Modular space station phase B extension, preliminary system design. Volume 4: Subsystems analyses
NASA Technical Reports Server (NTRS)
Antell, R. W.
1972-01-01
The subsystems tradeoffs, analyses, and preliminary design results are summarized. Analyses were made of the structural and mechanical, environmental control and life support, electrical power, guidance and control, reaction control, information, and crew habitability subsystems. For each subsystem a summary description is presented including subsystem requirements, subsystem description, and subsystem characteristics definition (physical, performance, and interface). The major preliminary design data and tradeoffs or analyses are described in detail at each of the assembly levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None,
1979-01-01
This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less
ERIC Educational Resources Information Center
Butler, A. K.; And Others
The performance/design requirements and a detailed technical description for a Computer-Directed Training Subsystem to be integrated into the Air Force Phase II Base Level System are described. The subsystem may be used for computer-assisted lesson construction and has presentation capability for on-the-job training for data automation, staff, and…
Site Data Acquisition Subsystem (SDAS) Mod 1, installation, operation, and maintenance manual
NASA Technical Reports Server (NTRS)
1977-01-01
The Site Data Acquisition Subsystem (SDAS) Mod 1 was designed to collect sensor measurement data from solar energy demonstration site. This report provides a brief description of the SDAS and defines the installation requirements and procedures, the operations description and the procedures for field maintenance of the subsystem.
Guidance, navigation, and control subsystem for the EOS-AM spacecraft
NASA Technical Reports Server (NTRS)
Linder, David M.; Tolek, Joseph T.; Lombardo, John
1992-01-01
This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.
Synchronous meteorological satellite system description document, volume 3
NASA Technical Reports Server (NTRS)
Pipkin, F. B.
1971-01-01
The structural design, analysis, and mechanical integration of the synchronous meteorological satellite system are presented. The subjects discussed are: (1) spacecraft configuration, (2) structural design, (3) static load tests, (4) fixed base sinusoidal vibration survey, (5) flight configuration sinusoidal vibration tests, (6) spacecraft acoustic test, and (7) separation and shock test. Descriptions of the auxiliary propulsion subsystem, the apogee boost motor, communications system, and thermal control subsystem are included.
Waste receiving and processing plant control system; system design description
DOE Office of Scientific and Technical Information (OSTI.GOV)
LANE, M.P.
1999-02-24
The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed asmore » separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.« less
Executive summary: Mod-1 wind turbine generator analysis and design report
NASA Technical Reports Server (NTRS)
1979-01-01
Activities leading to the detail design of a wind turbine generator having a nominal rating of 1.8 megawatts are reported. Topics covered include (1) system description; (2) structural dynamics; (3) stability analysis; (4) mechanical subassemblies design; (5) power generation subsystem; and (6) control and instrumentation subsystem.
NASA Technical Reports Server (NTRS)
1973-01-01
A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.
The 30-centimeter ion thrust subsystem design manual
NASA Technical Reports Server (NTRS)
1979-01-01
The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.
A thermal control approach for a solar electric propulsion thrust subsystem
NASA Technical Reports Server (NTRS)
Maloy, J. E.; Oglebay, J. C.
1979-01-01
A thrust subsystem thermal control design is defined for a Solar Electric Propulsion System (SEPS) proposed for the comet Halley Flyby/comet Tempel 2 rendezvous mission. A 114 node analytic model, developed and coded on the systems improved numerical differencing analyzer program, was employed. A description of the resulting thrust subsystem thermal design is presented as well as a description of the analytic model and comparisons of the predicted temperature profiles for various SEPS thermal configurations that were generated using this model. It was concluded that: (1) a BIMOD engine system thermal design can be autonomous; (2) an independent thrust subsystem thermal design is feasible; (3) the interface module electronics temperatures can be controlled by a passive radiator and supplementary heaters; (4) maintaining heat pipes above the freezing point would require an additional 322 watts of supplementary heating power for the situation where no thrusters are operating; (5) insulation is required around the power processors, and between the interface module and the avionics module, as well as in those areas which may be subjected to solar heating; and (6) insulation behind the heat pipe radiators is not necessary.
Development and testing of the data automation subsystem for the Mariner Mars 1971 spacecraft
NASA Technical Reports Server (NTRS)
1971-01-01
The data automation subsystem designed and built as part of the Mariner Mars 1971 program, sequences and controls the science instruments and formats all science data. A description of the subsystem with emphasis on major changes relative to Mariner Mars 1969 is presented. In addition, the complete test phase is described.
Apollo experience report: Lunar module environmental control subsystem
NASA Technical Reports Server (NTRS)
Gillen, R. J.; Brady, J. C.; Collier, F.
1972-01-01
A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight.
Simplified power processing for ion-thruster subsystems
NASA Technical Reports Server (NTRS)
Wessel, F. J.; Hancock, D. J.
1983-01-01
A design for a greatly simplified power-processing unit (SPPU) for the 8-cm diameter mercury-ion-thruster subsystem is discussed. This SPPU design will provide a tenfold reduction in parts count, a decrease in system mass and cost, and an increase in system reliability compared to the existing power-processing unit (PPU) used in the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem. The simplifications achieved in this design will greatly increase the attractiveness of ion propulsion in near-term and future spacecraft propulsion applications. A description of a typical ion-thruster subsystem is given. An overview of the thruster/power-processor interface requirements is given. Simplified thruster power processing is discussed.
Development and testing of a source subsystem for the supporting development PMAD DC test bed
NASA Technical Reports Server (NTRS)
Button, Robert M.
1991-01-01
The supporting Development Power Management and Distribution (PMAD) DC Test Bed is described. Its benefits to the Space Station Freedom Electrical Power System design are discussed along with a short description of how the PMAD DC Test Bed was systematically integrated. The Source Subsystem of the PMAD DC Test Bed consisting of a Sequential Shunt Unit (SSU) and a Battery Charge/Discharge Unit (BCDU) is introduced. The SSU is described in detail and component level test data is presented. Next, the BCDU's operation and design is given along with component level test data. The Source Subsystem is then presented and early data given to demonstrate an effective subsystem design.
Integrated flight/propulsion control system design based on a decentralized, hierarchical approach
NASA Technical Reports Server (NTRS)
Mattern, Duane; Garg, Sanjay; Bullard, Randy
1989-01-01
A sample integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statistically unstable fighter aircraft. The design procedure is summarized. The vehicle model used in the sample study is described, and the procedure for partitioning the integrated system is presented along with a description of the subsystems. The high-level airframe performance specifications and control design are presented and the control performance is evaluated. The generation of the low-level (engine) subsystem specifications from the airframe requirements are discussed, and the engine performance specifications are presented along with the subsystem control design. A compensator to accommodate the influence of airframe outputs on the engine subsystem is also considered. Finally, the entire closed loop system performance and stability characteristics are examined.
Integrated flight/propulsion control system design based on a decentralized, hierarchical approach
NASA Technical Reports Server (NTRS)
Mattern, Duane; Garg, Sanjay; Bullard, Randy
1989-01-01
A sample integrated flight/propulsion control system design is presented for the piloted longitiudinal landing task with a modern, statistically unstable fighter aircraft. The design procedure is summarized, the vehicle model used in the sample study is described, and the procedure for partitioning the integrated system is presented along with a description of the subsystems. The high-level airframe performance specifications and control design are presented and the control performance is evaluated. The generation of the low-level (engine) subsystem specifications from the airframe requirements are discussed, and the engine performance specifications are presented along with the subsystem control design. A compensator to accommodate the influence of airframe outputs on the engine subsystem is also considered. Finally, the entire closed loop system performance and stability characteristics are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1986-06-01
The HVAC system is a subsystem within the Mechanical Services Group (MSG). The HVAC system for the 4 x 350 MW(t) Modular HTGR Plant presently consists of ten, nonsafety-related subsystems located in the Nuclear Island (NI) and Energy Conversion Area (ECA) of the plant.
CEIS: Does the Foundation for a Nationwide Information System for Education Already Exist?
ERIC Educational Resources Information Center
Journal of Educational Data Processing, 1974
1974-01-01
Complete but concise picture of the California Education Information System, how it developed, its current status, its basic features, and a description of its contents. Covers design, developmental history, business subsystem, pupil subsystem, and a summary. (Author)
2nd & 3rd Generation Vehicle Subsystems
NASA Technical Reports Server (NTRS)
2000-01-01
This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).
Receiver-exciter controller design
NASA Technical Reports Server (NTRS)
Jansma, P. A.
1982-01-01
A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.
Modular space station detailed preliminary design. Volume 1: Sections 1 through 4.4
NASA Technical Reports Server (NTRS)
1971-01-01
Detailed configuration and subsystems preliminary design data are presented for the modular space station concept. Each module comprising the initial space station is described in terms of its external and internal configuration, its functional responsibilities to the initial cluster, and its orbital build up sequence. Descriptions of the subsequent build up to the growth space station are also presented. Analytical and design techniques, tradeoff considerations, and depth of design detail are discussed for each subsystem. The subsystems include the following: structural/mechanical; crew habitability and protection; experiment support; electrical power; environmental control/life support; guidance, navigation, and control; propulsion; communications; data management; and onboard checkout subsystems. The interfaces between the station and other major elements of the program are summarized. The rational for a zero-gravity station, in lieu of one with artificial-gravity capability, is also summarized.
The conical scanner evaluation system design
NASA Technical Reports Server (NTRS)
Cumella, K. E.; Bilanow, S.; Kulikov, I. B.
1982-01-01
The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.
System Description and Status Report: California Education Information System.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
The California Education Information System (CEIS) consists of two subsystems of computer programs designed to process business and pupil data for local school districts. Creating and maintaining records concerning the students in the schools, the pupil subsystem provides for a central repository of school district identification information and a…
NASA Technical Reports Server (NTRS)
Shelton, D. H.
1975-01-01
A brief functional description of the Apollo lunar module stabilization and control subsystem is presented. Subsystem requirements definition, design, development, test results, and flight experiences are discussed. Detailed discussions are presented of problems encountered and the resulting corrective actions taken during the course of assembly-level testing, integrated vehicle checkout and test, and mission operations. Although the main experiences described are problem oriented, the subsystem has performed satisfactorily in flight.
Apollo experience report: Crew provisions and equipment subsystem
NASA Technical Reports Server (NTRS)
Mcallister, F.
1972-01-01
A description of the construction and use of crew provisions and equipment subsystem items for the Apollo Program is presented. The subsystem is composed principally of survival equipment, bioinstrumentation devices, medical components and accessories, water- and waste-management equipment, personal-hygiene articles, docking aids, flight garments (excluding the pressure garment assembly), and various other crew-related accessories. Particular attention is given to items and assemblies that presented design, development, or performance problems: the crew optical alinement sight system, the metering water dispenser, and the waste-management system. Changes made in design and materials to improve the fire safety of the hardware are discussed.
Oceanographic scanner system design study, volume 1
NASA Technical Reports Server (NTRS)
1971-01-01
The design is reported of a dual mode multispectral scanner, capable of satisfying both overland and oceanographic requirements. A complete system description and performance summary of the scanner are given. In addition, subsystem and component descriptions and performance analyses are treated in individual sections. The design of the scanner, with minimum modifications, interfaces to the ERTS spacecraft and the ground data handling system.
Spacecraft System Integration and Test: SSTI Lewis critical design audit
NASA Technical Reports Server (NTRS)
Brooks, R. P.; Cha, K. K.
1995-01-01
The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.
System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water
NASA Technical Reports Server (NTRS)
1978-01-01
A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.
Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 1: Technical summary
NASA Technical Reports Server (NTRS)
Gardner, J. A.
1972-01-01
The use of solar electric propulsion as a means of exploring space beyond the reach of ballistic missions was investigated. The method used was to study the application of this new propulsion technology to a future flight project. A 1980 Encke rendezvous mission was chosen because a design successful for Encke could be used for less difficult, but scientifically rewarding, missions. Design points for the mission and for the thrust subsystem were specified. The baseline-vehicle design was defined. A preliminary functional description document for the thrust subsystem was originated. Analyses were performed in support of the design point selection for the SEP-module thrust subsystem to specify parameters, to clarify and optimize the interface requirements, and to assure feasibility of some of the more critical technological aspects of SEP application.
Viking orbiter system primary mission
NASA Technical Reports Server (NTRS)
Goudy, J. R.
1977-01-01
An overview of Viking Orbiter (VO) system and subsystem performances during the primary mission (the time period from VO-1 launch on August 20, 1975, through November 15, 1976) is presented. Brief descriptions, key design requirements, pertinent historical information, unique applications or situations, and predicted versus actual performances are included for all VO-1 and VO-2 subsystems, both individually and as an integrated system.
The electrical power subsystem design for the high energy solar physics spacecraft concepts
NASA Technical Reports Server (NTRS)
Kulkarni, Milind
1993-01-01
This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.
Preliminary design of the Space Station environmental control and life support system
NASA Technical Reports Server (NTRS)
Reuter, J. L.; Turner, L. D.; Humphries, W. R.
1988-01-01
This paper outlines the current status of the Space Station Enrivonmental Control and Life Support System (ECLSS). The seven subsystem groups which comprise the ECLSS are identified and their functional descriptions are provided. The impact that the nominal and safe haven operating requirements have on the physical distribution, sizing, and number of ECLSS subsystems is described. The role that the major ECLSS interfaces with other Space Station systems and elements play in the ECLSS design is described.
Image acquisition unit for the Mayo/IBM PACS project
NASA Astrophysics Data System (ADS)
Reardon, Frank J.; Salutz, James R.
1991-07-01
The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.
Space Transportation System/Spacelab accommodations
NASA Technical Reports Server (NTRS)
De Sanctis, C. E.
1978-01-01
A description is provided of the capabilities offered by the Spacelab design for doing research in space. The Spacelab flight vehicle consists of two basic elements including the habitable pressurized compartments and the unpressurized equipment mounting platforms. Spacelab services to payloads are considered, taking into account payload mass, electrical power and energy, heat rejection for Spacelab and payload, aspects of Spacelab data handling, and the extended flight capability. Attention is also given to the Spacelab structure, crew station and habitability, the electrical power distribution subsystem, the command and data management subsystem, the experiment computer operating system, the environmental control subsystem, the experiment vent assembly, the common payload support equipment, the instrument pointing subsystem, and details concerning the utilization of Spacelab.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.
Thermal Protection System of the Space Shuttle
NASA Technical Reports Server (NTRS)
Cleland, John; Iannetti, Francesco
1989-01-01
The Thermal Protection System (TPS), introduced by NASA, continues to incorporate many of the advances in materials over the past two decades. A comprehensive, single-volume summary of the TPS, including system design rationales, key design features, and broad descriptions of the subsystems of TPS (E.g., reusable surface insulation, leading edge structural, and penetration subsystems) is provided. Details of all elements of TPS development and application are covered (materials properties, manufacturing, modeling, testing, installation, and inspection). Disclosures and inventions are listed and potential commercial application of TPS-related technology is discussed.
Conceptual design of a synchronous Mars telecommunications satellite
NASA Technical Reports Server (NTRS)
Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.
1989-01-01
Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.
DOT National Transportation Integrated Search
1974-02-01
The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...
NASA Technical Reports Server (NTRS)
Hall, D. S.
1980-01-01
A development program was developed to design and improve the Emergency Locator Transmitter (ELT) transmitter and to improve the installation in the aircraft and its activation subsystem. There were 1135 general aviation fixed wing aircraft accident files reviewed. A detailed description of the damage to the aircraft was produced. The search aspects of these accidents were studied. As much information as possible about the ELT units in these cases was collected. The data should assist in establishing installation and mounting criteria, better design standards for activation subsystems, and requirements for the new ELT system design in the area of crashworthiness.
Preliminary design report for OTEC stationkeeping subsystems (SKSS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-12-12
Lockheed Ocean Systems with IMODCO prepared these preliminary designs for OTEC Stationkeeping Subsystems (SKSS) under contract to NOAA in support of the Department of Energy OTEC program. The results of Tasks III, V, and VI are presented in this design report. The report consists of five sections: introduction, preliminary designs for the multiple anchor leg (MAL) and tension anchor leg (TAL), costs and schedule, and conclusions. Extensive appendixes provide detailed descriptions of design methodology and include backup calculations and data to support the results presented. The objective of this effort is to complete the preliminary designs for the barge-MAL andmore » Spar-TAL SKSS. A set of drawings is provided for each which show arrangements, configuration, component details, engineering description, and deployment plan. Loads analysis, performance assessment, and sensitivity to requirements are presented, together with the methodology employed to analyze the systems and to derive the results presented. Life cycle costs and schedule are prepared and compared on a common basis. Finally, recommendations for the Commercial Plant SKSS are presented for both platform types.« less
Witchcraft illness in the Evuzok nosological system.
Guimera, L M
1978-12-01
The Evuzok nosological system is structured with respect to two frames of reference, one designating illness as an empirical reality (descriptive subsystem), the other designating it according to its religious, magical and social significance (etiological subsystem). The articulation of these two subsystems is brought about in the process of diagnosis. Having examined this system as a whole, the author devotes his attention to a particular set of etiological categories, those which associate illness with witchcraft (nocturnal illnesses). He attempts to define their distinctive traits and, from this, to determine their common elemental structure. This study, based on a number of years of fieldwork, is part of an ongoing research program on African folk-medicine pursued by the Laboratoire d'Ethnologie et de Sociologie Comparative of the Université de Paris X.
Space Station personal hygiene study
NASA Technical Reports Server (NTRS)
Prejean, Stephen E.; Booher, Cletis R.
1986-01-01
A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.
Research Libraries--Automation and Cooperation.
ERIC Educational Resources Information Center
McDonald, David R.; Hurowitz, Robert
1982-01-01
Description of Research Libraries Information Network, an automated technical processing and information retrieval system, notes subsystems (acquisitions, cataloging, message, print, tables), functions, design, and benefits to participating libraries. (Request complimentary subscription on institution letterhead from Editor, "Perspectives in…
Mathematical modeling of control subsystems for CELSS: Application to diet
NASA Technical Reports Server (NTRS)
Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery
1991-01-01
The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.
ATS-6 engineering performance report. Volume 2: Orbit and attitude controls
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.
The Mariner Mars 1971 radio frequency subsystem
NASA Technical Reports Server (NTRS)
Hughes, R. S.
1972-01-01
The radio frequency subsystem (RFS) for the Mariner Mars 1971 (MM'71) spacecraft is described. The MM'69 RFS was used as the baseline design for the MM'71 RFS, and the report describes the design changes made to the 1969 RFS for use on MM'71. It also cites various problems encountered during the fabrication and testing of the RFS, as well as the types of tests to which the RFS was subjected. In areas where significant problems were encountered, a detailed description of the problem and its solution is presented. In addition, some recommendations are given for modifications to the RFS and test techniques for future programs.
NASA Technical Reports Server (NTRS)
Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.
1983-01-01
Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.
HEAO-A Observatory Description. [experimental design and instrumentation
NASA Technical Reports Server (NTRS)
Dailey, C.; Parnell, T. A.
1977-01-01
The High Energy Astronomy Observatory Program is briefly described to introduce guest observers to the HEAO-A mission. Topics discussed include spacecraft subsystems, scientific instrumentation, and the mission operations concept. Scientific participants such as principal investigators and co-investigators are listed.
Intermediate Design and Analysis of the PANSAT Electrical Power Subsystem
1994-03-01
NAVAL POSTGRADUATE SCHOOL SMonterey, California 6’ AD-A283 610 jAUG 24 1994L THESIS INTERMEDIATE DESIGN AND ANALYSIS OF THE PANSAT ELECTRICAL POWER...data for PANSAM. iii TABLE OF CONTENTS I. INTRODUCTION 1 A. PURPOSE . . . . . . . . . . . . . . . . . . . . . . 1 B. PANSAT PROJECT DESCRIPTION...10 A. INTRODUCTION ................. ................... 10 B. ELECTRICAL CHARACTERISTICS ....... ............ 11 1. I-V Curve
NASA Technical Reports Server (NTRS)
Purdy, William; Hurley, Michael
1995-01-01
The Clementine spacecraft was developed under the 'faster, better, cheaper' theme. The constraints of a low budget coupled with an unusually tight schedule forced many departures from the normal spacecraft development methods. This paper discusses technical lessons learned about several of the mechanisms on the Clementine spacecraft as well as managerial lessons learned for the entire mechanisms subsystem. A quick overview of the Clementine mission is included; the mission schedule and environment during the mechanisms releases and deployment are highlighted. This paper then describes the entire mechanisms subsystem. The design and test approach and key philosophies for a fast-track program are discussed during the description of the mechanisms subsystem. The mechanism subsystem included a marman clamp separation system, a separation nut separation system, a solar panel deployment and pointing system, a high gain antenna feed deployment system, and two separate sensor cover systems. Each mechanism is briefly discussed. Additional technical discussion is given on the marman clamp design, the sensor cover designs, and the design and testing practices for systems driven by heated actuators (specifically paraffin actuators and frangibolts). All of the other mechanisms were of conventional designs and will receive less emphasis. Lessons learned are discussed throughout the paper as they applied to the systems being discussed. Since there is information on many different systems, this paper is organized so that information on a particular topic can be quickly referenced.
STARLAB UV-optical telescope facility, volume 1
NASA Technical Reports Server (NTRS)
1979-01-01
The STARLAB accomplishments to date include both the feasibility definition and detailed design study efforts on critical subsystems. Topics of discussion for this report include: (1) STARLAB capabilities; (2) scientific programs; (3) STARLAB technical description; (4) STARLAB Phase B studies; and (5) technical conclusions Technical recommendations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ERMI, A.M.
2000-01-24
This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.
Landsat-1 and Landsat-2 evaluation report, 23 January 1975 to 23 April 1975
NASA Technical Reports Server (NTRS)
1975-01-01
A description of the work accomplished with the Landsat-1 and Landsat-2 satellites during the period 23 Jan. - 23 Apr. 1975 was presented. The following information was given for each satellite: operational summary, orbital parameters, power subsystem, attitude control subsystem, command/clock subsystem, telemetry subsystem, orbit adjust subsystem, magnetic moment compensating assembly, unified S-band/premodulation processor, electrical interface subsystem, thermal subsystem, narrowband tape recorders, wideband telemetry subsystem, attitude measurement sensor, wideband video tape recorders, return beam vidicon, multispectral scanner subsystem, and data collection subsystem.
Applications Technology Satellite ATS-6 in orbit checkout report
NASA Technical Reports Server (NTRS)
Moore, W.; Prensky, W. (Editor)
1974-01-01
The activities of the ATS-6 spacecraft for the checkout period of approximately four weeks beginning May 30, 1974 are described, along with the results of a performance evaluation of its subsystems and components. The following specific items are discussed: (1) subsystem requirements/specifications and in-orbit performance summary; (2) flight chronology; (3) spacecraft description; (4) structural/deployment subsystems; (5) electrical power subsystem; (6) thermal control subsystem; (7) telemetry and command subsystems; (8) attitude control subsystem; (9) spacecraft propulsion subsystem; (10) communication subsystem; and (12) experiment subsystem.
NASA Technical Reports Server (NTRS)
Callender, E. D.; Clarkson, T. B.; Frasier, C. E.
1980-01-01
The software design and documentation language (SDDL) is a general purpose processor to support a lanugage for the description of any system, structure, concept, or procedure that may be presented from the viewpoint of a collection of hierarchical entities linked together by means of binary connections. The language comprises a set of rules of syntax, primitive construct classes (module, block, and module invocation), and language control directives. The result is a language with a fixed grammar, variable alphabet and punctuation, and an extendable vocabulary. The application of SDDL to the detailed software design of the Command Data Subsystem for the Galileo Spacecraft is discussed. A set of constructs was developed and applied. These constructs are evaluated and examples of their application are considered.
System design package for SIMS prototype system 4, solar heating and domestic hot water
NASA Technical Reports Server (NTRS)
1978-01-01
The system consisted of a modular designed prepackaged solar unit, containing solar collectors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping, and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system were packaged for evaluation.
Final system instrumentation design package for Decade 80 solar house
NASA Technical Reports Server (NTRS)
1978-01-01
The final configuration of the Decade 80 solar house to monitor and collect system performance data is presented. A review demonstrated by actual operation that the system and the data acquisition subsystem operated satisfactorily and installation of instrumentation was in accordance with the design. This design package is made up of (1) site and system description, (2) operating and control modes, and (3) instrumentation program (including sensor schematic).
Selected Lessons Learned in Space Shuttle Orbiter Propulsion and Power Subsystems
NASA Technical Reports Server (NTRS)
Hernandez, Francisco J.; Martinez, Hugo; Ryan, Abigail; Westover, Shayne; Davies, Frank
2011-01-01
Over its 30 years of space flight history, plus the nearly 10 years of design, development test and evaluation, the Space Shuttle Orbiter is full of lessons learned in all of its numerous and complex subsystems. In the current paper, only selected lessons learned in the areas of the Orbiter propulsion and power subsystems will be described. The particular Orbiter subsystems include: Auxiliary Power Unit (APU), Hydraulics and Water Spray Boiler (WSB), Mechanical Flight Controls, Main Propulsion System (MPS), Fuel Cells and Power Reactant and Storage Devices (PRSD), Orbital Maneuvering System (OMS), Reaction Control System (RCS), Electrical Power Distribution (EPDC), electrical wiring and pyrotechnics. Given the complexity and extensive history of each of these subsystems, and the limited scope of this paper, it is impossible to include most of the lessons learned; instead the attempt will be to present a selected few or key lessons, in the judgment of the authors. Each subsystem is presented separate, beginning with an overview of the hardware and their function, a short description of a few historical problems and their lessons, followed by a more comprehensive table listing of the major subsystem problems and lessons. These tables serve as a quick reference for lessons learned in each subsystem. In addition, this paper will establish common lessons across subsystems as well as concentrate on those lessons which are deemed to have the highest applicability to future space flight programs.
A study of discrete control signal fault conditions in the shuttle DPS
NASA Technical Reports Server (NTRS)
Reddi, S. S.; Retter, C. T.
1976-01-01
An analysis of the effects of discrete failures on the data processing subsystem is presented. A functional description of each discrete together with a list of software modules that use this discrete are included. A qualitative description of the consequences that may ensue due to discrete failures is given followed by a probabilistic reliability analysis of the data processing subsystem. Based on the investigation conducted, recommendations were made to improve the reliability of the subsystem.
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
1990-01-01
The results are presented of the first year of a three year project on the automation of the Environmental Control and Life Support System (ECLSS) of the Space Station Freedom (SSF). The results are applicable to other future space mission. The work was done by the Kansas State University NASA/USRA interdisciplinary student design team. The six ECLSS subsystems and how they interact are discussed. Proposed control schemes and their rationale are discussed for the Atmosphere Revitalization (AR) subsystem. Finally, a description of the mathematical models for many components of the ECLSS control system is given.
NASA Technical Reports Server (NTRS)
1972-01-01
A reference handbook of configuration data and design information is presented. It treats the overall system definition, operations and control, and telecommunication service system including link budgets. A brief description of the user transceiver and ground station is presented. A final section includes a summary description of the TDR spacecraft and all the subsystems. The data presented are largely in tabular form for easy reference.
Conceptual design for a lunar-base CELSS
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Cullingford, Hatice S.
1990-01-01
Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.
PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 1
NASA Technical Reports Server (NTRS)
Barker, F. C.
1978-01-01
The operational characteristics of the multiprobe system and its subsystem are described. System level, description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are presented. Bus spacecraft functional and operational descriptions at the subsystem and unit level are presented. The subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram identifies in symbolic logic all signal conditioning encountered along each command signal path into, and each telemetry signal path out of the subsystem.
Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO 2 from Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devenney, Martin; Gilliam, Ryan; Seeker, Randy
The objective of this project was to demonstrate an innovative process to mineralize CO 2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO 2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO 2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updatedmore » Techno-Economic Analysis and CO 2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO 2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO 2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.« less
The SEASAT-A synthetic aperture radar design and implementation
NASA Technical Reports Server (NTRS)
Jordan, R. L.
1978-01-01
The SEASAT-A synthetic aperture imaging radar system is the first imaging radar system intended to be used as a scientific instrument designed for orbital use. The requirement of the radar system is to generate continuous radar imagery with a 100 kilometer swath with 25 meter resolution from an orbital altitude of 800 kilometers. These requirements impose unique system design problems and a description of the implementation is given. The end-to-end system is described, including interactions of the spacecraft, antenna, sensor, telemetry link, recording subsystem, and data processor. Some of the factors leading to the selection of critical system parameters are listed. The expected error sources leading to degradation of image quality are reported as well as estimate given of the expected performance from data obtained during a ground testing of the completed subsystems.
COM1/348: Design and Implementation of a Portal for the Market of the Medical Equipment (MEDICOM)
Palamas, S; Vlachos, I; Panou-Diamandi, O; Marinos, G; Kalivas, D; Zeelenberg, C; Nimwegen, C; Koutsouris, D
1999-01-01
Introduction The MEDICOM system provides the electronic means for medical equipment manufacturers to communicate online with their customers supporting the Purchasing Process and the Post Market Surveillance. The MEDICOM service will be provided over the Internet by the MEDICOM Portal, and by a set of distributed subsystems dedicated to handle structured information related to medical devices. There are three kinds of these subsystems, the Hypermedia Medical Catalogue (HMC), Virtual Medical Exhibition (VME), which contains information in a form of Virtual Models, and the Post Market Surveillance system (PMS). The Universal Medical Devices Nomenclature System (UMDNS) is used to register all products. This work was partially funded by the ESPRIT Project 25289 (MEDICOM). Methods The Portal provides the end user interface operating as the MEDICOM Portal, acts as the yellow pages for finding both products and providers, providing links to the providers servers, implements the system management and supports the subsystem database compatibility. The Portal hosts a database system composed of two parts: (a) the Common Database, which describes a set of encoded parameters (like Supported Languages, Geographic Regions, UMDNS Codes, etc) common to all subsystems and (b) the Short Description Database, which contains summarised descriptions of medical devices, including a text description, the codes of the manufacturer, UMDNS code, attribute values and links to the corresponding HTML pages of the HMC, VME and PMS servers. The Portal provides the MEDICOM user interface including services like end user profiling and registration, end user query forms, creation and hosting of newsgroups, links to online libraries, end user subscription to manufacturers' mailing lists, online information for the MEDICOM system and special messages or advertisements from manufacturers. Results Platform independence and interoperability characterise the system design. A general purpose RDBMS is used for the implementation of the databases. The end user interface is implemented using HTML and Java applets, while the subsystem administration applications are developed using Java. The JDBC interface is used in order to provide database access to these applications. The communication between subsystems is implemented using CORBA objects and Java servlets are used in subsystem servers for the activation of remote operations. Discussion In the second half of 1999, the MEDICOM Project will enter the phase of evaluation and pilot operation. The benefits of the MEDICOM system are expected to be the establishment of a world wide accessible marketplace between providers and health care professionals. The latter will achieve the provision of up-to-date and high quality products information in an easy and friendly way, and the enhancement of the marketing procedures and after sales support efficiency.
Performance of the Gemini Planet Imager’s adaptive optics system
Poyneer, Lisa A.; Palmer, David W.; Macintosh, Bruce; ...
2016-01-07
The Gemini Planet Imager’s adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. We give a definitive description of the system’s algorithms and technologies as built. Ultimately, the error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.
SIRU development. Volume 1: System development
NASA Technical Reports Server (NTRS)
Gilmore, J. P.; Cooper, R. J.
1973-01-01
A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results.
NASA Technical Reports Server (NTRS)
1976-01-01
The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.
Preliminary design package for solar heating and hot water system
NASA Technical Reports Server (NTRS)
1977-01-01
The preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information contained in this report includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition.
NASA Langley Airborne High Spectral Resolution Lidar Instrument Description
NASA Technical Reports Server (NTRS)
Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.
2006-01-01
NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.
NASA Technical Reports Server (NTRS)
1973-01-01
Configuration data and design information for the space shuttle launched configuration is presented. The overall system definition, operations and control, and telecommunication service system including link budgets are discussed. A brief description of the user transceiver and ground station is presented. A final section includes a summary description of the TDR spacecraft and all the subsystems. The data presented are largely in tabular form.
NASA Technical Reports Server (NTRS)
Lu, Richard; Chan, Jeffrey
1994-01-01
The original design of the Student Mentored Advanced Research and Technology Satellite (SMARTSat) began in January of 1994. The mission adhered to the guidelines and constraints set forth by the Student Explorer Demonstration Initiative Proposal, which was sponsored by the Universities Space Research Association. This report represents a redesign of that original concept. The main differences include a higher orbit and a three axis stabilization system. Of course, these changes imparted significant effects upon the other subsystems. Outlined in this document are those modifications and it offers some new analyses as well. For each subsystem there is a brief description, followed by relevant design assumptions, a summary of conclusions, and finally all pertinent supporting data and graphs. Towards the end of the report. the important issue of cost is addressed as well. Whenever possible, parametric analyses were made.
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
Definition of ground test for Large Space Structure (LSS) control verification
NASA Technical Reports Server (NTRS)
Waites, H. B.; Doane, G. B., III; Tollison, D. K.
1984-01-01
An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.
TACAN operational description for the space shuttle orbital flight test program
NASA Technical Reports Server (NTRS)
Hughes, C. L.; Hudock, P. J.
1979-01-01
The TACAN subsystems (three TACAN transponders, six antennas, a subsystem operating program, and redundancy management software in a tutorial form) are discussed and the interaction between these subsystems and the shuttle navigation system are identified. The use of TACAN during the first space transportation system (STS-1), is followed by a brief functional description of the TACAN hardware, then proceeds to cover the software units with a view to the STS-1, and ends with a discussion on the shuttle usage of the TACAN data and anticipated performance.
Practical design considerations for photovoltaic power station
NASA Astrophysics Data System (ADS)
Swanson, T. D.
Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.
Microcomputer-controlled world time display for public area viewing
NASA Astrophysics Data System (ADS)
Yep, S.; Rashidian, M.
1982-05-01
The design, development, and implementation of a microcomputer-controlled world clock is discussed. The system, designated international Time Display System (ITDS), integrates a Geochron Calendar Map and a microcomputer-based digital display to automatically compensate for daylight savings time, leap year, and time zone differences. An in-depth technical description of the design and development of the electronic hardware, firmware, and software systems is provided. Reference material on the time zones, fabrication techniques, and electronic subsystems are also provided.
Overview of the solar dynamic ground test demonstration program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1993-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).
The design of a petabyte archive and distribution system for the NASA ECS project
NASA Technical Reports Server (NTRS)
Caulk, Parris M.
1994-01-01
The NASA EOS Data and Information System (EOSDIS) Core System (ECS) will contain one of the largest data management systems ever built - the ECS Science and Data Processing System (SDPS). SDPS is designed to support long term Global Change Research by acquiring, producing, and storing earth science data, and by providing efficient means for accessing and manipulating that data. The first two releases of SDPS, Release A and Release B, will be operational in 1997 and 1998, respectively. Release B will be deployed at eight Distributed Active Archiving Centers (DAAC's). Individual DAAC's will archive different collections of earth science data, and will vary in archive capacity. The storage and management of these data collections is the responsibility of the SDPS Data Server subsystem. It is anticipated that by the year 2001, the Data Server subsystem at the Goddard DAAC must support a near-line data storage capacity of one petabyte. The development of SDPS is a system integration effort in which COTS products will be used in favor of custom components in very possible way. Some software and hardware capabilities required to meet ECS data volume and storage management requirements beyond 1999 are not yet supported by available COTS products. The ECS project will not undertake major custom development efforts to provide these capabilities. Instead, SDPS and its Data Server subsystem are designed to support initial implementations with current products, and provide an evolutionary framework that facilitates the introduction of advanced COTS products as they become available. This paper provides a high-level description of the Data Server subsystem design from a COTS integration standpoint, and discussed some of the major issues driving the design. The paper focuses on features of the design that will make the system scalable and adaptable to changing technologies.
Performance of Nickel-Cadmium Batteries on the POES Series of Weather Satellites
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Chetty, P. R. K.; Boyce, Ron; Smalls, Vanessa; Spitzer, Tom
1998-01-01
The advanced Television Infrared Observation satellite program is a cooperative effort between the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), the United Kingdom, Canada and France, for providing day and night global environmental and associated data. NASA is responsible for procurement launch, and checkout of these spacecraft before transferring them over to NOAA, who operates the spacecraft to support weather forecasting, severe storm tracking, and 'meteorological research by the National Weather Service. These spacecraft with all weather monitoring instruments imposed challenging requirements for the onboard electrical power subsystem (EPS). This paper provides first a brief overview of the overall power subsystem, followed by a description of batteries. A unique power subsystem design which provides 'tender-loving-care' to these batteries is highlighted. This is followed by the on-orbit maintenance and performance data of the batteries since launch.
Research on Separation of Three Powers Architecture for Trusted OS
NASA Astrophysics Data System (ADS)
Li, Yu; Zhao, Yong; Xin, Siyuan
The privilege in the operating system (OS) often results in the break of confidentiality and integrity of the system. To solve this problem, several security mechanisms are proposed, such as Role-based Access Control, Separation of Duty. However, these mechanisms can not eliminate the privilege in OS kernel layer. This paper proposes a Separation of Three Powers Architecture (STPA). The authorizations in OS are divided into three parts: System Management Subsystem (SMS), Security Management Subsystem (SEMS) and Audit Subsystem (AS). Mutual support and mutual checks and balances which are the design principles of STPA eliminate the administrator in the kernel layer. Furthermore, the paper gives the formal description for authorization division using the graph theory. Finally, the implementation of STPA is given. Proved by experiments, the Separation of Three Powers Architecture we proposed can provide reliable protection for the OS through authorization division.
Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test
NASA Technical Reports Server (NTRS)
Callahan, M. R.; Lubman, A.; Pickering, Karen D.
2009-01-01
Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.
Mars surface penetrator: System description
NASA Technical Reports Server (NTRS)
Manning, L. A. (Editor)
1977-01-01
A point design of a penetrator system for a Mars mission is described. A strawman payload which is to conduct measurements of geophysical and meteorological parameters is included in the design. The subsystems used in the point design are delineated in terms of power, mass, volume, data, and functional modes. The prospects for survival of the rigors of emplacement are described. Data handling and communications plans are presented to allow consideration of the requirements placed by the penetrator on the orbiter and ground operations. The point design is technically feasible and the payload selection scientifically desirable.
Knowledge representation to support reasoning based on multiple models
NASA Technical Reports Server (NTRS)
Gillam, April; Seidel, Jorge P.; Parker, Alice C.
1990-01-01
Model Based Reasoning is a powerful tool used to design and analyze systems, which are often composed of numerous interactive, interrelated subsystems. Models of the subsystems are written independently and may be used together while they are still under development. Thus the models are not static. They evolve as information becomes obsolete, as improved artifact descriptions are developed, and as system capabilities change. Researchers are using three methods to support knowledge/data base growth, to track the model evolution, and to handle knowledge from diverse domains. First, the representation methodology is based on having pools, or types, of knowledge from which each model is constructed. In addition information is explicit. This includes the interactions between components, the description of the artifact structure, and the constraints and limitations of the models. The third principle we have followed is the separation of the data and knowledge from the inferencing and equation solving mechanisms. This methodology is used in two distinct knowledge-based systems: one for the design of space systems and another for the synthesis of VLSI circuits. It has facilitated the growth and evolution of our models, made accountability of results explicit, and provided credibility for the user community. These capabilities have been implemented and are being used in actual design projects.
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.
NASA Technical Reports Server (NTRS)
1973-01-01
Configuration data and design information for the Atlas Centaur launched configuration are presented. Overall system definition, operations and control, and telecommunication service system, including link budgets, are discussed. A brief description of the user telecommunications equipment and ground station is presented. A summary description of the TDR spacecraft and all the subsystems is included. The data presented are largely in tabular form. A brief treatment of an optional configuration with enhanced telecommunications service is described.
NASA Technical Reports Server (NTRS)
Wilber, George F.
2017-01-01
This Software Description Document (SDD) captures the design for developing the Flight Interval Management (FIM) system Configurable Graphics Display (CGD) software. Specifically this SDD describes aspects of the Boeing CGD software and the surrounding context and interfaces. It does not describe the Honeywell components of the CGD system. The SDD provides the system overview, architectural design, and detailed design with all the necessary information to implement the Boeing components of the CGD software and integrate them into the CGD subsystem within the larger FIM system. Overall system and CGD system-level requirements are derived from the CGD SRS (in turn derived from the Boeing System Requirements Design Document (SRDD)). Display and look-and-feel requirements are derived from Human Machine Interface (HMI) design documents and working group recommendations. This Boeing CGD SDD is required to support the upcoming Critical Design Review (CDR).
PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document
NASA Technical Reports Server (NTRS)
Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.
1978-01-01
The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.
System design package for IBM system one: solar heating and domestic hot water
NASA Technical Reports Server (NTRS)
1977-01-01
This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.
Solar process water heat for the IRIS images custom color photo lab
NASA Technical Reports Server (NTRS)
1980-01-01
The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.
Improved waste water vapor compression distillation technology. [for Spacelab
NASA Technical Reports Server (NTRS)
Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.
1977-01-01
The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.
Launch Processing System. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.
1976-01-01
This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.
TOPEX satellite concept. TOPEX option study report
NASA Technical Reports Server (NTRS)
Meyer, D. P.; Case, C. M.
1982-01-01
Candidate bus equipment from the Viking, Applications Explorer Mission, and Small Scientific Satellite programs for application to the TOPEX mission options is assessed. Propulsion module equipment and subsystem candidates from the Applications Explorer Mission satellites and the Small Scientific Satellite spacecraft are evaluated for those TOPEX options. Several subsystem concepts appropriate to the TOPEX options are described. These descriptions consider performance characteristics of the subsystems. Cost and availability information on the candidate equipment and subsystems are also provided.
Goddard trajectory determination subsystem: Mathematical specifications
NASA Technical Reports Server (NTRS)
Wagner, W. E. (Editor); Velez, C. E. (Editor)
1972-01-01
The mathematical specifications of the Goddard trajectory determination subsystem of the flight dynamics system are presented. These specifications include the mathematical description of the coordinate systems, dynamic and measurement model, numerical integration techniques, and statistical estimation concepts.
NASA Technical Reports Server (NTRS)
1973-01-01
Configuration data and design information for a Delta 2914 launched configuration with greatly enhanced telecommunication service over the Part I Delta 2914 configuration is contained. The overall system definition, operations and control, and telecommunication service system, including link budgets are discussed. A brief description of the user transceiver and ground station is presented. A final section includes a summary description of the TDR spacecraft and all the subsystems. The data presented are largely in tabular form.
Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.
2001-01-01
Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.
The precision-processing subsystem for the Earth Resources Technology Satellite.
NASA Technical Reports Server (NTRS)
Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.
1972-01-01
Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.
Portable Life Support Subsystem Thermal Hydraulic Performance Analysis
NASA Technical Reports Server (NTRS)
Barnes, Bruce; Pinckney, John; Conger, Bruce
2010-01-01
This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.
The new Langley Research Center advanced real-time simulation (ARTS) system
NASA Technical Reports Server (NTRS)
Crawford, D. J.; Cleveland, J. I., II
1986-01-01
Based on a survey of current local area network technology with special attention paid to high bandwidth and very low transport delay requirements, NASA's Langley Research Center designed a new simulation subsystem using the computer automated measurement and control (CAMAC) network. This required significant modifications to the standard CAMAC system and development of a network switch, a clocking system, new conversion equipment, new consoles, supporting software, etc. This system is referred to as the advanced real-time simulation (ARTS) system. It is presently being built at LaRC. This paper provides a functional and physical description of the hardware and a functional description of the software. The requirements which drove the design are presented as well as present performance figures and status.
Systems integration of lunar Campsite vehicles
NASA Technical Reports Server (NTRS)
Capps, Stephen; Ruff, Theron
1992-01-01
This paper describes the configuration design and subsystems integration resolution for lunar Campsite vehicles and the crew vehicles (CVs) which support them. This concept allows early return to the moon while minimizing hardware development. Once in place, the Campsite can be revisited for extended periods. Configuration and operations issues are addressed, and explanations of the parametric subsystem analysis, as well as descriptions of the hardware concept and performance data, are provided. Within an assumed set of launch and mission constraints, a common vehicle stage design for both the Campsite and the CV landers was the chief design driver. Accommodation of a heat-shielded, ballistic crew transportation/return vehicle, scars for later system growth and upgrades, landing the crew in close proximity to the Campsite, and appropriate kinds of robotic systems were all secondary design drivers. Physical integration of the crew module and airlock, structural system, thermal radiators, power production and storage systems, external life support consumables, and payloads are covered. The vehicle performance data were derived using a Boeing lunar transportation sizing code to optimize vehicle stage sizes and commonality. Configuration trades were conducted and detailed sketches were produced.
Conceptual design of the 6 MW Mod-5A wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, R. S.; Lucas, W. C.
1982-01-01
The General Electric Company, Advanced Energy Programs Department, is designing under DOE/NASA sponsorship the MOD-5A wind turbine system which must generate electricity for 3.75 cent/KWH (1980) or less. During the Conceptual Design Phase, completed in March, 1981, the MOD-5A WTG system size and features were established as a result of tradeoff and optimization studies driven by minimizing the system cost of energy (COE). This led to a 400' rotor diameter size. The MOD-5A system which resulted is defined in this paper along with the operational and environmental factors that drive various portions of the design. Development of weight and cost estimating relationships (WCER's) and their use in optimizing the MOD-5A are discussed. The results of major tradeoff studies are also presented. Subsystem COE contributions for the 100th unit are shown along with the method of computation. Detailed descriptions of the major subsystems are given, in order that the results of the various trade and optimization studies can be more readily visualized.
Power conditioning for space nuclear reactor systems
NASA Technical Reports Server (NTRS)
Berman, Baruch
1987-01-01
This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.
NASA Technical Reports Server (NTRS)
1972-01-01
A dual spin stabilized TDR spacecraft design is presented for low data rate (LDR) and medium data rate (MDR) user spacecraft telecommunication relay service. The relay satellite provides command and data return channels for unmanned users together with duplex voice and data communication channels for manned user spacecraft. TDRS/ground links are in the Ku band. Command links are provided at UHF for LDR users and S band for MDR users. Voice communication channels are provided at UHF/VHF for LDR users and at S band for MDR users. The spacecraft is designed for launch on the Delta 2914 with system deployment planned for 1978. This volume contains a description of the overall TDR spacecraft configuration, a detailed description of the spacecraft subsystems, a reliability analysis, and a product effectiveness plan.
Design, construction, and testing of a five active axes magnetic bearing system
NASA Technical Reports Server (NTRS)
Delprete, Cristiana; Genta, Giancarlo; Carabelli, Stefano
1994-01-01
A high speed electric spindle based on active electromagnetic suspension technology has been designed, built, and tested. The main goal of the research work was the construction of a highly modular unit which can be used for teaching and research purposes. The design of the electromechanical components and of the control unit is described in detail, together with the characterization tests performed on the various subsystems. A description of the preliminary tests on the unit, conducted at speeds not in excess of the first deformation critical speed of the rotor, concludes the work.
Design and development of a multibeam 1.4 GHz pushbroom microwave radiometer
NASA Technical Reports Server (NTRS)
Lawrence, R. W.; Bailey, M. C.; Harrington, R. F.; Hearn, C. P.; Wells, J. G.; Stanley, W. D.
1986-01-01
The design and operation of a multiple beam, digital signal processing radiometer are discussed. The discussion includes a brief description of each major subsystem and an overall explanation of the hardware requirements and operation. A series of flight tests was conducted in which sea-truth sites, as well as an existing radiometer were used to verify the Pushbroom Radiometer performance. The results of these tests indicate that the Pushbroom Radiometer did meet the sensitivity design goal of 1.0 kelvin, and exceeded the accuracy requirement of 2.0 kelvin. Additional performance characteristics and test results are also presented.
Airport-Noise Levels and Annoyance Model (ALAMO) user's guide
NASA Technical Reports Server (NTRS)
Deloach, R.; Donaldson, J. L.; Johnson, M. J.
1986-01-01
A guide for the use of the Airport-Noise Level and Annoyance MOdel (ALAMO) at the Langley Research Center computer complex is provided. This document is divided into 5 primary sections, the introduction, the purpose of the model, and an in-depth description of the following subsystems: baseline, noise reduction simulation and track analysis. For each subsystem, the user is provided with a description of architecture, an explanation of subsystem use, sample results, and a case runner's check list. It is assumed that the user is familiar with the operations at the Langley Research Center (LaRC) computer complex, the Network Operating System (NOS 1.4) and CYBER Control Language. Incorporated within the ALAMO model is a census database system called SITE II.
Introduction to the Portable Life Support Schematic and Technology Development Components
NASA Technical Reports Server (NTRS)
Conger, Bruce
2008-01-01
Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.
Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database
NASA Technical Reports Server (NTRS)
Levack, Daniel
1993-01-01
The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.
Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Boyle, Robert V.
1994-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.
Mechatronic system design course for undergraduate programmes
NASA Astrophysics Data System (ADS)
Saleem, A.; Tutunji, T.; Al-Sharif, L.
2011-08-01
Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.
Apollo experience report: Development of the extravehicular mobility unit
NASA Technical Reports Server (NTRS)
Lutz, C. C.; Stutesman, H. L.; Carson, M. A.; Mcbarron, J. W., II
1975-01-01
The development and performance history of the Apollo extravehicular mobility unit and its major subsystems is described. The three major subsystems, the pressure garment assembly, the portable life-support system, and the oxygen purge system, are defined and described in detail as is the evolutionary process that culminated in each major subsystem component. Descriptions of ground-support equipment and the qualification testing process for component hardware are also presented.
Photovoltaic Systems Test Facilities: Existing capabilities compilation
NASA Technical Reports Server (NTRS)
Volkmer, K.
1982-01-01
A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.
SEP thrust subsystem performance sensitivity analysis
NASA Technical Reports Server (NTRS)
Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.
1973-01-01
This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.
NASA Technical Reports Server (NTRS)
1974-01-01
The specifications for the Earth Observatory Satellite (EOS) general purpose aircraft segment are presented. The satellite is designed to provide attitude stabilization, electrical power, and a communications data handling subsystem which can support various mission peculiar subsystems. The various specifications considered include the following: (1) structures subsystem, (2) thermal control subsystem, (3) communications and data handling subsystem module, (4) attitude control subsystem module, (5) power subsystem module, and (6) electrical integration subsystem.
Shuttle infrared telescope facility (SIRTF) preliminary design study
NASA Technical Reports Server (NTRS)
1976-01-01
An overall picture of the SIRTF system is first presented, including the telescope, focal plane instruments, cryogen supply, shuttle and spacelab support subsystems, mechanical and data interfaces with the vehicles, ground support equipment, and system requirements. The optical, mechanical, and thermal characteristics of the telescope are then evaluated, followed by a description of the SIRTF internal stabilization subsystem and its interface with the IPS. Expected performance in the shuttle environment is considered. Tradeoff studies are described, including the Gregorian versus the Cassegrain telescope, aperture diameter tradeoff, a CCD versus an image dissector for the star tracker, the large ambient telescope versus the SIRTF, and a dedicated gimbal versus the IPS. Operations from integration through launch and recovery are also discussed and cost estimates for the program are presented.
Satellite power systems (SPS) concept definition study. Volume 2, part 1: System engineering
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
Top level trade studies are presented, including comparison of solid state and klystron concepts, higher concentration on the solar cells, composite and aluminum structure, and several variations to the reference concept. Detailed trade studies are presented in each of the subsystem areas (solar array, power distribution, structures, thermal control, attitude control and stationkeeping, microwave transmission, and ground receiving station). A description of the selected point design is also presented.
NASA Technical Reports Server (NTRS)
Jackson, J. K.; Yakut, M. M.
1976-01-01
An all-important first step in the development of the Spacelab Life Science Laboratory is the design of the Biological Specimen Holding Facility (BSHF) which will provide accommodation for living specimens for life science research in orbit. As a useful tool in the understanding of physiological and biomedical changes produced in the weightless environment, the BSHF will enable biomedical researchers to conduct in-orbit investigations utilizing techniques that may be impossible to perform on human subjects. The results of a comprehensive study for defining the BSHF, description of its experiment support capabilities, and the planning required for its development are presented. Conceptual designs of the facility, its subsystems and interfaces with the Orbiter and Spacelab are included. Environmental control, life support and data management systems are provided. Interface and support equipment required for specimen transfer, surgical research, and food, water and waste storage is defined. New and optimized concepts are presented for waste collection, feces and urine separation and sampling, environmental control, feeding and watering, lighting, data management and other support subsystems.
Spacecraft design project: High temperature superconducting infrared imaging satellite
NASA Technical Reports Server (NTRS)
1991-01-01
The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.
Design Aspects of the VLBI2010 System - Progress Report of the IVS VLBI2010 Committee
NASA Technical Reports Server (NTRS)
Petrachenko, Bill; Niell, Arthur; Behrend, Dirk; Corey, Brian; Boehm, Johannes; Chralot, Patrick; Collioud, Arnaud; Gipson, John; Haas, Ruediger; Hobiger, Thomas;
2009-01-01
This report summarizes the progress made in developing the next generation VLBI system, dubbed the VLBI2010 system. The VLBI2010 Committee of the International VLBI Service for Geodesy and Astrometry (IVS) worked on the design aspects of the new system. The report covers Monte Carlo simulations showing the impact of the new operating modes on the final products. A section on system considerations describes the implications for the VLBI2010 system parameters by considering the new modes and system-related issues such as sensitivity, antenna slew rate, delay measurement error. RF1, frequency requirements, antenna deformation, and source structure corrections_ This is followed by a description of all major subsystems and recommendations for the network, station. and antenna. Then aspects of the feed, polarization processing. calibration, digital back end, and correlator subsystems are covered. A section is dedicated to the NASA. proof-of-concept demonstration. Finally, sections tm operational considerations, on risks and fallback options, and on the next steps complete the report.
NASA Technical Reports Server (NTRS)
Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.; Dennis, Mark F.; Martin, Timothy A.
1990-01-01
The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient, effective, and reliable management of cryogenic fluid in the reduced gravity space environment. The COLD-SAT program will provide the necessary data base and provide low-g proving of fluid and thermal models of cryogenic storage, transfer, and resupply concepts and processes. A conceptual approach was developed and an overview of the results of the 24 month COLD-SAT Phase A feasibility is described which includes: (1) a definition of the technology needs and the accompanying experimental 3 month baseline mission; (2) a description of the experiment subsystem, major features and rationale for satisfaction of primary and secondary experiment requirements using liquid hydrogen as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on areas of greatest challenge.
DeMAID: A Design Manager's Aide for Intelligent Decomposition user's guide
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, the couplings among modules and the presence of iterative loops is determined. This is important because the design manager must know how to group the modules into subsystems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information become available or as the design specifications change. The purpose of this research is to develop a knowledge-based tool called the Design Manager's Aide for Intelligent Decomposition (DeMAID) to act as an intelligent advisor for the design manager. DeMaid identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. DeMAID also provides the design manager with the capability of examining the trade-offs between sequential and parallel processing. This type of approach could lead to a substantial savings or organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams. This report serves as a User's Guide for the program.
Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.
NASA Technical Reports Server (NTRS)
Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.
1972-01-01
Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.
Advanced Devices for Cryogenic Thermal Management
NASA Astrophysics Data System (ADS)
Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.
2006-04-01
This paper describes six advanced cryogenic thermal management devices/subsystems developed by Swales Aerospace for ground/space-based applications of interest to NASA, DoD, and the commercial sector. The devices/subsystems described herein include the following: (a) a differential thermal expansion cryogenic thermal switch (DTE-CTSW) constructed with high purity aluminum end-pieces and an Ultem support rod for the 6 K Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) (b) a quad-redundant DTE-CTSW assembly for the 35 K science instruments (NIRCam, NIRSpec, and FGS) mounted on the JWST Integrated Science Instrument Module (ISIM) (c) a cryogenic diode heat pipe (CDHP) thermal switching system using methane as the working fluid for the 100 K CRISM hyperspectral mapping instrument on the Mars Reconnaissance Orbiter (MRO) and (d) three additional devices/subsystems developed during the AFRL-sponsored CRYOTOOL program, which include a dual DTE-CTSW/dual cryocooler test bed, a miniaturized neon cryogenic loop heat pipe (mini-CLHP), and an across gimbal cryogenic thermal transport system (GCTTS). For the first three devices/subsystems mentioned above, this paper describes key aspects of the development efforts including concept definition, design, fabrication, and testing. For the latter three, this paper provides brief overview descriptions as key details are provided in a related paper.
Thermal design of the IMP-I and H spacecraft
NASA Technical Reports Server (NTRS)
Hoffman, R. H.
1974-01-01
A description of the thermal subsystem of the IMP-I and H spacecraft is presented. These two spacecraft were of a larger and more advanced type in the Explorer series and were successfully launched in March 1971 and September 1972. The thermal requirements, analysis, and design of each spacecraft are described including several specific designs for individual experiments. Techniques for obtaining varying degrees of thermal isolation and contact are presented. The thermal control coatings including the spaceflight performance of silver-coated FEP Teflon are discussed. Predicted performance is compared to measured flight data. The good agreement between them verifies the validity of the thermal model and the selection of coatings.
A Personnel System for People.
ERIC Educational Resources Information Center
Smith, Robin C.
A description is provided of the personnel subsystem of the computerized School Information System (SIS) developed by the Department of Advance Planning and Development of the Montgomery County, Maryland Public Schools. Other subsystems of SIS are being developed to deal with data relating to pupils, material, finance and facilities. The first…
Statistical Design Model (SDM) of satellite thermal control subsystem
NASA Astrophysics Data System (ADS)
Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi
2016-07-01
Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware
NASA Technical Reports Server (NTRS)
Vane, Gregg (Editor)
1987-01-01
The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.
Design criteria for a PC-based common user interface to remote information systems
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Hall, Philip P.
1984-01-01
A set of design criteria are presented which will allow the implementation of an interface to multiple remote information systems on a microcomputer. The focus of the design description is on providing the user with the functionality required to retrieve, store and manipulate data residing in remote information systems through the utilization of a standardized interface system. The intent is to spare the user from learning the details of retrieval from specific systems while retaining the full capabilities of each system. The system design includes multi-level capabilities to enhance usability by a wide range of users and utilizes microcomputer graphics capabilities where applicable. A data collection subsystem for evaluation purposes is also described.
A digital video tracking system
NASA Astrophysics Data System (ADS)
Giles, M. K.
1980-01-01
The Real-Time Videotheodolite (RTV) was developed in connection with the requirement to replace film as a recording medium to obtain the real-time location of an object in the field-of-view (FOV) of a long focal length theodolite. Design philosophy called for a system capable of discriminatory judgment in identifying the object to be tracked with 60 independent observations per second, capable of locating the center of mass of the object projection on the image plane within about 2% of the FOV in rapidly changing background/foreground situations, and able to generate a predicted observation angle for the next observation. A description is given of a number of subsystems of the RTV, taking into account the processor configuration, the video processor, the projection processor, the tracker processor, the control processor, and the optics interface and imaging subsystem.
NASA Technical Reports Server (NTRS)
1981-01-01
In the development of the business system for the SRB automated production control system, special attention had to be paid to the unique environment posed by the space shuttle. The issues posed by this environment, and the means by which they were addressed, are reviewed. The change in management philosphy which will be required as NASA switches from one-of-a-kind launches to multiple launches is discussed. The implications of the assembly process on the business system are described. These issues include multiple missions, multiple locations and facilities, maintenance and refurbishment, multiple sources, and multiple contractors. The implications of these aspects on the automated production control system are reviewed including an assessment of the six major subsystems, as well as four other subsystem. Some general system requirements which flow through the entire business system are described.
An Algorithm for Integrated Subsystem Embodiment and System Synthesis
NASA Technical Reports Server (NTRS)
Lewis, Kemper
1997-01-01
Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.
An intelligent advisor for the design manager
NASA Technical Reports Server (NTRS)
Rogers, James L.; Padula, Sharon L.
1989-01-01
A design problem is viewed as a complex system divisible into modules. Before the design of a complex system can begin, much time and money are spent in determining the couplings among modules and the presence of iterative loops. This is important because the design manager must know how to group the modules into substems and how to assign subsystems to design teams so that changes in one subsystem will have predictable effects on other subsystems. Determining these subsystems is not an easy, straightforward process and often important couplings are overlooked. Moreover, the planning task must be repeated as new information becomes available or as the design specifications change. The purchase of this research effort is to develop a knowledge-based tool to act as an intelligent advisor for the design manager. This tool identifies the subsystems of a complex design problem, orders them into a well-structured format, and marks the couplings among the subsystems to facilitate the use of multilevel tools. The tool was tested in the decomposition of the COFS (Control of Flexible Structures) mast design which has about 50 modules. This test indicated that this type of approach could lead to a substantial savings by organizing and displaying a complex problem as a sequence of subsystems easily divisible among design teams.
14 CFR 415.127 - Flight safety system design and operation data.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...
14 CFR 415.127 - Flight safety system design and operation data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...
14 CFR 415.127 - Flight safety system design and operation data.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...
14 CFR 415.127 - Flight safety system design and operation data.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system and subsystems design and operational requirements. (c) Flight safety system diagram. An applicant... subsystems. The diagram must include the following subsystems defined in part 417, subpart D of this chapter... data processing, display, and recording system; and flight safety official console. (d) Subsystem...
Laboratory measurements of on-board subsystems
NASA Technical Reports Server (NTRS)
Nuspl, P. P.; Dong, G.; Seran, H. C.
1991-01-01
Good progress was achieved on the test bed for on-board subsystems for future satellites. The test bed is for subsystems developed previously. Four test setups were configured in the INTELSAT technical labs: (1) TDMA on-board modem; (2) multicarrier demultiplexer demodulator; (3) IBS/IDR baseband processor; and (4) baseband switch matrix. The first three series of tests are completed and the tests on the BSM are in progress. Descriptions of test setups and major test results are included; the format of the presentation is outlined.
The Space Station air revitalization subsystem design concept
NASA Technical Reports Server (NTRS)
Ray, C. D.; Ogle, K. Y.; Tipps, R. W.; Carrasquillo, R. L.; Wieland, P.
1987-01-01
The current status of the Space Station (SS) Environmental Control and Life Support System (ECLSS) Air Revitalization Subsystem (ARS) design is outlined. ARS performance requirements are provided, along with subsystem options for each ARS function and selected evaluations of the relative merits of each subsystem. Detailed computer models that have been developed to analyze individual subsystem performance capabilities are also discussed. A summary of ARS subsystem level testing planned and completed by NASA Marshall Space Flight Center (MSFC) is given.
S-band range tracker and Surveillance Lab interface
NASA Astrophysics Data System (ADS)
Bush, B. D.
1983-09-01
This report documents the design, construction, test and laboratory integration of the range tracker and associated subsystems for the RADC/OC Surveillance Laboratory's S-Band tracking radar. This development was accomplished over the period from December 1981 to November 1983 and was designed, constructed and tested entirely in-house. This report contains information on the use of the range tracker, its interfaces to other laboratory equipment, the philosophy behind its design, the detailed design of the hardware (including schematics, timing and cabling diagrams), the detailed software design (including flowcharts), and the mathematical description of its algorithms. The range tracker will be used in conjunction with other equipment in the OC Surveillance Lab in the taking and recording of radar data during flight tests.
A description of STEMS-- the stand and tree evaluation and modeling system.
David M. Belcher; Margaret R. Holdaway; Gary J. Brand
1982-01-01
This paper describes STEMS (Stand and Tree Evaluation and Modeling System), the current computerized Lake State tree growth projection system. It presents the program structure, discusses the growth and mortality components, the management subsystem, and the regeneration subsystem. Some preliminary results of model testing are presented and an application is...
NASA Technical Reports Server (NTRS)
Dupnick, E.; Wiggins, D.
1980-01-01
The scheduling algorithm for mission planning and logistics evaluation (SAMPLE) is presented. Two major subsystems are included: The mission payloads program; and the set covering program. Formats and parameter definitions for the payload data set (payload model), feasible combination file, and traffic model are documented.
NASA Technical Reports Server (NTRS)
Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.
1990-01-01
A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.
Spacecraft expected cost analysis with k-out-of-n:G subsystems
NASA Technical Reports Server (NTRS)
Patterson, Richard; Suich, Ron
1991-01-01
In designing a subsystem for a spacecraft, the design engineer is often faced with a number of options ranging from planning an inexpensive subsystem with low reliability to selecting a highly reliable system that would cost much more. We minimize the total of the cost of the subsytem and the costs that would occur if the subsystem fails. We choose the subsystem with the lowest total. A k-out-of-n:G subsystem has n modules, of which k are required to be good for the subsystem to be good. We examine two models to illustrate the principles of the k-out-of-n:G subsystem designs. For the first model, the following assumptions are necessary: the probability of failure of any module in the system is not affected by the failure of any other module; and each of the modules has the same probabillity of success. For the second model we are also free to choose k in our subsystem.
Project FIRES. Volume 4: Prototype Protective Ensemble Qualification Test Report, Phase 1B
NASA Technical Reports Server (NTRS)
Abeles, F. J.
1980-01-01
The qualification testing of a prototype firefighter's protective ensemble is documented. Included are descriptions of the design requirements, the testing methods, and the test apparatus. The tests include measurements of individual subsystem characteristics in areas relating to both physical testing, such as heat, flame, impact penetration and human factors testing, such as dexterity, grip, and mobility. Also, measurements related to both physical and human factors testing of the complete ensemble, such as water protection, metabolic expenditures, and compatibility are considered.
NASA Technical Reports Server (NTRS)
Anthony, K.
1978-01-01
A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.
NASA Technical Reports Server (NTRS)
Carpenter, K. H.
1974-01-01
The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.
Subsystems component definitions summary program
NASA Technical Reports Server (NTRS)
Scott, A. Don; Thomas, Carolyn C.; Simonsen, Lisa C.; Hall, John B., Jr.
1991-01-01
A computer program, the Subsystems Component Definitions Summary (SUBCOMDEF), was developed to provide a quick and efficient means of summarizing large quantities of subsystems component data in terms of weight, volume, resupply, and power. The program was validated using Space Station Freedom Program Definition Requirements Document data for the internal and external thermal control subsystem. Once all component descriptions, unit weights and volumes, resupply, and power data are input, the user may obtain a summary report of user-specified portions of the subsystem or of the entire subsystem as a whole. Any combination or all of the parameters of wet and dry weight, wet and dry volume, resupply weight and volume, and power may be displayed. The user may vary the resupply period according to individual mission requirements, as well as the number of hours per day power consuming components operate. Uses of this program are not limited only to subsystem component summaries. Any applications that require quick, efficient, and accurate weight, volume, resupply, or power summaries would be well suited to take advantage of SUBCOMDEF's capabilities.
Advanced Extravehicular Protective Systems (AEPS) study
NASA Technical Reports Server (NTRS)
Williams, J. L.; Copeland, R. J.; Webbon, B. W.
1971-01-01
A description is given of life support subsystem concepts for advanced extravehicular protective systems (AEPS) intended for use on future orbital, lunar surface, and Mars surface missions in the late 1970's and 1980's. Primary interest was centered around the thermal control and carbon dioxide control subsystems because they offer the greatest potential for total weight savings. Emphasis was placed on the generation of regenerable subsystem concepts; however, partially regenerable and expendable concepts were also considered. Previously conceived and developed subsystem concepts were included in the study. Concepts were evaluated on the basis of subsystem weight and volume, and subsystem contribution to parent vehicle weight and volume, which included spares, regeneration equipment, expendables, expandables storage penalty, power penalty, and process heating or cooling penalty. Results are presented showing total weight and volume penalty as a function of total mission extravehicular activity (EVA) hours, and showing EVA weight and volume as a function of EVA duration. Subsystem concepts are recommended for each life support function, and secondary concepts which should be developed are also identified.
Automated biowaste sampling system urine subsystem operating model, part 1
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Rosen, F.
1973-01-01
The urine subsystem automatically provides for the collection, volume sensing, and sampling of urine from six subjects during space flight. Verification of the subsystem design was a primary objective of the current effort which was accomplished thru the detail design, fabrication, and verification testing of an operating model of the subsystem.
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2008-01-01
The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.
Lunar-based optical telescopes: Planning astronomical tools of the twenty-first century
NASA Astrophysics Data System (ADS)
Hilchey, J. D.; Nein, M. E.
1995-02-01
A succession of optical telescopes, ranging in aperture from 1 to 16 m or more, can be deployed and operated on the lunar surface over the next half-century. These candidates to succeed NASA's Great Observatories would capitalize on the unique observational advantages offered by the Moon. The Lunar Telescope Working Group and the LUTE Task Team of the George C. Marshall Space Flight Center (MSFC) have assessed the feasibility of developing and deploying these facilities. Studies include the 16-m Large Lunar Telescope (LLT); the Lunar Cluster Telescope Experiment (LCTE), a 4-m precursor to the LLT; the 2-m Lunar Transit Telescope (LTT); and its precursor, the 1-m Lunar Ultraviolet Telescope Experiment (LUTE). The feasibility of developing and deploying each telescope was assessed and system requirements and options for supporting technologies, subsystems, transportation, and operations were detailed. Influences of lunar environment factors and site selection on telescope design and operation were evaluated, and design approaches and key tradeoffs were established. This paper provides an overview of the study results. Design concepts and brief system descriptions are provided, including subsystem and mission options selected for the concepts.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike
2015-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Space Tug avionics definition study. Volume 4: Supporting trade studies and analyses
NASA Technical Reports Server (NTRS)
1975-01-01
Analyses and trade studies were performed for the evaluation of the most desirable solutions to space tug subsystem requirements. These were accomplished at system, subsystem, and at component levels. The criteria, the candidate options evaluated, the selection process, and the recommended solutions that have been integrated together in the configuration descriptions are reported.
Sliding Mode Thermal Control System for Space Station Furnace Facility
NASA Technical Reports Server (NTRS)
Jackson Mark E.; Shtessel, Yuri B.
1998-01-01
The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.
Preliminary design of the Space Station internal thermal control system
NASA Technical Reports Server (NTRS)
Herrin, Mark T.; Patterson, David W.; Turner, Larry D.
1987-01-01
The baseline preliminary design configuration of the Internal Thermal Control system (ITCS) of the U.S. Space Station pressurized elements (i.e., the Habitation and U.S. Laboratory modules, pressurized logistics carrier, and resources nodes) is defined. The ITCS is composed of both active and passive components. The subsystems which comprise the ITCS are identified and their functional descriptions are provided. The significant trades and analyses, which were performed during Phase B (i.e., the preliminary design phase) that resulted in the design described herein, are discussed. The ITCS interfaces with the station's central Heat Rejection and Transport System (HRTS), other systems, and externally attached pressurized payloads are described. Requirements on the ITCS with regard to redundancy and experiment support are also addressed.
Ground station hardware for the ATS-F millimeter wave experiment
NASA Technical Reports Server (NTRS)
Duffield, T. L.
1973-01-01
The results are presented of a program to design, fabricate, test, and install a primary ATS-F millimeter wave ground receiving station. Propagation parameters at millimeter waves are discussed along with the objective of the overall experiment. A general description is given of the receiving system and its function in the experiment. Typical receiver characteristics are presented which show that the experiment is entirely feasible from a link SNR standpoint. The receiving system hardware designs are discussed with separate treatment given to the propagation and the radiometer receiver designs. The modification and relocation are described of an existing 15-ft antenna to meet the ATS-F requirements. The design of a dual frequency feed subsystem and self calibration equipment is included.
Silicon compilation: From the circuit to the system
NASA Astrophysics Data System (ADS)
Obrien, Keven
The methodology used for the compilation of silicon from a behavioral level to a system level is presented. The aim was to link the heretofore unrelated areas of high level synthesis and system level design. This link will play an important role in the development of future design automation tools as it will allow hardware/software co-designs to be synthesized. A design methodology that alllows, through the use of an intermediate representation, SOLAR, a System level Design Language (SDL), to be combined with a Hardware Description Language (VHDL) is presented. Two main steps are required in order to transform this specification into a synthesizable one. Firstly, a system level synthesis step including partitioning and communication synthesis is required in order to split the model into a set of interconnected subsystems, each of which will be processed by a high level synthesis tool. For this latter step AMICAL is used and this allows powerful scheduling techniques to be used, that accept very abstract descriptions of control flow dominated circuits as input, and interconnected RTL blocks that may feed existing logic-level synthesis tools to be generated.
Reliability and cost: A sensitivity analysis
NASA Technical Reports Server (NTRS)
Suich, Ronald C.; Patterson, Richard L.
1991-01-01
In the design phase of a system, how a design engineer or manager choose between a subsystem with .990 reliability and a more costly subsystem with .995 reliability is examined, along with the justification of the increased cost. High reliability is not necessarily an end in itself but may be desirable in order to reduce the expected cost due to subsystem failure. However, this may not be the wisest use of funds since the expected cost due to subsystem failure is not the only cost involved. The subsystem itself may be very costly. The cost of the subsystem nor the expected cost due to subsystem failure should not be considered separately but the total of the two costs should be maximized, i.e., the total of the cost of the subsystem plus the expected cost due to subsystem failure.
Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1995-01-01
The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.
NASA Astrophysics Data System (ADS)
Donà, G.; Faletra, M.
2015-09-01
This paper presents the TT&C performance simulator toolkit developed internally at Thales Alenia Space Italia (TAS-I) to support the design of TT&C subsystems for space exploration and scientific satellites. The simulator has a modular architecture and has been designed using a model-based approach using standard engineering tools such as MATLAB/SIMULINK and mission analysis tools (e.g. STK). The simulator is easily reconfigurable to fit different types of satellites, different mission requirements and different scenarios parameters. This paper provides a brief description of the simulator architecture together with two examples of applications used to demonstrate some of the simulator’s capabilities.
NASA Technical Reports Server (NTRS)
Hill, T. E.
1972-01-01
The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.
Space Station life sciences guidelines for nonhuman experiment accommodation
NASA Technical Reports Server (NTRS)
Arno, R.; Hilchey, J.
1985-01-01
Life scientists will utilize one of four habitable modules which constitute the initial Space Station configuration. This module will be initially employed for studies related to nonhuman and human life sciences. At a later date, a new module, devoted entirely to nonhuman life sciences will be launched. This report presents a description of the characteristics of a Space Station laboratory facility from the standpoint of nonhuman research requirements. Attention is given to the science rationale for experiments which support applied medical research and basic gravitational biology, mission profiles and typical equipment and subsystem descriptions, issues associated with the accommodation of nonhuman life sciences on the Space Station, and conceptual designs for the initial operational capability configuration and later Space Station life-sciences research facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoopman, J. D.
This report documents Livermore Computing (LC) activities in support of ASC L2 milestone 5589: Modernization and Expansion of LLNL Archive Disk Cache, due March 31, 2016. The full text of the milestone is included in Attachment 1. The description of the milestone is: Description: Configuration of archival disk cache systems will be modernized to reduce fragmentation, and new, higher capacity disk subsystems will be deployed. This will enhance archival disk cache capability for ASC archive users, enabling files written to the archives to remain resident on disk for many (6–12) months, regardless of file size. The milestone was completed inmore » three phases. On August 26, 2015 subsystems with 6PB of disk cache were deployed for production use in LLNL’s unclassified HPSS environment. Following that, on September 23, 2015 subsystems with 9 PB of disk cache were deployed for production use in LLNL’s classified HPSS environment. On January 31, 2016, the milestone was fully satisfied when the legacy Data Direct Networks (DDN) archive disk cache subsystems were fully retired from production use in both LLNL’s unclassified and classified HPSS environments, and only the newly deployed systems were in use.« less
Suit study - The impact of VMS in subsystem integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, B.; Watts, R.
1992-02-01
One of the thrusts of the Wright Laboratory/FIVE-sponsored Subsystem Integration Technology (SUIT) study is to investigate the impact of emerging vehicle management system (VMS) concepts on subsystem integration. This paper summarizes the issues relating to VMS/subsystem integration as examined during the Northrop SUIT study. Projected future weapon system requirements are identified and their impact on VMS and subsystem design interpreted. Integrated VMS/subsystem control and management functions are proposed. A candidate system VMS architecture satisfying the aforementioned weapon system requirements and providing the identified control and management functions is proposed. This architecture is used, together with the environmental control system, asmore » an illustrative subsystem example, to address the risks associated with the design, development, procurement, integration and testing of integrated VMS/subsystem concepts. The conclusion is that the development process requires an airframer to adopt the role of subsystem integrator, the consequences of which are discussed. 2 refs.« less
Conceptual design of a thermal control system for an inflatable lunar habitat module
NASA Technical Reports Server (NTRS)
Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph
1991-01-01
NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.
Apollo experience report: Lunar module electrical power subsystem
NASA Technical Reports Server (NTRS)
Campos, A. B.
1972-01-01
The design and development of the electrical power subsystem for the lunar module are discussed. The initial requirements, the concepts used to design the subsystem, and the testing program are explained. Specific problems and the modifications or compromises (or both) imposed for resolution are detailed. The flight performance of the subsystem is described, and recommendations pertaining to power specifications for future space applications are made.
A membrane-based subsystem for very high recoveries of spacecraft waste waters
NASA Technical Reports Server (NTRS)
Ray, Roderick J.; Retzlaff, Sandra E.; Radke-Mitchell, Lyn; Newbold, David D.; Price, Donald F.
1986-01-01
This paper describes the continued development of a membrane-based subsystem designed to recover up to 99.5 percent of the water from various spacecraft waste waters. Specifically discussed are: (1) the design and fabrication of an energy-efficient reverse-osmosis (RO) breadboard subsystem; (2) data showing the performance of this subsystem when operated on a synthetic wash-water solution - including the results of a 92-day test; and (3) the results of pasteurization studies, including the design and operation of an in-line pasteurizer. Also included in this paper is a discussion of the design and performance of a second RO stage. This second stage results in higher-purity product water at a minimal energy requirement and provides a substantial redundancy factor to this subsystem.
NASA Technical Reports Server (NTRS)
1976-01-01
Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.
Domain-specific languages and diagram customization for a concurrent engineering environment
NASA Astrophysics Data System (ADS)
Cole, B.; Dubos, G.; Banazadeh, P.; Reh, J.; Case, K.; Wang, Y.; Jones, S.; Picha, F.
A major open question for advocates of Model-Based Systems Engineering (MBSE) is the question of how system and subsystem engineers will work together. The Systems Modeling Language (SysML), like any language intended for a large audience, is in tension between the desires for simplicity and for expressiveness. In order to be more expressive, many specialized language elements may be introduced, which will unfortunately make a complete understanding of the language a more daunting task. While this may be acceptable for systems modelers, it will increase the challenge of including subsystem engineers in the modeling effort. One possible answer to this situation is the use of Domain-Specific Languages (DSL), which are fully supported by the Unified Modeling Language (UML). SysML is in fact a DSL for systems engineering. The expressive power of a DSL can be enhanced through the use of diagram customization. Various domains have already developed their own schematic vocabularies. Within the space engineering community, two excellent examples are the propulsion and telecommunication subsystems. A return to simple box-and-line diagrams (e.g., the SysML Internal Block Diagram) are in many ways a step backward. In order allow subsystem engineers to contribute directly to the model, it is necessary to make a system modeling tool at least approximate in accessibility to drawing tools like Microsoft PowerPoint and Visio. The challenge is made more extreme in a concurrent engineering environment, where designs must often be drafted in an hour or two. In the case of the Jet Propulsion Laboratory's Team X concurrent design team, a subsystem is specified using a combination of PowerPoint for drawing and Excel for calculation. A pilot has been undertaken in order to meld the drawing portion and the production of master equipment lists (MELs) via a SysML authoring tool, MagicDraw. Team X currently interacts with its customers in a process of sharing presentations. There are severa- inefficiencies that arise from this situation. The first is that a customer team must wait two weeks to a month (which is 2-4 times the duration of most Team X studies themselves) for a finalized, detailed design description. Another is that this information must be re-entered by hand into the set of engineering artifacts and design tools that the mission concept team uses after a study is complete. Further, there is no persistent connection to Team X or institutionally shared formulation design tools and data after a given study, again reducing the direct reuse of designs created in a Team X study. This paper presents the underpinnings of subsystem DSLs as they were developed for this pilot. This includes specialized semantics for different domains as well as the process by which major categories of objects were derived in support of defining the DSLs. The feedback given to us by the domain experts on usability, along with a pilot study with the partial inclusion of these tools is also discussed.
Domain-Specific Languages and Diagram Customization for a Concurrent Engineering Environment
NASA Technical Reports Server (NTRS)
Cole, Bjorn; Dubos, Greg; Banazadeh, Payam; Reh, Jonathan; Case, Kelley; Wang, Yeou-Fang; Jones, Susan; Picha, Frank
2013-01-01
A major open question for advocates of Model-Based Systems Engineering (MBSE) is the question of how system and subsystem engineers will work together. The Systems Modeling Language (SysML), like any language intended for a large audience, is in tension between the desires for simplicity and for expressiveness. In order to be more expressive, many specialized language elements may be introduced, which will unfortunately make a complete understanding of the language a more daunting task. While this may be acceptable for systems modelers, it will increase the challenge of including subsystem engineers in the modeling effort. One possible answer to this situation is the use of Domain-Specific Languages (DSL), which are fully supported by the Unified Modeling Language (UML). SysML is in fact a DSL for systems engineering. The expressive power of a DSL can be enhanced through the use of diagram customization. Various domains have already developed their own schematic vocabularies. Within the space engineering community, two excellent examples are the propulsion and telecommunication subsystems. A return to simple box-and-line diagrams (e.g., the SysML Internal Block Diagram) are in many ways a step backward. In order allow subsystem engineers to contribute directly to the model, it is necessary to make a system modeling tool at least approximate in accessibility to drawing tools like Microsoft PowerPoint and Visio. The challenge is made more extreme in a concurrent engineering environment, where designs must often be drafted in an hour or two. In the case of the Jet Propulsion Laboratory's Team X concurrent design team, a subsystem is specified using a combination of PowerPoint for drawing and Excel for calculation. A pilot has been undertaken in order to meld the drawing portion and the production of master equipment lists (MELs) via a SysML authoring tool, MagicDraw. Team X currently interacts with its customers in a process of sharing presentations. There are several inefficiencies that arise from this situation. The first is that a customer team must wait two weeks to a month (which is 2-4 times the duration of most Team X studies themselves) for a finalized, detailed design description. Another is that this information must be re-entered by hand into the set of engineering artifacts and design tools that the mission concept team uses after a study is complete. Further, there is no persistent connection to Team X or institutionally shared formulation design tools and data after a given study, again reducing the direct reuse of designs created in a Team X study. This paper presents the underpinnings of subsystem DSLs as they were developed for this pilot. This includes specialized semantics for different domains as well as the process by which major categories of objects were derived in support of defining the DSLs. The feedback given to us by the domain experts on usability, along with a pilot study with the partial inclusion of these tools is also discussed.
Assessment of 25 kW free-piston Stirling technology alternatives for solar applications
NASA Technical Reports Server (NTRS)
Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.
1992-01-01
The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.
MIT's role in project Apollo. Volume 2: Optical, radar, and candidate subsystems
NASA Technical Reports Server (NTRS)
1972-01-01
The development of optical, radar, and candidate subsystems for Project Apollo is discussed. The design and development of the optical subsystems for both the Apollo command and lunar spacecraft are described. Design approaches, problems, and solutions are presented. The evolution of radar interfaces with the GN&C system is discussed; these interfaces involved both hardware and software in a relatively complex interrelationship. The design and development of three candidate subsystems are also described. The systems were considered for use in Apollo, but were not incorporated into the final GN&C system. The three subsystems discussed are the star tracker-horizon photometer, the map and data viewer and the lunar module optical rendezvous system.
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
Parabolic Dish Concentrator (PDC-2) Development
NASA Technical Reports Server (NTRS)
Rafinejad, D.
1984-01-01
The design of the Parabolic Dish Concentrator (PDC-2) is described. The following five subsystems of the concentrator are discussed: (1) reflective surface subsystem, (2) support structure subsystem, (3) foundation, (4) drive subsystem, and (5) electrical and control subsystem. The status of the PDC-2 development project is assessed.
ATS-F ground station integration
NASA Technical Reports Server (NTRS)
1975-01-01
The ATS ground stations were described, including a system description, operational frequencies and bandwidth, and a discussion of individual subsystems. Each station configuration is described as well as its floor plan. The station performance, as tested by the GSI, is displayed in chart form providing a summary of the more important parameters tested. This chart provides a listing of test data, by site, for comparison purposes. Also included is a description of the ATS-6 experiments, the equipment, and interfaces required to perform these experiments. The ADP subsystem and its role in the experiments is also described. A description of each program task and a summary of the activities performed were then given. These efforts were accomplished at the Rosman II Ground Station, located near Rosman N.C., the Mojave Ground Station, located near Barstow Ca., and the GSI Contractors plant located near Baltimore, Md.
Development and Capabilities of ISS Flow Boiling and Condensation Experiment
NASA Technical Reports Server (NTRS)
Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George;
2015-01-01
An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.
Viking Orbiter 1975 articulation control subsystem design analysis
NASA Technical Reports Server (NTRS)
Horiuchi, H. H.; Vallas, L. J.
1973-01-01
The articulation control subsystem, developed for the Viking Orbiter 1975 spacecraft, is a digital, multiplexed, closed-loop servo system used to control the pointing and positioning of the science scan platform and the high-gain communication antenna, and to position the solar-energy controller louver blades for the thermal control of the propellant tanks. The development, design, and anlaysis of the subsystem is preliminary. The subsystem consists of a block-redundant control electronics multiplexed among eight control actuators. Each electronics block is capable of operating either individually or simultaneously with the second block. This provides the subsystem the capability of simultaneous two-actuator control or a single actuator control with the second block in a stand-by redundant mode. The result of the preliminary design and analysis indicates that the subsystem will perform satisfactorily in the Viking Orbiter 1975 mission. Some of the parameter values used, particularly those in the subsystem dynamics and the error estimates, are preliminary and the results will be updated as more accurate parameter values become available.
Operations planning for Space Station Freedom - And beyond
NASA Technical Reports Server (NTRS)
Gibson, Stephen S.; Martin, Thomas E.; Durham, H. J.
1992-01-01
The potential of automated planning and electronic execution systems for enhancing operations on board Space Station Freedom (SSF) are discussed. To exploit this potential the Operations Planning and Scheduling Subsystem is being developed at the NASA Johnson Space Center. Such systems may also make valuable contributions to the operation of resource-constrained, long-duration space habitats of the future. Points that should be considered during the design of future long-duration manned space missions are discussed. Early development of a detailed operations concept as an end-to-end mission description offers a basis for iterative design evaluation, refinement, and option comparison, particularly when used with an advanced operations planning system capable of modeling the operations and resource constraints of the proposed designs.
NASA Technical Reports Server (NTRS)
1979-01-01
An Earth scanning six channel (detector) radiometer using a classical Cassegrain telescope and a Wadsworth type grating spectrometer was launched aboard Nimbus 7 in order to determine the abundance or density of chlorophyll at or near the sea surface in coastal waters. The instrument also measures the sediment or gelbstroffe (yellow stuff) in coastal waters, detects surface vegetation, and measures sea surface temperature. Block diagrams and schematics are presented, design features are discussed and each subsystem of the instrument is described. A mission overview is included.
A Qualitative Piloted Evaluation of the Tupolev Tu-144 Supersonic Transport
NASA Technical Reports Server (NTRS)
Rivers, Robert A.; Jackson, E. Bruce; Fullerton, C. Gordon; Cox, Timothy H.; Princen, Norman H.
2000-01-01
Two U.S. research pilots evaluated the Tupolev Tu-144 supersonic transport aircraft on three dedicated flights: one subsonic and two supersonic profiles. The flight profiles and maneuvers were developed jointly by Tupolev and U.S. engineers. The vehicle was found to have unique operational and flight characteristics that serve as lessons for designers of future supersonic transport aircraft. Vehicle subsystems and observed characteristics are described as are flight test planning and ground monitoring facilities. Maneuver descriptions and extended pilot narratives for each flight are included as appendices.
Solar power satellite cost estimate
NASA Technical Reports Server (NTRS)
Harron, R. J.; Wadle, R. C.
1981-01-01
The solar power configuration costed is the 5 GW silicon solar cell reference system. The subsystems identified by work breakdown structure elements to the lowest level for which cost information was generated. This breakdown divides into five sections: the satellite, construction, transportation, the ground receiving station and maintenance. For each work breakdown structure element, a definition, design description and cost estimate were included. An effort was made to include for each element a reference that more thoroughly describes the element and the method of costing used. All costs are in 1977 dollars.
The determination of some requirements for a helicopter flight research simulation facility
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1977-01-01
Important requirements were defined for a flight simulation facility to support Army helicopter development. In particular requirements associated with the visual and motion subsystems of the planned simulator were studied. The method used in the motion requirements study is presented together with the underlying assumptions and a description of the supporting data. Results are given in a form suitable for use in a preliminary design. Visual requirements associated with a television camera/model concept are related. The important parameters are described together with substantiating data and assumptions. Research recommendations are given.
Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey
NASA Technical Reports Server (NTRS)
1981-01-01
The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.
Mars Science Laboratory CHIMRA: A Device for Processing Powdered Martian Samples
NASA Technical Reports Server (NTRS)
Sunshine, Daniel
2010-01-01
The CHIMRA is an extraterrestrial sample acquisition and processing device for the Mars Science Laboratory that emphasizes robustness and adaptability through design configuration. This work reviews the guidelines utilized to invent the initial CHIMRA and the strategy employed in advancing the design; these principles will be discussed in relation to both the final CHIMRA design and similar future devices. The computational synthesis necessary to mature a boxed-in impact-generating mechanism will be presented alongside a detailed mechanism description. Results from the development testing required to advance the design for a highly-loaded, long-life and high-speed bearing application will be presented. Lessons learned during the assembly and testing of this subsystem as well as results and lessons from the sample-handling development test program will be reviewed.
Spacecraft active thermal control subsystem design and operation considerations
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.
1986-01-01
Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.
Neurocomputing strategies in decomposition based structural design
NASA Technical Reports Server (NTRS)
Szewczyk, Z.; Hajela, P.
1993-01-01
The present paper explores the applicability of neurocomputing strategies in decomposition based structural optimization problems. It is shown that the modeling capability of a backpropagation neural network can be used to detect weak couplings in a system, and to effectively decompose it into smaller, more tractable, subsystems. When such partitioning of a design space is possible, parallel optimization can be performed in each subsystem, with a penalty term added to its objective function to account for constraint violations in all other subsystems. Dependencies among subsystems are represented in terms of global design variables, and a neural network is used to map the relations between these variables and all subsystem constraints. A vector quantization technique, referred to as a z-Network, can effectively be used for this purpose. The approach is illustrated with applications to minimum weight sizing of truss structures with multiple design constraints.
NASA Astrophysics Data System (ADS)
Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo
2016-10-01
In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.
Deep space network Mark 4A description
NASA Technical Reports Server (NTRS)
Wallace, R. J.; Burt, R. W.
1986-01-01
The general system configuration for the Mark 4A Deep Space Network is described. The arrangement and complement of antennas at the communications complexes and subsystem equipment at the signal processing centers are described. A description of the Network Operations Control Center is also presented.
Integrated Control Using the SOFFT Control Structure
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1996-01-01
The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2003-01-01
This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
The overall mission and spacecraft systems, testing, and operations are summarized. The mechanical subsystems are reviewed, encompassing mechanical design requirements; separation and deployment mechanisms; design and performance evaluation; and the television camera reflector monitor. Thermal control and contamination are discussed in terms of thermal control subsystems, design validation, subsystems performance, the advanced flight experiment, and the quartz-crystal microbalance contamination monitor.
A Scalability Model for ECS's Data Server
NASA Technical Reports Server (NTRS)
Menasce, Daniel A.; Singhal, Mukesh
1998-01-01
This report presents in four chapters a model for the scalability analysis of the Data Server subsystem of the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). The model analyzes if the planned architecture of the Data Server will support an increase in the workload with the possible upgrade and/or addition of processors, storage subsystems, and networks. The approaches in the report include a summary of the architecture of ECS's Data server as well as a high level description of the Ingest and Retrieval operations as they relate to ECS's Data Server. This description forms the basis for the development of the scalability model of the data server and the methodology used to solve it.
NASA Astrophysics Data System (ADS)
Bub, Jeffrey; Fuchs, Christopher A.
The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.
Construction and testing of a Scanning Laser Radar (SLR), phase 2
NASA Technical Reports Server (NTRS)
Flom, T.; Coombes, H. D.
1971-01-01
The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.
NASA Technical Reports Server (NTRS)
Fields, S. F.; Labak, L. J.; Honegger, R. J.
1974-01-01
A baseline laboratory prototype of an integrated, six man, zero-g subsystem for processing human wastes onboard spacecraft was investigated, and included the development of an operational specification for the baseline subsystem, followed by design and fabrication. The program was concluded by performing a series of six tests over a period of two weeks to evaluate the performance of the subsystem. The results of the tests were satisfactory, however, several changes in the design of the subsystem are required before completely satisfactory performance can be achieved.
Development of a preprototype times wastewater recovery subsystem
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Dehner, G. F.
1982-01-01
A three-man wastewater recovery preprototype subsystem using a hollow fiber membrane evaporator with a thermoelectric heat pump to provide efficient potable water recovery from wastewater on extended duration space flights was designed, fabricated, and tested at one-gravity. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem. The tubular hollow fiber elements provide positive liquid/gas phase control with no moving parts, and provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery. Application and integration of these key elements solved problems inherent in all previous reclamation subsystem designs.
The Light Microscopy Module Design and Performance Demonstrations
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Snead, John H.; Griffin, DeVon W.; Hovenac, Edward A.
2003-01-01
The Light Microscopy Module (LMM) is a state-of-the-art space station payload to provide investigations in the fields of fluids, condensed matter physics, and biological sciences. The LMM hardware will reside inside the Fluids Integrated Rack (FIR), a multi-user facility class payload that will provide fundamental services for the LMM and future payloads. LMM and FIR will be launched in 2005 and both will reside in the Destiny module of the International Space Station (ISS). There are five experiments to be performed within the LMM. This paper will provide a description of the initial five experiments: the supporting FIR subsystems; LMM design; capabilities and key features; and a summary of performance demonstrations.
Maritime Detection of Radiological/Nuclear Threats with Hybrid Imaging System
2014-01-01
localization system. Each subsystem is housed in a separate 20-ft refrigerated ISO container that provides humidity and temperature control, and...externally via laptop or remotely via wireless communication. A detailed description of each individual subsystem follows. A. Detection...LN2. Each dewar has a cryogenic solenoid valve and a temperature sensor on the exhaust to monitor when the dewar is full. The valves and sensors are
Dynamics explorer: Interface definition study, volume 1
NASA Technical Reports Server (NTRS)
1978-01-01
Work done in response to the work statement wherein a specific deliverable was not identified but where design and analysis tasks were identified is reported. The summary and baseline change list is included along with design notes for the spacecraft system, thermal subsystem, power subsystem, communications subsystem, plasma wave instrument interface definition, and the structure.
Design and installation package for a solar powered pump
NASA Technical Reports Server (NTRS)
1978-01-01
The design and installation procedures of a solar powered pump developed by Calmac Manufacturing Company are presented. Subsystem installation, operation and maintenance requirements, subsystem performance specifications, and detailed design drawings are included.
Han, Bing; Ding, Chibiao; Zhong, Lihua; Liu, Jiayin; Qiu, Xiaolan; Hu, Yuxin; Lei, Bin
2018-01-01
The Gaofen-3 (GF-3) data processor was developed as a workstation-based GF-3 synthetic aperture radar (SAR) data processing system. The processor consists of two vital subsystems of the GF-3 ground segment, which are referred to as data ingesting subsystem (DIS) and product generation subsystem (PGS). The primary purpose of DIS is to record and catalogue GF-3 raw data with a transferring format, and PGS is to produce slant range or geocoded imagery from the signal data. This paper presents a brief introduction of the GF-3 data processor, including descriptions of the system architecture, the processing algorithms and its output format. PMID:29534464
49 CFR 236.907 - Product Safety Plan (PSP).
Code of Federal Regulations, 2012 CFR
2012-10-01
... product components and their physical relationship in the subsystem or system; (2) A description of the... in § 236.909 and appendix B to this part; (8) A hazard mitigation analysis, including a complete and... principles and assumptions; (11) A human factors analysis, including a complete description of all human...
49 CFR 236.907 - Product Safety Plan (PSP).
Code of Federal Regulations, 2011 CFR
2011-10-01
... product components and their physical relationship in the subsystem or system; (2) A description of the... in § 236.909 and appendix B to this part; (8) A hazard mitigation analysis, including a complete and... principles and assumptions; (11) A human factors analysis, including a complete description of all human...
NASA Technical Reports Server (NTRS)
Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.
2010-01-01
Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.
Advanced X-ray Astrophysics Facility (AXAF): Science working group report. [space shuttle payload
NASA Technical Reports Server (NTRS)
1980-01-01
The Advanced X-Ray Astrophysics Facility (AXAF) mission concept is examined from a scientific viewpoint. A brief description of the development of X-ray astronomy and a summary description of AXAF, the scientific objectives of the facility, a description of representative scientific instruments, requirements for X-ray ground testing, and a summary of studies related to spacecraft and support subsystems, are included.
NASA Technical Reports Server (NTRS)
Tumer, Irem; Mehr, Ali Farhang
2005-01-01
In this paper, a two-level multidisciplinary design approach is described to optimize the effectiveness of ISHM s. At the top level, the overall safety of the mission consists of system-level variables, parameters, objectives, and constraints that are shared throughout the system and by all subsystems. Each subsystem level will then comprise of these shared values in addition to subsystem-specific variables, parameters, objectives and constraints. A hierarchical structure will be established to pass up or down shared values between the two levels with system-level and subsystem-level optimization routines.
Development of a preprototype vapor compression distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Johnson, K. L.
1978-01-01
The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.
NASA Technical Reports Server (NTRS)
Williams, David E.
2011-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.
NASA Technical Reports Server (NTRS)
Braught, W.; Moore, E. K.; Steinberg, R. L.
1973-01-01
The Velocity Control Propulsion Subsystem (VCPS) was designed the propulsion required for trajectory and lunar orbit corrections of the spacecraft. A GFE clamp assembly physically attaches the VCPS to the spacecraft and the unit is ejected after completing the required corrections. The VCPS is physically and functionally separated from the spacecraft except for the electrical and telemetry interfaces. A GFE transtage provides the superstructure on which the VCPS is assembled. The subsystem consists of two 5 foot pound rocket engine assemblies, 4 propellant tanks, 2 latching valves, 2 fill and drain valves, a system filter, pressure transducer, gas and propellant manifolds and electrical heaters and thermostats. The RAE-B VCPS program covered the design, manufacture and qualification of one subsystem. This subsystem was to be manufactured, subjected to qualification tests; and refurbished, if necessary, prior to flight. The VCPS design and test program precluded the need for refurbishing the subsystem and the unit was delivered to GSFC at the conclusion of the program.
NASA Technical Reports Server (NTRS)
1983-01-01
Space station architectural options, habitability considerations and subsystem analyses, technology, and programmatics are reviewed. The methodology employed for conceiving and defining space station concepts is presented. As a result of this approach, architectures were conceived and along with their supporting rationale are described within this portion of the report. Habitability consideration and subsystem analyses describe the human factors associated with space station operations and includes subsections covering (1) data management, (2) communications and tracking, (3) environmental control and life support, (4) manipulator systems, (5) resupply, (6) pointing, (7) thermal management and (8) interface standardization. A consolidated matrix of subsystems technology issues as related to meeting the mission needs for a 1990's era space station is presented. Within the programmatics portion, a brief description of costing and program strategies is outlined.
Siéroff, Eric; Piquard, Ambre
2004-12-01
Due to progress in the cognitive theories in the last twenty years, the description of attentional deficits associated with normal or pathological aging has substantially improved. In this article, attentional deficits are presented according to Posner theory, which describes three sub-systems in a global network of attention: vigilance, selective attention, command. This theory not only characterizes the functions of these subsystems, but gives precise indications about their anatomical and neurochemical substrates. Several clinical tests can be described for each of these different subsystems. The main attentional deficits are presented in the second part of this paper: if some decline of the attentional command occurs in normal aging, a real deficit in this subsystem is found in most degenerative processes (frontotemporal dementia, Alzheimer and Parkinson diseases). Alzheimer disease is also frequently associated with a deficit of selective spatial attention, early in the evolution of the disease.
In-Space Chemical Propulsion System Model
NASA Technical Reports Server (NTRS)
Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.
2004-01-01
Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
In-Space Chemical Propulsion System Model
NASA Technical Reports Server (NTRS)
Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.
2004-01-01
Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
Symbolic Knowledge Processing for the Acquisition of Expert Behavior: A Study in Medicine.
1984-05-01
information . It provides a model for this type of study, suggesting a different approach to the problem of learning and efficiency of knowledge -based...flow of information 2.2. Scope and description of the subsystems Three subsystems perform distinct operations using the preceding knowledge sources...which actually yields a new knowledge rCpresentation Ahere new external information is encoded in the combination and ordering of elements of the
1987-12-01
not know that it has any real value or credibility. This situation suggests the following. Before the community at large can evaluate the SDG ...design approaches, such as the SDG method, are needed to handle the response of nonlinear subsystems--such as gust load alleviation. I wish to...observed in his SDG approach. Thus his result obtained from examining sequential discrete type gust is not too surprising, since It apparently can
SIRU development. Volume 3: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.
1973-01-01
The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.
Electrochemical energy storage subsystems study, volume 1
NASA Technical Reports Server (NTRS)
Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.
1981-01-01
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values.
Electrochemical Energy Storage Subsystems Study, Volume 2
NASA Technical Reports Server (NTRS)
Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.
1981-01-01
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values.
Small spacecraft power and thermal subsystems
NASA Technical Reports Server (NTRS)
Eakman, D.; Lambeck, R.; Mackowski, M.; Slifer, L., Jr.
1994-01-01
This white paper provides a general guide to the conceptual design of satellite power and thermal control subsystems with special emphasis on the unique design aspects associated with small satellites. The operating principles of these technologies are explained and performance characteristics of current and projected components are provided. A tutorial is presented on the design process for both power and thermal subsystems, with emphasis on unique issues relevant to small satellites. The ability of existing technology to meet future performance requirements is discussed. Conclusions and observations are presented that stress cost-effective, high-performance design solutions.
NFIRAOS in 2015: engineering for future integration of complex subsystems
NASA Astrophysics Data System (ADS)
Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis
2016-07-01
The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.
Space Station Furnace Facility. Volume 2: Summary of technical reports
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.
Code of Federal Regulations, 2012 CFR
2012-10-01
... physical relationships in the subsystem or system; (2) A description of the railroad operation or... requirements; (5) A preliminary human factors analysis, including a complete description of all human-machine interfaces and the impact of interoperability requirements on the same; (6) An analysis of the applicability...
Code of Federal Regulations, 2011 CFR
2011-10-01
... physical relationships in the subsystem or system; (2) A description of the railroad operation or... requirements; (5) A preliminary human factors analysis, including a complete description of all human-machine interfaces and the impact of interoperability requirements on the same; (6) An analysis of the applicability...
Code of Federal Regulations, 2013 CFR
2013-10-01
... physical relationships in the subsystem or system; (2) A description of the railroad operation or... requirements; (5) A preliminary human factors analysis, including a complete description of all human-machine interfaces and the impact of interoperability requirements on the same; (6) An analysis of the applicability...
Code of Federal Regulations, 2014 CFR
2014-10-01
... physical relationships in the subsystem or system; (2) A description of the railroad operation or... requirements; (5) A preliminary human factors analysis, including a complete description of all human-machine interfaces and the impact of interoperability requirements on the same; (6) An analysis of the applicability...
NASA Technical Reports Server (NTRS)
Gardner, J. A.
1972-01-01
A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
NASA Technical Reports Server (NTRS)
Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.
2010-01-01
Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, within a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability, and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation, testing results, and other information. Where appropriate, actual performance history was used to calculate failure rates for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to assess compliance with requirements and to highlight design or performance shortcomings for further decision making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability, and maintainability analysis, and present findings and observation based on analysis leading to the Ground Operations Project Preliminary Design Review milestone.
Air and water quality monitor assessment of life support subsystems
NASA Technical Reports Server (NTRS)
Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.
1988-01-01
Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.
Reliability and cost analysis methods
NASA Technical Reports Server (NTRS)
Suich, Ronald C.
1991-01-01
In the design phase of a system, how does a design engineer or manager choose between a subsystem with .990 reliability and a more costly subsystem with .995 reliability? When is the increased cost justified? High reliability is not necessarily an end in itself but may be desirable in order to reduce the expected cost due to subsystem failure. However, this may not be the wisest use of funds since the expected cost due to subsystem failure is not the only cost involved. The subsystem itself may be very costly. We should not consider either the cost of the subsystem or the expected cost due to subsystem failure separately but should minimize the total of the two costs, i.e., the total of the cost of the subsystem plus the expected cost due to subsystem failure. This final report discusses the Combined Analysis of Reliability, Redundancy, and Cost (CARRAC) methods which were developed under Grant Number NAG 3-1100 from the NASA Lewis Research Center. CARRAC methods and a CARRAC computer program employ five models which can be used to cover a wide range of problems. The models contain an option which can include repair of failed modules.
Information transfer satellite concept study. Volume 4: computer manual
NASA Technical Reports Server (NTRS)
Bergin, P.; Kincade, C.; Kurpiewski, D.; Leinhaupel, F.; Millican, F.; Onstad, R.
1971-01-01
The Satellite Telecommunications Analysis and Modeling Program (STAMP) provides the user with a flexible and comprehensive tool for the analysis of ITS system requirements. While obtaining minimum cost design points, the program enables the user to perform studies over a wide range of user requirements and parametric demands. The program utilizes a total system approach wherein the ground uplink and downlink, the spacecraft, and the launch vehicle are simultaneously synthesized. A steepest descent algorithm is employed to determine the minimum total system cost design subject to the fixed user requirements and imposed constraints. In the process of converging to the solution, the pertinent subsystem tradeoffs are resolved. This report documents STAMP through a technical analysis and a description of the principal techniques employed in the program.
NASA Technical Reports Server (NTRS)
1975-01-01
An engineering model opto-mechanical subsystem for a 10.6-micrometer laser heterodyne receiver is developed, and a CO2 waveguide local oscillator and servo electronics are provided for the receiver. Design goals are presented for the subsystems and overall package design is described. Thermal and mechanical distortion loading tests were performed and the results are included.
NASA Technical Reports Server (NTRS)
1977-01-01
The various systems and subsystems are discussed for the Deep Space Network (DSN). A description of the DSN is presented along with mission support, program planning, facility engineering, implementation and operations.
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Weissenberger, S.; Cuk, S. M.
1973-01-01
This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.
Subsystem design package for Solar II collector
NASA Technical Reports Server (NTRS)
1978-01-01
The requirements for the design and performance of the Solar 2 Collector Subsystem developed for use in solar heating of single family residences and mobile homes are presented. Installation drawings are included.
A design methodology for portable software on parallel computers
NASA Technical Reports Server (NTRS)
Nicol, David M.; Miller, Keith W.; Chrisman, Dan A.
1993-01-01
This final report for research that was supported by grant number NAG-1-995 documents our progress in addressing two difficulties in parallel programming. The first difficulty is developing software that will execute quickly on a parallel computer. The second difficulty is transporting software between dissimilar parallel computers. In general, we expect that more hardware-specific information will be included in software designs for parallel computers than in designs for sequential computers. This inclusion is an instance of portability being sacrificed for high performance. New parallel computers are being introduced frequently. Trying to keep one's software on the current high performance hardware, a software developer almost continually faces yet another expensive software transportation. The problem of the proposed research is to create a design methodology that helps designers to more precisely control both portability and hardware-specific programming details. The proposed research emphasizes programming for scientific applications. We completed our study of the parallelizability of a subsystem of the NASA Earth Radiation Budget Experiment (ERBE) data processing system. This work is summarized in section two. A more detailed description is provided in Appendix A ('Programming Practices to Support Eventual Parallelism'). Mr. Chrisman, a graduate student, wrote and successfully defended a Ph.D. dissertation proposal which describes our research associated with the issues of software portability and high performance. The list of research tasks are specified in the proposal. The proposal 'A Design Methodology for Portable Software on Parallel Computers' is summarized in section three and is provided in its entirety in Appendix B. We are currently studying a proposed subsystem of the NASA Clouds and the Earth's Radiant Energy System (CERES) data processing system. This software is the proof-of-concept for the Ph.D. dissertation. We have implemented and measured the performance of a portion of this subsystem on the Intel iPSC/2 parallel computer. These results are provided in section four. Our future work is summarized in section five, our acknowledgements are stated in section six, and references for published papers associated with NAG-1-995 are provided in section seven.
Newman Unit 1 advanced solar repowering advanced conceptual design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less
Simplified power processing for ion-thruster subsystems
NASA Technical Reports Server (NTRS)
Wessel, F. J.; Hancock, D. J.
1983-01-01
Compared to chemical propulsion, ion propulsion offers distinct payload-mass increases for many future low-thrust earth-orbital and deep-space missions. Despite this advantage, the high initial cost and complexity of ion-propulsion subsystems reduce their attractiveness for most present and near-term spacecraft missions. Investigations have, therefore, been conducted with the objective to attempt to simplify the power-processing unit (PPU), which is the single most complex and expensive component in the thruster subsystem. The present investigation is concerned with a program to simplify the design of the PPU employed in a 8-cm mercury-ion-thruster subsystem. In this program a dramatic simplification in the design of the PPU could be achieved, while retaining essential thruster control and subsystem operational flexibility.
Lightning testing at the subsystem level
NASA Technical Reports Server (NTRS)
Luteran, Frank
1991-01-01
Testing at the subsystem or black box level for lightning hardness is required if system hardness is to be assured at the system level. The often applied philosophy of lighting testing only at the system level leads to extensive end of the line design changes which result in excessive costs and time delays. In order to perform testing at the subsystem level two important factors must be defined to make the testing simulation meaningful. The first factor is the definition of the test stimulus appropriate to the subsystem level. Application of system level stimulations to the subsystem level usually leads to significant overdesign of the subsystem which is not necessary and may impair normal subsystem performance. The second factor is the availability of test equipment needed to provide the subsystem level lightning stimulation. Equipment for testing at this level should be portable or at least movable to enable efficient testing in a design laboratory environment. Large fixed test installations for system level tests are not readily available for use by the design engineers at the subsystem level and usually require special operating skills. The two factors, stimulation level and test equipment availability, must be evaluated together in order to produce a practical, workable test standard. The neglect or subordination of either factor will guarantee failure in generating the standard. It is not unusual to hear that test standards or specifications are waived because a specified stimulation level cannot be accomplished by in-house or independent test facilities. Determination of subsystem lightning simulation level requires a knowledge and evaluation of field coupling modes, peak and median levels of voltages and currents, bandwidths, and repetition rates. Practical limitations on test systems may require tradeoffs in lightning stimulation parameters in order to build practical test equipment. Peak power levels that can be generated at specified bandwidths with standard electrical components must be considered in the design and costing of the test system. Stimulation tests equipment and test methods are closely related and must be considered a test system for lightning simulation. A non-perfect specification that can be reliably and repeatedly applied at the subsystem test level is more desirable than a perfect specification that cannot be applied at all.
NIF ICCS network design and loading analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tietbohl, G; Bryant, R
The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow providemore » operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738).« less
Headway Separation Assurance Subsystem (HSAS)
DOT National Transportation Integrated Search
1975-07-01
This report discusses the design, fabrication, test and evaluation of a Headway Separation Assurance Subsystem (HSAS) capable of reliable, failsafe performance in PRT systems. The items designed include both hardware and software packages. These pack...
NASA Technical Reports Server (NTRS)
Ross, C.; Williams, G. P. W., Jr.
1975-01-01
The functional design of a preprocessor, and subsystems is described. A structure chart and a data flow diagram are included for each subsystem. Also a group of intermodule interface definitions (one definition per module) is included immediately following the structure chart and data flow for a particular subsystem. Each of these intermodule interface definitions consists of the identification of the module, the function the module is to perform, the identification and definition of parameter interfaces to the module, and any design notes associated with the module. Also described are compilers and computer libraries.
Systems integration of marketable subsystems: A collection of progress reports
NASA Technical Reports Server (NTRS)
1978-01-01
Monthly progress reports are given in the areas of marketable subsystems integration; development, design, and building of site data acquisition subsystems and data processing systems; operation of the solar test facility and a systems analysis.
NASA Technical Reports Server (NTRS)
Winkler, H. E.; Roebelen, G. J., Jr.
1980-01-01
A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, Mark; Klimeck, Gerhard; Hanks, David; Hua, Hook
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment. Out preliminary results demonstrate that this approach has the potential to improve the space system trade study process by allowing engineers to statistically weight subsystem goals of mass, cost and performance then automatically size power elements based on anticipated performance of the subsystem rather than on worst-case estimates.
White blood cell counting system
NASA Technical Reports Server (NTRS)
1972-01-01
The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.
DABI: A data base for image analysis with nondeterministic inference capability
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.; Cunningham, R.
1976-01-01
A description is given of the data base used in the perception subsystem of the Mars robot vehicle prototype being implemented at the Jet Propulsion Laboratory. This data base contains two types of information. The first is generic (uninstantiated, abstract) information that specifies the general rules of perception of objects in the expected environments. The second kind of information is a specific (instantiated) description of a structure, i.e., the properties and relations of objects in the specific case being analyzed. The generic knowledge can be used by the approximate reasoning subsystem to obtain information on the specific structures which is not directly measurable by the sensory instruments. Raw measurements are input either from the sensory instruments or a human operator using a CRT or a TTY.
Hierarchical modeling and robust synthesis for the preliminary design of large scale complex systems
NASA Astrophysics Data System (ADS)
Koch, Patrick Nathan
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: (1) Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis, (2) Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration, and (3) Noise modeling techniques for implementing robust preliminary design when approximate models are employed. The method developed and associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system; the turbofan system-level problem is partitioned into engine cycle and configuration design and a compressor module is integrated for more detailed subsystem-level design exploration, improving system evaluation.
Apollo experience report: Real-time display system
NASA Technical Reports Server (NTRS)
Sullivan, C. J.; Burbank, L. W.
1976-01-01
The real time display system used in the Apollo Program is described; the systematic organization of the system, which resulted from hardware/software trade-offs and the establishment of system criteria, is emphasized. Each basic requirement of the real time display system was met by a separate subsystem. The computer input multiplexer subsystem, the plotting display subsystem, the digital display subsystem, and the digital television subsystem are described. Also described are the automated display design and the generation of precision photographic reference slides required for the three display subsystems.
NASA Technical Reports Server (NTRS)
Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.
1984-01-01
A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.
NASA Technical Reports Server (NTRS)
Mc Kenna, K. J.; Schmeichel, H.
1968-01-01
This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.
NASA Technical Reports Server (NTRS)
Norwood, V. T.; Fermelia, L. R.; Tadler, G. A.
1972-01-01
The four-band Multispectral Scanner System (MSS) is discussed. Included is a description of the MSS with major emphasis on the flight subsystem (scanner and multiplexer), the theory for the MSS calibration system processing techniques, system calibration data, and a summary of the performance of the two four-band MSS systems.
The ECLSS Advanced Automation Project Evolution and Technology Assessment
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.
1990-01-01
Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.
Vocational Education and Training in Spain: Short Description. CEDEFOP Reference Series. Panorama.
ERIC Educational Resources Information Center
Hidalgo, Carlos Otero; Machado, Andres Munoz; Rodriguez, Carlos J. Fernandez
This publication offers a brief description of Spain's vocational training system and its radical overhaul since the early 1990s in an effort to adjust to the new economic and social context in Europe. Particular attention is paid to these three subsystems: (1) regulated vocational training that reflects the impact of reforms introduced by the…
Return Beam Vidicon (RBV) panchromatic two-camera subsystem for LANDSAT-C
NASA Technical Reports Server (NTRS)
1977-01-01
A two-inch Return Beam Vidicon (RBV) panchromatic two camera Subsystem, together with spare components was designed and fabricated for the LANDSAT-C Satellite; the basis for the design was the Landsat 1&2 RBV Camera System. The purpose of the RBV Subsystem is to acquire high resolution pictures of the Earth for a mapping application. Where possible, residual LANDSAT 1 and 2 equipment was utilized.
Integration of functional safety systems on the Daniel K. Inouye Solar Telescope
NASA Astrophysics Data System (ADS)
Williams, Timothy R.; Hubbard, Robert P.; Shimko, Steve
2016-07-01
The Daniel K. Inouye Solar Telescope (DKIST) was envisioned from an early stage to incorporate a functional safety system to ensure the safety of personnel and equipment within the facility. Early hazard analysis showed the need for a functional safety system. The design used a distributed approach in which each major subsystem contains a PLC-based safety controller. This PLC-based system complies with the latest international standards for functional safety. The use of a programmable controller also allows for flexibility to incorporate changes in the design of subsystems without adversely impacting safety. Various subsystems were built by different contractors and project partners but had to function as a piece of the overall control system. Using distributed controllers allows project contractors and partners to build components as standalone subsystems that then need to be integrated into the overall functional safety system. Recently factory testing was concluded on the major subsystems of the facility. Final integration of these subsystems is currently underway on the site. Building on lessons learned in early factory tests, changes to the interface between subsystems were made to improve the speed and ease of integration of the entire system. Because of the distributed design each subsystem can be brought online as it is delivered and assembled rather than waiting until the entire facility is finished. This enhances safety during the risky period of integration and testing. The DKIST has implemented a functional safety system that has allowed construction of subsystems in geographically diverse locations but that function cohesively once they are integrated into the facility currently under construction.
HiRel - Reliability/availability integrated workstation tool
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Dugan, Joanne B.
1992-01-01
The HiRel software tool is described and demonstrated by application to the mission avionics subsystem of the Advanced System Integration Demonstrations (ASID) system that utilizes the PAVE PILLAR approach. HiRel marks another accomplishment toward the goal of producing a totally integrated computer-aided design (CAD) workstation design capability. Since a reliability engineer generally represents a reliability model graphically before it can be solved, the use of a graphical input description language increases productivity and decreases the incidence of error. The graphical postprocessor module HARPO makes it possible for reliability engineers to quickly analyze huge amounts of reliability/availability data to observe trends due to exploratory design changes. The addition of several powerful HARP modeling engines provides the user with a reliability/availability modeling capability for a wide range of system applications all integrated under a common interactive graphical input-output capability.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike
2014-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Transitioning from conceptual design to construction performance specification
NASA Astrophysics Data System (ADS)
Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather
2012-09-01
On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.
A boundary PDE feedback control approach for the stabilization of mortgage price dynamics
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Sarno, D.
2017-11-01
Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific reference values.
Modeling and analysis of selected space station communications and tracking subsystems
NASA Technical Reports Server (NTRS)
Richmond, Elmer Raydean
1993-01-01
The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.
Optomechanical design of TMT NFIRAOS Subsystems at INO
NASA Astrophysics Data System (ADS)
Lamontagne, Frédéric; Desnoyers, Nichola; Grenier, Martin; Cottin, Pierre; Leclerc, Mélanie; Martin, Olivier; Buteau-Vaillancourt, Louis; Boucher, Marc-André; Nash, Reston; Lardière, Olivier; Andersen, David; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Fitzsimmons, Joeleff; Véran, Jean-Pierre
2017-08-01
The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints.
Design evolution of the orbiter reaction control subsystem
NASA Technical Reports Server (NTRS)
Taeber, R. J.; Karakulko, W.; Belvins, D.; Hohmann, C.; Henderson, J.
1985-01-01
The challenges of space shuttle orbiter reaction control subsystem development began with selection of the propellant for the subsystem. Various concepts were evaluated before the current Earth storable, bipropellant combination was selected. Once that task was accomplished, additional challenges of designing the system to satisfy the wide range of requirements dictated by operating environments, reusability, and long life were met. Verification of system adequacy was achieved by means of a combination of analysis and test. The studies, the design efforts, and the test and analysis techniques employed in meeting the challenges are described.
NASA Technical Reports Server (NTRS)
1971-01-01
A definition of the expendable second stage for use with the reusable space shuttle booster is presented. The subjects discussed are: (1) expendable second stage design, (2) structural subsystem, (3) propulsion subsystem, (4) avionics subsystems, (5) recovery and deorbit subsystem, and (6) expendable second stage vehicle installation, assembly, and checkout.
Attitude and articulation control system testing for Project Galileo
NASA Technical Reports Server (NTRS)
Rasmussen, R. D.
1981-01-01
A type of facility required to integrate and test a complex autonomous spacecraft subsystem is presented, using the attitude and articulation control subsystem (AACS) of Project Galileo as an example. The equipment created for testing the AACS at both the subsystem and spacecraft system levels is described, including a description of the support equipment (SE) architecture in its two main configurations, closed loop simulation techniques, the user interface to the SE, and plans for the use of the facility beyond the test period. This system is capable of providing a flight-like functional environment through the use of accurate real-time models and carefully chosen points of interaction, and flexible control capability and high visibility to the test operator.
Design of a photovoltaic system for a southwest all-electric residence
NASA Astrophysics Data System (ADS)
Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.
1980-04-01
The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Thermal and stress analyses are performed on the collector subsystem, energy storage subsystem, energy transport subsystem, the power conversion subsystem, and the plant control subsystem.
Collaborative simulation method with spatiotemporal synchronization process control
NASA Astrophysics Data System (ADS)
Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian
2016-10-01
When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.
SIRU utilization. Volume 2: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.; Whittredge, R.
1973-01-01
A complete description of the additional analysis, development and evaluation provided for the SIRU system as identified in the requirements for the SIRU utilization program is presented. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The modules are mounted in this package so that their measurement input axes form a unique symmetrical pattern that corresponds to the array of perpendiculars to the faces of a regular dodecahedron. This six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. Documentation of the additional software and software modifications required to implement the utilization capabilities includes assembly listings and flow charts
Attitude propulsion technology for TOPS
NASA Technical Reports Server (NTRS)
Moynihan, P. I.
1972-01-01
The thermoelectric outer planet spacecraft (TOPS) attitude propulsion subsystem (APS) effort is discussed. It includes the tradeoff rationale that went into the selection of an anhydrous hydrazine baseline system, followed by a discussion of the 0.22 N thruster and its integration into a portable, self-contained propulsion module that was designed, developed, and man rated to support the TOPS single-axis attitude control tests. The results of a cold-start feasibility demonstration with a modified thruster are presented. A description of three types of 0.44 thrusters that were procured for in-house evaluation is included along with the results of the test program. This is followed by a description of the APS feed system components, their evaluations, and a discussion of an evaluation of elastomeric material for valve seat seals. A list of new technology items which will be of value for application to future systems of this type is included.
Overview of space power electronic's technology under the CSTI High Capacity Power Program
NASA Technical Reports Server (NTRS)
Schwarze, Gene E.
1994-01-01
The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.
System integration of marketable subsystems. [for residential solar heating and cooling
NASA Technical Reports Server (NTRS)
1979-01-01
Progress is reported in the following areas: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.
An operations management system for the Space Station
NASA Astrophysics Data System (ADS)
Savage, Terry R.
A description is provided of an Operations Management System (OMS) for the planned NASA Space Station. The OMS would be distributed both in space and on the ground, and provide a transparent interface to the communications and data processing facilities of the Space Station Program. The allocation of OMS responsibilities has, in the most current Space Station design, been fragmented among the Communications and Tracking Subsystem (CTS), the Data Management System (DMS), and a redefined OMS. In this current view, OMS is less of a participant in the real-time processing, and more an overseer of the health and management of the Space Station operations.
ERIC Educational Resources Information Center
Fuentes, Mariana; Tolchinsky, Liliana
2004-01-01
Linguistic descriptions of sign languages are important to the recognition of their linguistic status. These languages are an essential part of the cultural heritage of the communities that create and use them and vital in the education of deaf children. They are also the reference point in language acquisition studies. Ours is exploratory…
The ecology of intertidal oyster reefs of the South Atlantic Coast: A community profile
Bahr, Leonard M.; Lanier, William P.
1981-01-01
The functional role of the intertidal oyster reef community in the southeastern Atlantic coastal zone is described. This description is based on a compilation of published data, as well as some unpublished information presented as hypotheses. The profile is organized in a hierarchical manner, such that relevant details of reef oyster biology (autecology) are presented, followed by a description of the reef community level of organization. Then the reef community is described as a subsystem of the coastal marsh-ecosystem (synecoloqy). This information is also synthesized in a series of nested conceptual models of oyster reefs at the regional level, the drainage basin level, and the individual reef level. The final chapter includes a summary overview and a section on management implications and guidelines. Intertidal oyster reefs are relatively persistent features of the salt marsh estuarine ecosystem in the southeastern Atlantic coastal zone. The average areal extent of the oyster reef subsystem in this larger ecosystem is relatively small (about 0.05%). This proportion does not reflect, however, the functional importance of the reef subsystem in stablizing the marsh, providing food for estuarine consumers, mineralizing organic matter, and providing firm substrates in this otherwise soft environment.
Qualitative models for space system engineering
NASA Technical Reports Server (NTRS)
Forbus, Kenneth D.
1990-01-01
The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.
FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathke, P.M.
1993-09-01
The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of themore » HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.« less
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1979-01-01
Volume 7 of the Satellite Power Systems (SPS) Concept Definition Study final report summarizes the basic requirements used as a guide to systems analysis and is a basis for the selection of candidate SPS point design(s). Initially, these collected data reflected the level of definition resulting from the evaluation of a broad spectrum of SPS concepts. As the various concepts matured these requirements were updated to reflect the requirements identified for the projected satellite system/subsystem point design(s). The identified subsystem/systems requirements are defined, and where appropriate, recommendations for alternate approaches which may represent improved design features are presented. A more detailed discussion of the selected point design(s) will be found in Volume 2 of this report.
NASA Technical Reports Server (NTRS)
1984-01-01
A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
1990-01-01
The Environmental Control and Life Support System (ECLSS) for the Space Station Freedom and future colonization of the Moon and Mars presents new challenges for present technologies. Current plans call for a crew of 8 to live in a safe, shirt-sleeve environment for 90 days without ground support. Because of these requirements, all life support systems must be self-sufficient and reliable. The ECLSS is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. Because it is impractical, if not impossible, to supply the station with enough fresh air and water for the duration of the space station's extended mission, these elements are recycled. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The approach chosen to solve this problem is to divide the design into three phases. The first phase is to research the ECLSS as a whole system and then concentrate efforts on the automation of a single subsystem. The AR subsystem was chosen for our focus. During the second phase, the system control process will then be applied to the AR subsystem.
NASA Technical Reports Server (NTRS)
Ling, Jerri S.; Kramer, Edward H.
1988-01-01
The Ion Auxiliary Propulsion System (IAPS) experiment is designed for launch on an Air Force Space Test Program satellite (NASA-TM-78859; AIAA Paper No. 78-647). The primary objective of the experiment is to flight qualify the 8 cm mercury ion thruster system for stationkeeping applications. Secondary objectives are measuring the interactions between operating ion thruster systems and host spacecraft, and confirming the design performance of the thruster systems. Two complete 8 cm mercury ion thruster subsystems will be flown. One of these will be operated for 2557 on and off cycles and 7057 hours at full thrust. Tests are currently under way in support of the IAPS flight experiment. In this test an IAPS thruster is being operated through a series of startup/run/shut-down cycles which simulate thruster operation during the planned flight experiment. A test facility description and operational considerations of this testing using an engineering model 8 cm thruster (S/N 905) is the subject of this paper. Final results will be published at a later date when the ground test has been concluded.
X-34 Main Propulsion System-Selected Subsystem Analyses
NASA Technical Reports Server (NTRS)
Brown, T. M.; McDonald, J. P.; Knight, K. C.; Champion, R. H., Jr.
1998-01-01
The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion System (MPS) has been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents selected analyses of MPS subsystems and components. Topics include the integration of component and system level modeling of the LOX dump subsystem and a simple terminal bubble velocity analysis conducted to guide propellant feed line design.
A Voyager attitude control perspective on fault tolerant systems
NASA Technical Reports Server (NTRS)
Rasmussen, R. D.; Litty, E. C.
1981-01-01
In current spacecraft design, a trend can be observed to achieve greater fault tolerance through the application of on-board software dedicated to detecting and isolating failures. Whether fault tolerance through software can meet the desired objectives depends on very careful consideration and control of the system in which the software is imbedded. The considered investigation has the objective to provide some of the insight needed for the required analysis of the system. A description is given of the techniques which have been developed in this connection during the development of the Voyager spacecraft. The Voyager Galileo Attitude and Articulation Control Subsystem (AACS) fault tolerant design is discussed to emphasize basic lessons learned from this experience. The central driver of hardware redundancy implementation on Voyager was known as the 'single point failure criterion'.
Thermal energy storage subsystems. A collection of quarterly reports
NASA Technical Reports Server (NTRS)
1978-01-01
The design, development, and progress toward the delivery of three subsystems is discussed. The subsystem used a salt hydrate mixture for thermal energy storage. The program schedules, technical data, and other program activities from October 1, 1976, through December 31, 1977 are presented.
Shuttle user analysis (study 2.2). Volume 4: Standardized subsystem modules analysis
NASA Technical Reports Server (NTRS)
1974-01-01
The capability to analyze payloads constructed of standardized modules was provided for the planning of future mission models. An inventory of standardized module designs previously obtained was used as a starting point. Some of the conclusions and recommendations are: (1) the two growth factor synthesis methods provide logical configurations for satellite type selection; (2) the recommended method is the one that determines the growth factor as a function of the baseline subsystem weight, since it provides a larger growth factor for small subsystem weights and results in a greater overkill due to standardization; (3) the method that is not recommended is the one that depends upon a subsystem similarity selection, since care must be used in the subsystem similarity selection; (4) it is recommended that the application of standardized subsystem factors be limited to satellites with baseline dry weights between about 700 and 6,500 lbs; and (5) the standardized satellite design approach applies to satellites maintainable in orbit or retrieved for ground maintenance.
Manufacturing complexity analysis
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1977-01-01
The analysis of the complexity of a typical system is presented. Starting with the subsystems of an example system, the step-by-step procedure for analysis of the complexity of an overall system is given. The learning curves for the various subsystems are determined as well as the concurrent numbers of relevant design parameters. Then trend curves are plotted for the learning curve slopes versus the various design-oriented parameters, e.g. number of parts versus slope of learning curve, or number of fasteners versus slope of learning curve, etc. Representative cuts are taken from each trend curve, and a figure-of-merit analysis is made for each of the subsystems. Based on these values, a characteristic curve is plotted which is indicative of the complexity of the particular subsystem. Each such characteristic curve is based on a universe of trend curve data taken from data points observed for the subsystem in question. Thus, a characteristic curve is developed for each of the subsystems in the overall system.
Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Fleming, Land
2006-01-01
We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.
Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.
Chen, Qiang; Ren, Xuemei; Na, Jing
2015-09-01
In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Trajectory Design Considerations for Exploration Mission 1
NASA Technical Reports Server (NTRS)
Dawn, Timothy F.; Gutkowski, Jeffrey P.; Batcha, Amelia L.
2017-01-01
Exploration Mission 1 (EM-1) will be the first mission to send an uncrewed Orion vehicle to cislunar space in 2018, targeted to a Distant Retrograde Orbit (DRO). Analysis of EM-1 DRO mission opportunities in 2018 help characterize mission parameters that are of interest to other subsystems (e.g., power, thermal, communications, flight operations, etc). Subsystems request mission design trades which include: landing lighting, addition of an Orion main engine checkout burn, and use of auxiliary thruster only cases. This paper examines the evolving trade studies that incorporate subsystem feedback and demonstrate the feasibility of these constrained mission trajectory designs and contingencies.
The structure of recreation behavior
Thomas A. More; James R. Averill
2003-01-01
We present a meta-theoretical analysis of recreation concepts as an argument about organizing and explaining recreation behavior. Recreation activities are behavioral constructions that people build from both prototypic subsystems (those present in virtually all instances of the activity) and design subsystems (optional subsystems that adapt the activity to serve...
NASA Technical Reports Server (NTRS)
Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.
1974-01-01
A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.
Laser-initiated ordnance for air-to-air missiles
NASA Technical Reports Server (NTRS)
Sumpter, David R.
1993-01-01
McDonnell Douglas Missile Systems Company (MDMSC) has developed a laser ignition subsystem (LIS) for air-to-air missile applications. The MDMSC subsystem is designed to activate batteries, unlock fins, and sequence propulsion system events. The subsystem includes Pyro Zirconium Pump (PZP) lasers, mechanical Safe & Arm, fiber-optic distribution system, and optically activated pyrotechnic devices (initiators, detonators, and thermal batteries). The LIS design has incorporated testability features for the laser modules, drive electronics, fiber-optics, and pyrotechnics. Several of the LIS have been fabricated and have supported thermal battery testing, integral rocket ramjet testing, and have been integrated into integral rocket ramjet flight test vehicles as part of the flight control subsystem.
NASA Technical Reports Server (NTRS)
Fields, S. F.; Labak, L. J.; Honegger, R. J.
1974-01-01
A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.
Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.
1973-01-01
This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.
Shuttle Orbiter Active Thermal Control Subsystem design and flight experience
NASA Technical Reports Server (NTRS)
Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo
1991-01-01
The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.
Optimum dry-cooling sub-systems for a solar air conditioner
NASA Technical Reports Server (NTRS)
Chen, J. L. S.; Namkoong, D.
1978-01-01
Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.
NASA Technical Reports Server (NTRS)
Keesler, E. L.
1974-01-01
The functional paths of the Orbital Maneuver Subsystem (OMS) is defined. The operational flight instrumentation required for performance monitoring, fault detection, and annunciation is described. The OMS is a pressure fed rocket engine propulsion subsystem. One complete OMS shares each of the two auxiliary propulsion subsystem pods with a reaction control subsystem. Each OMS is composed of a pressurization system, a propellant tanking system, and a gimbaled rocket engine. The design, development, and operation of the system are explained. Diagrams of the system are provided.
Pioneer Jupiter orbiter probe mission 1980, probe description
NASA Technical Reports Server (NTRS)
Defrees, R. E.
1974-01-01
The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
Emulation/Simulation Computer Model (ESCM) computes the transient performance of a Space Station air revitalization subsystem with carbon dioxide removal provided by a solid amine water desorbed subsystem called SAWD. This manual describes the mathematical modeling and equations used in the ESCM. For the system as a whole and for each individual component, the fundamental physical and chemical laws which govern their operations are presented. Assumptions are stated, and when necessary, data is presented to support empirically developed relationships.
Preliminary design of a satellite observation system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Cabe, Greg (Editor); Gallagher, Chris; Wilson, Brian; Rehfeld, James; Maurer, Alexa; Stern, Dan; Nualart, Jaime; Le, Xuan-Trang
1992-01-01
Degobah Satellite Systems (DSS), in cooperation with the University Space Research Association (USRA), NASA - Johnson Space Center (JSC), and the University of Texas, has completed the preliminary design of a satellite system to provide inexpensive on-demand video images of all or any portion of Space Station Freedom (SSF). DSS has narrowed the scope of the project to complement the work done by Mr. Dennis Wells at Johnson Space Center. This three month project has resulted in completion of the preliminary design of AERCAM, the Autonomous Extravehicular Robotic Camera, detailed in this design report. This report begins by providing information on the project background, describing the mission objectives, constraints, and assumptions. Preliminary designs for the primary concept and satellite subsystems are then discussed in detail. Included in the technical portion of the report are detailed descriptions of an advanced imaging system and docking and safing systems that ensure compatibility with the SSF. The report concludes by describing management procedures and project costs.
Triple redundant computer system/display and keyboard subsystem interface
NASA Technical Reports Server (NTRS)
Gulde, F. J.
1973-01-01
Interfacing of the redundant display and keyboard subsystem with the triple redundant computer system is defined according to space shuttle design. The study is performed in three phases: (1) TRCS configuration and characteristics identification; (2) display and keyboard subsystem configuration and characteristics identification, and (3) interface approach definition.
Apollo experience report: Lunar module instrumentation subsystem
NASA Technical Reports Server (NTRS)
Obrien, D. E., III; Woodfill, J. R., IV
1972-01-01
The design concepts and philosophies of the lunar module instrumentation subsystem are discussed along with manufacturing and systems integration. The experience gained from the program is discussed, and recommendations are made for making the subsystem more compatible and flexible in system usage. Characteristics of lunar module caution and warning circuits are presented.
Development of a preprototype times wastewater recovery subsystem: Appendices
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.; Dehner, G. F.
1984-01-01
This Master Test Plan outlines the test program to be performed by Hamilton Standard during the Urine Water Recovery Subsystem Program. Testing is divided into three phases: (1) design support testing; development component testing; and acceptance testing. The completion of this test program verifies the subsystem operation.
The ICCB Computer Based Facilities Inventory & Utilization Management Information Subsystem.
ERIC Educational Resources Information Center
Lach, Ivan J.
The Illinois Community College Board (ICCB) Facilities Inventory and Utilization subsystem, a part of the ICCB management information system, was designed to provide decision makers with needed information to better manage the facility resources of Illinois community colleges. This subsystem, dependent upon facilities inventory data and course…
A Power Conversion Concept for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2003-01-01
The Jupiter Icy Moons Orbiter (JIMO) mission is currently under study by the Office of Space Science under the Project Prometheus Program. JIMO is examining the use of Nuclear Electric Propulsion (NEP) to carry scientific payloads to three Jovian moons. A potential power system concept includes dual 100 kWe Brayton converters, a deployable pumped loop heat rejection subsystem, and a 400 Vac Power Management and Distribution (PMAD) bus. Many trades were performed in aniving at this candidate power system concept. System-level studies examined design and off-design operating modes, determined startup requirements, evaluated subsystem redundancy options, and quantified the mass and radiator area of reactor power systems from 20 to 200 kWe. In the Brayton converter subsystem, studies were performed to investigate converter packaging options, and assess the induced torque effects on spacecraft dynamics due to rotating machinery. In the heat rejection subsystem, design trades were conducted on heat transport approaches, material and fluid options, and deployed radiator geometries. In the PMAD subsystem, the overall electrical architecture was defined and trade studies examined distribution approaches, voltage levels, and cabling options.
Compound estimation procedures in reliability
NASA Technical Reports Server (NTRS)
Barnes, Ron
1990-01-01
At NASA, components and subsystems of components in the Space Shuttle and Space Station generally go through a number of redesign stages. While data on failures for various design stages are sometimes available, the classical procedures for evaluating reliability only utilize the failure data on the present design stage of the component or subsystem. Often, few or no failures have been recorded on the present design stage. Previously, Bayesian estimators for the reliability of a single component, conditioned on the failure data for the present design, were developed. These new estimators permit NASA to evaluate the reliability, even when few or no failures have been recorded. Point estimates for the latter evaluation were not possible with the classical procedures. Since different design stages of a component (or subsystem) generally have a good deal in common, the development of new statistical procedures for evaluating the reliability, which consider the entire failure record for all design stages, has great intuitive appeal. A typical subsystem consists of a number of different components and each component has evolved through a number of redesign stages. The present investigations considered compound estimation procedures and related models. Such models permit the statistical consideration of all design stages of each component and thus incorporate all the available failure data to obtain estimates for the reliability of the present version of the component (or subsystem). A number of models were considered to estimate the reliability of a component conditioned on its total failure history from two design stages. It was determined that reliability estimators for the present design stage, conditioned on the complete failure history for two design stages have lower risk than the corresponding estimators conditioned only on the most recent design failure data. Several models were explored and preliminary models involving bivariate Poisson distribution and the Consael Process (a bivariate Poisson process) were developed. Possible short comings of the models are noted. An example is given to illustrate the procedures. These investigations are ongoing with the aim of developing estimators that extend to components (and subsystems) with three or more design stages.
DOT National Transportation Integrated Search
1976-08-01
This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...
Conceptual design of free-piston Stirling conversion system for solar power units
NASA Astrophysics Data System (ADS)
Loktionov, Iu. V.
A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.
Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning
Ettlinger, Marc; Wong, Patrick C. M.
2016-01-01
Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1991-01-01
Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.
Lunar Surface-to-Surface Power Transfer
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2007-01-01
A human lunar outpost, under NASA study for construction in the 2020's, has potential requirements to transfer electric power up to 50-kW across the lunar surface from 0.1 to 10-km distances. This power would be used to operate surface payloads located remotely from the outpost and/or outpost primary power grid. This paper describes concept designs for state-of-the-art technology power transfer subsystems including AC or DC power via cables, beamed radio frequency power and beamed laser power. Power transfer subsystem mass and performance are calculated and compared for each option. A simplified qualitative assessment of option operations, hazards, costs and technology needs is also described. Based on these concept designs and performance analyses, a DC power cabling subsystem is recommended to minimize subsystem mass and to minimize mission and programmatic costs and risks. Avenues for additional power transfer subsystem studies are recommended.
PREVAIL-EPL alpha tool electron optics subsystem
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans C.; Dhaliwal, Rajinder S.; Golladay, Steven D.; Doran, Samuel K.; Gordon, Michael S.; Kendall, Rodney A.; Lieberman, Jon E.; Pinckney, David J.; Quickle, Robert J.; Robinson, Christopher F.; Rockrohr, James D.; Stickel, Werner; Tressler, Eileen V.
2001-08-01
The IBM/Nikon alliance is continuing pursuit of an EPL stepper alpha tool based on the PREVAIL technology. This paper provides a status report of the alliance activity with particular focus on the Electron Optical Subsystem developed at IBM. We have previously reported on design features of the PREVAIL alpha system. The new state-of-the-art e-beam lithography concepts have since been reduced to practice and turned into functional building blocks of a production level lithography tool. The electron optical alpha tool subsystem has been designed, build, assembled and tested at IBM's Semiconductor Research and Development Center (SRDC) in East Fishkill, New York. After demonstrating subsystem functionality, the electron optical column and all associated control electronics hardware and software have been shipped during January 2001 to Nikon's facility in Kumagaya, Japan, for integration into the Nikon commercial e-beam stepper alpha tool. Early pre-shipment results obtained with this electron optical subsystem are presented.
A Design for Composing and Extending Vehicle Models
NASA Technical Reports Server (NTRS)
Madden, Michael M.; Neuhaus, Jason R.
2003-01-01
The Systems Development Branch (SDB) at NASA Langley Research Center (LaRC) creates simulation software products for research. Each product consists of an aircraft model with experiment extensions. SDB treats its aircraft models as reusable components, upon which experiments can be built. SDB has evolved aircraft model design with the following goals: 1. Avoid polluting the aircraft model with experiment code. 2. Discourage the copy and tailor method of reuse. The current evolution of that architecture accomplishes these goals by reducing experiment creation to extend and compose. The architecture mechanizes the operational concerns of the model's subsystems and encapsulates them in an interface inherited by all subsystems. Generic operational code exercises the subsystems through the shared interface. An experiment is thus defined by the collection of subsystems that it creates ("compose"). Teams can modify the aircraft subsystems for the experiment using inheritance and polymorphism to create variants ("extend").
Reactor Operations Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M.M.
1989-01-01
The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less
Designing communication and remote controlling of virtual instrument network system
NASA Astrophysics Data System (ADS)
Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian
2005-01-01
In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.
An advanced technology space station for the year 2025, study and concepts
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Garn, P. A.
1987-01-01
A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations.
Reduction of vibration by using mechatronical subsystem
NASA Astrophysics Data System (ADS)
Białas, K.; Buchacz, A.
2015-11-01
The primary aim introduced in this paper is synthesis of mechatronical system understand as planning of this type of systems. Mechatronical system is consisted of fundamental mechanical system and subsystem reducing vibration including electric elements. Fundamental system is received applying reverse task of dynamic (synthesis) and it's including inertial and elastic elements. The subsystem includes electric elements by means moving-coil transducer. The synthesis can also be used to change the already existing systems. Due to the method, introduced in this work, may be performed as early as whilst the designing of future functions. Using this way of designing is support for designers of mechanical systems with active reducing of vibrations.
Mission Design and Selection of Nanosatellite Subsystems for Exploration of Lunar Water Deposits
NASA Astrophysics Data System (ADS)
Cadavid, S. C.
2018-02-01
This project presents an initiative for the development of a lunar exploration mission, looking to cover the first steps of mission design and the specifications of the mission subsystems; the Cubesat 6U configuration is taken as the low cost platform.
78 FR 59732 - Revisions to Design of Structures, Components, Equipment, and Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
...,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... Analysis,'' (Accession No. ML13198A223); Section 3.7.3, ``Seismic Subsystem Analysis,'' (Accession No..., ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1, ``Concrete...
Apollo experience report: Command and service module sequential events control subsystem
NASA Technical Reports Server (NTRS)
Johnson, G. W.
1975-01-01
The Apollo command and service module sequential events control subsystem is described, with particular emphasis on the major systems and component problems and solutions. The subsystem requirements, design, and development and the test and flight history of the hardware are discussed. Recommendations to avoid similar problems on future programs are outlined.
Orbiter ECLSS support of Shuttle payloads
NASA Technical Reports Server (NTRS)
Jaax, J. R.; Morris, D. W.; Prince, R. N.
1974-01-01
The orbiter ECLSS (Environmental Control and Life Support System) provides the functions of atmosphere revitalization, crew life support, and active thermal control. This paper describes these functions as they relate to the support of Shuttle payloads, including automated spacecraft, Spacelab and Department of Defense missions. Functional and performance requirements for the orbiter ECLSS which affect payload support are presented for the atmosphere revitalization subsystem, the food, water and waste subsystem, and the active thermal control subsystem. Schematics for these subsystems are also described. Finally, based on the selected orbiter configuration, preliminary design and off-design thermodynamic data are presented to quantify the baseline orbiter capability; to quantify the payload chargeable penalties for increasing this support; and to identify the significant limits of orbiter ECLSS support available to Shuttle payloads.
4MOST fiber feed preliminary design: prototype testing and performance
NASA Astrophysics Data System (ADS)
Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.
2016-08-01
The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.
A study of multiplex data bus techniques for the space shuttle
NASA Technical Reports Server (NTRS)
Kearney, R. J.; Kalange, M. A.
1972-01-01
A comprehensive technology base for the design of a multiplexed data bus subsystem is provided. Extensive analyses, both analytical and empirical, were performed. Subjects covered are classified under the following headings: requirements identification and analysis; transmission media studies; signal design and detection studies; synchronization, timing, and control studies; user-subsystem interface studies; operational reliability analyses; design of candidate data bus configurations; and evaluation of candidate data bus designs.
Advanced life support control/monitor instrumentation concepts for flight application
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.
1986-01-01
Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.
Extending the enterprise evolution contextualisation model
NASA Astrophysics Data System (ADS)
de Vries, Marné; van der Merwe, Alta; Gerber, Aurona
2017-07-01
Enterprise engineering (EE) emerged as a new discipline to encourage comprehensive and consistent enterprise design. Since EE is multidisciplinary, various researchers study enterprises from different perspectives, which resulted in a plethora of applicable literature and terminology, but without shared meaning. Previous research specifically focused on the fragmentation of knowledge for designing and aligning the information and communication technology (ICT) subsystem of the enterprise in order to support the business organisation subsystem of the enterprise. As a solution for this fragmented landscape, a business-IT alignment model (BIAM) was developed inductively from existing business-IT alignment approaches. Since most of the existing alignment frameworks addressed the alignment between the ICT subsystem and the business organisation subsystem, BIAM also focused on the alignment between these two subsystems. Yet, the emerging EE discipline intends to address a broader scope of design, evident in the existing approaches that incorporate a broader scope of design/alignment/governance. A need was identified to address the knowledge fragmentation of the EE knowledge base by adapting BIAM to an enterprise evolution contextualisation model (EECM), to contextualise a broader set of approaches, as identified by Lapalme. The main contribution of this article is the incremental development and evaluation of EECM. We also present guiding indicators/prerequisites for applying EECM as a contextualisation tool.
Some special sub-systems for stratospheric balloon flights in India
NASA Astrophysics Data System (ADS)
Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.
Constant speed control of four-stroke micro internal combustion swing engine
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun
2015-09-01
The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.
Automated design of spacecraft systems power subsystems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Kordon, Mark; Mandutianu, Dan; Salcedo, Jose; Wood, Eric; Hashemi, Mona
2006-01-01
This paper discusses the application of evolutionary computing to a dynamic space vehicle power subsystem resource and performance simulation in a parallel processing environment. Our objective is to demonstrate the feasibility, application and advantage of using evolutionary computation techniques for the early design search and optimization of space systems.
Evaluating Performances of Solar-Energy Systems
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1987-01-01
CONC11 computer program calculates performances of dish-type solar thermal collectors and power systems. Solar thermal power system consists of one or more collectors, power-conversion subsystems, and powerprocessing subsystems. CONC11 intended to aid system designer in comparing performance of various design alternatives. Written in Athena FORTRAN and Assembler.
Development of a preprototype times wastewater recovery subsystem, addendum
NASA Technical Reports Server (NTRS)
Dehner, G. F.
1984-01-01
Six tasks are described reflecting subsystem hardware and software modifications and test evaluation of a TIMES wastewater recovery subsystem. The overall results are illustrated in a figure which shows the water production rate, the specific energy corrected to 26.5 VDC, and the product water conductivity at various points in the testing. Four tasks are described reflecting studies performed to develop a preliminary design concept for a next generation TIMES. The overall results of the study are the completion of major design analyses and preliminary configuration layout drawings.
Integrated flight/propulsion control - Subsystem specifications for performance
NASA Technical Reports Server (NTRS)
Neighbors, W. K.; Rock, Stephen M.
1993-01-01
A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.
NASA Astrophysics Data System (ADS)
Lovell, T. Alan; Schmidt, D. K.
1994-03-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
NASA Technical Reports Server (NTRS)
Lovell, T. Alan; Schmidt, D. K.
1994-01-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
Cryostat and CCD for MEGARA at GTC
NASA Astrophysics Data System (ADS)
Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.
2012-09-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Toups, Larry; Smitherman, David
2012-01-01
Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in mass, packaging volume, and architectural flexibility. This includes a description of the desired long duration habitation capability, the definition of a baseline model for comparison, a small trade study to investigate alternatives, and commentary on potentially advantageous configurations to enable different levels of habitability. The approaches investigated include modular pressure vessel strategies, modular subsystems, and modular manufacturing approaches to habitat structure. The paper also comments upon the possibility of an integrated habitation strategy using modular components to create all short and long duration habitation elements required in the current exploration architectures.
Hardwired Control Changes For NSTX DC Power Feeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, S.
The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The original TFTR Hardwired Control System (HCS) with electromechanical relays was used for NSTX DC Power loop control and protection during NSTX operations. As part of the NSTX Upgrade, the HCS is being changed to a PLC-based system with the same control logic. This paper gives a description ofmore » the changeover to the new PLC-based system __________________________________________________« less
Review of lunar telescope studies at MSFC
NASA Astrophysics Data System (ADS)
Hilchey, John D.; Nein, Max E.
1993-09-01
In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.
Solar energy system performance evaluation - Seasonal Report for Seeco Lincoln, Lincoln, Nebraska
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-06-01
The SEECO Lincoln Solar Energy System was designed to provide 60 percent of the space heating for the 50 seat Hyde Memorial Observatory in Lincoln, Nebraska. The system consists of nine SEECO Mod 1 flat plate air collectors (481 square feet), a 347 cubic foot rock storage bin, blowers, controls and air ducting. An auxiliary natural gas furnace provides additional energy when the solar energy is not adequate to meet the space heating demand. The system has five modes of operation. System description, typical system operation, system operating sequence, performance assessment, system performance, subsystem performance (collector array, storage, space heating),more » operating energy, energy savings and maintenance are discussed.« less
Study of robotics systems applications to the space station program
NASA Technical Reports Server (NTRS)
Fox, J. C.
1983-01-01
Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed.
Statistical Rick Estimation for Communication System Design --- A Preliminary Look
NASA Astrophysics Data System (ADS)
Babuscia, A.; Cheung, K.-M.
2012-02-01
Spacecraft are complex systems that involve different subsystems with multiple relationships among them. For these reasons, the design of a spacecraft is a time-evolving process that starts from requirements and evolves over time across different design phases. During this process, a lot of changes can happen. They can affect mass and power at the component level, at the subsystem level, and even at the system level. Each spacecraft has to respect the overall constraints in terms of mass and power: for this reason, it is important to be sure that the design does not exceed these limitations. Current practice in system models primarily deals with this problem, allocating margins on individual components and on individual subsystems. However, a statistical characterization of the fluctuations in mass and power of the overall system (i.e., the spacecraft) is missing. This lack of adequate statistical characterization would result in a risky spacecraft design that might not fit the mission constraints and requirements, or in a conservative design that might not fully utilize the available resources. Due to the complexity of the problem and to the different expertise and knowledge required to develop a complete risk model for a spacecraft design, this article is focused on risk estimation for a specific spacecraft subsystem: the communication subsystem. The current research aims to be a proof of concept of a risk-based design optimization approach, which can then be further expanded to the design of other subsystems as well as to the whole spacecraft. The objective of this research is to develop a mathematical approach to quantify the likelihood that the major design drivers of mass and power of a space communication system would meet the spacecraft and mission requirements and constraints through the mission design lifecycle. Using this approach, the communication system designers will be able to evaluate and to compare different communication architectures in a risk trade-off perspective. The results described in this article include a baseline communication system design tool and a statistical characterization of the design risks through a combination of historical mission data and expert opinion contributions. An application example of the communication system of a university spacecraft is presented. IPNPR Volume 42-189 Tagged File.txt
Detectors for the James Webb Space Telescope near-infrared spectrograph
NASA Astrophysics Data System (ADS)
Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica
2004-10-01
The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.
Detectors for the James Webb Space Telescope Near-Infrared Spectrograph
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.
2004-01-01
The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.
NASA Technical Reports Server (NTRS)
1978-01-01
The accommodations provided by the airlock module and the orbital workshop were completely examined with the thought of total reactivation as an enhancement to the STS long duration missions. Each subsystem is described and a summary of subsystem performance during the Skylab missions is presented. End-of-mission status and the status of today for each subsystem is shown together with refurbishment/resupply requirements and refurb kit descriptions to restore Skylab to full operational capability. An inspection/refurbishment and operations plan for Skylab is included. The initial Shuttle-tended operational activity would provide a safe, effective phase of Skylab rehabilitation while simultaneously benefitting the Orbiter crew through the addition of private accommodations, off-duty recreation area, and physical conditioning equipment. This period would also permit exercising selected onboard experiments.
A robotically constructed production and supply base on Phobos
NASA Astrophysics Data System (ADS)
1989-05-01
PHOBIA Corporation is involved with the design of a man-tenable robotically constructed, bootstrap base on Mars' moon, Phobos. This base will be a pit-stop for future manned missions to Mars and beyond and will be a control facility during the robotic construction of a Martian base. An introduction is given to the concepts and the ground rules followed during the design process. Details of a base design and its location are given along with information about some of the subsystems. Since a major purpose of the base is to supply fuel to spacecraft so they can limit their fuel mass, mining and production systems are discussed. Surface support activities such as docks, anchors, and surface transportation systems are detailed. Several power supplies for the base are investigated and include fuel cells and a nuclear reactor. Tasks for the robots are defined along with descriptions of the robots capable of completing the tasks. Finally, failure modes for the entire PHOBIA Corporation design are presented along with an effects analysis and preventative recommendations.
NASA Astrophysics Data System (ADS)
The present design symposium on the Ulysses Reference Mission (URM) provides data on the feasibility of the URM with particular attention given to reference data for Ulysses in the ecliptic plane as it passes the southern and northern pole areas of the sun. Specific issues addressed during the design workshop include the scientific objectives of the URM, the elements of the URM payload, the configuration and structural elements of the spacecraft, thermal control requirements and considerations, a system-engineering analysis, and the scientific subsystems of the URM. Also examined are the solar array and battery package, power control and distribution, technology considerations for the transmission of telemetric data, and a functional analysis of the URM on-board data-handling equipment. The description of the workshop concludes by noting that design studies are required to establish the moment of inertia and center of gravity of the URM spacecraft as well as specific mission parameters.
A robotically constructed production and supply base on Phobos
NASA Technical Reports Server (NTRS)
1989-01-01
PHOBIA Corporation is involved with the design of a man-tenable robotically constructed, bootstrap base on Mars' moon, Phobos. This base will be a pit-stop for future manned missions to Mars and beyond and will be a control facility during the robotic construction of a Martian base. An introduction is given to the concepts and the ground rules followed during the design process. Details of a base design and its location are given along with information about some of the subsystems. Since a major purpose of the base is to supply fuel to spacecraft so they can limit their fuel mass, mining and production systems are discussed. Surface support activities such as docks, anchors, and surface transportation systems are detailed. Several power supplies for the base are investigated and include fuel cells and a nuclear reactor. Tasks for the robots are defined along with descriptions of the robots capable of completing the tasks. Finally, failure modes for the entire PHOBIA Corporation design are presented along with an effects analysis and preventative recommendations.
NDARC NASA Design and Analysis of Rotorcraft. Appendix 5; Theory
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2017-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC: NASA Design and Analysis of Rotorcraft. Appendix 3; Theory
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet speci?ed requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft con?gurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates con?guration ?exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-?delity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy speci?ed design conditions and missions. The analysis tasks can include off-design mission performance calculation, ?ight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft con?gurations is facilitated, while retaining the capability to model novel and advanced concepts. Speci?c rotorcraft con?gurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-?delity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 2
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tilt-rotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft. Appendix 6; Input
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2017-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne R.
2009-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC - NASA Design and Analysis of Rotorcraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2015-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
NDARC NASA Design and Analysis of Rotorcraft Theory Appendix 1
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.
On an LAS-integrated soft PLC system based on WorldFIP fieldbus.
Liang, Geng; Li, Zhijun; Li, Wen; Bai, Yan
2012-01-01
Communication efficiency is lowered and real-time performance is not good enough in discrete control based on traditional WorldFIP field intelligent nodes in case that the scale of control in field is large. A soft PLC system based on WorldFIP fieldbus was designed and implemented. Link Activity Scheduler (LAS) was integrated into the system and field intelligent I/O modules acted as networked basic nodes. Discrete control logic was implemented with the LAS-integrated soft PLC system. The proposed system was composed of configuration and supervisory sub-systems and running sub-systems. The configuration and supervisory sub-system was implemented with a personal computer or an industrial personal computer; running subsystems were designed and implemented based on embedded hardware and software systems. Communication and schedule in the running subsystem was implemented with an embedded sub-module; discrete control and system self-diagnosis were implemented with another embedded sub-module. Structure of the proposed system was presented. Methodology for the design of the sub-systems was expounded. Experiments were carried out to evaluate the performance of the proposed system both in discrete and process control by investigating the effect of network data transmission delay induced by the soft PLC in WorldFIP network and CPU workload on resulting control performances. The experimental observations indicated that the proposed system is practically applicable. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Electric power processing, distribution, management and energy storage
NASA Astrophysics Data System (ADS)
Giudici, R. J.
1980-07-01
Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.
Electric power processing, distribution, management and energy storage
NASA Technical Reports Server (NTRS)
Giudici, R. J.
1980-01-01
Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.
NASA Technical Reports Server (NTRS)
Williams, David E.
2009-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
System integration of marketable subsystems
NASA Technical Reports Server (NTRS)
1978-01-01
These monthly reports, covering the period February 1978 through June 1978, describe the progress made in the major areas of the program. The areas covered are: systems integration of marketable subsystems; development, design, and building of site data acquisition subsystems; development and operation of the central data processing system; operation of the MSFC Solar Test Facility; and systems analysis.
Thermal Control Subsystem Design for the Avionics of a Space Station Payload
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
1996-01-01
A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.
NASA Technical Reports Server (NTRS)
Woodis, W. R.; Runkle, R. E.
1985-01-01
The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.
A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1991-01-01
The purpose was to obtain reliability and mass perspectives on selection of space power system conceptual designs based on SP-100 reactor and Stirling cycle power-generation subsystems. The approach taken was to: (1) develop a criterion for an acceptable overall reliability risk as a function of the expected range of emerging technology subsystem unit reliabilities; (2) conduct reliability and mass analyses for a diverse matrix of 800-kWe lunar-base design configurations employing single and multiple powerplants with both full and partial subsystem redundancy combinations; and (3) derive reliability and mass perspectives on selection of conceptual design configurations that meet an acceptable reliability criterion with the minimum system mass increase relative to reference powerplant design. The developed perspectives provided valuable insight into the considerations required to identify and characterize high-reliability and low-mass lunar-base powerplant conceptual design.
Energy Efficient Engine Low Pressure Subsystem Flow Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.
1998-01-01
The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.
Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.
1998-01-01
The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.
ERIC Educational Resources Information Center
Lintz, Larry M.; And Others
A study investigated the relationship between avionics subsystem design characteristics and training time, training cost, and job performance. A list of design variables believed to affect training and job performance was established and supplemented with personnel variables, including aptitude test scores and the amount of training and…
Minimal-Approximation-Based Decentralized Backstepping Control of Interconnected Time-Delay Systems.
Choi, Yun Ho; Yoo, Sung Jin
2016-12-01
A decentralized adaptive backstepping control design using minimal function approximators is proposed for nonlinear large-scale systems with unknown unmatched time-varying delayed interactions and unknown backlash-like hysteresis nonlinearities. Compared with existing decentralized backstepping methods, the contribution of this paper is to design a simple local control law for each subsystem, consisting of an actual control with one adaptive function approximator, without requiring the use of multiple function approximators and regardless of the order of each subsystem. The virtual controllers for each subsystem are used as intermediate signals for designing a local actual control at the last step. For each subsystem, a lumped unknown function including the unknown nonlinear terms and the hysteresis nonlinearities is derived at the last step and is estimated by one function approximator. Thus, the proposed approach only uses one function approximator to implement each local controller, while existing decentralized backstepping control methods require the number of function approximators equal to the order of each subsystem and a calculation of virtual controllers to implement each local actual controller. The stability of the total controlled closed-loop system is analyzed using the Lyapunov stability theorem.
Pressurization, Pneumatic, and Vent Subsystems of the X-34 Main Propulsion System
NASA Technical Reports Server (NTRS)
Hedayat, A.; Steadman, T. E.; Brown, T. M.; Knight, K. C.; White, C. E., Jr.; Champion, R. H., Jr.
1998-01-01
In pressurization systems, regulators and orifices are use to control the flow of the pressurant. For the X-34 Main Propulsion System, three pressurization subsystem design configuration options were considered. In the first option, regulators were used while in the other options, orifices were considered. In each design option, the vent/relief system must be capable of relieving the pressurant flow without allowing the tank pressure to rise above proof, therefore, impacts on the propellant tank vent system were investigated and a trade study of the pressurization system was conducted. The analysis indicated that design option using regulators poses least risk. Then, a detailed transient thermal/fluid analysis of the recommended pressurization system was performed. Helium usage, thermodynamic conditions, and overpressurization of each propellant tank were evaluated. The pneumatic and purge subsystem is used for pneumatic valve actuation, Inter-Propellant Seal purges, Engine Spin Start, and engine purges at the required interface pressures, A transient analysis of the pneumatic and purge subsystem provided helium usage and flow rates to Inter-Propellant Seal and engine interfaces. Fill analysis of the helium bottles of pressurization and pneumatic subsystems during ground operation was performed. The required fill time and the stored
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
1991-01-01
The development of Environmental Control and Life Support Systems (ECLSS) for Space Station Freedom, future colonization of the Moon, and Mars missions presents new challenges for present technologies. ECLSS that operate during long-duration missions must be semi-autonomous to allow crew members environmental control without constant supervision. A control system for the ECLSS must address these issues as well as being reliable. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The ECLSS for Freedom is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire-sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort.
NASA Technical Reports Server (NTRS)
Greene, P. H.
1972-01-01
Both in practical engineering and in control of muscular systems, low level subsystems automatically provide crude approximations to the proper response. Through low level tuning of these approximations, the proper response variant can emerge from standardized high level commands. Such systems are expressly suited to emerging large scale integrated circuit technology. A computer, using symbolic descriptions of subsystem responses, can select and shape responses of low level digital or analog microcircuits. A mathematical theory that reveals significant informational units in this style of control and software for realizing such information structures are formulated.
NASA Technical Reports Server (NTRS)
1976-01-01
The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.
Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification
NASA Technical Reports Server (NTRS)
Miller, A. N.; Linden, A. W.
1972-01-01
The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem.
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in... subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... portable sources of electrical current, and which may include a non-electrical source of power designed to... or more subsystems actuated by a single control, designed so that a single failure in any subsystem....2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction...
49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... current, and which may include a non-electrical source of power designed to charge batteries and... dissipating electrical energy. Skid number means the frictional resistance of a pavement measured in... subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a...
Evolutionary computing for the design search and optimization of space vehicle power subsystems
NASA Technical Reports Server (NTRS)
Kordon, M.; Klimeck, G.; Hanks, D.
2004-01-01
Evolutionary computing has proven to be a straightforward and robust approach for optimizing a wide range of difficult analysis and design problems. This paper discusses the application of these techniques to an existing space vehicle power subsystem resource and performance analysis simulation in a parallel processing environment.
An approach to the design and implementation of spacecraft attitude control systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Mangus, David J.
1998-01-01
Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.
An Approach to the Design and Implementation of Spacecraft Attitude Control Systems
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Mangus, David J.
1998-01-01
Over 39 years and a long list of missions, the guidance, navigation, and control (GN&C) groups at the Goddard Space Flight Center have gradually developed approaches to the design and implementation of successful spacecraft attitude control systems. With the recent creation of the Guidance, Navigation, and Control Center at Goddard, there is a desire to document some of these design practices to help to ensure their consistent application in the future. In this paper, we will discuss the beginnings of this effort, drawing primarily on the experience of one of the past attitude control system (ACS) groups at Goddard (what was formerly known as Code 712, the Guidance, Navigation, and Control Branch). We will discuss the analysis and design methods and criteria used, including guidelines for linear and nonlinear analysis, as well as the use of low- and high-fidelity simulation for system design and verification of performance. Descriptions of typical ACS sensor and actuator hardware will be shown, and typical sensor/actuator suites for a variety of mission types detailed. A description of the software and hardware test effort will be given, along with an attempt to make some qualitative estimates on how much effort is involved. The spacecraft and GN&C subsystem review cycles will be discussed, giving an outline of what design reviews are typically held and .what information should be presented at each stage. Finally, we will point out some of the lessons learned at Goddard.
NASA Technical Reports Server (NTRS)
1976-01-01
The scientific goals of the Viking mission are described. The science investigations to be carried out are explained and a timetable of planetary operations is outlined. Descriptions of the Viking orbiter and lander systems are presented including explanations of the Viking experimental instrument subsystems.
Distributed Space System Technology Demonstrations with the Emerald Nanosatellite
NASA Technical Reports Server (NTRS)
Twiggs, Robert
2002-01-01
A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.
36 CFR § 1194.4 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... description. Assistive technology. Any item, piece of equipment, or system, whether acquired commercially... equipment or interconnected system or subsystem of equipment, that is used in the creation, conversion, or... information. For example, HVAC (heating, ventilation, and air conditioning) equipment such as thermostats or...
An Investigation of the System Concept.
ERIC Educational Resources Information Center
Hill, Douglas M.; Redden, Michael G.
1985-01-01
Control group students (receiving descriptive, non-inquiry science) and experimental group students (using Science Curriculum Improvement Study-SCIS "Interaction and Systems" materials) were later combined in grade 4 for instruction with SCIS "Subsystems and Variables" materials. Results show similar difficulties in learning…
Optimisation study of a vehicle bumper subsystem with fuzzy parameters
NASA Astrophysics Data System (ADS)
Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.
2012-10-01
This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).
NASA Technical Reports Server (NTRS)
Slaughter, B. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. The Orbiter MPS is composed of the Propellant Management Subsystem (PMS) consisting of the liquid oxygen (LO2) and liquid hydrogen (LH2) subsystems and the helium subsystem. The PMS is a system of manifolds, distribution lines, and valves by which the liquid propellants pass from the External Tank to the Space Shuttle Main Engine (SSME). The helium subsystem consists of a series of helium supply tanks and their associated regulators, control valves, and distribution lines. Volume 1 contains the MPS description, assessment results, ground rules and assumptions, and some of the IOA worksheets.
NASA Technical Reports Server (NTRS)
1971-01-01
Preliminary design and analysis of purge system concepts and purge subsystem approaches are defined and evaluated. Acceptable purge subsystem approaches were combined into four predesign layouts which are presented for comparison and evaluation. Two predesigns were selected for further detailed design and evaluation for eventual selection of the best design for a full scale test configuration. An operation plan is included as an appendix for reference to shuttle-oriented operational parameters.
Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan
NASA Astrophysics Data System (ADS)
Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.
2007-12-01
The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.
Goodarzy, Farhad; Skafidas, Efstratios Stan; Gambini, Simone
2015-01-01
In this review, biomedical-related wireless miniature devices such as implantable medical devices, neural prostheses, embedded neural systems, and body area network systems are investigated and categorized. The two main subsystems of such designs, the RF subsystem and the energy source subsystem, are studied in detail. Different application classes are considered separately, focusing on their specific data rate and size characteristics. Also, the energy consumption of state-of-the-art communication practices is compared to the energy that can be generated by current energy scavenging devices, highlighting gaps and opportunities. The RF subsystem is classified, and the suitable architecture for each category of applications is highlighted. Finally, a new figure of merit suitable for wireless biomedical applications is introduced to measure the performance of these devices and assist the designer in selecting the proper system for the required application. This figure of merit can effectively fill the gap of a much required method for comparing different techniques in simulation stage before a final design is chosen for implementation.
The OA System of College - - Design of the Teaching Quality Monitoring Subsystem
NASA Astrophysics Data System (ADS)
Wu, Hongjuan; Ying, Hong; Jiang, Youyi; Yan, Pei
According to the drawbacks of traditional teaching quality monitoring subsystems and based on the achievements of practical research in the teaching quality monitoring administration in College, this paper provides a design of overall structure of teaching quality monitoring subsystem, that is more suitable for colleges' management. This new system is endowed with the same features as .NET application programes: easy to extend, easy to maintain, flexible, convenient, and it let enterprises, students' parents and excellent graduates participate in teaching quality monitoring administration, have significant effect to ensure the quality of talent training in colleges.
NASA Technical Reports Server (NTRS)
Oren, J. A.
1982-01-01
The soft tube radiator subsystem is described including applicable system requirements, the design and limitations of the subsystem components, and the panel manufacturing method. The soft tube radiator subsystem is applicable to payloads requiring 1 to 12 kW of heat rejection for orbital lifetimes per mission of 30 days or less. The flexible radiator stowage volume required is about 60% and the system weight is about 40% of an equivalent heat rejection rigid panel. The cost should also be considerably less. The flexible radiator is particularly suited to shuttle orbiter sortie payloads and also whose mission lengths do not exceed the 30 day design life.
NASA Technical Reports Server (NTRS)
1974-01-01
The specifications for the Earth Observatory Satellite (EOS) peculiar spacecraft segment and associated subsystems and modules are presented. The specifications considered include the following: (1) wideband communications subsystem module, (2) mission peculiar software, (3) hydrazine propulsion subsystem module, (4) solar array assembly, and (5) the scanning spectral radiometer.
The redwood project: An overview
NASA Technical Reports Server (NTRS)
Cheatham, Sam
1993-01-01
Redwood is a new generation tape subsystem now under development at StorageTek using helical scan technology. This library based storage subsystem is designed for the high performance, deep archival market. The topics are presented in viewgraph form and include the following: subsystem overview, media standards, Redwood developed tape, D3 helical recording format, Redwood cartridge, host software for Redwood libraries, and market opportunities.
NASA Technical Reports Server (NTRS)
Nalette, T. A.
1984-01-01
A regenerable, three man preprototype solid amine, water desorbed (SAWD) CO2 removal and concentation subsystem was designed, fabricated, and successfully acceptance tested by Hamilton Standard. The preprototype SAWD incorporates a single solid amine canister to perform the CO2 removal function, an accumulator to provide the CO2 storage and delivery function, and a microprocessor which automatically controls the subsystem sequential operation and performance. The SAWD subsystem was configured to have a CO2 removal and CO2 delivery capability at the rate of 0.12 kg/hr (0.264 lb/hr) over the relative humidity range of 35 to 70%. The controller was developed to provide fully automatic control over the relative humidity range via custom software that was generated specifically for the SAWD subsystem. The preprototype SAWD subsystem demonstrated a total of 281 hours (208) cycles of operation during ten acceptance tests that were conducted over the 3 to 70% relative humidity range. This operation was comprised of 178 hours (128 cycles) in the CO2 overboard mode and 103 hours (80 cycles) in the CO2 reduction mode. The average CO2 removal/delivery rate met or exceeded the design specification rate of 0.12 kg/hr (0.254 lb/hr) for all ten of the acceptance tests.
Position and attitude tracking control for a quadrotor UAV.
Xiong, Jing-Jing; Zheng, En-Hui
2014-05-01
A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A large-scale computer facility for computational aerodynamics
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Ballhaus, W. F., Jr.
1985-01-01
As a result of advances related to the combination of computer system technology and numerical modeling, computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. NASA has, therefore, initiated the Numerical Aerodynamic Simulation (NAS) Program with the objective to provide a basis for further advances in the modeling of aerodynamic flowfields. The Program is concerned with the development of a leading-edge, large-scale computer facility. This facility is to be made available to Government agencies, industry, and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. Attention is given to the requirements for computational aerodynamics, the principal specific goals of the NAS Program, the high-speed processor subsystem, the workstation subsystem, the support processing subsystem, the graphics subsystem, the mass storage subsystem, the long-haul communication subsystem, the high-speed data-network subsystem, and software.
Response of power systems to the San Fernando Valley earthquake of 9 February 1971. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiff, A.J.; Yao, J.T.P.
1972-01-01
The impact of the San Fernando Valley earthquake on electric power systems is discussed. Particular attention focused on the following three areas; (1) the effects of an earthquake on the power network in the Western States, (2) the failure of subsystems and components of the power system, and (3) the loss of power to hospitals. The report includes sections on the description and functions of major components of a power network, existing procedures to protect the network, safety devices within the system which influence the network, a summary of the effects of the San Fernando Valley earthquake on the Westernmore » States Power Network, and present efforts to reduce the network vulnerability to faults. Also included in the report are a review of design procedures and practices prior to the San Fernando Valley earthquake and descriptions of types of damage to electrical equipment, dynamic analysis of equipment failures, equipment surviving the San Fernando Valley earthquake and new seismic design specifications. In addition, some observations and insights gained during the study, which are not directly related to power systems are discussed.« less
NASA Astrophysics Data System (ADS)
1980-07-01
Accomplishments are reported in the areas of: program management, system integration, the beam characterization system, receiver unit, thermal storage subsystems, master control system, plant support subsystem and engineering services. A solar facilities design integration program action items update is included. Work plan changes and cost underruns are discussed briefly. (LEW)
Airborne Advanced Reconfigurable Computer System (ARCS)
NASA Technical Reports Server (NTRS)
Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.
1976-01-01
A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.
Simulation of magnetoelastic response of iron nanowire loop
NASA Astrophysics Data System (ADS)
Huang, Junping; Peng, Xianghe; Wang, Zhongchang; Hu, Xianzhi
2018-03-01
We analyzed the magnetoelastic responses of one-dimensional iron nanowire loop systems with quantum statistical mechanics, treating the particles in the systems as identical bosons with an arbitrary integer spin. Under the assumptions adopted, we demonstrated that the Hamiltonian of the system can be separated into two parts, corresponding to two Ising subsystems, describing the particle spin and the particle displacement, respectively. Because the energy of the particle motion at atomic scale is quantized, there should be more the strict constraint on the particle displacement Ising subsystem. Making use of the existing results for Ising system, the partition function of the system was derived into two parts, corresponding respectively to the two Ising subsystems. Then the Gibbs distribution was obtained by statistical mechanics, and the description for the magnetoelastic response was derived. The magnetoelastic responses were predicted with the developed approach, and the comparison with the results calculated with VASP demonstrates the validity of the developed approach.
Report on Wind Turbine Subsystem Reliability - A Survey of Various Databases (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, S.
2013-07-01
Wind industry has been challenged by premature subsystem/component failures. Various reliability data collection efforts have demonstrated their values in supporting wind turbine reliability and availability research & development and industrial activities. However, most information on these data collection efforts are scattered and not in a centralized place. With the objective of getting updated reliability statistics of wind turbines and/or subsystems so as to benefit future wind reliability and availability activities, this report is put together based on a survey of various reliability databases that are accessible directly or indirectly by NREL. For each database, whenever feasible, a brief description summarizingmore » database population, life span, and data collected is given along with its features & status. Then selective results deemed beneficial to the industry and generated based on the database are highlighted. This report concludes with several observations obtained throughout the survey and several reliability data collection opportunities in the future.« less
International Space Station Temperature and Humidity Control Subsystem Verification for Node 1
NASA Technical Reports Server (NTRS)
Williams, David E.
2007-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Propellant Management and Conditioning within the X-34 Main Propulsion System
NASA Technical Reports Server (NTRS)
Brown, T. M.; McDonald, J. P.; Hedayat, A.; Knight, K. C.; Champion, R. H., Jr.
1998-01-01
The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion ystem as been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents analyses of the MPS subsystems used to manage the liquid propellants. These subsystems include the propellant tanks, the tank vent/relief subsystem, and the dump/fill/drain subsystem. Analyses include LOX tank chill and fill time estimates, LOX boil-off estimates, propellant conditioning simulations, and transient propellant dump simulations.
Ice pack heat sink subsystem - phase 1, volume 2
NASA Technical Reports Server (NTRS)
Roebelen, G. J., Jr.
1973-01-01
The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.
Automated biowaste sampling system, solids subsystem operating model, part 2
NASA Technical Reports Server (NTRS)
Fogal, G. L.; Mangialardi, J. K.; Stauffer, R. E.
1973-01-01
The detail design and fabrication of the Solids Subsystem were implemented. The system's capacity for the collection, storage or sampling of feces and vomitus from six subjects was tested and verified.
Characterization of a low concentrator photovoltaics module
NASA Astrophysics Data System (ADS)
Butler, B. A.; van Dyk, E. E.; Vorster, F. J.; Okullo, W.; Munji, M. K.; Booysen, P.
2012-05-01
Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.
Space shuttle orbiter leading-edge flight performance compared to design goals
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johnson, D. W.; Kelly, R. E.
1983-01-01
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.
Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights
NASA Technical Reports Server (NTRS)
Wedge, T. E.; Williamson, R. P.
1973-01-01
Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.
NASA Astrophysics Data System (ADS)
Bell, Kevin D.; Dafesh, Philip A.; Hsu, L. A.; Tsuda, A. S.
1995-12-01
Current architectural and design trade techniques often carry unaffordable alternatives late into the decision process. Early decisions made during the concept exploration and development (CE&D) phase will drive the cost of a program more than any other phase of development; thus, designers must be able to assess both the performance and cost impacts of their early choices. The Space Based Infrared System (SBIRS) cost engineering model (CEM) described in this paper is an end-to-end process integrating engineering and cost expertise through commonly available spreadsheet software, allowing for concurrent design engineering and cost estimation to identify and balance system drives to reduce acquisition costs. The automated interconnectivity between subsystem models using spreadsheet software allows for the quick and consistent assessment of the system design impacts and relative cost impacts due to requirement changes. It is different from most CEM efforts attempted in the past as it incorporates more detailed spacecraft and sensor payload models, and has been applied to determine the cost drivers for an advanced infrared satellite system acquisition. The CEM is comprised of integrated detailed engineering and cost estimating relationships describing performance, design, and cost parameters. Detailed models have been developed to evaluate design parameters for the spacecraft bus and sensor; both step-starer and scanner sensor types incorporate models of focal plane array, optics, processing, thermal, communications, and mission performance. The current CEM effort has provided visibility to requirements, design, and cost drivers for system architects and decision makers to determine the configuration of an infrared satellite architecture that meets essential requirements cost effectively. In general, the methodology described in this paper consists of process building blocks that can be tailored to the needs of many applications. Descriptions of the spacecraft and payload subsystem models provide insight into The Aerospace Corporation expertise and scope of the SBIRS concept development effort.
Development of a two-stage membrane-based wash-water reclamation subsystem
NASA Technical Reports Server (NTRS)
Mccray, S. B.
1988-01-01
A two-stage membrane-based subsystem was designed and constructed to enable the recycle of wash waters generated in space. The first stage is a fouling-resistant tube-side-feed hollow-fiber ultrafiltration module, and the second stage is a spiral-wound reverse-osmosis module. Throughout long-term tests, the subsystem consistently produced high-quality permeate, processing actual wash water to 95 percent recovery.
NASA Technical Reports Server (NTRS)
Reina, B., Jr.; Patterson, H. G.
1975-01-01
The conceptual aspects of the command and service module entry monitor subsystem, together with an interpretation of the displays and their associated relationship to entry trajectory control, are presented. The entry monitor subsystem is described, and the problems encountered during the developmental phase and the first five manned Apollo flights are discussed in conjunction with the design improvements implemented.
Solar thermal storage applications program
NASA Astrophysics Data System (ADS)
Peila, W. C.
1982-12-01
The efforts of the Storage Applications Program are reviewed. The program concentrated on the investigation of storage media and evaluation of storage methods. Extensive effort was given to experimental and analytical investigations of nitrate salts. Two tasks are the preliminary design of a 1200 MW/sub th/ system and the design, construction, operation, and evaluation of a subsystem research experiment, which utilized the same design. Some preliminary conclusions drawn from the subsystem research experiment are given.
A new pneumatic suspension system with independent stiffness and ride height tuning capabilities
NASA Astrophysics Data System (ADS)
Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui
2012-12-01
This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.
Design and Development of a Baseband Processor for the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Lee, Kerry D.
1996-01-01
This paper describes the implementation of the operational baseband processor (BBP) subsystem on board the NASA Advanced Communications Technology Satellite (ACTS). The BBP supports the network consisting of the NASA ground station (NGS) low burst rate (LBR) terminals, and the T1 very small aperture terminals (VSAT's), to provide flexible, demand assigned satellite switched (SS), baseband processed frequency division modulated (FDM)/time division multiple access (TDMA) operations. This paper presents an overview of the baseband processor and includes a description of the data flow, functional block diagrams, and a discussion of the implementation of BBP. A discussion of the supporting technologies for the BBP is presented. A brief summary of BBP-level performance testing is also presented. Finally, a discussion of the implications of current technology on the BBP design, if it were to be developed today, is presented.
NASA Astrophysics Data System (ADS)
1982-04-01
The results of thermal hydraulic, design for the stress analyses which are required to demonstrate that the receiver design for the Barstow Solar Pilot Plant satisfies the general design and performance requirements during the plant's design life are presented. Recommendations are made for receiver operation. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding.
Common modular avionics - Partitioning and design philosophy
NASA Astrophysics Data System (ADS)
Scott, D. M.; Mulvaney, S. P.
The design objectives and definition criteria for common modular hardware that will perform digital processing functions in multiple avionic subsystems are examined. In particular, attention is given to weapon system-level objectives, such as increased supportability, reduced life cycle costs, and increased upgradability. These objectives dictate the following overall modular design goals: reduce test equipment requirements; have a large number of subsystem applications; design for architectural growth; and standardize for technology transparent implementations. Finally, specific partitioning criteria are derived on the basis of the weapon system-level objectives and overall design goals.
Mobile communications satellite antenna flight experiment definition
NASA Technical Reports Server (NTRS)
Freeland, Robert E.
1987-01-01
Results of a NASA-sponsored study to determine the technical feasibility and cost of a Shuttle-based flight experiment specifically intended for the MSAT commercial user community are presented. The experiment will include demonstrations of technology in the areas of radio frequency, sensing and control, and structures. The results of the structural subsystem study summarized here include experiment objective and technical approach, experiment structural description, structure/environment interactions, structural characterization, thermal characterization, structural measurement system, and experiment functional description.
ITOS meteorological satellite system: TIROS M spacecraft (ITOS 1), volume 1
NASA Technical Reports Server (NTRS)
1970-01-01
The ITOS system and mission are described along with the design of the TIROS M spacecraft, and the ITOS ground complex. The command subsystems, and the primary environmental sensor subsystem are discussed.
Alssat Development Status and Its Applications in Trade Studies
NASA Technical Reports Server (NTRS)
Yeh, H. Y. (Jannivine); Brown, Cheryl B.; Jeng, Frank F.; Lin, Chin H.; Ewert, Michael K.
2004-01-01
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS based on suggested default values or user inputs for different combinations of the ALS regenerative system technologies (Ref. 1, 2). This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. Since ALSSAT's latest publication in ICES 2001 (Ref. 1) describing the development of ALSSAT with its Air Revitalization Subsystem (ARS), Water Management Subsystem (WMS), and Biomass Subsystem (Biomass) mass balance sheets, ALSSAT has been expanded to include mass balance and sizing models for the remaining three ALS subsystems, namely, the Solid Waste Management Subsystem (SWMS), the Food Management Subsystem (FMS), and the Thermal Control Subsystem (TCS). The external interfaces, including the Extravehicular Activities (EVA) and Human Accommodations (HA), were implemented into ALSSAT in 2002. The overall mass balance sheet, which integrates the six ALS subsystems and the external interfaces applicable to the ECLSS, was also developed. In 2003, ALSSAT was upgraded to include the consideration of redundancy and contingency options in the ECLSS, as well as more ALS regenerative technology selections. ALSSAT has been used for the Metric Calculation for FY02 and FY03 (Ref. 3). Several trade studies were conducted in 2003. The analytical results will be presented in this paper.
Advanced EVA system design requirements study
NASA Technical Reports Server (NTRS)
Woods, T. G.
1988-01-01
The results are presented of a study to identify specific criteria regarding space station extravehicular activity system (EVAS) hardware requirements. Key EVA design issues include maintainability, technology readiness, LSS volume vs. EVA time available, suit pressure/cabin pressure relationship and productivity effects, crew autonomy, integration of EVA as a program resource, and standardization of task interfaces. A variety of DOD EVA systems issues were taken into consideration. Recommendations include: (1) crew limitations, not hardware limitations; (2) capability to perform all of 15 generic missions; (3) 90 days on-orbit maintainability with 50 percent duty cycle as minimum; and (4) use by payload sponsors of JSC document 10615A plus a Generic Tool Kit and Specialized Tool Kit description. EVA baseline design requirements and criteria, including requirements of various subsystems, are outlined. Space station/EVA system interface requirements and EVA accommodations are discussed in the areas of atmosphere composition and pressure, communications, data management, logistics, safe haven, SS exterior and interior requirements, and SS airlock.
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
NASA Technical Reports Server (NTRS)
Keltner, D. J.
1975-01-01
This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.
Space Fabrication Demonstration System
NASA Technical Reports Server (NTRS)
1978-01-01
The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallet, Jr., R. W.; Gervais, R. L.
1977-10-01
The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)
Solar thermochemical process interface study
NASA Technical Reports Server (NTRS)
1984-01-01
The design and analyses of a subsystem of a hydrogen production process are described. The process is based on solar driven thermochemical reactions. The subject subsystem receives sulfuric acid of 60% concentration at 100 C, 1 atm pressure. The acid is further concentrated, vaporized, and decomposed (at a rate of 122 g moles/sec H2SO4) into SO2, O2, and water. The produce stream is cooled to 100 C. Three subsystem options, each being driven by direct solar energy, were designed and analyzed. The results are compared with a prior study case in which solar energy was provided indirectly through a helium loop.
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1977-01-01
The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.
Design Description of the X-33 Avionics Architecture
NASA Technical Reports Server (NTRS)
Reichenfeld, Curtis J.; Jones, Paul G.
1999-01-01
In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides an output-voting plane to detect, isolate and contain faults due to internal hardware or software faults and reconfigures the VMCs to accommodate these faults. Critical data in the 1553 messages are scheduled and synchronized to specific processing frames in order to minimize data latency. In order to achieve an open architecture, military and commercial off-the-shelf equipment is incorporated using common processors, standard VME backplanes and chassis, the VxWorks operating system, and MartixX for automatic code generation. The use of off-the-shelf tools and equipment helps reduce development time and enables software reuse. The open architecture allows for technology insertion, while the distributed modular elements allow for expansion to increased redundancy levels to meet the higher reliability goals of future RLVs.
Li, Wei
2016-06-01
This paper considers a unified geometric projection approach for: 1) decomposing a general system of cooperative agents coupled via Laplacian matrices or stochastic matrices and 2) deriving a centroid-subsystem and many shape-subsystems, where each shape-subsystem has the distinct properties (e.g., preservation of formation and stability of the original system, sufficiently simple structures and explicit formation evolution of agents, and decoupling from the centroid-subsystem) which will facilitate subsequent analyses. Particularly, this paper provides an additional merit of the approach: considering adjustments of coupling topologies of agents which frequently occur in system design (e.g., to add or remove an edge, to move an edge to a new place, and to change the weight of an edge), the corresponding new shape-subsystems can be derived by a few simple computations merely from the old shape-subsystems and without referring to the original system, which will provide further convenience for analysis and flexibility of choice. Finally, such fast recalculations of new subsystems under topology adjustments are provided with examples.
System design of the Pioneer Venus spacecraft. Volume 7: Communication subsystem studies
NASA Technical Reports Server (NTRS)
Newlands, D. M.
1973-01-01
Communications subsystem tradeoffs were undertaken to establish a low cost and low weight design consistent with the mission requirements. Because of the weight constraint of the Thor/Delta launched configuration, minimum weight was emphasized in determining the Thor/Delta design. In contrast, because of the greatly relaxed weight constraint of the Atlas/Centaur launched configuration, minimum cost and off the shelf hardware were emphasized and the attendant weight penalities accepted. Communication subsystem hardware elements identified for study included probe and bus antennas (CM-6, CM-17), power amplifiers (CM-10), and the large probe transponder and small probe stable oscillator required for doppler tracking (CM-11, CM-16). In addition, particular hardware problems associated with the probe high temperature and high-g environment were investigated (CM-7).
NASA Astrophysics Data System (ADS)
Chen, Chao; Liu, Qian; Zhao, Jun
2018-01-01
This paper studies the problem of stabilisation of switched nonlinear systems with output and input constraints. We propose a recursive approach to solve this issue. None of the subsystems are assumed to be stablisable while the switched system is stabilised by dual design of controllers for subsystems and a switching law. When only dealing with bounded input, we provide nested switching controllers using an extended backstepping procedure. If both input and output constraints are taken into consideration, a Barrier Lyapunov Function is employed during operation to construct multiple Lyapunov functions for switched nonlinear system in the backstepping procedure. As a practical example, the control design of an equilibrium manifold expansion model of aero-engine is given to demonstrate the effectiveness of the proposed design method.
A multilevel control system for the large space telescope. [numerical analysis/optimal control
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.
1975-01-01
A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.
Space station WP-04 power system. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Results of the phase B study contract for the definition of the space station Electric Power System (EPS) are presented in detail along with backup information and supporting data. Systems analysis and trades, preliminary design, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning are addressed. The station design is a hybrid approach which provides user power of 25 kWe from the photovoltaic subsystem and 50 kWe from the solar dynamic subsystem. The electric power is distributed to users as a utility service; single phase at a frequency of 20 kHz and voltage of 440VAC. The solar array NiH2 batteries of the photovoltaic subsystem are based on commonality to those used on the co-orbiting and solar platforms.
A comparison of two software architectural styles for space-based control systems
NASA Technical Reports Server (NTRS)
Dvorak, D.
2003-01-01
In the hardware/software design of control systems it is almost an article of faith to decompose a system into loosely coupled subsystems, with state variables encapsulated inside device and subsystem objects.
Interdisciplinary and multilevel optimum design
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.
1986-01-01
Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.
A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Carney, R. R.
1983-01-01
A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.
Dedicated nuclear facilities for electrolytic hydrogen production
NASA Technical Reports Server (NTRS)
Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.
1979-01-01
An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.
ERBE Geographic Scene and Monthly Snow Data
NASA Technical Reports Server (NTRS)
Coleman, Lisa H.; Flug, Beth T.; Gupta, Shalini; Kizer, Edward A.; Robbins, John L.
1997-01-01
The Earth Radiation Budget Experiment (ERBE) is a multisatellite system designed to measure the Earth's radiation budget. The ERBE data processing system consists of several software packages or sub-systems, each designed to perform a particular task. The primary task of the Inversion Subsystem is to reduce satellite altitude radiances to fluxes at the top of the Earth's atmosphere. To accomplish this, angular distribution models (ADM's) are required. These ADM's are a function of viewing and solar geometry and of the scene type as determined by the ERBE scene identification algorithm which is a part of the Inversion Subsystem. The Inversion Subsystem utilizes 12 scene types which are determined by the ERBE scene identification algorithm. The scene type is found by combining the most probable cloud cover, which is determined statistically by the scene identification algorithm, with the underlying geographic scene type. This Contractor Report describes how the geographic scene type is determined on a monthly basis.
Lessons Learned from the Node 1 Temperature and Humidity Control Subsystem Design
NASA Technical Reports Server (NTRS)
Williams, David E.
2010-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Quattrone, P. D.
1974-01-01
Life Systems, working with NASA, has developed an electrochemical, six-man, self-contained carbon dioxide concentrator subsystem (CX-6) designed to normally remove 13.2 lb/day of CO2 while maintaining the CO2 partial pressure (pCO2) of the cabin atmosphere at 3 mm Hg or less. The CX-6 was subjected to extensive parametric and endurance testing. The effects of operating conditions on CO2 removal and electrical efficiencies were determined, including effects of hydrogen (H2) flow rate, process airflow rate, pCO2, operating temperature and current density. A total of 209 days of operation was accumulated. The subsystem was designed with self-contained electronic control and monitoring instrumentation. The CX-6 was redesigned and repackaged into the CO2 collection subsystem for the air revitalization group of the space station prototype.
On-orbit experience with the HEAO attitude control subsystem
NASA Technical Reports Server (NTRS)
Hoffman, D. P.; Berkery, E. A.
1978-01-01
The first satellite (HEAO-1) in the High Energy Astronomy Observatory Program series was launched successfully on Aug. 12, 1977. To date it has completed over nine months of orbital operation in a science data gathering mode. During this period all attitude control modes have been exercised and all primary mission objectives have been achieved. This paper highlights the characteristics of the attitude control subsystem design and compares the predicted performance with the actual flight operations experience. Environmental disturbance modeling, component hardware/software characteristics, and overall attitude control performance are reviewed and are found to compare very well with the prelaunch analytical predictions. Brief comments are also included regarding the operations aspects of the attitude control subsystem. The experience in this regard demonstrates the effectiveness of the design flexibility afforded by the presence of a general purpose digital processor in the subsystem flight hardware implementation.
Integrated control/structure optimization by multilevel decomposition
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Gilbert, Michael G.
1990-01-01
A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.
A thermal shield concept for the Solar Probe mission
NASA Technical Reports Server (NTRS)
Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.
1991-01-01
The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.
Durso, Francis T; Stearman, Eric J; Morrow, Daniel G; Mosier, Kathleen L; Fischer, Ute; Pop, Vlad L; Feigh, Karen M
2015-05-01
We attempted to understand the latent structure underlying the systems pilots use to operate in situations involving human-automation interaction (HAI). HAI is an important characteristic of many modern work situations. Of course, the cognitive subsystems are not immediately apparent by observing a functioning system, but correlations between variables may reveal important relations. The current report examined pilot judgments of 11 HAI dimensions (e.g., Workload, Task Management, Stress/Nervousness, Monitoring Automation, and Cross-Checking Automation) across 48 scenarios that required airline pilots to interact with automation on the flight deck. We found three major clusters of the dimensions identifying subsystems on the flight deck: a workload subsystem, a management subsystem, and an awareness subsystem. Relationships characterized by simple correlations cohered in ways that suggested underlying subsystems consistent with those that had previously been theorized. Understanding the relationship among dimensions affecting HAI is an important aspect in determining how a new piece of automation designed to affect one dimension will affect other dimensions as well. © 2014, Human Factors and Ergonomics Society.
NASA Technical Reports Server (NTRS)
1975-01-01
A shuttle EVLSS Thermal Control System (TCS) is defined. Thirteen heat rejection subsystems, thirteen water management subsystems, nine humidity control subsystems, three pressure control schemes and five temperature control schemes are evaluated. Sixteen integrated TCS systems are studied, and an optimum system is selected based on quantitative weighting of weight, volume, cost, complexity and other factors. The selected sybsystem contains a sublimator for heat rejection, a bubble expansion tank for water management, and a slurper and rotary separator for humidity control. Design of the selected subsystem prototype hardware is presented.
Serenity: A subsystem quantum chemistry program.
Unsleber, Jan P; Dresselhaus, Thomas; Klahr, Kevin; Schnieders, David; Böckers, Michael; Barton, Dennis; Neugebauer, Johannes
2018-05-15
We present the new quantum chemistry program Serenity. It implements a wide variety of functionalities with a focus on subsystem methodology. The modular code structure in combination with publicly available external tools and particular design concepts ensures extensibility and robustness with a focus on the needs of a subsystem program. Several important features of the program are exemplified with sample calculations with subsystem density-functional theory, potential reconstruction techniques, a projection-based embedding approach and combinations thereof with geometry optimization, semi-numerical frequency calculations and linear-response time-dependent density-functional theory. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
A new environment for multiple spacecraft power subsystem mission operations
NASA Technical Reports Server (NTRS)
Bahrami, K. A.
1990-01-01
The engineering analysis subsystem environment (EASE) is being developed to enable fewer controllers to monitor and control power and other spacecraft engineering subsystems. The EASE prototype has been developed to support simultaneous real-time monitoring of several spacecraft engineering subsystems. It is being designed to assist with offline analysis of telemetry data to determine trends, and to help formulate uplink commands to the spacecraft. An early version of the EASE prototype has been installed in the JPL Space Flight Operations Facility for online testing. The EASE prototype is installed in the Galileo Mission Support Area. The underlying concept, development, and testing of the EASE prototype and how it will aid in the ground operations of spacecraft power subsystems are discussed.
NASA Technical Reports Server (NTRS)
Hanford, Anthony J.
2004-01-01
This document provides values at the assembly level for the subsystems described in the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric (Hanford, 2004). Hanford (2004) summarizes the subordinate computational values for the Advanced Life Support Research and Technology Development (ALS R&TD) Metric at the subsystem level, while this manuscript provides a summary at the assembly level. Hanford (2004) lists mass, volume, power, cooling, and crewtime for each mission examined by the ALS R&TD Metric according to the nominal organization for the Advanced Life Support (ALS) elements. The values in the tables below, Table 2.1 through Table 2.8, list the assemblies, using the organization and names within the Advanced Life Support Sizing Analysis Tool (ALSSAT) for each ALS element. These tables specifically detail mass, volume, power, cooling, and crewtime. Additionally, mass and volume are designated in terms of values associated with initial hardware and resupplied hardware just as they are within ALSSAT. The overall subsystem values are listed on the line following each subsystem entry. These values are consistent with those reported in Hanford (2004) for each listed mission. Any deviations between these values and those in Hanford (2004) arise from differences in when individual numerical values are rounded within each report, and therefore the resulting minor differences should not concern even a careful reader. Hanford (2004) u es the uni ts kW(sub e) and kW(sub th) for power and cooling, respectively, while the nomenclature below uses W(sub e) and W(sub th), which is consistent with the native units within ALSSAT. The assemblies, as specified within ALSSAT, are listed in bold below their respective subsystems. When recognizable assembly components are not listed within ALSSAT, a summary of the assembly is provided on the same line as the entry for the assembly. Assemblies with one or more recognizable components are further described by the indented entries below them. See Yeh, et al. (2002), Yeh, et al. (2003), and Yeh, et al. (2004) for details about ALSSAT organization. Except for the dry food mass listed within the Food Processing, Packaging, and Storage within the Food Subsystem, total values for assemblies would be the sum of their components. The Dry Food Mass, however, is that portion of the food system that was neglected during the computation of the Fiscal Year 2004 ALS R&TD Metric. It is listed here to provide a reference, but it is otherwise ignored in the overall totals. See Hanford (2004) for details of this process and supporting rationale. When applicable, the technology label from ALSSAT is listed in the second column, and the associated abbreviations are listed below in Section 4. For more details of the technologies assumed for each mission, please see Hanford (2004) for descriptions of each subsystem and an overall life support system schematic.
A program for the calculation of paraboloidal-dish solar thermal power plant performance
NASA Technical Reports Server (NTRS)
Bowyer, J. M., Jr.
1985-01-01
A program capable of calculating the design-point and quasi-steady-state annual performance of a paraboloidal-concentrator solar thermal power plant without energy storage was written for a programmable calculator equipped with suitable printer. The power plant may be located at any site for which a histogram of annual direct normal insolation is available. Inputs required by the program are aperture area and the design and annual efficiencies of the concentrator; the intercept factor and apparent efficiency of the power conversion subsystem and a polynomial representation of its normalized part-load efficiency; the efficiency of the electrical generator or alternator; the efficiency of the electric power conditioning and transport subsystem; and the fractional parasitic loses for the plant. Losses to auxiliaries associated with each individual module are to be deducted when the power conversion subsystem efficiencies are calculated. Outputs provided by the program are the system design efficiency, the annualized receiver efficiency, the annualized power conversion subsystem efficiency, total annual direct normal insolation received per unit area of concentrator aperture, and the system annual efficiency.
SQL Collaborative Learning Framework Based on SOA
NASA Astrophysics Data System (ADS)
Armiati, S.; Awangga, RM
2018-04-01
The research is focused on designing collaborative learning-oriented framework fulfilment service in teaching SQL Oracle 10g. Framework built a foundation of academic fulfilment service performed by a layer of the working unit in collaboration with Program Studi Manajemen Informatika. In the design phase defined what form of collaboration models and information technology proposed for Program Studi Manajemen Informatika by using a framework of collaboration inspired by the stages of modelling a Service Oriented Architecture (SOA). Stages begin with analyzing subsystems, this activity is used to determine subsystem involved and reliance as well as workflow between the subsystems. After the service can be identified, the second phase is designing the component specifications, which details the components that are implemented in the service to include the data, rules, services, profiles can be configured, and variations. The third stage is to allocate service, set the service to the subsystems that have been identified, and its components. Implementation framework contributes to the teaching guides and application architecture that can be used as a landing realize an increase in service by applying information technology.
Man-systems distributed system for Space Station Freedom
NASA Technical Reports Server (NTRS)
Lewis, J. L.
1990-01-01
Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.
NASA Technical Reports Server (NTRS)
1981-01-01
A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.
NASA Technical Reports Server (NTRS)
Yeh, H. Y. Jannivine; Brown, Cheryl B.; Jeng, Frank F.; Anderson, Molly; Ewert, Michael K.
2009-01-01
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft(Registered TradeMark) Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of the Exploration Life support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. The latest ALSSAT related publication in ICES 2004 detailed ALSSAT s development status including the completion of all six ELS Subsystems (ELSS), namely, the Air Management Subsystem, the Biomass Subsystem, the Food Management Subsystem, the Solid Waste Management Subsystem, the Water Management Subsystem, and the Thermal Control Subsystem and two external interfaces, including the Extravehicular Activity and the Human Accommodations. Since 2004, many more regenerative technologies in the ELSS were implemented into ALSSAT. ALSSAT has also been used for the ELS Research and Technology Development Metric Calculation for FY02 thru FY06. It was also used to conduct the Lunar Outpost Metric calculation for FY08 and was integrated as part of a Habitat Model developed at Langley Research Center to support the Constellation program. This paper will give an update on the analysis tool s current development status as well as present the analytical results of one of the trade studies that was performed.
SDTM - SYSTEM DESIGN TRADEOFF MODEL FOR SPACE STATION FREEDOM RELEASE 1.1
NASA Technical Reports Server (NTRS)
Chamberlin, R. G.
1994-01-01
Although extensive knowledge of space station design exists, the information is widely dispersed. The Space Station Freedom Program (SSFP) needs policies and procedures that ensure the use of consistent design objectives throughout its organizational hierarchy. The System Design Tradeoff Model (SDTM) produces information that can be used for this purpose. SDTM is a mathematical model of a set of possible designs for Space Station Freedom. Using the SDTM program, one can find the particular design which provides specified amounts of resources to Freedom's users at the lowest total (or life cycle) cost. One can also compare alternative design concepts by changing the set of possible designs, while holding the specified user services constant, and then comparing costs. Finally, both costs and user services can be varied simultaneously when comparing different designs. SDTM selects its solution from a set of feasible designs. Feasibility constraints include safety considerations, minimum levels of resources required for station users, budget allocation requirements, time limitations, and Congressional mandates. The total, or life cycle, cost includes all of the U.S. costs of the station: design and development, purchase of hardware and software, assembly, and operations throughout its lifetime. The SDTM development team has identified, for a variety of possible space station designs, the subsystems that produce the resources to be modeled. The team has also developed formulas for the cross consumption of resources by other resources, as functions of the amounts of resources produced. SDTM can find the values of station resources, so that subsystem designers can choose new design concepts that further reduce the station's life cycle cost. The fundamental input to SDTM is a set of formulas that describe the subsystems which make up a reference design. Most of the formulas identify how the resources required by each subsystem depend upon the size of the subsystem. Some of the formulas describe how the subsystem costs depend on size. The formulas can be complicated and nonlinear (if nonlinearity is needed to describe how designs change with size). SDTM's outputs are amounts of resources, life-cycle costs, and marginal costs. SDTM will run on IBM PC/XTs, ATs, and 100% compatibles with 640K of RAM and at least 3Mb of fixed-disk storage. A printer which can print in 132-column mode is also required, and a mathematics co-processor chip is highly recommended. This code is written in Turbo C 2.0. However, since the developers used a modified version of the proprietary Vitamin C source code library, the complete source code is not available. The executable is provided, along with all non-proprietary source code. This program was developed in 1989.
Li, Yanan; Yang, Chenguang; Ge, Shuzhi Sam; Lee, Tong Heng
2011-04-01
In this paper, adaptive neural network (NN) control is investigated for a class of block triangular multiinput-multioutput nonlinear discrete-time systems with each subsystem in pure-feedback form with unknown control directions. These systems are of couplings in every equation of each subsystem, and different subsystems may have different orders. To avoid the noncausal problem in the control design, the system is transformed into a predictor form by rigorous derivation. By exploring the properties of the block triangular form, implicit controls are developed for each subsystem such that the couplings of inputs and states among subsystems have been completely decoupled. The radial basis function NN is employed to approximate the unknown control. Each subsystem achieves a semiglobal uniformly ultimately bounded stability with the proposed control, and simulation results are presented to demonstrate its efficiency.
Engineering model 8-cm thruster subsystem
NASA Technical Reports Server (NTRS)
Herron, B. G.; Hyman, J.; Hopper, D. J.; Williamson, W. S.; Dulgeroff, C. R.; Collett, C. R.
1978-01-01
An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package.
Linear regulator design for stochastic systems by a multiple time scales method
NASA Technical Reports Server (NTRS)
Teneketzis, D.; Sandell, N. R., Jr.
1976-01-01
A hierarchically-structured, suboptimal controller for a linear stochastic system composed of fast and slow subsystems is considered. The controller is optimal in the limit as the separation of time scales of the subsystems becomes infinite. The methodology is illustrated by design of a controller to suppress the phugoid and short period modes of the longitudinal dynamics of the F-8 aircraft.
Accelerating wavefunction in density-functional-theory embedding by truncating the active basis set
NASA Astrophysics Data System (ADS)
Bennie, Simon J.; Stella, Martina; Miller, Thomas F.; Manby, Frederick R.
2015-07-01
Methods where an accurate wavefunction is embedded in a density-functional description of the surrounding environment have recently been simplified through the use of a projection operator to ensure orthogonality of orbital subspaces. Projector embedding already offers significant performance gains over conventional post-Hartree-Fock methods by reducing the number of correlated occupied orbitals. However, in our first applications of the method, we used the atomic-orbital basis for the full system, even for the correlated wavefunction calculation in a small, active subsystem. Here, we further develop our method for truncating the atomic-orbital basis to include only functions within or close to the active subsystem. The number of atomic orbitals in a calculation on a fixed active subsystem becomes asymptotically independent of the size of the environment, producing the required O ( N 0 ) scaling of cost of the calculation in the active subsystem, and accuracy is controlled by a single parameter. The applicability of this approach is demonstrated for the embedded many-body expansion of binding energies of water hexamers and calculation of reaction barriers of SN2 substitution of fluorine by chlorine in α-fluoroalkanes.
Display management subsystem, version 1: A user's eye view
NASA Technical Reports Server (NTRS)
Parker, Dolores
1986-01-01
The structure and application functions of the Display Management Subsystem (DMS) are described. The DMS, a subsystem of the Transportable Applications Executive (TAE), was designed to provide a device-independent interface for an image processing and display environment. The system is callable by C and FORTRAN applications, portable to accommodate different image analysis terminals, and easily expandable to meet local needs. Generic applications are also available for performing many image processing tasks.
NASA Technical Reports Server (NTRS)
Schafer, Eric J.
2012-01-01
There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of where the process has been applied.
Electric power scheduling - A distributed problem-solving approach
NASA Technical Reports Server (NTRS)
Mellor, Pamela A.; Dolce, James L.; Krupp, Joseph C.
1990-01-01
Space Station Freedom's power system, along with the spacecraft's other subsystems, needs to carefully conserve its resources and yet strive to maximize overall Station productivity. Due to Freedom's distributed design, each subsystem must work cooperatively within the Station community. There is a need for a scheduling tool which will preserve this distributed structure, allow each subsystem the latitude to satisfy its own constraints, and preserve individual value systems while maintaining Station-wide integrity.
A miniaturized HTS microwave receiver front-end subsystem for radar and communication applications
NASA Astrophysics Data System (ADS)
Bian, Yongbo; Guo, Jin; Gao, Changzheng; Li, Chunguang; Li, Hong; Wang, Jia; Cui, Bin; He, Xiaofeng; Li, Chao; Li, Na; Li, Guoqiang; Zhang, Qiang; Zhang, Xueqiang; Meng, Jibao; He, Yusheng
2010-08-01
This paper presents a miniaturized high performance high temperature superconducting (HTS) microwave receiver front-end subsystem, which uses a mini stirling cryocooler to cool a high selective HTS filter and a low noise amplifier (LNA). The HTS filter was miniaturized by using specially designed compact resonators and fabricating with double-sided YBCO films on LAO substrate which has a relatively high permittivity. The LNA was specially designed to work at cryogenic temperature with noise figure of 0.27 dB at 71 K. The mini cryocooler, which is widely used in infrared detectors, has a smaller size (60 mm × 80 mm × 100 mm) and a lighter weight (340 g) than the stirling cryocoolers commonly used in other HTS filter subsystem. The whole front-end subsystem, including a HTS filter, a LNA, a cryocooler and the vacuum chamber, has a size of only φ120 mm × 175 mm and a weight of only 3.3 kg. The microwave devices inside the subsystem are working at 71.8 K with a consumed cooling power of 0.325 W. The center frequency of this subsystem is 925.2 MHz and the bandwidth is 2.7 MHz (which is a fractional bandwidth of 0.2%), with the gain of 19.75 dB at center frequency and the return loss better than -18.11 dB in the pass band. The stop band rejection is more than 60 dB and the skirt slope is exceeding 120 dB MHz -1. The noise figure of this subsystem is less than 0.8 dB. This front-end subsystem can be used in radars and communication systems conveniently due to it’s compact size and light weight.
NASA Technical Reports Server (NTRS)
1970-01-01
The requirements for the design, fabrication, performance, and testing of a 10.6 micron optical heterodyne receiver subsystem for use in a laser communication system are presented. The receiver subsystem, as a part of the laser communication experiment operates in the ATS 6 satellite and in a transportable ground station establishing two-way laser communications between the spacecraft and the transportable ground station. The conditions under which environmental tests are conducted are reported.
Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems
NASA Astrophysics Data System (ADS)
Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.
1988-05-01
This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.
Overview of SDCM - The Spacecraft Design and Cost Model
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.
1988-01-01
The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.
Space Shuttle Orbital Drag Parachute Design
NASA Technical Reports Server (NTRS)
Meyerson, Robert E.
2001-01-01
The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.
Integrated control/structure optimization by multilevel decomposition
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Gilbert, Michael G.
1990-01-01
A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.
Six-man, self-contained carbon dioxide concentrator system
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schubert, F. H.; Marshall, R. D.; Shumar, J. W.
1974-01-01
A six man, self contained electrochemical carbon dioxide concentrating subsystem was successfully designed and fabricated. It was a preprototype engineering model designed to nominally remove 6.0 kg (13.2 lb) CO2/day with an inlet air CO2 partial pressure of 400 N/sq m (3 mm Hg) and an overcapacity removal capability of 12.0 kg (26.4 lb) CO2/day. The design specifications were later expanded to allow operation at space station prototype CO2 collection subsystem operating conditions.
Development of an advanced Sabatier CO2 reduction subsystem
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Cusick, R. J.
1981-01-01
A preprototype Sabatier CO2 reduction subsystem was successfully designed, fabricated and tested. The lightweight, quick starting (less than 5 minutes) reactor utlizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a simple, passively controlled reactor design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with process flows equivalent to a crew size of up to five persons. The subsystem requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation.
NASA Technical Reports Server (NTRS)
Larman, B. T.
1981-01-01
The conduction of the Project Galileo Orbiter, with 18 microcomputers and the equivalent of 360K 8-bit bytes of memory contained within two major engineering subsystems and eight science instruments, requires that the key onboard computer system resources be managed in a very rigorous manner. Attention is given to the rationale behind the project policy, the development stage, the preliminary design stage, the design/implementation stage, and the optimization or 'scrubbing' stage. The implementation of the policy is discussed, taking into account the development of the Attitude and Articulation Control Subsystem (AACS) and the Command and Data Subsystem (CDS), the reporting of margin status, and the response to allocation oversubscription.
The 26-meter S-X Conversion Project. [Deep Space Network stations
NASA Technical Reports Server (NTRS)
Lobb, V. B.
1977-01-01
The 26-meter S-X conversion project provides for the conversion of an existing 26-meter S-band subnet to a 34-meter S- and X-band subnet. The subnet chosen for conversion consists of the following stations: DSS 12 near Barstow, DSS 44 in Australia, and DSS 62 in Spain. The main subsystems effected by this project are the antenna mechanical, antenna microwave, and receiver-exciter. In addition to these, there are many project-related electronic equipments that have been added to the existing station equipment. The major subsystems are essentially through the design stage with the antenna mechanical subsystem completed through detail design with procurement in process.
Regenerative Life Support Evaluation
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Thompson, C. D.
1977-01-01
This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.
Apollo experience report: Launch escape propulsion subsystem
NASA Technical Reports Server (NTRS)
Townsend, N. A.
1973-01-01
The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.
LANDSAT-D data format control book. Volume 5: (Payload)
NASA Technical Reports Server (NTRS)
Andrew, H.
1981-01-01
The LANDSAT-D flight segment payload is the thematic mapper and the multispectral scanner. Narrative and visual descriptions of the LANDSAT-D payload data handling hardware and data flow paths from the sensing instruments through to the GSFC LANDSAT-D data management system are provided. Key subsystems are examined.
ERIC Educational Resources Information Center
Austin, Charles J.
The purpose of this document is to present a final description of the original MEDLARS system as it evolved through four years of operation. The system is described as it was functioning on January 1, 1968. Among the various system elements discussed are: (1) the input subsystem, including journal selection and coverage, Medical Subject Headings…
An Integrated Systems Approach: A Description of an Automated Circulation Management System.
ERIC Educational Resources Information Center
Seifert, Jan E.; And Others
These bidding specifications describe requirements for a turn-key automated circulation system for the University of Oklahoma Libraries. An integrated systems approach is planned, and requirements are presented for various subsystems: acquisitions, fund accounting, reserve room, and bibliographic and serials control. Also outlined are hardware…
Converting the H. W. Wilson Company Indexes to an Automated System: A Functional Analysis.
ERIC Educational Resources Information Center
Regazzi, John J.
1984-01-01
Description of the computerized information system that supports the editorial and manufacturing processes involved in creation of Wilson's subject indexes and catalogs includes the major subsystems--online data entry, batch input processing, validation and release, file generation and database management, online and offline retrieval, publication…
Synthesis of an integrated cockpit management system
NASA Technical Reports Server (NTRS)
Dasaro, J. A.; Elliott, C. T.
1982-01-01
The process used in the synthesis of an integrated cockpit management system was discussed. Areas covered included flight displays, subsystem management, checklists, and procedures (both normal and emergency). The process of evolving from the unintegrated conventional system to the integrated system is examined and a brief description of the results presented.
Brazilian remote sensing receiving, recording and processing ground systems in the 1980's
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator)
1984-01-01
A ground station was built in Brazil to receive, record, and process TM data from LANDSAT satellites. The receiving/recording subsystem and the processing subsystem are discussed. Functional design specifications for the facility are addressed.
Project WISH: The Emerald City
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Slonksnes, Linda (Editor); Rogers, James W. (Editor); Sherer, Scott E. (Editor); Strosky, Michelle A. (Editor); Szmerekovsky, Andrew G. (Editor); Klupar, G. Joseph (Editor)
1990-01-01
The preliminary design of a permanently manned autonomous space oasis (PEMASO), including its pertinent subsystems, was performed during the 1990 Winter and Spring quarters. The purpose for the space oasis was defined and the preliminary design work was started with emphasis placed on the study of orbital mechanics, power systems and propulsion systems. A rotating torus was selected as the preliminary configuration, and overall size, mass and location of some subsystems within the station were addressed. Computer software packages were utilized to determine station transfer parameters and thus the preliminary propulsion requirements. Power and propulsion systems were researched to determine feasible configurations and many conventional schemes were ruled out. Vehicle dynamics and control, mechanical and life support systems were also studied. For each subsystem studied, the next step in the design process to be performed during the continuation of the project was also addressed.
Cost analysis of oxygen recovery systems
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1973-01-01
The design and development of equipment for flight use in earth-orbital programs, when optimally approached cost effectively, proceed through the following logical progression: (1) bench testing of breadboard designs, (2) the fabrication and evaluation of prototype equipment, (3) redesign to meet flight-imposed requirements, and (4) qualification and testing of a flight-ready system. Each of these steps is intended to produce the basic design information necessary to progress to the next step. The cost of each step is normally substantially less than that of the following step. An evaluation of the cost elements involved in each of the steps and their impact on total program cost are presented. Cost analyses of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystem, Sabatier and Bosch, and two water electrolysis subsystems, the solid polymer electrolyte and the circulating KOH electrolyte are described.
Interdisciplinary and multilevel optimum design. [in aerospace structural engineering
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.
1987-01-01
Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.
System impacts of solar dynamic and growth power systems on space station
NASA Technical Reports Server (NTRS)
Farmer, J. T.; Cuddihy, W. F.; Lovelace, U. M.; Badi, D. M.
1986-01-01
Concepts for the 1990's space station envision an initial operational capability with electrical power output requirements of approximately 75 kW and growth power requirements in the range of 300 kW over a period of a few years. Photovoltaic and solar dynamic power generation techniques are contenders for supplying this power to the space station. A study was performed to identify growth power subsystem impacts on other space station subsystems. Subsystem interactions that might suggest early design changes for the space station were emphasized. Quantitative analyses of the effects of power subsystem mass and projected area on space station controllability and reboost requirements were conducted for a range of growth station configurations. Impacts on space station structural dynamics as a function of power subsystem growth were also considered.
Spacelab - From early integration to first flight. I
NASA Astrophysics Data System (ADS)
Thirkettle, A.; di Mauro, F.; Stephens, R.
1984-05-01
Spacelab is a series of flight elements that can be assembled together in different configurations. The laboratory is designed to accommodate many payloads with totally different characteristics. Two models were built: one was tested functionally, integrated into an Engineering Model and delivered to NASA. The other was used for subsystem testing. The Spacelab system consists of several functional elements within the Module, Igloo and Pallet structures: an Electric Power Distribution Subsystem, a Command and Data Management Subsystem, Software, Caution-and-Warning Subsystem and an Environmental Control Subsystem. The Engineering Model tests were conducted in Europe from April 1978 through October 1980, delivery of the laboratory to JFK Space Center, Florida was in December 1980, and the first flight was made in November 1983 on Space Shuttle STS-9.
NASA Astrophysics Data System (ADS)
Betz, Jessie M. Bethly
1993-12-01
The Video Distribution Subsystem (VDS) for Space Station Freedom provides onboard video communications. The VDS includes three major functions: external video switching; internal video switching; and sync and control generation. The Video Subsystem Routing (VSR) is a part of the VDS Manager Computer Software Configuration Item (VSM/CSCI). The VSM/CSCI is the software which controls and monitors the VDS equipment. VSR activates, terminates, and modifies video services in response to Tier-1 commands to connect video sources to video destinations. VSR selects connection paths based on availability of resources and updates the video routing lookup tables. This project involves investigating the current methodology to automate the Video Subsystem Routing and developing and testing a prototype as 'proof of concept' for designers.
Solar electric propulsion thrust subsystem development
NASA Technical Reports Server (NTRS)
Masek, T. D.
1973-01-01
The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.
ECLSS advanced automation preliminary requirements
NASA Technical Reports Server (NTRS)
Lukefahr, Brenda D.; Rochowiak, Daniel M.; Benson, Brian L.; Rogers, John S.; Mckee, James W.
1989-01-01
A description of the total Environmental Control and Life Support System (ECLSS) is presented. The description of the hardware is given in a top down format, the lowest level of which is a functional description of each candidate implementation. For each candidate implementation, both its advantages and disadvantages are presented. From this knowledge, it was suggested where expert systems could be used in the diagnosis and control of specific portions of the ECLSS. A process to determine if expert systems are applicable and how to select the expert system is also presented. The consideration of possible problems or inconsistencies in the knowledge or workings in the subsystems is described.
Space shuttle redesigned solid rocket motor Certificate of Qualification (COQ) data report
NASA Technical Reports Server (NTRS)
Duersch, Fred, Jr.
1990-01-01
The Space Shuttle Redesigned Solid Rocket Motor (RSRM) Certification Program provides confidence that the RSRM and its components/subsystems meet or exceed Mission Oriented Requirements when manufactured per design requirements and specified/approved processes. Certification is based on documented results of tests, analyses, inspections, similarity, and demonstrations. Evidencing information is provided to certify that each RSRM component/subsystem satisfies design, mission related requirements and objectives.
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance
NASA Technical Reports Server (NTRS)
Macenka, Steven A.; Chrisp, Michael P.
1987-01-01
The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.
Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog
NASA Technical Reports Server (NTRS)
1980-01-01
The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.
Resolving Phase Ambiguities In OQPSK
NASA Technical Reports Server (NTRS)
Nguyen, Tien M.
1991-01-01
Improved design for modulator and demodulator in offset-quaternary-phase-key-shifting (OQPSK) communication system enables receiver to resolve ambiguity in estimated phase of received signal. Features include unique-code-word modulation and detection and digital implementation of Costas loop in carrier-recovery subsystem. Enchances performance of carrier-recovery subsystem, reduces complexity of receiver by removing redundant circuits from previous design, and eliminates dependence of timing in receiver upon parallel-to-serial-conversion clock.
RF subsystem design for microwave communication receivers
NASA Astrophysics Data System (ADS)
Bickford, W. J.; Brodsky, W. G.
A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.
Space Fabrication Demonstration System
NASA Technical Reports Server (NTRS)
1978-01-01
Progress in the mechanical/structural assembly of the beam builder is reported. The following structures were investigated: cross brace magazine/dispenser subsystem; and rolling mill supply reel, guide, and drive. The fabrication facility design and a detail design of all major subsystem components are discussed. The number of spot welds per structural joint were reduced which enables the doubling of length of truss which can be produced within known electrode life limits.
2010-06-01
Subsystem Design, Integration, and Testing of NPS’ First CubeSat 6. AUTHOR(S) Jenkins, Robert D. IV 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S...AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING...Experimental Mission SOIC Small Outline Integrated Circuit SOT Small Outline Transistor SpaceX Space Exploration Technologies Corporation SPI
Data Transport Subsystem - The SFOC glue
NASA Technical Reports Server (NTRS)
Parr, Stephen J.
1988-01-01
The design and operation of the Data Transport Subsystem (DTS) for the JPL Space Flight Operation Center (SFOC) are described. The SFOC is the ground data system under development to serve interplanetary space probes; in addition to the DTS, it comprises a ground interface facility, a telemetry-input subsystem, data monitor and display facilities, and a digital TV system. DTS links the other subsystems via an ISO OSI presentation layer and an LAN. Here, particular attention is given to the DTS services and service modes (virtual circuit, datagram, and broadcast), the DTS software architecture, the logical-name server, the role of the integrated AI library, and SFOC as a distributed system.
Communications systems checkout study
NASA Technical Reports Server (NTRS)
Ginter, W. G.
1972-01-01
The results and conclusions of an engineering study of Space Station communications subsystem checkout are reported. The primary purpose of the study is to recommend specific guidelines and constraints for the design and utilization of the communications subsystem leading to a practical and effective means of onboard checkout implementation. Major study objectives are as follows: (1) identify candidate communications subsystem checkout concepts, (2) determine implementation impacts of feasible concepts, (3) evaluate practicality and effectiveness of alternative concepts, (4) propose baseline modifications to accommodate preferred concepts, and (5) recommend areas for additional investigation. In addition, study results are interpreted, where appropriate, in terms of their applicability to checkout of Shuttle-Orbiter communications subsystem.