Integrated Search
1990-07-01
This report contains five chapters relating to highway subdrainage design. Chapter 1 is devoted to a general discussion of the adverse effects of subsurface water, the types and sources of subsurface water and its movements, and the types of subsurfa...
Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry
Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.
2013-01-01
Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.
Ground Water Issue. BASIC CONCEPTS OF CONTAMINANT SORPTION AT HAZARDOUS WASTE SITES
One of the major issues of concern to the Regional Superfund Ground Water Forum is the transport and fate of contaminants in soil and ground water as related to subsurface remediation. Processes which influence the behavior of contaminants in the subsurface must be considered bot...
Performance of a wireless sensor network for crop monitoring and irrigation control
USDA-ARS?s Scientific Manuscript database
Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...
USDA-ARS?s Scientific Manuscript database
Well-tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model’s ability to simulate pesticide tr...
USDA-ARS?s Scientific Manuscript database
Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...
USDA-ARS?s Scientific Manuscript database
Surface inlets are installed in subsurface drainage systems to reduce ponding duration and surface runoff, but can contribute to water quality concerns by allowing water to directly enter buried drains. Blind inlets, consist of perforated pipes covered with gravel and are separated from an overlying...
NASA Astrophysics Data System (ADS)
Robinson, K.; Noble, S. M.; Shock, E.
2016-12-01
Serpentinization is likely the most common water-rock reaction in our solar system. During this process ultramafic silicates are hydrated, a calcium hydroxide solution is formed, and H2O is reduced to H2 coupled to the oxidation of Fe2+ to Fe3+. The resulting hyper-alkaline, reduced conditions generate thermodynamic drives for numerous carbon compound reactions, including the precipitation of various carbonate minerals and the reduction of inorganic carbonate to organic carbon. Testing the extent to which these thermodynamic drives lead to observable results led to the present study of the flow and transformations of carbon through the active continental serpentinizing system at the Samail Ophiolite in the Sultanate of Oman. Water samples were collected from shallow groundwater (representing system input), hyper-alkaline seeps (system output), boreholes (system intermediate), and surface fluid mixing zones, and analyzed for concentrations of dissolved inorganic carbon (DIC + δ13C), organic carbon (+ δ13C), formate, acetate, H2, methane (+ δ13C), ethane, and an accompanying suite of other geochemical solutes. These analyses indicate that the vast majority of DIC in these serpentinizing fluids precipitates in the subsurface as carbonate minerals; however, a significant amount of DIC is converted into organic acids and light hydrocarbons and expelled at the surface in hyper-alkaline seeps. Based on thermodynamic calculations, it seems most likely that formate last equilibrated with dolomite (CaMg[CO3]2) in the subsurface, acetate last equilibrated with calcite (CaCO3) near the surface, and methane and ethane last equilibrated in a distinct carbon-limited region of the subsurface. As for the fates of these compounds, energetic calculations reveal that a combination of oxidative, reductive, and fermentative metabolisms are thermodynamically favorable. Indeed, δ13C trends record microbial methane oxidation at the surface and cannot rule out methane as biologically sourced from the subsurface.
Underground storage of imported water in the San Gorgonio Pass area, southern California
Bloyd, Richard M.
1971-01-01
The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.
What can d7Li tell us about sources and flow pathes of river water (Western Pamir, Tajikistan)?
NASA Astrophysics Data System (ADS)
Meier, Christiane; Knoche, Malte; Osenbrück, Karsten; Seitz, Hans-Michael; Weise, Stephan M.
2015-04-01
The high alpine regions in Central Asia are the headwaters for big river systems such as the Amu Darya, which is intensively used for agricultural purposes. For the local water resources management it is important to understand the key factors and processes of runoff generation. It is assumed, that the dominant factors for runoff generation are glacier and snow melt in the Pamir Mountains. However the influence of ground water to river water is also an important factor but still not well understood. We investigated the River Gunt catchment as an exemplary catchment for the Pamir Mountains to identify the origin and to quantify the portion of ground water. Thereby we analyzed water samples of river water, subsurface water, thermal water and glacier water for 7Li. We detected a wide range of 7Li values (from +7‰ to +30‰), whereas the highest values were measured in the glacier melt water at the glacier snout (7Li = +28.8‰) which are similar to the 7Li value of sea water, the lowest values were found in the samples of thermal water and springs in solid rock (7Li between +8‰ and +11‰), the samples of river water are more or less placed on a mixing line in between. We assume that tributaries showing an isotope signature similar to the glacier ones are mainly controlled by melt water while water samples with 7Li values comparable to the 7Li values of subsurface water samples pass through the underground or have a strong interaction between river water and river bed. The water samples of the main stream Gunt also show low 7Li values so we assume a strong contribution of subsurface water to the total runoff or an intensive water-rock-interaction in its riverbed.
NASA Astrophysics Data System (ADS)
Bouteffeha, Maroua; Dagès, Cécile; Bouhlila, Rachida; Raclot, Damien; Molénat, Jérôme
2013-04-01
In Mediterranean regions, food and water demand increase with population growth leading to considerable changes of the land use and agricultural practices. In North Africa, particularly in the Mediterranean zones, hill reservoirs are water harvesting infrastructures that have been increasingly adopted to mobilize runoff and create alternative water resource that can be used to develop agriculture. Hill reservoirs are also used to prevent from silting of downstream dams. Management of water resources collected in these infrastructures requires a good knowledge of their hydrological functioning. In particular, the rate of water exchanges between the reservoir and the underlying aquifer, called surface-subsurface exchange hereafter, is still an open question. The main purpose of the study is to better know the hydrological functioning of hill reservoirs in quantifying at the annual and intra-annual time scales the flux of surface-subsurface exchange and the uncertainty associated to the flux. The approach is based on the hydrological water balance of the hill reservoir. It was applied to the hill reservoir of the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The dense monitoring of the observation catchment allowed quantifying the fluxes of all hydrological processes governing the reservoir hydrology, and their associated uncertainties. The water balance was established by considering water inputs (direct rainfall, waddy and hillslope runoff, surface-subsurface exchange), water outputs (evaporation, spillway discharge) and hill reservoir water volume changes. The surface-subsurface exchange component was deduced as the default closure term in the water balance. The results first demonstrate the ability of the proposed approach to estimate the net surface-subsurface exchange flux and its uncertainty at various time scales. Its application on the Kamech catchment for two hydrological years (09/2009-08/2010 and 09/2010-08/2011) shows that the net surface-subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer predominates the discharge from the aquifer to the reservoir. Moreover the surface-subsurface exchange constitutes the main output component in the water balance. The annual surface-subsurface exchange flux appeared almost constant from one year to the other one whatever the hydrological conditions variability over the catchment. Moreover, the analysis of the intra-annual variability shows that the flux was nearly constant within every year. Reference: Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.
4D ERT Monitoring of Subsurface Water Pipe Leakage During a Controlled Field Experiment
NASA Astrophysics Data System (ADS)
Inauen, C.; Chambers, J. E.; Wilkinson, P. B.; Meldrum, P.; Swift, R. T.; Uhlemann, S.; Gunn, D.; Dashwood, B.; Taxil, J.; Curioni, G.
2016-12-01
Locating and delineating leakage from subsurface pipelines is an important task for civil engineers. 4D Electrical Resistivity Tomography (ERT) allows changes in subsurface resistivity to be imaged at a high spatial and temporal resolution in a minimally invasive manner. It is therefore a promising tool to supplement conventional point-sensing techniques to monitor subsurface flow processes. To assess the efficacy of ERT for pipe leakage monitoring several controlled leak experiments were carried out at a test site in Blagdon, Bristol, UK. To simulate the leak, a plastic pipe with a hole was buried below a flat, grassed area at a depth of 0.7 m, representing a standard UK mains water pipe installation. The water table at the site lies well below the surface meaning that the experiment took entirely place in the vadose zone, where changes in resistivity are primarily sensitive to water content variations. The ERT array covered an area of 6.5m x 6.5m around the leak location. Data acquisition was carried out with the BGS PRIME (Proactive Infrastructure Monitoring and Evaluation) system, which facilitates remote scheduling and autonomous ERT data collection and transmission. To obtain the resistivity changes of the subsurface a 4D inversion was carried out using a Gauss-Newton approach with spatial and temporal smoothness constraints. We were able to reliably observe the onset, spread and cessation of the leakage. Measurements from in-situ soil sensors at several depths above and below the leak complemented the ERT data and allowed us to assess their reliability and directly relate them to hydrogeological processes. Moreover, through experimental tests with soil samples from the test area, a Waxman-Smits relation was obtained to directly convert the changes in electrical resistivity to gravimetric soil moisture content. With future experiments on the test site more work is planned towards survey optimization, automated processing and tracking of leakage plumes.
Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.
1998-01-01
Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less
A Transient Electromagnetic Analysis of Groundwater on the Utah-Arizona Border
NASA Astrophysics Data System (ADS)
Vander Vis, Tanya
Groundwater is often the primary water source for municipal and agricultural purposes, especially in the arid and semi-arid southwestern United States where surface water is limited. Understanding subsurface structure and groundwater flow is an essential part of managing this limited resource, however, it is often difficult and expensive to obtain extensive subsurface data. The purpose of this study was to better understand the Navajo Sandstone Aquifer in the region south of the East Fork of the Virgin River in southern Utah and north of Pipe Spring National Monument in northern Arizona. This was accomplished by using transient electromagnetics (TEM) to define the depth to the water table and to determine the location of the groundwater divide between the East Fork of the Virgin River and Pipe Spring National Monument. The Navajo Sandstone Aquifer is important regionally as it supplies water to the National Park Service (NPS), the Kaibab Paiute Tribe, and local communities, as well as, numerous springs that feed the Virgin River and Pipe Spring National Monument. A transient electromagnetic survey was conducted using an in-loop configuration and 30 receiver locations. This method was chosen because it is inexpensive relative to drilling costly wells and is highly sensitive to groundwater systems. Results from modeling the transient response show the groundwater divide 1500m south of the Utah-Arizona border. The National Park Service is interested in the location of the groundwater divide because, in Utah, Zion National Park has rights to water that flows through park boundaries and these rights extend to the groundwater system. Subsurface information from this study can be used to inform future policy decisions.
How to Recharge a Confined Alluvial Aquifer System
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Liu, Y.
2016-12-01
Greater water storage capacity is needed to offset future decreases in snowpack-water storage in California. Managed aquifer recharge (MAR) in California's Central Valley aquifer system is a promising alternative to new surface reservoir storage because it has the potential to both reduce overdraft conditions observed in many Central Valley groundwater basins and offset continued decreases in snowpack storage. MAR to the Central Valley's productive confined-aquifer system remains a challenge because, like most alluvial aquifer systems, it is composed mostly of silt and clay sediments that form nearly ubiquitous, multiple confining layers that inhibit direct recharge of the interconnected sand and gravel body networks. Several studies have mapped surficial soil types in the Central Valley that are conducive to MAR, but few studies have evaluated how subsurface geologic heterogeneity controls recharge to the confined aquifer system. Here, we use a transition probability Markov-chain geostatistical model conditioned with 1200 well logs to create a physically-realistic representation of the subsurface geologic heterogeneity in the American and Cosumnes River watersheds on the east side of the Sacramento Valley, CA, where studies have shown the presence of massive, interconnected, highly-permeable gravel deposits that are potentially conducive to considerably higher rates of regional recharge than would be possible over the rest of the landscape. Such localized stratigraphic features to support accelerated recharge occur throughout the Central Valley, but are mostly still undiscovered. A variably-saturated, fully-integrated, groundwater/surface-water code, ParFlow, was used to simulate MAR dynamics in this system. Results show the potential for (1) accelerated, high-volume recharge through interconnected gravels where they outcrop at land surface, and (2) regional repressurization of the deeper confined aquifer system. These findings provide insight into the critical role of subsurface heterogeneity on MAR dynamics in alluvial aquifer systems and highlight the potential for MAR in California and elsewhere.
WISDOM, a polarimetric GPR for the shallow subsurface characterization
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Plettemeier, D.; Hassen-Kodja, R.; Clifford, S. M.; Wisdom Team
2011-12-01
WISDOM (Water Ice and Subsurface Deposit Observations on Mars) is a polarimetric Ground Penetrating Radar (GPR) that has been selected to be part of the Pasteur payload onboard the Rover of the 2018 ExoMars mission. It will perform large-scale scientific investigations of the sub-surface of the landing site and provide precise information about the subsurface structure prior to drilling. WISDOM has been designed to provide accurate information on the sub-surface structure down to a depth in excess to 2 meters (commensurate to the drill capacities) with a vertical resolution of a several centimetres. It will give access to the geological structure, electromagnetic nature, and, possibly, to the hydrological state of the shallow subsurface by retrieving the layering and properties of the layers and buried reflectors. The data will also be used to determine the most promising locations to collect underground samples with the drilling system mounted on board the rover. Polarimetric measurements have been recently acquired on perfectly known targets as well as in natural environments. They demonstrated the ability to provide a better understanding of sub-surface structure and significantly reduce the ambiguity associated with identifying the location of off-nadir reflectors, relative to the rover path. This work describes the instrument and its operating modes with particular emphasis on its polarimetric capacities.
GROUND WATER AND WATERSHEDS AND ENVIRONMENTAL PROTECTION
Effective watershed management has the potential to achieve both drinking water and ecological protection goals. However, it is important that the watershed perspective be three- dimensional and include the hidden subsurface. The subsurface catchment, or groundwatershed, is geohy...
Composition and structure of the shallow subsurface of Ceres revealed by crater morphology
NASA Astrophysics Data System (ADS)
Bland, Michael T.; Raymond, Carol A.; Schenk, Paul M.; Fu, Roger R.; Kneissl, Thomas; Pasckert, Jan Hendrik; Hiesinger, Harry; Preusker, Frank; Park, Ryan S.; Marchi, Simone; King, Scott D.; Castillo-Rogez, Julie C.; Russell, Christopher T.
2016-07-01
Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.
Composition and structure of the shallow subsurface of Ceres revealed by crater morphology
Bland, Michael T.; Carol A. Raymond,; Schenk, Paul M.; Roger R. Fu,; Thomas Kneisl,; Hendrick Pasckert, Jan; Hiesinger, Harald; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Castillo-Rogez, Julie C.; Christopher T. Russell,
2016-01-01
Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.
Lateral and subsurface flows impact arctic coastal plain lake water budgets
Koch, Joshua C.
2016-01-01
Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.
APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/R-98/058)
Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...
APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/SR-98/058)
Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...
Modifying WEPP to improve streamflow simulation in a Pacific Northwest watershed
A. Srivastava; M. Dobre; J. Q. Wu; W. J. Elliot; E. A. Bruner; S. Dun; E. S. Brooks; I. S. Miller
2013-01-01
The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow...
Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...
Wasiolek, Maryann
1995-01-01
Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.
Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric
2012-01-01
It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.
Development of specifications for surface and subsurface oceanic environmental data
NASA Technical Reports Server (NTRS)
Wolff, P. M.
1976-01-01
The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.
NASA Astrophysics Data System (ADS)
Pribulick, C. E.; Maxwell, R. M.; Williams, K. H.; Carroll, R. W. H.
2014-12-01
Prediction of environmental response to global climate change is paramount for regions that rely upon snowpack for their dominant water supply. Temperature increases are anticipated to be greater at higher elevations perturbing hydrologic systems that provide water to millions of downstream users. In this study, the relationships between large-scale climatic change and the corresponding small-scale hydrologic processes of mountainous terrain are investigated in the East River headwaters catchment near Gothic, CO. This catchment is emblematic of many others within the upper Colorado River Basin and covers an area of 250 square kilometers, has a topographic relief of 1420 meters, an average elevation of 3266 meters and has varying stream characteristics. This site allows for the examination of the varying effect of climate-induced changes on the hydrologic response of three different characteristic components of the catchment: a steep high-energy mountain system, a medium-grade lower-energy system and a low-grade low-energy meandering floodplain. To capture the surface and subsurface heterogeneity of this headwaters system the basin has been modeled at a 10-meter resolution using ParFlow, a parallel, integrated hydrologic model. Driven by meteorological forcing, ParFlow is able to capture land surface processes and represents surface and subsurface interactions through saturated and variably saturated heterogeneous flow. Data from Digital Elevation Models (DEMs), land cover, permeability, geologic and soil maps, and on-site meteorological stations, were prepared, analyzed and input into ParFlow as layers with a grid size comprised of 1403 by 1685 cells to best represent the small-scale, high resolution model domain. Water table depth, soil moisture, soil temperature, snowpack, runoff and local energy budget values provide useful insight into the catchments response to the Intergovernmental Panel on Climate Change (IPCC) temperature projections. In the near term, coupling this watershed model with one describing a diverse suite of subsurface elemental cycling pathways, including carbon and nitrogen, will provide an improved understanding of the response of the subsurface ecosystems to hydrologic transitions induced as a result of global climate change.
Behavior of uranium under conditions of interaction of rocks and ores with subsurface water
NASA Astrophysics Data System (ADS)
Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.
2007-10-01
The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.
Spatial and Temporal Scales of Surface Water-Groundwater Interactions
NASA Astrophysics Data System (ADS)
Boano, F.
2016-12-01
The interfaces between surface water and groundwater (i.e., river and lake sediments) represent hotspots for nutrient transformation in watersheds. This intense biochemical activity stems from the peculiar physicochemical properties of these interface areas. Here, the exchange of water and nutrients between surface and subsurface environments creates an ecotone region that can support the presence of different microbial species responsible for nutrient transformation. Previous studies have elucidated that water exchange between rivers and aquifers is organized in a complex system of nested flow cells. Each cell entails a range of residence timescales spanning multiple order of magnitudes, providing opportunities for different biochemical reactions to occur. Physically-bases models represent useful tools to deal with the wide range of spatial and temporal scales that characterize surface-subsurface water exchange. This contribution will present insights about how hydrodynamic processes control scale organization for surface water - groundwater interactions. The specific focus will be the influence of exchange processes on microbial activity and nutrient transformation, discussing how groundwater flow at watershed scale controls flow conditions and hence constrain microbial reactions at much smaller scales.
NASA Astrophysics Data System (ADS)
Hill, J. R.; Plaut, J. J.; Christensen, P. R.
2016-12-01
At the First Landing Site and Exploration Zone Workshop for Human Missions to the Surface of Mars (Oct 27-30, 2015, Houston, TX), planetary scientists, students and members of the public proposed forty-seven sites that meet the engineering requirements for a human mission and would also allow astronauts to investigate important scientific questions while on the surface. The chloride deposits in western Noachis Terra at -37.2°N, 350.5°E were proposed as a potential exploration zone due to their proximity to craters containing glacier-like forms and imperfectly-formed concentric crater fill. The high astrobiological preservation potential of the chloride deposits exposed on the surface would allow astronauts to investigate the past habitability of a well-preserved Noachian fluvial system, while the subsurface ice features suggest astronauts would have relatively easy access to enough water to meet the requirements of NASA's current baseline mission architecture. Since the workshop, the proposed exploration zone has been further characterized using additional datasets, as well as new data collected by the Mars Reconnaissance Orbiter as part of the exploration zone data acquisition effort organized by NASA's Human Landing Sites Study (HLS2) team. First, SHARAD radar data were used to constrain the subsurface structure of the imperfectly-formed concentric crater fill within the two large craters, which makes a more accurate assessment of the potential subsurface water ice resources possible. Second, newly acquired HiRISE images were used to better assess the traversability of the terrain between the habitation zone and the primary resource and science regions-of-interest (ROIs). And third, the exploration zone was shifted in order to place the central landing site closer to potential subsurface water ice resources. Although this would require crews to travel further to investigate the chloride deposits, it reduces the distance between the subsurface water ice locations and the central habitation zone, where the excavated water would be processed and utilized. The analysis of this additional data has further demonstrated that the western Noachis Terra chloride deposits are an ideal location for astronauts to safely and effectively conduct astrobiological investigations on the Martian surface.
Fournier, R.O.; Truesdell, A.H.
1970-01-01
Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile components such as boron and ammonia. ?? 1971.
Hydrologic connectivity of geographically isolated wetlands to surface water systems
NASA Astrophysics Data System (ADS)
Creed, I. F.; Ameli, A.
2016-12-01
Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.
NASA Astrophysics Data System (ADS)
Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.
2015-04-01
Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.
NASA Astrophysics Data System (ADS)
Mitri, G.; Showman, A. P.; Lunine, J. I.; Lopes, R. M.
2008-12-01
Remote sensing observations yield evidence for cryovolcanism on Titan, and evolutionary models support (but do not require) the presence of an ammonia-water subsurface ocean. The impetus for invoking ammonia as a constituent in an internal ocean and cryovolcanic magma comes from two factors. First, ammonia-water liquid has a lower freezing temperature than pure liquid water, enabling cryovolcanism under the low- temperature conditions prevalent in the outer Solar System. Second, pure water is negatively buoyant with respect to pure water ice, which discourages eruption from the subsurface ocean to the surface. In contrast, the addition of ammonia to the water decreases its density, hence lessening this problem of negative buoyancy. A marginally positive buoyant ammonia-water mixture might allow effusive eruptions from a subsurface ocean. If the subsurface ocean were positively buoyant, all the ammonia would have been erupted very early in Titan's history. Contrary to this scenario, Cassini-Huygens has so far observed neither a global abundance nor a complete dearth of cryovolcanic features. Further, an ancient cryovolcanic epoch cannot explain the relative youth of Titan's surface. Crucial to invoking ammonia-water resurfacing as the source of the apparently recent geological activity is not how to make ammonia-water volcanism work (because the near neutral buoyancy of the ammonia-water mixture encourages an explanation), but rather how to prevent eruption from occurring so easily that cryovolcanic activity is over early on. Although cryovolcanism by ammonia-water has been proposed as a resurfacing process on Titan, few models have specifically dealt with the problem of how to transport ammonia-water liquid onto the surface. We proposed a model of cryovolcanism that involve cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. While the ammonia-water pockets cannot easily become neutral buoyant and promote effusive eruptions, large scale tectonics stress (due to tides, non-synchronous rotation, satellite volume changes, and/or topography) may all promote resurfacing at localized times and spaces. Thermal convection in the ice-I shell can play an important role in ensuring recent cryovolcanism activity on Titan. Ammonia-water pockets trapped in the ice shell provides a possible mechanism for explaining episodic cryovolcanism. Our model has several advantages over more simplistic ones. Because of the relative inefficiency of trapping liquid in the shell and transporting it to the surface, our mechanism makes volcanism a marginal process. In this way we can explain why Titan did not lose all its ammonia into cryovolcanic flows early in Solar System history as would happen were ammonia-water liquid to be positively buoyant, hence making cryovolcanism too "easy". At the same time, our mechanism allows cryovolcanism to be an important process on regional scales: ammonia should be present at the surface and hence detectable so long as it is not buried by subsequent sedimentation of organic aerosols. Finally, because we posit that the cryovolcanic liquid comes from localized pockets rather than directly from the ocean, our scenario also allows the ocean to remain dilute in ammonia, hence much denser than the overlying ice and mechanically stable over the history of the Solar System.
Migration And Entrapment Of Mercury In The Subsurface
NASA Astrophysics Data System (ADS)
M, D.; Nambi, I. M.
2009-12-01
Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.
R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...
2016 Summer Series - Bethany Ehlmann - Early Mars: A View from Rovers and Orbiters
2016-08-18
Water signatures include geological changes and life. Surface and orbital interplanetary robotic missions are critical for obtaining knowledge on atmospheric, surface and subsurface conditions of planets in our solar system. Ehlmann will talk about Mars data collected from orbital and rover missions and their implication for our understating of Mars past and present water environments.
Winery wastewater treatment using the land filter technique.
Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S
2010-08-01
This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
A field study of colloid transport in surface and subsurface flows
NASA Astrophysics Data System (ADS)
Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan
2016-11-01
Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.
Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.
Brix, H; Koottatep, T; Laugesen, C H
2007-01-01
The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.
Sumner, Andrew J; Plata, Desiree L
2018-02-21
Hydraulic fracturing coupled with horizontal drilling (HDHF) involves the deep-well injection of a fracturing fluid composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. Analyses of flowback wastewaters have revealed organic contamination from both geogenic and anthropogenic sources. The additional detections of undisclosed halogenated chemicals suggest unintended in situ transformation of reactive additives, but the formation pathways for these are unclear in subsurface brines. To develop an efficient experimental framework for investigating the complex shale-well parameter space, we have reviewed and synthesized geospatial well data detailing temperature, pressure, pH, and halide ion values as well as industrial chemical disclosure and concentration data. Our findings showed subsurface conditions can reach pressures up to 4500 psi (310 bars) and temperatures up to 95 °C, while at least 588 unique chemicals have been disclosed by industry, including reactive oxidants and acids. Given the extreme conditions necessary to simulate the subsurface, we briefly highlighted existing geochemical reactor systems rated to the necessary pressures and temperatures, identifying throughput as a key limitation. In response, we designed and developed a custom reactor system capable of achieving 5000 psi (345 bars) and 90 °C at low cost with 15 individual reactors that are readily turned over. To demonstrate the system's throughput, we simultaneously tested 12 disclosed HDHF chemicals against a radical initiator compound in simulated subsurface conditions, ruling out a dozen potential transformation pathways in a single experiment. This review outlines the dynamic and diverse parameter range experienced by HDHF chemical additives and provides an optimized framework and novel reactor system for the methodical study of subsurface transformation pathways. Ultimately, enabling such studies will provide urgently needed clarity for water treatment downstream or releases to the environment.
Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.
1998-01-01
This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de
NASA Astrophysics Data System (ADS)
Helmig, R.; Becker, B.; Flemisch, B.
2015-12-01
The natural subsurface is gaining in importance for a variety of engineering applications related to energy supply. At the same time it is already utilized in many ways. On the one hand, the subsurface with its groundwater system represents the most important source of drinking water; on the other hand, it contains natural resources such as petroleum, natural gas and coal. In recent years, the subsurface has been gaining importance as a resource of energy and as an energy and waste repository. It can serve as a short-, medium- or long-term storage medium for energy in various forms, e.g. in the form of methane (CH4), hydrogen (H2) or compressed air. The subsurface is also attracting increasing interest as a natural source of energy, regarding, for instance, the extraction of fossil methane by hydraulic fracturing or the utilization of geothermal energy as a renewable energy source. As a result, with increasing exploitation, resource conflicts are becoming more and more common and complex. Modeling concepts for simulating multiphase flow that can reproduce the high complexity of the underlying processes in an efficient way need to be developed. The application of these model concepts is of great importance with respect to feasibility, risk analysis, storage capacity and sensitivity issues. This talk will give an overview on possible utilization conflicts in subsurface systems and how the groundwater is affected. It will focus on presenting fundamental properties and functions of a compositional multiphase system in a porous medium and introduce basic multiscale and multiphysics concepts as well as formulate conservation laws for simulating energy storage in the subsurface. Large-scale simulations that show the general applicability of the modeling concepts of such complicated natural systems, especially the impact on the groundwater of simultaneously using geothermal energy and storing chemical and thermal energy, and how such real large-scale systems provide a good environment for balancing the efficiency potential and possible weaknesses of the approaches will be discussed.
Engle, M.A.; Bern, C.R.; Healy, R.W.; Sams, J.I.; Zupancic, J.W.; Schroeder, K.T.
2011-01-01
One method to beneficially use water produced from coalbed methane (CBM) extraction is subsurface drip irrigation (SDI) of croplands. In SDI systems, treated CBMwater (injectate) is supplied to the soil at depth, with the purpose of preventing the buildup of detrimental salts near the surface. The technology is expanding within the Powder River Basin, but little research has been published on its environmental impacts. This article reports on initial results from tracking water and solutes from the injected CBM-produced waters at an SDI system in Johnson County, Wyoming. In the first year of SDI operation, soil moisture significantly increased in the SDI areas, but well water levels increased only modestly, suggesting that most of the water added was stored in the vadose zone or lost to evapotranspiration. The injectate has lower concentrations of most inorganic constituents relative to ambient groundwater at the site but exhibits a high sodium adsorption ratio. Changes in groundwater chemistry during the same period of SDI operation were small; the increase in groundwater-specific conductance relative to pre-SDI conditions was observed in a single well. Conversely, groundwater samples collected beneath another SDI field showed decreased concentrations of several constituents since the SDI operation.Groundwater-specific conductance at the 12 other wells showed no significant changes. Major controls on and compositional variability of groundwater, surface water, and soil water chemistry are discussed in detail. Findings from this research provide an understanding of water and salt dynamics associated with SDI systems using CBM-produced water. Copyright ??2011. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Bao, J; Huang, M
Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less
NASA Astrophysics Data System (ADS)
Istok, J. D.; Kling, G. F.
1983-09-01
Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2). Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ˜65 and ˜55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased. It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon.
An Open Source Framework for Coupled Hydro-Hydrogeo-Chemical Systems in Catchment Research
NASA Astrophysics Data System (ADS)
Delfs, J.; Sachse, A.; Gayler, S.; Grathwohl, P.; He, W.; Jang, E.; Kalbacher, T.; Klein, C.; Kolditz, O.; Maier, U.; Priesack, E.; Rink, K.; Selle, B.; Shao, H.; Singh, A. K.; Streck, T.; Sun, Y.; Wang, W.; Walther, M.
2013-12-01
This poster presents an open-source framework designed to assist water scientists in the study of catchment hydraulic functions with associated chemical processes, e.g. contaminant degradation, plant nutrient turnover. The model successfully calculates the feedbacks between surface water, subsurface water and air in standard benchmarks. In specific model applications to heterogeneous catchments, subsurface water is driven by density variations and runs through double porous media. Software codes of water science are tightly coupled by iteration, namely the Storm Water Management Model (SWMM) for urban runoff, Expert-N for simulating water fluxes and nutrient turnover in agricultural and forested soils, and OpenGeoSys (OGS) for groundwater. The coupled model calculates flow of hydrostatic shallow water over the land surface with finite volume and difference methods. The flow equations for water in the porous subsurface are discretized in space with finite elements. Chemical components are transferred through 1D, 2D or 3D watershed representations with advection-dispersion solvers or, as an alternative, random walk particle tracking. A transport solver can be in sequence with a chemical solver, e.g. PHREEQ-C, BRNS, additionally. Besides coupled partial differential equations, the concept of hydrological response units is employed in simulations at regional scale with scarce data availability. In this case, a conceptual hydrological model, specifically the Jena Adaptable Modeling System (JAMS), passes groundwater recharge through a software interface into OGS, which solves the partial differential equations of groundwater flow. Most components of the modeling framework are open source and can be modified for individual purposes. Applications range from temperate climate regions in Germany (Ammer catchment and Hessian Ried) to arid regions in the Middle East (Oman and Dead See). Some of the presented examples originate from intensively monitored research sites of the WESS research centre and the monitoring initiative TERENO. Other examples originate from the IWAS project on integrated water resources management. The model applications are primarily concerned with groundwater resources, which are endangered by overexploitation, intrusion of saltwater, and nitrate loads.
NASA Technical Reports Server (NTRS)
Battler, M.; Stoker, C.
2005-01-01
Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].
NASA Astrophysics Data System (ADS)
Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru
2017-04-01
Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of irrigation water resources. This work is financed by the European Union's H2020 research and innovation programme under grant agreement No 642258 (Moses Project).
Tangen, Brian; Finocchiaro, Raymond
2017-01-01
The enhancement of agricultural lands through the use of artificial drainage systems is a common practice throughout the United States, and recently the use of this practice has expanded in the Prairie Pothole Region. Many wetlands are afforded protection from the direct effects of drainage through regulation or legal agreements, and drainage setback distances typically are used to provide a buffer between wetlands and drainage systems. A field study was initiated to assess the potential for subsurface drainage to affect wetland surface-water characteristics through a reduction in precipitation runoff, and to examine the efficacy of current U.S. Department of Agriculture drainage setback distances for limiting these effects. Surface-water levels, along with primary components of the catchment water balance, were monitored over 3 y at four seasonal wetland catchments situated in a high-relief terrain (7–11% slopes). During the second year of the study, subsurface drainage systems were installed in two of the catchments using drainage setbacks, and the drainage discharge volumes were monitored. A catchment water-balance model was used to assess the potential effect of subsurface drainage on wetland hydrology and to assess the efficacy of drainage setbacks for mitigating these effects. Results suggest that overland precipitation runoff can be an important component of the seasonal water balance of Prairie Pothole Region wetlands, accounting on average for 34% (19–49%) or 45% (39–49%) of the annual (includes snowmelt runoff) or seasonal (does not include snowmelt) input volumes, respectively. Seasonal (2014–2015) discharge volumes from the localized drainage systems averaged 81 m3 (31–199 m3), and were small when compared with average combined inputs of 3,745 m3 (1,214–6,993 m3) from snowmelt runoff, direct precipitation, and precipitation runoff. Model simulations of reduced precipitation runoff volumes as a result of subsurface drainage systems showed that ponded wetland surface areas were reduced by an average of 590 m2 (141–1,787 m2), or 24% (3–46%), when no setbacks were used (drainage systems located directly adjacent to wetland). Likewise, wetland surface areas were reduced by an average of 141 m2 (23–464 m2), or 7% (1–28%), when drainage setbacks (buffer) were used. In totality, the field data and model simulations suggest that the drainage setbacks should reduce, but not eliminate, impacts to the water balance of the four wetlands monitored in this study that were located in a high-relief terrain. However, further study is required to assess the validity of these conclusions outside of the limited parameters (e.g., terrain, weather, soils) of this study and to examine potential ecological effects of altered wetland hydrology.
Hartmann, Andreas; Gleeson, Tom; Wagener, Thorsten
2017-01-01
Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover ∼25% of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit “karstification,” which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers. PMID:28242703
NASA Technical Reports Server (NTRS)
Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten
2017-01-01
Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover 25 of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit karstification, which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers.
viral abundance distribution in deep waters of the Northern of South China Sea
NASA Astrophysics Data System (ADS)
He, Lei; Yin, Kedong
2017-04-01
Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.
Subsurface Hydrology: Data Integration for Properties and Processes
NASA Astrophysics Data System (ADS)
Hyndman, David W.; Day-Lewis, Frederick D.; Singha, Kamini
Groundwater is a critical resource and the PrinciPal source of drinking water for over 1.5 billion people. In 2001, the National Research Council cited as a "grand challenge" our need to understand the processes that control water movement in the subsurface. This volume faces that challenge in terms of data integration between complex, multi-scale hydrologie processes, and their links to other physical, chemical, and biological processes at multiple scales. Subsurface Hydrology: Data Integration for Properties and Processes presents the current state of the science in four aspects: • Approaches to hydrologie data integration • Data integration for characterization of hydrologie properties • Data integration for understanding hydrologie processes • Meta-analysis of current interpretations Scientists and researchers in the field, the laboratory, and the classroom will find this work an important resource in advancing our understanding of subsurface water movement.
NASA Astrophysics Data System (ADS)
Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.
2016-12-01
Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
Recent developments and emergent challenges in Ecohydrology: Focus on the belowground frontier
NASA Astrophysics Data System (ADS)
Mackay, D. S.
2017-12-01
The broad spectrum of ecohydrology issues touch on many areas of research in hydrology. But what are the emerging themes and challenges that represent the core of ecohydrology as a maturing discipline? To answer this question the ecohydrology lens was applied to manuscripts published in Water Resources Research over period of 2015 through July 2017. The 235 manuscripts retrieved can be broadly grouped into catchment hydrology, riparian-hyporheic-stream processes, critical zone, land-atmosphere exchange, wetlands, and sustainability. Three dominant crosscutting themes (i.e., coevolution, interfaces, and energy exchange) account for more than half the papers retrieved. In the context of ecohydrology, coevolution refers to the development of physical systems in concert with biological systems and their interactions. In an ecohydrology context, interfaces refer to subsurface, and sometime surface connections that influence transport (e.g., solutes concentration-discharge) influenced by vegetative plumbing, ecophysiology, animal behavior, and microbial processes. Energy exchange in ecohydrology connects vegetative processes to movement of water to the atmosphere through evapotranspiration. Across these themes there is emerging theory and methodology that emphasizes the integrated roles of biology and hydrology in the subsurface. In particular, there is a notable surge of interest in the role of plant roots on subsurface processes. But these are hard to observe and remain challenging to model. By adopting principles of coevolution, in particular, significant advances will be made in modeling plant roots and their depths, corroborated with new geophysical and tracer tools, for improving understanding of critical zone development, subsurface flow processes, and land-atmosphere energy exchange.
NASA Astrophysics Data System (ADS)
Gumussoy, Verim
2015-04-01
Large masses of moving water in seas and oceans are called currents. Root causes of currents are steady winds that occur due to the global atmospheric system and the density differences caused by different heat and salinity levels of water masses. Different feeding and evaporation characteristics of seas and oceans result in salinity and density levels. As a result, subsurface currents occur in straits where seas with different salinity and density levels meet and in the nearby seas. The Bosporus in Istanbul where I live and the school I am working at is has these subsurface currents. In the Black Sea where the rivers the Danube, Dnieper, Don, Yesilirmak, Kizilirmak and Sakarya flow into and the evaporation level is less due to the latitude effect, salinity level is less compared to Marmara and Aegean Seas. As Marmara Sea has higher salt amount than Black Sea, there is a great density difference between these two seas. Marmara Sea has a higher concentration of salt and therefore a higher density than Black Sea. And this leads to occurrence of subsurface currents in the Bosporus. I get my students to carry out a small demonstration to help them understand the occurrence of ocean currents and currents in the seas and the Bosporus by the use of a material. We need very simple materials to carry out this demonstration. These are an aquarium, a bowl, water, salt, dye and a mixer. The demonstration is carried out as follows: we put water, salt and dye in the bowl and mix it well. The salt will increase the density of the water and the dye will help distinguish the salty water. Then we put tap water half way to the aquarium and pour the mixture in the bowl to the aquarium slowly. As a result, the colored salty water sinks down due to its higher density, setting an example of a subsurface current. Natural events occur in very long periods by great dynamic systems, making understanding of them difficult. It is important to use different kinds of materials that address to different senses in geography lessons to promote effective and fun learning. Thus, geography lessons should be based on teaching principles such as 'from concrete to abstract' and 'from near-to-far' principles. Also, teaching methods such as visualization, simulation and experiment should be applied during the lessons. The use of this material will help students comprehend how subsurface currents in the straits, seas and oceans occur. By this simple experiment, students will be able to see what kind of a movement takes place under the Bosporus on which they travel by ferry and they will have the opportunity to carry it out themselves, making the lesson more fun.
MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER
Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...
NASA Astrophysics Data System (ADS)
Yusof, Azim Hilmy Mohamad; Azman, Muhamad Iqbal Mubarak Faharul; Ismail, Nur Azwin; Ismail, Noer El Hidayah
2017-07-01
Infiltration of water into the soil mostly happens in area near to the ocean or area where rain occurred frequently. This paper explains about the water infiltration process that occurred vertically and horizontally at the subsurface layer. Infiltration act as an indicator of the soil's ability to allow water movement into and through the soil profile. This research takes place at Teluk Kumbar, Pulau Pinang, area that located near to the sea. Thus, infiltration process occurs actively. The study area consists of unconsolidated marine clay, sand and gravel deposits. Furthermore, the methods used for this research is 2-D Resistivity Imaging by using Wenner-Schlumberger array with 2.5 m minimum electrode spacing, and the second method is Ground Penetrating Radar (GPR) with antenna frequency of 250MHz. 2-D Resistivity Imaging is used to investigate the subsurface layer of the soil. Other than that, this method can also be used to investigate the water infiltration that happens horizontally. GPR is used to investigate shallow subsurface layer and to investigate the water infiltration from above. The results of inversion model of 2-D Resistivity Imaging shows that the subsurface layer at distance of 0 m to 20 m are suspected to be salt water intrusion zone due to the resistivity value of 0 Ω.m to 1 Ω.m. As for the radargram results from the GPR, the anomaly seems to be blurry and unclear, and EM waves signal can only penetrate up to 1.5 m depth. This feature shows that the subsurface layer is saturated with salt water. Applying 2-D resistivity imaging and GPR method were implemented to each other in identifying infiltration of water in the ground surface.
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto
2005-01-01
Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of the layered rough surface problem. The layers are each defined in terms of a small number of unknown distributions as given above. An a priori estimate of the solution is first assumed, based on which the forward problem is solved for the backscattered measurements. This is compared with the measured data and using iterative techniques an update to the solution for the unknowns is calculated. The process continues until convergence is achieved. Numerical results will be shown using actual radar data acquired with the MOSS tower radar system in Arizona in Fall 2003, and compared with in-situ measurements.
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers from the Jet Propulsion Laboratory open the drums containing the Mars microprobes that will hitchhike on the Mars Polar Lander. From left, they are Satish Krishnan, Charles Cruzan, Chris Voorhees and Arden Acord. Scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millennium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
1998-11-10
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), Tandy Bianco, with Lockheed Martin, and Satish Krishnan (foreground) and Chris Voorhees (behind him), from the Jet Propulsion Laboratory, observe a Mars microprobe on the workstand. Two microprobes will hitchhike on the Mars Polar Lander, scheduled to be launched Jan. 3, 1999, aboard a Delta II rocket. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars microprobes, called Deep Space 2, are part of NASA's New Millelnnium Program. They will complement the climate-related scientific focus of the lander by demonstrating an advanced, rugged microlaser system for detecting subsurface water. Such data on polar subsurface water, in the form of ice, should help put limits on scientific projections for the global abundance of water on Mars
NASA Astrophysics Data System (ADS)
Rodríguez-Sinobas, L.; Gil-Rodríguez, M.; Sánchez, R.; Losada, A.; Castañón, G.; Juana, L.; Laguna, F. V.; Benítez, J.
2010-05-01
Conventional drip irrigation is considered one of the most efficient irrigation systems. Alternatively to traditional surface drip irrigation systems (DI), laterals are deployed underneath the soil surface, as in subsurface drip irrigation (SDI), leading to a higher potential efficiency, which is of especial interest in places where water is a limited source. The design and management of DI and SDI systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters and the inlet pressure and irrigation time for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. Likewise, water distribution is affected by soil hydraulic properties, initial water content, emitter discharge, irrigation frequency, evapotranspiration and root characteristics. However, complexity arousing of soil water properties and soil profile characteristics means that these are often not properly considered in the design and management of those systems. A better understanding of the infiltration process around the discharge point source should contribute to increase water use efficiency and thus to reduce the risk of environmental impact of irrigation. In this regard, numerical models have been proved to be a powerful tool to analyze the evolution of the wetting pattern during the distribution and redistribution processes, in order to explore irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. Also, irrigation design variables such as emitter spacing and discharge could also be assessed. In this study the suitability of the HYDRUS-2D to simulate infiltration process around an emitter during irrigation of a loamy soil with drip and SDI laterals has been addressed. The model was then applied in order to evaluate the main dimensions of the wetted soil volume surrounding the emitter during irrigation. Irrigation uniformity with DI and SDI laterals were determined by field evaluations at different inlet head pressures. Results were related with estimations made on water distribution within the soil that were simulated taking into account the emitter discharge at different lateral locations, initial soil water content, soil hydraulic properties and time of irrigation. Conclusions highlight the effect of emitter discharge, emitter spacing, and irrigation time on wetting patterns, and thus solute transport, in both drip and subsurface drip irrigation. The effect of emitter depth was also considered in SDI. Some recommendations for the design and management of these irrigation systems are also provided.
Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto.
Nimmo, F; Hamilton, D P; McKinnon, W B; Schenk, P M; Binzel, R P; Bierson, C J; Beyer, R A; Moore, J M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E
2016-12-01
The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.
Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto
NASA Astrophysics Data System (ADS)
Nimmo, F.; Hamilton, D. P.; McKinnon, W. B.; Schenk, P. M.; Binzel, R. P.; Bierson, C. J.; Beyer, R. A.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Binzel, R. P.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Ore, C. Dalle; Earle, A.; Gladstone, R.; Grundy, W.; Howard, A. D.; Lauer, T.; Linscott, I.; Nimmo, F.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D. P.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.
2016-12-01
The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto’s tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin’s present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.
Hoggan, James L; Bae, Keonbeom; Kibbey, Tohren C G
2007-08-15
Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.
NASA Astrophysics Data System (ADS)
Mecchia, Marco; Sauro, Francesco; Piccini, Leonardo; De Waele, Jo; Sanna, Laura; Tisato, Nicola; Lira, Jesus; Vergara, Freddy
2014-04-01
In situ measurements of discharge, pH, electric conductivity (EC), temperature, and SiO2 content have been carried out during five expeditions in the last 20 years on the summit plateaus, inside caves and along the rivers of the surrounding lowlands of three tepui massifs in Venezuela (Auyan, Roraima, and Chimanta). Additionally, detailed chemical analyses were performed on waters sampled in a newly discovered extensive quartz-sandstone cave system on the Auyan Tepui. Rock samples of the quartz-sandstone bedrock from different locations have been analysed to obtain their chemical composition with a wavelength dispersive X-ray fluorescence spectrometer. These data show that the majority of silica present in surface and subsurface water comes from dissolution of quartz and only in minor amount from hydrolysis of other silicate minerals. Probably the presence of a hardened crust of iron hydroxides limits the dissolution of silica on the top surface of tepuis. Dissolution in the subsurface, instead, is more significant and causes, in the long term, the “arenisation” of the quartz-sandstone and its subsequent removal by mechanical erosion. On the other hand, waters flowing on the arkosic rock outcropping on the lowland below the tepuis obtain their high dissolved silica content mainly from hydrolysis of silicates. The morphological evolution of these table mountains appears thus to be controlled mainly by the underground weathering of the quartz-sandstone, with the opening of deep fractures (grietas) and the collapse of large underground horizontal cave systems. Scarp retreat, instead, seems to be related to the higher weathering rate of the more arkosic formations underlying the quartz-sandstones.
Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.
2018-01-01
Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.
Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.
2012-01-01
Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.
Groundwater quality in the Northern Coast Ranges Basins, California
Mathany, Timothy M.; Belitz, Kenneth
2015-01-01
Recharge to the groundwater system is primarily from mixture of ambient sources, including direct percolation of precipitation and irrigation waters, infiltration of runoff from surrounding hills/areas, seepage from rivers and creeks, and subsurface inflow (from non-alluvial geologic units that bound the alluvial basins). The primary sources of discharge are evaporation, discharge to streams, and water pumped for municipal supply and irrigation.
Jayarathne, P D K D; Kumaragamage, D; Indraratne, S; Flaten, D; Goltz, D
2016-07-01
Enhanced phosphorus (P) release from soils to overlying water under flooded, anaerobic conditions has been well documented for noncalcareous and surface soils, but little information is available for calcareous and subsurface soils. We compared the magnitude of P released from 12 calcareous surface soils and corresponding subsurface soils to overlying water under flooded, anaerobic conditions and examined the reasons for the differences. Surface (0-15 cm) and subsurface (15-30 cm) soils were packed into vessels and flooded for 8 wk. Soil redox potential and concentrations of dissolved reactive phosphorus (DRP) and total dissolved Ca, Mg, Fe, and Mn in floodwater and pore water were measured weekly. Soil test P was significantly smaller in subsurface soils than in corresponding surface soils; thus, the P release to floodwater from subsurface soils was significantly less than from corresponding surface soils. Under anaerobic conditions, floodwater DRP concentration significantly increased in >80% of calcareous surface soils and in about 40% of subsurface soils. The increase in floodwater DRP concentration was 2- to 17-fold in surface soils but only 4- to 7-fold in subsurface soils. With time of flooding, molar ratios of Ca/P and Mg/P in floodwater increased, whereas Fe/P and Mn/P decreased, suggesting that resorption and/or reprecipitation of P took place involving Fe and Mn. Results indicate that P release to floodwater under anaerobic conditions was enhanced in most calcareous soils. Surface and subsurface calcareous soils in general behaved similarly in releasing P under flooded, anaerobic conditions, with concentrations released mainly governed by initial soil P concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
KINETIC CONTROL OF OXIDATION STATE AT THERMODYNAMICALLY BUFFERED POTENTIALS IN SUBSURFACE WATERS
Dissolved oxygen (DO) and organic carbon (Corg) are among the highest- and lowest-potential reactants, respectively, of redox couples in natural waters. When DO and Corg are present in subsurface settings, other couples are drawn toward potentials imposed by them, generating a b...
Sulfate deposition in subsurface regolith in Gusev crater, Mars
Wang, A.; Haskin, L.A.; Squyres, S. W.; Jolliff, B.L.; Crumpler, L.; Gellert, Ralf; Schroder, C.; Herkenhoff, K.; Hurowitz, J.; Tosca, N.J.; Farrand, W. H.; Anderson, R.; Knudson, A.T.
2006-01-01
Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rover's exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up >20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen concentration observed by the Gamma-Ray Spectrometer on Odyssey in the Gusev region. Copyright 2006 by the American Geophysical Union.
Copepod communities from surface and ground waters in the everglades, south Florida
Bruno, M.C.; Cunningham, K.J.; Perry, S.A.
2003-01-01
We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.
NASA Astrophysics Data System (ADS)
Rhodes, Kimberly A.; Proffitt, Tiffany; Rowley, Taylor; Knappett, Peter S. K.; Montiel, Daniel; Dimova, Natasha; Tebo, Daniel; Miller, Gretchen R.
2017-12-01
As water grows scarcer in semiarid and arid regions around the world, new tools are needed to quantify fluxes of water and chemicals between aquifers and rivers. In this study, we quantify the volumetric flux of subsurface water to a 24 km reach of the Brazos River, a lowland river that meanders through the Brazos River Alluvium Aquifer (BRAA), with 8 months of high-frequency differential gaging measurements using fixed gaging stations. Subsurface discharge sources were determined using natural tracers and End-Member Mixing Analysis (EMMA). During a 4 month river stage recession following a high stage event, subsurface discharge decreased from 50 m3/s to 0, releasing a total of 1.0 × 108 m3 of water. Subsurface discharge dried up even as the groundwater table at two locations in the BRAA located 300-500 m from the river remained ˜4 m higher than the river stage. Less than 4% of the water discharged from the subsurface during the prolonged recession period resembled the chemical fingerprint of the alluvial aquifer. Instead, the chemistry of this discharged water closely resembled high stage "event" river water. Together, these findings suggest that the river is well connected to rechargeable bank storage reservoirs but disconnected from the broader alluvial aquifer. The average width of discrete bank storage zones on each side of the river, identified with Electrical Resistivity Tomography (ERT), was approximately 1.5 km. In such highly compartmentalized aquifers, groundwater pumping is unlikely to impact the exchange between the river and the alluvium.
The integration of constructed wetlands into a treatment system for airport runoff.
Revitt, D M; Worral, P; Brewer, D
2001-01-01
A new surface runoff treatment system has been designed for London Heathrow Airport, which incorporates separate floating constructed wetlands or reedbeds and sub-surface flow constructed wetlands as major pollutant removal systems. The primary requirement of the newly developed treatment system is to control the concentrations of glycols following their use as de-icers and anti-icers within the airport. The ability of reedbeds to contribute to this treatment role was fully tested through pilot scale, on-site experiments over a 2 year period. The average reductions in runoff BOD concentrations achieved by pilot scale surface flow and sub-surface flow reedbeds were 30.9% and 32.9%, respectively. The corresponding average glycol removal efficiencies were 54.2% and 78.3%, following shock dosing inputs. These treatment performances are used to predict the required full scale constructed wetland surface areas needed to attain the desired effluent water quality. The treatment system also incorporates aeration, storage and, combined with reedbed technology, has been designed to reduce a mixed inlet BOD concentration of 240 mg/l to less than 40 mg/l for water temperatures varying between 6 degrees C and 20 degrees C.
GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER
Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...
NASA Astrophysics Data System (ADS)
Zell, Wesley O.; Culver, Teresa B.; Sanford, Ward E.
2018-06-01
Uncertainties about the age of base-flow discharge can have serious implications for the management of degraded environmental systems where subsurface pathways, and the ongoing release of pollutants that accumulated in the subsurface during past decades, dominate the water quality signal. Numerical groundwater models may be used to estimate groundwater return times and base-flow ages and thus predict the time required for stakeholders to see the results of improved agricultural management practices. However, the uncertainty inherent in the relationship between (i) the observations of atmospherically-derived tracers that are required to calibrate such models and (ii) the predictions of system age that the observations inform have not been investigated. For example, few if any studies have assessed the uncertainty of numerically-simulated system ages or evaluated the uncertainty reductions that may result from the expense of collecting additional subsurface tracer data. In this study we combine numerical flow and transport modeling of atmospherically-derived tracers with prediction uncertainty methods to accomplish four objectives. First, we show the relative importance of head, discharge, and tracer information for characterizing response times in a uniquely data rich catchment that includes 266 age-tracer measurements (SF6, CFCs, and 3H) in addition to long term monitoring of water levels and stream discharge. Second, we calculate uncertainty intervals for model-simulated base-flow ages using both linear and non-linear methods, and find that the prediction sensitivity vector used by linear first-order second-moment methods results in much larger uncertainties than non-linear Monte Carlo methods operating on the same parameter uncertainty. Third, by combining prediction uncertainty analysis with multiple models of the system, we show that data-worth calculations and monitoring network design are sensitive to variations in the amount of water leaving the system via stream discharge and irrigation withdrawals. Finally, we demonstrate a novel model-averaged computation of potential data worth that can account for these uncertainties in model structure.
NASA Astrophysics Data System (ADS)
Serrano-Coronel, Genaro; Chipana-Rivera, René; Fátima Moreno-Pérez, María; Roldán-Cañas, José
2016-04-01
Among the most important hydraulic structures of pre-Hispanic ancestral technology developed in the Andean region, we find the suka kollus, aymara word, called also waru waru, en quechua or raised fields, in English. They are raised platforms surrounded by water canals that irrigate subsurface, but also have the function of draining, to deal with floods because they are surrounding Lake Titicaca. They also have the property of generating a thermoregulatory effect to crops, depending on the configuration of the channels and platforms. Such agro-ecosystems are being abandoned, however, if properly addressed crop management and some drainage canals are replaced by underground drains for increased crop area could be very useful in enabling marginal soils affected by salts and / or excess water. For these reasons, the objective of this study was to evaluate the subsurface irrigation in the potato crop in suka kollus under a system of surface drainage, and mixed drainage (surface and subsurface). The study was conducted in marginal soils of Kallutaca area, located 30 km from the city of La Paz, Bolivia, at a height of 3892 m.a.s.l. The cultivation of the potato (Solanum tuberosum ssp. Andigena) was used. Four treatments were tested with different widths of the platforms: T1 (Control) with drainage through channels; T2 (replacing a channel by a drain); T3 (replacing two channels by two drains); T4 (replacing three channels by three drains). The flow of water into the soil from the water table was predominantly upward, except during periods of high rainfall. In terms of treatments, the flow in T1 was higher, mainly at weeks 8 to 11 after seedling emergence, coinciding with the phenological phases of flowering and at the beginning of the tuber ripening. It was followed by T3, T2 and T4 treatments, respectively. Tuber yield, if one considers that the channels detract arable land, was higher in the T3 treatment,16.4 Mg / ha, followed by T2 treatment, 15.2 Mg / ha, T1 treatment (Control) 7.3 Mg / ha and T4 treatment with 7.1 Mg / ha. Therefore, in the mixed system with two drains the best results were obtained.
Hydrogen Isotopic Constraints on the Evolution of Surface and Subsurface Water on Mars
NASA Technical Reports Server (NTRS)
Usui, T.; Kurokawa, H.; Wang, J.; Alexander, C. M. O’D.; Simon, J. I.; Jones, J. H.
2017-01-01
The geology and geomorphology of Mars provide clear evidence for the presence of liquid water on its surface during the Noachian and Hesperien eras (i.e., >3 Ga). In contrast to the ancient watery environment, today the surface of Mars is relatively dry. The current desert-like surface conditions, however, do not necessarily indicate a lack of surface or near-surface water/ice. In fact, massive deposits of ground ice and/or icy sediments have been proposed based on subsurface radar sounder observations. Hence, accurate knowledge of both the evolution of the distribution of water and of the global water inventory is crucial to our understanding of the evolution of the climate and near-surface environments and the potential habitability of Mars. This study presents insights from hydrogen isotopes for the interactive evolution of Martian water reservoirs. In particular, based on our new measurement of the D/H ratio of 4 Ga-old Noachian water, we constrain the atmospheric loss and possible exchange of surface and subsurface water through time.
The exchange of Kuroshio and East China Sea shelf water
NASA Astrophysics Data System (ADS)
Chern, Ching-Sheng; Wang, Joe; Wang, Dong-Ping
1990-09-01
A detailed hydrographic study of the East China Sea shelf edge north of Taiwan revealed an intense cold eddy on the shelf break and a large low-salinity filament at the slope. The cold eddy which is induced by the upwelling of the subsurface Kuroshio water has been repeatedly documented in previous studies. The filament which is made of the mixed shelf and subsurface Kuroshio water, on the other hand, has not been recognized before. The shelf edge upwelling appears to be associated with the sharp bending of the Kuroshio north of Taiwan, while the outpouring of shelf water appears to be associated with the northeasterly storms. Both the eddy and the filament consist of large fractions of the subsurface Kuroshio water, and they may be important to the salt and nutrient budget on the East China Sea shelf.
Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.
Kibet, Leonard C; Allen, Arthur L; Kleinman, Peter J A; Feyereisen, Gary W; Church, Clinton; Saporito, Lou S; Way, Thomas R
2011-01-01
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.
Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less
Economic feasibility of converting center pivot irrigation to subsurface drip irrigation
USDA-ARS?s Scientific Manuscript database
Advancements in irrigation technology have increased water use efficiency. However, producers can be reluctant to convert to a more efficient irrigation system when the initial investment costs are high. This study examines the economic feasibility of replacing low energy precision application (LEPA...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...
We compared the use of ternary and bivariate diagrams to distinguish the effects of atmospheric precipitation, rock weathering, and evaporation on inland surface and subsurface water chemistry. The three processes could not be statistically differentiated using bivariate models e...
Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to devel...
The Influence of Tree Species on Subsurface Stormflow at the Hillslope Scale
NASA Astrophysics Data System (ADS)
Jost, G.; Weiler, M.
2006-12-01
This study investigates the effect of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.), two very common tree species in Central Europe, on soil water storage and runoff response to precipitation. We postulate that on the same type of soil, spruce with its shallow rooting system leads to different soil water storage and runoff responses than the deep rooting beech. To test this hypothesis, we chose a beech and a spruce stand with comparable soil type, a stagnic cambisol with a stagnic layer in about 50 cm soil depth. In each of the two stands we sprinkled a hillslope of 6 m by 10 m with intensities of 100 mm/h and 60 mm/h for one hour each. Surface and shallow interflow as well as interflow in different soil depths was collected by inserted sheet metals and gutters in 10 cm, 30 cm and 60 cm soil depth. Soil water storage responses were measured by 48 multiplexed TDR sensors at each hillslope. TDR wave-guides (20 cm long) were installed in a 45° angle in 10 cm, 30 cm, 50 cm and 70 cm soil depth. Volumetric water content was measured in 6 minute intervals. Sprinkling experiments show that even at intensities of 100 mm/h all the applied water infiltrates, independent of the vegetation cover. The deeper soil horizons respond immediately to the applied precipitation. This vertical water flux response is larger under beech. Under spruce most of the water transport happens in the topsoil layers (upper 40 cm), whereas under beech the entire soil profile down to 80 cm soil depth reacts to sprinkling. Under spruce at intensities of 100 mm/h the whole pore space is almost filled. The larger pores in the topsoil under beech stemming from higher biogenic activity and in the subsoil from more intense rooting are still far from reaching their maximum capacity. High antecedent soil water content (around field capacity) still doesn't cause infiltration excess overland flow but the time that it takes for the soil water storage to drain to its initial value is less than one hour. The hillslope at the spruce stand produces between 23% and 28% runoff. However, the beech hillslope produces roughly twice as much. These experiments show that the interactions between tree species and soil in the vadose zone lead to different pore systems and thus different responses to subsurface stormflow. Beech with its deeper rooting systems and its higher biogenic activity (lower C/N ratio) creates a very effective preferential flow path system that leads to greater amounts of subsurface stormflow. Under high antecedent soil water storage, saturation excess overland flow is more likely to occur in soils under spruce with its smaller preferential flow system.
System analysis to estimate subsurface flow: from global level to the State of Minnesota
NASA Astrophysics Data System (ADS)
Shmagin, Boris A.; Kanivetsky, Roman
2002-06-01
Stream runoff data globally and in the state of Minnesota were used to estimate subsurface water flow. This system approach is based, in principal, on unity of groundwater and surface water systems, and it is in stark contrast to the traditional deterministic approach based on modeling. In coordination with methodology of system analysis, two levels of study were used to estimate subsurface flow. First, the global stream runoff data were assessed to estimate the temporal-spatial variability of surface water runoff. Factor analysis was used to study the temporal-spatial variability of global runoff for the period from 1918 to 1967. Results of these analysis demonstrate that the variability of global runoff could be represented by seven major components (factor scores) that could be grouped into seven distinct independent grouping from the total of 18 continental slopes on the Earth. Computed variance value in this analysis is 76% and supports such analysis. The global stream runoff for this period is stationary, and is more closely connected with the stream flow of Asia to the Pacific Ocean as well as with the stream runoff of North America towards the Arctic and Pacific Oceans. The second level examines the distribution of river runoff (annual and for February) for various landscapes and the hydrogeological conditions in the State of Minnesota (218,000 km2). The annual and minimal monthly rate of stream runoff for 115 gauging stations with a period of observation of 47 years (1935-1981) were used to characterize the spatio-temporal distribution of stream runoff in Minnesota. Results of this analysis demonstrate that the annual stream runoff rate changes from 6.3, towards 3.95, and then to 2.09 l s-1 km-2 (the difference is significant based on Student's criteria). These values in Minnesota correspond to ecological provinces from a mixed forest province towards the broadleaf forest and to prairie province, respectively. The distribution of minimal monthly stream runoff rate (February runoff) is controlled by hydrogeological systems in Minnesota. The difference between the two hydrogeological regions, Precambrian crystalline basement and Paleozoic artesian basin of 0.83 and 2.09 l/s/km2, is statistically significant. Within these regions, the monthly minimal runoff (0.5 and 1.68, and 0.87 and 3.11 l s-1 km-2 for February, respectively) is also distinctly different for delineated subregions, depending on whether or not the Quaternary cover is present. The spatio-temporal structure that emerges could thus be used to generate river runoff and subsurface flow maps at any scale - from the global level to local detail. Such analysis was carried out in Minnesota with the detailed mapping of the subsurface flow for the Twin Cities Metropolitan area.
System analysis to estimate subsurface flow: From global level to the State of Minnesota
Shmagin, B.A.; Kanivetsky, R.
2002-01-01
Stream runoff data globally and in the state of Minnesota were used to estimate subsurface water flow. This system approach is based, in principal, on unity of groundwater and surface water systems, and it is in stark contrast to the traditional deterministic approach based on modeling. In coordination with methodology of system analysis, two levels of study were used to estimate subsurface flow. First, the global stream runoff data were assessed to estimate the temporal-spatial variability of surface water runoff. Factor analysis was used to study the temporal-spatial variability of global runoff for the period from 1918 to 1967. Results of these analysis demonstrate that the variability of global runoff could be represented by seven major components (factor scores) that could be grouped into seven distinct independent grouping from the total of 18 continental slopes on the Earth. Computed variance value in this analysis is 76% and supports such analysis. The global stream runoff for this period is stationary, and is more closely connected with the stream flow of Asia to the Pacific Ocean as well as with the stream runoff of North America towards the Arctic and Pacific Oceans. The second level examines the distribution of river runoff (annual and for February) for various landscapes and the hydrogeological conditions in the State of Minnesota (218,000 km2). The annual and minimal monthly rate of stream runoff for 115 gauging stations with a period of observation of 47 years (1935-1981) were used to characterize the spatio-temporal distribution of stream runoff in Minnesota. Results of this analysis demonstrate that the annual stream runoff rate changes from 6.3, towards 3.95, and then to 2.09 1 s-1 km-2 (the difference is significant based on Student's criteria). These values in Minnesota correspond to ecological provinces from a mixed forest province towards the broadleaf forest and to prairie province, respectively. The distribution of minimal monthly stream runoff rate (February runoff) is controlled by hydrogeological systems in Minnesota. The difference between the two hydrogeological regions, Precambrian crystalline basement and Paleozoic artesian basin of 0.83 and 2.09 1/s/km2, is statistically significant. Within these regions, the monthly minimal runoff (0.5 and 1.68, and 0.87 and 3.11 1 s-1 km-2 for February, respectively) is also distinctly different for delineated subregions, depending on whether or not the Quaternary cover is present. The spatio-temporal structure that emerges could thus be used to generate river runoff and subsurface flow maps at any scale - from the global level to local detail. Such analysis was carried out in Minnesota with the detailed mapping of the subsurface flow for the Twin Cities Metropolitan area.
Kurtz, A.M.; Bahr, J.M.; Carpenter, Q.J.; Hunt, R.J.
2007-01-01
Restoration of disturbed wetland systems is an important component of wetland mitigation, yet uncertainty remains about how hydrologic processes affect biologic processes and wetlands patterns. To design more effective restoration strategies and re-establish native plant communities in disturbed wetlands, it is imperative to understand undisturbed systems. A site within Cherokee Marsh located in Madison, Wisconsin, USA, contains a relatively undisturbed area of wetland consisting of plant communities common within the prairie landscape including a fen, sedge meadow, and shallow marsh. These distinct communities are found within an area of minimal topographic relief, yet transitions from one community to the next occur over short distances. This study sought to characterize the geologic, hydrologic, and chemical gradients associated with these shifts in vegetation to gain insight into the factors controlling the spatial differences in dominant plant species, which could be critical for restoration success. Vegetation analyses revealed a transition of dominant sedge species, which appeared to correspond to changes in hydrology from a ground-water dominated to a surface-water dominated system (as determined by water isotopes). Along the same vegetation transect, subsurface coring results show a heterogeneous composition of peat and till with lateral and vertical variations in stratigraphy, which relates to variability in ground-water discharge as evidenced by hydroperiods and stable isotope composition. Applications of this type of approach throughout the glaciated terrains of the midwestern and northeastern United States and Canada can improve future wetland restoration and management. ?? 2007, The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Eiche, Elisabeth; Hochschild, Maren; Haryono, Eko; Neumann, Thomas
2016-09-01
Karst aquifers are important water resources but highly vulnerable due to their heterogeneous and complex characteristics. Various hydrological aspects (recharge, flow behaviour) have to be known in detail to develop a sustainable concept for water collection, distribution and treatment. In the karst area of Gunung Sewu (Java, Indonesia) such a concept was to be implemented within a German-Indonesian joint IWRM project. The basic hydrogeological conditions and water quality aspects were characterized on a regional scale through hydrochemical monitoring of springs, wells, subsurface and surface rivers. More detailed information about the recharge, flow and storage behaviour was obtained from high resolution monitoring of T, EC and discharge in one large underground river system. The water quality is well below any guideline values with regard to inorganic pollutants during dry season. During rainy season, dissolved Al concentrations are frequently above the Indonesian guideline value. Slow matrix flow is the most important recharge component during dry season, thus assuring the year-round water availability in the subsurface karst. During rainy season, quick infiltration of the surface water is a dominant recharge component. Rapid response of discharge, T and EC to heavy rain suggests the presence of point recharge that feeds a highly karstfied conduit system with fast conduit flow and short transit time of water. The strong variations in discharge and hydrochemistry are particularly challenging for technical water usage and treatment facilities. Piston flow is indicated to be the third important flow component and is induced by heavy rainfall.
Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.
2009-01-01
Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Walvoord, M. A.; Voss, C.; Ebel, B. A.; Minsley, B. J.
2017-12-01
Permafrost environments undergo changes in hydraulic, thermal, chemical, and mechanical subsurface properties upon thaw. These property changes must be considered in addition to alterations in hydrologic, thermal, and topographic boundary conditions when evaluating shifts in the movement and storage of water in arctic and sub-arctic boreal regions. Advances have been made in the last several years with respect to multiscale geophysical characterization of the subsurface and coupled fluid and energy transport modeling of permafrost systems. Ongoing efforts are presented that integrate field data with cryohydrogeologic modeling to better understand and anticipate changes in subsurface water resources, fluxes, and flowpaths caused by climate warming and permafrost thawing. Analyses are based on field data from several sites in interior Alaska (USA) that span a broad north-south transition from continuous to discontinuous permafrost. These data include soil hydraulic and thermal properties and shallow permafrost distribution. The data guide coupled fluid and energy flow simulations that incorporate porewater liquid/ice phase change and the accompanying modifications in hydraulic and thermal subsurface properties. Simulations are designed to assess conditions conducive to active layer thickening and talik development, both of which are expected to affect groundwater storage and flow. Model results provide a framework for identifying factors that control the rates of permafrost thaw and associated hydrologic responses, which in turn influence the fate and transport of carbon.
Results from Field Testing the RIMFAX GPR on Svalbard.
NASA Astrophysics Data System (ADS)
Hamran, S. E.; Amundsen, H. E. F.; Berger, T.; Carter, L. M.; Dypvik, H.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Nunes, D. C.; Paige, D. A.; Plettemeier, D.; Russell, P.
2017-12-01
The Radar Imager for Mars' Subsurface Experiment - RIMFAX is a Ground Penetrating Radar being developed for NASÁs MARS 2020 rover mission. The principal goals of the RIMFAX investigation are to image subsurface structures, provide context for sample sites, derive information regarding subsurface composition, and search for ice or brines. In meeting these goals, RIMFAX will provide a view of the stratigraphic section and a window into the geological and environmental history of Mars. To verify the design an Engineering Model (EM) of the radar was tested in the field in the spring 2017. Different sounding modes on the EM were tested in different types of subsurface geology on Svalbard. Deep soundings were performed on polythermal glaciers down to a couple of hundred meters. Shallow soundings were used to map a ground water table in the firn area of a glacier. A combination of deep and shallow soundings was used to image buried ice under a sedimentary layer of a couple of meters. Subsurface sedimentary layers were imaged down to more than 20 meters in sand stone permafrost. This presentation will give an overview of the RIMFAX investigation, describe the development of the radar system, and show results from field tests of the radar.
2015-05-30
particulates can be trapped in the inlet then washed into the drainage system in a large storm event...and P. Matin. 2005. Performance and Whole-Life Costs of Best Management Practices and Sustainable Urban Drainage Systems . Report #01CTS21TA. Water...subsurface drainage system consisting of a parallel perforated PVC pipe system in a stone bed that connects to the third chamber, which is the discharge
Natural water purification and water management by artificial groundwater recharge
Balke, Klaus-Dieter; Zhu, Yan
2008-01-01
Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624
Natural water purification and water management by artificial groundwater recharge.
Balke, Klaus-Dieter; Zhu, Yan
2008-03-01
Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.
NASA Astrophysics Data System (ADS)
Yao, C.; Mantegazzi, D.; Deschamps, F.; Sanchez-Valle, C.
2013-12-01
Methanol, CH3OH, has been recently observed in several comets and at the surface of Saturn's icy moon Enceladus, [Hodyss et al., 2009]. Its plausible presence in the subsurface ocean could significantly affect the thermal and structural evolution of the satellite [Deschamps et al., 2010]. Methanol lowers the melting temperature of water ice [Vuillard & Sanchez, 1961; Miller & Carpenter, 1964], hence decreasing the efficiency of convective heat transfer through the outer ice Ih shell, and affects the subsurface ocean density and thermo-chemical evolution. However, the phase diagram and the fluid density of the H2O - CH3OH system remains largely unknown at the high pressures and low temperature conditions relevant for the icy moon interiors. In this study, we determined experimentally the liquidus temperature of Ice Ih and Ice VI and the fluid density in the binary water-methanol system (5, 10 and 20 w% CH3OH) from sound velocity measurments by Brillouin scattering spectroscopy over the P-T range 230 - 300 K and 10-4 - 1.2 GPa. The experiments were conducted using a membrane-type diamond anvil cell (mDAC) and an in-house designed Peltier cooling system to achieve the low temperatures of interest. Melting and crystallization in the system was visually monitored and confirmed from changes in the Brillouin spectra and in the pressure dependence of the measured sound velocities. The density of fluids ρ(P, T,x) in the binary system weas determined from the inversion of sound velocities measured in the fluids as a function of pressure along isotherms from 230 to 300 K. The results are used to propose a thermodynamic model for the CH3OH-H2O system over the investigated P-T range and further used to examine the effect of the methanol on the crystallization and thermo-chemical evolution of the subsurface ocean. The implications of these results for the thermal and structural evolution of icy moons, with particular applications to Titan, will be further discussed. References : Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J.I., Astrophys. J., 2010. Hodyss, R., Parkinson, C.D. Johnson, V.D., Stern, J.V., Goguen, J.D, Yung, Y.L., and Kanik, I., Geophys. Res. Lett., 1992. Miller, G.A., and Carpenter, D.A., J. Chem. Eng. Data, 1964. Vuillard, G., and Sanchez, M., Bull. Soc. Chim. France, 1961.
Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin
NASA Astrophysics Data System (ADS)
Lesack, Lance F. W.
1993-03-01
The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.
NASA Astrophysics Data System (ADS)
Riebe, C. S.; Callahan, R. P.; Goulden, M.; Pasquet, S.; Flinchum, B. A.; Taylor, N. J.; Holbrook, W. S.
2017-12-01
The availability of water and nutrients in soil and weathered rock influences the distribution of Earth's terrestrial life and regulates ecosystem vulnerability to land use and climate change. We explored these relationships by combining geochemical and geophysical measurements at three mid-elevation sites in the Sierra Nevada, California. Forest cover correlates strongly with bedrock composition across the sites, implying strong lithologic control on the ecosystem. We evaluated two hypotheses about bedrock-ecosystem connections: 1) that bedrock composition influences vegetation by moderating plant-essential nutrient supply; and 2) that bedrock composition influences the degree of subsurface weathering, which influences vegetation by controlling subsurface water-storage capacity. To quantify subsurface water-holding capacity, we used seismic refraction surveys to infer gradients in P and S-wave velocity structure, which reveal variations in porosity when coupled together in a Hertz-Mindlin rock-physics model. We combined the geophysical data on porosity with bedrock bulk geochemistry measured in previous work to evaluate the influence of water-holding capacity and nutrient supply on ecosystem productivity, which we quantified using remote sensing. Our results show that more than 80% of the variance in ecosystem productivity can be explained by differences in bedrock phosphorus concentration and subsurface porosity, with phosphorus content being the dominant explanatory variable. This suggests that bedrock composition exerts a strong bottom-up control on ecosystem productivity through its influence on nutrient supply and weathering susceptibility, which in turn influences porosity. We show that vegetation vulnerability to drought stress and mortality can be explained in part by variations in subsurface water-holding capacity and rock-derived nutrient supply.
Subsurface water and clay mineral formation during the early history of Mars.
Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves
2011-11-02
Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.
Water and nitrogen requirements of subsurface drip irrigated pomegranate
USDA-ARS?s Scientific Manuscript database
Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...
Subsurface Water Flow and its Subsequent Impact on Chemical Behavior
USDA-ARS?s Scientific Manuscript database
The impact of the subsurface stratigraphy on crop growth and agrichemical behavior has been studied for several years at the OPE3 research site located at the USDA-ARS Beltsville Agricultural Research Center, in Beltsville Maryland. This site contains subsurface restricting layers that have been id...
Hikita, Yasuyuki; Nishio, Kazunori; Seitz, Linsey C.; ...
2016-01-22
One of the crucial parameters dictating the efficiency of photoelectrochemical water-splitting is the semiconductor band edge alignment with respect to hydrogen and oxygen redox potentials. Despite the importance of metal oxides in their use as photoelectrodes, studies to control the band edge alignment in aqueous solution have been limited predominantly to compound semiconductors with modulation ranges limited to a few hundred mV. The ability to modulate the flat band potential of oxide photoanodes by as much as 1.3 V, using the insertion of subsurface electrostatic dipoles near a Nb-doped SrTiO 3/aqueous electrolyte interface is reported. Lastly, the tunable range achievedmore » far exceeds previous reports in any semiconductor/aqueous electrolyte system and suggests a general design strategy for highly efficient oxide photoelectrodes.« less
Impacts of Land-applied Wastes from Concentrated Animal Feeding Operations on Aquatic Organisms
Midwest agricultural fields typically have subsurface tile-drain networks that facilitate transport of excess water from fields to a ditch network system, which can contain sediments, nutrients and pesticides as well as hormones from fields fertilized with manure and associated l...
A subsurface drip irrigation system for weighing lysimetry
USDA-ARS?s Scientific Manuscript database
Large, precision weighing lysimeters can have accuracies as good as 0.04 mm equivalent depth of water, adequate for hourly and even half-hourly determinations of evapotranspiration (ET) rate from crops. Such data are important for testing and improving simulation models of the complex interactions o...
A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface
NASA Astrophysics Data System (ADS)
Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.
2018-02-01
Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.
Water exploration using Magnetotelluric and gravity data analysis; Wadi Nisah, Riyadh, Saudi Arabia
NASA Astrophysics Data System (ADS)
Aboud, Essam; Saud, Ramzi; Asch, Theodore; Aldamegh, Khaled; Mogren, Saad
2014-12-01
Saudi Arabia is a desert country with no permanent rivers or lakes and very little rainfall. Ground water aquifers are the major source of water in Saudi Arabia. In the Riyadh region, several Wadies including Wadi Nisah store about 14 × 106 m3 of water, which is extracted for local irrigation purposes. In such areas, the water wells are as shallow as 200-300 m in depth. The importance of Wadi Nisah is because the subsurface water aquifers that are present there could support the region for many years as a water resource. Accordingly, in this study, we performed a Magnetotelluric survey using a portable broadband sounding system (MT24/LF) to evaluate the ground water aquifer at great depths. We collected 10 broadband Magnetotelluric sounding stations (1 station/day) with an interval of about 2-3 km reaching a profile length of about 25-30 km along Wadi Nisah. Additionally, we used available gravity data to image the subsurface structure containing the aquifer. MT results indicated a low resistivity layer, associated with alluvium deposits, which was defined at a depth of about 1-2 km and extended horizontally about 15 km. Gravity data analysis was used to model this resistivity layer indicating a basement surface at 3-4 km depth.
USDA-ARS?s Scientific Manuscript database
The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations w...
USDA-ARS?s Scientific Manuscript database
The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations wh...
NASA Astrophysics Data System (ADS)
Glose, T. J.; Hausner, M. B.; Lowry, C.
2016-12-01
The accurate, fine scale quantification of groundwater-surface water (GW-SW) interactions over large expanses in hydrologic systems is a fundamental need in order to accurately characterize critical zones of biogeochemical transformation and fluxes, as well as to provide insight into near-surface geologic heterogeneity. Paired fiber-optic distributed temperature sensing (FO-DTS) is a tool that is capable of synoptically sampling hydrologic systems, allowing GW-SW interactions to be examined at a fine scale over large distances. Within managed aquifer recharge (MAR) sites, differential recharge dynamics controlled by bed clogging and subsurface heterogeneity dictate the effectiveness of these sites at infiltrating water. Numerical modeling indicates that the use of paired FO-DTS in an MAR site can provide accurate quantification of flux at the GW-SW interface, as well as provide insight to the areal extent of geologic heterogeneity in the subsurface. However, the lateral and vertical separation of the fiber-optic cables is of vital importance. Here we present a 2-D, fully coupled groundwater flow and heat transport model with prescribed heterogeneity. Following a forward modeling approach, realizations simulating varying fiber-optic cable positioning, differential bed clogging, and hydraulic conductivity variability were analyzed over a suite of scenarios. The results from the model were then used as observations to calculate groundwater recharge rates and calibration targets for an inverse model to estimate subsurface heterogeneity.
Air-induction aspirator-aerators cut heat loss to the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodel, A.E.
1993-04-01
The efficiency of biological treatment at the Amoco Chemical's Cedar Bayou plant's activated-sludge wastewater-treatment system was reduced when outdoor temperatures fell below 65[degrees]F. Amoco experienced microbe fragmenting and failure to settle in final clarification, especially during winter. Meeting permit standards during winter was a concern. With mechanical aerators, water is pumped upward and thrown into the air. Much heat loss in the aerated basin was from evaporation and conduction of the mechanical aerator spray. The plant's wastewater staff decided to replace the aerators with subsurface, propeller-type aerator-mixers. These air-induction, aspirating aerator-mixers employ a system that eliminates the spray action throughmore » which evaporation and conduction can occur. The aspirator-aeration systems also have saved energy. The units do not have to overcome the forces of gravity, as with mechanical, surface splasher aerators, which required more horsepower and higher energy consumption to throw the water up into the air. The new units can be conveniently turned on and off to match a fluctuating flow. Since the Cedar Bayou plant installed the system, the aspirator-aerators' subsurface mixing capabilities have made winter permit compliance a steadfast routine.« less
NASA Astrophysics Data System (ADS)
Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.
2013-12-01
Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.
Evans, C.; Davies, T.D.; Murdoch, Peter S.
1999-01-01
Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event - event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.
Biofilm Effect on Flow Structure over a Permeable Bed
NASA Astrophysics Data System (ADS)
Kazemifar, F.; Blois, G.; Aybar, M.; Perez-Calleja, P.; Nerenberg, R.; Sinha, S.; Hardy, R. J.; Best, J.; Sambrook Smith, G.; Christensen, K. T.
2017-12-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction.
An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa
NASA Astrophysics Data System (ADS)
Pradhan, O.; Gasiewski, A. J.
2015-12-01
We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of the antenna array was first carried out by characterizing their operation inside a large ice block at the Stone Aerospace facility in Austin, TX. The complete radar system was then tested on the Matanuska glacier in Alaska, which is an effective Earth analog to Europan sub-surface exploration.
NASA Astrophysics Data System (ADS)
Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi
2006-08-01
Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.
Detecting and characterizing ice units with the WISDOM Radar
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Plettemeier, D.; Dorizon, S.; Clifford, S. M.; Biancheri-Astier, M.; Dechambre, M.; Saintenoy, A. C.; Costard, F.
2012-12-01
The WISDOM (Water Ice Subsurface Deposit Observation on Mars) Ground Penetrating Radar (GPR) is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. WISDOM main objectives are to understand the geology and evolution of the landing site and to help identifying locations in the shallow subsurface where organic molecules are the most likely to be found and well-preserved. In the context of the ExoMars mission, the importance of the WISDOM GPR is particularly enhanced by its ability to investigate the distribution and state of subsurface water - both as a liquid and as ice. For example, within the diurnally active thermal layer of the subsurface (i.e., the top ~15 - 25 cm), the transient melting and freezing of subsurface ice and brine may be detectable by comparing day- and night-time radar observations at the same location. Moreover, while the biological significance of liquid water on Mars is obvious, a more readily accessible and enduring record of biological activity may be organic biomarkers preserved in subsurface ice. Unfortunately, the dielectric contrast between rock, soil and ice is small, and therefore, differentiating between mixtures of ice-rich and ice-poor regolith in the Martian subsurface is an extraordinarily difficult task. Preliminary tests in both natural (glacier in the Alps and caves in Austria) and artificial (cold chamber) icy environments have been performed with a prototype representative of the WISDOM instrument flight model. These investigations have demonstrated WISDOM's ability to detect and characterize subsurface ice in various forms. Specific examples will be discussed that demonstrate the instrument's depth of sounding, dielectric sensitivity, spatial resolution, full polarimetric and 3-D capability.
NASA Astrophysics Data System (ADS)
Morgan, G. A.; Campbell, B. A.; Carter, L. M.; Plaut, J. J.
2011-12-01
Situated between the equator and 12°N and extending from 130° to 180°E, Elysium Planitia is considered to be the youngest volcanic plain on Mars. Recent crater counts on individual lava units argue for multiple phases of activity over the last 230 Myrs, with the most recent volcanic features dating to just ~2 Ma. The region also contains the youngest outflow channels on the planet. Multiple channel systems which are present across the region are interpreted to have been carved by the release of deep ground water (>1 km) from the broadly east-west trending Cerberus Fossae graben system. Elysium Planitia is therefore a region of high scientific interest, as it represents an ideal site to investigate the interaction of lava and water both below and on the surface of Mars. Extensive geologic mapping of Elysium Planitia has provided detailed information concerning the stratigraphy of the major volcanic units in addition to the classification of other landforms attributed to volcanic (e.g. small shields), fluvial (e.g. outflow channels) and aeolian (e.g. yardangs) activity. Orbital sounding radar provides a means to take this work to the next level through the mapping of buried surfaces associated with a contrast in dielectric permittivity and thus can be used to investigate the 3-D structure of the subsurface. Previous studies using the SHARAD radar sounder onboard the Mars Reconnaissance Orbiter have identified multiple subsurface reflectors below the plains of Elysium Planitia. We will present our investigation of SHARAD data covering the eastern portion of this region of Mars - an area that includes the upstream reaches of Marte Vallis and the eastern extent of Cerberus Fossae. Our subsurface mapping shows remarkable correlations with published geologic maps produced using visible orbital datasets. These similarities allow us to use SHARAD data to make estimates of the average permittivity values and imply density measurements of the volcanic units. We will present these estimates and compare them to values derived over other young volcanic regions on Mars. Sounding radar provides the only type of orbital instrument to derive bulk estimates of geochemical properties of martian volcanic materials. Additionally we have identified the original fluvial eroded bed of Marte Vallis, prior to burial by younger lava flows. Through the mapping of the associated fluvial features we are able to tie the origin of Marte Vallis to Cerberus Fossae and provide further support for the recent (Late Amazonian) deep subsurface release of water on the surface of Mars. Our work will provide valuable constraints on the influence of recent volcanism on martian subsurface reservoirs of water.
Anthony, Stephen S.; Spengler, Steven R.
1996-01-01
Lenger is a small (less than 0.2 square miles) volcanic island located within the lagoon of Pohnpei Island. Ground water on Lenger moves as shallow subsurface flow through weathered bedrock slopes into low-lying areas near the coast before discharging into the surrounding lagoon. Estimated ground-water recharge to the island from rainfall is 506,000 gallons per day on the basis of a mean annual rainfall of 140 inches. The basal part of Lenger is composed of a relatively low- permeability post-shield-building lava flow. This flow is overlain by a more permeable conglomerate of stream deposits which is in turn overlain by a relatively low-permeability columnar-jointed lava flow. The limited land mass and relatively low-permeability lava flows that form the bedrock of Lenger are not favorable to the formation of well-defined drainage basins or large basal ground-water bodies. Numerous springs and seeps discharge shallow subsurface flow at the contact between water-bearing weathered bedrock and underlying less-permeable bedrock. Because the amount of water stored in these shallow subsurface ground-water bodies is limited, springflow and seepflow rates are directly related to rainfall. Barbosa Pond, the largest surface-water body on Lenger, contained 162,000 gallons of water on June 19, 1991. On June 20, 1991, springflow into the pond increased from 0.6 gallons per minute during base-flow conditions to 21 gallons per minute during a 4-hour period of rain that totaled 0.74 inches. The water from Barbosa Pond contains iron and manganese in concentrations that may cause problems in a water-supply system. Small-scale development of ground water, such as was done at Barbosa Pond by the Japanese, is possible by tapping water stored in colluvial talus deposits that flank the base of Mosher hill. The source of water in these deposits is from seeps and springs that have low base flows; however, additional quantities of water could be obtained from these deposits by widening or deepening the capture area of wells used to develop these deposits. If sufficient storage facilities are built, water from these deposits would be available during drought conditions.
Delin, G.N.; Landon, M.K.; Lamb, J.A.; Anderson, J.L.
1994-01-01
The Minnesota Management Systems Evaluation Area project is part of a multi-scale, inter-agency initiative to evaluate the effects of agricultural management systems on water quality in the midwest corn belt. The research area is located in the Anoka Sand Plain about 5 kilometers southwest of Princeton, Minnesota. The ground-water-quality monitoring network within and immediately surrounding the research area consists of 29 observation wells and 22 multiport wells. Thirteen observation wells are also located outside the research area. The primary objectives of research by the U.S. Geological Survey at the Princeton Management Systems Evaluation Area are to: (1) determine the relation of the spatial and temporal distribution of agricultural chemicals in ground water to recharge, topography, and subsurface heterogeneities; and (2) determine the effects of the modified and prevailing farming systems on ground-water quality. This report presents geologic logs and water-quality data used to characterize the Princeton Management Systems Evaluation Area.
Quasi 3D modeling of water flow in vadose zone and groundwater
USDA-ARS?s Scientific Manuscript database
The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One habitual simplification is based on the assumption that lateral flow and transport in unsaturated zone are not significant unless the capillary fringe is involved. In ...
Effectiveness of conservation practices within watersheds: Case study in tile-drained systems
USDA-ARS?s Scientific Manuscript database
The effectiveness of conservation practices are governed in part by the spatial and temporal patterns of water flow as runoff and subsurface (tile) drainage. The variability in patterns of nitrate loss were examined using data from different sized catchments with four CEAP watersheds located in cent...
Biochar-amended filter socks reduce herbicide losses via tile line surface inlets
USDA-ARS?s Scientific Manuscript database
Standing water in depressions and behind terraces in fields with subsurface drainage systems can result in reduced crop yields. This concern can be partially alleviated by installing surface inlets that reduce the duration of ponding. Unfortunately, these inlets provide an open conduit for surface w...
76 FR 5370 - Potential Addition of Vapor Intrusion Component to the Hazard Ranking System
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... structures through the subsurface environment and thus, enabling sites with vapor intrusion contamination to... contamination to be included in an HRS evaluation. Presented below is background information on the HRS, its... facility, the potential for contamination of drinking water supplies, direct human contact, destruction of...
USDA-ARS?s Scientific Manuscript database
Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may impact denitrification. The degradation of 5 mg L-1 atrazine, enrofloxa...
Review of progress in understanding the fluid geochemistry of the Cerro Prieto Geothermal System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truesdell, A.H.; Nehring, N.L.; Thompson, J.M.
1982-08-10
Fluid geochemistry has played a major role in the authors present understanding of the Cerro Prieto geothermal system. Fluid chemical and isotopic compositions have been used to indicate the origin of water, salts, and gases, original subsurface temperature and fluid flow, fluid-production mechanims, and production-induced aquifer boiling and cold-water entry. The extensive geochemical data and interpretation for Cerro Prieto published from 1964 to 1981 are reviewed and discussed. Fluid geochemistry must continue to play an important role in the further development of the Cerro Prieto field.
Welch, Wendy B.; Johnson, Kenneth H.; Savoca, Mark E.; Lane, Ron C.; Fasser, Elisabeth T.; Gendaszek, Andrew S.; Marshall, Cameron; Clothier, Burt G.; Knoedler, Eric N.
2015-01-01
The water-budget area received about 1,428,000 acre-feet or about 52 inches of precipitation per year (January 1, 2011, to December 31, 2012). About 41 percent of precipitation enters the groundwater system as recharge. Seven percent of this recharge is withdrawn from wells and the remainder leaves the groundwater system as discharge to rivers, discharge to springs, or submarine discharge to Puget Sound, or exits the study area through subsurface flow in the Green River valley.
NASA Astrophysics Data System (ADS)
Amils, R.; Fernández-Remolar, D. C.; Parro, V.; Manfredi, J. A.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Gómez-Ortiz, D.; Briones, C.; Gómez, F.; García, M.; Rodríguez, N.; Sanz, J. L.
2012-09-01
Iberian Pyrite Belt Subsurface Life (IPBSL) is a drilling project specifically designed to characterize the subsurface ecosystems operating in the Iberian Pyrite Belt (IPB), in the area of Peña de Hierro, and responsible of the extreme acidic conditions existing in the Rio Tinto basin [1]. Rio Tinto is considered a good geochemical terrestrial analogue of Mars [2, 3]. A dedicated geophysical characterization of the area selected two drilling sites (4) due to the possible existence of water with high ionic content (low resistivity). Two wells have been drilled in the selected area, BH11 and BH10, of depths of 340 and 620 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. Preliminary results showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite (sulfates and ferric iron). Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors (ferrous iron, nitrite in addition of the metal sulfides), electron acceptors (sulfate, nitrate, ferric iron) as well as variable concentration of metabolic organic acids (mainly acetate, formate, propionate and oxalate), which are strong signals of the presence of active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. The system is driven by oxidants that appear to be provided by the rock matrix, only groundwater is needed to launch microbial metabolism. The geological, geomicrobiological and molecular biology analysis which are under way, should allow the characterization of this ecosystem of paramount interest in the design of an astrobiological underground Mars exploration mission in the near future.
Terrestrial rock glaciers: a potential analog for Martian lobate flow features (LFF)
NASA Astrophysics Data System (ADS)
Sinha, Rishitosh K.; Vijayan, Sivaprahasam; Bharti, Rajiv R.
2016-05-01
Rock glaciers, regarded as cryospheric ice/water resource in the terrestrial-glacial systems based on their tongue/lobate-shaped flow characteristic and subsurface investigation using ground-penetrating radar. We examined the subsurface, geomorphology, climate-sensitivity and thermophysical properties of a Lobate Flow Feature (LFF) on Mars (30°-60° N and S hemispheres) to compare/assess the potentials of rock glaciers as an analog in suggesting LFFs to be a source of subsurface ice/water. LFFs are generally observed at the foot of impact craters' wall. HiRISE/CTX imageries from MRO spacecraft were used for geomorphological investigation of LFF using ArcMap-10.0 and subsurface investigation was carried out using data from MRO-SHARAD (shallow radar) after integrating with SiesWare-8.0. ENVI-5.0 was used to retrieve thermophysical properties of LFF from nighttime datasets (12.57 μm) acquired by THEMIS instrument-onboard the Mars Odyssey spacecraft and derive LFFs morphometry from MOLA altimeter point tracks onboard MGS spacecraft. Integrating crater chronology tool (Craterstats) with Arc Map, we have derived the formation age of LFF. Our investigation and comparison of LFF to rock glaciers revealed: (1) LFFs have preserved ice at depth 50m as revealed from SHARAD radargram and top-layer composed of rocky-debris material with thermal inertia ( 300-350 Jm-2 K-1s-1/2). (2) LFF formation age ( 10-100 Ma) corresponds to moderate scale debris covered glaciation of a shorter-span suggesting high sensitivity to obliquity-driven climatic shifts. (3) Presence of polygon cracks and high linear-arcuate furrow-and-ridges on the surface indicates presence of buried ice. This work is a significant step towards suggesting LFF to be a potential source of present-day stored ice/water on Mars.
Phytoremediation removal rates of benzene, toluene, and chlorobenzene.
Limmer, Matt A; Wilson, Jordan; Westenberg, David; Lee, Amy; Siegman, Mark; Burken, Joel G
2018-06-07
Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10 -2 -10 0 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Liquid Water in the Extremely Shallow Martian Subsurface
NASA Technical Reports Server (NTRS)
Pavlov, A.; Shivak, J. N.
2012-01-01
Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.
Balkhair, Khaled S.
2015-01-01
Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.
The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less
Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali
2017-07-01
Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Barco, Janet; Temgoua, André Guy Tranquille; Echeverrri-Ramirez, Oscar
2017-03-01
Numerical results are presented of surface-subsurface water modeling of a natural hillslope located in the Aburrá Valley, in the city of Medellín (Antioquia, Colombia). The integrated finite-element hydrogeological simulator HydroGeoSphere is used to conduct transient variably saturated simulations. The objective is to analyze pore-water pressure and saturation variation at shallow depths, as well as volumes of water infiltrated in the porous medium. These aspects are important in the region of study, which is highly affected by soil movements, especially during the high-rain seasons that occur twice a year. The modeling exercise considers rainfall events that occurred between October and December 2014 and a hillslope that is currently monitored because of soil instability problems. Simulation results show that rainfall temporal variability, mesh resolution, coupling length, and the conceptual model chosen to represent the heterogeneous soil, have a noticeable influence on results, particularly for high rainfall intensities. Results also indicate that surface-subsurface coupled modeling is required to avoid unrealistic increase in hydraulic heads when high rainfall intensities cause top-down saturation of soil. This work is a first effort towards fostering hydrogeological modeling expertise that may support the development of monitoring systems and early landslide warning in a country where the rainy season is often the cause of hydrogeological tragedies associated with landslides, mud flow or debris flow.
NASA Technical Reports Server (NTRS)
Delory, G. T.; Grimm, R. E.
2003-01-01
Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.
NASA Astrophysics Data System (ADS)
Caruso, Alice; Boano, Fulvio; Ridolfi, Luca
2015-04-01
Surface water bodies continuously interact with the subsurface and it is by now widely known that the hyporheic zone plays a key role in the mixing of river water with shallow groundwater. Hyporheic exchange occurs over a very wide range of spatial and temporal scales and the exchange processes at different scales interact and determine a complex system of nested flow cells. This intricacy results from the multiplicity of spatial scale that characterize landscape and river morphology. In the last years, many processes that regulate the surface-groundwater interactions have been elucidated and a more holistic view of groundwater and surface water has been adopted. However, despite several insights on the mechanisms of hyporheic exchange have been achieved, many important aspects remain to be clarified, i.e. how surface-groundwater interactions influence solute transport, microbial activity and biogeochemical transformations at the scale of entire watersheds. To date a deep knowledge of small-scale processes has been developed but what is lacking is a unifying overview of the role of surface water-groundwater exchange for the health of the whole water system at larger scales, i.e. the scale of the entire basin. In order to better understand the complex multiscale nature of spatial patterns of surface-subsurface exchange, we aim to assess the importance of the individual scales included in the range between watershed scale to stream reach scale. Hence, we study the large-scale subsurface flow field taking into account the surface-groundwater interactions induced by landscape topography from the basin scale to smaller scales ranging from tens of kilometers to tens of meters. The aim of this research is to analyze how individual topographic scales affect the flow field and to understand which ones are the most important and should be focused on. To study the impact of various scales of landscape topography we apply an analytical model that provides an exact solution of the underlying three dimensional groundwater flow and a numerical particle tracking routine that allows to obtain streamlines and residence time distributions from the flow field. Therefore, starting from a previously published mathematical tool we set the goal of investigating the interaction between the scales and clarifying their role. We consider real basin examples and describe subsurface flow at the landscape scale, identifying inflow patterns of groundwater to the river network, in order to obtain, in the near future, results to be used for conserving, managing and restoring of a riverine ecosystem.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... preclude future actions under Superfund. This partial deletion pertains to the surface soil, unsaturated subsurface soil, surface water and sediments of Operable Unit (OU) 1, the Gateway Lake Ash Study Area, and.... Surface soil, unsaturated subsurface soil, surface water, and sediments at OU-2, OU-3, OU-4, OU-5, OU-6...
The stream subsurface: nitrogen cycling and the cleansing function of hyporheic zones
Rhonda Mazza; Steve Wondzell; Jay Zarnetske
2014-01-01
Nitrogen is an element essential to plant growth and ecosystem productivity. Excess nitrogen, however, is a common water pollutant. It can lead to algal blooms that deplete the water's dissolved oxygen, creating "dead zones" devoid of fish and aquatic insects.Previous research showed that the subsurface area of a stream, known as the hyporheic...
USDA-ARS?s Scientific Manuscript database
Subsurface drainage, while an important and necessary agricultural production practice in the Midwest, contributes nitrate (NO3) and soluble phosphorus (P) to surface waters. Eutrophication (i.e., excessive enrichment of waters by NO3 and soluble P) supports harmful algal blooms (HABs) in receiving ...
Hubalek, Valerie; Wu, Xiaofen; Eiler, Alexander; Buck, Moritz; Heim, Christine; Dopson, Mark; Bertilsson, Stefan; Ionescu, Danny
2016-10-01
Little research has been conducted on microbial diversity deep under the Earth's surface. In this study, the microbial communities of three deep terrestrial subsurface aquifers were investigated. Temporal community data over 6 years revealed that the phylogenetic structure and community dynamics were highly dependent on the degree of isolation from the earth surface biomes. The microbial community at the shallow site was the most dynamic and was dominated by the sulfur-oxidizing genera Sulfurovum or Sulfurimonas at all-time points. The microbial community in the meteoric water filled intermediate aquifer (water turnover approximately every 5 years) was less variable and was dominated by candidate phylum OD1. Metagenomic analysis of this water demonstrated the occurrence of key genes for nitrogen and carbon fixation, sulfate reduction, sulfide oxidation and fermentation. The deepest water mass (5000 year old waters) had the lowest taxon richness and surprisingly contained Cyanobacteria. The high relative abundance of phylogenetic groups associated with nitrogen and sulfur cycling, as well as fermentation implied that these processes were important in these systems. We conclude that the microbial community patterns appear to be shaped by the availability of energy and nutrient sources via connectivity to the surface or from deep geological processes.
Nuclear magnetic resonance imaging of water content in the subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Hendricks; T. Yao; A. Kearns
1999-01-21
Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears tomore » be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.« less
A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples
NASA Astrophysics Data System (ADS)
Flowers, Gwenn E.; Clarke, Garry K. C.
2002-11-01
Basal hydrology is acknowledged as a fundamental control on glacier dynamics, especially in cases where surface meltwater reaches the bed. For many glaciers at midlatitudes, basal drainage is influenced by subaerial, englacial, and subsurface water flow. One of the major shortcomings of existing basal hydrology models is the treatment of the glacier bed as an isolated system. We present theoretical and computational models that couple glacier surface runoff, englacial water storage and transport, subglacial drainage, and subsurface groundwater flow. Each of the four model components is represented as a two-dimensional, vertically integrated layer that communicates with its neighbors through water exchange. Governing equations are derived from the law of mass conservation and are expressed as a balance between the internal distribution of water and external sources. The numerical exposition of this theory is a time-dependent finite difference model that can be used to simulate glacier drainage. In this paper we outline the theory and conduct simple tests using an idealized glacier geometry. In the companion paper, the model is tailored to Trapridge Glacier, Yukon Territory, Canada, where results are compared with measurements of subglacial water pressure.
The influence of subsurface hydrodynamics on convective precipitation
NASA Astrophysics Data System (ADS)
Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.
2014-12-01
The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.
NASA Astrophysics Data System (ADS)
Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.
2016-12-01
There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.
Urban heat islands in the subsurface of German cities
NASA Astrophysics Data System (ADS)
Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.
2012-04-01
In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.
Porter, Mark L; Jiménez-Martínez, Joaquín; Martinez, Ricardo; McCulloch, Quinn; Carey, J William; Viswanathan, Hari S
2015-10-21
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.
NASA Astrophysics Data System (ADS)
Salem, Zenhom El-Said
2016-12-01
The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.
Accounting for Hydrologic State in Ground-Penetrating Radar Classification Systems
2014-04-22
water content as a result of infiltration processes. • Demonstrated that effective medium approximations (one-dimensional flow and ray theory...280 290 300 310 320 330 340 -5 0 5 10 15 20 (a) (b) (c) Page 8 of 32 Figure 6: a) Conceptual model of flow experiment and GPR rays showing... ray theory for GPR) for characterizing the hydrologic state of the subsurface under arbitrary water content conditions. Figure 7: Comparison of
Geophysical and Geospatial Shapefiles from the Milford, Utah FORGE Project
Joe Moore
2016-03-22
Three shapefiles in this submission show the position of proposed seismic line surveys. The mid-crustal velocity anomaly file shows the extent of an anomalously low P-wave velocity zone in the subsurface. Two other files show the extent of known hydrothermal systems in the Roosevelt Hot Springs area. Another file shows the location of the proposed water pipeline to pump water from the supply wells to the deep drill site.
Geophysics of Martian Periglacial Processes
NASA Technical Reports Server (NTRS)
Mellon, Michael T.
2004-01-01
Through the examination of small-scale geologic features potentially related to water and ice in the martian subsurface (specifically small-scale polygonal ground and young gully-like features), determine the state, distribution and recent history of subsurface water and ice on Mars. To refine existing models and develop new models of near-surface water and ice, and develop new insights about the nature of water on Mars as manifested by these geologic features. Through an improved understanding of potentially water-related geologic features, utilize these features in addressing questions about where to best search for present day water and what space craft may encounter that might facilitate or inhibit the search for water.
Subsurface event detection and classification using Wireless Signal Networks.
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T
2012-11-05
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.
Subsurface Event Detection and Classification Using Wireless Signal Networks
Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.
2012-01-01
Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191
NASA Astrophysics Data System (ADS)
Ocampo, C. J.; Oldham, C. E.
2015-12-01
Groundwater and surface water (GW-SW) interaction in drains of many sandy coastal plain areas displays an ephemeral hydrological regime, as often shifts occur in their hydraulic functioning from a losing to a gaining water conditions upon the position of the surrounding shallow water table (SWT). Urbanization in such areas and stormwater management strategies enhancing infiltration have the potential to alter the infiltration rates and the subsurface water storage dynamics with consequences for the residence time of the water and nutrient transformations prior their discharge into receiving SW drains. Identifying first order control on the above processes will assist the improvement of assessment tools for better urban development. This work presents findings on the hydrodynamics of the GW-SW water exchange in two drains of the Perth Coastal Plain area (Western Australia, Australia) impacted by a SWT developing on a layered variable texture soil: a peri-urban drain and a restored living stream drain in urban residential area. A multi-technique approach was used to investigate water mass balance and fluxes over a reach scale and involved continuous records of hydrometric data for GW-SW interactions, passive tracers for water pathway identification, pore water temperature for vertical water exchange, and differential SW discharge using an Acoustic Doppler Current Profiler. Results highlighted differences in the GW-SW interactions between both drains under stormflow and baseflow conditions. A substantial increase of GW discharge into the drain coincided with the full development of a SWT over a seasonal scale at the peri-urban drain, which suggests a more natural water infiltration and redistribution in the subsurface. In contrast, a large volume of infiltrated rain water was discharged into the living stream over a period of few weeks regardless of the development of the surrounding SWT, which suggests the influence of underground pipe system in water redistribution. The results contributed to identify key physical parameters to define urban typologies, quantify the subsurface storage discharge and residence time, and finally assess the transport and transformations of nutrients using a generalised Damköhler number. Future work will populate the framework with other study cases.
A new technology for determining transport parameters in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, J.L.; Wright, J.
The UFA Method can directly and rapidly measure transport parameters for any porous medium over a wide range of water contents and conditions. UFA results for subsurface sediments at a mixed-waste disposal site at the Hanford Site in Washington State provided the data necessary for detailed hydrostratigraphic mapping, subsurface flux and recharge distributions, and subsurface chemical mapping. Seven hundred unsaturated conductivity measurements along with pristine pore water extractions were obtained in only six months using the UFA. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies.
Haack, Sheridan Kidd; Duris, Joseph W.
2008-01-01
A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water-quality single-sample criterion of 235 colony forming units per 100 milliliters in only 3 of 56 samples. Of these three samples, two were collected within 1 day post-LDME application from the treatment receiving 8,000 gal/acre LDME with no tillage (NT8000). The third sample was from the rolling-tine aerator treatment with 4,000 gal/acre LDME application rate after the first significant rainfall. Two wastewater chemicals and two bacterial genes (eaeA and stx1) detected in the LDME, but absent in field blank or pre-application samples, were detected in the 4-hour or 1-day postapplication NT8000 samples. No LDME-associated chemicals were detected in later samples from the NT8000 treatment, and none were detected in samples from other treatments after the first significant rainfall. Results of this field trial were somewhat equivocal with respect to the influence of LDME concentration and tillage practices on subsurface-drain water quality, both immediately after LDME application and in the longer term, after significant rainfall. Interpretation of study findings is limited by the fact that treatments were not replicated, and flow rate or discharge from the subsurface drains was not measured. Nevertheless, study results provide useful information about nutrient and bacteria concentrations in subsurface drains during the non-growing season. In addition, study results demonstrate some potential for the use of chemical and microbiological indicators of LDME transport to subsurface drains.
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
The seasonal cycle of water on Mars
NASA Technical Reports Server (NTRS)
Jakosky, B. M.
1985-01-01
A review of the behavior of water in the Mars atmosphere and subsurface is appropriate now that data from the Mariner and Viking spacecraft have been analyzed and discussed for several years following completion of those missions. Observations and analyses pertinent to the seasonal cycle of water vapor in the atmosphere of Mars are reviewed, with attention toward transport of water and the seasonal exchange of water between the atmosphere and various non-atmospheric reservoirs. Possible seasonally-accessible sources and sinks for water include water ice on or within the seasonal and residual polar caps; surface or subsurface ice in the high-latitude regions of the planet; adsorbed or chemically-bound water within the near-surface regolith; or surface or subsurface liquid water. The stability of water within each of these reservoirs is discussed, as are the mechanisms for driving exchange of the water with the atmosphere and the timescales for exchange. Specific conclusions are reached about the distribution of water and the viability of each mechanism as a seasonal reservoir. Discussion is also included of the behavior of water on longer timescales, driven by the variations in solar forcing due to the quasi-periodic variations of the orbital obliquity. Finally, specific suggestions are made for future observations from spacecraft which would further define or constrain the seasonal cycle of water.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Zhao, Pei; Liang, Chuan; Li, Tianyang; Zhou, Baojia
2017-01-01
Velocity and celerity in hydrologic systems are controlled by different mechanisms. Efforts were made through joint sample collection and the use of hydrographs and tracers to understand the rapidity of the subsurface flow response to rainstorms on hourly time scales. Three deep subsurface flows during four natural rainstorm events were monitored. The results show that (1) deeper discharge was observed early in responding rainfall events and yielded a high hydrograph amplitude; (2) a ratio index, k, reflecting the dynamic change of the rainfall perturbation intensity in subsurface flow, might reveal inner causal relationships between the flow index and the tracer signal index. Most values of k were larger than 1 at the perturbation stage but approximated 1 at the no-perturbation stage; and (3) for statistical analysis of tracer signals in subsurface flows, the total standard deviation was 17.2, 11.9, 7.4 and 3.5 at perturbation stages and 4.4, 2.5, 1.1, and 0.95 at the non-perturbation stage for observed events. These events were 3-7 times higher in the former rather than the later, reflecting that the variation of tracer signals primarily occurred under rainfall perturbation. Thus, we affirmed that the dynamic features of rainfall have a key effect on rapid processes because, besides the gravity, mechanical waves originating from dynamic rainfall features are another driving factor for conversion between different types of rainfall mechanical energy. A conceptual model for pressure wave propagation was proposed, in which virtual subsurface flow processes in a heterogeneous vadose zone under rainfall are analogous to the water hammer phenomenon in complex conduit systems. Such an analogy can allow pressure in a shallow vadose to increase and decrease and directly influence the velocity and celerity of the flow reflecting a mechanism for rapid subsurface hydrologic response processes in the shallow vadose zone.
Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter
2017-10-15
Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics
NASA Astrophysics Data System (ADS)
Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte
2016-04-01
Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were adjusted in able to measure in the medieval center of Bad Frankenhausen. This required special equipment and configuration due to the densely built-up area, the differing ground conditions and the varying topography. The analysis of the seismic sections revealed structures associated with the continuing subrosion of the Permian deposits. The reflection patterns indicate heterogeneous near-surface geology of lateral and vertical variations in forms of discontinuous reflectors, small-scale fractures and faults. The fractures and faults also serve as additional pathways for the circulating water and the deposits are subsiding along these features, resulting in the formation of depression structures in the near-subsurface. Diffractions in the unmigrated sections indicate voids in the subsurface that develop due to the longtime subrosion processes. Besides these structures, variations of the traveltime, absorption and scattering of the seismic waves induced by the subrosion processes are visible.
Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa
Borgonie, G.; Linage-Alvarez, B.; Ojo, A. O.; Mundle, S.O.C.; Freese, L B.; Van Rooyen, C.; Kuloyo, O.; Albertyn, J.; Pohl, C.; Cason, E. D.; Vermeulen, J.; Pienaar, C.; Litthauer, D.; Van Niekerk, H.; Van Eeden, J.; Lollar, B. Sherwood.; Onstott, T. C.; Van Heerden, E.
2015-01-01
Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in palaeometeoric fissure water up to 12,300 yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system. PMID:26597082
Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa.
Borgonie, G; Linage-Alvarez, B; Ojo, A O; Mundle, S O C; Freese, L B; Van Rooyen, C; Kuloyo, O; Albertyn, J; Pohl, C; Cason, E D; Vermeulen, J; Pienaar, C; Litthauer, D; Van Niekerk, H; Van Eeden, J; Sherwood Lollar, B; Onstott, T C; Van Heerden, E
2015-11-24
Following the discovery of the first Eukarya in the deep subsurface, intense interest has developed to understand the diversity of eukaryotes living in these extreme environments. We identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in palaeometeoric fissure water up to 12,300 yr old in South African mines. Protozoa and Fungi have also been identified; however, they are present in low numbers. Characterization of the different species reveals that many are opportunistic organisms with an origin due to recharge from surface waters rather than soil leaching. This is the first known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen is the limiting factor for eukaryal population growth. The discovery of a group of Eukarya underground has important implications for the search for life on other planets in our solar system.
Larson, Rebecca A; Safferman, Steven I
2012-01-01
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Plant-based plume-scale mapping of tritium contamination in desert soils
Andraski, Brian J.; Stonestrom, David A.; Michel, R.L.; Halford, K.J.; Radyk, J.C.
2005-01-01
Plant-based techniques were tested for field-scale evaluation of tritium contamination adjacent to a low-level radioactive waste (LLRW) facility in the Amargosa Desert, Nevada. Objectives were to (i) characterize and map the spatial variability of tritium in plant water, (ii) develop empirical relations to predict and map subsurface contamination from plant-water concentrations, and (iii) gain insight into tritium migration pathways and processes. Plant sampling [creosote bush, Larrea tridentata (Sessé & Moc. ex DC.) Coville] required one-fifth the time of soil water vapor sampling. Plant concentrations were spatially correlated to a separation distance of 380 m; measurement uncertainty accounted for <0.1% of the total variability in the data. Regression equations based on plant tritium explained 96 and 90% of the variation in root-zone and sub-root-zone soil water vapor concentrations, respectively. The equations were combined with kriged plant-water concentrations to map subsurface contamination. Mapping showed preferential lateral movement of tritium through a dry, coarse-textured layer beneath the root zone, with concurrent upward movement through the root zone. Analysis of subsurface fluxes along a transect perpendicular to the LLRW facility showed that upward diffusive-vapor transport dominates other transport modes beneath native vegetation. Downward advective-liquid transport dominates at one endpoint of the transect, beneath a devegetated road immediately adjacent to the facility. To our knowledge, this study is the first to document large-scale subsurface vapor-phase tritium migration from a LLRW facility. Plant-based methods provide a noninvasive, cost-effective approach to mapping subsurface tritium migration in desert areas.
Awad, John; van Leeuwen, John; Liffner, Joel; Chow, Christopher; Drikas, Mary
2016-02-01
The treatability of NOM present in runoff and subsurface waters from discrete zero-order catchments (ZOCs) with three land management practices (Australian native vegetation, pine plantation, grasslands) on varying soil textures of a closed drinking water reservoir-catchment was investigated. Subsurface water samples were collected by lysimeters and shallow piezometers and surface waters by installation of barriers that diverted waters to collection devices. For small sample volumes collected, a 'micro' jar testing procedure was developed to assess the treatability of organics by enhanced coagulation using alum, under standardised conditions. DOM present in water samples was quantified by measurement of DOC and UV absorbance (at 254 nm) and characterized using these and F-EEM. The mean alum dose rate (mg alum per mg DOC removed or Al/DOC) was found to be lower for DOM from sandy soil ZOCs (21.1 ± 11.0 Al/DOC) than from clayey soil ZOCs (38.6 ± 27.7 Al/DOC). ZOCs with Pinus radiata had prominent litter layers (6.3 ± 2.6 cm), and despite differences in soil textures showed similarity in DOM character in subsurface waters, and in alum dose rates (22.2 ± 5.5 Al/DOC). For sandy soil ZOCs, the lowest alum dose rates (16.5 ± 10.6 Al/DOC) were for waters from native vegetation catchment while, for clayey soil ZOCs, waters from pine vegetation had the lowest alum dose rates (23.0 ± 5.0 Al/DOC). Where ZOCs have a prominent O horizon, soil minerals had no apparent influence on the treatability of DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.
2012-12-01
Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.
NASA Astrophysics Data System (ADS)
van der Wiel, K.; Kapnick, S. B.; Vecchi, G.; Smith, J. A.
2017-12-01
The Mississippi-Missouri river catchment houses millions of people and much of the U.S. national agricultural production. Severe flooding events can therefore have large negative societal, natural and economic impacts. GFDL FLOR, a global coupled climate model (atmosphere, ocean, land, sea ice with integrated river routing module) is used to investigate the characteristics of great Mississippi floods with an average return period of 100 years. Model experiments under pre-industrial greenhouse gas forcing were conducted for 3400 years, such that the most extreme flooding events were explicitly modeled and the land and/or atmospheric causes could be investigated. It is shown that melt of snow pack and frozen sub-surface water in the Missouri and Upper Mississippi basins prime the river system, subsequently sensitizing it to above average precipitation in the Ohio and Tennessee basins. The months preceding the greatest flooding events are above average wet, leading to moist sub-surface conditions. Anomalous melt depends on the availability of frozen water in the catchment, therefore anomalous amounts of sub-surface frozen water and anomalous large snow pack in winter (Nov-Feb) make the river system susceptible for these great flooding events in spring (Feb-Apr). An additional experiment of 1200 years under transient greenhouse gas forcing (RCP4.5, 5 members) was done to investigate potential future change in flood risk. Based on a peak-over-threshold method, it is found that the number of great flooding events decreases in a warmer future. This decrease coincides with decreasing occurrence of large melt events, but is despite increasing numbers of large precipitation events. Though the model results indicate a decreasing risk for the greatest flooding events, the predictability of events might decrease in a warmer future given the changing characters of melt and precipitation.
Localized Rapid Warming of West Antarctic Subsurface Waters by Remote Winds
NASA Astrophysics Data System (ADS)
Griffies, S. M.; Spence, P.; Holmes, R.; Hogg, A. M.; Stewart, K. D.; England, M. H.
2017-12-01
The largest rates of Antarctic glacial ice mass loss are occurring tothe west of the Antarctica Peninsula in regions where warming ofsubsurface continental shelf waters is also largest. However, thephysical mechanisms responsible for this warming remain unknown. Herewe show how localized changes in coastal winds off East Antarctica canproduce significant subsurface temperature anomalies (>2C) around theentire continent. We demonstrate how coastal-trapped Kelvin wavescommunicate the wind disturbance around the Antarctic coastline. Thewarming is focused on the western flank of the Antarctic Peninsulabecause the anomalous circulation induced by the coastal-trapped wavesis intensified by the steep continental slope there, and because ofthe presence of pre-existing warm subsurface water. Thecoastal-trapped waves leads to an adjustment of the flow that shoalsisotherms and brings warm deep water upwards onto the continentalshelf and closer to the coast. This result demonstrates the uniquevulnerability of the West Antarctic region to a changing climate.
This poster will present a modeling and mapping assessment of landscape sensitivity to non-point source pollution as applied to a hierarchy of catchment drainages in the Coastal Plain of the state of North Carolina. Analysis of the subsurface residence time of water in shallow a...
Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions
NASA Astrophysics Data System (ADS)
Bostater, Charles R.; Oney, Taylor
2016-10-01
Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
NASA Technical Reports Server (NTRS)
Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu
2015-01-01
This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.
NASA Astrophysics Data System (ADS)
Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob
2017-09-01
The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.
Effect of alternative surface inlet designs on sediment and phosphorus drainage losses
USDA-ARS?s Scientific Manuscript database
Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine whether modifying open inlets by burying them in gravel capped with 30 cm of sandy clay loam soil or in ve...
NASA Astrophysics Data System (ADS)
Verardo, E.; Atteia, O.; Prommer, H.
2017-06-01
Organic pollutants such as solvents or petroleum products are widespread contaminants in soil and groundwater systems. In-situ bioremediation is a commonly used remediation technology to clean up the subsurface to eliminate the risks of toxic substances to reach potential receptors in surface waters or drinking water wells. This study discusses the development of a subsurface model to analyse the performance of an actively operating field-scale enhanced bioremediation scheme. The study site was affected by a mixed toluene, dihydromyrcenol (DHM), methanol, and i-propanol plume. A high-resolution, time-series of data was used to constrain the model development and calibration. The analysis shows that the observed failure of the treatment system is linked to an inefficient oxygen injection pattern. Moreover, the model simulations also suggest that additional contaminant spillages have occurred in 2012. Those additional spillages and their associated additional oxygen demand resulted in a significant increase in contaminant fluxes that remained untreated. The study emphasises the important role that reactive transport modelling can play in data analyses and for enhancing remediation efficiency.
NASA Astrophysics Data System (ADS)
Rahman, A.; Kollet, S. J.; Sulis, M.
2013-12-01
In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics acts at the 20-30 day time scale, while the groundwater contribution to sustain the long-term variability patterns in evapotranspiration acts at the 40-60 day scale. Diurnal patterns in connection with subsurface hydrodynamics were also detected. Thus, it appears that the subsurface hydrodynamics respond to the temporal patterns in land surface fluxes due to the variability in atmospheric forcing across multiple space and time scales.
Adsorbed water and thin liquid films on Mars
NASA Astrophysics Data System (ADS)
Boxe, C. S.; Hand, K. P.; Nealson, K. H.; Yung, Y. L.; Yen, A. S.; Saiz-Lopez, A.
2012-07-01
At present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001-0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6-66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013 and 6.50×1013 litres of waters, respectively, 55-325 times larger than Mars' atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104-1.5×106 litres of water, which is 6.0×10-7-4.0×10-4%, respectively, of a 10 pr μm water vapour column, and 3.0×10-6-4.0×10-4% and 6.0×10-6-8.0×10-4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106-3.0×107 litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104 litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.
Rowan, E.L.; De Marsily, G.
2001-01-01
Salinities and homogenization temperatures of fluid inclusions in Mississippi Valley-type (MVT) deposits provide important insights into the regional hydrology of the Illinois basin/Reelfoot rift system in late Palaeozoic time. Although the thermal regime of this basin system has been plausibly explained, the origin of high salinities in the basin fluids remains enigmatic. Topographically driven flow appears to have been essential in forming these MVT districts, as well as many other districts worldwide. However, this type of flow is recharged by fresh water making it difficult to account for the high salinities of the mineralizing fluids over extended time periods. Results of numerical experiments carried out in this study provide a possible solution to the salinity problem presented by the MVT zinc-lead and fluorite districts at the margins of the basin system. Evaporative concentration of surface water and subsequent infiltration into the subsurface are proposed to account for large volumes of brine that are ultimately responsible for mineralization of these districts. This study demonstrates that under a range of geologically reasonable conditions, brine infiltration into an aquifer in the deep subsurface can coexist with topographically driven flow. Infiltration combined with regional flow and local magmatic heat sources in the Reelfoot rift explain the brine concentrations as well as the temperatures observed in the Southern Illinois and Upper Mississippi Valley districts.
AIDA - from Airborne Data Inversion to In-Depth Analysis
NASA Astrophysics Data System (ADS)
Meyer, U.; Goetze, H.; Schroeder, M.; Boerner, R.; Tezkan, B.; Winsemann, J.; Siemon, B.; Alvers, M.; Stoll, J. B.
2011-12-01
The rising competition in land use especially between water economy, agriculture, forestry, building material economy and other industries often leads to irreversible deterioration in the water and soil system (as salinization and degradation) which results in a long term damage of natural resources. A sustainable exploitation of the near subsurface by industry, economy and private households is a fundamental demand of a modern society. To fulfill this demand, a sound and comprehensive knowledge on structures and processes of the near subsurface is an important prerequisite. A spatial survey of the usable underground by aerogeophysical means and a subsequent ground geophysics survey targeted at special locations will deliver essential contributions within short time that make it possible to gain the needed additional knowledge. The complementary use of airborne and ground geophysics as well as the validation, assimilation and improvement of current findings by geological and hydrogeological investigations and plausibility tests leads to the following key questions: a) Which new and/or improved automatic algorithms (joint inversion, data assimilation and such) are useful to describe the structural setting of the usable subsurface by user specific characteristics as i.e. water volume, layer thicknesses, porosities etc.? b) What are the physical relations of the measured parameters (as electrical conductivities, magnetic susceptibilities, densities, etc.)? c) How can we deduce characteristics or parameters from the observations which describe near subsurface structures as ground water systems, their charge, discharge and recharge, vulnerabilities and other quantities? d) How plausible and realistic are the numerically obtained results in relation to user specific questions and parameters? e) Is it possible to compile material flux balances that describe spatial and time dependent impacts of environmental changes on aquifers and soils by repeated airborne surveys? In order to follow up these questions raised the project aims to achieve the following goals: a) Development of new and expansion of existent inversion strategies to improve structural parameter information on different space and time scales. b) Development, modification, and tests for a multi-parameter inversion (joint inversion). c) Development of new quantitative approaches in data assimilation and plausibility studies. d) Compilation of optimized work flows for fast employment by end users. e) Primary goal is to solve comparable society related problems (as salinization, erosion, contamination, degradation etc.) in regions within Germany and abroad by generalization of project results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, M.A.; Seliger, H.H.
1978-03-01
An annual, long range, subsurface transport of Prorocentrum mariae-lebouriae, from the mouth of the Chesapeake Bay to its bloom area in the upper bay, a distance of 240 km, is described and completely documented. Prorocentrum in surface outflowing waters at the mouth of the bay is recruited in late winter into more dense inflowing coastal waters. Strong stratification produced by late winter--early spring surface runoff results in the development of a stable pycnocline. Prorocentrum, now in northward-flowing bottom waters, is retained in these bottom waters. It accumulates in a subsurface concentration maximum below the pycnocline and is transported northward tomore » reach its bloom area in the Patapsco River and north of the Bay Bridge by late spring. The rapidly decreasing depth of the upper bay causes the pycnocline to rise, mixing the previously light-limited Prorocentrum and its nutrient-rich bottom waters to the surface, where rapid growth ensues. Once the dinoflagellate is in surface waters, positive phototaxis, combined with both wind- and tide-driven surface convergences, produce dense surface patches or red tides. Prorocentrum is effectively retained in the bay until late winter by sequential inoculation into the tributary estuaries on the western shore, which exchange relatively slowly with bay waters. By late winter the annual cycle is complete. Prorocentrum is again in surface waters at the mouth of the bay where it is reintroduced into northward-flowing bottom waters. The mechanisms described provide a key to understanding the origins of subsurface chlorophyll maxima and the delivery of toxic dinoflagellates to coastal bloom areas.« less
Peyrard, X; Liger, L; Guillemain, C; Gouy, V
2016-01-01
Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.
Antaki, Elizabeth M; Vellidis, George; Harris, Casey; Aminabadi, Peiman; Levy, Karen; Jay-Russell, Michele T
2016-10-01
Studies have shown that irrigation water can be a vector for pathogenic bacteria. Due to this, the Food Safety Modernization Act's (FSMA) produce safety rule requires that agricultural water directly applied to produce be safe and of adequate sanitary quality for use, which may pose a challenge for some farmers. The purpose of this research was to assess the presence and concentration of Salmonella and generic Escherichia coli in irrigation water from distribution systems in a mixed produce production region of southern Georgia. Water samples were collected during three growing seasons at three farms irrigating crops with surface water (Pond 1, Pond 2) or groundwater (Well) during 2012-2013. Salmonella and generic E. coli populations were monitored by culture and Most Probable Number (MPN). Confirmed isolates were characterized by pulsed-field gel electrophoresis and serotyping. In Pond 1, Salmonella was detected in 2/21 surface, 5/26 subsurface, 10/50 center pivot, and 0/16 solid set sprinkler head water samples. In Pond 2, Salmonella was detected in 2/18 surface, 1/18 subsurface, 6/36 drip line start, and 8/36 drip line end water samples. Twenty-six well pumps and 64 associated drip line water samples were negative. The overall mean Salmonella concentration for positive water samples was 0.03 MPN/100 mL (range <0.0011-1.8 MPN/100 mL). Nine Salmonella serovars comprising 22 pulsotypes were identified. Identical serovars and subtypes were found three times on the same day and location: Pond 1-Pivot-Cantaloupe (serovar Rubislaw), Pond 1-Pivot-Peanut (serovar Saintpaul), and Pond 2-Drip Line Start-Drip Line End-Yellow Squash (serovar III_16z10:e,n,x,z15). Generic E. coli was detected in water from both farm ponds and irrigation distribution systems, but the concentrations met FSMA microbial water quality criteria. The results from this study will allow producers in southern Georgia to better understand how potential pathogens move through irrigation distribution systems.
In situ time-series measurements of subseafloor sediment properties
Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.
2007-01-01
The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.
NASA Astrophysics Data System (ADS)
Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.
2017-08-01
Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests.
Shukla, Asmita; Shukla, Sanjay; Annable, Michael D; Hodges, Alan W
2017-08-01
Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497kg) and 95% (205kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1=368.3μg L -1 , Y2=230.4μg L -1 ) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be $341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both agriculture and public interests. Copyright © 2017. Published by Elsevier B.V.
Detoxification of sulphidic African shelf waters by blooming chemolithotrophs
NASA Astrophysics Data System (ADS)
Lavik, Gaute; Stührmann, Torben; Brüchert, Volker; van der Plas, Anja; Mohrholz, Volker; Lam, Phyllis; Mußmann, Marc; Fuchs, Bernhard M.; Amann, Rudolf; Lass, Ulrich; Kuypers, Marcel M. M.
2009-01-01
Coastal waters support ~90 per cent of global fisheries and are therefore an important food reserve for our planet. Eutrophication of these waters, due to human activity, leads to severe oxygen depletion and the episodic occurrence of hydrogen sulphide-toxic to multi-cellular life-with disastrous consequences for coastal ecosytems. Here we show that an area of ~7,000km2 of African shelf, covered by sulphidic water, was detoxified by blooming bacteria that oxidized the biologically harmful sulphide to environmentally harmless colloidal sulphur and sulphate. Combined chemical analyses, stoichiometric modelling, isotopic incubations, comparative 16S ribosomal RNA, functional gene sequence analyses and fluorescence in situ hybridization indicate that the detoxification proceeded by chemolithotrophic oxidation of sulphide with nitrate and was mainly catalysed by two discrete populations of γ- and ɛ-proteobacteria. Chemolithotrophic bacteria, accounting for ~20 per cent of the bacterioplankton in sulphidic waters, created a buffer zone between the toxic sulphidic subsurface waters and the oxic surface waters, where fish and other nekton live. This is the first time that large-scale detoxification of sulphidic waters by chemolithotrophs has been observed in an open-ocean system. The data suggest that sulphide can be completely consumed by bacteria in the subsurface waters and, thus, can be overlooked by remote sensing or monitoring of shallow coastal waters. Consequently, sulphidic bottom waters on continental shelves may be more common than previously believed, and could therefore have an important but as yet neglected effect on benthic communities.
NASA Astrophysics Data System (ADS)
Dorizon, S.; Ciarletti, V.; Clifford, S. M.; Plettemeier, D.
2013-12-01
The Water Ice Subsurface Deposits Observation on Mars (WISDOM) Ground Penetrating Radar (GPR) has been selected as part of the Pasteur payload for the European Space Agency (ESA) ExoMars 2018 mission. The main scientific objectives of the mission are to search for evidence of past or present life and to characterize the water/geochemical environment as a function of depth in the shallow subsurface. A rover equipped with a 2 meters capacity drill and a suite of instruments will land on Mars in 2018, collect and analyze samples from outcrops and at depth. The WISDOM GPR will support these activities by sounding the subsurface and provide understanding of the geologic context and evolution of the local environment. When operated on the ExoMars rover, WISDOM will offer the possibility to understand the 3D geology in terms of stratigraphy and structure, spatial heterogeneities as well as the compositional and electromagnetic properties of the subsurface. According to these scientific objectives, this radar has been designed as a polarimetric step frequency GPR, operating from 0.5 GHz to 3GHz, which allows the sounding of the first 3 meters of the subsurface with a vertical resolution of a few centimeters. The importance of this GPR is particularly enhanced by its ability to investigate the water content, state (ice or liquid) and distribution in the subsurface, which are crucial clues to constrain the possibility of life traces evidence. In addition, WISDOM will be operated at a distance of 30 cm above the ground. This configuration allows the monitoring of potential transient liquid water that could appear on Mars surface. Results from several laboratory tests and a campaign in alpine ice caves in Austria are consistent with the expected performances of WISDOM regarding the question of water characterization. The specific configuration of the antennas allows the retrieval of the first layer permittivity value from the surface echo, which is related to the water content. The differentiation between segregated ice and other medium is done using a textural approach, and the determinations of stratum thickness are inferred from the permittivity values estimations. We double check and validate this approach with a 2D model simulating WISDOM in interaction with different environments. Perspectives are numerous to take the best from this instrument, starting with processing and modeling improvement, added on other field and laboratory tests to validate our methods. Radargrams from measurements with WISDOM in Alpine ice caves, Dachstein, Austria. a) at high frequencies; b) at low frequencies
Analysis of Fully Polarimetric Laboratory Measurements Performed with the WISDOM Radar
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Ciarletti, V.; Cais, P.; Benedix, W.-S.; Zhang, H.; Hamran, S.-E.; Clifford, S.
2012-04-01
The Ground Penetrating Radar WISDOM (Water Ice Subsurface Deposit Observation on Mars) is one of the instruments selected to be part of the Pasteur payload of ESA's ExoMars Rover mission. The main scientific objectives of the Pasteur payload are to search for evidence of past and present life on Mars and to characterize the nature of the shallow subsurface. WISDOM is capable to obtain subsurface information along the rover path and to explore the first 3 meters of the soil with a vertical resolution of a few centimeters. WISDOM will help identify the location of sedimentary layers, where organic molecules are most likely to be found. By investigating geometry, location and properties of buried reflectors, WISDOM will contribute to the understanding of the 3D geological structure, electromagnetic nature, and, possibly, the state of water and ice in the shallow subsurface. WISDOM measurements will be performed 1) by conducting periodic soundings along the Rover traverse, which will provide a coarse, non-uniform, but positionally well-determined investigation of the landing site and 2) by selected high-resolution surveys of areas of strong scientific interest, which are identified for potential investigation and sampling by the Rover's drill. Such surveys will generally be conducted by acquiring a number of closely spaced parallel profiles. Supported by specific hardware features, like the arrangement of the fully polarimetric antenna system, an interpolated 3-D subsurface map of the local stratigraphy can be constructed from these radar measurements. Laboratory measurements are performed on a planar scanner in the anechoic chamber to simulate the closely spaced parallel profiles of selected high-resolution surveys. To characterize the performance of the radar and to be able to analyze the influence of radiation coupling effects between the rover and the antennas, the fully polarimetric WISDOM antenna system was mounted on a simple rover-like mockup. Calibration algorithms were applied to reduce the interference from radiation coupling and cross-talk between transmitting and receiving antenna. The analysis of the laboratory measurement will show features of the fully polarimetric radar system and quantify most of the important performance parameters. Synthetic aperture processing is implemented to increase the azimuth resolution of radar. The three dimensional reconstruction of the positioning of an arrangement of discrete objects will be shown.
Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters
NASA Astrophysics Data System (ADS)
Meyers, Philip A.; Owen, Robert M.
1980-11-01
Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contribute organic components which partially replace potamic materials removed by sinking.
NASA Astrophysics Data System (ADS)
Parsekian, A.; Regnery, J.; Wing, A.; Knight, R. J.; Drewes, J. E.
2013-12-01
Aquifer recharge and recover (ARR) is the process of infiltrating water into the ground for storage and withdrawal through wells at a later time. Two significant challenges faced during the design of ARR systems are 1) evaluating aquifer heterogeneity and 2) understanding the rock fluid interactions; these knowledge gaps may have profound impacts on the volume of recoverable water and the improvement in water quality in comparison with the source-water. Our objective in this research is to leverage the advantages of hydrogeophysical measurements and geochemical sampling to reveal the properties of an aquifer through which ARR water travels with the goal of informing current operations and future design decisions. Combined geophysical and geochemical investigations reveal subsurface heterogeneity, indicate possible flow paths though the aquifer and quantify specific reductions in contaminant concentrations. Ground penetrating radar (GPR), electromagnetic induction (EMI) and electrical resistivity tomography (ERT) were used to image the subsurface throughout two key infiltration/extraction areas of an ARR site in Colorado, USA. The most valuable results came from 2.5D ERT revealing the structural patterns and suggesting the distribution of textural composition of unconsolidated sediments. Geochemical measurements on transects intersecting the geophysical measurements resolved bulk parameters (i.e. total organic carbon, cations, anions) and trace organic contaminants (e.g. trace organic compounds) and were also used to estimate mixing and water travel times and assess the performance of the ARR site regarding water quality and quantity. Our results indicate that the subsurface is highly heterogeneous at our study site and that the coarse-grained sedimentary units, acting as the best conduit for transporting water, are likely discontinuous. The electrical resistivity measurements indicate certain areas of the infiltration basins may have good hydraulic connections to the extraction wells, while other infiltration basins may be separated by fine-grained materials from their respective extraction wells. The geochemical results imply consistent improvements in water quality that can be achieved within short travel times (<5 days) at this ARR site receiving riverbank filtered water for infiltration.
Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
van Halem, D; Olivero, S; de Vet, W W J M; Verberk, J Q J C; Amy, G L; van Dijk, J C
2010-11-01
Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m(3)) into an anoxic aquifer with elevated iron (0.27 mmolL(-1)) and arsenic (0.27μmolL(-1)) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments. Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (R(Fe)) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system's efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at R(Fe)=∼8). R(As) did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic removal, but rather the injection volume. Additionally, no relation has been observed in this study between the amount of removed arsenic at different molar Fe:As ratios (28, 63, and 103) of the groundwater. It is proposed that the removal of arsenic was limited by the presence of other anions, such as phosphate, competing for the same adsorption sites. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.
2007-09-01
While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.
NASA Astrophysics Data System (ADS)
Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein
2017-04-01
The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution to the North Iceland shelf that links to large-scale atmospheric and oceanic changes in the North Atlantic region. We find, during the time of the Medieval Climate Anomaly (MCA), an increased influence of Atlantic waters on surface water conditions, suggesting a stronger inflow of the NIIC, and thus of SPMW from the IC. This influence decreases markedly at the transition from the MCA to the Little Ice Age (LIA) and remains weak during the 20th Century, which likely relates to an enhanced inflow of cold/fresh Polar surface waters to the North Iceland shelf. During the MCA and LIA subsurface water conditions remain predominantly influenced by SPMW from the IC. However, from c. 1950 AD towards the present, this influence and thus likely subsurface water temperatures, decrease on the western North Iceland shelf.
Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations
NASA Technical Reports Server (NTRS)
Reichle, R. H.
2010-01-01
Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.
Sankaran, S; Sonkamble, S; Krishnakumar, K; Mondal, N C
2012-08-01
This paper deals with a systematic hydrogeological, geophysical, and hydrochemical investigations carried out in SIPCOT area in Southern India to demarcate groundwater pollution and saline intrusion through Uppanar River, which flows parallel to sea coast with high salinity (average TDS 28, 870 mg/l) due to back waters as well as discharge of industrial and domestic effluents. Hydrogeological and geophysical investigations comprising topographic survey, self-potential, multi-electrode resistivity imaging, and water quality monitoring were found the extent of saline water intrusion in the south and pockets of subsurface pollution in the north of the study area. Since the area is beset with highly permeable unconfined quaternary alluvium forming potential aquifer at shallow depth, long-term excessive pumping and influence of the River have led to lowering of the water table and degradation of water quality through increased salinity there by generating reversal of hydraulic gradient in the south. The improper management of industrial wastes and left over chemicals by closed industries has led surface and subsurface pollution in the north of the study area.
NASA Astrophysics Data System (ADS)
Helmers, M.; Zhou, X.; Qi, Z.; Christianson, R.; Pederson, C.
2011-12-01
Subsurface drainage systems are widely used throughout the upper Midwest corn-belt. While the use of these drainage systems has greatly increased crop production, they have also increased nitrate-nitrogen export to downstream waterbodies. As a result, there is a need to evaluate and implement management practices that have potential to reduce nitrate-nitrogen loss. A twenty year study in Iowa has shown that major factors in nitrate-nitrogen loss are land use and hydrology. Studies from north-central Iowa have also indicated that nitrogen application rate and to a lesser degree timing of nitrogen application important factors for nitrate-nitrogen loss. A four-year (2007-2010) drainage management study in southeast Iowa indicates that shallow and controlled drainage systems have potential to decrease subsurface drainage and thereby reduce nitrate-N loss from drain water but the level of implementation of controlled drainage may be limited by topography. Cropping practices through cover crops or perennial biomass crops have also been documented to have potential to reduce downstream nitrate-nitrogen export but the level of implementation may be limited by management and economic considerations. To achieve reduction goals for protection of local and regional water quality will require a combination of these practices at the landscape scale.
Wolthoorn, Anke; Temminghoff, Erwin J M; van Riemsdijk, Willem H
2004-04-01
Subsurface aeration is used to oxidise Fe in situ in groundwater that is used to make drinking water potable. In a groundwater system with pH>7 subsurface aeration results in non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove iron in situ, the formation of non-mobile iron precipitate, which facilitates the metal's removal, is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of ammonium (NH(4)(+)) in the purification station. Mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process. Therefore, the objective of this study was to assess whether synthetic iron colloids could improve the NH(4)(+) removal process. The effect of synthetic iron colloids on the NH(4)(+) removal process was studied using an artificial purification set-up on a laboratory scale. Columns that purified groundwater with or without added synthetic iron colloids were set up in duplicate. The results showed that the NH(4)(+) removal was significantly ( alpha = 0.05 ) increased in columns treated with the synthetic iron colloids. Cumulative after 4 months about 10% more NH(4)(+) was nitrified in the columns that was treated with the groundwater containing synthetic iron colloids. The results support the hypothesis that mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process.
Catchings, R.D.; Gandhok, G.; Goldman, M.R.
2001-01-01
The former George Air Force Base (GAFB), now known as the Southern California Logistics Airport (SCLA), is located in the town of Adelanto, approximately 100 km northeast of Los Angeles, California (Fig. 1). In this report, we present acquisition parameters, data, and interpretations of seismic images that were acquired in the OU-1 area of GAFB during July 1999 (Fig. 2). GAFB is scheduled for conversion to civilian use, however, during its years as an Air Force base, trichlorethylene (TCE) was apparently introduced into the subsurface as a result of spills during normal aircraft maintenance operations. To comply with congressional directives, TCE contaminant removal has been ongoing since the early-tomid 1990s. However, only a small percentage of the TCE believed to have been introduced into the subsurface has been recovered, due largely to difficulty in locating the TCE within the subsurface. Because TCE migrates within the subsurface by ground water movement, attempts to locate the TCE contaminants in the subsurface have employed an array of ground-water monitoring and extraction wells. These wells primarily sample within a shallow-depth (~40 m) aquifer system. Cores obtained from the monitoring and extraction wells indicate that the aquifer, which is composed of sand and gravel channels, is bounded by aquitards composed largely of clay and other fine-grained sediments. Based on well logs, the aquifer is about 3 to 5 m thick along the seismic profiles. A more thorough understanding of the lateral variations in the depth and thickness of the aquifer system may be a key to finding and removing the remaining TCE. However, due to its complex depositional and tectonic history, the structural and stratigraphic sequences are not easily characterized. An indication of the complex nature of the structure and stratigraphy is the appreciable variation in stratigraphic sequences observed in some monitoring wells that are only a few tens of meters apart. To better characterize the shallow (upper 100 m) stratigraphy beneath GAFB, the US Environmental Protection Agency (USEPA) contracted the US Geological Survey (USGS) to acquire three seismic reflection/refraction profiles within an area known as Operational Unit #1 (OU-1). The principal objective of the seismic survey was to laterally characterize the subsurface with respect to structure and stratigraphy. In particular, we desired to (1) laterally “map” stratigraphic units (particularly aquifer layers) that were previously identified in monitoring wells within the OU-1 area and (2) identify structures, such as faults and folds, that affect the movement of ground water. Knowledge of lateral variations in stratigraphic units and structures that may affect those units is useful in constructing ground-water flow models, which aid in identifying possible TCE migration paths within the subsurface. Stratigraphic and structural characterization may also be useful in identifying surface locations and target depths for future wells (Catchings et al., 1996). Proper siting of wells is important because a welldefined aquifer is apparently not present in all locations at GAFB, as indicated by lithologic logs from existing wells (Montgomery Watson, 1995). Proper depth placement of monitoring and extraction wells is important because wells that are too shallow will not sample within the aquifer, and wells that are too deep risk puncturing the aquitard and allowing contaminants to flow to deeper levels.
NASA Astrophysics Data System (ADS)
Beganskas, S.; Weir, W. B.; Harmon, R. E.; Gorski, G.; Fisher, A. T.; Saltikov, C.; Young, K. S.; Runneals, D.; Teo, E. K.; Stoneburner, B.; Hernandez, J.
2015-12-01
We are running field experiments to observe and quantify microbially-mediated water quality improvement via denitrification during infiltration in the shallow subsurface. Nitrate is a pervasive groundwater contaminant, and nitrate removal through denitrification can occur during infiltration in natural and anthropogenic systems, including during managed aquifer recharge (MAR). The rate of denitrification can vary depending on factors such as infiltration rate; previous work suggests that denitrification rates can increase monotonically with infiltration rates until reaching a critical threshold. We are performing controlled field tests of variables that affect denitrification rate, including sampling to link water chemistry changes to microbial ecology and activity. This study explores how microbial activity and denitrification rates respond to different infiltration rates and the presence or absence of a reactive material (wood chips, a carbon source). We are conducting four two-week-long tests, each under different conditions. For each test, we measure bulk infiltration rate (the sum of lateral and vertical infiltration), vertical infiltration rate using heat as a tracer, and water level. We collect surface and subsurface water samples daily, and we collect soil samples at the start and end of each test. For each water sample, we are measuring NO3-, NO2-, NH3, DOC, and N and O isotopes in nitrate. Soil samples will be tested for grain size, total C/N, and the presence of microbiological genes associated with denitrification. These results will expand our knowledge of the conditions under which denitrification occurs by implicating specific microorganisms and physical infiltration parameters. Our design has the potential for additional experimentation with variables that impact water chemistry during infiltration. This study has broad applications for designing MAR systems that effectively improve water supply and water quality.
NASA Astrophysics Data System (ADS)
Adachi, Kazuhide; Ohno, Satoshi; Furuhata, Masami; Ogura, Chikara; Tanimoto, Takeshi
The drainage efficiency of a subsurface drainage system for avoidance of standing water on the plow pan of clayey field was evaluated. A subsurface drainage system with a main drain and orthogonally adjoined rice husk trench drains joined by vertical rice husk drains was constructed on a test plot and compared to an identical control plot of paddy field converted to upland use under soybean cultivation. The ratio of total underdrain discharge to rainfall in the improved plot greatly increased over two years compared to that in a control plot. In the improved plot, the peak underdrain discharge per hour associated with some heavy rainfalls was around 3 mm/h in the first year but decreased to about 2 mm/h in the second year. By improving drainage in the paddy field, standing water on the plow pan was quickly eliminated after rain events and the period of flooding on the plow pan during the soybean growing season was greatly reduced. However, underdrain discharge in the improved plot decreased greatly in the third year to be at the same level as in the control plot, and rain water flooded the plow pan for extended periods of time.
Efficient infiltration of water in the subsurface by using point-wells: A field study
NASA Astrophysics Data System (ADS)
Lopik, J. V.; Schotting, R.; Raoof, A.
2017-12-01
The ability to infiltrate large volumes of water in the subsurface would have great value for battling flooding in urban regions. Moreover, efficient water infiltration is key to optimize underground aquifer storage and recovery (ASR), aquifer thermal energy storage (ATES), as well as construction dewatering systems. Usually, variable infiltration rates of large water quantities could have a huge hydrogeological impact in the upper part of (phreatic) aquifer systems. In urban regions, minimizing excessive groundwater table fluctuations are necessary. A newly developed method, Fast, High Volume Infiltration (FHVI), by Dutch dewatering companies can be used to enable fast injection into the shallow subsurface. Conventional infiltration methods are using injection wells that screen large parts of the aquifer depth, whereas FHVI uses a specific infiltration point (1-m well screen) in the aquifer. These infiltration points are generally thin, high permeable layers in the aquifer of approximately 0.5-2 meter thick, and are embedded by less permeable layers. Currently, much higher infiltration pressures in shallow aquifers can be achieved with FHVI (up to 1 bar) compared to conventional infiltration methods ( 0.2 bar). Despite the high infiltration pressures and high discharge rate near the FHVI-filter, the stresses on shallow groundwater levels are significantly reduced with FHVI. In order to investigate the mechanisms that enable FHVI, a field experiment is conducted in a sandy aquifer to obtain insight in the 3-D hydraulic pressure distribution and flow patterns around a FHVI-filter during infiltration. A detailed characterization of the soil profile is obtained by using soil samples and cone pressure tests with a specific hydraulic profiling tool to track the vertical variation in aquifer permeability. A tracer test with bromide and heat is conducted to investigate preferential flow paths. The experimental data show that tracking small heterogeneities in aquifers and analysing the permeability difference ratio between the aimed infiltration layer and the surrounding layers in the aquifer are key to optimize the configuration of the FHVI-well. The results show that the use of point wells in thin, high permeable layers could drastically improve the efficiency of the infiltration system.
Overview of environmental and hydrogeologic conditions at Barrow, Alaska
McCarthy, K.A.
1994-01-01
To assist the Federal Aviation Administration (FAA) in evaluating the potential effects of environmental contamination at their facility in Barrow, Alaska, a general assessment was made of the hydrologic system is the vicinity of the installation. The City of Barrow is located approximately 16 kilometers southwest of Point Barrow, the northernmost point in Alaska, and therefore lies within the region of continuous permafrost. Migration of surface or shallow- subsurface chemical releases in this environ- ment would be largely restricted by near-surface permafrost to surface water and the upper, suprapermafrost zone of the subsurface. In the arctic climate and tundra terrain of the Barrow area, this shallow environment has a limited capacity to attenuate the effects of either physical disturbances or chemical contamination and is therefore highly susceptible to degradation. Esatkuat Lagoon, the present drink- ing water supply for the City of Barrow, is located approximately 2 kilometers from the FAA facility. This lagoon is the only practical source of drinking water available to the City of Barrow because alternative sources of water in the area are (1) frozen throughout most of the year, (2) insufficient in volume, (3) of poor quality, or (4) too costly to develop and distribute.
Life Beneath Glacial Ice - Earth(!) Mars(?) Europa(?)
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Grasby, Stephen E.; Longazo, Teresa G.; Lisle, John T.; Beauchamp, Benoit
2002-01-01
We are investigating a set of cold springs that deposit sulfur and carbonate minerals on the surface of a Canadian arctic glacier. The spring waters and mineral deposits contain microorganisms, as well as clear evidence that biological processes mediate subglacial chemistry, mineralogy, and isotope fractionation . The formation of native sulphur and associated deposits are related to bacterially mediated reduction and oxidation of sulphur below the glacier. A non-volcanic, topography driven geothermal system, harboring a microbiological community, operates in an extremely cold environment and discharges through solid ice. Microbial life can thus exist in isolated geothermal refuges despite long-term subfreezing surface conditions. Earth history includes several periods of essentially total glaciation. lee in the near subsurface of Mars may have discharged liquid water in the recent past Cracks in the ice crust of Europa have apparently allowed the release of water to the surface. Chemolithotrophic bacteria, such as those in the Canadian springs, could have survived beneath the ice of "Snowball Earth", and life forms with similar characteristics might exist beneath the ice of Mars or Europa. Discharges of water from such refuges may have brought to the surface living microbes, as well as longlasting chemical, mineralogical, and isotopic indications of subsurface life.
An optimization model to design and manage subsurface drip irrigation system for alfalfa
NASA Astrophysics Data System (ADS)
Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.
2010-12-01
Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.
Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.
Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun
2017-11-01
Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2 = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in the chemical ranking systems. In the surface spill scenario, the pollutant loadings were zeros for all chemicals, except methylamine to soil whose pollutant loading was smaller than that in the subsurface leak scenario by 4 orders of magnitude. The maximum mass and the average mass multiplied by duration in soil greatly depended on leaching fluxes (r = 1.0 and 0.9, respectively), while the effect of leaching fluxes diminished below the water table. The contribution of this work is that a physics-based numerical model was used to quantitatively compare the subsurface pollutant loading in a chemical accident for 72 chemical substances, which can scientifically defend a simpler and more qualitative assessment of pollutant loadings. Besides, this study assessed pollutant loadings to soil (unsaturated zone) and groundwater (saturated zone) all together and discussed their interactions.
Integrating Geohydrological Models In ATES-Systems Control
NASA Astrophysics Data System (ADS)
Bloemendal, Martin
2015-04-01
1) Purpose. Accomplish optimal and sustainable use of subsurface for Aquifer Thermal Energy Storage (ATES). 2) Scope. A heat pump in combination with an ATES system can efficiently and sustainably provide heating and cooling for user comfort within buildings. ATES systems are popular in moderate climate in which ATES systems are exploited as they are able to save primary energy. While storing warm and cold groundwater, ATES systems occupy a significant amount of the subsurface space, making that the space in the aquifers below cities is becoming scarce [1]. With the rapid growth of the number of ATES systems, the use of the subsurface intensifies, which raises additional questions regarding its sustainability and the long term profitability of the individual systems. In practice considerable difficulties regarding A) the performance of these installations and B) optimal and sustainable use of the subsurface are met. 3) Approach. Recently it was confirmed [2] that ATES systems can be placed closer to each other with limited effect on their energy efficiency. By placing them closer together we introduce the risk of a tragedy of the commons [3]. Therefore it is of importance to know where the warm and cold zones are over time and enable ATES-controllers to use the subsurface optimal and sustainably. From the field of multi agent systems and complex adaptive systems we use approaches and techniques to make an operation and control system that enables to adapt their control not only based on current demand, but also on current aquifer status and expected future demand. We are developing a numerical groundwater model structure which is fed with operational data of different ATES-systems. While doing this we run into challenges and opportunities like; spatial and temporal scale issues, sustaining the storage with balancing thermal storage and extraction at area level, dynamics and relation between hydrological and thermal influence and consequences for spreading of contaminants, using thermal energy storage for "peak-shaving" of wind/solar power production etc.. I will address the following two topics; - Balancing of stored heating and cooling capacity. To sustain an ATES-system heating and cooling capacity storage must more or less balance. Buildings often do not have a similar heating and cooling demand. Placing ATES-well closer to each other offers the opportunity to exchange energy between different buildings in the subsurface to balance heating and cooling capacity. To be able to do so, thorough understanding of the interaction between thermal influence area resulting from highly dynamic and uncertain energy demand from buildings is required. - The hydrological influence area of ATES wells is much bigger than the thermal influence area. Placing wells closer to each other therefor has a significant effect on the mixing of water and spreading of contaminants (which are often present in shallow aquifers under (old) city centers). We use both analytical and numerical approaches to gain insight in patterns of thermal and contaminant spreading and to find solutions in managing these effects. 4) Results and conclusions The subsurface is of crucial importance for intended energy savings. A control system working towards a global optimum for both the subsurface and buildings, instead of a local optimum for an individual building and local ATES will increase the overall efficiency. What is needed for that is insight in the spatial temperature distribution in the subsurface, in combination with adaptive and robust operational rules. We want to prove that a groundwater model simulating active ATES-systems can provide insight in the subsurface temperature distribution to adjust their control strategy in accordance with up-to-date information. Step by step we are solving the problems on this path, I would like to share and discuss my results, solutions and challenges. References [1] Bloemendal, M., Olsthoorn, T., Boons, F., How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage, Energy Policy 66(2014) 104-114 [2] Sommer, W., Valstar, J., Leusbrock, I., Grotenhuis, T., Rijnaarts, H., Optimization and spatial pattern of large-scale aquifer thermal energy storage, Applied Energy 137 (2015) 322-337 [3] Hardin, G., The tragedy of the commons, Science162 (168) 12-13.
Evolution of the global water cycle on Mars: The geological evidence
NASA Technical Reports Server (NTRS)
Baker, V. R.; Gulick, V. C.
1993-01-01
The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?
Adsorption and Retardation of PFASs in Soil
NASA Astrophysics Data System (ADS)
Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.
2017-12-01
Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.
A new model of equilibrium subsurface hydration on Mars
NASA Astrophysics Data System (ADS)
Hecht, M. H.
2011-12-01
One of the surprises of the Odyssey mission was the discovery by the Gamma Ray Spectrometer (GRS) suite of large concentrations of water-equivalent hydrogen (WEH) in the shallow subsurface at low latitudes, consistent with 5-7% regolith water content by weight (Mitrofanov et al. Science 297, p. 78, 2002; Feldman et al. Science 297, p. 75, 2002). Water at low latitudes on Mars is generally believed to be sequestered in the form of hydrated minerals. Numerous attempts have been made to relate the global map of WEH to specific mineralogy. For example Feldman et al. (Geophys. Res. Lett., 31, L16702, 2004) associated an estimated 10% sulfate content of the soil with epsomite (51% water), hexahydrite (46% water) and kieserite (13% water). In such studies, stability maps have been created by assuming equilibration of the subsurface water vapor density with a global mean annual column mass vapor density. Here it is argued that this value significantly understates the subsurface humidity. Results from the Phoenix mission are used to suggest that the midday vapor pressure measured just above the surface is a better proxy for the saturation vapor pressure of subsurface hydrous minerals. The measured frostpoint at the Phoenix site was found to be equal to the surface temperature by night and the modeled temperature at the top of the ice table by day (Zent et al. J. Geophys. Res., 115, E00E14, 2010). It was proposed by Hecht (41st LPSC abstract #1533, 2010) that this phenomenon results from water vapor trapping at the coldest nearby surface. At night, the surface is colder than the surface of the ice table; by day it is warmer. Thus, at night, the subsurface is bounded by a fully saturated layer of cold water frost or adsorbed water at the surface, not by the dry boundary layer itself. This argument is not strongly dependent on the particular saturation vapor pressure (SVP) of ice or other subsurface material, only on the thickness of the dry layer. Specifically, the diurnal thermal skin depth d = √(α τ) ~ 4cm, where α = k/(ρ*c) is the thermal diffusivity, τ is the period of oscillation, and α has been taken to be 0.00018 cm2/s. Since the sampling depth of GRS is >>4cm, midday humidity should provide a good guide to the SVP of material sampled by GRS. It is also suggested that regional differences in soil/rock ratios are the most likely source of the observed regional variation in WEH. This premise is consistent with the observation of Keller et al. (J. Geophys. Res., 111, E03S08, 2006) that the global GRS Cl map correlates with WEH and anti-correlates with both Si and thermal inertia. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA
Biofilm effect on flow structure over a permeable bed
NASA Astrophysics Data System (ADS)
Kazemifar, Farzan; Blois, Gianluca; Aybar, Marcelo; Perez-Calleja, Patricia; Nerenberg, Robert; Sinha, Sumit; Hardy, Richard; Best, James; Sambrook Smith, Gregory; Christensen, Kenneth
2017-11-01
Biofilms constitute an important form of bacterial life in aquatic environments and are present at the fluid-solid interfaces in natural and industrial settings, such as water distribution systems and riverbeds among others. The permeable, heterogeneous, and deformable structure of biofilms can influence mass and momentum transport between the subsurface and freestream. However, this interaction is not fully understood, in part due to technical obstacles impeding quantitative experimental investigations. In this work, the effect of biofilm on flow structure over a permeable bed is studied. Experiments are conducted in a closed water channel equipped with an idealized two-dimensional permeable bed. Prior to conducting flow experiments, the models are placed within an independent recirculating reactor for biofilm growth. Once a targeted biofilm growth stage is achieved, the models are transferred to the water channel and subjected to transitional and turbulent flows. Long-distance microscopic particle image velocimetry measurements are performed to quantify the effect of biofilm on the turbulence structure of the free flow as well as the freestream-subsurface flow interaction. Funded by UK Natural Environment Research Council.
The latest on hydrothermal activity on Enceladus from Cassini and Laboratory work
NASA Astrophysics Data System (ADS)
Postberg, F.; Hsu, H. W.; Sekine, Y.; Shibuya, T.
2015-10-01
Various observations from the Cassini spacecraft [1,2,3], suggest the existence of subsurface water beneath the south polar region of Saturn's geologically active icy moon Enceladus. They provide information on the composition and physical conditions of water reservoirs occurring at shallow depth from which the plumes emerge [1,2,4], and about the dimensions of the south polar ocean beneath the ice crust at a depth of about 50km [3]. However, constraints on the physical and chemical conditions at the interface of the rocky core and the deep ocean are sparse. We report in situ measurements of tiny grains, so called stream particles, by Cassini's Cosmic Dust Analyser (CDA) in the Saturnian system. CDA data shows that these nano-particles are composed of silica that were initially embedded in larger μm-sized icy grains emitted from Enceladus subsurface waters and released by sputter erosion in Saturn's E ring. Comprehensive long- term laboratory experiments and model calculations were carried out to investigate the reaction conditions at the bottom of Enceladus' ocean.
Ring Resonator for Detection of Melting Brine Under Shallow Subsurface of Mars
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximillian C.
2016-01-01
Laboratory experimental evidence using Raman spectroscopy has shown that liquid brine may form below the shallow subsurface of Mars. A simpler experimental method to verify the presence of liquid brine or liquid water below Mars surface is needed. In this paper, a ring resonator is used to detect the phase change between frozen water and liquid water below a sandy soil that simulates the Mars surface. Experimental data shows that the ring resonator can detect the melting of thin layers of frozen brine or water up to 15 mm below the surface.
Jeffrey S. Albright
1992-01-01
The term piping has been used to describe subsurface erosion processes and concentrated subsurface water discharge. Physical features created by piping have been termed pipes. Piping can occur in natural landscapes due to individual or combined effects of mechanical (e.g., corrasion), chemical (e.g., soil dispersion), or biotic (e.g., animal burrowing) forces...
Cumulative effects of wetland drainage on watershed-scale subsurface hydrologic connectivity
NASA Astrophysics Data System (ADS)
Creed, I. F.; Ameli, A.
2017-12-01
Subsurface hydrologic connectivity influences hydrological, biogeochemical and ecological responses within watersheds. However, information about the location, duration, and frequency of subsurface hydrologic connections within wetlandscapes and between wetlandscapes and streams is often not available. This leads to a lack of understanding of the potential effects of human modifications of the landscape, including wetland degradation and removal, on subsurface hydrologic connectivity and therefore watershed responses. Herein, we develop a computationally efficient, physically-based subsurface hydrologic connectivity model that explicitly characterizes the effects of wetland degradation and removal on the distribution, length, and timing of subsurface hydrologic connectivity within a wetland-dominated watershed in the Prairie Pothole Region of North America. We run the model using a time series of wetland inventories that reflect incremental wetland loss from 1962, to 1993, and to 2009. We also consider a potential future wetland loss scenario based on removal of all wetlands outside of the protected areas of the watershed. Our findings suggest that wetland degradation and removal over this period increased the average length, transit time, and frequency of subsurface hydrologic connections to the regional surface waters, resulting in decreased baseflow in the major river network. This study provides important insights that can be used by wetland managers and policy makers to support watershed-scale wetland protection and restoration plans to improve water resource management.
Water resources management in karst aquifers - concepts and modeling approaches
NASA Astrophysics Data System (ADS)
Sauter, M.; Schmidt, S.; Abusaada, M.; Reimann, T.; Liedl, R.; Kordilla, J.; Geyer, T.
2011-12-01
Water resources management schemes generally imply the availability of a spectrum of various sources of water with a variability of quantity and quality in space and time, and the availability and suitability of storage facilities to cover various demands of water consumers on quantity and quality. Aquifers are generally regarded as suitable reservoirs since large volumes of water can be stored in the subsurface, water is protected from contamination and evaporation and the underground passage assists in the removal of at least some groundwater contaminants. Favorable aquifer properties include high vertical hydraulic conductivities for infiltration, large storage coefficients and not too large hydraulic gradients / conductivities. The latter factors determine the degree of discharge, i.e. loss of groundwater. Considering the above criteria, fractured and karstified aquifers appear to not really fulfill the respective conditions for storage reservoirs. Although infiltration capacity is relatively high, due to low storativity and high hydraulic conductivities, the small quantity of water stored is rapidly discharged. However, for a number of specific conditions, even karst aquifers are suitable for groundwater management schemes. They can be subdivided into active and passive management strategies. Active management options include strategies such as overpumping, i.e. the depletion of the karst water resources below the spring outflow level, the construction of subsurface dams to prevent rapid discharge. Passive management options include the optimal use of the discharging groundwater under natural discharge conditions. System models that include the superposition of the effect of the different compartments soil zone, epikarst, vadose and phreatic zone assist in the optimal usage of the available groundwater resources, while taking into account the different water reservoirs. The elaboration and implementation of groundwater protection schemes employing well established vulnerability assessment techniques ascertain the respective groundwater quality. In this paper a systematic overview is provided on karst groundwater management schemes illustrating the specific conditions allowing active or passive management in the first place as well as the employment of various types of adapted models for the design of the different management schemes. Examples are provided from karst systems in Israel/Palestine, where a large 4000sqkm basin is being managed as a whole, the South of France, where the Lez groundwater development scheme illustrates the optimal use of overpumping from the conduit system, providing additional water for the City of Montpellier during dry summers and at the same time increasing recharge and assisting in the mitigation of flooding during high winter discharge conditions. Overpumping could be an option in many Mediterranean karst catchments since karst conduit development occurred well below today's spring discharge level. Other examples include the construction of subsurface dams for hydropower generation in the Dinaric karst and reduction of discharge. Problems of leakage and general feasibility are discussed.
Subsurface temperature distribution in a tropical alluvial fan
NASA Astrophysics Data System (ADS)
Chen, Wenfu; Chang, Minhsiang; Chen, Juier; Lu, Wanchung; Huang, Chihc; Wang, Yunshuen
2017-04-01
As a groundwater intensive use country, Taiwan's 1/3 water supplies are derived from groundwater. The major aquifers consist of sand and gravel formed in alluvial fans which border the fronts of central mountains. Thanks to high density of monitoring wells which provide a window to see the details of the subsurface temperature distribution and the thermal regime in an alluvial fan system. Our study area, the Choshui Alluvial Fan, is the largest groundwater basin in Taiwan and, located within an area of 2,000 km2, has a population of over 1.5 million. For this work, we investigated temperature-depth profiles using 70 groundwater monitoring wells during 2000 to 2015. Our results show that the distribution of subsurface temperature is influenced by various factors such as groundwater recharge, groundwater flow field, air temperature and land use. The groundwater recharge zone, hills to the upper fan, contains disturbed and smaller geothermal gradients. The lack of clay layers within the upper fan aquifers and fractures that developed in the hills should cause the convection and mixing of cooler recharge water to groundwater, resulting in smaller geothermal gradients. The groundwater temperatures at a depth to 300 m within the upper fan and hill were approximately only 23-24 °C while the current mean ground surface temperature is approximately 26 °C.
Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water
NASA Technical Reports Server (NTRS)
Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.
2000-01-01
The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.
Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective
NASA Astrophysics Data System (ADS)
Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.
2010-06-01
A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.
Swarzenski, Peter; Reich, Chris; Rudnick, David
2009-01-01
Estimates of submarine ground-water discharge (SGD) into Florida Bay remain one of the least understood components of a regional water balance. To quantify the magnitude and seasonality of SGD into upper Florida Bay, research activities included the use of the natural geochemical tracer, 222Rn, to examine potential SGD hotspots (222Rn surveys) and to quantify the total (saline + fresh water component) SGD rates at select sites (222Rn time-series). To obtain a synoptic map of the 222Rn distribution within our study site in Florida Bay, we set up a flow-through system on a small boat that consisted of a Differential Global Positioning System, a calibrated YSI, Inc CTD sensor with a sampling rate of 0.5 min, and a submersible pump (z = 0.5 m) that continuously fed water into an air/water exchanger that was plumbed simultaneously into four RAD7 222Rn air monitors. To obtain local advective ground-water flux estimates, 222Rn time-series experiments were deployed at strategic positions across hydrologic and geologic gradients within our study site. These time-series stations consisted of a submersible pump, a Solinist DIVER (to record continuous CTD parameters) and two RAD7 222Rn air monitors plumbed into an air/water exchanger. Repeat time-series 222Rn measurements were conducted for 3-4 days across several tidal excursions. Radon was also measured in the air during each sampling campaign by a dedicated RAD7. We obtained ground-water discharge information by calculating a 222Rn mass balance that accounted for lateral and horizontal exchange, as well as an appropriate ground-water 222Rn end member activity. Another research component utilized marine continuous resistivity profiling (CRP) surveys to examine the subsurface salinity structure within Florida Bay sediments. This system consisted of an AGI SuperSting 8 channel receiver attached to a streamer cable that had two current (A,B) electrodes and nine potential electrodes that were spaced 10 m apart. A separate DGPS continuously sent position information to the SuperSting. Results indicate that the 222Rn maps provide a useful gauge of relative ground-water discharge into upper Florida Bay. The 222Rn time-series measurements provide a reasonable estimate of site- specific total (saline and fresh) ground-water discharge (mean = 12.5+-11.8 cm d-1), while the saline nature of the shallow ground-water at our study site, as evidenced by CPR results, indicates that most of this discharge must be recycled sea water. The CRP data show some interesting trends that appear to be consistent with subsurface geologic and hydrologic characterization. For example, some of the highest resistivity (electrical conductivity-1) values were recorded where one would expect a slight subsurface freshening (for example bayside Key Largo, or below the C111 canal).
Interpretation of collapsed terrain on Mars
NASA Astrophysics Data System (ADS)
Ewa Zalewska, Natalia; Skocki, Krzysztof
2016-10-01
On the images from HiRISE camera within volcanoes and circumpolar areas there are depressions that can be explained in two ways, either by melting subsurface layer of ice or by cooling of lava which forms branch intrusion and flank craters underneath. On many pictures from Mars similar cavities are found on the slopes of Martian craters on Arsia Mons , Pavonis Mons on northern hemisphere and Alba Patera on southern hemisphere. Such cavities can be compared to a Hawaiian type volcanoes. At the top of Mauna Loa linearly arranged craters can be seen, strikingly similar to those on Arsia Mons . Basing on map ice content measured by Odyssey GRS apparatus, in this place of the volcanic cone, quite small ice content can be observed that varies in the range of 2-4% hydrogen abundance. It is therefore difficult to explain these collapses by unfreezing of subsurface ice. In an infrared spectrum of these areas there are no bands of water in the CRISM spectra, although it does not say that the water in the form of ice couldn't have been there before. In the central part of Chryse, there are series of chains depressions caused most likely by the collapse of land. These forms have been associated with an open pingo type system additionally with assisted topography of the area or tectonics and internal cracks in the rocks. These are noticed on the slopes of craters or wherever the area decline. Then flowing subsurface water or brine coming from the ice layer could while freezing accumulate and create a longitudinal hill that collapsed due to seasonal thawing forming gullies or canyons . At the end of these gullies remaining trace of the leak can be seen, as if there was a crack in the ground and liquid flew out on the surface. Cryosubsurface processes on Mars can support the hypothesis of geochemical origin of water, which separates from the magma, and its primary source comes from the protoplanetary disk. The water separated from the magma migrates up to the surface and if the temperature is below zero the water deposits as a layer of ice in the case of Mars as a subsurface layer or in the case of moons of gas giants as an eruption through the surface.
Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.
Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.
2009-01-01
Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.
Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R
2016-05-01
High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications
Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman
2014-01-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."
2015-11-30
Although Enceladus and Saturn's rings are largely made up of water ice, they show very different characteristics. The small ring particles are too tiny to retain internal heat and have no way to get warm, so they are frozen and geologically dead. Enceladus, on the other hand, is subject to forces that heat its interior to this very day. This results in its famous south polar water jets, which are just visible above the moon's dark, southern limb, along with a sub-surface ocean. Recent work by Cassini scientists suggests that Enceladus (313 miles or 504 kilometers across) has a global ocean of liquid water under its surface. This discovery increases scientists' interest in Enceladus and the quest to understand the role of water in the development of life in the solar system. (For more on the sub-surface ocean, see this story.) This view looks toward the unilluminated side of the rings from about 0.3 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2015. The view was acquired at a distance of approximately 630,000 miles (1.0 million kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase angle of 155 degrees. Image scale is 4 miles (6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18343
Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications
NASA Astrophysics Data System (ADS)
Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.
2014-12-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.
USDA-ARS?s Scientific Manuscript database
Enhancing the efficiency of soil water removal, and in turn crop productivity, on farmland already containing a subsurface drainage system, typically involves installing new drain lines between the old ones. However, before this approach can be attempted, the older drainage pipes need to be located...
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications
Porter, Mark L.; Jiménez-Martínez, Joaquín; Martinez, Ricardo Martin; ...
2015-08-20
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. In this paper, we have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works inmore » both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. Finally, the experiments include fracture–matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO 2 (scCO 2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO 2–brine–oil.« less
Validation of an In-Water, Tower-Shading Correction Scheme
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Doyle, John P.; Zibordi, Giuseppe; vanderLinde, Dirk
2003-01-01
Large offshore structures used for the deployment of optical instruments can significantly perturb the intensity of the light field surrounding the optical measurement point, where different portions of the visible spectrum are subject to different shadowing effects. These effects degrade the quality of the acquired optical data and can reduce the accuracy of several derived quantities, such as those obtained by applying bio-optical algorithms directly to the shadow-perturbed data. As a result, optical remote sensing calibration and validation studies can be impaired if shadowing artifacts are not fully accounted for. In this work, the general in-water shadowing problem is examined for a particular case study. Backward Monte Carlo (MC) radiative transfer computations- performed in a vertically stratified, horizontally inhomogeneous, and realistic ocean-atmosphere system are shown to accurately simulate the shadow-induced relative percent errors affecting the radiance and irradiance data profiles acquired close to an oceanographic tower. Multiparameter optical data processing has provided adequate representation of experimental uncertainties allowing consistent comparison with simulations. The more detailed simulations at the subsurface depth appear to be essentially equivalent to those obtained assuming a simplified ocean-atmosphere system, except in highly stratified waters. MC computations performed in the simplified system can be assumed, therefore, to accurately simulate the optical measurements conducted under more complex sampling conditions (i.e., within waters presenting moderate stratification at most). A previously reported correction scheme, based on the simplified MC simulations, and developed for subsurface shadow-removal processing of in-water optical data taken close to the investigated oceanographic tower, is then validated adequately under most experimental conditions. It appears feasible to generalize the present tower-specific approach to solve other optical sensor shadowing problems pertaining to differently shaped deployment platforms, and also including surrounding structures and instrument casings.
NASA Astrophysics Data System (ADS)
Behrens, Melanie K.; Pahnke, Katharina; Schnetger, Bernhard; Brumsack, Hans-Jürgen
2018-02-01
In the Atlantic, where deep circulation is vigorous, the dissolved neodymium (Nd) isotopic composition (expressed as ɛNd) is largely controlled by water mass mixing. In contrast, the factors influencing the ɛNd distribution in the Pacific, marked by sluggish circulation, is not clear yet. Indication for regional overprints in the Pacific is given based on its bordering volcanic islands. Our study aims to clarify the impact and relative importance of different Nd sources (rivers, volcanic islands), vertical (bio)geochemical processes and lateral water mass transport in controlling dissolved ɛNd and Nd concentration ([Nd]) distributions in the West Pacific between South Korea and Fiji. We find indication for unradiogenic continental input from South Korean and Chinese rivers to the East China Sea. In the tropical West Pacific, volcanic islands supply Nd to surface and subsurface waters and modify their ɛNd to radiogenic values of up to +0.7. These radiogenic signatures allow detailed tracing of currents flowing to the east and differentiation from westward currents with open ocean Pacific ɛNd composition in the complex tropical Pacific zonal current system. Modified radiogenic ɛNd of West Pacific intermediate to bottom waters upstream or within our section also indicates non-conservative behavior of ɛNd due to boundary exchange at volcanic island margins, submarine ridges, and with hydrothermal particles. Only subsurface to deep waters (3000 m) in the open Northwest Pacific show conservative behavior of ɛNd. In contrast, we find a striking correlation of extremely low (down to 2.77 pmol/kg Nd) and laterally constant [Nd] with the high-salinity North and South Pacific Tropical Water, indicating lateral transport of preformed [Nd] from the North and South Pacific subtropical gyres into the study area. This observation also explains the previously observed low subsurface [Nd] in the tropical West Pacific. Similarly, Western South Pacific Central Water, Antarctic Intermediate Water, and Lower Circumpolar Deep Water in the southern and equatorial West Pacific are marked by vertically and laterally almost invariant [Nd] indicating a dominance of conservative behavior of [Nd]. In contrast, Central and Intermediate Water in the North West Pacific are characterized by increasing [Nd] with depth reflecting Nd release from particles. Overall, our data demonstrate a dominant lateral transport control on [Nd] distributions and clear non-conservative modification of ɛNd in the West Pacific. The latter affords tracing of surface and subsurface zonal transport in the tropical Pacific, but prevents the use of ɛNd as strictly conservative tracer of the major meridionally circulating water masses in the West Pacific between 15°S and 28°N.
Deep subsurface microbial processes
Lovley, D.R.; Chapelle, F.H.
1995-01-01
Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Arnone, R.; Casey, B.; Weidemann, A.; Gray, D.; Shulman, I.; Mahoney, K.; Giddings, T.; Shirron, J.
2009-05-01
Current United States Navy Mine-Counter-Measure (MCM) operations primarily use electro-optical identification (EOID) sensors to identify underwater targets after detection via acoustic sensors. These EOID sensors which are based on laser underwater imaging by design work best in "clear" waters and are limited in coastal waters especially with strong optical layers. Optical properties and in particular scattering and absorption play an important role on systems performance. Surface optical properties alone from satellite are not adequate to determine how well a system will perform at depth due to the existence of optical layers. The spatial and temporal characteristics of the 3d optical variability of the coastal waters along with strength and location of subsurface optical layers maximize chances of identifying underwater targets by exploiting optimum sensor deployment. Advanced methods have been developed to fuse the optical measurements from gliders, optical properties from "surface" satellite snapshot and 3-D ocean circulation models to extend the two-dimensional (2-D) surface satellite optical image into a three-dimensional (3-D) optical volume with subsurface optical layers. Modifications were made to an EOID performance model to integrate a 3-D optical volume covering an entire region of interest as input and derive system performance field. These enhancements extend present capability based on glider optics and EOID sensor models to estimate the system's "image quality". This only yields system performance information for a single glider profile location in a very large operational region. Finally, we define the uncertainty of the system performance by coupling the EOID performance model with the 3-D optical volume uncertainties. Knowing the ensemble spread of EOID performance field provides a new and unique capability for tactical decision makers and Navy Operations.
Stormwater infiltration and the 'urban karst' - A review
NASA Astrophysics Data System (ADS)
Bonneau, Jeremie; Fletcher, Tim D.; Costelloe, Justin F.; Burns, Matthew J.
2017-09-01
The covering of native soils with impervious surfaces (e.g. roofs, roads, and pavement) prevents infiltration of rainfall into the ground, resulting in increased surface runoff and decreased groundwater recharge. When this excess water is managed using stormwater drainage systems, flow and water quality regimes of urban streams are severely altered, leading to the degradation of their ecosystems. Urban streams restoration requires alternative approaches towards stormwater management, which aim to restore the flow regime towards pre-development conditions. The practice of stormwater infiltration-achieved using a range of stormwater source-control measures (SCMs)-is central to restoring baseflow. Despite this, little is known about what happens to the infiltrated water. Current knowledge about the impact of stormwater infiltration on flow regimes was reviewed. Infiltration systems were found to be efficient at attenuating high-flow hydrology (reducing peak magnitudes and frequencies) at a range of scales (parcel, streetscape, catchment). Several modelling studies predict a positive impact of stormwater infiltration on baseflow, and empirical evidence is emerging, but the fate of infiltrated stormwater remains unclear. It is not known how infiltrated water travels along the subsurface pathways that characterise the urban environment, in particular the 'urban karst', which results from networks of human-made subsurface pathways, e.g. stormwater and sanitary sewer pipes and associated high permeability trenches. Seepage of groundwater into and around such pipes is possible, meaning some infiltrated stormwater could travel along artificial pathways. The catchment-scale ability of infiltration systems to restore groundwater recharge and baseflow is thus ambiguous. Further understanding of the fate of infiltrated stormwater is required to ensure infiltration systems deliver optimal outcomes for waterway flow regimes.
Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling
NASA Astrophysics Data System (ADS)
Pavlov, A. K.; Shelegedin, V. N.; Vdovina, M. A.; Pavlov, A. A.
2010-01-01
Low atmospheric pressures on Mars and the lack of substantial amounts of liquid water were suggested to be among the major limiting factors for the potential Martian biosphere. However, large amounts of ice were detected in the relatively shallow subsurface layers of Mars by the Odyssey Mission and when ice sublimates the water vapour can diffuse through the porous surface layer of the soil. Here we studied the possibility for the active growth of microorganisms in such a vapour diffusion layer. Our results showed the possibility of metabolism and the reproduction of non-extremophile terrestrial microorganisms (Vibrio sp.) under very low (0.01-0.1 mbar) atmospheric pressures in a Martian-like shallow subsurface regolith.
Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...
The Hebrus Valles Exploration Zone: Access to the Martian Surface and Subsurface
NASA Astrophysics Data System (ADS)
Davila, A.; Fairén, A. G.; Rodríguez, A. P.; Schulze-Makuch, D.; Rask, J.; Zavaleta, J.
2015-10-01
The Hebrus Valles EZ represents a diverse setting with multiple geological contacts and layers, possible remnant water ice and protected subsurface environments, which could be critical for the establishment of long-term human settlements.
EXPOSURE ASSESSMENT MODELING FOR HYDROCARBON SPILLS INTO THE SUBSURFACE
Hydrocarbons which enter the subsurface through spills or leaks may create serious, long-lived ground-water contamination problems. onventional finite difference and finite element models of multiphase, multicomponent flow often have extreme requirements for both computer time an...
OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION
NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...
Stonestrom, David A.; Blasch, Kyle W.; Stonestrom, David A.; Constantz, Jim
2003-01-01
Advances in electronics leading to improved sensor technologies, large-scale circuit integration, and attendant miniaturization have created new opportunities to use heat as a tracer of subsurface flow. Because nature provides abundant thermal forcing at the land surface, heat is particularly useful in studying stream-groundwater interactions. This appendix describes methods for obtaining the thermal data needed in heat-based investigations of shallow subsurface flow.
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Juan-Lien Ramírez, Alina; Class, Holger
2013-04-01
Global climate change, shortage of resources and the resulting turn towards renewable sources of energy lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, "renewable" methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas, and coal. The different uses of the subsurface can result in competition for the limited subsurface space, but in some cases there may also be synergetic effects, if the technologies are combined in a clever way. The idea behind this case study is to investigate the effects of a CCS site on a geothermal power plant operated in its vicinity and present both positive and negative impacts. During CCS operations large quantities of carbon dioxide (CO2) are injected into a storage formation. This causes a pressure increase as the brine in the formation is displaced by CO2. These elevations in pressure can have an extent of several tens of kilometers from the injection well in contrast to the much smaller extent of the CO2 plume. If geothermal power plants operate in the range influenced by pressure evaluation, this may have an impact on their performance. For example: Increased discharge of "warm" brine could be favorable for geothermal power plants as the time until thermal depletion of the reservoir may also increase Early breakthrough of the cold water front between an injection and an extraction well due to a brine discharge "pushing" the cold water front towards the extraction well may lead to a decrease in performance of the power plant Of course, there is a huge number of possible hydrogeological settings and technical configurations for geothermal power production that may be combined to an even larger number of possible scenarios. In this work however we use a simple model setup in which we incorporate and vary the parameters that we think are crucial. Only porous (not fractured) aquifer systems are considered here with a geothermal doublet system (cold water injection and warm water withdrawal). The CCS operation is assumed to take place in the same layer as the geothermal power/heat generation. The CO2 injection itself is not simulated, instead the brine discharge is implemented by an increase of pressure at one side of the domain with respect to the initial conditions. The discharge is varied by changing the pressure at the boundary within a range plausible for CCS operations. Different configurations of the extraction and injection wells of the doublet system with respect to a CCS operation are tested and compared to a reference system without the effect of increased brine discharge. With this work we want to explore the relevance of possible positive or negative impacts of a CCS operation on the performance of a geothermal power plant.
An Experimental Investigation of Infiltration in a Shallow Karst System
NASA Astrophysics Data System (ADS)
Bellin, A.; Becker, M. W.; Borsato, A.
2008-12-01
We present preliminary results of a field investigation of infiltration in a karst terrain in the Dolomiti del Brenta ridge, North-East Italy. A sub-horizontal cave 40 m deep drains a small catchment of about 6,000 m2 at the elevation of 2,600 m a.s.l. in a fractured triassic dolomite formation. The surface is characterized by a thin soil cover, vertical fractures, and karst collapse features (dolines). Water infiltrates through the dolines and vertical shafts which are connected to an unsaturated cave system. Within the cave, water discharge, temperature, and electric conductivity are recorded. Meterological conditions were measured at a weather station installed within the cave contributing area. Furthermore, in order to study residence time distribution in the summer 2007 we conducted a tracer experiment by injecting fluorescein in one of the dolines and recording its concentration within the cave. The recorded time series are statistically non-stationary with a wavelet spectrum strongly variable in time. However, a closer inspection of the water discharge wavelet spectrum reveals three periods in which the local power spectrum is nearly time invariant: November-April, April -July and August-October. In the first period we observe a slow exponential decline of the water discharge. The season is dominated by release of water from subsurface storage, in absence of surface input. In the second period, the system is dominated by snowmelt with a time lag that reduces from 9 hours to 1 hour through the melting season. The variation in time apparently corresponds with reduction in snowpack thickness. In the final period, the system is dominated by rainfall. The lag time in this period is on the order of 1 hour or less. These results suggest that in this hydrologic system the distribution of the residence time, and thus the transfer function relating input to output signals, is not state invariant, as typically assumed in applications. Rather, hydraulic residence time is seasonally variable and linked to both surface and subsurface hydrologic conditions.
Blooms and subsurface phytoplankton layers on the Scotian Shelf: Insights from profiling gliders
NASA Astrophysics Data System (ADS)
Ross, Tetjana; Craig, Susanne E.; Comeau, Adam; Davis, Richard; Dever, Mathieu; Beck, Matthew
2017-08-01
Understanding how phytoplankton respond to their physical environment is key to predicting how bloom dynamics might change under future climate change scenarios. Phytoplankton are at the base of most marine food webs and play an important role in drawing CO2 out of the atmosphere. Using nearly 5 years of simultaneous CTD, irradiance, chlorophyll a fluorescence and optical backscattering observations obtained from Slocum glider missions, we observed the subsurface phytoplankton populations across the Scotian Shelf, near Halifax (Nova Scotia, Canada) along with their physical environment. Bloom conditions were observed in each of the 5 springs, with the average chlorophyll in the upper 60 m of water generally exceeding 3 mg m- 3. These blooms occurred when the upper water column stratification was at its lowest, in apparent contradiction of the critical depth hypothesis. A subsurface chlorophyll layer was observed each summer at about 30 m depth, which was below the base of the mixed layer. This subsurface layer lasted 3-4 months and contained, on average, 1/4 of the integrated water column chlorophyll found during the spring bloom. This suggests that a significant portion of the primary productivity over the Scotian Shelf occurs at depths that cannot be observed by satellites-highlighting the importance of including subsurface observations in the monitoring of future changes to primary productivity in the ocean.
NASA Astrophysics Data System (ADS)
Hendriks, D.; Faneca, M.; Oude Essink, G.; van Baaren, E.; Stuurman, R.; Delsman, J. R.; van Kempen, C.; de Louw, P.
2016-12-01
Many areas in the world experience periodic water shortages due to meteorological drought, salt water intrusion or over-exploitation of the water resources. Recently, it was established that the depletion of aquifers in many areas of the world is in an advanced state (Gleeson et al, 2012). This poses enormous challenges as 2.5 billion people and many companies depend on groundwater now and in the future (UN, 2015; ESG, 2016). A solution to increase robustness of water systems and prevent water shortage is subsurface storage of water during wet periods using Managed Aquifer Research (MAR). In addition to mitigation of water shortage, MAR can also reduce the occurrence and degree of flooding. Here, we present an overview of Deltares MAR expertise and available tools for up-scaling MAR. Deltares has experience with both research and implementation of MAR in different parts of the world under various hydro(geo)logical, climatic and socio-economic conditions. Various MAR techniques were assessed/tested in coastal areas of the Netherlands, Spain, New York, New Orleans and in Bangladesh. In some of these areas specific groundwater shortage related issues occur, such as salt water intrusion or subsidence. In Singapore, monitoring campaigns and modeling were done to design MAR by infiltration of water in over-exploited aquifers. In Abu Dhabi, geophysical methods were used to detect the optimal conditions for MAR systems. To effectively increase the robustness of groundwater systems up-scaling of MAR is required. For this purpose, Deltares developed tools that provide insight in the potential demand, possibilities and effectiveness of MAR at larger scales. The Quick scan tool for Fresh Groundwater Buffering provides insight on regional to national scale and is based on GIS-information of water demand, water resources, and subsurface properties. This quick scan tool has been applied for Mozambique, Kenya, India and Bangladesh. The Fresh Water Optimizer assesses the effectiveness and side effects of small scale techniques, and assesses up-scaling based on spatial information of the geohydrology and socio-economic situation.
NASA Astrophysics Data System (ADS)
Lancaster, M. G.; Guest, J. E.
1996-03-01
It is well established that the surface of Mars exhibits abundant evidence for the presence of either liquid or frozen water during the course of Martian history. The origin, location, extent and transport of this water is of critical importance in the understanding of Martian geology and climate. In particular, the fluid appearance of rampart crater ejecta has been cited as evidence for subsurface ice at the time of impact. Ejecta morphology has proven to be a useful tool for studying the distribution of subsurface ice on Mars. It is possible that in some regions the concentration and distribution of subsurface ice has been affected by volcanic processes, either in the melting and/or mobilisation of existing subsurface water, and/or in the injection of juvenile water into the martian crust. The presence of water may also have affected the style of volcanic eruptions on Mars, increasing the volatile content of rising magmas and generating explosive activity. We are currently investigating the abundance and role of water in the evolution of the volcanoes Hadriaca and Tyrrhena Patera and surrounding highlands northeast of the Hellas Basin. The morphology of these volcanoes has been attributed to explosive volcanism, and to the presence of substantial amounts of water in the regolith at the time of their eruption. The location of Hadriaca Patera in a region containing channelled plains, debris flows, and pitted plains, together with the style of erosion of the volcano flanks suggests presence of volatile-rich surface materials or fluvial or periglacial activity. This work is a continuation of research undertaken by Cave in the Elysium Mons Region, where ice was found to be enriched at depth in the Elysium Lavas. We are performing a similar analysis for the volcanics of Hadriaca and Tyrrhena Paterae. A database containing information on the location, size, morphology, ejecta characteristics and degradation state of several hundred impact craters displaying ejecta in the region of Mars between the equator and 40 degrees S, and from 225 degrees to 275 degrees W is therefore being compiled.
Use of an automatic resistivity system for detecting abandoned mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Burdick, R.G.
1983-01-01
A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.
Effect of biocrust: study of mechanical and hydraulic properties and erodibility
NASA Astrophysics Data System (ADS)
Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana
2016-04-01
It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is formed by fungi including components of lichens which differ at individual localities. This research was funded by the Czech Science Foundation (GA CR No. 13-28040S) and Grant Agency of Charles University (No. 386815)
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.
2014-12-01
Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.
Kurylyk, Barret L.; Irvine, Dylan J.; Carey, Sean K.; Briggs, Martin A.; Werkema, Dale D.; Bonham, Mariah
2017-01-01
Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction‐dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson (2004), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater‐surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux‐LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., <1 m) or deep (e.g., up to 100 m) profiles. The solution is not transient, and thus, it should be cautiously applied where diel signals propagate or in deeper zones where multi‐decadal surface signals have disturbed subsurface thermal regimes.
Subsurface microbial diversity in deep-granitic-fracture water in Colorado
Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿
Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950
NASA Astrophysics Data System (ADS)
Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.
2017-12-01
The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ residence times to match reaction timescales and conditions of interest.
Linking climate change to water provision: greywater treatment by constructed wetlands
NASA Astrophysics Data System (ADS)
Qomariyah, S.; Ramelan, AH; Setyono, P.; Sobriyah
2018-03-01
Climate change has been felt to take place in Indonesia, causing the temperature to increase, additional drought with more moisture evaporates from rivers, lakes, and other bodies of water, and intense rainfall in a shorter rainy season. One of the major concerns is the risk of severe drought leading to water shortages. It will affect water supply and agriculture yields. As a country extremely vulnerable to the climate change, Indonesia must adapt to the serious environmental issues. This paper aims to offer an effort of water provision by recycling and reusing of greywater applying constructed wetland systems. The treated greywater is useful as water provision for non-consumptive uses. A recent experiment was conducted on a household yard using a single horizontal subsurface flow type of constructed wetland. The experiments demonstrated that the constructed wetland systems reduced effectively the pollutants of TSS, BOD, COD, and detergent to the level that are compliant with regulatory standards. The constructed wetland has been established for almost two years however the system still works properly.
BIOPLUME MODEL FOR CONTAMINANT TRANSPORT AFFECTED BY OXYGEN LIMITED BIODEGRADATION
Many of the organic pollutants entering ground water are potentially biodegradable in the subsurface. This potential has been demonstrated in aquifers contaminated by wood-creosoting process wastes. The persistence of many of these organic compounds in the subsurface indicated ...
Exobiology Robotics Laboratory to Search for Life on Martian Subsurface Water and Permafrost
NASA Astrophysics Data System (ADS)
Gan, D. C.; Kuznetz, L.; Chu, D.; Chang, V.; Yamada, M.; Lee, C.; Lee, R.
2000-07-01
A conceptual design of a robotics laboratory was constructed to search for life forms in Martian subsurface water and permafrost by cultivation of bacteria by using a variety of media to grow bacteria of the Archea group and Eubacteria. Other growth, morphology, motility and mode of reproduction of bacteria and organisms of the Protista will be observed with microscopy. The entire operations is controlled by a computer.
Water Migration and Swelling in Bentonite Quantified using Neutron Radiography
NASA Astrophysics Data System (ADS)
Vial, A.; DiStefano, V. H.; Perfect, E.; Hale, R. E.; Anovitz, L. M.; McFarlane, J.
2016-12-01
Permanent disposal of radioactive waste remains a critical challenge for the nation's energy future. All disposal system concepts include interfaces between engineered systems and natural materials requiring extensive characterization. Bentonite is often used to buffer subsurface disposal systems from geologic media containing ground water. Bentonite characterization experiments were carried out using the CG-1D neutron imaging beam line at Oak Ridge National Laboratory. Dry bentonite was packed into vertically-oriented aluminum cylinders. Water was ponded on the top surface of each packed cylinder. Images were acquired at 2 min intervals using dynamic neutron radiography. The detector consisted of stacked neutron sensitive microchannel plates above a quad Timepix readout with a 28 x 28 mm2 field of view. The spatial resolution of the detector was 55 μm. Raw neutron radiographs were imported into ImageJ and normalized with respect to the initial completely dry state. The wetting process was 1-dimensional, and vertical intensity profiles were computed by averaging pixel rows. The vertical distance between the clay-water interface and the wetting front could then be determined as a function of time. Depth of water infiltration increased linearly with the square root of time, yielding a sorptivity value of 0.75 (± 0.070) mm/min0.5. Swelling occurred in the form of upward movement of clay particles into the ponded water over time. The resulting low density assemblage was discernable by normalizing the raw profiles with respect to the intensity profile immediately after ponding. The packed clay-water interface was clearly visible in the normalized profiles, and swelling was quantified as the height of the low density assemblage above the original interface. Swelling occurred as a linear function of time, at a rate of 0.054 (± 0.020) mm/min. Further experiments of this type are planned under variable temperature and pressure regimes applicable to subsurface repositories.
de Moraes, Rafael Ratto; Marimon, José Laurindo Machado; Schneider, Luis Felipe; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço; Bueno, Márcia
2008-06-01
This study assessed the effect of 6 months of aging in water on surface roughness and surface/subsurface hardness of two microhybrid resin composites. Filtek Z250 and Charisma were tested. Cylindrical specimens were obtained and stored in distilled water for 24 hours or 6 months, at 37 degrees C. For Knoop hardness evaluation, the specimens were transversely wet-flattened, and indentations were made on surface and subsurface layers. Data were submitted to three-way ANOVA and Tukey's test (alpha < or = 0.05). Surface roughness baseline measurements were made at 24 hours and repeated after 6 months of storage. Data were submitted to repeated measures ANOVA and Tukey's test (alpha < or = 0.05). Surface hardness (KHN, kg/mm(2)) means (+/- standard deviation) ranged from 55 +/- 1 to 49 +/- 4 for Z250 and from 50 +/- 2 to 41 +/- 3 for Charisma, at 24 hours and 6 months, respectively. Subsurface means ranged from 58 +/- 2 to 61 +/- 3 for Z250 and from 50 +/- 1 to 54 +/- 2 for Charisma, at 24 hours and 6 months. For both composites, the aged specimens presented significantly softer surfaces (p < 0.01). For the subsurface hardness, alteration after storage was detected only for Charisma, which presented a significant rise in hardness (p < 0.01). Z250 presented significantly harder surface and subsurface layers in comparison with Charisma. Surface roughness (Ra, mum) means ranged from 0.07 +/- 0.00 to 0.07 +/- 0.01 for Z250 and from 0.06 +/- 0.01 to 0.07 +/- 0.01 for Charisma, at 24 hours and 6 months, respectively. For both composites, no significant roughness alteration was detected during the study (p= 0.386). The 6-month period of storage in water presented a significant softening effect on the surfaces of the composites, although no significant deleterious alteration was detected for the subsurface hardness. In addition, the storage period had no significant effect on the surface roughness of the materials.
Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape
NASA Astrophysics Data System (ADS)
Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.
2017-12-01
Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.
NASA Astrophysics Data System (ADS)
Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.
2016-12-01
As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.
Regolith Volatile Recovery at Simulated Lunar Environments
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale
2016-01-01
Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.
Salinization Sources Along the Lower Jordan River Under Draught Conditions
NASA Astrophysics Data System (ADS)
Holtzman, R.; Shavit, U.; Segal, M.; Vengosh, A.; Farber, E.; Gavrieli, I.
2003-12-01
The Lower Jordan River, once a flowing freshwater river, is suffering from an ongoing reduction of discharge and water quality. The river flows between the Sea of Galilee and the Dead Sea, an aerial distance of about 105 Km. The severe reduction is caused by an excessive exploitation of its sources and diversion of sewage and agricultural drainage into the river. The extreme low flows and low water quality threaten the natural existence of the river and its potential use for agriculture. In spite of its importance, little research has been done in the river. The objectives of the study were to measure the discharge and water composition along the river and to evaluate the main sources that control its flow and chemical characteristics. The hypothesis of the study was that interaction with subsurface flows significantly affects the river flow and chemical composition. The research is based on a detailed field study, which included flow rate measurements in the river and its tributaries, water sampling and analysis and mass balance calculations of water and solutes. A portable Acoustic Doppler Velocimeter (ADV) was used to measure velocities and bathymetry at different locations across the river sections. Due to accessibility constraints, a floating traverse construction, which enables the ADV's deployment from one bank of the river, was developed. It was found that flow rate ranges between 500-1,100 L/s in northern (upstream) sections and 300-1,650 L/s in the south. This low discharge represents a significant reduction from historical values and is lower than recent published estimations. This research represents base flows only, as the measurements were done during a period of two consecutive draught years. Calculated mass balance of water flows in the northern sections shows that the subsurface source contributes to the river around 200-670 L/s (30-80% of the river flow). Calculations of solute balance show that the subsurface flows add 20-50% of the mass of solutes (e.g. Sulfate) that flows in the river. The assumption of a hydraulic gradient that points at inflows from subsurface flows is encouraged by high water levels measured in nearby piezometers. Possible natural subsurface sources include shallow groundwater or rising of water from deep formations. The existence of adjacent thermal wells strengthens the reasonability of such water rise. Possible anthropogenic sources include return flows and effluents. The results are consistent and agree with the geochemical and isotopic analyses. It is concluded that the impact of the subsurface component on the Jordan River is significant and must be taken into consideration, for future water management schemes and implementation of the Peace Treaty between Israel and Jordan.
Modeling the Hydrologic Processes of a Permeable Pavement ...
A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit
Effects of horizontal grid resolution on evapotranspiration partitioning using TerrSysMP
NASA Astrophysics Data System (ADS)
Shrestha, P.; Sulis, M.; Simmer, C.; Kollet, S.
2018-02-01
Biotic leaf transpiration (T) and abiotic evaporation (E) are the two major pathways by which water is transferred from land surfaces to the atmosphere. Earth system models simulating the terrestrial water, carbon and energy cycle are required to reliably embed the role of soil and vegetation processes in order to realistically reproduce both fluxes including their relative contributions to total evapotranspiration (ET). Earth system models are also being used with increasing spatial resolutions to better simulate the effects of surface heterogeneity on the regional water and energy cycle and to realistically include effects of subsurface lateral flow paths, which are expected to feed back on the exchange fluxes and their partitioning in the model. Using the hydrological component of the Terrestrial Systems Modeling Platform (TerrSysMP), we examine the uncertainty in the estimates of T/ET ratio due to horizontal model grid resolution for a dry and wet year in the Inde catchment (western Germany). The aggregation of topography results in smoothing of slope magnitudes and the filtering of small-scale convergence and divergence zones, which directly impacts the surface-subsurface flow. Coarsening of the grid resolution from 120 m to 960 m increased the available soil moisture for ground evaporation, and decreased T/ET ratio by about 5% and 8% for dry and wet year respectively. The change in T/ET ratio was more pronounced for agricultural crops compared to forested areas, indicating a strong local control of vegetation on the ground evaporation, affecting the domain average statistics.
NASA Astrophysics Data System (ADS)
Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.
2017-12-01
Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined with additional geological information, modeling of the gravity signal based on the vertical component of the gravitational attraction was particularly useful to estimate the seasonal recharge leading to temporary groundwater storage in the vadose zone.
NASA Astrophysics Data System (ADS)
Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.
2012-12-01
In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
Monitoring the Vadose Zone Moisture Regime Below a Surface Barrier
NASA Astrophysics Data System (ADS)
Zhang, Z. F.; Strickland, C. E.; Field, J. G.
2009-12-01
A 6000 m2 interim surface barrier has been constructed over a portion of the T Tank Farm in the Depart of Energy’s Hanford site. The purpose of using a surface barrier was to reduce or eliminate the infiltration of meteoric precipitation into the contaminated soil zone due to past leaks from Tank T-106 and hence to reduce the rate of movement of the plume. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier on the reduction of soil moisture flow. A vadose zone monitoring system was installed to measure soil water conditions at four horizontal locations (i.e., instrument Nests A, B, C, and D) outside, near the edge of, and beneath the barrier. Each instrument nest consists of a capacitance probe with multiple sensors, multiple heat-dissipation units, and a neutron probe access tube used to measure soil-water content and soil-water pressure. Nest A serves as a control by providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess barrier edge effects. Nests C and D are used to assess the impact of the surface barrier on soil-moisture conditions beneath it. Monitoring began in September 2006 and continues to the present. To date, the monitoring system has provided high-quality data. Results show that the soil beneath the barrier has been draining from the shallower depth. The lack of climate-caused seasonal variation of soil water condition beneath the barrier indicates that the surface barrier has minimized water exchange between the soil and the atmosphere.
Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E
2013-03-01
The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.
Measurement and modeling of phosphorous transport in shallow groundwater environments.
Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G
2014-08-01
Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of added fertilizer P between HEI (187kg P2O5/ha) and REI (124kg P2O5/ha), soil Mehlich 1 P (M1P) values were similar for both systems while they received Pinput. Soil M1P for REI and REI-SD increased to a maximum of 55mg/kg while they received Pinput, and then gradually decreased after Pinput ceased. However, M1P for HEI increased steadily to a maximum of 145mg/kg by the end of the study with continued Pinput. Mehlich-1 P measured six years after the study still showed relatively high levels of P, a legacy effect of Pinput. The main factors influencing groundwater P concentration varied by seasons. During fall with frequent rainfall, the concentrations were influenced mainly by M1P and Pinput, and highlight a need for greater focus on Pinput management (vs. water management) during this season. However, during the dry period of spring, a greater focus on irrigation management is required since depth to water table and rainfall also become contributing factors. Three multivariate models (r(2)=0.67 to 0.93), for spring, fall, and annual periods, were developed for predicting groundwater P concentrations for a wide range of water and P inputs (0 to 191kg P2O5/ha of Pinput). The uniqueness of these models is that they use readily available hydrologic (rainfall and water table depth), management (Pinput), and soil (M1P) data commonly monitored by growers when managing water and nutrient inputs on agricultural landscapes. The development of similar models may not be necessary for other agro-ecosystems in similar regions since long-term data collected in these regions may be applied, with verification, to the models presented here. Copyright © 2014 Elsevier B.V. All rights reserved.
Measurement and modeling of phosphorous transport in shallow groundwater environments
NASA Astrophysics Data System (ADS)
Hendricks, G. S.; Shukla, S.; Obreza, T. A.; Harris, W. G.
2014-08-01
Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI = 2098 μg/L and REI-SD = 2048 μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090 μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of added fertilizer P between HEI (187 kg P2O5/ha) and REI (124 kg P2O5/ha), soil Mehlich 1 P (M1P) values were similar for both systems while they received Pinput. Soil M1P for REI and REI-SD increased to a maximum of 55 mg/kg while they received Pinput, and then gradually decreased after Pinput ceased. However, M1P for HEI increased steadily to a maximum of 145 mg/kg by the end of the study with continued Pinput. Mehlich-1 P measured six years after the study still showed relatively high levels of P, a legacy effect of Pinput. The main factors influencing groundwater P concentration varied by seasons. During fall with frequent rainfall, the concentrations were influenced mainly by M1P and Pinput, and highlight a need for greater focus on Pinput management (vs. water management) during this season. However, during the dry period of spring, a greater focus on irrigation management is required since depth to water table and rainfall also become contributing factors. Three multivariate models (r2 = 0.67 to 0.93), for spring, fall, and annual periods, were developed for predicting groundwater P concentrations for a wide range of water and P inputs (0 to 191 kg P2O5/ha of Pinput). The uniqueness of these models is that they use readily available hydrologic (rainfall and water table depth), management (Pinput), and soil (M1P) data commonly monitored by growers when managing water and nutrient inputs on agricultural landscapes. The development of similar models may not be necessary for other agro-ecosystems in similar regions since long-term data collected in these regions may be applied, with verification, to the models presented here.
Modeling Subsurface Behavior at the System Level: Considerations and a Path Forward
NASA Astrophysics Data System (ADS)
Geesey, G.
2005-12-01
The subsurface is an obscure but essential resource to life on Earth. It is an important region for carbon production and sequestration, a source and reservoir for energy, minerals and metals and potable water. There is a growing need to better understand subsurface possesses that control the exploitation and security of these resources. Our best models often fail to predict these processes at the field scale because of limited understanding of 1) the processes and the controlling parameters, 2) how processes are coupled at the field scale 3) geological heterogeneities that control hydrological, geochemical and microbiological processes at the field scale and 4) lack of data sets to calibrate and validate numerical models. There is a need for experimental data obtained at scales larger than those obtained at the laboratory bench that take into account the influence of hydrodynamics, geochemical reactions including complexation and chelation/adsorption/precipitation/ion exchange/oxidation-reduction/colloid formation and dissolution, and reactions of microbial origin. Furthermore, the coupling of each of these processes and reactions needs to be evaluated experimentally at a scale that produces data that can be used to calibrate numerical models so that they accurately describe field scale system behavior. Establishing the relevant experimental scale for collection of data from coupled processes remains a challenge and will likely be process-dependent and involve iterations of experimentation and data collection at different intermediate scales until the models calibrated with the appropriate date sets achieve an acceptable level of performance. Assuming that the geophysicists will soon develop technologies to define geological heterogeneities over a wide range of scales in the subsurface, geochemists need to continue to develop techniques to remotely measure abiotic reactions, while geomicrobiologists need to continue their development of complementary technologies to remotely measure microbial community parameters that define their key functions at a scale that accurately reflects their role in large scale subsurface system behavior. The practical questions that geomicrobiologist must answer in the short term are: 1) What is known about the activities of the dominant microbial populations or those of their closest relatives? 2) Which of these activities is likely to dominate under in situ conditions? In the process of answering these questions, researchers will obtain answers to questions of a more fundamental nature such as 1) How deep does "active" life extend below the surface of the seafloor and terrestrial subsurface? 2) How are electrons exchanged between microbial cells and solid phase minerals? 3) What is the metabolic state and mechanism of survival of "inactive" life forms in the subsurface? 4) What can genomes of life forms trapped in geological material tell us about evolution of life that current methods cannot? The subsurface environment represents a challenging environment to understand and model. As the need to understand subsurface processes increases and the technologies to characterize them become available, modeling subsurface behavior will approach the level of sophistication of models used today to predict behavior of other large scale systems such as the oceans.
Scenario simulation based assessment of subsurface energy storage
NASA Astrophysics Data System (ADS)
Beyer, C.; Bauer, S.; Dahmke, A.
2014-12-01
Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC-processes, mutual effects and influences on protected entities. The scenario analyses allow the deduction of monitoring concepts as well as a first methodology for large scale spatial planning of the geological subsurface. This concept is illustrated for different storage options and their impacts in space and time.
NASA Astrophysics Data System (ADS)
Fersch, Benjamin; Senatore, Alfonso; Kunstmann, Harald
2017-04-01
Fully-coupled hydrometeorological modeling enables investigations about the complex and often non-linear exchange mechanisms among subsurface, land, and atmosphere with respect to water and energy fluxes. The consideration of lateral redistribution of surface and subsurface water in such modeling systems is a crucial enhancement, allowing for a better representation of surface spatial patterns and providing also channel discharge predictions. However, the evaluation of fully-coupled simulations is difficult since the amount of physical detail along with feedback mechanisms leads to high degrees of freedom. Therefore, comprehensive observation data is required to obtain meaningful model configurations. We present a case study for a medium-sized river catchment in southern Germany that includes the calibration of the stand-alone and the evaluation of the fully-coupled WRF-Hydro modeling system with a horizontal resolution of 1 x 1 km2, for the period June to August 2015. ECMWF ERA-Interim reanalysis is used for model driving. Land-surface processes are represented by the Noah-MP land surface model. Land-cover is described by the EU CORINE data set. Observations for model evaluation are obtained from the TERENO Pre-Alpine observatory (http://www.imk-ifu.kit.edu/tereno.php) and are complemented by further measurements from the ScaleX campaign (http://scalex.imk-ifu.kit.edu) such as atmospheric profiles obtained from radiometer sounding and airborne systems as well as soil moisture and -temperature networks. We show how well water budgets and heat-fluxes are being reproduced by the stand-alone WRF, the stand-alone WRF-Hydro and the fully-coupled WRF-Hydro model.
DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES
Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...
NASA Astrophysics Data System (ADS)
Hailegeorgis, Teklu T.; Alfredsen, Knut
2018-02-01
Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.
Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT
NASA Astrophysics Data System (ADS)
Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier
2017-04-01
Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan
Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states frommore » PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of changes subsurface electrical conductivity, in both the saturated and unsaturated zones, arising from water table changes and from river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev .« less
Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications
Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.
1999-01-01
Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.
Paces, James B.; Long, Andrew J.; Koth, Karl R.
2015-01-01
Numerous geochemical and geophysical studies have been conducted at Yellowstone National Park to better understand the hydrogeologic processes supporting the thermal features of the Park. This report provides the first 87Sr/86Sr and 234U/238U data for thermal water from the Upper Geyser Basin (UGB) intended to evaluate whether heavy radiogenic isotopes might provide insight to sources of groundwater supply and how they interact over time and space. In addition, this report summarizes previous geophysical studies made at Yellowstone National Park and provides suggestions for applying non-invasive ground and airborne studies to better understand groundwater flow in the subsurface of the UGB. Multiple samples from Old Faithful, Aurum, Grand, Oblong, and Daisy geysers characterized previously for major-ion concentrations and isotopes of water (δ2H, δ18O, and 3H) were analyzed for Sr and U isotopes. Concentrations of dissolved Sr and U are low (4.3–128 ng g-1 Sr and 0.026–0.0008 ng g-1 U); consequently only 87Sr/86Sr data are reported for most samples. Values of 87Sr/86Sr for most geysers remained uniform between April and September 2007, but show large increases in all five geysers between late October 2007 and early April, 2008. By late summer of 2008, 87Sr/86Sr values returned to values similar to those observed a year earlier. Similar patterns are not present in major-ion data measured on the same samples. Furthermore, large geochemical differences documented between geysers are not observed in 87Sr/86Sr data, although smaller differences between sites may be present. Sr-isotope data are consistent with a stratified hydrologic system where water erupted in spring and summer of 2007 and summer of 2008 equilibrated with local intracaldera rhyolite flows at shallower depths. Water erupted between October 2007 and April 2008 includes greater amounts of groundwater that circulated deep enough to acquire a radiogenic 87Sr/86Sr, most likely from Archean basement rocks. Details of how the shallow and deep components interact and mechanisms causing these interactions remain unknown, but the data demonstrate the usefulness of obtaining Sr-isotope data from future sample campaigns. Geophysical methods that would be useful for characterization of the UGB subsurface properties and geothermal system include electromagnetic (EM), gravity, and ambient seismic. A suite of ground-based EM methods could be used in a synergistic combination together with airborne EM surveys to provide data for a range of spatial scales and resolutions. Existing thermal data for the shallow subsurface could be used to relate ground and airborne EM survey data to locations of geothermal fluids near the surface. Gravity surveys would be useful for mapping subsurface density anomalies and possibly monitoring changes in degree of saturation with groundwater. Ambient seismic surveys would be useful for estimating the thickness of unconsolidated deposits that contain the shallow groundwater system. A study that combines radiogenic isotope tracers with geophysical methods has the potential to better characterize the geothermal workings in the UGB. Insights gained could lead to a better understanding of the geothermal system and how Park infrastructure may cause perturbations. Measurements of radiogenic isotopes from multiple geysers and pools in localized areas within the UGB that are coupled with data from geophysical surveys would help refine conceptual models of mixing between deep- and shallow-derived subsurface fluids.
NASA Technical Reports Server (NTRS)
Youk, G. U.; Whittaker, W. (Red); Volpe, R.
2000-01-01
Perhaps the most promising site for extant life on Mars today is where subsurface water has been maintained. Therefore, searching for underground water will provide a good chance to find evidence of life on Mars. The following are scientific/engineering questions that we want to answer using our approach: (1) Is there subsurface water/ice? How deep is it? How much is there? Is it frozen? (2) What kinds of underground layers exist in the Martian crust? (3) What is the density of Martian soil or regolith? Can we dig into it? Should we drill into it? (4) Can a sudden release of underground water occur if a big asteroid hits Mars? Our approach provides essential information to answer these questions. Moreover, dependence on the water content and depth in soil, not only resultant scientific conclusions but also proper digging/drilling methods, are suggested. 'How much water is in the Martian soil?' There can be several possibilities: (1) high water content that is enough to form permafrost; (2) low water content that is not enough to form permafrost; or (3) different layers with different moisture contents. 'How deep should a rover dig into soil to find water/ice?' The exact size-frequency distribution has not been measured for the soil particles. On-board sensors can provide not only the water content but also the density (or porosity) of Martian soil as a function of depth.
Applications of geohydrologic concepts in geology
Maxey, G.B.; Hackett, J.E.
1963-01-01
Subsurface water, an active agent in many geologic proceses, must be considered in interpreting geologic phenomena. Principles of the occurrence, distribution, and movement of subsurface waters are well established and readily applicable. In many interpretations in geologic literature, geohydrologic principles have been employed realistically, but in many others these principles have been either ignored or violated. Explanations of genesis of underclays and associated deposits afford some examples wherein principles of movement and activity of vadose and ground water have been ignored and others in which they have been used advantageously. Postulates stating that waters percolate downward from swamp areas do not allow for the usual movement of subsurface water in such environments. The idea that sediments were leached by vadose water after uplift satisfies the geohydrologic requirements. Weathering and solution form porous and permeable zones subjacent to unconformities in dense rocks such as carbonates and granites; this illustrates the geohydrologic and economic significance of unconformities. Examples are Mohawkian carbonate aquifers of northern Illinois and oil-bearing limestones of Mississippian age of eastern Montana. The flushing effects of meteoric water and other hydrodynamic factors active during erosion periods are important elements in the genesis and concentration of brines. Explanation of the origin and occurrence of brines must include consideration of the geohydrologic environments throughout their geologic history. ?? 1963.
Novel Polarization Techniques and Instrumentation for Glacial Melt Pond Laser Bathymetry
NASA Astrophysics Data System (ADS)
Barton-Grimley, R. A.; Gisler, A.; Thayer, J. P.; Stillwell, R. A.; Grigsby, S.; Crowley, G.
2015-12-01
Melt ponds contribute significantly to the feedback processes that serve to amplify the polar response to climate change. A substantial volume of melt water is found in shallow ponds during the Arctic summer on the Greenland Ice Sheet, which have consequences on glacial dynamics and ice loss, however, the water content and subsurface topography of the ponds has proven difficult to measure. The need for instrumentation to provide high-resolution depth measurements in shallow water is addressed by utilizing novel polarization discrimination techniques in a high repetition rate, low power, 532nm photon counting lidar system. Recent advances demonstrate the ability to achieve kHz acquisition rates with a depth precision of 1cm. Use of this technique eliminates the necessity for short laser pulses and high-bandwidth detectors and instead provides a less complex, smaller, and more economical solution to airborne lidar instrumentation. Recent deployment of the lidar system aboard the NASA DC-8 research aircraft, during the 2015 NASA SARP campaign, provided critical engineering data and experience to facilitate further advancement of an airborne bathymetric lidar system for melt pond studies. Signal performance from flight indicates a 50 cm horizontal ground resolution at nominal altitudes below 1000 feet above ground level, and also indicates that maintaining a vertical precision of 1cm is achievable, though these results will be further examined. Results from the DC-8 aircraft deployment are promising, and the modest system size opens up the possibility for future integration into a UAS. This presentation will highlight the measurement capabilities of this novel lidar system, and explore polarization scattering properties of laser light with snow, ice, liquid water. System performance metrics will be evaluated for operating during summer periods in the Polar Regions and discuss the scientific contribution to Cryosphere research - most notably the depth and subsurface ice topography of glacial melt ponds.
Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu
2013-01-01
In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...
NASA Astrophysics Data System (ADS)
Bhusari, Vijay; Katpatal, Y. B.; Kundal, Pradeep
2016-08-01
The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8-2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.
NASA Astrophysics Data System (ADS)
Becker, Matthew D.; Wang, Yonggang; L. Paulsen, Jeffrey; Song, Yi-Qiao; Abriola, Linda M.; Pennell, Kurt D.
2014-12-01
Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L-1 NaCl + 20 g L-1 CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations.Nanotechnologies have been proposed for a variety of environmental applications, including subsurface characterization, enhanced oil recovery, and in situ contaminant remediation. For such applications, quantitative predictive models will be of great utility for system design and implementation. Electrolyte chemistry, which can vary substantially within subsurface pore waters, has been shown to strongly influence nanoparticle aggregation and deposition in porous media. Thus, it is essential that mathematical models be capable of tracking changes in electrolyte chemistry and predicting its influence on nanoparticle mobility. In this work, a modified version of a multi-dimensional multispecies transport simulator (SEAWAT) was employed to model nanoparticle transport under transient electrolyte conditions. The modeling effort was supported by experimental measurements of paramagnetic magnetite (Fe3O4) nanoparticle, coated with polyacrylamide-methylpropane sulfonic acid - lauryl acrylate (nMag-PAMPS), mobility in columns packed with 40-50 mesh Ottawa sand. Column effluent analyses and magnetic resonance imaging (MRI) were used to quantify nanoparticle breakthrough and in situ aqueous phase concentrations, respectively. Experimental observations revealed that introduction of de-ionized water into the brine saturated column (80 g L-1 NaCl + 20 g L-1 CaCl2) promoted release and remobilization of deposited nanoparticles along a diagonal front, coincident with the variable density flow field. This behavior was accurately captured by the simulation results, which indicated that a two-site deposition-release model provided the best fit to experimental observations, suggesting that heterogeneous nanoparticle-surface interactions governed nanoparticle attachment. These findings illustrate the importance of accounting for both physical and chemical processes associated with changes in electrolyte chemistry when predicting nanoparticle transport behavior in subsurface formations. Electronic supplementary information (ESI) available: A schematic diagram of the nMag-MRI experimental systems, description of the mathematical modeling domain, further information regarding calibration of R2 to nMag concentration in sand, comparison of one- and two-site simulations of phases 1 and 2, DLVO interaction energy profiles for the system, and a time lapse movie of the best fit two-site model simulation of the nMag experimental data. See DOI: 10.1039/c4nr05088f
NASA Astrophysics Data System (ADS)
Gaur, N.; Jaimes, A.; Vaughan, S.; Morgan, C.; Moore, G. W.; Miller, G. R.; Everett, M. E.; Lawing, M.; Mohanty, B.
2017-12-01
Applications varying from improving water conservation practices at the field scale to predicting global hydrology under a changing climate depend upon our ability to achieve water budget closure. 1) Prevalent heterogeneity in soils, geology and land-cover, 2) uncertainties in observations and 3) space-time scales of our control volume and available data are the main factors affecting the percentage of water budget closure that we can achieve. The Texas Water Observatory presents a unique opportunity to observe the major components of the water cycle (namely precipitation, evapotranspiration, root zone soil moisture, streamflow and groundwater) in varying eco-hydrological regions representative of the lower Brazos River basin at multiple scales. The soils in these regions comprise of heavy clays that swell and shrink to create complex preferential pathways in the sub-surface, thus, making the hydrology in this region difficult to quantify. This work evaluates the water budget of the region by varying the control volume in terms of 3 temporal (weekly, monthly and seasonal) and 3 different spatial scales. The spatial scales are 1) Point scale - that is typical for process understanding of water dynamics, 2) Eddy Covariance footprint scale - that is typical of most eco-hydrological applications at the field scale and, 3) Satellite footprint scale- that is typically used in regional and global hydrological analysis. We employed a simple water balance model to evaluate the water budget at all scales. The point scale water budget was assessed using direct observations from hydro-geo-thematically located observation locations within different eddy covariance footprints. At the eddy covariance footprint scale, the sub-surface of each eddy covariance footprint was intensively characterized using electromagnetic induction (EM 38) and the resultant data was used to calculate the inter-point variability to upscale the sub-surface storage while the satellite scale water budget was evaluated using SMAP satellite observations supplemented with reanalysis products. At the point scale, we found differences in sub-surface storage in the same land-cover depending on the landscape position of the observation point while land-cover significantly affected water budget at the larger scales.
NASA Astrophysics Data System (ADS)
Armitage, D. M.; Bacon, D. J.; Massey-Norton, J. T.; Miller, J. M.
1980-11-01
Groundwater is attractive as a potential low temperature energy source in residential space conditioning applications. When used in conjunction with a heat pump, ground water can serve as both a heat source and a heat sink. Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground water quality is considered as it affects the performance and life expectancy of the water side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and federal levels. Computer simulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.
Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06
Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.
2011-01-01
The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components of the hydrologic cycle in the Pinelands. In the Pinelands, recharge replenishes the aquifer system and contributes to groundwater flow, most of which moves to wetlands and surface water where natural discharge occurs. Some groundwater flow is intercepted by supply wells. Recharge rates generally are highest during the non-growing season and are inversely related to evapotranspiration. Analysis of subsurface hydraulic gradients, water-table fluctuations, and streamflow variability indicates a strong linkage between groundwater and wetlands, lakes and streams. Gradient analysis indicates that most wetlands are in groundwater discharge areas, but some wetlands are in groundwater recharge areas. The depth to the water table ranges from zero at surface-water features up to about 10 meters in topographically high areas. Depth to water fluctuates seasonally, and the magnitude of these fluctuations generally increases with distance from surface water. Variations in the permeability of the soils and sediments of the aquifer system strongly affect patterns of water movement through the subsurface and the interaction of groundwater with wetlands, lakes and streams. Mean annual streamflow during 2004-06 ranged from 83 to 106 percent of the long-term mean annual discharge, indicating that the data-collection period can be considered representative of average conditions. Measurements of groundwater levels, stream stage, and stream discharge and locations of start-of-flow are illustrated in basin-wide maps of water-table altitude, depth to the water table, and stream base flow during the period. Water-level data collected along 15 hydrologic transects that span the range of environments from uplands through wetlands to surface water were used to determine hydraulic gradients, potential flow directions, and areas of recharge and discharge. These data provide information about the localized interactions of groundwater with wetlands and surface water. Wetlands were categorized with r