Sample records for subsystem concepts volume

  1. Advanced Extravehicular Protective Systems (AEPS) study

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Copeland, R. J.; Webbon, B. W.

    1971-01-01

    A description is given of life support subsystem concepts for advanced extravehicular protective systems (AEPS) intended for use on future orbital, lunar surface, and Mars surface missions in the late 1970's and 1980's. Primary interest was centered around the thermal control and carbon dioxide control subsystems because they offer the greatest potential for total weight savings. Emphasis was placed on the generation of regenerable subsystem concepts; however, partially regenerable and expendable concepts were also considered. Previously conceived and developed subsystem concepts were included in the study. Concepts were evaluated on the basis of subsystem weight and volume, and subsystem contribution to parent vehicle weight and volume, which included spares, regeneration equipment, expendables, expandables storage penalty, power penalty, and process heating or cooling penalty. Results are presented showing total weight and volume penalty as a function of total mission extravehicular activity (EVA) hours, and showing EVA weight and volume as a function of EVA duration. Subsystem concepts are recommended for each life support function, and secondary concepts which should be developed are also identified.

  2. Analysis of a display and control system man-machine interface concept. Volume 1: Final technical report

    NASA Technical Reports Server (NTRS)

    Karl, D. R.

    1972-01-01

    An evaluation was made of the feasibility of utilizing a simplified man machine interface concept to manage and control a complex space system involving multiple redundant computers that control multiple redundant subsystems. The concept involves the use of a CRT for display and a simple keyboard for control, with a tree-type control logic for accessing and controlling mission, systems, and subsystem elements. The concept was evaluated in terms of the Phase B space shuttle orbiter, to utilize the wide scope of data management and subsystem control inherent in the central data management subsystem provided by the Phase B design philosophy. Results of these investigations are reported in four volumes.

  3. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 3. Subsystem Functional Description.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...

  4. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  5. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 7: System/subsystem requirements data book

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 7 of the Satellite Power Systems (SPS) Concept Definition Study final report summarizes the basic requirements used as a guide to systems analysis and is a basis for the selection of candidate SPS point design(s). Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point design(s). The identified subsystem/systems requirements are defined, and where appropriate, recommendations for alternate approaches which may represent improved design features are presented. A more detailed discussion of the selected point design(s) will be found in Volume 2 of this report.

  6. Advanced Extravehicular Protective System (AEPS) study

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Webbon, B. W.; Copeland, R. J.

    1972-01-01

    A summary is presented of Advanced Extravehicular Protective Systems (AEPS) for the future missions beyond Skylab in earth orbit, on the lunar surface, and on the Martian surface. The study concentrated on the origination of regenerable life support concepts for use in portable extravehicular protective systems, and included evaluation and comparison with expendable systems, and selection of life support subsystems. The study was conducted in two phases. In the first phase, subsystem concepts for performing life support functions in AEPS which are regenerable or partially regenerable were originated, and in addition, expendable subsystems were considered. Parametric data for each subsystem concept were evolved including subsystem weight and volume, power requirement, thermal control requirement; base regeneration equipment weight and volume, requirement. The second phase involved an evaluation of the impact of safety considerations involving redundant and/or backup systems on the selection of the regenerable life support subsystems. In addition, the impact of the space shuttle program on regenerable life support subsystem development was investigated.

  7. Advanced extravehicular protective systems study, volume 2

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    The results of the subsystem studies are presented. Initial identification and evaluation of candidate subsystem concepts in the area of thermal control, humidity control, CO2 control/O2 supply, contaminant control and power supply are discussed. The candidate concepts that were judged to be obviously noncompetitive were deleted from further consideration and the remaining candidate concepts were carried into the go/no go evaluation. A detailed parametric analysis of each of the thermal/humidity control and CO2 control/O2 supply subsystem concepts which passed the go/no go evaluation is described. Based upon the results of the parametric analyses, primary and secondary evaluations of the remaining candidate concepts were conducted. These results and the subsystem recommendations emanating from these results are discussed. In addition, the parametric analyses of the recommended subsystem concepts were updated to reflect the final AEPS specification requirements. A detailed discussion regarding the selection of the AEPS operating pressure level is presented.

  8. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 2

    NASA Technical Reports Server (NTRS)

    Levak, Daniel

    1993-01-01

    The Alternate Propulsion Subsystem Concepts contract had five tasks defined for the first year. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, Space Shuttle Main Engine (SSME) Upper Stage Use, and CER's for Liquid Propellant Rocket Engines. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume 1.

  9. Space transfer vehicle concepts and requirements study. Volume 2, book 1: STV concept definition and evaluation

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The topics covered include the following: mission analysis; initial and evolutionary space transfer vehicle (STV) concept definition; configuration and subsystem trade studies; and operations and logistics.

  10. Conceptual design and evaluation of selected Space Station concepts, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The partially closed cycle environmental control and Life Support Subsystems is examined. Components of the system include air pressure control, heat control, water management, air and water quality monitors, fire detection and suppression, personnel escape, and EVA support subsystems.

  11. Modular space station phase B extension preliminary systems design report. Volume 6: Trades and analyses

    NASA Technical Reports Server (NTRS)

    Jones, A. L.

    1972-01-01

    Requirements and concepts and the tradeoff analysis leading to the preferred concept are presented. Integrated analyses are given for subsystems and thermal control. Specific tradeoffs and analyses are also given for water management, atmosphere control, energy storage, radiators, navigation, control moment gyros, and system maintenance. The analyses of manipulator concepts and requirements, and supplemental analyses of information management issues are summarized. Subsystem reliability analyses include a detailed discussion of the critical failure analysis.

  12. Satellite Power Systems (SPS) concept definition study (Exhibit D). Volume 7: System/subsystems requirements databook

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    This volume summarizes the basic requirements used as a guide to systems analysis, and is a basis for the selection of candidate Satellite Power Systems (SPS) point designs. Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point designs. Included is an updated version of earlier Rockwell concepts using klystrons as the specific microwave power amplification approach, as well as a more in-depth definition, analysis and preliminary point design on two concepts based on the use of advanced solid state technology to accomplish the task of high power amplification of the 2.45 GHz transmitted power beam to the Earth receiver. Finally, a preliminary definition of a concept using magnetrons as the microwave power amplifiers is presented.

  13. Advanced transportation system studies technical area 2 (TA-2): Heavy lift launch vehicle development. volume 3; Program Cost estimates

    NASA Technical Reports Server (NTRS)

    McCurry, J. B.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.

  14. Satellite Power Systems (SPS) concept definition study. Volume 2: SPS system requirements

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    Collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS (satellite power systems) concepts. As the various concepts matured, these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point design(s). The study established several candidate concepts which were presented to provide a basis for the selection of one or two approaches that would be given a more comprehensive examination. The two selected concepts were expanded and constitute the selected system point designs. The identified system/subsystem requirements was emphasized and information on the selected point design was provided.

  15. Geosynchronous platform definition study. Volume 5: Geosynchronous platform synthesis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development is described of the platform configurations, support subsystems, mission equipment, and servicing concepts. A common support module is developed; subsystem concepts are traded off; data relay, TDRS, earth observational, astro-physics, and advanced navigation and traffic control mission equipment concepts are postulated; and ancillary equipment required for delivery and on-orbit servicing interfaces with geosynchronous platforms is grossly defined. The general approach was to develop a platform concept capable of evolving through three on-orbit servicing modes: remote, EVA, and shirtsleeve. The definition of the equipment is to the assembly level. Weight, power, and volumetric data are compiled for all the platforms.

  16. Functional requirements for onboard management of space shuttle consumables, volume 2.

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to develop the functional requirements for onboard management of space shuttle consumables. A specific consumables management concept for the space shuttle vehicle was developed and the functional requirements for the onboard portion of the concept were generated. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The subsystems considered in the study are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  17. Advanced transportation system studies technical area 2(TA-2): Heavy lift launch vehicle development. volume 1; Executive summary

    NASA Technical Reports Server (NTRS)

    McCurry, J.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).

  18. Shuttle cryogenic supply system optimization study. Volume 1: Management supply, sections 1 - 3

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of the cryogenic supply system for use on space shuttle vehicles was conducted. The major outputs of the analysis are: (1) evaluations of subsystem and integrated system concepts, (2) selection of representative designs, (3) parametric data and sensitivity studies, (4) evaluation of cryogenic cooling in environmental control subsystems, and (5) development of mathematical model.

  19. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 9. System and Subsystem Performance Models.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume presents the models used to analyze basic features of the system, establish feasibility of techniques, and evaluate system performance. The models use analytical expressions and computer simulations to represent the relationship between sy...

  20. A study of spacecraft technology and design concepts. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Zylius, F. A.

    1985-01-01

    Electrical, mechanical, and software subsystem needs in the Post 1990 space operations environment are considered as well as the effect of radiation environment on spacecraft configuration. Criteria are given for selecting a specific design or technology concept from among the alternatives available.

  1. Alternate concepts study extension. Volume 2: Part 4: Avionics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A recommended baseline system is presented along with alternate avionics systems, Mark 2 avionics, booster avionics, and a cost summary. Analyses and discussions are included on the Mark 1 orbiter avionics subsystems, electrical ground support equipment, and the computer programs. Results indicate a need to define all subsystems of the baseline system, an installation study to determine the impact on the crew station, and a study on access for maintenance.

  2. Shuttle derived vehicle analysis solid booster unmanned launch vehicle concept definition study, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technical effort associated with the selection and definition of the recommended SRB-X concept is documented. Included are discussions concerning the trades leading to the selected concept, the analysis that established the concept's basic subsystem characteristics, selected configuration description and performance capabilities, launch site operations and facility needs, development schedule, cost characteristics, risk assessment, and a cursory comparison with other launch systems.

  3. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept instrument EE subsystem can be built now, a design; which is generally U.S. Government work not protected by U.S. copyright IEEEAC paper # 1429. Version 4. Updated October 19, 2009 applicable to a wide variety of missions using large focal planes with lar ge mosaics of sensors.

  4. Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.

    1981-01-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  5. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  6. Space station systems analysis study. Part 3: Documentation. Volume 3: Appendixes. Book 2: Supporting data. [spacecraft modules and environment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The development of the module concepts are reviewed, and a number of functional elements are listed. Other areas examined include some of the following; (1) mission operations; (2) environmental control and life support subsystems concepts; (3) thermal heat rejection; (4) space radiation effect analysis; and (5) satellite power system test requirements.

  7. Space transfer vehicle concepts and requirements. Volume 2, book 2: Appendix

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This appendix describes the work that was performed to define the Lunar transfer vehicle and Lunar excursion vehicle which were part of the 'Report of the 90-Day Study on Human Exploration of the Moon and Mars.' A detailed concept definition of both vehicles including overall dimensions, mass properties, subsystem definition, and operational flight sequences is included.

  8. A study of space station needs, attributes, and architectural options, volume 2, technical. Book 2: Mission implementation concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station systems characteristics and architecture are described. A manned space station operational analysis is performed to determine crew size, crew task complexity and time tables, and crew equipment to support the definition of systems and subsystems concepts. This analysis is used to select and evaluate the architectural options for development.

  9. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 1: Executive summary, analyses and trades, and system concepts

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.

  10. Advanced Transportation System Studies Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development Contract. Volume 2; Technical Results

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.

  11. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 2: Concept development and selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The overall program background, the various system concepts considered, and the rationale for the selected design are described. The concepts for each subsystem are also described and compared. Details are given for the requirements, boom configuration and dynamics, actuators, man/machine interface and control, visual system, control system, environmental control and life support, data processing, and materials.

  12. Satellite power systems (SPS) concept definition study. Volume 2, part 1: System engineering

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Top level trade studies are presented, including comparison of solid state and klystron concepts, higher concentration on the solar cells, composite and aluminum structure, and several variations to the reference concept. Detailed trade studies are presented in each of the subsystem areas (solar array, power distribution, structures, thermal control, attitude control and stationkeeping, microwave transmission, and ground receiving station). A description of the selected point design is also presented.

  13. Advanced extravehicular protective systems study, volume 1

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    An appraisal was made of advanced portable and emergency life support systems concepts for space station, space shuttle, lunar base, and Mars EVA missions. Specifications are given, and the methodology is described. Subsystem studies and systems integration efforts are summarized. Among the conclusions are the following: (1) For long duration missions, a configuration incorporating a regenerable CO2 control subsystem and a thermal control subsystem utilizing a minimum of expendables decreases the vehicle penalty of present configurations. (2) For shorter duration missions, a configuration incorporating an expendable water thermal control subsystem is the most competitive subsystem; regenerable CO2 control subsystems if properly developed are competitive with nonregenerable counterparts. (3) The CO2 reduction and oxygen reclamation withing the parent vehicle is only competitive when there are three or more parent vehicle resupply periods. (4) For long duration emergency systems of one hour or more, inherent redundancy within the primary configuration to provide emergency thermal control is the most competitive approach.

  14. SEDHI: development status of the Pléiades detection electronics

    NASA Astrophysics Data System (ADS)

    Dantes, Didier; Biffi, Jean-Marc; Neveu, Claude; Renard, Christophe

    2017-11-01

    In the framework of the Pléiades program, Alcatel Space is developping with CNES a new concept of Highly Integrated Detection Electronic Subsystem (SEDHI) which lead to very high gains in term of camera mass, volume and power consumption. This paper presents the design of this new concept and summarizes its main performances. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies: panchromatic detector, multispectral detector, butting technology, ASIC for phase shift of detector clocks, ASIC for video processing, ASIC for phase trimming, hybrids, video modules... This concept and these technologies can be adapted to a large scale of missions and instruments. Design, performance and budgets of the subsystem are given for the Pléiades mission for which the SEDHI concept has been selected. The detailed performances of each critical component are provided, focusing on the most critical performances which have been obtained at this level of the Pléiades development.

  15. Modular space station phase B extension preliminary system design. Volume 7: Ancillary studies

    NASA Technical Reports Server (NTRS)

    Jones, A. L.

    1972-01-01

    Sortie mission analysis and reduced payloads size impact studies are presented. In the sortie mission analysis, a modular space station oriented experiment program to be flown by the space shuttle during the period prior to space station IOC is discussed. Experiments are grouped into experiment packages. Mission payloads are derived by grouping experiment packages and by adding support subsystems and structure. The operational and subsystems analyses of these payloads are described. Requirements, concepts, and shuttle interfaces are integrated. The sortie module/station module commonality and a sortie laboratory concept are described. In the payloads size analysis, the effect on the modular space station concept of reduced diameter and reduced length of the shuttle cargo bay is discussed. Design concepts are presented for reduced sizes of 12 by 60 ft, 14 by 40 ft, and 12 by 40 ft. Comparisons of these concepts with the modular station (14 by 60 ft) are made to show the impact of payload size changes.

  16. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  17. Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.

  18. Space station needs, attributes and architectural options study. Volume 4: Architectural options, subsystems, technology and programmatics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space station architectural options, habitability considerations and subsystem analyses, technology, and programmatics are reviewed. The methodology employed for conceiving and defining space station concepts is presented. As a result of this approach, architectures were conceived and along with their supporting rationale are described within this portion of the report. Habitability consideration and subsystem analyses describe the human factors associated with space station operations and includes subsections covering (1) data management, (2) communications and tracking, (3) environmental control and life support, (4) manipulator systems, (5) resupply, (6) pointing, (7) thermal management and (8) interface standardization. A consolidated matrix of subsystems technology issues as related to meeting the mission needs for a 1990's era space station is presented. Within the programmatics portion, a brief description of costing and program strategies is outlined.

  19. Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.

  20. Advanced vehicle systems assessment. Volume 2: Subsystems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).

  1. Space station systems analysis study. Part 2, volume 3: Appendixes, Book 2: Supporting data (7 through 18)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Topics discussed include: (1) design considerations for a MARS sample return laboratory module for space station investigations; (2) crew productivity as a function of work shift arrangement; (3) preliminary analysis of the local logistics problem on the space construction base; (4) mission hardware construction operational flows and timelines; (5) orbit transfer vehicle concept definition; (6) summary of results and findings of space processing working review; (7) crew and habitability subsystem (option L); (8) habitability subsystem considerations for shuttle tended option L; (9) orbiter utilization in manned sortie missions; (10) considerations in definition of space construction base standard module configuration (option L); (11) guidance, control, and navigation subsystems; and (12) system and design tradeoffs.

  2. A ground based phase control system for the solar power satellite, volume 4

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1980-01-01

    A ground phase control system is studied as an alternative approach to the current reference retrodirective phase control system in order to simplify the spaceborne hardware requirement. Based on waveform selections, functional subsystems to implement the ground-based phase control concept are identified and functionally represented. It was concluded that the feasibility of the concept becomes unclear if the conditions of the ionosphere and satellite motion are not met.

  3. Vapor Compression Distillation Subsystem (VCDS) Component Enhancement, Testing and Expert Fault Diagnostics Development, Volume 2

    NASA Technical Reports Server (NTRS)

    Mallinak, E. S.

    1987-01-01

    A wide variety of Space Station functions will be managed via computerized controls. Many of these functions are at the same time very complex and very critical to the operation of the Space Station. The Environmental Control and Life Support System is one group of very complex and critical subsystems which directly affects the ability of the crew to perform their mission. Failure of the Environmental Control and Life Support Subsystems are to be avoided and, in the event of failure, repair must be effected as rapidly as possible. Due to the complex and diverse nature of the subsystems, it is not possible to train the Space Station crew to be experts in the operation of all of the subsystems. By applying the concepts of computer-based expert systems, it may be possible to provide the necessary expertise for these subsystems in dedicated controllers. In this way, an expert system could avoid failures and extend the operating time of the subsystems even in the event of failure of some components, and could reduce the time to repair by being able to pinpoint the cause of a failure when one cannot be avoided.

  4. Satellite power systems (SPS) concept definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    System definition studies resulted in a further definition of the reference system using gallium arsenide solar arrays, analysis of alternative subsystem options for the reference concept, preliminary solid state microwave concept studies, and an environmental analysis of laser transmission systems. The special emphasis studies concentrated on satellite construction, satellite construction base definition, satellite construction base construction, and rectenna construction. Major emphasis in the transportation studies was put on definition of a two stage parallel burn, vertical takeoff/horizontal landing concept. The electric orbit transfer vehicle was defined in greater detail. Program definition included cost analyses and schedule definition.

  5. Astronomy sortie missions definition study. Volume 3, book 1: Design analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study to define the astronomy sortie missions was conducted. The design analyses and tradeoff studies conducted for candidate concepts are presented. The subjects discussed are: (1) system and subsystem requirements, (2) space shuttle interfaces, (3) infrared telescope development, and (4) experiments to be conducted during the mission.

  6. Millimeter wave satellite concepts. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Wallace, R. W.; Kelly, D. L.; Thomas, R. R.; Vogler, F. H.

    1979-01-01

    Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, were accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications. The results, in terms of annual cost per channel to the user from a commercial view point, are described.

  7. Spacelab software development and integration concepts study report, volume 1

    NASA Technical Reports Server (NTRS)

    Rose, P. L.; Willis, B. G.

    1973-01-01

    The proposed software guidelines to be followed by the European Space Research Organization in the development of software for the Spacelab being developed for use as a payload for the space shuttle are documented. Concepts, techniques, and tools needed to assure the success of a programming project are defined as they relate to operation of the data management subsystem, support of experiments and space applications, use with ground support equipment, and for integration testing.

  8. Technology advancement of an oxygen generation subsystem

    NASA Technical Reports Server (NTRS)

    Lee, M. K.; Burke, K. A.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    An oxygen generation subsystem based on water electrolysis was developed and tested to further advance the concept and technology of the spacecraft air revitalization system. Emphasis was placed on demonstrating the subsystem integration concept and hardware maturity at a subsystem level. The integration concept of the air revitalization system was found to be feasible. Hardware and technology of the oxygen generation subsystem was demonstrated to be close to the preprototype level. Continued development of the oxygen generation technology is recommended to further reduce the total weight penalties of the oxygen generation subsystem through optimization.

  9. Functional requirements for onboard management of space shuttle consumables, volume 1

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  10. Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 3: Subsystem trade studies

    NASA Technical Reports Server (NTRS)

    Dickman, Glen J.

    1987-01-01

    The technical trade studies and analyses reported in this book represent the accumulated work of the technical staff for the contract period. The general disciplines covered are as follows: (1) Guidance, Navigation, and Control; (2) Avionics Hardware; (3) Aeroassist Technology; (4) Propulsion; (5) Structure and Materials; and (6) Thermal Control Technology. The objectives in each of these areas were to develop the latest data, information, and analyses in support of the vehicle design effort.

  11. Subsystems component definitions summary program

    NASA Technical Reports Server (NTRS)

    Scott, A. Don; Thomas, Carolyn C.; Simonsen, Lisa C.; Hall, John B., Jr.

    1991-01-01

    A computer program, the Subsystems Component Definitions Summary (SUBCOMDEF), was developed to provide a quick and efficient means of summarizing large quantities of subsystems component data in terms of weight, volume, resupply, and power. The program was validated using Space Station Freedom Program Definition Requirements Document data for the internal and external thermal control subsystem. Once all component descriptions, unit weights and volumes, resupply, and power data are input, the user may obtain a summary report of user-specified portions of the subsystem or of the entire subsystem as a whole. Any combination or all of the parameters of wet and dry weight, wet and dry volume, resupply weight and volume, and power may be displayed. The user may vary the resupply period according to individual mission requirements, as well as the number of hours per day power consuming components operate. Uses of this program are not limited only to subsystem component summaries. Any applications that require quick, efficient, and accurate weight, volume, resupply, or power summaries would be well suited to take advantage of SUBCOMDEF's capabilities.

  12. Descent Assisted Split Habitat Lunar Lander Concept

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.

    2008-01-01

    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  13. A shuttle and space station manipulator system for assembly, docking, maintenance, cargo handling and spacecraft retrieval (preliminary design). Volume 3: Concept analysis. Part 1: Technical

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information backing up the key features of the manipulator system concept and detailed technical information on the subsystems are presented. Space station assembly and shuttle cargo handling tasks are emphasized in the concept analysis because they involve shuttle berthing, transferring the manipulator boom between shuttle and station, station assembly, and cargo handling. Emphasis is also placed on maximizing commonality in the system areas of manipulator booms, general purpose end effectors, control and display, data processing, telemetry, dedicated computers, and control station design.

  14. Space station needs, attributes and architectural options. Volume 1: Executive summary NASA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The uses alignment plan was implemented. The existing data bank was used to define a large number of station requirements. Ten to 20 valid mission scenarios were developed. Architectural options as they are influenced by communications operations, subsystem evolvability, and required technology growth are defined. Costing of evolutionary concepts, alternative approaches, and options, was based on minimum design details.

  15. MSFC Skylab Orbital Workshop, volume 1. [systems analysis and equipment specifications for orbital laboratory

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technical aspects of the Skylab-Orbital Workshop are discussed. Original concepts, goals, design philosophy, hardware, and testing are reported. The final flight configuration, overall test program, and mission performance are analyzed. The systems which are examined are: (1) the structural system, (2) the meteoroid shield systems, and (3) the environmental/thermal control subsystem.

  16. Independent Orbiter Assessment (IOA): CIL issues resolution report, volume 2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes And Effects Analysis (FMEA) and Critical Items List (CIL) are presented. This report contains IOA assessment worksheets showing resolution of outstanding IOA CIL issues that were summarized in the IOA FMEA/CIL Assessment Interim Report, dated 9 March 1988. Each assessment worksheet has been updated with CIL issue resolution and rationale. Volume 2 contains the worksheets for the following subsystems: Nose Wheel Steering Subsystem; Remote Manipulator Subsystem; Atmospheric Revitalization Subsystem; Extravehicular Mobility Unit Subsystem; Power Reactant Supply and Distribution Subsystem; Main Propulsion Subsystem; and Orbital Maneuvering Subsystem.

  17. Manned geosynchronous mission requirements and systems analysis study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The crew capsule of the MOTV was studied with emphasis on crew accommodations, crew capsule functional requirements, subsystem interface definition between crew module and propulsion module, and man rating requirements. Competing mission modes were studied covering a wide range of propulsion concepts. These included one stage, one and one half stage, and two stage concepts using either the standard STS or an augmented STS. Several deorbit concepts were considered, including all propulsive modes, direct re-entry, and aeromaneuvering skip in skip out in the upper reaches of Earth's atmosphere. A five year plan covering costs, schedules, and critical technology issues is discussed.

  18. Design guide for low cost standardized payloads, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Concept point designs of low cost and refurbishable spacecraft, subsystems, and modules revealed payload program savings up to 50 percent. The general relationship of payload approaches to program costs; cost reductions from low cost standardized payloads; cost effective application of payload reliability, MMD, repair, and refurbishment; and implementation of standardization for future spacecraft are discussed. Shuttle interfaces and support equipment for future payloads are also considered

  19. Space Station Systems Analysis Study. Volume 1: Executive summary, part 1 and 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The elements of space station programs required to support an operational base theme, a space laboratory theme, and advanced missions relatable to public needs/national interests are defined. Missions satisfying the foregoing requirements are identified, program scenarios/options are established. System options are evaluated for a selected number of program options. Subsystem analysis and programmatic comparisons are performed for selected primary concepts.

  20. Study of solid rocket motor for space shuttle booster, volume 2, book 3, appendix A

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A systems requirements analysis for the solid propellant rocket engine to be used with the space shuttle was conducted. The systems analysis was developed to define the physical and functional requirements for the systems and subsystems. The operations analysis was performed to identify the requirements of the various launch operations, mission operations, ground operations, and logistic and flight support concepts.

  1. Millimeter wave satellite concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Thomas, R. E.; Wallace, R. W.; Gallagher, J. G.

    1977-01-01

    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications.

  2. Communications systems checkout study

    NASA Technical Reports Server (NTRS)

    Ginter, W. G.

    1972-01-01

    The results and conclusions of an engineering study of Space Station communications subsystem checkout are reported. The primary purpose of the study is to recommend specific guidelines and constraints for the design and utilization of the communications subsystem leading to a practical and effective means of onboard checkout implementation. Major study objectives are as follows: (1) identify candidate communications subsystem checkout concepts, (2) determine implementation impacts of feasible concepts, (3) evaluate practicality and effectiveness of alternative concepts, (4) propose baseline modifications to accommodate preferred concepts, and (5) recommend areas for additional investigation. In addition, study results are interpreted, where appropriate, in terms of their applicability to checkout of Shuttle-Orbiter communications subsystem.

  3. Satellite Power System (SPS) concept definition study (Exhibit D). Volume 2: Systems/subsystems analyses

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Modifications to the reference concept were studied and the best approaches defined. The impact of the high efficiency multibandgap solar array on the reference concept design is considered. System trade studies for several solid state concepts, including the sandwich concept and a separate antenna/solar concept, are described. Two solid state concepts were selected and a design definition is presented for each. Magnetrons as an alternative to the reference klystrons for dc/RF conversion are evaluated. System definitions are presented for the preferred klystron and solid state concepts. Supporting systems are analyzed, with major analysis in the microwave, structures, and power distribution areas. Results of studies for thermal control, attitude control, stationkeeping, and details of a multibandgap solar cell study are included. Advanced laser concepts and the meteorological effects of a laser beam power transmission concept are considered.

  4. Manned remote work station development article. Volume 1, book 2, appendix B: Trade and design definition studies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    System trades, evaluations, and selection were organized under the appropriate manned remote work station roles and subsystems. Those trades/evaluations that have an impact on simulator fidelity were given emphasis in terms of identifying alternate concepts, making a selection, and defining the system approach. Those trades that do not impact simulator fidelity have the issues delineated and future study requirements identified.

  5. The Shock and Vibration Digest. Volume 15. Number 1

    DTIC Science & Technology

    1983-01-01

    acoustics The books are arranged to engineer is statistical energy analysis (SEA). This show the wealth of information that exists and the concept is...is also used for vibrating systems in pie nonlinear elements. However, for systems with a which statistical energy analysis and power flow continuous... statistical energy analysis to analyze the random nonlinear algebraic equations can be difficult. response of two identical subsystems coupled at an end

  6. Space Station needs, attributes and architectural options. Volume 2, book 2, part 1: Mission implementation concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.

  7. Space Station needs, attributes and architectural options. Volume 2, book 2, part 1: Mission implementation concepts

    NASA Astrophysics Data System (ADS)

    1983-04-01

    The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.

  8. Experiment module concepts study. Volume 3: Module and subsystem design

    NASA Technical Reports Server (NTRS)

    Hunter, J. R.; Chiarappa, D. J.

    1970-01-01

    The final common module set exhibiting wide commonality is described. The set consists of three types of modules: one free flying module and two modules that operate attached to the space station. The common module designs provide for the experiment program as defined. The feasibility, economy, and practicality of these modules hinges on factors that do not affect the approach or results of the commonality process, but are important to the validity of the common module concepts. Implementation of the total experiment program requires thirteen common modules: five CM-1, five CM-3, and three CM-4 modules.

  9. The Sortie-Generation Model System. Volume 5. Maintenance Subsystem

    DTIC Science & Technology

    1981-09-01

    Compuger RoanutI f and moidel 11, Computer operatinS system 17, Proorammino largualviso IS. Numlier of .ugic proltsm Hoewl -3 CSCobol 600 stuscomentm...THE SORTIE-GENERATION MODEL SYSTEM OC’ VOLUME V MAINTENANCE SUBSYSTEM September 1981 Robert S. Greenberg 05$ Prepared pursuant to Department of...Generation Model System Volume V Maintenance Subsystem 6. PERFORMING ORG. REPORT NUMBER LMI Task- L102 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(a

  10. Suit study - The impact of VMS in subsystem integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, B.; Watts, R.

    1992-02-01

    One of the thrusts of the Wright Laboratory/FIVE-sponsored Subsystem Integration Technology (SUIT) study is to investigate the impact of emerging vehicle management system (VMS) concepts on subsystem integration. This paper summarizes the issues relating to VMS/subsystem integration as examined during the Northrop SUIT study. Projected future weapon system requirements are identified and their impact on VMS and subsystem design interpreted. Integrated VMS/subsystem control and management functions are proposed. A candidate system VMS architecture satisfying the aforementioned weapon system requirements and providing the identified control and management functions is proposed. This architecture is used, together with the environmental control system, asmore » an illustrative subsystem example, to address the risks associated with the design, development, procurement, integration and testing of integrated VMS/subsystem concepts. The conclusion is that the development process requires an airframer to adopt the role of subsystem integrator, the consequences of which are discussed. 2 refs.« less

  11. Satellite Power Systems (SPS) Concept Definition Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The evolution of a total satellite power is described as well as major subsystem alternatives. Trade study results are given for satellite concepts, ground receiving antennas, satellite construction sites, and transportation. Point design definition, end-to-end analysis, and programmatics are covered. The GaAlAs photovoltaic concept is recommended as the current preliminary baseline satellite concept with silicon photovoltaic and Rankine cycle solar-thermal concepts as viable alternatives. Geosynchronous orbit is preferred for the construction of the satellite. A horizontal takeoff and landing air breathing rocket HLLV concept is preferred for earth-to-LEO transportation, with vertical takeoff options as viable alternatives. An argon electric orbit transfer vehicle is preferred for cargo transport from LEO and GEO orbit, and a chemical LH2/L02, two-stage orbit transfer vehicle is recommended for crew transport. A stripline rectenna array is the current preferred concept.

  12. Portable oxygen subsystem. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The concept and design of a portable oxygen device for use in the space shuttle orbiter is presented. Hardware fabrication and acceptance tests (i.e., breadboard models) are outlined and discussed. Optimization of the system (for weight, volume, safety, costs) is discussed. The device is of the rebreather type, and provides a revitalized breathing gas supply to a crewman for denitrogenization and emergency activities. Engineering drawings and photographs of the device are shown.

  13. TOPEX satellite concept. TOPEX option study report

    NASA Technical Reports Server (NTRS)

    Meyer, D. P.; Case, C. M.

    1982-01-01

    Candidate bus equipment from the Viking, Applications Explorer Mission, and Small Scientific Satellite programs for application to the TOPEX mission options is assessed. Propulsion module equipment and subsystem candidates from the Applications Explorer Mission satellites and the Small Scientific Satellite spacecraft are evaluated for those TOPEX options. Several subsystem concepts appropriate to the TOPEX options are described. These descriptions consider performance characteristics of the subsystems. Cost and availability information on the candidate equipment and subsystems are also provided.

  14. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  15. Independent Orbiter Assessment (IOA): CIL issues resolution report, volume 1

    NASA Technical Reports Server (NTRS)

    Urbanowicz, Kenneth J.; Hinsdale, L. W.; Barnes, J. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. This report contains IOA assessment worksheets showing resolution of outstanding IOA CIL issues that were summarized in the IOA FMEA/CIL Assessment Interim Report, dated 9 March 1988. Each assessment worksheet has been updated with CIL issue resolution and rationale. The NASA and Prime Contractor post 51-L FMEA/CIL documentation assessed is believed to be technically accurate and complete. No assessment issues remain that has safety implications. Volume 1 contain worksheets for the following sybsystems: Landing and Deceleration Subsystem; Purge, Vent and Drain Subsystem; Active Thermal Control and Life Support Systems; Crew Equipment Subsystem; Instrumentation Subsystem; Data Processing Subsystem; Atmospheric Revitalization Pressure Control Subsystem; Hydraulics and Water Spray Boiler Subsystem; and Mechanical Actuation Subsystem.

  16. Structural Definition and Mass Estimation of Lunar Surface Habitats for the Lunar Architecture Team Phase 2 (LAT-2) Study

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Wu, K, Chauncey; Smith, Russell W.

    2008-01-01

    The Lunar Architecture Team Phase 2 study defined and assessed architecture options for a Lunar Outpost at the Moon's South Pole. The Habitation Focus Element Team was responsible for developing concepts for all of the Habitats and pressurized logistics modules particular to each of the architectures, and defined the shapes, volumes and internal layouts considering human factors, surface operations and safety requirements, as well as Lander mass and volume constraints. The Structures Subsystem Team developed structural concepts, sizing estimates and mass estimates for the primary Habitat structure. In these studies, the primary structure was decomposed into a more detailed list of components to be sized to gain greater insight into concept mass contributors. Structural mass estimates were developed that captured the effect of major design parameters such as internal pressure load. Analytical and empirical equations were developed for each structural component identified. Over 20 different hard-shell, hybrid expandable and inflatable soft-shell Habitat and pressurized logistics module concepts were sized and compared to assess structural performance and efficiency during the study. Habitats were developed in three categories; Mini Habs that are removed from the Lander and placed on the Lunar surface, Monolithic habitats that remain on the Lander, and Habitats that are part of the Mobile Lander system. Each category of Habitat resulted in structural concepts with advantages and disadvantages. The same modular shell components could be used for the Mini Hab concept, maximizing commonality and minimizing development costs. Larger Habitats had higher volumetric mass efficiency and floor area than smaller Habitats (whose mass was dominated by fixed items such as domes and frames). Hybrid and pure expandable Habitat structures were very mass-efficient, but the structures technology is less mature, and the ability to efficiently package and deploy internal subsystems remains an open issue.

  17. Minimize system cost by choosing optimal subsystem reliability and redundancy

    NASA Technical Reports Server (NTRS)

    Suich, Ronald C.; Patterson, Richard L.

    1993-01-01

    The basic question which we address in this paper is how to choose among competing subsystems. This paper utilizes both reliabilities and costs to find the subsystems with the lowest overall expected cost. The paper begins by reviewing some of the concepts of expected value. We then address the problem of choosing among several competing subsystems. These concepts are then applied to k-out-of-n: G subsystems. We illustrate the use of the authors' basic program in viewing a range of possible solutions for several different examples. We then discuss the implications of various solutions in these examples.

  18. Manned Mars mission environmental control and life support subsystem

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1986-01-01

    A specific design is not presented, but the general philosophy regarding potential Environmental Control/Life Support System (ECLSS) requirements, concepts, issues, and technology needs are discussed. The focus is on a manned Mars mission occurring in the late 1990's. Discussions on the Trans-Mars Vehicle, the Mars Excursion Module (MEM), and a Martian base facility are covered. The functions, performance requirements, and design loads of a typical ECLSS are listed, and the issues and technology briefly discussed. Several ECLSS concepts and options are identified, and comparative weights and volumes are provided for these. Several aspects of the space station ECLSS are contrasted with the Mars element ECLSS.

  19. Automatic control of a primary electric thrust subsystem

    NASA Technical Reports Server (NTRS)

    Macie, T. W.; Macmedan, M. L.

    1975-01-01

    A concept for automatic control of the thrust subsystem has been developed by JPL and participating NASA Centers. This paper reports on progress in implementing the concept at JPL. Control of the Thrust Subsystem (TSS) is performed by the spacecraft computer command subsystem, and telemetry data is extracted by the spacecraft flight data subsystem. The Data and Control Interface Unit, an element of the TSS, provides the interface with the individual elements of the TSS. The control philosophy and implementation guidelines are presented. Control requirements are listed, and the control mechanism, including the serial digital data intercommunication system, is outlined. The paper summarizes progress to Fall 1974.

  20. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 2. CDMP Test Case Report.

    DTIC Science & Technology

    1985-11-01

    As a o11066v. nlstle VSuSY £6I5PSAY I’ Iu PAS 11. Title Integrated Information Support System (1SS) Vol V - Common Data Model Subsystem Part 2 - CIMP ...AD-Mel1 236 INTEGRATED INFORMATION SUPPORT SYSTEM (IISS) VOLUME 5 1/2 COMMON DATA MODEL S.. (U) GENERAL ELECTRIC CO SCHENECTADY NY PRODUCTION...Volume V - Common Data Model Subsystem Part 2 - CDMP Test Case Report General Electric Company Production Resources Consulting One River Road

  1. Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  2. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 3: General purpose spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.

  3. Detector Outline Document for the Fourth Concept Detector ("4th") at the International Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbareschi, Daniele; et al.

    We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less

  4. Solar power satellite system definition study. Part 2, volume 4: Microwave power transmission systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A slotted waveguide planar array was established as the baseline design for the spaceborne transmitter antenna. Key aspects of efficient energy conversion at both ends of the power transfer link were analyzed and optimized alternate approaches in the areas of antenna and tube design are discussed. An integrated design concept was developed which meets design requirements, observes structural and thermal constraints, exhibits good performance and was developed in adequate depth to permit cost estimating at the subsystem/component level.

  5. Low energy stage study. Volume 3: Conceptual design, interface analysis, flight and ground operations. [launching space shuttle payloads

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.

  6. Regenerative Life Support Evaluation

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1977-01-01

    This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.

  7. Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.

    NASA Technical Reports Server (NTRS)

    Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.

    1972-01-01

    Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.

  8. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 3

    NASA Technical Reports Server (NTRS)

    Levak, Daniel

    1993-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.

  9. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  10. Satellite power system concept development and evaluation program. Volume 1: Technical assessment summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  11. A methodology for rapid vehicle scaling and configuration space exploration

    NASA Astrophysics Data System (ADS)

    Balaba, Davis

    2009-12-01

    The Configuration-space Exploration and Scaling Methodology (CESM) entails the representation of component or sub-system geometries as matrices of points in 3D space. These typically large matrices are reduced using minimal convex sets or convex hulls. This reduction leads to significant gains in collision detection speed at minimal approximation expense. (The Gilbert-Johnson-Keerthi algorithm [79] is used for collision detection purposes in this methodology.) Once the components are laid out, their collective convex hull (from here on out referred to as the super-hull) is used to approximate the inner mold line of the minimum enclosing envelope of the vehicle concept. A sectional slicing algorithm is used to extract the sectional dimensions of this envelope. An offset is added to these dimensions in order to come up with the sectional fuselage dimensions. Once the lift and control surfaces are added, vehicle level objective functions can be evaluated and compared to other designs. The size of the design space coupled with the fact that some key constraints such as the number of collisions are discontinuous, dictate that a domain-spanning optimization routine be used. Also, as this is a conceptual design tool, the goal is to provide the designer with a diverse baseline geometry space from which to chose. For these reasons, a domain-spanning algorithm with counter-measures against speciation and genetic drift is the recommended optimization approach. The Non-dominated Sorting Genetic Algorithm (NSGA-II) [60] is shown to work well for the proof of concept study. There are two major reasons why the need to evaluate higher fidelity, custom geometric scaling laws became a part of this body of work. First of all, historical-data based regressions become implicitly unreliable when the vehicle concept in question is designed around a disruptive technology. Second, it was shown that simpler approaches such as photographic scaling can result in highly suboptimal concepts even for very small scaling factors. Yet good scaling information is critical to the success of any conceptual design process. In the CESM methodology, it is assumed that the new technology has matured enough to permit the prediction of the scaling behavior of the various subsystems in response to requirement changes. Updated subsystem geometry data is generated by applying the new requirement settings to the affected subsystems. All collisions are then eliminated using the NSGA-II algorithm. This is done while minimizing the adverse impact on the vehicle packing density. Once all collisions are eliminated, the vehicle geometry is reconstructed and system level data such as fuselage volume can be harvested. This process is repeated for all requirement settings. Dimensional analysis and regression can be carried out using this data and all other pertinent metrics in the manner described by Mendez [124] and Segel [173]. The dominant parameters for each response show up as in the dimensionally consistent groups that form the independent variables. More importantly the impact of changes in any of these variables on system level dependent variables can be easily and rapidly evaluated. In this way, the conceptual design process can be accelerated without sacrificing analysis accuracy. Scaling laws for take-off gross weight and fuselage volume as functions of fuel cell specific power and power density for a notional General Aviation vehicle are derived for the proof of concept. CESM enables the designer to maintain design freedom by portably carrying multiple designs deeper into the design process. Also since CESM is a bottom-up approach, all proposed baseline concepts are implicitly volumetrically feasible. System level geometry parameters become fall-outs as opposed to inputs. This is a critical attribute as, without the benefit of experience, a designer would be hard pressed to set the appropriate ranges for such parameters for a vehicle built around a disruptive technology. Furthermore, scaling laws generated from custom data for each concept are subject to less design noise than say, regression based approaches. Through these laws, key physics-based characteristics of vehicle subsystems such as energy density can be mapped onto key system level metrics such as fuselage volume or take-off gross weight. These laws can then substitute some historical-data based analyses thereby improving the fidelity of the analyses and reducing design time. (Abstract shortened by UMI.)

  12. PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 2

    NASA Technical Reports Server (NTRS)

    Barker, F. C.

    1978-01-01

    The data handling subsystem, command subsystem, communications subsystem, power subsystem, and mission operations of the Pioneer Venus multiprobe are presented. The multiprobe spacecraft performance in normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission is described.

  13. Modular space station phase B extension, preliminary system design. Volume 4: Subsystems analyses

    NASA Technical Reports Server (NTRS)

    Antell, R. W.

    1972-01-01

    The subsystems tradeoffs, analyses, and preliminary design results are summarized. Analyses were made of the structural and mechanical, environmental control and life support, electrical power, guidance and control, reaction control, information, and crew habitability subsystems. For each subsystem a summary description is presented including subsystem requirements, subsystem description, and subsystem characteristics definition (physical, performance, and interface). The major preliminary design data and tradeoffs or analyses are described in detail at each of the assembly levels.

  14. Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report

    NASA Technical Reports Server (NTRS)

    Cable, D. A.; Derocher, W. L., Jr.; Cathcart, J. A.; Keeley, M. G.; Madayev, L.; Nguyen, T. K.; Preese, J. R.

    1986-01-01

    A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites.

  15. Overview of NASA GRC Electrified Aircraft Propulsion Systems Analysis Methods

    NASA Technical Reports Server (NTRS)

    Schnulo, Sydney

    2017-01-01

    The accurate modeling and analysis of electrified aircraft propulsion concepts require intricate subsystem system component coupling. The major challenge in electrified aircraft propulsion concept modeling lies in understanding how the subsystems "talk" to each other and the dependencies they have on one another.

  16. Automated biowaste sampling system urine subsystem operating model, part 1

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Rosen, F.

    1973-01-01

    The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.

  17. Solid state SPS microwave generation and transmission study. Volume 1: Phase 2

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  18. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the SSTO mission This volume overviews each of the tasks giving its objectives, main results. and conclusions. More detailed Final Task Reports are available on each individual task.

  19. The Space Station air revitalization subsystem design concept

    NASA Technical Reports Server (NTRS)

    Ray, C. D.; Ogle, K. Y.; Tipps, R. W.; Carrasquillo, R. L.; Wieland, P.

    1987-01-01

    The current status of the Space Station (SS) Environmental Control and Life Support System (ECLSS) Air Revitalization Subsystem (ARS) design is outlined. ARS performance requirements are provided, along with subsystem options for each ARS function and selected evaluations of the relative merits of each subsystem. Detailed computer models that have been developed to analyze individual subsystem performance capabilities are also discussed. A summary of ARS subsystem level testing planned and completed by NASA Marshall Space Flight Center (MSFC) is given.

  20. Apollo experience report: Lunar module landing radar and rendezvous radar

    NASA Technical Reports Server (NTRS)

    Rozas, P.; Cunningham, A. R.

    1972-01-01

    A developmental history of the Apollo lunar module landing and rendezvous radar subsystems is presented. The Apollo radar subsystems are discussed from initial concept planning to flight configuration testing. The major radar subsystem accomplishments and problems are discussed.

  1. Bounding entanglement spreading after a local quench

    NASA Astrophysics Data System (ADS)

    Drumond, Raphael C.; Móller, Natália S.

    2017-06-01

    We consider the variation of von Neumann entropy of subsystem reduced states of general many-body lattice spin systems due to local quantum quenches. We obtain Lieb-Robinson-like bounds that are independent of the subsystem volume. The main assumptions are that the Hamiltonian satisfies a Lieb-Robinson bound and that the volume of spheres on the lattice grows at most exponentially with their radius. More specifically, the bound exponentially increases with time but exponentially decreases with the distance between the subsystem and the region where the quench takes place. The fact that the bound is independent of the subsystem volume leads to stronger constraints (than previously known) on the propagation of information throughout many-body systems. In particular, it shows that bipartite entanglement satisfies an effective "light cone," regardless of system size. Further implications to t density-matrix renormalization-group simulations of quantum spin chains and limitations to the propagation of information are discussed.

  2. A Power Conversion Concept for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    The Jupiter Icy Moons Orbiter (JIMO) mission is currently under study by the Office of Space Science under the Project Prometheus Program. JIMO is examining the use of Nuclear Electric Propulsion (NEP) to carry scientific payloads to three Jovian moons. A potential power system concept includes dual 100 kWe Brayton converters, a deployable pumped loop heat rejection subsystem, and a 400 Vac Power Management and Distribution (PMAD) bus. Many trades were performed in aniving at this candidate power system concept. System-level studies examined design and off-design operating modes, determined startup requirements, evaluated subsystem redundancy options, and quantified the mass and radiator area of reactor power systems from 20 to 200 kWe. In the Brayton converter subsystem, studies were performed to investigate converter packaging options, and assess the induced torque effects on spacecraft dynamics due to rotating machinery. In the heat rejection subsystem, design trades were conducted on heat transport approaches, material and fluid options, and deployed radiator geometries. In the PMAD subsystem, the overall electrical architecture was defined and trade studies examined distribution approaches, voltage levels, and cabling options.

  3. Extravehicular Crewman Work System (ECWS) study program. Volume 3: Satellite service

    NASA Technical Reports Server (NTRS)

    Wilde, R. C.

    1980-01-01

    The satellite service portion of the Extravehicular Crewman Work System Study defines requirements and service equipment concepts for performing satellite service from the space shuttle orbiter. Both normal and contingency orbital satellite service is required. Service oriented satellite design practices are required to provide on orbit satellite service capability for the wide variety of satellites at the subsystem level. Development of additional satellite service equipment is required. The existing space transportation system provides a limited capability for performing satellite service tasks in the shuttle payload bay area.

  4. Space Operations Center system analysis study extension. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The analysis fo Space Operations Center (SOC) systems is summarized. Design considerations, configurations of the manned orbital space station, planned operational and research missions, and subsystem tradeoffs are considered. Integration into the space transportation system is discussed. A modular design concept permitting growth of the SOC as its functions are expanded is described. Additional considerations are special requirements for habitat modules, design modifications needed to operate in geosynchronous orbits, and use of the external tank for cryogenic propellant storage or as a pressurized hangar. A cost summary is presented.

  5. Satellite Power Systems (SPS) concept definition study exhibit C. Volume 3: Experimental verification definition

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An environmentally oriented microwave technology exploratory research program aimed at reducing the uncertainty associated with microwave power system critical technical issues is described. Topics discussed include: (1) Solar Power Satellite System (SPS) development plan elements; (2) critical technology issues related to the SPS preliminary reference configuration; (3) pilot plant to demonstrate commercial viability of the SPS system; and (4) research areas required to demonstrate feasibility of the SPS system. Progress in the development of advanced GaAs solar cells is reported along with a power distribution subsystem.

  6. Evolutionary space platform concept study. Volume 2, part A: SASP special emphasis trade studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Efforts are in progress to define an approach to provide a simple and cost effective solution to the problem of long duration space flight. This approach involves a Space Platform in low Earth orbit, which can be tended by the Space Shuttle and which will provide, for extended periods of time, stability, utilities and access for a variety of replaceable payloads. The feasibility of an evolutionary space system which would cost effectively support unmanned payloads in groups, using a Space Platform which provides centralized basic subsystems is addressed.

  7. Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 3

    NASA Technical Reports Server (NTRS)

    Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Volume 3 continues the presentation of IOA analysis worksheets and the potential critical items list.

  8. Space shuttle program. Expendable second stage reusable space shuttle booster. Volume 2: Technical summary. Book 2: Expendable second stage vehicle definition

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A definition of the expendable second stage for use with the reusable space shuttle booster is presented. The subjects discussed are: (1) expendable second stage design, (2) structural subsystem, (3) propulsion subsystem, (4) avionics subsystems, (5) recovery and deorbit subsystem, and (6) expendable second stage vehicle installation, assembly, and checkout.

  9. Space assembly fixtures and aids

    NASA Technical Reports Server (NTRS)

    Bloom, K. A.; Lillenas, A. N.

    1980-01-01

    Concepts and requirements for assembly fixtures and aids necessary for the assembly and maintenance of spare platforms were studied. Emphasis was placed on erectable and deployable type structures with the shuttle orbiter as the assembly base. Both single and multiple orbiter flight cases for the platform assembly were considered. Applicable space platform assembly studies were reviewed to provide a data base for establishing the assembly fixture and aids design requirements, assembly constraints, and the development of representative design concepts. Conclusions indicated that fixture requirements will vary with platform size. Larger platforms will require translation relative to the orbiter RMS working volume. The installation of platform payloads and subsystems (e.g., utility distribution) must also be considered in the specification of assembly fixtures and aids.

  10. ETX-I: First-generation single-shaft electric propulsion system program. Volume 2: Battery

    NASA Astrophysics Data System (ADS)

    1988-06-01

    The overall objective of this research and development program was to advance ac powertrain technology for electric vehicles (EV). The program focused on the design, build, test, and refinement of an experimental advanced electric vehicle powertrain suitable for packaging in a Ford Escort or equivalent-size vehicle. A Mercury LN7 was subsequently selected for the test bed vehicle. Although not part of the initial contract, the scope of the ETX-I Program was expanded in 1983 to encompass the development of advanced electric vehicle batteries compatible with the ETX-I powertrain and vehicle test bed. The intent of the battery portion of the ETX-I Program was to apply the best available battery technology based on existing battery developments. The battery effort was expected to result in a practical scale-up of base battery technologies to the vehicle battery subsystem level. With the addition of the battery activity, the ETX-I Program became a complete proof-of-concept ac propulsion system technology development program. In this context, the term propulsion system is defined as all components and subsystems (from the driver input to the vehicle wheels) that are required to store energy on board the vehicle and, using that energy, to provide controlled motive power to the vehicle. This report, Volume 2, describes the battery portion of the ETX-I Program. The powertrain effort is reported in Volume 1.

  11. Preliminary design of a solar central receiver for a site-specific repowering application (Saguaro Power Plant). Volume III. Specifications. Final report, October 1982-September 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1983-09-01

    This volume on specifications for the Saguaro Power Plant includes the following: subsystem interface definition document; solar collector subsystem specification; receiver specification; thermal energy storage specification; solar steam generator specification; and master control system specification.

  12. Satellite Power Systems (SPS) Concept Definition Study (Exhibit D). Solid-State Amplifier Investigation

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1981-01-01

    Data resulting from a continuing effort to provide system/subsystem definition data to aid in the evaluation of the SPS program concept is presented. The specific data described relate to the proposed use of solid state devices as microwave power amplifiers in the satellite microwave power transmission subsystem.

  13. Human health improvement in Sub-Saharan Africa through integrated management of arthropod transmitted diseases and natural resources.

    PubMed

    Baumgärtner, J; Bieri, M; Buffoni, G; Gilioli, G; Gopalan, H; Greiling, J; Tikubet, G; Van Schayk, I

    2001-01-01

    A concept of an ecosystem approach to human health improvement in Sub-Saharan Africa is presented here. Three factors mainly affect the physical condition of the human body: the abiotic environment, vector-transmitted diseases, and natural resources. Our concept relies on ecological principles embedded in a social context and identifies three sets of subsystems for study and management: human disease subsystems, natural resource subsystems, and decision-support subsystems. To control human diseases and to secure food from resource subsystems including livestock or crops, integrated preventive approaches are preferred over exclusively curative and sectorial approaches. Environmental sustainability - the basis for managing matter and water flows - contributes to a healthy human environment and constitutes the basis for social sustainability. For planning and implementation of the human health improvement scheme, participatory decision-support subsystems adapted to the local conditions need to be designed through institutional arrangements. The applicability of this scheme is demonstrated in urban and rural Ethiopia.

  14. LANDSAT-D flight segment operations manual, volume 1

    NASA Technical Reports Server (NTRS)

    Varhola, J.

    1982-01-01

    Hardware, systems, and subsystems for the multimission modular spacecraft used for LANDSAT 4 are described and depicted in block diagrams and schematics. Components discussed include the modular attitude control system; the communication and data handling subsystem; the narrowband tape recorder; the on-board computer; the propulsion module subsystem; the signal conditioning and control unit; the modular power subsystem; the solar array drive and power transmission assembly; the power distribution unit; the digital processing unit; and the wideband communication subsystem.

  15. Autonomous navigation - The ARMMS concept. [Autonomous Redundancy and Maintenance Management Subsystem

    NASA Technical Reports Server (NTRS)

    Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.

    1984-01-01

    A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.

  16. The structure of recreation behavior

    Treesearch

    Thomas A. More; James R. Averill

    2003-01-01

    We present a meta-theoretical analysis of recreation concepts as an argument about organizing and explaining recreation behavior. Recreation activities are behavioral constructions that people build from both prototypic subsystems (those present in virtually all instances of the activity) and design subsystems (optional subsystems that adapt the activity to serve...

  17. A guide to onboard checkout. Volume 5: Data management

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The baseline data management subsystem for a space station is discussed. The subsystem consists of equipment necessary to transfer, store, and process data to and from users and subsystems. It acquires and conditions a wide variety of input data from experiments, vehicle subsystems sensors, uplinked ground communications, and astronaut-activated controls. Computer techniques for failure analysis, reliability, and maintenance checkout onboard the space station are considered.

  18. Space station needs, attributes, and architectural options study. Volume 2: Program options, architecture, and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Mission scenarios and space station architectures are discussed. Electrical power subsystems (EPS), environmental control and life support, subsystems (ECLSS), and reaction control subsystem (RCS) architectures are addressed. Thermal control subsystems, (TCS), guidance/navigation and control (GN and C), information management systems IMS), communications and tracking (C and T), and propellant transfer and storage systems architectures are discussed.

  19. Apollo experience report: Lunar module electrical power subsystem

    NASA Technical Reports Server (NTRS)

    Campos, A. B.

    1972-01-01

    The design and development of the electrical power subsystem for the lunar module are discussed. The initial requirements, the concepts used to design the subsystem, and the testing program are explained. Specific problems and the modifications or compromises (or both) imposed for resolution are detailed. The flight performance of the subsystem is described, and recommendations pertaining to power specifications for future space applications are made.

  20. Lunar Surface-to-Surface Power Transfer

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2007-01-01

    A human lunar outpost, under NASA study for construction in the 2020's, has potential requirements to transfer electric power up to 50-kW across the lunar surface from 0.1 to 10-km distances. This power would be used to operate surface payloads located remotely from the outpost and/or outpost primary power grid. This paper describes concept designs for state-of-the-art technology power transfer subsystems including AC or DC power via cables, beamed radio frequency power and beamed laser power. Power transfer subsystem mass and performance are calculated and compared for each option. A simplified qualitative assessment of option operations, hazards, costs and technology needs is also described. Based on these concept designs and performance analyses, a DC power cabling subsystem is recommended to minimize subsystem mass and to minimize mission and programmatic costs and risks. Avenues for additional power transfer subsystem studies are recommended.

  1. Structural Probability Concepts Adapted to Electrical Engineering

    NASA Technical Reports Server (NTRS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-01-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  2. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 5: Supporting Analyses and Trade Studies. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Thermal and stress analyses are performed on the collector subsystem, energy storage subsystem, energy transport subsystem, the power conversion subsystem, and the plant control subsystem.

  3. Spacelab data management subsystem phase B study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Spacelab data management system is described. The data management subsystem (DMS) integrates the avionics equipment into an operational system by providing the computations, logic, signal flow, and interfaces needed to effectively command, control, monitor, and check out the experiment and subsystem hardware. Also, the DMS collects/retrieves experiment data and other information by recording and by command of the data relay link to ground. The major elements of the DMS are the computer subsystem, data acquisition and distribution subsystem, controls and display subsystem, onboard checkout subsystem, and software. The results of the DMS portion of the Spacelab Phase B Concept Definition Study are analyzed.

  4. Apollo experience report: Lunar module instrumentation subsystem

    NASA Technical Reports Server (NTRS)

    Obrien, D. E., III; Woodfill, J. R., IV

    1972-01-01

    The design concepts and philosophies of the lunar module instrumentation subsystem are discussed along with manufacturing and systems integration. The experience gained from the program is discussed, and recommendations are made for making the subsystem more compatible and flexible in system usage. Characteristics of lunar module caution and warning circuits are presented.

  5. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  6. Space transfer vehicle concepts and requirements, volume 2, book 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objective of the systems engineering task was to develop and implement an approach that would generate the required study products as defined by program directives. This product list included a set of system and subsystem requirements, a complete set of optimized trade studies and analyses resulting in a recommended system configuration, and the definition of an integrated system/technology and advanced development growth path. A primary ingredient in the approach was the TQM philosophy stressing job quality from the inception. Included throughout the Systems Engineering, Programmatics, Concepts, Flight Design, and Technology sections are data supporting the original objectives as well as supplemental information resulting from program activities. The primary result of the analyses and studies was the recommendation of a single propulsion stage Lunar Transportation System (LTS) configuration that supports several different operations scenarios with minor element changes. This concept has the potential to support two additional scenarios with complex element changes. The space based LTS concept consists of three primary configurations--Piloted, Reusable Cargo, and Expendable Cargo.

  7. Dynamics explorer: Interface definition study, volume 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Work done in response to the work statement wherein a specific deliverable was not identified but where design and analysis tasks were identified is reported. The summary and baseline change list is included along with design notes for the spacecraft system, thermal subsystem, power subsystem, communications subsystem, plasma wave instrument interface definition, and the structure.

  8. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: Spacecraft and subsystem design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Easton, C. R.

    The objectives of this program are to establish a heliostat design with the associated manufacturing, assembly, installation and maintenance approaches that will: (1) yield a significant reduction of capital and operating costs; (2) meet performance specifications for large collector subsystems; and (3) can be produced and deployed throughout the southwestern United States. In addition, cost plans and schedules to develop, fabricate, and operate the heliostat are to be developed. This volume presents the collector design, including trade study and test results, and the manufacturing, installation and checkout, and operations and maintenance concepts. Also, a discussion of specification verification and optimizationmore » is included. (WHK)« less

  10. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  11. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  12. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlausen, M. J.; Schubert, F. H.

    1983-01-01

    The fabrication of a one-person Electrochemical Depolarized Carbon Dioxide Concentrator subsystem incorporating advanced electrochemical, mechanical, and control and monitor instrumentation concepts is discussed. This subsystem included an advanced liquid cooled unitized core composite cell module and integrated electromechanical components. Over 1800 hours with the subsystem with removal efficiencies between 90%. and 100%; endurance tests with a Fluid Control Assembly which integrates 11 gas handling components of the subsystem; and endurance testing of a coolant control assembly which integrates a coolant pump, diverter valve and a liquid accumulator were completed.

  13. A guide to onboard checkout. Volume 3: Electrical power

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The baseline electrical power subsystem for a space station is considered. The subsystem was anlayzed in order to define onboard checkout requirements. Reliability, failure effects, and maintenance are discussed.

  14. A Modular Approach To Developing A Large Deployable Reflector

    NASA Astrophysics Data System (ADS)

    Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.

    1984-01-01

    NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.

  15. Space telescope optical telescope assembly/scientific instruments. Phase B: -Preliminary design and program definition study; Volume 2A: Planetary camera report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.

  16. A guide to onboard checkout. Volume 1: Guidance, navigation and control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of a study of onboard checkout techniques, as they relate to space station subsystems, as a guide to those who may need to implement onboard checkout in similar subsystems. Guidance, navigation, and control subsystems, and their reliability and failure analyses are presented. Software and testing procedures are also given.

  17. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less

  18. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  19. Integration of the electrochemical depolorized CO2 concentrator with the Bosch CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.

    1976-01-01

    Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).

  20. ITOS meteorological satellite system: TIROS M spacecraft (ITOS 1), volume 1

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The ITOS system and mission are described along with the design of the TIROS M spacecraft, and the ITOS ground complex. The command subsystems, and the primary environmental sensor subsystem are discussed.

  1. Goddard trajectory determination subsystem: Mathematical specifications

    NASA Technical Reports Server (NTRS)

    Wagner, W. E. (Editor); Velez, C. E. (Editor)

    1972-01-01

    The mathematical specifications of the Goddard trajectory determination subsystem of the flight dynamics system are presented. These specifications include the mathematical description of the coordinate systems, dynamic and measurement model, numerical integration techniques, and statistical estimation concepts.

  2. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 4: Mission peculiar spacecraft segment and module specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications for the Earth Observatory Satellite (EOS) peculiar spacecraft segment and associated subsystems and modules are presented. The specifications considered include the following: (1) wideband communications subsystem module, (2) mission peculiar software, (3) hydrazine propulsion subsystem module, (4) solar array assembly, and (5) the scanning spectral radiometer.

  3. The Integrated Library System Design Concepts for a Complete Serials Control Subsystem.

    DTIC Science & Technology

    1984-08-20

    7AD-fl149 379 THE INTEGRTED LIBRARY SYSTEM DESIGN CONCEPTS FOR A 1/COMPLETE SERIALS CONTROL UBSYSTEM(U) ONLINE COMPUTER SYSTEMS INC GERMANTOWN MD 28...CONTROL SUBSYSTEM Presented to: The Pentagon Library The Pentagon Washington, DC 20310 Prepared by: Online Computer Systems, Inc. 20251 Century Blvd...MDA903-82-C-0535 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Online Computer Systems, Inc

  4. Portable Oxygen Subsystem (POS). [for space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Concept selection, design, fabrication, and testing of a Portable Subsystem (POS) for use in space shuttle operations are described. Tradeoff analyses were conducted to determine the POS concept for fabrication and testing. The fabricated POS was subjected to unmanned and manned tests to verify compliance with statement of work requirements. The POS used in the development program described herein met requirements for the three operational modes -- prebreathing, contaminated cabin, and personnel rescue system operations.

  5. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  6. ATS-6 engineering performance report. Volume:Program and systems summaries: Mechanical and thermal details

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    The overall mission and spacecraft systems, testing, and operations are summarized. The mechanical subsystems are reviewed, encompassing mechanical design requirements; separation and deployment mechanisms; design and performance evaluation; and the television camera reflector monitor. Thermal control and contamination are discussed in terms of thermal control subsystems, design validation, subsystems performance, the advanced flight experiment, and the quartz-crystal microbalance contamination monitor.

  7. Technology for subsystems of space-based plant growth facilities

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Morrow, R. C.; Tibbitts, T. W.; Corey, R. B.

    1990-01-01

    Technologies for different subsystems of space-based plant growth facilities are being developed at the Wisconsin Center for Space Automation and Robotics, a NASA Center for the Commercial Development of Space. The technologies include concepts for water and nutrient delivery, for nutrient composition control, and for irradiation. Effort is being concentrated on these subsystems because available technologies cannot be effectively utilized for space applications.

  8. Manned Mars Missions. Working group papers, volume 1, section 1-4

    NASA Technical Reports Server (NTRS)

    Duke, Michael B. (Editor); Keaton, Paul W. (Editor)

    1986-01-01

    The papers presented by the working group on Manned Mars Missions are given. The purpose is to update earlier Mars missions study data, to examine the impact of new and emerging technologies on Mars mission capabilities, and to identify technological issues that would be useful in projecting scientific and engineering research in the coming decades. The papers are grouped into nine sections, which are: (1) rationale; (2) transportation trades and issues; (3) mission and configuration concepts; (4) surface infrastructure; (5) science investigations and issues; (6) life science/medical issues; (7) subsystems and technology development requirements; (8) political and economic issues; and (9) impact on other programs.

  9. A factory concept for processing and manufacturing with lunar material

    NASA Technical Reports Server (NTRS)

    Driggers, G. W.

    1977-01-01

    A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.

  10. Thematic mapper flight model preshipment review data package. Volume 2, part C: Subsystem data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Reference lists are provided to acceptance data for each of the major subsystems of the thematic mapper. Configuration reports, lists and copies of all failure reports, and requests for deviation/waiver are included.

  11. Solid state laser communications in space (SOLACOS) position, acquisition, and tracking (PAT) subsystem implementation

    NASA Astrophysics Data System (ADS)

    Flemmig, Joerg; Pribil, Klaus

    1994-09-01

    This paper presents the concept and implementation aspects of the Pointing, Acquisition and Tracking Subsystem (PAT) which is developed in the frame of the SOLACOS (Solid State Laser Communications in Space) program.

  12. A subsystem identification method based on the path concept with coupling strength estimation

    NASA Astrophysics Data System (ADS)

    Magrans, Francesc Xavier; Poblet-Puig, Jordi; Rodríguez-Ferran, Antonio

    2018-02-01

    For complex geometries, the definition of the subsystems is not a straightforward task. We present here a subsystem identification method based on the direct transfer matrix, which represents the first-order paths. The key ingredient is a cluster analysis of the rows of the powers of the transfer matrix. These powers represent high-order paths in the system and are more affected than low-order paths by damping. Once subsystems are identified, the proposed approach also provides a quantification of the degree of coupling between subsystems. This information is relevant to decide whether a subsystem may be analysed in a computer model or measured in the laboratory independently of the rest or subsystems or not. The two features (subsystem identification and quantification of the degree of coupling) are illustrated by means of numerical examples: plates coupled by means of springs and rooms connected by means of a cavity.

  13. Functional Performance of an Enabling Atmosphere Revitalization Subsystem Architecture for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.; hide

    2013-01-01

    A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.

  14. Preliminary Design of a Modular Unmanned Research Vehicle. Volume 2. Subsystem Technical Development Design Study

    DTIC Science & Technology

    1988-12-01

    members of our committee for their contributions to our work : Major Lanson Hudson, Lieutenant Colonel Paul King, and Dr. Curtis Spenny provided many... Effectiveness MSL Mean Sea Level MURV Modular Unmanned Research Vehicle n.p. neutral point NASA National Aeronautics and Space Administration PAM Pulse Amplitude...subsystem objectives and measures of effectiveness , see Volume One, Figure 2.2 The systems approach was then applied to generate and select the best

  15. Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.

  16. Potential Applications of Modularity to Enable a Deep Space Habitation Capability for Future Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Toups, Larry; Smitherman, David

    2012-01-01

    Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in mass, packaging volume, and architectural flexibility. This includes a description of the desired long duration habitation capability, the definition of a baseline model for comparison, a small trade study to investigate alternatives, and commentary on potentially advantageous configurations to enable different levels of habitability. The approaches investigated include modular pressure vessel strategies, modular subsystems, and modular manufacturing approaches to habitat structure. The paper also comments upon the possibility of an integrated habitation strategy using modular components to create all short and long duration habitation elements required in the current exploration architectures.

  17. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

  18. Assessment of sediment sources throughout the proglacial area of a small Arctic catchment based on high-resolution digital elevation models

    NASA Astrophysics Data System (ADS)

    Kociuba, Waldemar

    2017-06-01

    The article presents calculations of quantitative modifications of the morphology of selected subsystems of a glacial valley through: (i) identification of the spatial distribution of important sources of sediment, (ii) assessment of the spatiotemporal variety of sediment volume and landform morphology, and (iii) assessment of the role of particular subsystems in sediment distribution. The study involved a comparison of the results of field measurements from 2010 to 2013 performed in the Scott Glacier catchment (10.1 km2) in NW Wedel Jarlsberg Land (Spitsbergen). The assessment of the landform surface changes was performed by means of a precise Terrestrial Laser Scanning (TLS) survey. The applied field and post-processing techniques for oblique laser scanning permitted the acquisition of digital elevation data at a resolution 0.01 m and density > 500 pt m- 2. This allowed the development of a detailed terrain model, and balancing spatial quantitative changes in six research test areas (10,000 m2) located within two subsystems of the catchment in a cascade arrangement. In the alluvial valley-floor subsystem, the survey covered: 1) the glacier terminus, 2) the intramarginal outwash plain, 3) the extramarginal braid-plain and 4) the alluvial fan, and in the slope subsystem: 5) the erosional-depositional slope in the gorge through terminal moraines, and 6) the solifluction slope. Three zones differing in terms of the spatiotemporal dynamics of geomorphic processes were distinguished within the two analysed valley subsystems. In the valley floor subsystem, these are: (i) the zone of basic supply (distribution throughout the melting season) and (ii) the redeposition zone (distribution particularly during floods), and in the slope subsystem: (iii) zone of periodical supply (distributed mainly in periods of increased precipitation and rapid increases in temperature in summer and during snow avalanches in winter). The glacier and the landforms of the channel and valley floor, as well as slope sediments transported as a result of mass wasting processes and activity of the active permafrost layer, constitute important sources of sediment supply over a short/3-year timescale. Evidence of major changes of the surface morphology (slopes, floodplain and channel platform) resulted in varied sediment budgets. The subtraction of consecutive DEMs of the test areas located in the alluvial valley subsystem revealed downstream spatial and volumetric differentiation, from the predominance of erosion (79% of volume; 43% of area) to the dominance of deposition (90/91%, respectively) in upper part of the valley floor to erosion predominance in the central (88/95%) and lower (87/82%) part of valley floor. The test areas located on the slope subsystem showed the opposite relationship: deposition dominance (88% of volume; 80% of area) in the upper gorge and erosion dominance (99/99%, respectively) in the lower part (solifluction slopes). The analysis of short-time repeated surveys (3-week survey) where volumes were calculated following DEM subtraction showed increased deposition (82% of volume; 79% of area) for the alluvial fan, and for solifluction slopes (70/57%, respectively).

  19. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  20. Subsystem eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    Dymarsky, Anatoly; Lashkari, Nima; Liu, Hong

    2018-01-01

    Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment entropies. Finally, we provide numerical evidence for the proposal in the case of a one-dimensional Ising spin chain.

  1. MIT's role in project Apollo. Volume 2: Optical, radar, and candidate subsystems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of optical, radar, and candidate subsystems for Project Apollo is discussed. The design and development of the optical subsystems for both the Apollo command and lunar spacecraft are described. Design approaches, problems, and solutions are presented. The evolution of radar interfaces with the GN&C system is discussed; these interfaces involved both hardware and software in a relatively complex interrelationship. The design and development of three candidate subsystems are also described. The systems were considered for use in Apollo, but were not incorporated into the final GN&C system. The three subsystems discussed are the star tracker-horizon photometer, the map and data viewer and the lunar module optical rendezvous system.

  2. Comments on dual-mode nuclear space power and propulsion system concepts

    NASA Technical Reports Server (NTRS)

    Layton, J. Preston; Grey, Jerry

    1991-01-01

    Some form of Dual-Mode Nuclear Space Power & Propulsion System (D-MNSP&PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP&PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP&PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed.

  3. MIUS Integration and Subsystem Test (MIST) data system

    NASA Technical Reports Server (NTRS)

    Pringle, L. M.

    1977-01-01

    A data system for use in testing integrated subsystems of a modular integrated utility system (MIUS) is presented. The MIUS integration and subsystem test (MIST) data system is reviewed from its conception through its checkout and operation as the controlling portion of the MIST facility. The MIST data system provides a real time monitoring and control function that allows for complete evaluation of the performance of the mechanical and electrical subsystems, as well as controls the operation of the various components of the system. In addition to the aforementioned capabilities, the MIST data system provides computerized control of test operations such that minimum manpower is necessary to set up, operate, and shut down subsystems during test periods.

  4. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  5. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  6. Independent Orbiter Assessment (IOA) CIL issues resolution report, volume 3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. This report contains IOA assessment workshets showing resolution of outstanding IOA CIL issues that were summarized in the IOA FMEA/CIL Assessment Interim Report, dated 9 March 1988. Each assessment worksheet has been updated with CIL issue rsolution and rationale. Volume 3 contains the worksheets for the Reaction Control Subsystem and the Communications and Tracking Subsystem.

  7. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators.

  8. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  9. MOD-5A wind turbine generator program design report: Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator covering work performed between July 1980 and June 1984 is discussed. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 1, the Executive Summary, summarizes all phases of the MOD-5A program. The performance and cost of energy generated by the MOD-5A are presented. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation, power generation, and control and instrumentation subsystems - is described briefly. The early phases of the MOD-5A program, during which the design was analyzed and optimized, and new technologies and materials were developed, are discussed. Manufacturing, quality assurance, and safety plans are presented. The volume concludes with an index of volumes 2 and 3.

  10. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  11. A Computer Program Functional Design of the Simulation Subsystem of an Automated Central Flow Control System

    DOT National Transportation Integrated Search

    1976-08-01

    This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...

  12. Appendices for the Space Applications program, 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    To achieve truly low cost system design with direct evolution for inorbit shuttle resupply, a modular building block approach has been adopted. The heart of the modular building block concept lies in the ability to use a common set of nonoptimized subsystems in such a way that a wide variety of missions can be flown with no detrimental impact on performance. By standardizing the mechanical configurations and electrical interfaces of the subsystem modules, and by designing each of them to be structurally and thermally independent entities, it is possible to cluster these building blocks or modules about an instrument system so as to adequately perform the mission without the need for subsystem redevelopments for each mission. This system concept offers the following capabilities: (1) the ability to launch and orbit the observatory by either the Delta, the Titan, or the space shuttle. (2) the ability to completely reconfigure the spacecraft subsystems for different launch vehicles, and (3) the ability to perform in-orbit resupply and/or emergency retrieval of the observatory.

  13. Definition and preliminary design of the LAWS (Laser Atmospheric Wind Sounder). Volume 1, phase 2: Executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of phase 1 of the LAWS study was to define and perform a preliminary design for the Laser Atmospheric Wind Sounder (LAWS) instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System and subsystem configurations were then developed for the chosen concept. The concept and subsequent configurations were to be compatible with two prospective platforms--the Japanese Polar Orbiting Platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, we chose a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron solid state system. The choice of the CO2 approach over solid-state reflects the advanced state of development of CO2 lasers, its maturity in ground-based systems and the eased subsystem requirements associated with the longer wavelength. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. Our approach throughout the configuration design was to take a systems perspective and trade requirements between subsystems, wherever possible, to arrive at configurations which made maximum use of existing, proven technology or relatively straightforward extensions to existing technology to reduce risk and cost. At the conclusion of Phase 1 we arrived at a configuration for LAWS which meets the performance requirements, yet which is less complex than previous designs of space-based wind sensors (e.g. Windsat), employs lightweight technologies to meet its weight goals (less than 800kg) and sufficiently flexible to offer various operational scenarios with power requirements from about 2 kW to 3 kW. The Phase 1 Final Report was released in March 1990. The 21-month Phase 2 began in October 1990. The requirement to accommodate LAWS as an attached payload on Space Station Freedom was deleted and the orbit altitude for the Japanese polar orbiting platform was changed from 824 km to 705 km. The power allocated to LAWS was reduced to 2.2 kW from 3 kW. Subsequently the availability of a Japanese Polar Orbiting Platform was called into question and LAWS accommodation studies were continued using a conceptual, ATLAS-launched platform supplied by MSFC. In March 1991 a modification to the original contracts was funded to provide a LAWS laser breadboard which could demonstrate all the performance requirements of the LAWS laser. Also funded as part of the same contract extension was a lifetest demonstration using an existing laser at STI. The breadboard extension was an eighteen month effort and the period of performance was therefore extended to September 30, 1992.

  14. Phase 1 engineering and technical data report for the thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A shuttle EVLSS Thermal Control System (TCS) is defined. Thirteen heat rejection subsystems, thirteen water management subsystems, nine humidity control subsystems, three pressure control schemes and five temperature control schemes are evaluated. Sixteen integrated TCS systems are studied, and an optimum system is selected based on quantitative weighting of weight, volume, cost, complexity and other factors. The selected sybsystem contains a sublimator for heat rejection, a bubble expansion tank for water management, and a slurper and rotary separator for humidity control. Design of the selected subsystem prototype hardware is presented.

  15. Serenity: A subsystem quantum chemistry program.

    PubMed

    Unsleber, Jan P; Dresselhaus, Thomas; Klahr, Kevin; Schnieders, David; Böckers, Michael; Barton, Dennis; Neugebauer, Johannes

    2018-05-15

    We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. Space Transportatioin System (STS) propellant scavenging system study. Volume 3: Cost and work breakdown structure-dictionary

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Fundamentally, the volumes of the oxidizer and fuel propellant scavenged from the orbiter and external tank determine the size and weight of the scavenging system. The optimization of system dimensions and weights is stimulated by the requirement to minimize the use of partial length of the orbiter payload bay. Thus, the cost estimates begin with weights established for the optimum design. Both the design, development, test, and evaluation and theoretical first unit hardware production costs are estimated from parametric cost weight scaling relations for four subsystems. For cryogenic propellants, the widely differing characteristics of the oxidizer and the fuel lead to two separate tank subsystems, in addition to the electrical and instrumentation subsystems. Hardwares costs also involve quantity, as an independent variable, since the number of production scavenging systems is not firm. For storable propellants, since the tankage volume of the oxidizer and fuel are equal, the hardware production costs for developing these systems are lower than for cryogenic propellants.

  17. Lexical Problems in Large Distributed Information Systems.

    ERIC Educational Resources Information Center

    Berkovich, Simon Ya; Shneiderman, Ben

    1980-01-01

    Suggests a unified concept of a lexical subsystem as part of an information system to deal with lexical problems in local and network environments. The linguistic and control functions of the lexical subsystems in solving problems for large computer systems are described, and references are included. (Author/BK)

  18. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1992-01-01

    Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.

  19. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.

    1980-01-01

    Technological requirements and forecasts of rocket engine parameters and launch vehicles for future Earth to geosynchronous orbit transportation systems are presented. The parametric performance, weight, and envelope data for the LOX/CH4, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts are discussed. The costing methodology and ground rules used to develop the engine study are summarized. The weight estimating methodology for winged launched vehicles is described and summary data, used to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV are presented. Detail weights, comparisons, and weight scaling equations are provided.

  20. Thermal-structural design study of an airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.

    1978-01-01

    Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.

  1. Tactically Extensible and Modular Communications X-Band TEMCOM-X

    NASA Technical Reports Server (NTRS)

    Sims, William H.

    2015-01-01

    This paper will discuss a CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Proto-flight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications).

  2. A new environment for multiple spacecraft power subsystem mission operations

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.

    1990-01-01

    The engineering analysis subsystem environment (EASE) is being developed to enable fewer controllers to monitor and control power and other spacecraft engineering subsystems. The EASE prototype has been developed to support simultaneous real-time monitoring of several spacecraft engineering subsystems. It is being designed to assist with offline analysis of telemetry data to determine trends, and to help formulate uplink commands to the spacecraft. An early version of the EASE prototype has been installed in the JPL Space Flight Operations Facility for online testing. The EASE prototype is installed in the Galileo Mission Support Area. The underlying concept, development, and testing of the EASE prototype and how it will aid in the ground operations of spacecraft power subsystems are discussed.

  3. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  4. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 2, technologies 1: Reactors, heat transport, integration issues

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objectives of the Megawatt Class Nuclear Space Power System (MCNSPS) study are summarized and candidate systems and subsystems are described. Particular emphasis is given to the heat rejection system and the space reactor subsystem.

  5. Systems design study of the Pioneer Venus spacecraft. Volume 1: Technical analyses and tradeoffs, sections 8-12 (part 4 of 4)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The probe bus and orbiter subsystems are defined, and tradeoffs analyzed. Subsystems discussed include: communications, electric power, data handling, attitude determination and control, propulsion, thermal control, structure and mechanisms, NASA/ESRO orbiter interface, mission operation, and flight support.

  6. Spacecraft Conceptual Design Compared to the Apollo Lunar Lander

    NASA Technical Reports Server (NTRS)

    Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.

    2011-01-01

    Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.

  7. PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 1

    NASA Technical Reports Server (NTRS)

    Barker, F. C.

    1978-01-01

    The operational characteristics of the multiprobe system and its subsystem are described. System level, description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are presented. Bus spacecraft functional and operational descriptions at the subsystem and unit level are presented. The subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram identifies in symbolic logic all signal conditioning encountered along each command signal path into, and each telemetry signal path out of the subsystem.

  8. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  9. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  10. Orbiter subsystem hardware/software interaction analysis. Volume 8: AFT reaction control system, part 2

    NASA Technical Reports Server (NTRS)

    Becker, D. D.

    1980-01-01

    The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.

  11. A guide to onboard checkout. Volume 7: RF communications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The radio frequency communications subsystem for a space station is considered, with respect to onboard checkout requirements. The subsystem comprises all equipment necessary for transmitting and receiving, tracking and ranging, command, multiple voice and television information, and broadband experiment data. The communications subsystem provides a radio frequency interface between the space station and ground stations, either directly or indirectly, through a data relay satellite system, independent free-flying experiment modules, and logistics vehicles. Reliability, maintenance, and failure analyses are discussed, and computer programming techniques are presented.

  12. Autonomous flight and remote site landing guidance research for helicopters

    NASA Technical Reports Server (NTRS)

    Denton, R. V.; Pecklesma, N. J.; Smith, F. W.

    1987-01-01

    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test.

  13. MRI morphometry of mamillary bodies, caudate nuclei, and prefrontal cortices after chemotherapy for childhood leukemia: multivariate models of early and late developing memory subsystems.

    PubMed

    Ciesielski, K T; Lesnik, P G; Benzel, E C; Hart, B L; Sanders, J A

    1999-06-01

    Neurotoxic intrathecal chemotherapy for childhood acute lymphoblastic leukemia (ALL) affects developing structures and functions of memory and learning subsystems selectively. Results show significant reductions in magnetic resonance imaging morphometry of mamillary bodies, components of the corticolimbic-diencephalic subsystem subserving functionally later developing, single-trial memory, nonsignificant changes in bilateral heads of the caudate nuclei, components of the corticostriatal subsystem subserving functionally earlier developing, multitrial learning, significant reductions in prefrontal cortical volume, visual and verbal single-trial memory deficits, and visuospatial, but not verbal, multitrial learning deficits. Multiple regression models provide evidence for partial dissociation and connectivity between the subsystems, and suggest that greater involvement of caudate may compensate for inefficient corticolimbic-diencephalic components.

  14. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 3: Experimental System Descriptions. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.

  15. System impacts of solar dynamic and growth power systems on space station

    NASA Technical Reports Server (NTRS)

    Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.

    1986-01-01

    Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.

  16. A prototype to automate the video subsystem routing for the video distribution subsystem of Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Betz, Jessie M. Bethly

    1993-12-01

    The Video Distribution Subsystem (VDS) for Space Station Freedom provides onboard video communications. The VDS includes three major functions: external video switching; internal video switching; and sync and control generation. The Video Subsystem Routing (VSR) is a part of the VDS Manager Computer Software Configuration Item (VSM/CSCI). The VSM/CSCI is the software which controls and monitors the VDS equipment. VSR activates, terminates, and modifies video services in response to Tier-1 commands to connect video sources to video destinations. VSR selects connection paths based on availability of resources and updates the video routing lookup tables. This project involves investigating the current methodology to automate the Video Subsystem Routing and developing and testing a prototype as 'proof of concept' for designers.

  17. Tactically Extensible and Modular Communications - X-Band TEMCOM-X

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Varnavas, Kosta A.; Casas, Joseph; Spehn, Stephen L.; Kendrick, Neal; Cross, Stephen; Sanderson, Paul; Booth, Janet C.

    2015-01-01

    This paper will discuss a proposed CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Protoflight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.5U CubeSat volume. Extensible and modular communications for CubeSat technologies will partially mitigate current capability gaps between traditional strategic space platforms and lower-cost small satellite solutions. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications), while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.

  18. Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE). Volume 2: Mission payloads subsystem description

    NASA Technical Reports Server (NTRS)

    Dupnick, E.; Wiggins, D.

    1980-01-01

    The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) is presented. Two major subsystems are included: The mission payloads program; and the set covering program. Formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.

  19. Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification

    NASA Technical Reports Server (NTRS)

    Miller, A. N.; Linden, A. W.

    1972-01-01

    The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.

  20. ATS-6 engineering performance report. Volume 3: Telecommunications and power

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Functional design requirements and in-orbit operations, performance, and anomalies are discussed for (1) the communications subsystem, (2) the electrical power system, and (3) the telemetry and command subsystem. The latter includes a review of ground support. Tracking and data relay experiments and the Apollo-Soyuz test program are reviewed.

  1. A guide to onboard checkout. Volume 6: Structures/mechanics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The structures and mechanical subsystem of a space station are considered. The subsystem includes basic structure (pressurization, equipment support, meteoroid protection, radiators, insulation, and docking interfaces), the docking mechanisms, spacecraft access (hatches, airlocks, and view ports), and antenna deployment mechanisms. Checkout is discussed in terms of reliability, failure analysis, and maintenance.

  2. Independent Orbiter Assessment (IOA): Assessment of the orbiter main propulsion system FMEA/CIL, volume 1

    NASA Technical Reports Server (NTRS)

    Slaughter, B. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. The Orbiter MPS is composed of the Propellant Management Subsystem (PMS) consisting of the liquid oxygen (LO2) and liquid hydrogen (LH2) subsystems and the helium subsystem. The PMS is a system of manifolds, distribution lines, and valves by which the liquid propellants pass from the External Tank to the Space Shuttle Main Engine (SSME). The helium subsystem consists of a series of helium supply tanks and their associated regulators, control valves, and distribution lines. Volume 1 contains the MPS description, assessment results, ground rules and assumptions, and some of the IOA worksheets.

  3. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to examine pilot mental models of the aircraft subsystems and their use in diagnosis tasks. Future research plans include piloted simulation evaluation of the diagnosis decision aiding concepts and crew interface issues. Information is given in viewgraph form.

  4. Control-Volume Analysis Of Thrust-Augmenting Ejectors

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.

    1990-01-01

    New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.

  5. C3I system modification and EMC (electromagnetic compatibility) methodology, volume 1

    NASA Astrophysics Data System (ADS)

    Wilson, J. L.; Jolly, M. B.

    1984-01-01

    A methodology (i.e., consistent set of procedures) for assessing the electromagnetic compatibility (EMC) of RF subsystem modifications on C3I aircraft was generated during this study (Volume 1). An IEMCAP (Intrasystem Electromagnetic Compatibility Analysis Program) database for the E-3A (AWACS) C3I aircraft RF subsystem was extracted to support the design of the EMC assessment methodology (Volume 2). Mock modifications were performed on the E-3A database to assess, using a preliminary form of the methodology, the resulting EMC impact. Application of the preliminary assessment methodology to modifications in the E-3A database served to fine tune the form of a final assessment methodology. The resulting final assessment methodology is documented in this report in conjunction with the overall study goals, procedures, and database. It is recommended that a similar EMC assessment methodology be developed for the power subsystem within C3I aircraft. It is further recommended that future EMC assessment methodologies be developed around expert systems (i.e., computer intelligent agents) to control both the excruciating detail and user requirement for transparency.

  6. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  7. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  8. The MIST /MIUS Integration and Subsystems Test/ laboratory - A testbed for the MIUS /Modular Integrated Utility System/ program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Keune, F. A.

    1974-01-01

    The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.

  9. The Nimbus 6 data catalog, volume 12: Data orbits 9227 through 10043

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Nimbus 6 was successfully launched from the Western Test Range, Vandenberg Air Force Base, California at 08 hr. 12 min. 00 sec. GMT on 12 June 1975. The orbit was nearly circular at 1093 x 1105 km. Satellite operations from launch through 14 July (orbit 425) consisted of engineering evaluation of all spacecraft systems. As a result of that effort, data reception, accountability and processing were intermittent during that period. This volume reflects the operational changes that occurred to each individual subsystem on a bi-monthly basis. Also this volume incorporates significant findings and various subsystem summaries as detailed by the respective experimenter. During orbit 9793 (12 June 1977) Nimbus 6 successfully completed two years of operations.

  10. Electric and hybrid vehicles environmental control subsystem study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An environmental control subsystem (ECS) in the passenger compartment of electric and hybrid vehicles is studied. Various methods of obtaining the desired temperature control for the battery pack is also studied. The functional requirements of ECS equipment is defined. Following categorization by methodology, technology availability and risk, all viable ECS concepts are evaluated. Each is assessed independently for benefits versus risk, as well as for its feasibility to short, intermediate and long term product development. Selection of the preferred concept is made against these requirements, as well as the study's major goal of providing safe, highly efficient and thermally confortable ECS equipment.

  11. Independent Orbiter Assessment (IOA): Analysis of the Electrical Power Distribution and Control Subsystem, Volume 2

    NASA Technical Reports Server (NTRS)

    Schmeckpeper, K. R.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list.

  12. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  13. Electrochemical energy storage subsystems study, volume 1

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  14. Electrochemical Energy Storage Subsystems Study, Volume 2

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  15. FBI fingerprint identification automation study: AIDS 3 evaluation report. Volume 9: Functional requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The current system and subsystem used by the Identification Division are described. System constraints that dictate the system environment are discussed and boundaries within which solutions must be found are described. The functional requirements were related to the performance requirements. These performance requirements were then related to their applicable subsystems. The flow of data, documents, or other pieces of information from one subsystem to another or from the external world into the identification system is described. Requirements and design standards for a computer based system are presented.

  16. MIUS integration and subsystems test program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Shows, G. C.; Redding, T. E.; Wadle, R. C.; Keough, M. B.; Poradek, J. C.

    1976-01-01

    The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent.

  17. Development of a preprototype times wastewater recovery subsystem, addendum

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.

    1984-01-01

    Six tasks are described reflecting subsystem hardware and software modifications and test evaluation of a TIMES wastewater recovery subsystem. The overall results are illustrated in a figure which shows the water production rate, the specific energy corrected to 26.5 VDC, and the product water conductivity at various points in the testing. Four tasks are described reflecting studies performed to develop a preliminary design concept for a next generation TIMES. The overall results of the study are the completion of major design analyses and preliminary configuration layout drawings.

  18. Design evolution of the orbiter reaction control subsystem

    NASA Technical Reports Server (NTRS)

    Taeber, R. J.; Karakulko, W.; Belvins, D.; Hohmann, C.; Henderson, J.

    1985-01-01

    The challenges of space shuttle orbiter reaction control subsystem development began with selection of the propellant for the subsystem. Various concepts were evaluated before the current Earth storable, bipropellant combination was selected. Once that task was accomplished, additional challenges of designing the system to satisfy the wide range of requirements dictated by operating environments, reusability, and long life were met. Verification of system adequacy was achieved by means of a combination of analysis and test. The studies, the design efforts, and the test and analysis techniques employed in meeting the challenges are described.

  19. Space Tug avionics definition study. Volume 4: Supporting trade studies and analyses

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Analyses and trade studies were performed for the evaluation of the most desirable solutions to space tug subsystem requirements. These were accomplished at system, subsystem, and at component levels. The criteria, the candidate options evaluated, the selection process, and the recommended solutions that have been integrated together in the configuration descriptions are reported.

  20. NASIS data base management system: IBM 360 TSS implementation. Volume 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The command subsystem may be operated conversationally or in the batch mode. Retrieval commands are categorized into search-oriented and output-oriented commands. The characteristics of ancillary commands and their application are reported.

  1. The charged particle accelerators subsystems modeling

    NASA Astrophysics Data System (ADS)

    Averyanov, G. P.; Kobylyatskiy, A. V.

    2017-01-01

    Presented web-based resource for information support the engineering, science and education in Electrophysics, containing web-based tools for simulation subsystems charged particle accelerators. Formulated the development motivation of Web-Environment for Virtual Electrophysical Laboratories. Analyzes the trends of designs the dynamic web-environments for supporting of scientific research and E-learning, within the framework of Open Education concept.

  2. Integrated Utility Systems Feasibility Study and Conceptual Design at the University of Florida. Executive Summary.

    ERIC Educational Resources Information Center

    Kirmse, Dale W.; Manyimo, Steve B.

    This executive summary presents a brief analysis of findings and recommendations. The concept of the Integrated Utility System (IUS) is to consider the interaction and mutual support of five utility subsystems needed by a campus complex of buildings. The subsystems are: (1) Electric power service; (2) Heating - ventilating - air conditioning and…

  3. Manned geosynchronous mission requirements and systems analysis study extension. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A study was performed to determine the types of manned missions that will likely be performed in the late 1980's or early 1990's timeframe, to define MOTV configurations which satisfy these missions requirements, and to develop a program plan for its development. Twenty generic missions were originally defined for MOTV but, to simplify the selection process, five of these missions were selected as typical and used as Design Reference Missions. Systems and subsystems requirements were re-examined and sensitivity analyses performed to determine optimum point designs. Turnaround modes were considered to determine the most effective combination of ground based and spaced based activities. A preferred concept for the crew capsule and for the mission mode was developed.

  4. Viking '79 Rover study. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a study to define a roving vehicle suitable for inclusion in a 1979 Viking mission to Mars are presented. The study focused exclusively on the 1979 mission incorporating a rover that would be stowed on and deployed from a modified Viking lander. The overall objective of the study was to define a baseline rover, the lander/rover interfaces, a mission operations concept, and a rover development program compatible with the 1979 launch opportunity. During the study, numerous options at the rover system and subsystem levels were examined and a baseline configuration was selected. Launch vehicle, orbiter, and lander performance capabilities were examined to ensure that the baseline rover could be transported to Mars using minimum-modified Viking '75 hardware and designs.

  5. Information transfer satellite concept study. Volume 4: computer manual

    NASA Technical Reports Server (NTRS)

    Bergin, P.; Kincade, C.; Kurpiewski, D.; Leinhaupel, F.; Millican, F.; Onstad, R.

    1971-01-01

    The Satellite Telecommunications Analysis and Modeling Program (STAMP) provides the user with a flexible and comprehensive tool for the analysis of ITS system requirements. While obtaining minimum cost design points, the program enables the user to perform studies over a wide range of user requirements and parametric demands. The program utilizes a total system approach wherein the ground uplink and downlink, the spacecraft, and the launch vehicle are simultaneously synthesized. A steepest descent algorithm is employed to determine the minimum total system cost design subject to the fixed user requirements and imposed constraints. In the process of converging to the solution, the pertinent subsystem tradeoffs are resolved. This report documents STAMP through a technical analysis and a description of the principal techniques employed in the program.

  6. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 2: System Concept Selection. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Systems design and systems optimization studies are conducted which consider plant size, annual capacity factors, and startup time as variables. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  7. Lung Volume Measured during Sequential Swallowing in Healthy Young Adults

    ERIC Educational Resources Information Center

    Hegland, Karen Wheeler; Huber, Jessica E.; Pitts, Teresa; Davenport, Paul W.; Sapienza, Christine M.

    2011-01-01

    Purpose: Outcomes from studying the coordinative relationship between respiratory and swallow subsystems are inconsistent for sequential swallows, and the lung volume at the initiation of sequential swallowing remains undefined. The first goal of this study was to quantify the lung volume at initiation of sequential swallowing ingestion cycles and…

  8. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    NASA Technical Reports Server (NTRS)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  9. Shuttle user analysis (study 2.2). Volume 4: Standardized subsystem modules analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The capability to analyze payloads constructed of standardized modules was provided for the planning of future mission models. An inventory of standardized module designs previously obtained was used as a starting point. Some of the conclusions and recommendations are: (1) the two growth factor synthesis methods provide logical configurations for satellite type selection; (2) the recommended method is the one that determines the growth factor as a function of the baseline subsystem weight, since it provides a larger growth factor for small subsystem weights and results in a greater overkill due to standardization; (3) the method that is not recommended is the one that depends upon a subsystem similarity selection, since care must be used in the subsystem similarity selection; (4) it is recommended that the application of standardized subsystem factors be limited to satellites with baseline dry weights between about 700 and 6,500 lbs; and (5) the standardized satellite design approach applies to satellites maintainable in orbit or retrieved for ground maintenance.

  10. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; hide

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  11. Stability of large-scale systems with stable and unstable subsystems.

    NASA Technical Reports Server (NTRS)

    Grujic, Lj. T.; Siljak, D. D.

    1972-01-01

    The purpose of this paper is to develop new methods for constructing vector Liapunov functions and broaden the application of Liapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. With minor technical adjustments, the same criterion can be used to determine connective asymptotic stability of large-scale systems subject to structural perturbations. By redefining the constraints imposed on the interconnections among the subsystems, the considered class of systems is broadened in an essential way to include composite systems with unstable subsystems. In this way, the theory is brought substantially closer to reality since stability of all subsystems is no longer a necessary assumption in establishing stability of the overall composite system.

  12. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  13. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  14. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  15. Statistical Rick Estimation for Communication System Design --- A Preliminary Look

    NASA Astrophysics Data System (ADS)

    Babuscia, A.; Cheung, K.-M.

    2012-02-01

    Spacecraft are complex systems that involve different subsystems with multiple relationships among them. For these reasons, the design of a spacecraft is a time-evolving process that starts from requirements and evolves over time across different design phases. During this process, a lot of changes can happen. They can affect mass and power at the component level, at the subsystem level, and even at the system level. Each spacecraft has to respect the overall constraints in terms of mass and power: for this reason, it is important to be sure that the design does not exceed these limitations. Current practice in system models primarily deals with this problem, allocating margins on individual components and on individual subsystems. However, a statistical characterization of the fluctuations in mass and power of the overall system (i.e., the spacecraft) is missing. This lack of adequate statistical characterization would result in a risky spacecraft design that might not fit the mission constraints and requirements, or in a conservative design that might not fully utilize the available resources. Due to the complexity of the problem and to the different expertise and knowledge required to develop a complete risk model for a spacecraft design, this article is focused on risk estimation for a specific spacecraft subsystem: the communication subsystem. The current research aims to be a proof of concept of a risk-based design optimization approach, which can then be further expanded to the design of other subsystems as well as to the whole spacecraft. The objective of this research is to develop a mathematical approach to quantify the likelihood that the major design drivers of mass and power of a space communication system would meet the spacecraft and mission requirements and constraints through the mission design lifecycle. Using this approach, the communication system designers will be able to evaluate and to compare different communication architectures in a risk trade-off perspective. The results described in this article include a baseline communication system design tool and a statistical characterization of the design risks through a combination of historical mission data and expert opinion contributions. An application example of the communication system of a university spacecraft is presented. IPNPR Volume 42-189 Tagged File.txt

  16. Thematic mapper flight model preshipment review data package. Volume 2, part A: Subsystem data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Performance and acceptance data are presented for the multiplexer, scan mirror, power supply, mainframe/top mechanical and the aft optics, assemblies. Other major subsystems evaluated include the relay optics, the electronic module, the radiative cooler, and the cable harness. Reference lists of nonconforming materials reports, failure reports, and requests for deviation/waiver are also given.

  17. Thematic mapper flight model preshipment review data package. Volume 2, part B: Subsystem data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Summarized performance data are presented for the following major subsystems of the thematic mapper: the focal plane assembly, the radiative cooler, the radiative cooler door assembly, the top optical assembly, and the telescope assembly. Reference lists of the configurations status and of nonconforming material reports, failure reports, and requests for deviation/waiver are included.

  18. Integrated diagnostics

    NASA Technical Reports Server (NTRS)

    Hunthausen, Roger J.

    1988-01-01

    Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

  19. Automated Subsystem Control for Life Support System (ASCLSS)

    NASA Technical Reports Server (NTRS)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  20. PREVAIL-EPL alpha tool electron optics subsystem

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.; Dhaliwal, Rajinder S.; Golladay, Steven D.; Doran, Samuel K.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Pinckney, David J.; Quickle, Robert J.; Robinson, Christopher F.; Rockrohr, James D.; Stickel, Werner; Tressler, Eileen V.

    2001-08-01

    The IBM/Nikon alliance is continuing pursuit of an EPL stepper alpha tool based on the PREVAIL technology. This paper provides a status report of the alliance activity with particular focus on the Electron Optical Subsystem developed at IBM. We have previously reported on design features of the PREVAIL alpha system. The new state-of-the-art e-beam lithography concepts have since been reduced to practice and turned into functional building blocks of a production level lithography tool. The electron optical alpha tool subsystem has been designed, build, assembled and tested at IBM's Semiconductor Research and Development Center (SRDC) in East Fishkill, New York. After demonstrating subsystem functionality, the electron optical column and all associated control electronics hardware and software have been shipped during January 2001 to Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial e-beam stepper alpha tool. Early pre-shipment results obtained with this electron optical subsystem are presented.

  1. B-70 Aircraft Study. Volume 4

    NASA Technical Reports Server (NTRS)

    Taube, L. J.

    1972-01-01

    This volume contains cost, schedule, and technical information on the following B-70 aircraft subsystems: air induction system, flight control, personnel accommodation and escape, alighting and arresting, mission and traffic control, flight indication, test instrumentation, and installation, checkout, and pre-flight.

  2. Conceptual design study for a teleoperator visual system, phase 2

    NASA Technical Reports Server (NTRS)

    Grant, C.; Meirick, R.; Polhemus, C.; Spencer, R.; Swain, D.; Twell, R.

    1973-01-01

    An analysis of the concept for the hybrid stereo-monoscopic television visual system is reported. The visual concept is described along with the following subsystems: illumination, deployment/articulation, telecommunications, visual displays, and the controls and display station.

  3. Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Mondt, J. F.

    1974-01-01

    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.

  4. Conceptual design study for a teleoperator visual system, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  5. Space transfer vehicle concepts and requirements study. Volume 3, book 1: Program cost estimates

    NASA Technical Reports Server (NTRS)

    Peffley, Al F.

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study cost estimate and program planning analysis is presented. The cost estimating technique used to support STV system, subsystem, and component cost analysis is a mixture of parametric cost estimating and selective cost analogy approaches. The parametric cost analysis is aimed at developing cost-effective aerobrake, crew module, tank module, and lander designs with the parametric cost estimates data. This is accomplished using cost as a design parameter in an iterative process with conceptual design input information. The parametric estimating approach segregates costs by major program life cycle phase (development, production, integration, and launch support). These phases are further broken out into major hardware subsystems, software functions, and tasks according to the STV preliminary program work breakdown structure (WBS). The WBS is defined to a low enough level of detail by the study team to highlight STV system cost drivers. This level of cost visibility provided the basis for cost sensitivity analysis against various design approaches aimed at achieving a cost-effective design. The cost approach, methodology, and rationale are described. A chronological record of the interim review material relating to cost analysis is included along with a brief summary of the study contract tasks accomplished during that period of review and the key conclusions or observations identified that relate to STV program cost estimates. The STV life cycle costs are estimated on the proprietary parametric cost model (PCM) with inputs organized by a project WBS. Preliminary life cycle schedules are also included.

  6. Fuel-efficient cruise performance model for general aviation piston engine airplanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkinson, R.C.H.

    1982-01-01

    The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its simplicity and low volume data storage requirements, appears suitable for airborne microprocessor implementation.

  7. Flexible radiator system

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1982-01-01

    The soft tube radiator subsystem is described including applicable system requirements, the design and limitations of the subsystem components, and the panel manufacturing method. The soft tube radiator subsystem is applicable to payloads requiring 1 to 12 kW of heat rejection for orbital lifetimes per mission of 30 days or less. The flexible radiator stowage volume required is about 60% and the system weight is about 40% of an equivalent heat rejection rigid panel. The cost should also be considerably less. The flexible radiator is particularly suited to shuttle orbiter sortie payloads and also whose mission lengths do not exceed the 30 day design life.

  8. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  9. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  10. Hardware simulation of KU-band spacecraft receiver and bit synchronizer, phase 2, volume 1. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Eisenberg, B. R.

    1977-01-01

    The acquisition behavior of the PN subsystem of an automatically acquiring spacecraft receiver was studied. A symbol synchronizer subsystem was constructed and integrated into the composite simulation of the receiver. The overall performance of the receiver when subjected to anomalies such as signal fades was evaluated. Potential problems associated with PN/carrier sweep interactions were investigated.

  11. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  12. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  13. Thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.

  14. IUS/TUG orbital operations and mission support study. Volume 3: Space tug operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A study was conducted to develop space tug operational concepts and baseline operations plan, and to provide cost estimates for space tug operations. Background data and study results are presented along with a transition phase analysis (the transition from interim upper state to tug operations). A summary is given of the tug operational and interface requirements with emphasis on the on-orbit checkout requirements, external interface operational requirements, safety requirements, and system operational interface requirements. Other topics discussed include reference missions baselined for the tug and details for the mission functional flows and timelines derived for the tug mission, tug subsystems, tug on-orbit operations prior to the tug first burn, spacecraft deployment and retrieval by the tug, operations centers, mission planning, potential problem areas, and cost data.

  15. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  16. Experimental robot gripper control for handling of soft objects

    NASA Astrophysics Data System (ADS)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  17. New York State Educational Information System (NYSEIS) Systems Design. Volume I, Phase II. Final Report.

    ERIC Educational Resources Information Center

    Price Waterhouse and Co., New York, NY.

    This volume on Phase II of the New York State Educational Information System (NYSEIS) describes the Gross Systems Analysis and Design, which includes the general flow diagram and processing chart for each of the student, personnel, and financial subsystems. Volume II, Functional Specifications, includes input/output requirements and file…

  18. Manned maneuvering unit mission definition study. Volume 2: Appendices to the MMU applications analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Information used in identifying representative Manned Maneuvering Unit (MMU) from the many Automated and Sortie Payloads and orbiter subsystems is presented. Representative missions were selected to represent typical MMU applications across all payloads and orbiter subsystems. Data analysis sheets are provided with other applicable information. Calculations used in defining MMU general performance and control requirements to satisfy eleven space missions are included.

  19. Armored Family of Vehicles (AFV). Phase 1 Report. Book 7. Volume 11

    DTIC Science & Technology

    1987-08-31

    Armored Family of Vehicles. Specific requirements and products are described which initiate the training development process and a training management ...approach for the TRADOC and proponent schools to plan, develop, manage and integrate the training subsystem(s) for the Armored Family of Vehicles...Procedures. q. Charter, Armored Family of Vehicles. r. Operational and Organizational (O&W) Plan for AFV. s. System MANPRINT Management Plan for AFV

  20. Synchronous meteorological satellite system description document, volume 3

    NASA Technical Reports Server (NTRS)

    Pipkin, F. B.

    1971-01-01

    The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.

  1. Assessing experience in the deliberate practice of running using a fuzzy decision-support system

    PubMed Central

    Roveri, Maria Isabel; Manoel, Edison de Jesus; Onodera, Andrea Naomi; Ortega, Neli R. S.; Tessutti, Vitor Daniel; Vilela, Emerson; Evêncio, Nelson

    2017-01-01

    The judgement of skill experience and its levels is ambiguous though it is crucial for decision-making in sport sciences studies. We developed a fuzzy decision support system to classify experience of non-elite distance runners. Two Mamdani subsystems were developed based on expert running coaches’ knowledge. In the first subsystem, the linguistic variables of training frequency and volume were combined and the output defined the quality of running practice. The second subsystem yielded the level of running experience from the combination of the first subsystem output with the number of competitions and practice time. The model results were highly consistent with the judgment of three expert running coaches (r>0.88, p<0.001) and also with five other expert running coaches (r>0.86, p<0.001). From the expert’s knowledge and the fuzzy model, running experience is beyond the so-called "10-year rule" and depends not only on practice time, but on the quality of practice (training volume and frequency) and participation in competitions. The fuzzy rule-based model was very reliable, valid, deals with the marked ambiguities inherent in the judgment of experience and has potential applications in research, sports training, and clinical settings. PMID:28817655

  2. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  3. An advanced technology space station for the year 2025, study and concepts

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Garn, P. A.

    1987-01-01

    A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations.

  4. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  5. Quantum subsystems: Exploring the complementarity of quantum privacy and error correction

    NASA Astrophysics Data System (ADS)

    Jochym-O'Connor, Tomas; Kribs, David W.; Laflamme, Raymond; Plosker, Sarah

    2014-09-01

    This paper addresses and expands on the contents of the recent Letter [Phys. Rev. Lett. 111, 030502 (2013), 10.1103/PhysRevLett.111.030502] discussing private quantum subsystems. Here we prove several previously presented results, including a condition for a given random unitary channel to not have a private subspace (although this does not mean that private communication cannot occur, as was previously demonstrated via private subsystems) and algebraic conditions that characterize when a general quantum subsystem or subspace code is private for a quantum channel. These conditions can be regarded as the private analog of the Knill-Laflamme conditions for quantum error correction, and we explore how the conditions simplify in some special cases. The bridge between quantum cryptography and quantum error correction provided by complementary quantum channels motivates the study of a new, more general definition of quantum error-correcting code, and we initiate this study here. We also consider the concept of complementarity for the general notion of a private quantum subsystem.

  6. System design of the Pioneer Venus spacecraft. Volume 10: Propulsion/orbit insertion subsystem studies

    NASA Technical Reports Server (NTRS)

    Rosenstein, B. J.

    1973-01-01

    The Pioneer Venus orbiter and multiprobe missions require spacecraft maneuvers for successful accomplishment. This report presents the results of studies performed to define the propulsion subsystems required to perform those maneuvers. Primary goals were to define low mass subsystems capable of performing the required missions with a high degree of reliability for low cost. A review was performed of all applicable propellants and thruster types, as well as propellant management techniques. Based on this review, a liquid monopropellant hydrazine propulsion subsystem was selected for all multiprobe mission maneuvers, and for all orbiter mission maneuvers except orbit insertion. A pressure blowdown operating mode was selected using helium as the pressurizing gas. The forces associated with spacecraft rotations were used to control the liquid-gas interface and resulting propellant orientation within the tank.

  7. An automated environment for multiple spacecraft engineering subsystem mission operations

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.; Hioe, K.; Lai, J.; Imlay, E.; Schwuttke, U.; Hsu, E.; Mikes, S.

    1990-01-01

    Flight operations at the Jet Propulsion Laboratory (JPL) are now performed by teams of specialists, each team dedicated to a particular spacecraft. Certain members of each team are responsible for monitoring the performances of their respective spacecraft subsystems. Ground operations, which are very complex, are manual, labor-intensive, slow, and tedious, and therefore costly and inefficient. The challenge of the new decade is to operate a large number of spacecraft simultaneously while sharing limited human and computer resources, without compromising overall reliability. The Engineering Analysis Subsystem Environment (EASE) is an architecture that enables fewer controllers to monitor and control spacecraft engineering subsystems. A prototype of EASE has been installed in the JPL Space Flight Operations Facility for on-line testing. This article describes the underlying concept, development, testing, and benefits of the EASE prototype.

  8. Hermes 3

    NASA Astrophysics Data System (ADS)

    Hasti, D. E.; Ramirez, J. J.; Prestwich, K. R.; Sanford, T. W. L.; Hamil, R. A.

    Hermes 3 is a major new gamma-ray simulator that is part of the Simulation Technology Laboratory Project. This accelerator will significantly improve the capability to evaluate the effects of gamma-ray radiation from nuclear weapons on weapons subsystems. This accelerator will be designed to produce 10(5)R, 5 x 10 to the 12th power R/S and 2 x 10 to the 20th power R/S(2) over a 500 sq cm area. The radiation dose will vary less than a factor of two over this area and less than a factor of four throughout a volume found by extending this surface 15 cm further from the gamma-ray converter. The minimum dose in this volume will be greater than or equal to 5 x 10 to the 4th power R. The accelerator will be designed with sufficient reliability and short enough turn-around time to produce more than 600 radiation pulses per year. In Hermes 3 the peak power in the beam is to be increased from 1.2 TW of Hermes 2 to 16 TW. Two techniques for achieving these high powers have been successfully developed. The first technique is a high current linear induction accelerator with several parallel beams. Experiments to evaluate this concept were done on the MABE accelerator. The second concept uses induction cavities and a magnetically insulated transmission line (MITL) to form a multi-terawatt voltage adder.

  9. System decontamination as a tool to control radiation fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, R.; Bertholdt, H.O.

    1995-03-01

    Since chemical decontamination of the Reactor Coolant Systems (RCS) and subsystems has the highest potential to reduce radiation fields in a short term this technology has gained an increasing importance. The available decontamination process at Siemens, i.e., the CORD processes, will be described. It is characterized by using permanganic acid for preoxidation and diluted organic acid for the decontamination step. It is a regenerative process resulting in very low waste volumes. This technology has been used frequently in Europe and Japan in both RCS and subsystems. An overview will be given i.e. on the 1993 applications. This overview will includemore » plant, scope, date of performance, system volume specal features of the process removed activities, decon factor time, waste volumes, and personnel dose during decontamination. This overview will be followed by an outlook on future developments in this area.« less

  10. A study of an orbital radar mapping mission to Venus. Volume 3: Parametric studies and subsystem comparisons

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.

  11. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  12. Integrated Information Support System (IISS). Volume 5. Common Data Model Subsystem. Part 27. Distributed Request Supervisor Product Specification.

    DTIC Science & Technology

    1985-11-01

    McAuto) Transaction Manager Subsystem during 1984/1985 period. On-Line Software Responsible for programming the International (OSI) Communications...Network Transaction Manager (NTM) in 1981/1984 period. Software Performance Responsible for directing the Engineering (SPE) work on performance...computer software Contained herein are theoretical and/or SCAN Project 1prierity sao referenoes that In so way reflect Air Forceowmed or -developed $62 LO

  13. Test Methods for Telemetry Systems and Subsystems. Volume 2: Test Methods for Telemetry Radio Frequency (RF) Subsystems

    DTIC Science & Technology

    2012-09-01

    downconverters; telemetry RF preamplifiers; telemetry multicouplers; telemetry receivers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as...Continuing Engineering Education Program, George Washington University , 1994. A-5 Figure A-2. Graphical representation of intercept point...NFdb) is expressed in decibels and noise factor (nf ) in decimal units. For example, a noise figure of 3 dB corresponds to a noise factor of 2

  14. An efficient multilevel optimization method for engineering design

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Yang, Y. J.; Kim, D. S.

    1988-01-01

    An efficient multilevel deisgn optimization technique is presented. The proposed method is based on the concept of providing linearized information between the system level and subsystem level optimization tasks. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to use. The disadvantage is that the coupling between subsystems is not dealt with in a precise mathematical manner.

  15. A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.

    1975-01-01

    An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.

  16. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  17. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Ogasawara, K.; Ebert, R. W.; McComas, D. J.; Allegrini, F.; Weidner, S. E.; Alexander, N.; Livi, S. A.

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ˜10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ˜30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  18. An integrated time-of-flight versus residual energy subsystem for a compact dual ion composition experiment for space plasmas.

    PubMed

    Desai, M I; Ogasawara, K; Ebert, R W; McComas, D J; Allegrini, F; Weidner, S E; Alexander, N; Livi, S A

    2015-05-01

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q-40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV-10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinct ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs' singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.

  19. ESIM_DSN Web-Enabled Distributed Simulation Network

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Novotny, John

    2002-01-01

    In this paper, the eSim(sup DSN) approach to achieve distributed simulation capability using the Internet is presented. With this approach a complete simulation can be assembled from component subsystems that run on different computers. The subsystems interact with each other via the Internet The distributed simulation uses a hub-and-spoke type network topology. It provides the ability to dynamically link simulation subsystem models to different computers as well as the ability to assign a particular model to each computer. A proof-of-concept demonstrator is also presented. The eSim(sup DSN) demonstrator can be accessed at http://www.jsc.draper.com/esim which hosts various examples of Web enabled simulations.

  20. Asymptotic stability and instability of large-scale systems. [using vector Liapunov functions

    NASA Technical Reports Server (NTRS)

    Grujic, L. T.; Siljak, D. D.

    1973-01-01

    The purpose of this paper is to develop new methods for constructing vector Lyapunov functions and broaden the application of Lyapunov's theory to stability analysis of large-scale dynamic systems. The application, so far limited by the assumption that the large-scale systems are composed of exponentially stable subsystems, is extended via the general concept of comparison functions to systems which can be decomposed into asymptotically stable subsystems. Asymptotic stability of the composite system is tested by a simple algebraic criterion. By redefining interconnection functions among the subsystems according to interconnection matrices, the same mathematical machinery can be used to determine connective asymptotic stability of large-scale systems under arbitrary structural perturbations.

  1. Experiment module concepts study. Volume 2: Experiments and mission operations

    NASA Technical Reports Server (NTRS)

    Macdonald, J. M.

    1970-01-01

    The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.

  2. Electronic Repair Concepts for Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Easton, John; Pettegrew, Richard D.; Struk, Peter M.

    2007-01-01

    Constraints on the mass and volume that can be allocated for electronics spares and repair equipment on long-duration space missions mean that NASA must look at repair strategies beyond the traditional approach, which has been to replace faulty subsystems in a modular form, termed Orbital Replacement Units or Line Replacement Units. Other possible strategies include component and board-level replacement, modular designs that allow reprogramming of less-critical systems to take the place of more critical failed systems, and a blended approach which uses elements of each of these approaches, along with a limited number of Line Replacement Units. This paper presents some of the constraints and considerations that affect the decision on how to approach electronics repair for long duration space missions, and discusses the benefits and limitations of each of the previously mentioned strategies.

  3. Modular experimental platform for science and applications

    NASA Technical Reports Server (NTRS)

    Hill, A. S.

    1984-01-01

    A modularized, standardized spacecraft bus, known as MESA, suitable for a variety of science and applications missions is discussed. The basic bus consists of a simple structural arrangement housing attitude control, telemetry/command, electrical power, propulsion and thermal control subsystems. The general arrangement allows extensive subsystem adaptation to mission needs. Kits provide for the addition of tape recorders, increased power levels and propulsion growth. Both 3-axis and spin stabilized flight proven attitude control subsystems are available. The MESA bus can be launched on Ariane, as a secondary payload for low cost, or on the STS with a PAM-D or other suitable upper stage. Multi-spacecraft launches are possible with either booster. Launch vehicle integration is simple and cost-effective. The low cost of the MESA bus is achieved by the extensive utilization of existing subsystem design concepts and equipment, and efficient program management and test integration techniques.

  4. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  5. Extended duration orbiter study: CO2 removal and water recovery

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.

  6. Investigation of L-band shipboard antennas for maritime satellite applications

    NASA Technical Reports Server (NTRS)

    Heckert, G. P.

    1972-01-01

    A basic conceptual investigation of low cost L-band antenna subsystems for shipboard use was conducted by identifying the various pertinent design trade-offs and related performance characteristics peculiar to the civilian maritime application, and by comparing alternate approaches for their simplicity and general suitability. The study was not directed at a single specific proposal, but was intended to be parametric in nature. Antenna system concepts were to be investigated for a range of gain of 3 to 18 dB, with a value of about 10 dB considered as a baseline reference. As the primary source of potential complexity in shipboard antennas, which have beamwidths less than hemispherical as the beam pointing or selecting mechanism, major emphasis was directed at this aspect. Three categories of antenna system concepts were identified: (1) mechanically pointed, single-beam antennas; (2) fixed antennas with switched-beams; and (3) electronically-steered phased arrays. It is recommended that an L-band short backfire antenna subsystem, including a two-axis motor driven gimbal mount, and necessary single channel monopulse tracking receiver portions be developed for demonstration of performance and subsystem simplicity.

  7. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  8. Management, Maintenance, and Upkeep of the Baseline COMO III Air Defense Model.

    DTIC Science & Technology

    1986-10-20

    weapon subsystems. The sensor subsystems include passive, infrared (IR), television, and a nonimaging sensor and observer, typically the vehicle driver...initially scheduled from the enter game event (DGO) and is rescheduled on a cyclic basis. When radar target detection occurs, the optical search process (DG9...one search cycle in elevation by the track radar/gunner’s optics . DG1 constantly monitors the radar surveillance search volume and when a higher

  9. Design and development of pressure and repressurization purge system for reusable space shuttle multilayer insulation system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Preliminary design and analysis of purge system concepts and purge subsystem approaches are defined and evaluated. Acceptable purge subsystem approaches were combined into four predesign layouts which are presented for comparison and evaluation. Two predesigns were selected for further detailed design and evaluation for eventual selection of the best design for a full scale test configuration. An operation plan is included as an appendix for reference to shuttle-oriented operational parameters.

  10. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  11. Pointing and Tracking Concepts for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Alexander, J. W.; Lee, S.; Chen, C.

    2000-01-01

    This paper summarizes part of a FY1998 effort on the design and development of an optical communications (Opcomm) subsystem for the Advanced Deep Space System Development (ADSSD) Project. This study was funded by the JPL X2000 program to develop an optical communications (Opcomm) subsystem for use in future planetary missions. The goal of this development effort was aimed at providing prototype hardware with the capability of performing uplink, downlink, and ranging functions from deep space distances. Such a system was envisioned to support future deep space missions in the Outer Planets/Solar Probe (OPSP) mission set such as the Pluto express and Europa orbiter by providing a significant enhancement of data return capability. A study effort was initiated to develop a flyable engineering model optical terminal to support the proposed Europa Orbiter mission - as either the prime telecom subsystem or for mission augmentation. The design concept was to extend the prototype lasercom terminal development effort currently conducted by JPL's Optical Communications Group. The subsystem would track the sun illuminated Earth at Europa and farther distances for pointing reference. During the course of the study, a number of challenging issues were found. These included thermo-mechanical distortion, straylight control, and pointing. This paper focuses on the pointing aspects required to locate and direct a laser beam from a spacecraft (S/C) near Jupiter to a receiving station on Earth.

  12. Development of a 12-Thrust Chamber Kerosene /Oxygen Primary Rocket Sub-System for an Early (1964) Air-Augmented Rocket Ground-Test System

    NASA Technical Reports Server (NTRS)

    Pryor, D.; Hyde, E. H.; Escher, W. J. D.

    1999-01-01

    Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.

  13. Compact gasoline fuel processor for passenger vehicle APU

    NASA Astrophysics Data System (ADS)

    Severin, Christopher; Pischinger, Stefan; Ogrzewalla, Jürgen

    Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size. The fuel processor system consists of an autothermal reformer in combination with water-gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those component volumes. Therefore, the packaging utilizes rectangular catalyst bricks and integrates flow ducts into the heat exchangers. A concept is presented with a 25 l fuel processor volume including thermal isolation for a 3 kW el auxiliary power unit. The overall size of the system, i.e. including stack, air supply and auxiliaries can be estimated to 44 l.

  14. Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 1

    NASA Technical Reports Server (NTRS)

    Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The purpose of the RCS is to provide thrust in and about the X, Y, Z axes for External Tank (ET) separation; orbit insertion maneuvers; orbit translation maneuvers; on-orbit attitude control; rendezvous; proximity operations (payload deploy and capture); deorbit maneuvers; and abort attitude control. The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Of the failure modes analyzed, 307 could potentially result in a loss of life and/or loss of vehicle.

  15. Exploiting the locality of periodic subsystem density-functional theory: efficient sampling of the Brillouin zone.

    PubMed

    Genova, Alessandro; Pavanello, Michele

    2015-12-16

    In order to approximately satisfy the Bloch theorem, simulations of complex materials involving periodic systems are made n(k) times more complex by the need to sample the first Brillouin zone at n(k) points. By combining ideas from Kohn-Sham density-functional theory (DFT) and orbital-free DFT, for which no sampling is needed due to the absence of waves, subsystem DFT offers an interesting middle ground capable of sizable theoretical speedups against Kohn-Sham DFT. By splitting the supersystem into interacting subsystems, and mapping their quantum problem onto separate auxiliary Kohn-Sham systems, subsystem DFT allows an optimal topical sampling of the Brillouin zone. We elucidate this concept with two proof of principle simulations: a water bilayer on Pt[1 1 1]; and a complex system relevant to catalysis-a thiophene molecule physisorbed on a molybdenum sulfide monolayer deposited on top of an α-alumina support. For the latter system, a speedup of 300% is achieved against the subsystem DTF reference by using an optimized Brillouin zone sampling (600% against KS-DFT).

  16. Modeling and analysis of selected space station communications and tracking subsystems

    NASA Technical Reports Server (NTRS)

    Richmond, Elmer Raydean

    1993-01-01

    The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.

  17. Architecture and prototypical implementation of a semantic querying system for big Earth observation image bases

    PubMed Central

    Tiede, Dirk; Baraldi, Andrea; Sudmanns, Martin; Belgiu, Mariana; Lang, Stefan

    2017-01-01

    ABSTRACT Spatiotemporal analytics of multi-source Earth observation (EO) big data is a pre-condition for semantic content-based image retrieval (SCBIR). As a proof of concept, an innovative EO semantic querying (EO-SQ) subsystem was designed and prototypically implemented in series with an EO image understanding (EO-IU) subsystem. The EO-IU subsystem is automatically generating ESA Level 2 products (scene classification map, up to basic land cover units) from optical satellite data. The EO-SQ subsystem comprises a graphical user interface (GUI) and an array database embedded in a client server model. In the array database, all EO images are stored as a space-time data cube together with their Level 2 products generated by the EO-IU subsystem. The GUI allows users to (a) develop a conceptual world model based on a graphically supported query pipeline as a combination of spatial and temporal operators and/or standard algorithms and (b) create, save and share within the client-server architecture complex semantic queries/decision rules, suitable for SCBIR and/or spatiotemporal EO image analytics, consistent with the conceptual world model. PMID:29098143

  18. Deep-Space Optical Communications: Visions, Trends, and Prospects

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.; Abraham, D. S.; Shambayati, S.; Rush, J.

    2011-01-01

    Current key initiatives in deep-space optical communications are treated in terms of historical context, contemporary trends, and prospects for the future. An architectural perspective focusing on high-level drivers, systems, and related operations concepts is provided. Detailed subsystem and component topics are not addressed. A brief overview of past ideas and architectural concepts sets the stage for current developments. Current requirements that might drive a transition from radio frequencies to optical communications are examined. These drivers include mission demand for data rates and/or data volumes; spectrum to accommodate such data rates; and desired power, mass, and cost benefits. As is typical, benefits come with associated challenges. For optical communications, these include atmospheric effects, link availability, pointing, and background light. The paper describes how NASA's Space Communication and Navigation Office will respond to the drivers, achieve the benefits, and mitigate the challenges, as documented in its Optical Communications Roadmap. Some nontraditional architectures and operations concepts are advanced in an effort to realize benefits and mitigate challenges as quickly as possible. Radio frequency communications is considered as both a competitor to and a partner with optical communications. The paper concludes with some suggestions for two affordable first steps that can yet evolve into capable architectures that will fulfill the vision inherent in optical communications.

  19. Conceptual Replaceability Analysis for Order and Standard Loan Tasks.

    ERIC Educational Resources Information Center

    California Univ., Santa Barbara. Library Systems Development Program.

    Very preliminary systems concepts are presented for the Order and Standard Loan Subsystems. Each of the tasks defined for the current manual operations in (Library Systems Development) LSD 70-60 are evaluated against these concepts to determine how existing work will change when mechanized systems are installed. Then, utilizing this qualitative…

  20. Solar probe shield developmental testing

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    1991-01-01

    The objectives of the Solar Probe mission and the current status of the Solar Probe thermal shield subsystem development are described. In particular, the discussion includes a brief description of the mission concepts, spacecraft configuration and shield concept, material selection criteria, and the required material testing to provide a database to support the development of the shield system.

  1. Increasing Access to College: An Educational Mistake

    ERIC Educational Resources Information Center

    Toby, Jackson

    2002-01-01

    Sociologists have a bad reputation, mostly deserved. Sociologists tell people things they already know in words that they can't understand. But among sociologists' useful ideas is the conception of society as a system of interdependent parts. This conception suggests that what happens in one subsystem of American society influences what happens in…

  2. United States Control Module Guidance, Navigation, and Control Subsystem Design Concept

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Bartlow, B. E.

    1997-01-01

    Should the Russian Space Agency (RSA) not participate in the International Space Station (ISS) program, then the United States (U.S.) National Aeronautics and Space Administration (NASA) may choose to execute the ISS mission. However, in order to do this, NASA must build two new space vehicles, which must perform the functions that the Russian vehicles and hardware were to perform. These functions include periodic ISS orbit reboost, initial ISS attitude control, and U.S. On-Orbit Segment (USOS) control Moment gyroscope (CMG) momentum desaturation. The two new NASA vehicles that must perform these functions are called the U.S. control module (USCM) and the U.S. resupply module. This paper presents a design concept for the USCM GN&C subsystem, which must play a major role in ISS orbit reboost and initial attitude control, plus USOS CMG momentum desaturation. The proposed concept is structured similar to the USOS GN&C subsystem, by design. It is very robust, in that it allows the USCM to assume a variety of vehicle attitudes and stay power-positive. It has a storage/safe mode that places the USCM in a gravity-gradient orientation and keeps it there for extended periods of time without consuming a great deal of propellant. Simulation results are presented and discussed that show the soundness of the design approach. An equipment list is included that gives detailed information on the baselined GN&C components.

  3. Methods for the development of a bioregenerative life support system

    NASA Technical Reports Server (NTRS)

    Goldman, Michelle; Gomez, Shawn; Voorhees, Mike

    1990-01-01

    Presented here is a rudimentary approach to designing a life support system based on the utilization of plants and animals. The biggest stumbling block in the initial phases of developing a bioregenerative life support system is encountered in collecting and consolidating the data. If a database existed for the systems engineer so that he or she may have accurate data and a better understanding of biological systems in engineering terms, then the design process would be simplified. Also addressed is a means of evaluating the subsystems chosen. These subsystems are unified into a common metric, kilograms of mass, and normalized in relation to the throughput of a few basic elements. The initial integration of these subsystems is based on input/output masses and eventually balanced to a point of operation within the inherent performance ranges of the organisms chosen. At this point, it becomes necessary to go beyond the simplifying assumptions of simple mass relationships and further define for each organism the processes used to manipulate the throughput matter. Mainly considered here is the fact that these organisms perform input/output functions on differing timescales, thus establishing the need for buffer volumes or appropriate subsystem phasing. At each point in a systematic design it is necessary to disturb the system and discern its sensitivity to the disturbance. This can be done either through the introduction of a catastrophic failure or by applying a small perturbation to the system. One example is increasing the crew size. Here the wide range of performance characteristics once again shows that biological systems have an inherent advantage in responding to systemic perturbations. Since the design of any space-based system depends on mass, power, and volume requirements, each subsystem must be evaluated in these terms.

  4. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.

    2001-01-01

    Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.

  5. Subsystem Details for the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.

    2004-01-01

    This document provides values at the assembly level for the subsystems described in the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric (Hanford, 2004). Hanford (2004) summarizes the subordinate computational values for the Advanced Life Support Research and Technology Development (ALS R&TD) Metric at the subsystem level, while this manuscript provides a summary at the assembly level. Hanford (2004) lists mass, volume, power, cooling, and crewtime for each mission examined by the ALS R&TD Metric according to the nominal organization for the Advanced Life Support (ALS) elements. The values in the tables below, Table 2.1 through Table 2.8, list the assemblies, using the organization and names within the Advanced Life Support Sizing Analysis Tool (ALSSAT) for each ALS element. These tables specifically detail mass, volume, power, cooling, and crewtime. Additionally, mass and volume are designated in terms of values associated with initial hardware and resupplied hardware just as they are within ALSSAT. The overall subsystem values are listed on the line following each subsystem entry. These values are consistent with those reported in Hanford (2004) for each listed mission. Any deviations between these values and those in Hanford (2004) arise from differences in when individual numerical values are rounded within each report, and therefore the resulting minor differences should not concern even a careful reader. Hanford (2004) u es the uni ts kW(sub e) and kW(sub th) for power and cooling, respectively, while the nomenclature below uses W(sub e) and W(sub th), which is consistent with the native units within ALSSAT. The assemblies, as specified within ALSSAT, are listed in bold below their respective subsystems. When recognizable assembly components are not listed within ALSSAT, a summary of the assembly is provided on the same line as the entry for the assembly. Assemblies with one or more recognizable components are further described by the indented entries below them. See Yeh, et al. (2002), Yeh, et al. (2003), and Yeh, et al. (2004) for details about ALSSAT organization. Except for the dry food mass listed within the Food Processing, Packaging, and Storage within the Food Subsystem, total values for assemblies would be the sum of their components. The Dry Food Mass, however, is that portion of the food system that was neglected during the computation of the Fiscal Year 2004 ALS R&TD Metric. It is listed here to provide a reference, but it is otherwise ignored in the overall totals. See Hanford (2004) for details of this process and supporting rationale. When applicable, the technology label from ALSSAT is listed in the second column, and the associated abbreviations are listed below in Section 4. For more details of the technologies assumed for each mission, please see Hanford (2004) for descriptions of each subsystem and an overall life support system schematic.

  6. A physicochemical environmental control/life support system for the Mars transit vehicle

    NASA Technical Reports Server (NTRS)

    Sedej, Melaine M.

    1986-01-01

    The environmental control/life support system (ECLSS) must be small and maintenance free as possible to allow maximum mission flexibility. A physiocochemical ECLSS concept similar in many ways to several of the partially closed ECLSS concepts proposed for the space station is discussed. However, this concept elmininates several of the space station ECLSS subsystems and potentially eliminates the use of cryogenics and high-pressure gaseous storage.

  7. Development of a Naval C2 Capability Evaluation Facility

    DTIC Science & Technology

    2014-06-01

    designs is required in highly complex systems since sub-system evaluation may not be predictive of the overall system effect. It has been shown by...all individual and team behaviours, communications and interactions must be recordable. From the start of the project the design concept was for a...experimentation requirements of the concept evaluations being developed by the concept development team. A system design that allowed a variable fidelity in

  8. Rapid Damage Assessment. Volume II. Development and Testing of Rapid Damage Assessment System.

    DTIC Science & Technology

    1981-02-01

    pixels/s Camera Line Rate 732.4 lines/s Pixels per Line 1728 video 314 blank 4 line number (binary) 2 run number (BCD) 2048 total Pixel Resolution 8 bits...sists of an LSI-ll microprocessor, a VDI -200 video display processor, an FD-2 dual floppy diskette subsystem, an FT-I function key-trackball module...COMPONENT LIST FOR IMAGE PROCESSOR SYSTEM IMAGE PROCESSOR SYSTEM VIEWS I VDI -200 Display Processor Racks, Table FD-2 Dual Floppy Diskette Subsystem FT-l

  9. Laser communication experiment. Volume 1: Design study report: Spacecraft transceiver. Part 3: LCE design specifications

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The requirements for the design, fabrication, performance, and testing of a 10.6 micron optical heterodyne receiver subsystem for use in a laser communication system are presented. The receiver subsystem, as a part of the laser communication experiment operates in the ATS 6 satellite and in a transportable ground station establishing two-way laser communications between the spacecraft and the transportable ground station. The conditions under which environmental tests are conducted are reported.

  10. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  11. Thermal design, analysis and comparison on three concepts of space solar power satellite

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Hou, Xinbin; Wang, Li

    2017-08-01

    Space solar power satellites (SSPS) have been widely studied as systems for collecting solar energy in space and transmitting it wirelessly to earth. A previously designed planar SSPS concept collects solar power in two huge arrays and then transmits it through one side of the power-conduction joint to the antenna. However, the system's one group of power-conduction joints may induce a single point of failure. As an SSPS concept, the module symmetrical concentrator (MSC) architecture has many advantages. This architecture can help avoid the need for a large, potentially failure-prone conductive rotating joint and limit wiring mass. However, the thermal control system has severely restricted the rapid development of MSC, especially in the sandwich module. Because of the synchronous existence of five suns concentration and solar external heat flux, the sandwich module will have a very high temperature, which will surpass the permissible temperature of the solar cells. Recently, an alternate multi-rotary joints (MR) SSPS concept was designed by the China Academy of Space Technology (CAST). This system has multiple joints to avoid the problem of a single point of failure. Meanwhile, this concept has another advantage for reducing the high power and heat removal in joints. It is well known to us that, because of the huge external flux in SSPS, the thermal management sub-system is an important component that cannot be neglected. Based on the three SSPS concepts, this study investigated the thermal design and analysis of a 1-km, gigawatt-level transmitting antenna in SSPS. This study compares the thermal management sub-systems of power-conduction joints in planar and MR SSPS. Moreover, the study considers three classic thermal control architectures of the MSC's sandwich module: tile, step, and separation. The study also presents an elaborate parameter design, analysis and discussion of step architecture. Finally, the results show the thermal characteristics of each SSPS concept, and the three concepts are compared. The design layouts, analysis results and parameter discussions of the thermal management sub-system proposed in this study can help inform future SSPS thermal designs.

  12. Project Orion, Environmental Control and Life Support System Integrated Studies

    NASA Technical Reports Server (NTRS)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  13. Acquisition-Management Program

    NASA Technical Reports Server (NTRS)

    Avery, Don E.; Vann, A. Vernon; Jones, Richard H.; Rew, William E.

    1987-01-01

    NASA Acquisition Management Subsystem (AMS) program integrated NASA-wide standard automated-procurement-system program developed in 1985. Designed to provide each NASA installation with procurement data-base concept with on-line terminals for managing, tracking, reporting, and controlling contractual actions and associated procurement data. Subsystem provides control, status, and reporting for various procurement areas. Purpose of standardization is to decrease costs of procurement and operation of automatic data processing; increases procurement productivity; furnishes accurate, on-line management information and improves customer support. Written in the ADABAS NATURAL.

  14. Addendum: Development of a preprototype times wastewater recovery subsystem

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.

    1984-01-01

    The results of the second generation operational improvements and the TIMES (Thermoelectric Integrated Membrane Evaporation Subsystem) 2 study are covered. Areas covered in the second generation operational improvements are improved temperature control, water quality improvements, subsytem operational improvements, solid handling improvements, wastewater pretreatment optimization, and membrane rejuvenation concepts. The task for the TIMES 2 study are thermoelectric regenerator improvement, recycle loop pH operational criteria, recycle loop component optimization, and hollow fiber membrane evaporator improvement. Results are presented and conclusions are drawn from both studies.

  15. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  16. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  17. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vourdas, A.

    The finite set of subsystems of a finite quantum system with variables in Z(n), is studied as a Heyting algebra. The physical meaning of the logical connectives is discussed. It is shown that disjunction of subsystems is more general concept than superposition. Consequently, the quantum probabilities related to commuting projectors in the subsystems, are incompatible with associativity of the join in the Heyting algebra, unless if the variables belong to the same chain. This leads to contextuality, which in the present formalism has as contexts, the chains in the Heyting algebra. Logical Bell inequalities, which contain “Heyting factors,” are discussed.more » The formalism is also applied to the infinite set of all finite quantum systems, which is appropriately enlarged in order to become a complete Heyting algebra.« less

  19. The precision segmented reflectors: Moderate mission figure control subsystem

    NASA Technical Reports Server (NTRS)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  20. Neuropathophysiology of functional gastrointestinal disorders

    PubMed Central

    Wood, Jackie D

    2007-01-01

    The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper-sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis. PMID:17457962

  1. Solar thermal program summary. Volume 1: Overview, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

  2. Improved orbiter waste collection system study

    NASA Technical Reports Server (NTRS)

    Bastin, P. H.

    1984-01-01

    Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.

  3. Waste collection subsystem study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Practical ways were explored of improving waste compaction and of providing rapid turnaround between flights at essentially no cost for the space shuttle waste collection subsystem commode. Because of the possible application of a fully developed shuttle commode to the space station, means of providing waste treatment without overboard venting were also considered. Three basic schemes for compaction and rapid turnaround, each fully capable of meeting the objectives, were explored in sufficient depth to bring out the characteristic advantages and disadvantages of each. Tradeoff comparisons were very close between leading contenders and efforts were made to refine the design concepts sufficiently to justify a selection. The concept selected makes use of a sealed canister containing wastes that have been forcibly compacted, which is removable in flight. No selection was made between three superior non-venting treatment methods owing to the need for experimental evaluations of the processes involved. A system requirements definition document has been prepared to define the task for a test embodiment of the selected concept.

  4. Hermes III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Prestwich, K.R.

    1985-01-01

    Hermes III is a major new gamma-ray simulator that is part of the Simulation Technology Laboratory Project. This accelerator will significantly improve the capability of Sandia National Laboratories and the Department of Energy to evaluate the effects of gamma-ray radiation from nuclear weapons on weapons subsystems. This accelerator will be designed to produce 10/sup 5/R, 5 x 10/sup 12/ R/S and 2 x 10/sup 20/ R/S/sup 2/ over a 500 cm/sup 2/ area. The radiation dose will vary less than a factor of two over this area and less than a factor of four throughout a volume found by extendingmore » this surface 15 cm further from the gamma-ray converter. The minimum dose in this volume will be greater than or equal to5 x 10/sup 4/ R. The accelerator will be designed with sufficient reliability and short enough turn-around time to produce more than 600 radiation pulses per year. In Hermes III we are increasing the peak power in the beam from 1.2 TW of Hermes II to 16 TW. Two techniques for achieving these high powers have been successfully developed. The first technique is a high current linear induction accelerator with several parallel beams. Experiments to evaluate this concept were done on the MABE accelerator. The second concept uses induction cavities and a magnetically insulated transmission line (MITL) to form a multi-terawatt voltage adder. This report gives a detailed description of Hermes III and its components.« less

  5. Failure Analysis by Statistical Techniques (FAST). Volume 1. User’s Manual

    DTIC Science & Technology

    1974-10-31

    REPORT NUMBER DNA 3336F-1 2. OOVT ACCESSION NO 4. TITLE Cand Sublllle) • FAILURE ANALYSIS BY STATISTICAL TECHNIQUES (FAST) Volume I, User’s...SS2), and t’ a facility ( SS7 ). The other three diagrams break down the three critical subsystems. T le median probability of survival of the

  6. Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob

    2017-01-01

    NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.

  7. Inflated concepts for the earth science geostationary platform and an associated flight experiment

    NASA Technical Reports Server (NTRS)

    Friese, G.

    1992-01-01

    Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.

  8. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  9. A survey of some regenerative physico-chemical life support technology

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore

    1988-01-01

    To date, manned spaceflight has used the relatively simple support methodology of bringing all the necessary water, oxygen, and food for the duration of the mission, and collecting and storing waste products for return to Earth. This is referred to as an open system. It was recognized early, as manned missions became longer and crew size increased, that the weight, volume, and transportation penalties of storing or routinely resupplying consumables would at some point become too expensive. Since the early 1960's regenerative ECLSS technology has been under development, and there now exists a foundation in both systems definition and subsystem technology to support long-duration manned missions. In many cases this development has reached the engineering prototype stage for physico-chemical subsystems and in this article some of these subsystems are described. Emphasis is placed on physico-chemical waste conversion and related processes which provide sustenance and not on environmental factors or subsystems, e.g., temperature and humidity control, spacecraft architecture, lighting, etc.

  10. Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan

    NASA Astrophysics Data System (ADS)

    Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.

    2007-12-01

    The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.

  11. Improving the Reliability of Technological Subsystems Equipment for Steam Turbine Unit in Operation

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Murmansky, B. E.; Aronson, R. T.

    2017-11-01

    The authors’ conception is presented of an integrated approach to reliability improving of the steam turbine unit (STU) state along with its implementation examples for the various STU technological subsystems. Basing on the statistical analysis of damage to turbine individual parts and components, on the development and application of modern methods and technologies of repair and on operational monitoring techniques, the critical components and elements of equipment are identified and priorities are proposed for improving the reliability of STU equipment in operation. The research results are presented of the analysis of malfunctions for various STU technological subsystems equipment operating as part of power units and at cross-linked thermal power plants and resulting in turbine unit shutdown (failure). Proposals are formulated and justified for adjustment of maintenance and repair for turbine components and parts, for condenser unit equipment, for regeneration subsystem and oil supply system that permit to increase the operational reliability, to reduce the cost of STU maintenance and repair and to optimize the timing and amount of repairs.

  12. Quantification of Interactions between Dynamic Cellular Network Functionalities by Cascaded Layering

    PubMed Central

    Prescott, Thomas P.; Lang, Moritz; Papachristodoulou, Antonis

    2015-01-01

    Large, naturally evolved biomolecular networks typically fulfil multiple functions. When modelling or redesigning such systems, functional subsystems are often analysed independently first, before subsequent integration into larger-scale computational models. In the design and analysis process, it is therefore important to quantitatively analyse and predict the dynamics of the interactions between integrated subsystems; in particular, how the incremental effect of integrating a subsystem into a network depends on the existing dynamics of that network. In this paper we present a framework for simulating the contribution of any given functional subsystem when integrated together with one or more other subsystems. This is achieved through a cascaded layering of a network into functional subsystems, where each layer is defined by an appropriate subset of the reactions. We exploit symmetries in our formulation to exhaustively quantify each subsystem’s incremental effects with minimal computational effort. When combining subsystems, their isolated behaviour may be amplified, attenuated, or be subject to more complicated effects. We propose the concept of mutual dynamics to quantify such nonlinear phenomena, thereby defining the incompatibility and cooperativity between all pairs of subsystems when integrated into any larger network. We exemplify our theoretical framework by analysing diverse behaviours in three dynamic models of signalling and metabolic pathways: the effect of crosstalk mechanisms on the dynamics of parallel signal transduction pathways; reciprocal side-effects between several integral feedback mechanisms and the subsystems they stabilise; and consequences of nonlinear interactions between elementary flux modes in glycolysis for metabolic engineering strategies. Our analysis shows that it is not sufficient to just specify subsystems and analyse their pairwise interactions; the environment in which the interaction takes place must also be explicitly defined. Our framework provides a natural representation of nonlinear interaction phenomena, and will therefore be an important tool for modelling large-scale evolved or synthetic biomolecular networks. PMID:25933116

  13. Flexible operation strategy for environment control system in abnormal supply power condition

    NASA Astrophysics Data System (ADS)

    Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang

    2017-04-01

    This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.

  14. System design of the Pioneer Venus spacecraft. Volume 7: Communication subsystem studies

    NASA Technical Reports Server (NTRS)

    Newlands, D. M.

    1973-01-01

    Communications subsystem tradeoffs were undertaken to establish a low cost and low weight design consistent with the mission requirements. Because of the weight constraint of the Thor/Delta launched configuration, minimum weight was emphasized in determining the Thor/Delta design. In contrast, because of the greatly relaxed weight constraint of the Atlas/Centaur launched configuration, minimum cost and off the shelf hardware were emphasized and the attendant weight penalities accepted. Communication subsystem hardware elements identified for study included probe and bus antennas (CM-6, CM-17), power amplifiers (CM-10), and the large probe transponder and small probe stable oscillator required for doppler tracking (CM-11, CM-16). In addition, particular hardware problems associated with the probe high temperature and high-g environment were investigated (CM-7).

  15. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    The use of solar electric propulsion as a means of exploring space beyond the reach of ballistic missions was investigated. The method used was to study the application of this new propulsion technology to a future flight project. A 1980 Encke rendezvous mission was chosen because a design successful for Encke could be used for less difficult, but scientifically rewarding, missions. Design points for the mission and for the thrust subsystem were specified. The baseline-vehicle design was defined. A preliminary functional description document for the thrust subsystem was originated. Analyses were performed in support of the design point selection for the SEP-module thrust subsystem to specify parameters, to clarify and optimize the interface requirements, and to assure feasibility of some of the more critical technological aspects of SEP application.

  16. Space station WP-04 power system. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.

  17. Space Station needs, attributes and architectural options. Volume 2, book 2, part 3: Communication system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Preliminary results of the study of the architecture and attributes of the RF communications and tracking subsystem of the space station are summarized. Only communications between the space station and other external elements such as TDRSS satellites, low-orbit spacecraft, OTV, MOTV, in the general environment of the space station are considered. The RF communications subsystem attributes and characteristics are defined and analyzed key issues are identified for evolution from an initial space station (1990) to a year 2000 space station. The mass and power characteristics of the communications subsystem for the initial space station are assessed as well as the impact of advanced technology developments. Changes needed to the second generation TDRSS to accommodate the evolutionary space station of the year 2000 are also identified.

  18. Adiabatic markovian dynamics.

    PubMed

    Oreshkov, Ognyan; Calsamiglia, John

    2010-07-30

    We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.

  19. Regenerable CO2 collection for spacecraft application

    NASA Technical Reports Server (NTRS)

    Lance, N., Jr.; Schubert, F. H.

    1981-01-01

    The design of the CS-3, a three-person capacity preprototype CO2 collection subsystem, is described. It is noted that the function of the CS-3 is to remove metabolically produced CO2 from the Spacelab cabin to maintain atmospheric pCO2 at 400 Pa or less. Results are presented of an extensive parametric/endurance test program characterizing the subsystem's performance. The results demonstrate the suitability of the electrochemical depolarized CO2 concentration concept for possible use in the Space Operations Center. The CS-3 is found to meet or exceed all Regenerative Life Support Evaluation requirements. Specifically, the 0.13 cu m, 46 kg subsystem is able to remove CO2 at an equivalent rate of 3.4 persons from an air stream having a pCO2 of 400 Pa.

  20. Brake System Design Optimization : Volume 2. Supplemental Data.

    DOT National Transportation Integrated Search

    1981-04-01

    Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...

  1. Brake System Design Optimization. Volume II : Supplemental Data.

    DOT National Transportation Integrated Search

    1981-06-01

    Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...

  2. Space Tug systems study (storable). Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space tug program options that consider key issues and mission requirements are assessed, component and subsystem candidates are evaluated, and tug configurations synthesized. Three tug program options are defined and evaluated.

  3. Design guide for low cost standardized payloads, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Sixteen engineering approaches to low cost standardized payloads in spacecraft are presented. Standard earth observatory satellite, standard U.S. domestic communication satellite, planetary spacecraft subsystems, standard spacecraft, and cluster spacecraft are reviewed.

  4. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  5. Minimal-Inversion Feedforward-And-Feedback Control System

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  6. Structural behavior of Tl-exchanged natrolite at high pressure depending on the composition of pressure-transmitting medium

    NASA Astrophysics Data System (ADS)

    Seryotkin, Yu. V.; Bakakin, V. V.; Likhacheva, A. Yu.; Dementiev, S. N.; Rashchenko, S. V.

    2017-10-01

    The structural evolution of Tl-exchanged natrolite with idealized formula Tl2[Al2Si3O10]·2H2O, compressed in penetrating (water:ethanol 1:1) and non-penetrating (paraffin) media, was studied up to 4 GPa. The presence of Tl+ with non-bonded electron lone pairs, which can be either stereo-chemically active or passive, determines distinctive features of the high-pressure behavior of the Tl-form. The effective volume of assemblages Tl+(O,H2O) n depends on the E-pairs activity: single-sided coordination correlates with smaller volumes. At ambient conditions, there are two types of Tl positions, only one of them having a nearly single-sided coordination as a characteristic of stereo-activity of the Tl+ E pair. Upon the compression in paraffin, a phase transition occurs: a 5% volume contraction of flexible natrolite framework is accompanied by the conversion of all the Tl+ cations into stereo-chemically active state with a single-sided coordination. This effect requires the reconstruction of all the extra-framework subsystems with the inversion of the cation and H2O positions. The compression in water-containing medium leads to the increase of H2O content up to three molecules pfu through the filling of partly vacant positions. This hinders a single-sided coordination of Tl ions and preserves the configuration of their ion-molecular subsystem. It is likely that the extra-framework subsystem is responsible for the super-structure modulation.

  7. Developing a Habitat for Long Duration, Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Thompson, Shelby

    2011-01-01

    One possible next leap in human space exploration is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to be designed to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be 268 m3 distributed over the functions. The work was validated through comparison with the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concepts. In the end, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

  8. Thermal Protection System of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Cleland, John; Iannetti, Francesco

    1989-01-01

    The Thermal Protection System (TPS), introduced by NASA, continues to incorporate many of the advances in materials over the past two decades. A comprehensive, single-volume summary of the TPS, including system design rationales, key design features, and broad descriptions of the subsystems of TPS (E.g., reusable surface insulation, leading edge structural, and penetration subsystems) is provided. Details of all elements of TPS development and application are covered (materials properties, manufacturing, modeling, testing, installation, and inspection). Disclosures and inventions are listed and potential commercial application of TPS-related technology is discussed.

  9. Space station WP-04 power system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hallinan, G. J.

    1987-01-01

    Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.

  10. Electrochemical carbon dioxide concentrator advanced technology tasks

    NASA Technical Reports Server (NTRS)

    Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1975-01-01

    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

  11. Optical engine initiation: multiple compartment applications

    NASA Astrophysics Data System (ADS)

    Hunt, Jeffrey H.

    2009-05-01

    Modern day propulsion systems are used in aerospace applications for different purposes. The aerospace industry typically requires propulsion systems to operate in a rocket mode in order to drive large boost vehicles. The defense industry generally requires propulsion systems to operate in an air-breathing mode in order to drive missiles. A mixed system could use an air-breathing first stage and a rocket-mode upper stage for space access. Thus, propulsion systems can be used for high mass payloads and where the payload is dominated by the fuel/oxidizer mass being used by the propulsion system. The pulse detonation wave engine (PDWE) uses an alternative type of detonation cycle to achieve the same propulsion results. The primary component of the PDWE is the combustion chamber (or detonation tube). The PDWE represents an attractive propulsion source since its engine cycle is thermodynamically closest to that of a constant volume reaction. This characteristic leads to the inference that a maximum of the potential energy of the PDWE is put into thrust and not into flow work. Consequently, the volume must be increased. The technical community has increasingly adopted the alternative choice of increasing total volume by designing the engine to include a set of banks of smaller combustion chambers. This technique increases the complexity of the ignition subsystem because the inter-chamber timing must be considered. Current approaches to igniting the PDWE have involved separate shock or blast wave initiators and chemical additives designed to enhance detonatibility. An optical ignition subsystem generates a series of optical pulses, where the optical pulses ignite the fuel/oxidizer mixture such that the chambers detonate in a desired order. The detonation system also has an optical transport subsystem for transporting the optical pulses from the optical ignition subsystem to the chambers. The use of optical ignition and transport provides a non-toxic, small, lightweight, precisely controlled detonation system.

  12. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.

  13. Design considerations for space radiators based on the liquid sheet (LSR) concept

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Chubb, Donald L.

    1991-01-01

    Concept development work on space heat rejection subsystems tailored to the requirements of various space power conversion systems is proceeding over a broad front of technologies at NASA LeRC. Included are orbital and planetary surface based radiator concepts utilizing pumped loops, a variety of heat pipe radiator concepts, and the innovative liquid sheet radiator (LSR). The basic feasibility of the LSR concept was investigated in prior work which generated preliminary information indicating the suitability of the LSR concept for space power systems requiring cycle reject heat to be radiated to the space sink at low-to-mid temperatures (300 to 400 K), with silicon oils used for the radiator working fluid. This study is directed at performing a comparative examination of LSR characteristics as they affect the basic design of low earth orbit solar dynamic power conversion systems. The power systems considered were based on the closed Brayton (CBC) and the Free Piston Stirling (FPS) cycles, each with a power output of 2 kWe and using previously tested silicone oil (Dow-Corning Me2) as the radiator working fluid. Conclusions indicate that, due to its ability for direct cold end cooling, an LSR based heat rejection subsystem is far more compatible with a Stirling space power system than with a CBC, which requires LSR coupling by means of an intermediate gas/liquid heat exchanger and adjustment of cycle operating conditions.

  14. Technology Challenges and Opportunities for Very Large In-Space Structural Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2009-01-01

    Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.

  15. Design concept definition study for an improved shuttle waste collection subsystem

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A no-risk approach for developing an Improved Waste Collection Subsystem (WCS) for the shuttle orbiter is described. The GE Improved WCS Concept builds on the experience of 14 Shuttle missions with over 400 man-days of service. This concept employs the methods of the existing flight-proven mature design, augmenting them to eliminate foreseen difficulties and to fully comply with the design requirements. The GE Improved WCS Concept includes separate storage for used wipes. Compaction of the wipes provides a solution to the capacity problem, fully satisfying the 210 man-day storage requirement. The added feature of in-flight serviceable storage space for the wipes creates a variable capacity feature which affords redundancy in the event of wipes compaction system failure. Addition of features permitting in-flight servicing of the feces storage tank creates a variable capacity WCS with easier post-flight servicing to support rapid turnaround of the Shuttle orbiter. When these features are combined with a vacuum pump to evacuate wipes and fecal storage tanks through replaceable odor/bacteria filters to the cabin, the GE Improved WCS satisfies the known requirements for Space Station use, including no venting to space.

  16. Crew appliance study

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  17. Factors Impacting Habitable Volume Requirements for Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Simon, Matthew; Neubek, Deborah; Whitmire, Alexandria

    2012-01-01

    One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 m3 (9,464 ft3) distributed over the functions. The work was validated through comparison to Mir, Skylab, the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concept. Using HIDH guidelines, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

  18. Definition and Preliminary Design of the Laser Atmospheric Wind Sounder (LAWS) Phase 1. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) is a facility instrument of the Earth Observing System (EOS) and is the culmination of over 20 years of effort in the field of laser Doppler wind sensing. LAWS will by the first instrument to fly in space with the capability of providing global-scale tropospheric wind profiles at high spatial resolutions. Global-scale wind profiles are necessary for: (1) more accurate diagnostics of large-scale circulation and climate dynamics; (2) improved numerical weather prediction; (3) improved understanding of mesoscale systems; (4) improved understanding of global biogeochemical and hydrologic cycles. The objective of phase 1 of the LAWS study was to evaluate competing concepts and develop a baseline configuration for the LAWS instrument. The first phase of the study consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS application. System configurations were then developed for the chosen concept. The concept and subsequent configuration were to be compatible with two prospective platforms: the Japanese polar orbiting platform (JPOP) and the Space Station Freedom (as an attached payload). After an objective and comprehensive concept selection process, a heterodyne detection Doppler lidar using a CO2 laser transmitter operating at 9.1 microns over a 2.1 micron system with a solid state laser was chosen. The CO2 lidar concept was then analyzed in detail to arrive at a configuration for the instrument and its major subsystems. A configuration for LAWS was arrived at which meets the performance requirements, and this design is presented.

  19. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  20. Brake System Design Optimization : Volume 1. A Survey and Assessment.

    DOT National Transportation Integrated Search

    1978-06-01

    Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...

  1. Analysis of space vehicle structures using the transfer-function concept

    NASA Technical Reports Server (NTRS)

    Heer, E.; Trubert, M. R.

    1969-01-01

    Analysis of large complex systems is accomplished by dividing it into suitable subsystems and determining the individual dynamical and vibrational responses. Frequency transfer functions then determine the vibrational response of the whole system.

  2. Virtual Engineering and Science Team - Reusable Autonomy for Spacecraft Subsystems

    NASA Technical Reports Server (NTRS)

    Bailin, Sidney C.; Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Thompson, Bryan; Day, John H. (Technical Monitor)

    2002-01-01

    In this paper we address the design, development, and evaluation of the Virtual Engineering and Science Team (VEST) tool - a revolutionary way to achieve onboard subsystem/instrument autonomy. VEST directly addresses the technology needed for advanced autonomy enablers for spacecraft subsystems. It will significantly support the efficient and cost effective realization of on-board autonomy and contribute directly to realizing the concept of an intelligent autonomous spacecraft. VEST will support the evolution of a subsystem/instrument model that is probably correct and from that model the automatic generation of the code needed to support the autonomous operation of what was modeled. VEST will directly support the integration of the efforts of engineers, scientists, and software technologists. This integration of efforts will be a significant advancement over the way things are currently accomplished. The model, developed through the use of VEST, will be the basis for the physical construction of the subsystem/instrument and the generated code will support its autonomous operation once in space. The close coupling between the model and the code, in the same tool environment, will help ensure that correct and reliable operational control of the subsystem/instrument is achieved.VEST will provide a thoroughly modern interface that will allow users to easily and intuitively input subsystem/instrument requirements and visually get back the system's reaction to the correctness and compatibility of the inputs as the model evolves. User interface/interaction, logic, theorem proving, rule-based and model-based reasoning, and automatic code generation are some of the basic technologies that will be brought into play in realizing VEST.

  3. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance Balances

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman; Schmidt, George R.

    2000-01-01

    Rapid transportation of large payloads and human crews to destinations throughout the solar system will require propulsion systems having not only very high exhaust velocities (I (sub sp) greater than or equal to 10 (exp 4) to 10 (exp 5) sec) but also extremely low mass-power ratios (alpha less than or equal to 10 (exp -1) kg/kW). Such low a are difficult to achieve with power-limited propulsion systems. but may be attainable with fusion and other high I (sub SP) nuclear concepts that produce energy within the propellant. The magnitude of this energy gain is of fundamental importance. It must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive power-intensive subsystems associated with these types of concepts. This paper evaluates the energy gain and mass-power characteristics required for a consistent with 1-year roundtrip planetary missions ranging up to 100 AU. Central to this analysis is an equation for overall system a, which is derived from the power balance of a generalized "gain-limited" propulsion system. Results show that the gain required to achieve alpha approximately 10 (exp -1) kg/kW with foreseeable subsystem technology can vary from 50 to as high as 10,000, which is 2 to 5 orders of magnitude greater than current state-of-the art. However, order of magnitude improvements in propulsion subsystem mass and efficiency could reduce gain requirements to 10 to 1,000 - still a very challenging goal.

  4. Space platform utilities distribution study

    NASA Technical Reports Server (NTRS)

    Lefever, A. E.

    1980-01-01

    Generic concepts for the installation of power data and thermal fluid distribution lines on large space platforms were discussed. Connections with central utility subsystem modules and pallet interfaces were also considered. Three system concept study platforms were used as basepoints for the detail development. The tradeoff of high voltage low voltage power distribution and the impact of fiber optics as a data distribution mechanism were analyzed. Thermal expansion and temperature control of utility lines and ducts were considered. Technology developments required for implementation of the generic distribution concepts were identified.

  5. A fuel-efficient cruise performance model for general aviation piston engine airplanes. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Parkinson, R. C. H.

    1983-01-01

    A fuel-efficient cruise performance model which facilitates maximizing the specific range of General Aviation airplanes powered by spark-ignition piston engines and propellers is presented. Airplanes of fixed design only are considered. The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its implicity and low volume data storge requirements, appears suitable for airborne microprocessor implementation.

  6. Gridded Model Information Support System (GMISS) user's guide. Volume 3. Model-concentration data-retrieval subsystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less

  7. A Review on Potential Issues and Challenges in MR Imaging

    PubMed Central

    Kanakaraj, Jagannathan

    2013-01-01

    Magnetic resonance imaging is a noninvasive technique that has been developed for its excellent depiction of soft tissue contrasts. Instruments capable of ultra-high field strengths, ≥7 Tesla, were recently engineered and have resulted in higher signal-to-noise and higher resolution images. This paper presents various subsystems of the MR imaging systems like the magnet subsystem, gradient subsystem, and also various issues which arise due to the magnet. Further, it also portrays finer details about the RF coils and transceiver and also various limitations of the RF coils and transceiver. Moreover, the concept behind the data processing system and the challenges related to it were also depicted. Finally, the various artifacts associated with the MR imaging were clearly pointed out. It also presents a brief overview about all the challenges related to MR imaging systems. PMID:24381523

  8. MHD Advanced Power Train Phase I, Final Report, Volume 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. R. Jones

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  9. Satellite Power Systems (SPS) laser studies. Volume 1: Laser environmental impact study

    NASA Technical Reports Server (NTRS)

    Beverly, R. E., III

    1980-01-01

    The environmental impact of space to Earth power transmission using space borne laser subsystems is emphasized. A laser system is defined, estimates of relevant efficiencies for laser power generation and atmospheric transmission are developed, and a comparison is made to a microwave system. Ancillary issues, such as laser beam spreading, safety and security, mass and volume estimates and technology growth are considered.

  10. Electrical system options for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.; Cull, Ronald C.

    1991-01-01

    The need for a space power utility concept is discussed and the impact of this concept on the engineering of space power systems is examined. Experiences gained from Space Station Freedom and SEI systems studies are used to discuss the factors that may affect the choice of frequency standards on which to build such a space power utility. Emphasis is given to electrical power control, conditioning, and distribution subsystems.

  11. Development of Advanced Spacecraft Thermal Subsystems

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation discusses ground based proof of concept hardware under development at NASA GSFC to address high heat flux thermal management in silicon substrates and embedded thermal management systems. The goal is to develop proof of concept hardware for space flight validation. The space flight hardware will provide gravity insensitive thermal management for electronics applications such as transmit/receive modules that are severely limited by thermal concerns.

  12. Test Methods for Telemetry Systems and Subsystems Volume 1: Test Methods for Vehicle Telemetry Systems

    DTIC Science & Technology

    2012-05-01

    Settling Time Test .............................................................................................. 3-16 3.13 Overload Recovery Test...6-7 6.7 Inter-message Gap Time Test...6-8 6.8 Response Time Test ............................................................................................. 6-9 6.9

  13. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part G: Miscellaneous system data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Functional and design data from various thematic mapper subsystems are presented. Coarse focus, modulation transfer function, and shim requirements are addressed along with spectral matching and spatial coverage tests.

  14. Driver-vehicle effectiveness model : volume II : appendices

    DOT National Transportation Integrated Search

    1978-12-01

    The Driver-Vehicle Effectiveness Model (DRIVEM) is a Monte Carlo simulation model intended for use by NHTSA to evaluate alternative vehicle subsystems or effects of legislative actions proposed to reduce the probability and severity of highway traffi...

  15. Universality in volume-law entanglement of scrambled pure quantum states.

    PubMed

    Nakagawa, Yuya O; Watanabe, Masataka; Fujita, Hiroyuki; Sugiura, Sho

    2018-04-24

    A pure quantum state can fully describe thermal equilibrium as long as one focuses on local observables. The thermodynamic entropy can also be recovered as the entanglement entropy of small subsystems. When the size of the subsystem increases, however, quantum correlations break the correspondence and mandate a correction to this simple volume law. The elucidation of the size dependence of the entanglement entropy is thus essentially important in linking quantum physics with thermodynamics. Here we derive an analytic formula of the entanglement entropy for a class of pure states called cTPQ states representing equilibrium. We numerically find that our formula applies universally to any sufficiently scrambled pure state representing thermal equilibrium, i.e., energy eigenstates of non-integrable models and states after quantum quenches. Our formula is exploited as diagnostics for chaotic systems; it can distinguish integrable models from non-integrable models and many-body localization phases from chaotic phases.

  16. The electric rail gun for space propulsion

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.

    1981-01-01

    An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.

  17. The CRAF/Cassini power subsystem - Preliminary design update

    NASA Technical Reports Server (NTRS)

    Atkins, Kenneth L.; Brisendine, Philip; Clark, Karla; Klein, John; Smith, Richard

    1991-01-01

    A chronology is provided of the rationale leading from the early Mariner spacecraft to the CRAF/Cassini Mariner Mark II power subsystem architecture. The display pathway began with a hybrid including a solar photovoltaic array, a radioisotope thermoelectric generator (RTG), and a battery supplying a power profile with a peak loading of about 300 W. The initial concept was to distribute power through a new solid-state, programmable switch controlled by an embedded microprocessor. As the overall mission, science, and project design matured, the power requirements increased. The design evolved from the hybrid to two RTG plus batteries to meet peak loadings of near 500 W in 1989. Later that year, circumstances led to abandonment of the distributed computer concept and a return to centralized control. Finally, as power requirements continued to grow, a third RTG was added to the design and the battery removed, with the return to the discharge-controller for transients during fault recovery procedures.

  18. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  19. Vehicle management and mission planning systems with shuttle applications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary definition of a concept for an automated system is presented that will support the effective management and planning of space shuttle operations. It is called the Vehicle Management and Mission Planning System (VMMPS). In addition to defining the system and its functions, some of the software requirements of the system are identified and a phased and evolutionary method is recommended for software design, development, and implementation. The concept is composed of eight software subsystems supervised by an executive system. These subsystems are mission design and analysis, flight scheduler, launch operations, vehicle operations, payload support operations, crew support, information management, and flight operations support. In addition to presenting the proposed system, a discussion of the evolutionary software development philosophy that the Mission Planning and Analysis Division (MPAD) would propose to use in developing the required supporting software is included. A preliminary software development schedule is also included.

  20. A 200-kW wind turbine generator conceptual design study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A conceptual design study was conducted to define a 200 kW wind turbine power system configuration for remote applications. The goal was to attain an energy cost of 1 to 2 cents per kilowatt-hour at a 14-mph site (mean average wind velocity at an altitude of 30 ft.) The costs of the Clayton, New Mexico, Mod-OA (200-kW) were used to identify the components, subsystems, and other factors that were high in cost and thus candidates for cost reduction. Efforts devoted to developing component and subsystem concepts and ideas resulted in a machine concept that is considerably simpler, lighter in weight, and lower in cost than the present Mod-OA wind turbines. In this report are described the various innovations that contributed to the lower cost and lighter weight design as well as the method used to calculate the cost of energy.

  1. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Simpson, Morgan S.; Newsham, Gerard; Stutte, Gary W.; Wheeler, Raymond M.

    2012-01-01

    In preparation for future human exploration missions to space, human habitat designs and concepts need to be tested to assess integration issues, power requirements, crew operations, and technology I subsystem performance. One potential subsystem for early habitats is supplemental food production. Fresh foods, such as vegetables and small fruits, could be harvested on a continuous basis to improve the diet and quality of life. The system would need to fit conveniently into the habitat and not interfere with other components or operations. To test this concept, a plant growing "atrium" was designed to surround the lift between the lower and upper modules of the Deep Space Habitat and deployed at NASA DRA TS test site in 2011 and at NASA's JSC in 20I2. With this approach, un-utilized volume provided an area for vegetable growth. For the 20 II test, mizuna, lettuce, basil, radish and sweetpotato plants were grown in trays using commercially available red I blue LED light fixtures. Seedlings were transplanted into the atrium and cared for by the crew. Plants were then harvested two weeks later following completion of the test. In 20I2, mizuna, lettuce, and radish plants were grown similarly but under flat panel banks of white LEDs. In 20 I2, the crew went through plant harvesting, including sanitizing the leafy greens and radishes, which were then consumed. Each test demonstrated successful production of vegetables within a functional hab module. The round red I blue LEDs for the 20Il test lighting cast a purple light in the hab, and were less uniformly distributed over the plant trays. The white LED panels provided broad spectrum light with more uniform distribution. Post-test questionnaires showed that the crew enjoyed tending and consuming the plants, and that the white LED light in 2012 provided welcome extra light for the main hab area.

  2. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  3. Characterization of Model-Based Reasoning Strategies for Use in IVHM Architectures

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Patterson-Hine, Ann

    2003-01-01

    Open architectures are gaining popularity for Integrated Vehicle Health Management (IVHM) applications due to the diversity of subsystem health monitoring strategies in use and the need to integrate a variety of techniques at the system health management level. The basic concept of an open architecture suggests that whatever monitoring or reasoning strategy a subsystem wishes to deploy, the system architecture will support the needs of that subsystem and will be capable of transmitting subsystem health status across subsystem boundaries and up to the system level for system-wide fault identification and diagnosis. There is a need to understand the capabilities of various reasoning engines and how they, coupled with intelligent monitoring techniques, can support fault detection and system level fault management. Researchers in IVHM at NASA Ames Research Center are supporting the development of an IVHM system for liquefying-fuel hybrid rockets. In the initial stage of this project, a few readily available reasoning engines were studied to assess candidate technologies for application in next generation launch systems. Three tools representing the spectrum of model-based reasoning approaches, from a quantitative simulation based approach to a graph-based fault propagation technique, were applied to model the behavior of the Hybrid Combustion Facility testbed at Ames. This paper summarizes the characterization of the modeling process for each of the techniques.

  4. The Schrödinger–Langevin equation with and without thermal fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, R., E-mail: roland.katz@subatech.in2p3.fr; Gossiaux, P.B., E-mail: Pol-Bernard.Gossiaux@subatech.in2p3.fr

    2016-05-15

    The Schrödinger–Langevin equation (SLE) is considered as an effective open quantum system formalism suitable for phenomenological applications involving a quantum subsystem interacting with a thermal bath. We focus on two open issues relative to its solutions: the stationarity of the excited states of the non-interacting subsystem when one considers the dissipation only and the thermal relaxation toward asymptotic distributions with the additional stochastic term. We first show that a proper application of the Madelung/polar transformation of the wave function leads to a non zero damping of the excited states of the quantum subsystem. We then study analytically and numerically themore » SLE ability to bring a quantum subsystem to the thermal equilibrium of statistical mechanics. To do so, concepts about statistical mixed states and quantum noises are discussed and a detailed analysis is carried with two kinds of noise and potential. We show that within our assumptions the use of the SLE as an effective open quantum system formalism is possible and discuss some of its limitations.« less

  5. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  6. Apollo Guidance, Navigation, and Control (GNC) Hardware Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic guidance, navigation and control (GNC) concepts, examines the Command and Service Module (CSM) and Lunar Module (LM) GNC organization and discusses the primary GNC and the CSM Stabilization and Control System (SCS), as well as other CSM-specific hardware. The LM Abort Guidance System (AGS), Control Electronics System (CES) and other LM-specific hardware are also addressed. Three subsystems exist on each vehicle: the computer subsystem (CSS), the inertial subsystem (ISS) and the optical subsystem (OSS). The CSS and ISS are almost identical between CSM and LM and each is designed to operate independently. CSM SCS hardware are highlighted, including translation control, rotation controls, gyro assemblies, a gyro display coupler and flight director attitude indicators. The LM AGS hardware are also highlighted and include the abort electronics assembly and the abort sensor assembly; while the LM CES hardware includes the attitude controller assembly, thrust/translation controller assemblies and the ascent engine arming assemble. Other common hardware including the Orbital Rate Display - Earth and Lunar (ORDEAL) and the Crewman Optical Alignment Sight (COAS), a docking aid, are also highlighted.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, M. I.; McComas, D. J.; Allegrini, F.

    We have developed a novel concept for a Compact Dual Ion Composition Experiment (CoDICE) that simultaneously provides high quality plasma and energetic ion composition measurements over 6 decades in ion energy in a wide variety of space plasma environments. CoDICE measures the two critical ion populations in space plasmas: (1) mass and ionic charge state composition and 3D velocity and angular distributions of ∼10 eV/q–40 keV/q plasma ions—CoDICE-Lo and (2) mass composition, energy spectra, and angular distributions of ∼30 keV–10 MeV energetic ions—CoDICE-Hi. CoDICE uses a common, integrated Time-of-Flight (TOF) versus residual energy (E) subsystem for measuring the two distinctmore » ion populations. This paper describes the CoDICE design concept, and presents results of the laboratory tests of the TOF portion of the TOF vs. E subsystem, focusing specifically on (1) investigation of spill-over and contamination rates on the start and stop microchannel plate (MCP) anodes vs. secondary electron steering and focusing voltages, scanned around their corresponding model-optimized values, (2) TOF measurements and resolution and angular resolution, and (3) cross-contamination of the start and stop MCPs’ singles rates from CoDICE-Lo and -Hi, and (4) energy resolution of avalanche photodiodes near the lower end of the CoDICE-Lo energy range. We also discuss physical effects that could impact the performance of the TOF vs. E subsystem in a flight instrument. Finally, we discuss advantages of the CoDICE design concept by comparing with capabilities and resources of existing flight instruments.« less

  8. Changes in Helicopter Reliability/Maintainability Characteristics Over Time. Volume 2. Data Submitted by Helicopter Manufacturers

    DTIC Science & Technology

    1975-03-01

    Quarterly Evaluation Report [ CH -54A] . . . S. TI. Eighth (8th) Quarterly CH -53 Readiness Report . . .. S-79 *.hrc.e parInation sequences are used In this...Total & Subsystem R Growth Parameters Table 2 CJF-46 Total Aircraft R~ Growth Statiatics Table 5 C7O-46 Subsystem R Growth Statistics Table 5 CH -46...UH-1 Navy. H-2 Navy, *-3 Navy# e OH-6 Army, H-19 Navy, H-19 Army, H-21 Air Force, H-21 Army. H-34 Army, H-34 Navy, H-37 Navy. H-37 Army, H-46 Navy, CH

  9. Preprototype Vapor Compression Distillation Subsystem development

    NASA Technical Reports Server (NTRS)

    Thompson, C. D.; Ellis, G. S.; Schubert, F. H.

    1981-01-01

    Vapor Compression Distillation (VCD) has evolved as the most promising approach to reclaim potable water from wastewater for future long-term manned space missions. Life Systems, Inc. (LSI), working with NASA, has developed a preprototype Vapor Compression Distillation Subsystem (VCDS) which processes wastewater at 1.4 kg/h. The preprototype unit weighs 143 kg, occupies a volume of 0.47 cu m, and will reclaim 96 percent of the available wastewater. This unit has been tested by LSI and is scheduled for further testing at NASA-JSC. This paper presents the preprototype VCDS design, configuration, performance data, test results and flight system projections.

  10. Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.

  11. Optoelectronic devices product assurance guideline for space application

    NASA Astrophysics Data System (ADS)

    Bensoussan, A.; Vanzi, M.

    2017-11-01

    New opportunities are emerging for the implementation of hardware sub-systems based on OptoElectronic Devices (OED) for space application. Since the end of this decade the main players for space systems namely designers and users including Industries, Agencies, Manufacturers and Laboratories are strongly demanding of adequate strategies to qualify and validate new optoelectronics products and sub-systems [1]. The long term space application mission will require to address either inter-satellite link (free space communication, positioning systems, tracking) or intra-satellite connectivity/flexibility/reconfigurability or high volume of data transfer between equipment installed into payload.

  12. Bistatic passive radar simulator with spatial filtering subsystem

    NASA Astrophysics Data System (ADS)

    Hossa, Robert; Szlachetko, Boguslaw; Lewandowski, Andrzej; Górski, Maksymilian

    2009-06-01

    The purpose of this paper is to briefly introduce the structure and features of the developed virtual passive FM radar implemented in Matlab system of numerical computations and to present many alternative ways of its performance. An idea of the proposed solution is based on analytic representation of transmitted direct signals and reflected echo signals. As a spatial filtering subsystem a beamforming network of ULA and UCA dipole configuration dedicated to bistatic radar concept is considered and computationally efficient procedures are presented in details. Finally, exemplary results of the computer simulations of the elaborated virtual simulator are provided and discussed.

  13. Space Station personal hygiene study

    NASA Technical Reports Server (NTRS)

    Prejean, Stephen E.; Booher, Cletis R.

    1986-01-01

    A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.

  14. An Unmanned Spacecraft Subsystem Cost Model for Advanced Mission Planning

    NASA Technical Reports Server (NTRS)

    Madrid, G.

    1998-01-01

    As a NASA center, the Jet Propulsion Laboratory (JPL) is committed to the concept of developing and launching a continuously improving series of smaller robotic space exploration missions in shorter intervals of time (faster, better, cheaper).

  15. Reactor Operations Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M.M.

    1989-01-01

    The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less

  16. [The concept of nutritional self-sufficiency and the demographic equilibrium of Rwanda].

    PubMed

    Habimana Nyirasafari, G

    1987-12-01

    Achieving food self-sufficiency is the basic strategy of Rwanda's 4th 5-year plan covering 1987-91. The population growth rate has increased from 3% in 1970 to 3.7% in 1983, with the population doubling between 1964 and 1985. Food production grew by about 4%/year between 1966-83, creating a slight increase in per capita food availability, but the 2171 calories available per capita is dangerously close to the theoretical minimum requirement of 2100 per day. The theoretical protein requirement is almost covered, but there is a serious shortage of oils. The increase in production since 1966 has been due almost exclusively to the extension of cultivated land. But the land supply is limited, and future production increases will need to be based on increased yields per unit cultivated. The National Office of Population has developed a simulation model that analyzes the parallel evolution of population and production so as to identify demographic and development policies that will assure food self-sufficiency and an improvement in living conditions. The population subsystem subjects the population divided by age and sex to the effects of fertility, migration, and mortality. Births are the result of 36 different fertility rates applied to the population of women aged 14-49 years. The agricultural subsystem is tied to the population subsystem by comparison of the volume of population to that of production, by estimation of the proportion of the population living exclusively by subsistence agriculture, by calculation of the potential emigration resulting from overpopulation of the countryside, and by estimation of the links between nutritional level, mortality, and duration of breastfeeding. 5 annexes contain subsystems showing effects of demographic growth on education, employment, and health. The model has various limitations including those of the reliability of its data, but it is sufficiently precise for its main function of clarifying the choices facing policymakers. 6 scenarios of hypothetical future development of the Rwandan population were introduced into the model, ranging from no change to an increase in life expectancy from 48.6 years in 1984 to 68.5 in 2000 coupled with a decline in fertility from 8.6 to 3 children per woman. The model demonstrates that the only solutions which will have a significant impact on improving the nutritional status of the population are those which combine various actions affecting agriculture as well as population.

  17. Developing a Habitat for Long Duration, Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Thompson, Shelby

    2012-01-01

    One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 cu m (9,464 cu ft) distributed over the functions. The work was validated through comparison to Mir, Skylab, the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concept. Using HIDH guidelines, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.

  18. The TAVERNS emulator: An Ada simulation of the space station data communications network and software development environment

    NASA Technical Reports Server (NTRS)

    Howes, Norman R.

    1986-01-01

    The Space Station DMS (Data Management System) is the onboard component of the Space Station Information System (SSIS) that includes the computers, networks and software that support the various core and payload subsystems of the Space Station. TAVERNS (Test And Validation Environment for Remote Networked Systems) is a distributed approach for development and validation of application software for Space Station. The TAVERNS concept assumes that the different subsystems will be developed by different contractors who may be geographically separated. The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD VAX. The software services described in the DMS Test Bed User's Manual are being emulated on the VAX together with simulations of some of the core subsystems and a simulation of the DCN. The TAVERNS Emulator will be accessible remotely from any VAX that can communicate with the ASD VAX.

  19. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  20. Definition and preliminary design of the Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The steps and engineering trades and analyses used in establishing the initial requirements and in developing a concept and configuration for the laser atmospheric wind sounder (LAWS) instrument. A summary of the performance anticipated from the baseline configuration, and a bibliography are presented. LAWS, which is a facility instrument of the Earth observing system (EOS), is the culmination of over 20 years of effort in the field of laser Doppler wind sensing and will be the first instrument to fly in space capable of providing global-scale tropospheric wind profiles at high spatial resolutions. Global-scale wind profiles are necessary for: (1) more accurate diagnosis of large-scale circulation and climate dynamics; (2) improved numerical weather prediction; (3) improved understanding of mesoscale systems; and (4) improved understanding of global biogeochemical and hydrologic cycles. The objective of phase 1 was to define and perform a preliminary design for the LAWS instrument. The definition phase consisted of identifying realistic concepts for LAWS and analyzing them in sufficient detail to be able to choose the most promising one for the LAWS instrument. Systems and subsystems configurations were then developed for the chosen concept. The concept and subsequent configuration were to be compatible with two prospective platforms: the Japanese polar orbiting platform (JPOP) and as an attached payload on the Space Station Freedom. After a thorough and objective concept selection process, a heterodyne detection Doppler lidar using a CO2 laser transmitter operating a 9.1 micron over a 2.1 micron solid state system was chosen. A configuration for LAWS that meets the performance requirements was designed at the conclusion of phase 1.

  1. The general deterrence of driving while intoxicated. Volume 2, Subsystem analyses

    DOT National Transportation Integrated Search

    1978-04-01

    A system analysis was completed of the general deterrence of driving while intoxicated (DWI). Elements which influence DWI 'decisions were identified and interrelated in a system model; then, potential countermeasures which might be employed in DWI g...

  2. HEAO-A Observatory Description. [experimental design and instrumentation

    NASA Technical Reports Server (NTRS)

    Dailey, C.; Parnell, T. A.

    1977-01-01

    The High Energy Astronomy Observatory Program is briefly described to introduce guest observers to the HEAO-A mission. Topics discussed include spacecraft subsystems, scientific instrumentation, and the mission operations concept. Scientific participants such as principal investigators and co-investigators are listed.

  3. An Investigation of the System Concept.

    ERIC Educational Resources Information Center

    Hill, Douglas M.; Redden, Michael G.

    1985-01-01

    Control group students (receiving descriptive, non-inquiry science) and experimental group students (using Science Curriculum Improvement Study-SCIS "Interaction and Systems" materials) were later combined in grade 4 for instruction with SCIS "Subsystems and Variables" materials. Results show similar difficulties in learning…

  4. Tackling the Four V's with NEXUS

    NASA Astrophysics Data System (ADS)

    Greguska, F. R., III; Gill, K. M.; Huang, T.; Jacob, J. C.; Quach, N.; Wilson, B. D.

    2016-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) reports that over 15 petabytes (PB) of Earth observing information are archived among the 12 NASA Distributed Active Archive Centers (DAACs); with more being archived daily. The upcoming Surface Water & Ocean Topography (SWOT) mission is expected to generate about 26 PB of data in 3 years. NEXUS is a state of the art deep data analytic program developed at the Jet Propulsion Laboratory with the goal of providing near real-time analytic capabilities for this vast trove of data. Rather than develop analytic services on traditional file archives, NEXUS organizes data into tiles in order to provide a platform for horizontal computing. To provide near real-time analytic solutions for missions such as SWOT, a highly scalable data ingestion solution is developed to quickly bring data into NEXUS. In order to accomplish this formidable challenge, the "Four V's" (Volume, Velocity, Veracity, and Variety) of Big Data must be considered. NEXUS consists of an ingestion subsystem that handles the Volume of data by utilizing a generic tiling strategy that subsets a given dataset into smaller tiles. These tiles are then indexed by a search engine and stored in a NoSQL database for fast retrieval. In addition to handling the Volume of data being indexed, the NEXUS ingestion subsystem is built for horizontal scalability in order to manage the Velocity of incoming data. As the load on the system increases, the components of the ingestion subsystem can be scaled to provide more capacity. During ingestion, NEXUS also takes a unique approach to the Veracity and Variety of Earth observing information being ingested. By allowing the processing and tiling mechanisms to be customized for each dataset, the NEXUS ingest system can discard erroneous or missing data as well as adapt to the many different data structures and file formats that can be found in satellite observation data. This talk will focus on the functionality and architecture of the data ingestion subsystem that is a part of the NEXUS software architecture and how it relates to the Four V's of Big Data.

  5. Payload specialist station study: Volume 2, part 3: Program analysis and planning for phase C/D

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The controls and displays (C&D) required at the Orbiter aft-flight deck (AFD) and the core C&D required at the Payload Specialist Station (PSS) are identified in this document. The AFD C&D Concept consists of a multifunction display system (MFDS) and elements of multiuse mission support equipment (MMSE). The MFDS consists of two CRTs, a display electronics unit (DEU), and a keyboard. The MMSE consists of a manual pointing controller (MPC), five digit numeric displays, 10 character alphanumeric legends, event timers, analog meters, rotary and toggle switches. The MMSE may be hardwired to the experiment, or interface with a data bus at the PSS for signal processing. The MFDS has video capability, with alphanumeric and graphic overlay features, on one CRT and alphanumeric and graphic (tricolor) capability on a second CRT. The DEU will have the capability to communicate, via redundant data buses, with both the spacelab experiment and subsystem computers.

  6. Cost benefit analysis of space communications technology: Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Holland, L. D.; Sassone, P. G.; Gallagher, J. J.; Robinette, S. L.; Vogler, F. H.; Zimmer, R. P.

    1976-01-01

    The questions of (1) whether or not NASA should support the further development of space communications technology, and, if so, (2) which technology's support should be given the highest priority are addressed. Insofar as the issues deal principally with resource allocation, an economics perspective is adopted. The resultant cost benefit methodology utilizes the net present value concept in three distinct analysis stages to evaluate and rank those technologies which pass a qualification test based upon probable (private sector) market failure. User-preference and technology state-of-the-art surveys were conducted (in 1975) to form a data base for the technology evaluation. The program encompassed near-future technologies in space communications earth stations and satellites, including the noncommunication subsystems of the satellite (station keeping, electrical power system, etc.). Results of the research program include confirmation of the applicability of the methodology as well as a list of space communications technologies ranked according to the estimated net present value of their support (development) by NASA.

  7. Design study of wind turbines 50 kW to 3000 kW for electric utility applications. Volume 2: Analysis and design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    All possible overall system configurations, operating modes, and subsystem concepts for a wind turbine configuration for cost effective generation of electrical power were evaluated for both technical feasibility and compatibility with utility networks, as well as for economic attractiveness. A design optimization computer code was developed to determine the cost sensitivity of the various design features, and thus establish the configuration and design conditions that would minimize the generated energy costs. The preliminary designs of both a 500 kW unit and a 1500 kW unit operating in a 12 mph and 18 mph median wind speed respectively, were developed. The various design features and components evaluated are described, and the rationale employed to select the final design configuration is given. All pertinent technical performance data and component cost data is included. The costs of all major subassemblies are estimated and the resultant energy costs for both the 500 kW and 1500 kW units are calculated.

  8. Compact Dual Ion Composition Experiment for space plasmas—CoDICE

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Ogasawara, K.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Livi, S.; Weidner, S. E.

    2016-07-01

    The Compact Dual Ion Composition Experiment—CoDICE—simultaneously provides high-quality plasma and energetic ion composition measurements over six decades in energy in a wide variety of space plasma environments. CoDICE measures two critical ion populations in space plasmas: (1) Elemental and charge state composition, and 3-D velocity distributions of <10 eV/q-40 keV/q plasma ions; and (2) Elemental composition, energy spectra, and angular distributions of ˜30 keV->10 MeV energetic ions. CoDICE uses a novel, integrated, common time-of-flight subsystem that provides several advantages over the commonly used separate plasma and energetic ion sensors currently flying on several space missions. These advantages include reduced mass and volume compared to two separate instruments, reduced shielding in high-radiation environments, and simplified spacecraft interface and accommodation requirements. This paper describes the operation principles, electro-optic simulation results and applies the CoDICE concept for measuring plasma and energetic ion populations in Jupiter's magnetosphere.

  9. A fully automated FTIR system for remote sensing of greenhouse gases in the tropics

    NASA Astrophysics Data System (ADS)

    Geibel, M. C.; Gerbig, C.; Feist, D. G.

    2010-07-01

    This article introduces a new fully automated FTIR system that is part of the Total Carbon Column Observing Network. It will provide continuous ground-based measurements of column-averaged volume mixing ratio for CO2, CH4 and several other greenhouse gases in the tropics. Housed in a 20-foot shipping container it was developed as a transportable system that could be deployed almost anywhere in the world. We describe the automation concept which relies on three autonomous subsystems and their interaction. Crucial components like a sturdy and reliable solar tracker dome are described in detail. First results of total column measurements at Jena, Germany show that the instrument works well and can provide diurnal as well as seasonal cycle for CO2. Instrument line shape measurements with an HCl cell suggest that the instrument stays well-aligned over several months. After a short test campaign for side by side intercomaprison with an existing TCCON instrument in Australia, the system will be transported to its final destination Ascension Island.

  10. Advanced Platform Systems Technology study. Volume 2: Trade study and technology selection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Three primary tasks were identified which include task 1-trade studies, task 2-trade study comparison and technology selection, and task 3-technology definition. Task 1 general objectives were to identify candidate technology trade areas, determine which areas have the highest potential payoff, define specific trades within the high payoff areas, and perform the trade studies. In order to satisfy these objectives, a structured, organized approach was employed. Candidate technology areas and specific trades were screened using consistent selection criteria and considering possible interrelationships. A data base comprising both manned and unmanned space platform documentation was used as a source of system and subsystem requirements. When requirements were not stated in the data base documentation, assumptions were made and recorded where necessary to characterize a particular spacecraft system. The requirements and assumptions were used together with the selection criteria to establish technology advancement goals and select trade studies. While both manned and unmanned platform data were used, the study was focused on the concept of an early manned space station.

  11. Tracking and data relay satellite system configuration and tradeoff study, part 1. Volume 3: Telecommunications service system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the telecommunications subsystem analysis are presented. The relay system requirements and constraints, interference analysis, frequency selection, modulation and coding analysis, and the performance analysis of the relay system are included.

  12. Feasibility study of the Boeing Small Research Module (BSRM) concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, capabilities, and subsystem options are described for the Boeing Small Research Module (BSRM). Specific scientific missions are defined and the BSRM capability to support these missions is discussed. Launch vehicle integration requirements and spacecraft operational features are also presented.

  13. Apollo Operations Handbook Lunar Module (LM 11 and Subsequent) Vol. 2 Operational Procedures

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Apollo Operations Handbook (AOH) is the primary means of documenting LM descriptions and procedures. The AOH is published in two separately bound volumes. This information is useful in support of program management, engineering, test, flight simulation, and real time flight support efforts. This volume contains crew operational procedures: normal, backup, abort, malfunction, and emergency. These procedures define the sequence of actions necessary for safe and efficient subsystem operation.

  14. Study of new systems concepts for a Titan atmospheric probe

    NASA Technical Reports Server (NTRS)

    Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty

    1986-01-01

    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.

  15. Real life testing of a Hybrid PEM Fuel Cell Bus

    NASA Astrophysics Data System (ADS)

    Folkesson, Anders; Andersson, Christian; Alvfors, Per; Alaküla, Mats; Overgaard, Lars

    Fuel cells produce low quantities of local emissions, if any, and are therefore one of the most promising alternatives to internal combustion engines as the main power source in future vehicles. It is likely that urban buses will be among the first commercial applications for fuel cells in vehicles. This is due to the fact that urban buses are highly visible for the public, they contribute significantly to air pollution in urban areas, they have small limitations in weight and volume and fuelling is handled via a centralised infrastructure. Results and experiences from real life measurements of energy flows in a Scania Hybrid PEM Fuel Cell Concept Bus are presented in this paper. The tests consist of measurements during several standard duty cycles. The efficiency of the fuel cell system and of the complete vehicle are presented and discussed. The net efficiency of the fuel cell system was approximately 40% and the fuel consumption of the concept bus is between 42 and 48% lower compared to a standard Scania bus. Energy recovery by regenerative braking saves up 28% energy. Bus subsystems such as the pneumatic system for door opening, suspension and brakes, the hydraulic power steering, the 24 V grid, the water pump and the cooling fans consume approximately 7% of the energy in the fuel input or 17% of the net power output from the fuel cell system. The bus was built by a number of companies in a project partly financed by the European Commission's Joule programme. The comprehensive testing is partly financed by the Swedish programme "Den Gröna Bilen" (The Green Car). A 50 kW el fuel cell system is the power source and a high voltage battery pack works as an energy buffer and power booster. The fuel, compressed hydrogen, is stored in two high-pressure stainless steel vessels mounted on the roof of the bus. The bus has a series hybrid electric driveline with wheel hub motors with a maximum power of 100 kW. Hybrid Fuel Cell Buses have a big potential, but there are still many issues to consider prior to full-scale commercialisation of the technology. These are related to durability, lifetime, costs, vehicle and system optimisation and subsystem design. A very important factor is to implement an automotive design policy in the design and construction of all components, both in the propulsion system as well as in the subsystems.

  16. Current Lead Design for the Accelerator Project for Upgrade of LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchangemore » section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.« less

  17. HL-20 structural design comparison - Conformal shell versus cylindrical crew compartment

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Wahls, Deborah M.; Robinson, James C.

    1993-01-01

    Extensive studies have been performed at NASA Langley Research Center (LaRC) on personnel launch systems (PLS) concepts. The primary mission of a PLS is the transport of Space Station crew members from Earth to the Space Station and return. The NASA LaRC PLS studies have led to the design of a lifting body configuration named the HL-20. In this study, two different HL-20 structural configurations are evaluated. The two configurations are deemed the conformal shell and the cylindrical crew compartment. The configurations are based on two different concerns for maintenance and operations. One configuration allows for access to subsystems while on-orbit from the interior, while the other allows for easy access to the subsystems during ground maintenance and operations. For each concept, the total structural weight required to sustain the applied loads is quantified through a structural evaluation. Structural weight for both configurations is compared along with the particular attributes of each. Analyses of both configurations indicate no appreciable weight or load relief advantage of one concept over the other. Maintainability and operability, therefore become the primary discriminator, leading to a choice of a crew compartment configuration.

  18. A Concept of Operations for an Integrated Vehicle Health Assurance System

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  19. Description of concept and first feasibility test results of a life support subsystem of the Botany Facility based on water reclamation

    NASA Technical Reports Server (NTRS)

    Loeser, H. R.

    1986-01-01

    The Botany Facility allows the growth of higher plants and fungi over a period of 6 months maximum. It is a payload planned for the second flight of the Eureca platform around 1990. Major tasks of the Life Support Subsystem (LSS) of the Botany Facility include the control of the pressure and composition of the atmosphere within the plant/fungi growth chambers, control of the temperature and humidity of the air and the regulation of the soil water content within specified limits. Previous studies have shown that various LSS concepts are feasible ranging from heavy, simple and cheap to light, complex and expensive solutions. A summary of those concepts is given. A new approach to accomplish control of the temperature and humidity of the air within the growth chambers based on water reclamation is discussed. This reclamation is achieved by condensation with a heat pump and capillary transport of the condensate back into the soil of the individual growth chamber. Some analytical estimates are given in order to obtain guidelines for circulation flow rates and to determine the specific power consumption.

  20. User's manual for a computer program for the emulation/simulation of a space station Environmental Control and Life Support System (ESCM)

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    This manual describes how to use the Emulation Simulation Computer Model (ESCM). Based on G189A, ESCM computes the transient performance of a Space Station atmospheric revitalization subsystem (ARS) with CO2 removal provided by a solid amine water desorbed subsystem called SAWD. Many performance parameters are computed some of which are cabin CO2 partial pressure, relative humidity, temperature, O2 partial pressure, and dew point. The program allows the user to simulate various possible combinations of man loading, metabolic profiles, cabin volumes and certain hypothesized failures that could occur.

  1. Space processing applications payload equipment study. Volume 2D: SPA supplemental power and heat rejection kit

    NASA Technical Reports Server (NTRS)

    Hammel, R. L. (Editor); Smith, A. G. (Editor)

    1974-01-01

    The design and application of a supplementary power and heat rejection kit for the Spacelab are discussed. Two subsystems of electric power and thermal control were analyzed to define the requirements for the power and heat rejection kit (PHRK). Twelve exemplary experiments were defined and power timelines were developed. From these timeline, the experiment requirements for sustained power, peak power, and energy were determined. The electrical power subsystem of the PHRK will consist of two fuel cells, oxygen and hydrogen reactant tank assemblies, water storage tanks, plumbing, cabling, and inverters to convert the nominal 28 volt dc fuel cell output to ac power.

  2. Regenerable thermal control and carbon dioxide control techniques for use in advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Copeland, R. J.; Nebbon, B. W.

    1972-01-01

    The most promising closed CO2 control concept identified by this study is the solid pellet, Mg(OH2)2 system. Two promising approaches to closed thermal control were identified. The AHS system uses modular fusible heat sinks, with a contingency evaporative mode, to allow maximum EVA mobility. The AHS/refrigerator top-off subsystem requires an umbilical to minimize expendables, but less EVA time is used to operate the system, since there is no requirement to change modules. Both of these subsystems are thought to be practical solutions to the problem of providing closed heat rejection for an EVA system.

  3. Pioneer spacecraft operation at low and high spin rates

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of executing major changes upward or downward from the nominal spin rate for which the Pioneer F&G spacecraft was designed was investigated along with the extent of system and subsystem modifications required to implement these mode changes in future spacecraft evolving from the baseline Pioneer F and G. Results of a previous study are re-examined and updated for an extended range of spin rate variations for missions that include outer planet orbiters, outer planet flyby and outer planet probe delivery. However, in the interest of design simplicity and cost economy, major modifications of the baseline Pioneer system and subsystem concept were avoided.

  4. X-38 Bolt Retractor Subsystem Separation Demonstration

    NASA Technical Reports Server (NTRS)

    Rugless, Fedoria (Editor); Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2002-01-01

    The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  5. Automation study for space station subsystems and mission ground support

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.

  6. A computer simulator for development of engineering system design methodologies

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Sobieszczanski-Sobieski, J.

    1987-01-01

    A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples.

  7. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    NASA Technical Reports Server (NTRS)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  8. Optimization of Borehole Thermal Energy Storage System Design Using Comprehensive Coupled Simulation Models

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Formhals, Julian; Bär, Kristian; Sass, Ingo

    2017-04-01

    Large-scale borehole thermal energy storage (BTES) is a promising technology in the development of sustainable, renewable and low-emission district heating concepts. Such systems consist of several components and assemblies like the borehole heat exchangers (BHE), other heat sources (e.g. solarthermics, combined heat and power plants, peak load boilers, heat pumps), distribution networks and heating installations. The complexity of these systems necessitates numerical simulations in the design and planning phase. Generally, the subsurface components are simulated separately from the above ground components of the district heating system. However, as fluid and heat are exchanged, the subsystems interact with each other and thereby mutually affect their performances. For a proper design of the overall system, it is therefore imperative to take into account the interdependencies of the subsystems. Based on a TCP/IP communication we have developed an interface for the coupling of a simulation package for heating installations with a finite element software for the modeling of the heat flow in the subsurface and the underground installations. This allows for a co-simulation of all system components, whereby the interaction of the different subsystems is considered. Furthermore, the concept allows for a mathematical optimization of the components and the operational parameters. Consequently, a finer adjustment of the system can be ensured and a more precise prognosis of the system's performance can be realized.

  9. GN and C Subsystem Concept for Safe Precision Landing of the Proposed Lunar MARE Robotic Science Mission

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Johnson, Andrew E.; Anderson, F. Scott; Condon, Gerald L.; Nguyen, Louis H.; Olansen, Jon B.; Devolites, Jennifer L.; Harris, William J.; Hines, Glenn D.; Lee, David E.; hide

    2016-01-01

    The Lunar MARE (Moon Age and Regolith Explorer) Discovery Mission concept targets delivery of a science payload to the lunar surface for sample collection and dating. The mission science is within a 100-meter radius region of smooth lunar maria terrain near Aristarchus crater. The location has several small, sharp craters and rocks that present landing hazards to the spacecraft. For successful delivery of the science payload to the surface, the vehicle Guidance, Navigation and Control (GN&C) subsystem requires safe and precise landing capability, so design infuses the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) and a gimbaled, throttleable LOX/LCH4 main engine. The ALHAT system implemented for Lunar MARE is a specialization of prototype technologies in work within NASA for the past two decades, including a passive optical Terrain Relative Navigation (TRN) sensor, a Navigation Doppler Lidar (NDL) velocity and range sensor, and a Lidar-based Hazard Detection (HD) sensor. The landing descent profile is from a retrograde orbit over lighted terrain with landing near lunar dawn. The GN&C subsystem with ALHAT capabilities will deliver the science payload to the lunar surface within a 20-meter landing ellipse of the target location and at a site having greater than 99% safety probability, which minimizes risk to safe landing and delivery of the MARE science payload to the intended terrain region.

  10. An artificial intelligence approach to onboard fault monitoring and diagnosis for aircraft applications

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Abbott, K. H.

    1986-01-01

    Real-time onboard fault monitoring and diagnosis for aircraft applications, whether performed by the human pilot or by automation, presents many difficult problems. Quick response to failures may be critical, the pilot often must compensate for the failure while diagnosing it, his information about the state of the aircraft is often incomplete, and the behavior of the aircraft changes as the effect of the failure propagates through the system. A research effort was initiated to identify guidelines for automation of onboard fault monitoring and diagnosis and associated crew interfaces. The effort began by determining the flight crew's information requirements for fault monitoring and diagnosis and the various reasoning strategies they use. Based on this information, a conceptual architecture was developed for the fault monitoring and diagnosis process. This architecture represents an approach and a framework which, once incorporated with the necessary detail and knowledge, can be a fully operational fault monitoring and diagnosis system, as well as providing the basis for comparison of this approach to other fault monitoring and diagnosis concepts. The architecture encompasses all aspects of the aircraft's operation, including navigation, guidance and controls, and subsystem status. The portion of the architecture that encompasses subsystem monitoring and diagnosis was implemented for an aircraft turbofan engine to explore and demonstrate the AI concepts involved. This paper describes the architecture and the implementation for the engine subsystem.

  11. A single launch lunar habitat derived from an NSTS external tank

    NASA Technical Reports Server (NTRS)

    King, Charles B.; Butterfield, Ansel J.; Hypes, Warren D.; Nealy, John E.; Simonsen, Lisa C.

    1990-01-01

    A concept for using a spent External Tank from the National Space Transportation System (Shuttle) to derive a Lunar habitat is described. The concept is that the External Tank is carried into Low-Earth Orbit (LEO) where the oxygen tank-intertank subassembly is separated from the hydrogen tank, berthed to Space Station Freedom and the subassembly outfitted as a 12-person Lunar habitat using extravehicular activity (EVA) and intravehicular activity (IVA). A single launch of the NSTS Orbiter can place the External Tank in LEO, provide orbiter astronauts for disassembly of the External Tank, and transport the required subsystem hardware for outfitting the Lunar habitat. An estimate of the astronauts' EVA and IVA is provided. The liquid oxygen tank-intertank modifications utilize existing structures and openings for human access without compromising the structural integrity of the tank. The modification includes installation of living quarters, instrumentation, and an air lock. Feasibility studies of the following additional systems include micrometeoroid and radiation protection, thermal-control, environmental-control and life-support, and propulsion. The converted Lunar habitat is designed for unmanned transport and autonomous soft landing on the Lunar surface without need for site preparation. Lunar regolith is used to fill the micrometeoroid shield volume for radiation protection using a conveyor. The Lunar habitat concept is considered to be feasible by the year 2000 with the concurrent development of a space transfer vehicle and a Lunar lander for crew changeover and resupply.

  12. NTP comparison process

    NASA Technical Reports Server (NTRS)

    Corban, Robert

    1993-01-01

    The systems engineering process for the concept definition phase of the program involves requirements definition, system definition, and consistent concept definition. The requirements definition process involves obtaining a complete understanding of the system requirements based on customer needs, mission scenarios, and nuclear thermal propulsion (NTP) operating characteristics. A system functional analysis is performed to provide a comprehensive traceability and verification of top-level requirements down to detailed system specifications and provides significant insight into the measures of system effectiveness to be utilized in system evaluation. The second key element in the process is the definition of system concepts to meet the requirements. This part of the process involves engine system and reactor contractor teams to develop alternative NTP system concepts that can be evaluated against specific attributes, as well as a reference configuration against which to compare system benefits and merits. Quality function deployment (QFD), as an excellent tool within Total Quality Management (TQM) techniques, can provide the required structure and provide a link to the voice of the customer in establishing critical system qualities and their relationships. The third element of the process is the consistent performance comparison. The comparison process involves validating developed concept data and quantifying system merits through analysis, computer modeling, simulation, and rapid prototyping of the proposed high risk NTP subsystems. The maximum amount possible of quantitative data will be developed and/or validated to be utilized in the QFD evaluation matrix. If upon evaluation of a new concept or its associated subsystems determine to have substantial merit, those features will be incorporated into the reference configuration for subsequent system definition and comparison efforts.

  13. STARLAB UV-optical telescope facility, volume 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The STARLAB accomplishments to date include both the feasibility definition and detailed design study efforts on critical subsystems. Topics of discussion for this report include: (1) STARLAB capabilities; (2) scientific programs; (3) STARLAB technical description; (4) STARLAB Phase B studies; and (5) technical conclusions Technical recommendations.

  14. Study of tracking and data acquisition system for the 1990's. Volume 4: TDAS space segment architecture

    NASA Technical Reports Server (NTRS)

    Orr, R. S.

    1984-01-01

    Tracking and data acquisition system (TDAS) requirements, TDAS architectural goals, enhanced TDAS subsystems, constellation and networking options, TDAS spacecraft options, crosslink implementation, baseline TDAS space segment architecture, and treat model development/security analysis are addressed.

  15. Modular space station phase B extension preliminary performance specification. Volume 1: Initial station systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The general, operational, design/construction, and subsystem design requirements are presented for a solar powered modular space station system. While these requirements apply only to the initial station system, the system is readily adaptable to a growth configuration.

  16. Modular space station phase B extension preliminary system design. Volume 2: Operations and crew analyses

    NASA Technical Reports Server (NTRS)

    Meston, R. D.; Schall, M. R., Jr.; Brockman, C. L.; Bender, W. H.

    1972-01-01

    All analyses and tradeoffs conducted to establish the MSS operations and crew activities are discussed. The missions and subsystem integrated analyses that were completed to assure compatibility of program elements and consistency with program objectives are presented.

  17. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  18. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  19. System control of an autonomous planetary mobile spacecraft

    NASA Technical Reports Server (NTRS)

    Dias, William C.; Zimmerman, Barbara A.

    1990-01-01

    The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.

  20. Equilibrium control of nonlinear verticum-type systems, applied to integrated pest control.

    PubMed

    Molnár, S; Gámez, M; López, I; Cabello, T

    2013-08-01

    Linear verticum-type control and observation systems have been introduced for modelling certain industrial systems, consisting of subsystems, vertically connected by certain state variables. Recently the concept of verticum-type observation systems and the corresponding observability condition have been extended by the authors to the nonlinear case. In the present paper the general concept of a nonlinear verticum-type control system is introduced, and a sufficient condition for local controllability to equilibrium is obtained. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems. Starting from the integrated pest control model of Rafikov and Limeira (2012) and Rafikov et al. (2012), a nonlinear verticum-type model has been set up an equilibrium control is obtained. Furthermore, a corresponding bioeconomical problem is solved minimizing the total cost of integrated pest control (combining chemical control with a biological one). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. A Concept For A High Resolution Optical Lithographic System For Producing One-Half Micron Linewidths

    NASA Astrophysics Data System (ADS)

    Reynolds, George O.

    1986-08-01

    This paper describes a concept for developing an optical printer having a one-half micron linewidth capability to meet the pro-jected needs of future Integrated Circuit (IC) production facilities. Our approach for meeting this objective is to combine the appro-priate features of the current 1:1 reflective optical printers with the stepping characteristic of the 10:1 refractive optical systems. The proposed, very deep, UV step and repeat system has the potential of reaching a one-half micron linewidth production goal entirely with optical technology. The key subsystem elements necessary to achieve these goals are discussed. These subsystems include a reflective optical system, a 10:1 stepper configuration having a linearity limit of 0.5 microns and an FOV of 15 mm, a deep UV laser source, photoresists having the required sensitivity, an alignment capability of 500 Å , a focal sensor having a 500 Å tolerance and the associated mechanical, electronic and environmental controls compatible with a produc-tion throughput of 60-four inch wafers/hour.

  2. The influence of engineers' training models on ethics and civic education component in engineering courses in Portugal

    NASA Astrophysics Data System (ADS)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-03-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its historical roots. In Portugal, engineer education is done based on two different higher education subsystems, the university and the polytechnic. This study analyses how engineers' educational models, present in the two Portuguese higher education subsystems, influence and are reflected in the importance attached to students' ethic and civic education and in the role that this training plays. Although the data suggest the prevalence of the distinction between the two training models and the corresponding distinction of ethic and civic education that is incorporated in the curricula, it is also noted the existence of mixed feature courses in university education.

  3. Unmanned Mine of the 21st Centuries

    NASA Astrophysics Data System (ADS)

    Semykina, Irina; Grigoryev, Aleksandr; Gargayev, Andrey; Zavyalov, Valeriy

    2017-11-01

    The article is analytical. It considers the construction principles of the automation system structure which realize the concept of «unmanned mine». All of these principles intend to deal with problems caused by a continuous complication of mining-and-geological conditions at coalmine such as the labor safety and health protection, the weak integration of different mining automation subsystems and the deficiency of optimal balance between a quantity of resource and energy consumed by mining machines and their throughput. The authors describe the main problems and neck stage of mining machines autonomation and automation subsystem. The article makes a general survey of the applied «unmanned technology» in the field of mining such as the remotely operated autonomous complexes, the underground positioning systems of mining machines using infrared radiation in mine workings etc. The concept of «unmanned mine» is considered with an example of the robotic road heading machine. In the final, the authors analyze the techniques and methods that could solve the task of underground mining without human labor.

  4. FLPP NGL Structural Subsystems Activity

    NASA Astrophysics Data System (ADS)

    Jaredson, D.; Ramusat, G.; Appel, S.; Cardone, T.; Persson, J.; Baiocco, P.; Lavelle, F.; Bouilly, Th.

    2012-07-01

    The ESA Future Launchers Preparatory Programme (FLPP) is the basis for new paradigms, investigating the key elements, logic and roadmaps to prepare the development of the safe, reliable and low cost next European Launch Vehicle (LV) for access to space (dubbed NGL - Next Generation LV), with an initial operational capability mid-next decade. In addition to carry cargo to conventional GTO or SSO, the European NGL has to be flexible enough to cope with new pioneering institutional missions as well as the evolving commercial payloads market. This achievement is broached studying three main areas relevant to ELVs: System concepts, Propulsion and Core Technology During the preliminary design activity, a number of design alternatives concerning NGL main structural subsystems have been investigated. Technology is one of the ways to meet the NGL challenges to either improve the performances or to reduce the cost or both. The relevant requirements allow to steer a ‘top-down’ approach for their conception and to propose the most effective technologies. Furthermore, all these technology developments represent a significant ‘bottom-up’ approach investment and concern a large range of activities. The structural subsystems portfolio of the FLPP ‘Core Technology’ activity encompasses major cutting-edge challenges for maturation of the various subsystems leading to reduce overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic propellants, significantly reducing fabrication and operations cost, etc. to derive performing upper and booster stages. Application of concurrent engineering methods will allow developments of performing technology demonstrators in terms of need, demonstration objective, size and cost yielding to safe, low-risk technical approaches for a future development. Potential ability of these advanced structural LV technologies to satisfy the system requirements of the NGL and their current and targeted technology readiness (i.e. TRL 6 by 2016) are being assessed to check whether a future flawless development could be performed within a given budget and schedule. The paper outlines the various technology developments for the pressurised and unpressurised structure subsystems and describes the implementation methodology, some of the current technology works performed and achieved accomplishments up to now. This is in strong connection with the “system” activity dealing with the same matter [1].

  5. Accessing the SEED genome databases via Web services API: tools for programmers.

    PubMed

    Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A

    2010-06-14

    The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.

  6. A Meteorological (humidity, temperature, aerosols)) mobile dial system: Concepts and design

    NASA Technical Reports Server (NTRS)

    Cahen, C.; Lesne, J. L.; Benard, J.; Ponsardin, P.

    1986-01-01

    Since 1982 a program was conducted to develop a mobile meteorological (humidity, temperature, aerosols) Differential Absorption Lidar (DIAL) devoted to the studies of the nuclear power plant atmospheric surroundings. The measurement objectives are defined according to the user needs and the lidar feasibility. The concepts and design adopted to meet both the requirement and the measurement objectives are described. Each sub-system is addressed sequentially: transmitting system, receiving system, detection system, and post detection.

  7. Space station automation study. Volume 2: Technical report. Autonomous systems and assembly

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The application of automation to space station functions is discussed. A summary is given of the evolutionary functions associated with long range missions and objectives. Mission tasks and requirements are defined. Space station sub-systems, mission models, assembly, and construction are discussed.

  8. Mars Orbiter Study. Volume 2: Mission Design, Science Instrument Accommodation, Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Drean, R.; Macpherson, D.; Steffy, D.; Vargas, T.; Shuman, B.; Anderson, K.; Richards, B.

    1982-01-01

    Spacecraft system and subsystem designs were developed at the conceptual level to perform either of two Mars Orbiter Missions, a Climatology Mission and an Aeronomy Mission. The objectives of these missions are to obtain and return data to increase knowledge of Mars.

  9. NASIS data base management system: IBM 360 TSS implementation. Volume 8: Data base administrator user's guide

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Data Base Administrator User's Guide for the NASA Aerospace Safety Information System is presented. The subjects discussed are: (1) multi-terminal tasking, (2) data base executive, (3) utilities, (4) maintenance, (5) terminal support, and (6) retrieval subsystem.

  10. How Long Is Long Ago?

    ERIC Educational Resources Information Center

    Jax, Daniel W.

    1991-01-01

    Provides a lesson plan with student worksheet for teaching the concept of geologic time to middle school students. The lesson is cited as representative of an Earth systems approach to science curriculum with emphasis on the age of the earth and the fact that its subsystems are constantly evolving. (MCO)

  11. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  12. Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.

  13. Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  14. A Flying Ejection Seat

    NASA Technical Reports Server (NTRS)

    Hollrock, R. H.; Barzda, J. J.

    1972-01-01

    To increase aircrewmen's chances for safe rescue in combat zones, the armed forces are investigating advanced escape and rescue concepts that will provide independent flight after ejection and thus reduce the risk of capture. One of the candidate concepts is discussed; namely, a stowable autogyro that serves as the crewman's seat during normal operations and automatically converts to a flight vehicle after ejection. Discussed are (1) the mechanism subsystems that the concept embodies to meet the weight and cockpit-packaging constraints and (2) tests that demonstrated the technical feasibility of the stowage, deployment, and flight operation of the rotor lift system.

  15. Development of a household waste treatment subsystem, volume 1. [with water conservation features

    NASA Technical Reports Server (NTRS)

    Gresko, T. M.; Murray, R. W.

    1973-01-01

    The domestic waste treatment subsystem was developed to process the daily liquid and non-metallic solid wastes provided by a family of four people. The subsystem was designed to be connected to the sewer line of a household which contained water conservation features. The system consisted of an evaporation technique to separate liquids from solids, an incineration technique for solids reduction, and a catalytic oxidizer for eliminating noxious gases from evaporation and incineration processes. All wastes were passed through a grinder which masticated the solids and deposited them in a settling tank. The liquids were transferred through a cleanable filter into a holding tank. From here the liquids were sprayed into an evaporator and a spray chamber where evaporation occurred. The resulting vapors were processed by catalytic oxidation. Water and latent energy were recovered in a combination evaporator/condenser heat exchanger. The solids were conveyed into an incinerator and reduced to ash while the incineration gases were passed through the catalytic oxidizer along with the processed water vapor.

  16. SUPER-FOCUS: A tool for agile functional analysis of shotgun metagenomic data

    DOE PAGES

    Silva, Genivaldo Gueiros Z.; Green, Kevin T.; Dutilh, Bas E.; ...

    2015-10-09

    Analyzing the functional profile of a microbial community from unannotated shotgun sequencing reads is one of the important goals in metagenomics. Functional profiling has valuable applications in biological research because it identifies the abundances of the functional genes of the organisms present in the original sample, answering the question what they can do. Currently, available tools do not scale well with increasing data volumes, which is important because both the number and lengths of the reads produced by sequencing platforms keep increasing. Here, we introduce SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reducedmore » reference database to report the subsystems present in metagenomic datasets and profile their abundances. We tested SUPER-FOCUS with over 70 real metagenomes, the results showing that it accurately predicts the subsystems present in the profiled microbial communities, and is up to 1000 times faster than other tools.« less

  17. An Agile Functional Analysis of Metagenomic Data Using SUPER-FOCUS.

    PubMed

    Silva, Genivaldo Gueiros Z; Lopes, Fabyano A C; Edwards, Robert A

    2017-01-01

    One of the main goals in metagenomics is to identify the functional profile of a microbial community from unannotated shotgun sequencing reads. Functional annotation is important in biological research because it enables researchers to identify the abundance of functional genes of the organisms present in the sample, answering the question, "What can the organisms in the sample do?" Most currently available approaches do not scale with increasing data volumes, which is important because both the number and lengths of the reads provided by sequencing platforms keep increasing. Here, we present SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reduced reference database to report the subsystems present in metagenomic datasets and profile their abundances. SUPER-FOCUS was tested with real metagenomes, and the results show that it accurately predicts the subsystems present in the profiled microbial communities, is computationally efficient, and up to 1000 times faster than other tools. SUPER-FOCUS is freely available at http://edwards.sdsu.edu/SUPERFOCUS .

  18. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Heppner, D. B.; Bunnell, C. T.

    1986-01-01

    The most promising concept for a regenerative CO2 removal system for long duration manned space flight is the Electrochemical CO2 Concentrator (EDC), which allows for the continuous, efficient removal of CO2 from the spacecraft cabin. This study addresses the advancement of the EDC system by generating subsystem and ancillary component reliability data through extensive endurance testing and developing related hardware components such as electrochemical module lightweight end plates, electrochemical module improved isolation valves, an improved air/liquid heat exchanger and a triple redundant relative humidity sensor. Efforts included fabrication and testing the EDC with a Sabatier CO2 Reduction Reactor and generation of data necessary for integration of the EDC into a space station air revitalization system. The results verified the high level of performance, reliability and durability of the EDC subsystem and ancillary hardware, verified the high efficiency of the Sabatier CO2 Reduction Reactor, and increased the overall EDC technology engineering data base. The study concluded that the EDC system is approaching the hardware maturity levels required for space station deployment.

  19. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations.

    PubMed

    Nizam-Uddin, N; Elshafiey, Ibrahim

    2017-01-01

    This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors.

  20. Supporting online learning with games

    NASA Astrophysics Data System (ADS)

    Yao, JingTao; Kim, DongWon; Herbert, Joseph P.

    2007-04-01

    This paper presents a study on Web-based learning support systems that is enhanced with two major subsystems: a Web-based learning game and a learning-oriented Web search. The Internet and theWeb may be considered as a first resource for students seeking for information and help. However, much of the information available online is not related to the course contents or is wrong in the worse case. The search subsystem aims to provide students with precise, relative and adaptable documents about certain courses or classes. Therefore, students do not have to spend time to verify the relationship of documents to the class. The learning game subsystem stimulates students to study, enables students to review their studies and to perform self-evaluation through a Web-based learning game such as a treasure hunt game. During the challenge and entertaining learning and evaluation process, it is hoped that students will eventually understand and master the course concepts easily. The goal of developing such a system is to provide students with an efficient and effective learning environment.

  1. ISS Material Science Research Rack HWIL Interface Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  2. Enhanced Energy Localization in Hyperthermia Treatment Based on Hybrid Electromagnetic and Ultrasonic System: Proof of Concept with Numerical Simulations

    PubMed Central

    Elshafiey, Ibrahim

    2017-01-01

    This paper proposes a hybrid hyperthermia treatment system, utilizing two noninvasive modalities for treating brain tumors. The proposed system depends on focusing electromagnetic (EM) and ultrasound (US) energies. The EM hyperthermia subsystem enhances energy localization by incorporating a multichannel wideband setting and coherent-phased-array technique. A genetic algorithm based optimization tool is developed to enhance the specific absorption rate (SAR) distribution by reducing hotspots and maximizing energy deposition at tumor regions. The treatment performance is also enhanced by augmenting an ultrasonic subsystem to allow focused energy deposition into deep tumors. The therapeutic faculty of ultrasonic energy is assessed by examining the control of mechanical alignment of transducer array elements. A time reversal (TR) approach is then investigated to address challenges in energy focus in both subsystems. Simulation results of the synergetic effect of both modalities assuming a simplified model of human head phantom demonstrate the feasibility of the proposed hybrid technique as a noninvasive tool for thermal treatment of brain tumors. PMID:28840125

  3. CBERS-03 Satellite Power Supply Subsystem

    NASA Astrophysics Data System (ADS)

    Almeida, Mario C. P.; Bo, Han

    2005-05-01

    The second China Brazil Earth Resources Satellite, CBERS-2, was successfully launched on October 21st, 2003 from the Taiyuan Satellite Launch Center, China, through a Long March 4B launcher.The cooperation between China and Brazil for the construction of CBERS satellites is a continued mission and the governments of both countries are committed to building CBERS-3 for the continued and improved services started with the launch of CBERS-1 satellite [1]. Given to its success, the CBERS program is considered as a model for other joint scientific and technological projects between those two countries. CBERS-3 will have new instruments with higher resolution and higher power consumption requirements. The Power Supply Subsystem of CBERS-3 will be a scaled-up version of the one used in the previous missions, but will also present some innovations now possible due to improvements in components, technologies and materials. The modular concept used in the previous design, and repeated in this new mission, will allow the development of the new power subsystem equipments in a straightforward manner.

  4. Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghai, S.

    2008-01-01

    This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).

  5. Wide Field X-Ray Telescope Mission Concept Study Results

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  6. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.

  7. Transitioning from conceptual design to construction performance specification

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather

    2012-09-01

    On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.

  8. Truck Noise IX : Noise Reduction Study of an In-Service Diesel-Powered Truck : Volume 1. Text.

    DOT National Transportation Integrated Search

    1977-02-01

    A series of tests to measure the noise contributions of subsystems were performed on a truck with a conventional short cab, equipped with a Cummins V-903 engine. The data acquired in these tests were used to select retrofittable components which woul...

  9. LANDSAT-D data format control book. Volume 5: (Payload)

    NASA Technical Reports Server (NTRS)

    Andrew, H.

    1981-01-01

    The LANDSAT-D flight segment payload is the thematic mapper and the multispectral scanner. Narrative and visual descriptions of the LANDSAT-D payload data handling hardware and data flow paths from the sensing instruments through to the GSFC LANDSAT-D data management system are provided. Key subsystems are examined.

  10. Truck Noise IX : Noise Reduction Study of an In-Service Diesel Powered Truck : Volume 2. Appendix.

    DOT National Transportation Integrated Search

    1977-02-01

    A series of tests to measure the noise contributions of subsystems were performed on a truck with a conventional short cab, equipped with a Cummins V-903 engine. The data acquired in these tests were used to select retrofittable components which woul...

  11. High Energy Astronomy Observatory, Mission C, Phase A. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A summary of the Phase A of the High Energy Astronomy Observatory Mission-C (HEAO-C) is presented. The mission, baseline experiments, observatory design, and spacecraft subsystems are described, and the principal mission considerations are discussed. A summary is included of the general recommendations.

  12. Choosing a Scanner: Points To Consider before Buying a Scanner.

    ERIC Educational Resources Information Center

    Raby, Chris

    1998-01-01

    Outlines ten factors to consider before buying a scanner: size of document; type of document; color; speed and volume; resolution; image enhancement; image compression; optical character recognition; scanning subsystem; and the option to use a commercial bureau service. The importance of careful analysis of requirements is emphasized. (AEF)

  13. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  14. Mariner Venus-Mercury 1973 Project. Volume 1: Venus and Mercury 1 Encounters

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The primary mission report includes the Venus encounter and the first Mercury encounter. Plans and activities undertaken to successfully achieve the mission objectives are described. Operational activities are identified by mission operation system functions, providing a brief summary of each discipline. Spacecraft performance is summarized by subsystems.

  15. NEEDED RESEARCH ON DIFFUSION WITHIN EDUCATIONAL ORGANIZATIONS.

    ERIC Educational Resources Information Center

    JAIN, NEMI C.; ROGERS, EVERETT M.

    IN SPITE OF THE VOLUME OF RESEARCH ATTENTION DEVOTED TO THE DIFFUSION OF INNOVATIONS, RELATIVELY LITTLE EMPHASIS HAS BEEN PLACED UPON DIFFUSION WITHIN ORGANIZATIONAL STRUCTURES. METHODOLOGICALLY, RELATIONAL ANALYSIS IN WHICH THE UNIT OF ANALYSIS IS A TWO-PERSON INTERACTING PAIR, A MULTIPLE PERSON COMMUNICATION CHAIN, OR CLIQUES OR SUBSYSTEMS IS…

  16. Changes in Structural Health Monitoring System Capability Due to Aircraft Environmental Factors

    DTIC Science & Technology

    2009-09-01

    and R. Ikegami . “Hot-Spot Fatigue Crack Monitoring of Inaccessible Structural Regions in Air- craft Subsystems Using Structural Health Monitoring...national Society for Optical Engineering, volume 4702 of Smart Structures and Materials 2002, 29–40. Newport Beach, CA: SPIE, 2002. 54. Ikegami , R

  17. JOSE, Jupiter orbiting spacecraft: A systems study, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A brief summary of the mechanical properties of Jupiter is presented along with an organizational outline of the entire JOSE program. Other aspects of the program described include: spacecraft design, mission trajectories, altitude control, propulsion subsystem, on-board power supply, spacecraft structures and environmental design considerations, and telemetry.

  18. Power conditioning equipment for a thermoelectric outer planet spacecraft, volume 1, book 2

    NASA Technical Reports Server (NTRS)

    Andrews, R. E. (Editor)

    1972-01-01

    The design and development of power conditioning equipment for the thermoelectric outer planet spacecraft program are considered. One major aspect of the program included the design, assembly and test of various breadboard power conditioning elements. Among others these included a quad-redundant shunt regulator, a high voltage traveling wave tube dc-to-dc converter, two-phase gyro inverters and numerous solid state switching circuits. Many of these elements were arranged in a typical subsystem configuration and tests were conducted which demonstrated basic element compatibility. In parallel with the development of the basic power conditioning elements, system studies were continued. The salient features of the selected power subsystem configuration are presented.

  19. Avionics System Architecture for NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint

    2010-01-01

    This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.

  20. Feasibility study of the Boeing Small Research Module (BSRM) concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design, capabilities, and subsystem options for the Boeing Small Research Module (BSRM) are described. Specific scientific missions are defined based on NASA-Ames Research Center requirements and the BSRM capability to support these missions is discussed. Launch vehicle integration requirements and spacecraft operational features are also presented.

  1. Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept

    NASA Technical Reports Server (NTRS)

    Kennedy, J. J.

    1970-01-01

    Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.

  2. Explosive-actuated valve design concept that eliminates blow-by. [for the TOPS spacecraft trajectory correction propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1974-01-01

    A method of evaluating the normally open normally closed, explosive actuated valves that were selected for use in the trajectory correction propulsion subsystem of the Thermoelectric Outer Planet Spacecraft (TOPS) program is presented. The design philosophy which determined the requirements for highly reliable valves that could provide the performance capability during long duration (10 year) missions to the outer planets is discussed. The techniques that were used to fabricate the valves and manifold ten valves into an assembly with the capability of five propellant-flow initiation/isolation sequences are described. The test program, which was conducted to verify valve design requirements, is outlined and the more significant results are shown.

  3. XNsim: Internet-Enabled Collaborative Distributed Simulation via an Extensible Network

    NASA Technical Reports Server (NTRS)

    Novotny, John; Karpov, Igor; Zhang, Chendi; Bedrossian, Nazareth S.

    2007-01-01

    In this paper, the XNsim approach to achieve Internet-enabled, dynamically scalable collaborative distributed simulation capabilities is presented. With this approach, a complete simulation can be assembled from shared component subsystems written in different formats, that run on different computing platforms, with different sampling rates, in different geographic locations, and over singlelmultiple networks. The subsystems interact securely with each other via the Internet. Furthermore, the simulation topology can be dynamically modified. The distributed simulation uses a combination of hub-and-spoke and peer-topeer network topology. A proof-of-concept demonstrator is also presented. The XNsim demonstrator can be accessed at http://www.jsc.draver.corn/xn that hosts various examples of Internet enabled simulations.

  4. Study of Alternate Space Shuttle Concepts. Volume 2, Part 2: Concept Analysis and Definition

    NASA Technical Reports Server (NTRS)

    1971-01-01

    This is the final report of a Phase A Study of Alternate Space Shuttle Concepts by the Lockheed Missiles & Space Company (LMSC) for the National Aeronautics and Space Administration George C. Marshall Space Flight Center (MSFC). The eleven-month study, which began on 30 June 1970, is to examine the stage-and-one-half and other Space Shuttle configurations and to establish feasibility, performance, cost, and schedules for the selected concepts. This final report consists of four volumes as follows: Volume I - Executive Summary, Volume II - Concept Analysis and Definition, Volume III - Program Planning, and Volume IV - Data Cost Data. This document is Volume II, Concept Analysis and Definition.

  5. The CCTC Quick-Reacting General War Gaming System (QUICK) Users Manual. Volume 3. Weapon Allocation Subsystem

    DTIC Science & Technology

    1978-04-15

    analyst who is concerned with preparing the data base for a war game, selecting optional features of QUICK, designating control parameters, submitting...i/.,-j-t r? 70 ~ CoMPUIfE YsTIEM MANUAL CSM UM 9-77 VOLUME IIIC15 APRIL 1978 Lod COMMAND 9 \\.., & CONTROL 09 TECHNICAL . CENTER CCTC QUICK-REACTING...RECALC Mode ............................... 31 3.1.1.2 Non -RECALC Mode ........................... 31 3.1.1.3 Mode Selecti-n and JCL Consideration

  6. Introducing new technologies into Space Station subsystems

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Mollakarimi, Cindy L.

    1989-01-01

    A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.

  7. Concept for a power system controller for large space electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.

    1981-01-01

    The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.

  8. A framework for exploring integrated learning systems for the governance and management of public protected areas.

    PubMed

    Nkhata, Bimo Abraham; Breen, Charles

    2010-02-01

    This article discusses how the concept of integrated learning systems provides a useful means of exploring the functional linkages between the governance and management of public protected areas. It presents a conceptual framework of an integrated learning system that explicitly incorporates learning processes in governance and management subsystems. The framework is premised on the assumption that an understanding of an integrated learning system is essential if we are to successfully promote learning across multiple scales as a fundamental component of adaptability in the governance and management of protected areas. The framework is used to illustrate real-world situations that reflect the nature and substance of the linkages between governance and management. Drawing on lessons from North America and Africa, the article demonstrates that the establishment and maintenance of an integrated learning system take place in a complex context which links elements of governance learning and management learning subsystems. The degree to which the two subsystems are coupled influences the performance of an integrated learning system and ultimately adaptability. Such performance is largely determined by how integrated learning processes allow for the systematic testing of societal assumptions (beliefs, values, and public interest) to enable society and protected area agencies to adapt and learn in the face of social and ecological change. It is argued that an integrated perspective provides a potentially useful framework for explaining and improving shared understanding around which the concept of adaptability is structured and implemented.

  9. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    NASA Technical Reports Server (NTRS)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  10. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less

  11. Advanced Devices for Cryogenic Thermal Management

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.

    2006-04-01

    This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.

  12. How is quantum information localized in gravity?

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Giddings, Steven B.

    2017-10-01

    A notion of localization of information within quantum subsystems plays a key role in describing the physics of quantum systems, and in particular is a prerequisite for discussing important concepts such as entanglement and information transfer. While subsystems can be readily defined for finite quantum systems and in local quantum field theory, a corresponding definition for gravitational systems is significantly complicated by the apparent nonlocality arising due to gauge invariance, enforced by the constraints. A related question is whether "soft hair" encodes otherwise localized information, and the question of such localization also remains an important puzzle for proposals that gravity emerges from another structure such as a boundary field theory as in AdS/CFT. This paper describes different approaches to defining local subsystem structure, and shows that at least classically, perturbative gravity has localized subsystems based on a split structure, generalizing the split property of quantum field theory. This, and related arguments for QED, give simple explanations that in these theories there is localized information that is independent of fields outside a region, in particular so that there is no role for "soft hair" in encoding such information. Additional subtleties appear in quantum gravity. We argue that localized information exists in perturbative quantum gravity in the presence of global symmetries, but that nonperturbative dynamics is likely tied to a modification of such structure.

  13. A two-agent model applied to the biological control of the sugarcane borer (Diatraea saccharalis) by the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes.

    PubMed

    Molnár, Sándor; López, Inmaculada; Gámez, Manuel; Garay, József

    2016-03-01

    The paper is aimed at a methodological development in biological pest control. The considered one pest two-agent system is modelled as a verticum-type system. Originally, linear verticum-type systems were introduced by one of the authors for modelling certain industrial systems. These systems are hierarchically composed of linear subsystems such that a part of the state variables of each subsystem affect the dynamics of the next subsystem. Recently, verticum-type system models have been applied to population ecology as well, which required the extension of the concept a verticum-type system to the nonlinear case. In the present paper the general concepts and technics of nonlinear verticum-type control systems are used to obtain biological control strategies in a two-agent system. For the illustration of this verticum-type control, these tools of mathematical systems theory are applied to a dynamic model of interactions between the egg and larvae populations of the sugarcane borer (Diatraea saccharalis) and its parasitoids: the egg parasitoid Trichogramma galloi and the larvae parasitoid Cotesia flavipes. In this application a key role is played by the concept of controllability, which means that it is possible to steer the system to an equilibrium in given time. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems, making use of the verticum structure of the population system. The main aim of this study is to show several advantages of the verticum (or decomposition) approach over the classical control theoretical model (without decomposition). For example, in the case of verticum control the pest larval density decreases below the critical threshold value much quicker than without decomposition. Furthermore, it is also shown that the verticum approach may be better even in terms of cost effectiveness. The presented optimal control methodology also turned out to be an efficient tool for the "in silico" analysis of the cost-effectiveness of different biocontrol strategies, e.g. by answering the question how far it is cost-effective to speed up the reduction of the pest larvae density, or along which trajectory this reduction should be carried out. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Study on distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database

    NASA Astrophysics Data System (ADS)

    WANG, Qingrong; ZHU, Changfeng

    2017-06-01

    Integration of distributed heterogeneous data sources is the key issues under the big data applications. In this paper the strategy of variable precision is introduced to the concept lattice, and the one-to-one mapping mode of variable precision concept lattice and ontology concept lattice is constructed to produce the local ontology by constructing the variable precision concept lattice for each subsystem, and the distributed generation algorithm of variable precision concept lattice based on ontology heterogeneous database is proposed to draw support from the special relationship between concept lattice and ontology construction. Finally, based on the standard of main concept lattice of the existing heterogeneous database generated, a case study has been carried out in order to testify the feasibility and validity of this algorithm, and the differences between the main concept lattice and the standard concept lattice are compared. Analysis results show that this algorithm above-mentioned can automatically process the construction process of distributed concept lattice under the heterogeneous data sources.

  15. Optical fundamentals of an adaptive substance-on-surface chemical recognizer

    NASA Astrophysics Data System (ADS)

    Fauconier, Richard; Ndoye, Mandoye; Montlouis, Webert

    2017-10-01

    The objective is to identify the chemical composition of (isotropic and homogeneous) thin liquid and gel films on various surfaces by their infrared reflectance spectra. A bistatic optical sensing concept is proposed here in which a multi-wavelength laser source and a detector are physically displaced from each other. With the aid of the concept apparatus proposed, key optical variables can be measured in real time. The variables in question (substance thickness, refractive index, etc.) are those whose un-observability causes many types of monostatic sensor (in use today) to give ambiguous identifications. Knowledge of the aforementioned key optical variables would allow an adaptive signal-processing algorithm to make unambiguous identifications of the unknown chemicals by their infrared spectra, despite their variable presentations. The proposed bistatic sensor system consists of an optical transmitter and an optical receiver. The whole system can be mounted on a stable platform. Both the optical transmitter subsystem and the optical receiver subsystem contain auxiliary sensors to determine their relative spatial positions and orientations. For each subsystem, these auxiliary sensors include an orientation sensor, and rotational sensors for absolute angular position. A profilometer-and-machine-vision subsystem is also included. An important aspect of determining the necessary optical variables is an aperture that limits the interrogatory beams to a coherent pair, rejecting those resulting from successive multiple reflections. A set of equations is developed to characterize the propagation of a coherent pair of frequency-modulated thin beams through the system. It is also shown that frequency modulation can produce easily measurable beat frequencies for determination of sample thicknesses on the order of microns to millimeters. Also shown is how the apparatus's polarization features allow it to measure the refractive index of any isotropic, homogeneous dielectric surface on which the unknown substance can sit. Concave, convex and flat supporting surfaces and menisci are discussed.

  16. Survey and documentation of emerging technologies for the Satellite Power System (SPS)

    NASA Technical Reports Server (NTRS)

    Glaser, P.; Chapman, P.

    1981-01-01

    The genesis of the solar power satellite (SPS) concept is reviewed historically and the original assumptions and guidelines which led to development of the SPS reference system design concept are discussed. Some guidelines are applicable to almost any SPS design, but others can be changed, leading to new and perhaps preferable systems. In order to stimulate new SPS concepts and to facilitate comparative assessment of emerging SPS technologies, one useful approach is to break the overall system into functional parts. The system functions which must be performed by any SPS concept and the interrelations between them are discussed and a systematic framework is presented for assessing the wide variety of system concepts and subsystem technologies which have been proposed. About 80 alternative SPS technologies are reviewed.

  17. Technology for Space Station Evolution. Volume 2: Data Management System/Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology conducted a workshop on technology for space station evolution 16-19 Jan. 1990. The purpose of the workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 2 consists of the technology discipline sections for the Data Management System and the Environmental Control and Life Support Systems. For each technology discipline, there is a Level 3 subsystem description, along with the invited papers.

  18. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  19. Status of the Space Station environmental control and life support system design concept

    NASA Technical Reports Server (NTRS)

    Ray, C. D.; Humphries, W. R.

    1986-01-01

    The current status of the Space Station (SS) environmental control and life support system (ECLSS) design is outlined. The concept has been defined at the subsystem level. Data supporting these definitions are provided which identify general configuratioons for all modules. Requirements, guidelines and assumptions used in generating these configurations are detailed. The basic 2 US module 'core' Space Station is addressed along with system synergism issues and early man-tended and future growth considerations. Along with these basic studies, also addressed here are options related to variation in the 'core' module makeup and more austere Station concepts such as commonality, automation and design to cost.

  20. Faultfinder: A diagnostic expert system with graceful degradation for onboard aircraft applications

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy H.; Schutte, Paul C.; Palmer, Michael T.; Ricks, Wendell R.

    1988-01-01

    A research effort was conducted to explore the application of artificial intelligence technology to automation of fault monitoring and diagnosis as an aid to the flight crew. Human diagnostic reasoning was analyzed and actual accident and incident cases were reconstructed. Based on this analysis and reconstruction, diagnostic concepts were conceived and implemented for an aircraft's engine and hydraulic subsystems. These concepts are embedded within a multistage approach to diagnosis that reasons about time-based, causal, and qualitative information, and enables a certain amount of graceful degradation. The diagnostic concepts are implemented in a computer program called Faultfinder that serves as a research prototype.

Top