Sample records for subsystem vcds component

  1. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  2. Vapor Compression Distillation Subsystem (VCDS) component enhancement, testing and expert fault diagnostics development, volume 1

    NASA Technical Reports Server (NTRS)

    Kovach, L. S.; Zdankiewicz, E. M.

    1987-01-01

    Vapor compression distillation technology for phase change recovery of potable water from wastewater has evolved as a technically mature approach for use aboard the Space Station. A program to parametrically test an advanced preprototype Vapor Compression Distillation Subsystem (VCDS) was completed during 1985 and 1986. In parallel with parametric testing, a hardware improvement program was initiated to test the feasibility of incorporating several key improvements into the advanced preprototype VCDS following initial parametric tests. Specific areas of improvement included long-life, self-lubricated bearings, a lightweight, highly-efficient compressor, and a long-life magnetic drive. With the exception of the self-lubricated bearings, these improvements are incorporated. The advanced preprototype VCDS was designed to reclaim 95 percent of the available wastewater at a nominal water recovery rate of 1.36 kg/h achieved at a solids concentration of 2.3 percent and 308 K condenser temperature. While this performance was maintained for the initial testing, a 300 percent improvement in water production rate with a corresponding lower specific energy was achieved following incorporation of the improvements. Testing involved the characterization of key VCDS performance factors as a function of recycle loop solids concentration, distillation unit temperature and fluids pump speed. The objective of this effort was to expand the VCDS data base to enable defining optimum performance characteristics for flight hardware development.

  3. Preprototype Vapor Compression Distillation Subsystem development

    NASA Technical Reports Server (NTRS)

    Thompson, C. D.; Ellis, G. S.; Schubert, F. H.

    1981-01-01

    Vapor Compression Distillation (VCD) has evolved as the most promising approach to reclaim potable water from wastewater for future long-term manned space missions. Life Systems, Inc. (LSI), working with NASA, has developed a preprototype Vapor Compression Distillation Subsystem (VCDS) which processes wastewater at 1.4 kg/h. The preprototype unit weighs 143 kg, occupies a volume of 0.47 cu m, and will reclaim 96 percent of the available wastewater. This unit has been tested by LSI and is scheduled for further testing at NASA-JSC. This paper presents the preprototype VCDS design, configuration, performance data, test results and flight system projections.

  4. Vapor Compression Distillation Subsystem (VCDS) Component Enhancement, Testing and Expert Fault Diagnostics Development, Volume 2

    NASA Technical Reports Server (NTRS)

    Mallinak, E. S.

    1987-01-01

    A wide variety of Space Station functions will be managed via computerized controls. Many of these functions are at the same time very complex and very critical to the operation of the Space Station. The Environmental Control and Life Support System is one group of very complex and critical subsystems which directly affects the ability of the crew to perform their mission. Failure of the Environmental Control and Life Support Subsystems are to be avoided and, in the event of failure, repair must be effected as rapidly as possible. Due to the complex and diverse nature of the subsystems, it is not possible to train the Space Station crew to be experts in the operation of all of the subsystems. By applying the concepts of computer-based expert systems, it may be possible to provide the necessary expertise for these subsystems in dedicated controllers. In this way, an expert system could avoid failures and extend the operating time of the subsystems even in the event of failure of some components, and could reduce the time to repair by being able to pinpoint the cause of a failure when one cannot be avoided.

  5. Vascular Closure Devices in Interventional Radiology Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Rafiuddin, E-mail: rafiuddin.patel@ouh.nhs.uk; Muller-Hulsbeck, Stefan, E-mail: muehue@diako.de; Morgan, Robert, E-mail: robert.morgan@stgeorges.nhs.uk

    2015-08-15

    Manual compression (MC) is a well-established technique for haemostasis following percutaneous arterial intervention. However, MC is labour and time intensive with potential limitations, particularly for patients who are coagulopathic, unable to comply with bed rest or obese and when large sheaths or anti-coagulants are used. There are a variety of vascular closure devices (VCDs) available to overcome these limitations. This review gives an overview of current VCDs, their mechanism of action, individual strengths and weaknesses, evidence base and utility in interventional radiology (IR) practice. The majority of the published evidence on VCDs is derived from patients undergoing cardiac interventions, whichmore » should be borne in mind when considering the applicability and transfer of this data for general IR practice. Overall, the evidence suggests that most VCDs are effective in achieving haemostasis with a similar rate of complications to MC although the complication profile associated with VCDs is distinct to that of MC. There is insufficient evidence to comparatively analyse the different types of VCDs currently available or reliably judge their cost-effectiveness. The interventional radiologist should have a thorough understanding of the available techniques for haemostasis and be able to identify and utilise the most appropriate strategy and closure technique for the individual patient.« less

  6. The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.

    2012-01-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.

  7. Development and pilot testing of an educational intervention for parents, caregivers and teachers of children with verbal communication disabilities in Mexico.

    PubMed

    Parada-Toro, Irene; Gómez-Quiroz, Rosa M; Treviño-Siller, Sandra

    2017-03-01

    The purpose of this study was to implement and test an educational intervention aimed at training parents/caregivers and teachers in strategies to support children with verbal communication disabilities (VCDs). We carried out a descriptive observational research conducted in two phases during 2013-2014: a mixed-method diagnosis and intervention development. We used convenience sampling to select the parents/caregivers and teachers of first-to-third graders with VCDs across four public elementary schools in a suburban community in central Mexico. Diagnosis was based on questionnaires conducted with parents/caregivers (n = 38) and teachers (n = 16). The instruments focused not only on the respondents' socioeconomic characteristics and general knowledge about VCDs but also included open questions (24/42) about their common practices and support for children with VCDs. The intervention was built on data collected through the questionnaires, and was designed according to the Integral Intervention Model framework based on the ecosystemic approach. Participants were parents/caregivers and teachers of children with VCDs. Main results showed that the participants were trained in various support techniques, they gained knowledge about VCDs and changed their perception of their own ability to help children with language impairments. As an important upshot of the intervention, communication and networking among parents/caregivers and teachers increased. The main strengths of this research reside in its solid theoretical foundation and the fact that intervention design was based on the specific needs of the target group. In as much as the public health problem of VCDs in Mexico has barely been studied and has received minimal official support, it is essential to engage additional social actors, stakeholders and decision-makers in the implementation of permanent actions. Our study emphasises the importance of recognising this form of health impairment as a social responsibility and not as an individual family problem. © 2016 John Wiley & Sons Ltd.

  8. Benefits of China's efforts in gaseous pollutant control indicated by the bottom-up emissions and satellite observations 2000-2014

    NASA Astrophysics Data System (ADS)

    Xia, Yinmin; Zhao, Yu; Nielsen, Chris P.

    2016-07-01

    To evaluate the effectiveness of national air pollution control policies, the emissions of SO2, NOX, CO and CO2 in China are estimated using bottom-up methods for the most recent 15-year period (2000-2014). Vertical column densities (VCDs) from satellite observations are used to test the temporal and spatial patterns of emissions and to explore the ambient levels of gaseous pollutants across the country. The inter-annual trends in emissions and VCDs match well except for SO2. Such comparison is improved with an optimistic assumption in emission estimation that the emission standards for given industrial sources issued after 2010 have been fully enforced. Underestimation of emission abatement and enhanced atmospheric oxidization likely contribute to the discrepancy between SO2 emissions and VCDs. As suggested by VCDs and emissions estimated under the assumption of full implementation of emission standards, the control of SO2 in the 12th Five-Year Plan period (12th FYP, 2011-2015) is estimated to be more effective than that in the 11th FYP period (2006-2010), attributed to improved use of flue gas desulfurization in the power sector and implementation of new emission standards in key industrial sources. The opposite was true for CO, as energy efficiency improved more significantly from 2005 to 2010 due to closures of small industrial plants. Iron & steel production is estimated to have had particularly strong influence on temporal and spatial patterns of CO. In contrast to fast growth before 2011 driven by increased coal consumption and limited controls, NOX emissions decreased from 2011 to 2014 due to the penetration of selective catalytic/non-catalytic reduction systems in the power sector. This led to reduced NO2 VCDs, particularly in relatively highly polluted areas such as the eastern China and Pearl River Delta regions. In developed areas, transportation is playing an increasingly important role in air pollution, as suggested by the increased ratio of NO2 to SO2 VCDs. For air quality in mega cities, the inter-annual trends in emissions and VCDs indicate that surrounding areas are more influential in NO2 level for Beijing than those for Shanghai.

  9. Closure Devices for Iatrogenic Thoraco-Cervical Vascular Injuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makris, Gregory C., E-mail: g.makris09@doctors.org.uk; Patel, Rafiuddin; Little, Mark

    IntroductionThe unintentional arterial placement of a central venous line can have catastrophic complications. The purpose of this systematic review is to assess and analyse the available evidence regarding the use of the various vascular closure devices (VCDs) for the management of iatrogenic thoraco-cervical arterial injuries (ITCAI).MethodsA systematic review was performed according to PRISMA guidelines.ResultsThirty-two relevant case series and case reports were identified with a total of 69 patients having being studied. In the majority of the studies, plug-based VCDs were used (81%) followed by suture-based devices (19%). The majority of studies reported successful outcomes from the use of VCDs inmore » terms of achieving immediate haemostasis without any acute complications. Long-term follow-up data were only available in nine studies with only one case of carotid pseudoaneurysm being reported after 1-month post-procedure. All other cases had no reported long-term complications. Five studies performed direct or indirect comparisons between VCDs and other treatments (open surgery or stent grafting) suggesting no significant differences in safety or effectiveness.ConclusionAlthough there is limited evidence, VCDs appear to be safe and effective for the management of ITCAIs. Further research is warranted regarding the effectiveness of this approach in comparison to surgery and in order to identify those patients who are more likely to benefit from this minimally invasive approach.« less

  10. NASA Cloud-Based Climate Data Services

    NASA Astrophysics Data System (ADS)

    McInerney, M. A.; Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, W. D., III; Thompson, J. H.; Gill, R.; Jasen, J. E.; Samowich, B.; Pobre, Z.; Salmon, E. M.; Rumney, G.; Schardt, T. D.

    2012-12-01

    Cloud-based scientific data services are becoming an important part of NASA's mission. Our technological response is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service (VaaS). A virtual climate data server (vCDS) is an Open Archive Information System (OAIS) compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have deployed vCDS Version 1.0 in the Amazon EC2 cloud using S3 object storage and are using the system to deliver a subset of NASA's Intergovernmental Panel on Climate Change (IPCC) data products to the latest CentOS federated version of Earth System Grid Federation (ESGF), which is also running in the Amazon cloud. vCDS-managed objects are exposed to ESGF through FUSE (Filesystem in User Space), which presents a POSIX-compliant filesystem abstraction to applications such as the ESGF server that require such an interface. A vCDS manages data as a distinguished collection for a person, project, lab, or other logical unit. A vCDS can manage a collection across multiple storage resources using rules and microservices to enforce collection policies. And a vCDS can federate with other vCDSs to manage multiple collections over multiple resources, thereby creating what can be thought of as an ecosystem of managed collections. With the vCDS approach, we are trying to enable the full information lifecycle management of scientific data collections and make tractable the task of providing diverse climate data services. In this presentation, we describe our approach, experiences, lessons learned, and plans for the future.; (A) vCDS/ESG system stack. (B) Conceptual architecture for NASA cloud-based data services.

  11. Satellite-based observations of rain-induced NOx emissions from soils around Lake Chad in the Sahel

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Dörner, Steffen; Sihler, Holger; Beirle, Steffen; Wagner, Thomas

    2017-04-01

    Rain-induced emission pulses of NOx (≡ NO + NO2) from soils have been observed in many semi-arid regions over the world. They are induced by the first precipitation of the wet season and are mainly caused by the sudden re-activation of microbes in the soil releasing reactive nitrogen. In this study, a single intense event of pulsed NOx emissions from soils around Lake Chad is investigated. This is achieved by analysing daily tropospheric NO2 vertical column densities (VCDs) as observed by the satellite-based OMI instrument together with other satellite and model data on precipitation, lightning, fire and wind. The study region of Lake Chad and its ecosystems are indispensable to life in the Sahel region. Climate variability and unsustainable water utilization, however, caused a drastic decrease in the lakes' surface area which, in turn, lead to extensive land cover changes converting former lake area to shrub land and fertile farm land. The results indicate that the region of Lake Chad does not only show consistent enhancements in average NO2 VCDs in the early months of the wet season compared to its surrounding desert but also exhibits particularly strong NOx emissions shortly after a single large-scale precipitation event in June 2007. NO2 VCDs measured 14 hours after this precipitation event show strong enhancements (2.5*1015 molecules cm-2) compared to the seasonal background VCDs and, moreover, represent the highest detected NO2 VCDs of the entire year. Detailed analysis of potential contributors to the observed NO2 VCDs strongly indicate that fire, lightning and retrieval artefacts cannot explain the NO2 pulse. The estimated emission flux from the soil, calculated based on mass balance, amounts to about 32.3 ng N m-2 s-1, which corresponds to about 65 tonnes of nitrogen released to the atmosphere within one day.

  12. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NASA Astrophysics Data System (ADS)

    Fioletov, Vitali; McLinden, Chris A.; Kharol, Shailesh K.; Krotkov, Nickolay A.; Li, Can; Joiner, Joanna; Moran, Michael D.; Vet, Robert; Visschedijk, Antoon J. H.; Denier van der Gon, Hugo A. C.

    2017-10-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify whether the observed changes from SO2 abundance measurements are quantitatively consistent with the reported changes in emissions. To make this connection, a new method to link SO2 emissions and satellite SO2 measurements was developed. The method is based on fitting satellite SO2 vertical column densities (VCDs) to a set of functions of OMI pixel coordinates and wind speeds, where each function represents a statistical model of a plume from a single point source. The concept is first demonstrated using sources in North America and then applied to Europe. The correlation coefficient between OMI-measured VCDs (with a local bias removed) and SO2 VCDs derived here using reported emissions for 1° by 1° gridded data is 0.91 and the best-fit line has a slope near unity, confirming a very good agreement between observed SO2 VCDs and reported emissions. Having demonstrated their consistency, seasonal and annual mean SO2 VCD distributions are calculated, based on reported point-source emissions for the period 1980-2015, as would have been seen by OMI. This consistency is further substantiated as the emission-derived VCDs also show a high correlation with annual mean SO2 surface concentrations at 50 regional monitoring stations.

  13. The version 3 OMI NO2 standard product

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay A.; Lamsal, Lok N.; Celarier, Edward A.; Swartz, William H.; Marchenko, Sergey V.; Bucsela, Eric J.; Chan, Ka Lok; Wenig, Mark; Zara, Marina

    2017-09-01

    We describe the new version 3.0 NASA Ozone Monitoring Instrument (OMI) standard nitrogen dioxide (NO2) products (SPv3). The products and documentation are publicly available from the NASA Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary/). The major improvements include (1) a new spectral fitting algorithm for NO2 slant column density (SCD) retrieval and (2) higher-resolution (1° latitude and 1.25° longitude) a priori NO2 and temperature profiles from the Global Modeling Initiative (GMI) chemistry-transport model with yearly varying emissions to calculate air mass factors (AMFs) required to convert SCDs into vertical column densities (VCDs). The new SCDs are systematically lower (by ˜ 10-40 %) than previous, version 2, estimates. Most of this reduction in SCDs is propagated into stratospheric VCDs. Tropospheric NO2 VCDs are also reduced over polluted areas, especially over western Europe, the eastern US, and eastern China. Initial evaluation over unpolluted areas shows that the new SPv3 products agree better with independent satellite- and ground-based Fourier transform infrared (FTIR) measurements. However, further evaluation of tropospheric VCDs is needed over polluted areas, where the increased spatial resolution and more refined AMF estimates may lead to better characterization of pollution hot spots.

  14. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-01-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different datasets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2 year dataset, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).

  15. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-06-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different data sets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2-year data set, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).

  16. Risk Factors for African Swine Fever in Smallholder Pig Production Systems in Uganda.

    PubMed

    Dione, M M; Akol, J; Roesel, K; Kungu, J; Ouma, E A; Wieland, B; Pezo, D

    2017-06-01

    Smallholder pig production in Uganda is constrained by poor management and high disease burden, with African swine fever (ASF) being one of the most important contributors. However, data to develop appropriate evidence-based disease mitigating interventions along the pig value chain are lacking. This study aimed at determining risk factors associated with the occurrence of outbreaks of ASF in selected districts. A cross-sectional survey of 1195 pig-keeping households in three districts was carried out between April and July 2013. Households were classified into one of three value chain domains (VCDs) based on where the production was located and where most of the products were sold: rural-rural (R-R), rural-urban (R-U) and urban-urban (U-U). Findings revealed that crop farming is the most common primary activity in the R-R and R-U VCDs, while pig keeping was the most common primary activity in the U-U VCDs. Pigs are mostly kept tethered or left to roam in the R-R and R-U VCDs, while in the U-U VCDs, they are mostly confined in corrals. Nearly 20% of the farmers whose farms were hit by an ASF outbreak subsequently sold all their pigs (healthy and sick) to the market in panic. Factors that positively correlated with recent ASF outbreaks were prompt disposal of dead pigs on farms (P < 0.001, OR = 2.3), wild animals present in the village (P < 0.001, OR = 1.7) and farmers sourcing drugs from stockists (P < 0.001, OR = 1.6); while protective factors were the presence of perimeter fences (P = 0.03, OR = 0.5), attendance of farmers at secondary-school level and above (P < 0.001, OR = 0.6), routine cleaning of the pig pens (P < 0.001, OR = 0.6) and pigs being the only livestock kept by farmer (P = 0.01, OR = 0.7). Given the current situation, there is a need to raise awareness among farmers and other value chain actors of biosecurity measures and create incentives for farmers to report ASF cases. © 2015 Blackwell Verlag GmbH.

  17. Characterization of tropospheric ozone based on lidar measurement in Hangzhou, East China during the G20 Leaders' Summit

    NASA Astrophysics Data System (ADS)

    Su, Wenjing; Liu, Cheng; Fan, Guangqiang; Hu, Qihou; Huang, Xin; Dong, Yunsheng; Zhang, Tianshu; Liu, Jianguo

    2017-04-01

    Owing to the G20 (Group of Twenty Finance Ministers and Central Bank Governors) Leaders' Summit (Sep.5th-6th, 2016), a series of strict air quality control measures were implemented in Hangzhou and its surrounding regions from Aug.26th to Sep.6th. A differential absorption lidar was employed to monitor tropospheric ozone in urban Hangzhou during a campaign from Aug. 24th to Sep. 10th, and the satellite-based NO2 VCDs and HCHO VCDs in the troposphere were also retrieved using the Ozone Monitoring Instrument (OMI). During our campaign, six O3 pollution events, which were determined according to the National Ambient Air Quality Standard of China (GB-3095-2012), and two stages with rapid reduction of O3 concentration on Aug. 26th and Sep.4-6th were observed. The temporal variation tendency of O3 concentrations was well reproduced by the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). Typical cases with the abrupt rise and decline of O3 concentrations were analyzed using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory, satellite NO2 and HCHO product and the prediction by WRF-Chem model. The transport from northern cities have an important impact on pollutants observed in Hangzhou, and the chemical sensitivity of O3 production, which were approximately evaluated using the ratio of HCHO VCDs to NO2 VCDs in the troposphere, was turned from a mixed VOC-NOx-limited regime into a NOX-limited regime in Hangzhou due to the strict emission control measures.

  18. MAX-DOAS measurements of nitrogen dioxide at the high altitude sites Zugspitze (2964 m) and Pico Espejo (4765 m)

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2015-04-01

    Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.

  19. Subsystems component definitions summary program

    NASA Technical Reports Server (NTRS)

    Scott, A. Don; Thomas, Carolyn C.; Simonsen, Lisa C.; Hall, John B., Jr.

    1991-01-01

    A computer program, the Subsystems Component Definitions Summary (SUBCOMDEF), was developed to provide a quick and efficient means of summarizing large quantities of subsystems component data in terms of weight, volume, resupply, and power. The program was validated using Space Station Freedom Program Definition Requirements Document data for the internal and external thermal control subsystem. Once all component descriptions, unit weights and volumes, resupply, and power data are input, the user may obtain a summary report of user-specified portions of the subsystem or of the entire subsystem as a whole. Any combination or all of the parameters of wet and dry weight, wet and dry volume, resupply weight and volume, and power may be displayed. The user may vary the resupply period according to individual mission requirements, as well as the number of hours per day power consuming components operate. Uses of this program are not limited only to subsystem component summaries. Any applications that require quick, efficient, and accurate weight, volume, resupply, or power summaries would be well suited to take advantage of SUBCOMDEF's capabilities.

  20. Space based inverse modeling of seasonal variations of anthropogenic and natural emissions of nitrogen oxides over China and effects of uncertainties in model meteorology and chemistry

    NASA Astrophysics Data System (ADS)

    Lin, J.

    2011-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.

  1. A database for TMT interface control documents

    NASA Astrophysics Data System (ADS)

    Gillies, Kim; Roberts, Scott; Brighton, Allan; Rogers, John

    2016-08-01

    The TMT Software System consists of software components that interact with one another through a software infrastructure called TMT Common Software (CSW). CSW consists of software services and library code that is used by developers to create the subsystems and components that participate in the software system. CSW also defines the types of components that can be constructed and their roles. The use of common component types and shared middleware services allows standardized software interfaces for the components. A software system called the TMT Interface Database System was constructed to support the documentation of the interfaces for components based on CSW. The programmer describes a subsystem and each of its components using JSON-style text files. A command interface file describes each command a component can receive and any commands a component sends. The event interface files describe status, alarms, and events a component publishes and status and events subscribed to by a component. A web application was created to provide a user interface for the required features. Files are ingested into the software system's database. The user interface allows browsing subsystem interfaces, publishing versions of subsystem interfaces, and constructing and publishing interface control documents that consist of the intersection of two subsystem interfaces. All published subsystem interfaces and interface control documents are versioned for configuration control and follow the standard TMT change control processes. Subsystem interfaces and interface control documents can be visualized in the browser or exported as PDF files.

  2. Electronic Components Subsystems and Equipment: a Compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Developments in electronic components, subsystems, and equipment are summarized. Topics discussed include integrated circuit components and techniques, circuit components and techniques, and cables and connectors.

  3. 49 CFR Appendix B to Part 236 - Risk Assessment Criteria

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., exposure scenarios, and consequences that are related as described in this part. For the full risk... subsystem or component in the risk assessment. (f) How are processor-based subsystems/components assessed? (1) An MTTHE value must be calculated for each processor-based subsystem or component, or both...

  4. PCA-based SO2, NO2, and HCHO retrievals from GeoTASO airborne measurements during KORUS-AQ 2016 campaign

    NASA Astrophysics Data System (ADS)

    Chong, H.; Lee, S.; Jeong, U.; Kim, J.; Li, C.; Krotkov, N. A.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Nowlan, C. R.; Kang, M.; Joiner, J.; Haffner, D. P.; Koo, J. H.; Hong, H.; Lee, H.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) is an airborne instrument measuring backscattered radiance with a spectrometer covering the spectral range between 290-695 nm. GeoTASO flew on the B-200 (UC-12B) - LARC aircraft during the KORUS-AQ campaign, of which the spatial resolution is about 250 nm x 250 m. Principal component analysis (PCA) technique is used to retrieve slant column densities (SCD) of sulfur dioxide (SO2), nitrogen dioxide (NO2), and formaldehyde (HCHO). The fitting windows of SO2, NO2, and HCHO are 310-325 nm, 350-380 nm, and 335-357 nm respectively. The clear PCs of each species are collected from rural areas where are found to have less SCDs of each species from prior iteration step. Using the clear sector PCs and the cross section of each species, SCDs of each trace gas are obtained using the multiple linear regression method. Air mass factors (AMF) of each species are obtained using the atmospheric profiles from chemical transport model calculations during the campaign to convert SCDs to vertical column densities (VCD). The retrieved VCDs of each species well capture small point sources on the flight paths and their plumes propagating downwind areas, which was not available from the ground-based in-situ measurements. The retrieved VCDs will be compared and/or validated against other benchmark measurements during the campaign.

  5. System comprising interchangeable electronic controllers and corresponding methods

    NASA Technical Reports Server (NTRS)

    Steele, Glen F. (Inventor); Salazar, George A. (Inventor)

    2009-01-01

    A system comprising an interchangeable electronic controller is provided with programming that allows the controller to adapt a behavior that is dependent upon the particular type of function performed by a system or subsystem component. The system reconfigures the controller when the controller is moved from one group of subsystem components to another. A plurality of application programs are provided by a server from which the application program for a particular electronic controller is selected. The selection is based on criteria such as a subsystem component group identifier that identifies the particular type of function associated with the system or subsystem group of components.

  6. 49 CFR Appendix B to Part 236 - Risk Assessment Criteria

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... availability calculations for subsystems and components, Fault Tree Analysis (FTA) of the subsystems, and... upper bound, as estimated with a sensitivity analysis, and the risk value selected must be demonstrated... interconnected subsystems/components? The risk assessment of each safety-critical system (product) must account...

  7. 49 CFR Appendix B to Part 236 - Risk Assessment Criteria

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... availability calculations for subsystems and components, Fault Tree Analysis (FTA) of the subsystems, and... upper bound, as estimated with a sensitivity analysis, and the risk value selected must be demonstrated... interconnected subsystems/components? The risk assessment of each safety-critical system (product) must account...

  8. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlausen, M. J.; Schubert, F. H.

    1983-01-01

    The fabrication of a one-person Electrochemical Depolarized Carbon Dioxide Concentrator subsystem incorporating advanced electrochemical, mechanical, and control and monitor instrumentation concepts is discussed. This subsystem included an advanced liquid cooled unitized core composite cell module and integrated electromechanical components. Over 1800 hours with the subsystem with removal efficiencies between 90%. and 100%; endurance tests with a Fluid Control Assembly which integrates 11 gas handling components of the subsystem; and endurance testing of a coolant control assembly which integrates a coolant pump, diverter valve and a liquid accumulator were completed.

  9. Examination of temporal and spatial variability of NO2 VCDs measured using mobile-MAX-DOAS in Toronto, Canada.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Baray, Sabour; Khanbabkhani, Aida; Fujs, William; Csukat, Csilla; McLaren, Robert

    2017-04-01

    Mobile-MAX-DOAS is an innovative technique used to estimate pollutant emission rates and validate satellite measurements and air quality models. It is essential to identify and examine factors that can significantly impact the accuracy of this developing technique. Mobile-MAX-DOAS measurements were conducted in Toronto, Canada with a mini-MAX-DOAS instrument mounted (pointing backwards) on top of a car during August and September, 2016. Scattered sunlight spectra were collected every 45 seconds in the continuously repeated sequence of elevation angles of 30o, 30o, 30o, 30o, 40o, 30o, 90o. Tropospheric VCDs were determined using the geometric approximation from DSCDs fitted using a near-noon, low NO2 VCD FRS spectrum. The study goal was to examine the validity of the assumption that VCDs remain relatively constant at each measured location on a driving route encircling an urban area of interest with typical time periods of 1.5-3 hours to estimate emissions and whether driving direction significantly impacts results. NO2 VCD temporal variability was therefore determined by repeating driving routes in both directions in quick succession on multiple days. Strong temporal variability in NO2 VCDs of up to a factor of two were observed for some routes for the same vehicle locations under constant prevailing wind conditions within <2 hours. These differences may be due to the effects of transport, changing tropospheric chemistry and/or diurnal trends in emissions rates. Under these conditions measurements along different portions of the encircled area in a large city may not be representative of the entire measurement period, introducing error into the final emission estimate. Certain straight roads exhibited significantly different VCDs within < 30 minutes when the instrument azimuth pointing direction was changed by 180o. The weighted average VCD was ˜8(±3x) x1016molec. cm-1 from driving in one direction but ˜4 (± 1.5) x1016molec. cm-1 from driving in the opposite direction. This indicates sufficient horizontal inhomogeneity for the instrument to view significantly different NO2 regimes while at the same vehicle geographical location due to the different azimuth direction. NO2line fluxes were determined during weekday afternoon rush-hours by driving repeatedly in both directions under tangential prevailing winds conditions on a road that is 8km downwind of Toronto and 4km downwind of a major highway. During one afternoon the average NO2 VCD was 6(±2)x1016 molec. cm-2with a standard deviation of 3x1015 molec. cm-2. This average value is consistent with NO2 VCDs retrieved using optimal estimation methods from stationary MAX-DOAS measurements at nearby York University. Using a 10m elevation measured wind-speed of 16km hr-1, the NO2 line flux was 3(± 9) x1018molec. cm-1s-1, approximately 6 times that determined by Halla et al. (2011) for a line flux measured in a rural area of southwestern Ontario, downwind of pollution sources in Michigan and Ohio. Our resulting average NO2 flux of 84 (+/-25) mg m-2hr-1 is consistent with NOx fluxes measured in major European cities of up to 90 mg m-2hr-1. This work will be used as a baseline experiment to apply this method in other Canadian cities.

  10. Preliminary analysis of a membrane-based atmosphere-control subsystem

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Newbold, David D.; Ray, Rod; Ogle, Kathryn

    1993-01-01

    Controlled ecological life supprot systems will require subsystems for maintaining the consentrations of atmospheric gases within acceptable ranges in human habitat chambers and plant growth chambers. The goal of this work was to develop a membrane-based atmosphere comntrol (MBAC) subsystem that allows the controlled exchange of atmospheric componets (e.g., oxygen, carbon dioxide, and water vapor) between these chambers. The MBAC subsystem promises to offer a simple, nonenergy intensive method to separate, store and exchange atmospheric components, producing optimal concentrations of components in each chamber. In this paper, the results of a preliminary analysis of the MBAC subsystem for control of oxygen and nitrogen are presented. Additionally, the MBAC subsystem and its operation are described.

  11. MRI morphometry of mamillary bodies, caudate nuclei, and prefrontal cortices after chemotherapy for childhood leukemia: multivariate models of early and late developing memory subsystems.

    PubMed

    Ciesielski, K T; Lesnik, P G; Benzel, E C; Hart, B L; Sanders, J A

    1999-06-01

    Neurotoxic intrathecal chemotherapy for childhood acute lymphoblastic leukemia (ALL) affects developing structures and functions of memory and learning subsystems selectively. Results show significant reductions in magnetic resonance imaging morphometry of mamillary bodies, components of the corticolimbic-diencephalic subsystem subserving functionally later developing, single-trial memory, nonsignificant changes in bilateral heads of the caudate nuclei, components of the corticostriatal subsystem subserving functionally earlier developing, multitrial learning, significant reductions in prefrontal cortical volume, visual and verbal single-trial memory deficits, and visuospatial, but not verbal, multitrial learning deficits. Multiple regression models provide evidence for partial dissociation and connectivity between the subsystems, and suggest that greater involvement of caudate may compensate for inefficient corticolimbic-diencephalic components.

  12. Development and Testing of a USM High Altitude Balloon

    NASA Astrophysics Data System (ADS)

    Thaheer, A. S. Mohamed; Ismail, N. A.; Yusoff, S. H. Md.; Nasirudin, M. A.

    2018-04-01

    This paper discusses on tests conducted on the component and subsystem level during development of the USM High Altitude Balloon (HAB). The tests conducted by selecting initial components then tested individually based on several case studies such as reliability test, camera viewing, power consumption, thermal capability, and parachute performance. Then, the component is integrated into sub-system level for integration and functionality test. The preliminary result is utilized to tune the components and sub-systems and trial launch is conducted where the sample images are recorded and atmospheric data successfully collected.

  13. Applications Technology Satellite ATS-6 in orbit checkout report

    NASA Technical Reports Server (NTRS)

    Moore, W.; Prensky, W. (Editor)

    1974-01-01

    The activities of the ATS-6 spacecraft for the checkout period of approximately four weeks beginning May 30, 1974 are described, along with the results of a performance evaluation of its subsystems and components. The following specific items are discussed: (1) subsystem requirements/specifications and in-orbit performance summary; (2) flight chronology; (3) spacecraft description; (4) structural/deployment subsystems; (5) electrical power subsystem; (6) thermal control subsystem; (7) telemetry and command subsystems; (8) attitude control subsystem; (9) spacecraft propulsion subsystem; (10) communication subsystem; and (12) experiment subsystem.

  14. 78 FR 70888 - Need for Agency Approval of a Railroad's Use of Certain Technology That Has Been Previously...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... technologies, namely safety-critical processor-based signal or train control systems, including subsystems and... or train control system (including a subsystem or component thereof) that was in service as of June 6... processor-based signal or train control system, subsystem, or component.'' See 49 CFR 236.903. Under Subpart...

  15. Corneal and crystalline lens dimensions before and after myopia onset.

    PubMed

    Mutti, Donald O; Mitchell, G Lynn; Sinnott, Loraine T; Jones-Jordan, Lisa A; Moeschberger, Melvin L; Cotter, Susan A; Kleinstein, Robert N; Manny, Ruth E; Twelker, J Daniel; Zadnik, Karla

    2012-03-01

    To describe corneal and crystalline lens dimensions before, during, and after myopia onset compared with age-matched emmetropic values. Subjects were 732 children aged 6 to 14 years who became myopic and 596 emmetropic children participating between 1989 and 2007 in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error Study. Refractive error was measured using cycloplegic autorefraction, corneal power using a hand-held autokeratometer, crystalline lens parameters using video-based phakometry, and vitreous chamber depth (VCD) using A-scan ultrasonography. Corneal and crystalline lens parameters in children who became myopic were compared with age-, gender-, and ethnicity-matched model estimates of emmetrope values annually from 5 years before through 5 years after the onset of myopia. The comparison was made without and then with statistical adjustment of emmetrope component values to compensate for the effects of longer VCDs in children who became myopic. Before myopia onset, the crystalline lens thinned, flattened, and lost power at similar rates for emmetropes and children who became myopic. The crystalline lens stopped thinning, flattening, and losing power within ±1 year of onset in children who became myopic compared with emmetropes statistically adjusted to match the longer VCDs of children who became myopic. In contrast, the cornea was only slightly steeper in children who became myopic compared with emmetropes (<0.25 D) and underwent little change across visits. Myopia onset is characterized by an abrupt loss of compensatory changes in the crystalline lens that continue in emmetropes throughout childhood axial elongation. The mechanism responsible for this decoupling remains speculative but might include restricted equatorial growth from internal mechanical factors.

  16. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; hide

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  17. Independent Orbiter Assessment (IOA): Weibull analysis report

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1987-01-01

    The Auxiliary Power Unit (APU) and Hydraulic Power Unit (HPU) Space Shuttle Subsystems were reviewed as candidates for demonstrating the Weibull analysis methodology. Three hardware components were identified as analysis candidates: the turbine wheel, the gearbox, and the gas generator. Detailed review of subsystem level wearout and failure history revealed the lack of actual component failure data. In addition, component wearout data were not readily available or would require a separate data accumulation effort by the vendor. Without adequate component history data being available, the Weibull analysis methodology application to the APU and HPU subsystem group was terminated.

  18. Introduction to the Portable Life Support Schematic and Technology Development Components

    NASA Technical Reports Server (NTRS)

    Conger, Bruce

    2008-01-01

    Conger presented the operations and functions of the baseline Constellation Program (CxP) Portable Life Support System (PLSS) schematic and key development technologies. He explained the functional descriptions of the schematic components in the fluid systems of the PLSS for multiple operational scenarios. PLSS subsystems include the oxygen subsystem, the ventilation subsystem, and the thermal subsystem. He also presented the operational PLSS modes: Nominal EVA mode, Umbilical - no recharge mode, Umbilical - with recharge mode, BENDS mode, BUDDY mode, Secondary oxygen mode, and the PLSS-removed umbilical mode.

  19. Integrated Advance Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: EOS AMSU-A1 and AMSU-A2 Receivers Assemblies

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This test report presents the test data of the EOS AMSU-A Flight Model No.1 (FM-1) receiver subsystem. The tests are performed per the Acceptance Test Procedure for the AMSU-A Reseiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level test are conducted at ambient temperature only.

  20. Apollo experience report: Development of the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Lutz, C. C.; Stutesman, H. L.; Carson, M. A.; Mcbarron, J. W., II

    1975-01-01

    The development and performance history of the Apollo extravehicular mobility unit and its major subsystems is described. The three major subsystems, the pressure garment assembly, the portable life-support system, and the oxygen purge system, are defined and described in detail as is the evolutionary process that culminated in each major subsystem component. Descriptions of ground-support equipment and the qualification testing process for component hardware are also presented.

  1. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can reach a value of zero on actual cloud-free days. Overall, constraining aerosol vertical profiles greatly improves the retrievals of clouds and NO2 VCDs from satellite remote sensing. Our algorithm can be applied, with minimum modifications, to formaldehyde, sulfur dioxide and other species with similar retrieval methodologies.

  2. A maintenance model for k-out-of-n subsystems aboard a fleet of advanced commercial aircraft

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1978-01-01

    Proposed highly reliable fault-tolerant reconfigurable digital control systems for a future generation of commercial aircraft consist of several k-out-of-n subsystems. Each of these flight-critical subsystems will consist of n identical components, k of which must be functioning properly in order for the aircraft to be dispatched. Failed components are recoverable; they are repaired in a shop. Spares are inventoried at a main base where they may be substituted for failed components on planes during layovers. Penalties are assessed when failure of a k-out-of-n subsystem causes a dispatch cancellation or delay. A maintenance model for a fleet of aircraft with such control systems is presented. The goals are to demonstrate economic feasibility and to optimize.

  3. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: EOS AMSU-A1 and AMSU-A2 Receiver Assemblies

    NASA Technical Reports Server (NTRS)

    Ma, Y.

    1995-01-01

    The AMSU-A receiver subsystem comprises two separated receiver assemblies; AMSU-A1 and AMSU-A2 (P/N 1356441-1). The AMSU-A1 receiver contains 13 channels and the AMSU-A2 receiver 2 channels. The AMSU-A1 receiver assembly is further divided into two parts; AMSU-A1-1 (P/N 1356429-1) and AMSU-A1-2 (P/N 1356409-1), which contain 9 and 4 channels, respectively. The receiver assemblies are highlighted and illustrate the functional block diagrams of the AMSU-A1 and AMSU-A2 systems. The AMSU-A receiver subsystem stands in between the antenna and signal processing subsystems of the AMSU-A instrument and comprises the RF and IF components from isolators to attenuators. It receives the RF signals from the antenna subsystem, down-converts the RF signals to IF signals, amplifies and defines the IF signals to proper power level and frequency bandwidth as specified for each channel, and inputs the IF signals to the signal processing subsystem. This test report presents the test data of the EOS AMSU-A Flight Model No. 1 (FM-1) receiver subsystem. The tests are performed per the Acceptance Test Procedure for the AMSU-A Receiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level tests are conducted at ambient temperature only.

  4. X-34 Main Propulsion System-Selected Subsystem Analyses

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion System (MPS) has been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents selected analyses of MPS subsystems and components. Topics include the integration of component and system level modeling of the LOX dump subsystem and a simple terminal bubble velocity analysis conducted to guide propellant feed line design.

  5. Compound estimation procedures in reliability

    NASA Technical Reports Server (NTRS)

    Barnes, Ron

    1990-01-01

    At NASA, components and subsystems of components in the Space Shuttle and Space Station generally go through a number of redesign stages. While data on failures for various design stages are sometimes available, the classical procedures for evaluating reliability only utilize the failure data on the present design stage of the component or subsystem. Often, few or no failures have been recorded on the present design stage. Previously, Bayesian estimators for the reliability of a single component, conditioned on the failure data for the present design, were developed. These new estimators permit NASA to evaluate the reliability, even when few or no failures have been recorded. Point estimates for the latter evaluation were not possible with the classical procedures. Since different design stages of a component (or subsystem) generally have a good deal in common, the development of new statistical procedures for evaluating the reliability, which consider the entire failure record for all design stages, has great intuitive appeal. A typical subsystem consists of a number of different components and each component has evolved through a number of redesign stages. The present investigations considered compound estimation procedures and related models. Such models permit the statistical consideration of all design stages of each component and thus incorporate all the available failure data to obtain estimates for the reliability of the present version of the component (or subsystem). A number of models were considered to estimate the reliability of a component conditioned on its total failure history from two design stages. It was determined that reliability estimators for the present design stage, conditioned on the complete failure history for two design stages have lower risk than the corresponding estimators conditioned only on the most recent design failure data. Several models were explored and preliminary models involving bivariate Poisson distribution and the Consael Process (a bivariate Poisson process) were developed. Possible short comings of the models are noted. An example is given to illustrate the procedures. These investigations are ongoing with the aim of developing estimators that extend to components (and subsystems) with three or more design stages.

  6. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  7. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  8. 48 CFR 234.7002 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... analysis, the reasonableness of the price for the subsystem. (c) Components and spare parts. (1) A... offeror has submitted sufficient information to evaluate, through price analysis, the reasonableness of... be delegated below the level of the Deputy Secretary of Defense. (b) Subsystems. A subsystem of a...

  9. 48 CFR 234.7002 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... analysis, the reasonableness of the price for the subsystem. (c) Components and spare parts. (1) A... offeror has submitted sufficient information to evaluate, through price analysis, the reasonableness of... be delegated below the level of the Deputy Secretary of Defense. (b) Subsystems. A subsystem of a...

  10. 48 CFR 234.7002 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... analysis, the reasonableness of the price for the subsystem. (c) Components and spare parts. (1) A... offeror has submitted sufficient information to evaluate, through price analysis, the reasonableness of... be delegated below the level of the Deputy Secretary of Defense. (b) Subsystems. A subsystem of a...

  11. 48 CFR 234.7002 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... analysis, the reasonableness of the price for the subsystem. (c) Components and spare parts. (1) A... offeror has submitted sufficient information to evaluate, through price analysis, the reasonableness of... be delegated below the level of the Deputy Secretary of Defense. (b) Subsystems. A subsystem of a...

  12. 48 CFR 234.7002 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... analysis, the reasonableness of the price for the subsystem. (c) Components and spare parts. (1) A... offeror has submitted sufficient information to evaluate, through price analysis, the reasonableness of... be delegated below the level of the Deputy Secretary of Defense. (b) Subsystems. A subsystem of a...

  13. Application of improved technology to a preprototype vapor compression distillation /VCD/ water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.; Reysa, R. P.; Fricks, D. H.

    1981-01-01

    Vapor compression distillation (VCD) is considered the most efficient water recovery process for spacecraft application. This paper reports on a preprototype VCD which has undergone the most extensive operational and component development testing of any VCD subsystem to date. The component development effort was primarily aimed at eliminating corrosion and the need for lubrication, upgrading electronics, and substituting nonmetallics in key rotating components. The VCD evolution is documented by test results on specific design and/or materials changes. Innovations worthy of further investigation and additional testing are summarized for future VCD subsystem development reference. Conclusions on experience gained are presented.

  14. LANDSAT-D flight segment operations manual, volume 1

    NASA Technical Reports Server (NTRS)

    Varhola, J.

    1982-01-01

    Hardware, systems, and subsystems for the multimission modular spacecraft used for LANDSAT 4 are described and depicted in block diagrams and schematics. Components discussed include the modular attitude control system; the communication and data handling subsystem; the narrowband tape recorder; the on-board computer; the propulsion module subsystem; the signal conditioning and control unit; the modular power subsystem; the solar array drive and power transmission assembly; the power distribution unit; the digital processing unit; and the wideband communication subsystem.

  15. 75 FR 18041 - Defense Federal Acquisition Regulation Supplement; Minimizing Use of Hexavalent Chromium (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... defense weapon systems, subsystems, components, and other items. The proposed rule prohibits the delivery... initial regulatory flexibility analysis. DoD invites comments from small business concerns and other... and their related parts, subsystems, and components that already contain hexavalent chromium. However...

  16. Mark 3 VLBI system: Tropospheric calibration subsystems

    NASA Technical Reports Server (NTRS)

    Resch, G. M.

    1980-01-01

    Tropospheric delay calibrations are implemented in the Mark 3 system with two subsystems. Estimates of the dry component of tropospheric delay are provided by accurate barometric data from a subsystem of surface meteorological sensors (SMS). An estimate of the wet component of tropospheric delay is provided by a water vapor radiometer (WVR). Both subsystems interface directly to the ASCII Transceiver bus of the Mark 3 system and are operated by the control computer. Seven WVR's under construction are designed to operate in proximity to a radio telescope and can be commanded to point along the line-of-sight to a radio source. They should provide a delay estimate that is accurate to the + or - 2 cm level.

  17. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  18. Development and testing of a source subsystem for the supporting development PMAD DC test bed

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1991-01-01

    The supporting Development Power Management and Distribution (PMAD) DC Test Bed is described. Its benefits to the Space Station Freedom Electrical Power System design are discussed along with a short description of how the PMAD DC Test Bed was systematically integrated. The Source Subsystem of the PMAD DC Test Bed consisting of a Sequential Shunt Unit (SSU) and a Battery Charge/Discharge Unit (BCDU) is introduced. The SSU is described in detail and component level test data is presented. Next, the BCDU's operation and design is given along with component level test data. The Source Subsystem is then presented and early data given to demonstrate an effective subsystem design.

  19. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    ERIC Educational Resources Information Center

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  20. Advanced vehicle systems assessment. Volume 2: Subsystems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).

  1. 48 CFR 225.7003-3 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., subsystems, assemblies, or components. Specialty metal supply contracts issued by COTS producers are not... forgings or castings are incorporated into COTS end items, subsystems, or assemblies; (C) Commercially... incorporated into COTS end items or subsystems (see PGI 225.7003-3(b)(6) for a table of applicability of...

  2. 48 CFR 225.7003-3 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., subsystems, assemblies, or components. Specialty metal supply contracts issued by COTS producers are not... forgings or castings are incorporated into COTS end items, subsystems, or assemblies; (C) Commercially... incorporated into COTS end items or subsystems (see PGI 225.7003-3(b)(6) for a table of applicability of...

  3. 48 CFR 225.7003-3 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., subsystems, assemblies, or components. Specialty metal supply contracts issued by COTS producers are not... forgings or castings are incorporated into COTS end items, subsystems, or assemblies; (C) Commercially... incorporated into COTS end items or subsystems (see PGI 225.7003-3(b)(6) for a table of applicability of...

  4. Energy Efficient Engine Low Pressure Subsystem Flow Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Lynn, Sean R.; Heidegger, Nathan J.; Delaney, Robert A.

    1998-01-01

    The objective of this project is to provide the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). The analyses were performed using three-dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off-design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component aero/mechanical interactions that previously were unknown to the designer until after hardware testing.

  5. Energy Efficient Engine Low Pressure Subsystem Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Lynn, Sean R.; Veres, Joseph P.

    1998-01-01

    The objective of this study was to demonstrate the capability to analyze the aerodynamic performance of the complete low pressure subsystem (LPS) of the Energy Efficient Engine (EEE). Detailed analyses were performed using three- dimensional Navier-Stokes numerical models employing advanced clustered processor computing platforms. The analysis evaluates the impact of steady aerodynamic interaction effects between the components of the LPS at design and off- design operating conditions. Mechanical coupling is provided by adjusting the rotational speed of common shaft-mounted components until a power balance is achieved. The Navier-Stokes modeling of the complete low pressure subsystem provides critical knowledge of component acro/mechanical interactions that previously were unknown to the designer until after hardware testing.

  6. Age, gesture span, and dissociations among component subsystems of working memory.

    PubMed

    Dolman, R; Roy, E A; Dimeck, P T; Hall, C R

    2000-01-01

    Working memory was examined in old and young adults using a series of span tasks, including the forward versions of the visual-spatial and digit span tasks from the Wechsler Memory Scale-Revised, and comparable hand gesture and visual design span tasks. The observation that the young participants performed significantly better on all the tasks except digit span suggested that aging has an impact on some component subsystems of working memory but not others. Analyses of intercorrelations in span performance supports the dissociation among three component subsystems, one for auditory verbal information (the articulatory loop), one for visual-spatial information (visual-spatial scratch-pad), and one for hand/body postural configuration.

  7. Development of a preprototype times wastewater recovery subsystem: Appendices

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dehner, G. F.

    1984-01-01

    This Master Test Plan outlines the test program to be performed by Hamilton Standard during the Urine Water Recovery Subsystem Program. Testing is divided into three phases: (1) design support testing; development component testing; and acceptance testing. The completion of this test program verifies the subsystem operation.

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report, METSAT (S/N:107) AMSU-A1 Receiver Assemblies: P/N 1356429-1, S/N:F04, P/N 1356409-1,S/N F04

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1999-01-01

    This is the Performance Verification Report, METSAT (S/N: 107) AMSU-A1 Receiver Assemblies, P/N 1356429-1, SIN: F04, P/N 1356409- 1, S/N: F04, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The AMSU-A receiver subsystem comprises two separated receiver assemblies; AMSU-A1 and AMSU-A2 (P/N 1356441-1). The AMSU-A1 receiver contains 13 channels and the AMSU-A2 receiver 2 channels. The AMSU-A receiver assembly is further divided into two parts; AMSU-A I - I (P/N 13 5 6429- 1) and AMSU-A 1 -2 (P/N 1356409-1), which contain 9 and 4 channels, respectively. The AMSU-A receiver subsystem is located in between the antenna and signal processing subsystems of the AMSU-A instrument and comprises the RF and IF components from isolators to attenuators. It receives the RF signals from the antenna subsystem, down-converts the RF signals to IF signals, amplifies and defines the IF signals to proper power level and frequency bandwidth as specified for each channel, and inputs the IF signals to the signal processing subsystem. The test reports for the METSAT AMSU-A receiver subsystem are prepared separately for Al and A2 receivers so that each receiver stands alone during integration of instruments into the spacecraft. This test report presents the test data of the N4ETSAT AMSU-A1 Flight Model No. 4 (FM-4) receiver subsystem. The tests are performed per the Acceptance Test Procedure (ATP) for the AMSU-A Receiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, most subsystem-level tests are conducted at ambient temperature only. Key performances (bandpass characteristics and noise figure) of the receiver subsystem are verified over the operating temperature.

  9. A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.

    PubMed Central

    Law, V.; Goldberg, H. S.; Jones, P.; Safran, C.

    1998-01-01

    One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system. PMID:9929252

  10. A component-based problem list subsystem for the HOLON testbed. Health Object Library Online.

    PubMed

    Law, V; Goldberg, H S; Jones, P; Safran, C

    1998-01-01

    One of the deliverables of the HOLON (Health Object Library Online) project is the specification of a reference architecture for clinical information systems that facilitates the development of a variety of discrete, reusable software components. One of the challenges facing the HOLON consortium is determining what kinds of components can be made available in a library for developers of clinical information systems. To further explore the use of component architectures in the development of reusable clinical subsystems, we have incorporated ongoing work in the development of enterprise terminology services into a Problem List subsystem for the HOLON testbed. We have successfully implemented a set of components using CORBA (Common Object Request Broker Architecture) and Java distributed object technologies that provide a functional problem list application and UMLS-based "Problem Picker." Through this development, we have overcome a variety of obstacles characteristic of rapidly emerging technologies, and have identified architectural issues necessary to scale these components for use and reuse within an enterprise clinical information system.

  11. The 30-centimeter ion thrust subsystem design manual

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.

  12. 78 FR 59732 - Revisions to Design of Structures, Components, Equipment, and Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ...,'' Section 3.7.2, ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1... Analysis,'' (Accession No. ML13198A223); Section 3.7.3, ``Seismic Subsystem Analysis,'' (Accession No..., ``Seismic System Analysis,'' Section 3.7.3, ``Seismic Subsystem Analysis,'' Section 3.8.1, ``Concrete...

  13. Apollo experience report: Command and service module sequential events control subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, G. W.

    1975-01-01

    The Apollo command and service module sequential events control subsystem is described, with particular emphasis on the major systems and component problems and solutions. The subsystem requirements, design, and development and the test and flight history of the hardware are discussed. Recommendations to avoid similar problems on future programs are outlined.

  14. Improving the Reliability of Technological Subsystems Equipment for Steam Turbine Unit in Operation

    NASA Astrophysics Data System (ADS)

    Brodov, Yu. M.; Murmansky, B. E.; Aronson, R. T.

    2017-11-01

    The authors’ conception is presented of an integrated approach to reliability improving of the steam turbine unit (STU) state along with its implementation examples for the various STU technological subsystems. Basing on the statistical analysis of damage to turbine individual parts and components, on the development and application of modern methods and technologies of repair and on operational monitoring techniques, the critical components and elements of equipment are identified and priorities are proposed for improving the reliability of STU equipment in operation. The research results are presented of the analysis of malfunctions for various STU technological subsystems equipment operating as part of power units and at cross-linked thermal power plants and resulting in turbine unit shutdown (failure). Proposals are formulated and justified for adjustment of maintenance and repair for turbine components and parts, for condenser unit equipment, for regeneration subsystem and oil supply system that permit to increase the operational reliability, to reduce the cost of STU maintenance and repair and to optimize the timing and amount of repairs.

  15. The human operator transfer function: Identification of the limb mechanics subsystem

    NASA Technical Reports Server (NTRS)

    Jones, Lynette A.; Hunter, Ian W.

    1991-01-01

    The objective of our research is to decompose the performance of the human operator in terms of the subsystems that determine the operator's responses in order to establish how the dynamics of these component subsystems influence the operator's performance. In the present experiment, the dynamic stiffness of the human elbow joint was measured at rest and under different levels of biceps muscle activation; this work forms part of the analysis of the limb mechanics subsystem.

  16. Improved E-ELT subsystem and component specifications, thanks to M1 test facility

    NASA Astrophysics Data System (ADS)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.

    2014-07-01

    During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.

  17. Development of a Planning and Institutional Research Subsystem at Grambling State University. AIR 1983 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Lundy, Harold W.; Davis, Bobby

    The development and implementation of a planning and institutional research subsystem by Grambling State University (GSU) are described. Three components of the subsystem are as follows: the Grambling Institutional Data System (GRIDS), simulation and forecasting models, and the management reporting system. The way that GSU has improved the…

  18. Command module/service module reaction control subsystem assessment

    NASA Technical Reports Server (NTRS)

    Weary, D. P.

    1971-01-01

    Detailed review of component failure histories, qualification adequacy, manufacturing flow, checkout requirements and flow, ground support equipment interfaces, subsystem interface verification, protective devices, and component design did not reveal major weaknesses in the command service module (CSM) reaction control system (RCS). No changes to the CSM RCS were recommended. The assessment reaffirmed the adequacy of the CSM RCS for future Apollo missions.

  19. Load control system. [for space shuttle external tank ground tests

    NASA Technical Reports Server (NTRS)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  20. Efficient Low-Lift Cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls Part I: Component and Subsystem Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter; Jiang, Wei; Winiarski, David W.

    2009-03-31

    this paper develops component and subsystem models used to evaluat4e the performance of a low-lift cooling system with an air-colled chiller optimized for variable-speed and low-pressure-ratio operation, a hydronic radient distribution system, variable-speed transport miotor controls, and peak-shifting controls.

  1. A high speed buffer for LV data acquisition

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Sterlina, Patrick S.; Clemmons, James I., Jr.; Meyers, James F.

    1987-01-01

    The laser velocimeter (autocovariance) buffer interface is a data acquisition subsystem designed specifically for the acquisition of data from a laser velocimeter. The subsystem acquires data from up to six laser velocimeter components in parallel, measures the times between successive data points for each of the components, establishes and maintains a coincident condition between any two or three components, and acquires data from other instrumentation systems simultaneously with the laser velocimeter data points. The subsystem is designed to control the entire data acquisition process based on initial setup parameters obtained from a host computer and to be independent of the computer during the acquisition. On completion of the acquisition cycle, the interface transfers the contents of its memory to the host under direction of the host via a single 16-bit parallel DMA channel.

  2. iRODS-Based Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; Tamkin, G. S.; Strong, S.; Ripley, D.; Gill, R.; Sinno, S. S.; Shen, Y.; Carriere, L. E.; Brieger, L.; Moore, R.; Rajasekar, A.; Schroeder, W.; Wan, M.

    2011-12-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of specialized virtual climate data servers, repetitive cloud provisioning, image-based deployment and distribution, and virtualization-as-a-service. A virtual climate data server is an OAIS-compliant, iRODS-based data server designed to support a particular type of scientific data collection. iRODS is data grid middleware that provides policy-based control over collection-building, managing, querying, accessing, and preserving large scientific data sets. We have developed prototype vCDSs to manage NetCDF, HDF, and GeoTIF data products. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA's Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into these virtualized resources, multiple vCDSs can use iRODS's federation and realized object capabilities to create an integrated ecosystem of data servers that can scale and adapt to changing requirements. This approach enables platform- or software-as-a-service deployment of the vCDSs and allows the NCCS to offer virtualization-as-a-service, a capacity to respond in an agile way to new customer requests for data services, and a path for migrating existing services into the cloud. We have registered MODIS Atmosphere data products in a vCDS that contains 54 million registered files, 630TB of data, and over 300 million metadata values. We are now assembling IPCC AR5 data into a production vCDS that will provide the platform upon which NCCS's Earth System Grid (ESG) node publishes to the extended science community. In this talk, we describe our approach, experiences, lessons learned, and plans for the future.

  3. Limb-Nadir Matching Using Non-Coincident NO2 Observations: Proof of Concept and the OMI-minus-OSIRIS Prototype Product

    NASA Technical Reports Server (NTRS)

    Adams, Cristen; Normand, Elise N.; Mclinden, Chris A.; Bourassa, Adam E.; Lloyd, Nicholas D.; Degenstein, Douglas A.; Krotkov, Nickolay A.; Rivas, Maria Belmonte; Boersma, K. Folkert; Eskes, Henk

    2016-01-01

    A variant of the limb-nadir matching technique for deriving tropospheric NO2 columns is presented in which the stratospheric component of the NO2 slant column density (SCD) measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their mismatch in local time and the diurnal variation of stratospheric NO2, OSIRIS profiles, which were measured just after sunrise, were mapped to the local time of OMI observations using a photochemical boxmodel. Following the profile time adjustment, OSIRIS NO2 stratospheric vertical column densities (VCDs) were calculated. For profiles that did not reach down to the tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO2 VCD product - referred to as OMI-minus-OSIRIS (OmO) - was generated through limb-nadir matching. To accomplish this, the OMI total SCDs were scaled using correction factors derived from the next-generation SCDs that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60 deg S to 60 deg N and a cursory evaluation was performed. The OmO product was found to capture the main features of tropospheric NO2, including a background value of about 0.3 x 10(exp 15) molecules per sq cm over the tropical Pacific and values comparable to the OMI operational products over anthropogenic source areas. While additional study is required, these results suggest that a limb-nadir matching approach is feasible for the removal of stratospheric NO2 measured by a polar orbiter from a nadir-viewing instrument in a geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or Sentinel-4.

  4. Apollo experience report: Command and service module electrical power distribution on subsystem

    NASA Technical Reports Server (NTRS)

    Munford, R. E.; Hendrix, B.

    1974-01-01

    A review of the design philosophy and development of the Apollo command and service modules electrical power distribution subsystem, a brief history of the evolution of the total system, and some of the more significant components within the system are discussed. The electrical power distribution primarily consisted of individual control units, interconnecting units, and associated protective devices. Because each unit within the system operated more or less independently of other units, the discussion of the subsystem proceeds generally in descending order of complexity; the discussion begins with the total system, progresses to the individual units of the system, and concludes with the components within the units.

  5. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  6. Apollo experience report: Lunar module environmental control subsystem

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Brady, J. C.; Collier, F.

    1972-01-01

    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu

    Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5 m telescope to study short-period systems. The data reduction is described, and mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, and for some of them the orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binariesmore » within 67 pc. It is found that 43 binaries contain at least one subsystem, and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods matches the simple prescription proposed by the author. The remaining 53 simple wide binaries with a median projected separation of 1300 AU have an RV difference distribution between their components that is not compatible with the thermal eccentricity distribution f (e) = 2e but rather matches the uniform eccentricity distribution.« less

  8. SQL Collaborative Learning Framework Based on SOA

    NASA Astrophysics Data System (ADS)

    Armiati, S.; Awangga, RM

    2018-04-01

    The research is focused on designing collaborative learning-oriented framework fulfilment service in teaching SQL Oracle 10g. Framework built a foundation of academic fulfilment service performed by a layer of the working unit in collaboration with Program Studi Manajemen Informatika. In the design phase defined what form of collaboration models and information technology proposed for Program Studi Manajemen Informatika by using a framework of collaboration inspired by the stages of modelling a Service Oriented Architecture (SOA). Stages begin with analyzing subsystems, this activity is used to determine subsystem involved and reliance as well as workflow between the subsystems. After the service can be identified, the second phase is designing the component specifications, which details the components that are implemented in the service to include the data, rules, services, profiles can be configured, and variations. The third stage is to allocate service, set the service to the subsystems that have been identified, and its components. Implementation framework contributes to the teaching guides and application architecture that can be used as a landing realize an increase in service by applying information technology.

  9. Functional Performance of an Enabling Atmosphere Revitalization Subsystem Architecture for Deep Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.; hide

    2013-01-01

    A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.

  10. Power conditioning for space nuclear reactor systems

    NASA Technical Reports Server (NTRS)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  11. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  12. OAO-C end-of-mission power subsystem engineering evaluation

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    The battery performance on both Orbiting Astronomical Observatory missions was excellent. The end-of-mission power subsystem tests on the battery and the solar arrays provides a real-time degradation analysis for these two components.

  13. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  14. Plant Development, Auxin, and the Subsystem Incompleteness Theorem

    PubMed Central

    Niklas, Karl J.; Kutschera, Ulrich

    2012-01-01

    Plant morphogenesis (the process whereby form develops) requires signal cross-talking among all levels of organization to coordinate the operation of metabolic and genomic subsystems operating in a larger network of subsystems. Each subsystem can be rendered as a logic circuit supervising the operation of one or more signal-activated system. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of progressively larger networks. This technique is illustrated here by rendering two logic circuits and signal-activated subsystems, one for auxin (IAA) polar/lateral intercellular transport and another for IAA-mediated cell wall loosening. For each of these phenomena, a circuit/subsystem diagram highlights missing components (either in the logic circuit or in the subsystem it supervises) that must be identified experimentally if each of these basic plant phenomena is to be fully understood. We also illustrate the “subsystem incompleteness theorem,” which states that no subsystem is operationally self-sufficient. Indeed, a whole-organism perspective is required to understand even the most simple morphogenetic process, because, when isolated, every biological signal-activated subsystem is morphogenetically ineffective. PMID:22645582

  15. Cost analysis of life sciences experiments and subsystems. [to be carried in the Spacelab

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1975-01-01

    Cost estimates for experiments and subsystems flown in the Spacelab were established. Ten experiments were cost analyzed. Estimated cost varied from $650,000 for the hardware development of the SPE water electrolysis experiment to $78,500,000 for the development and operation of a representative life sciences laboratory program. The cost of subsystems for thermal, atmospheric and trace contaminants control of the Spacelab internal atmosphere was also estimated. Subsystem cost estimates were based on the utilization of existing components developed in previous space programs whenever necessary.

  16. Space shuttle redesigned solid rocket motor Certificate of Qualification (COQ) data report

    NASA Technical Reports Server (NTRS)

    Duersch, Fred, Jr.

    1990-01-01

    The Space Shuttle Redesigned Solid Rocket Motor (RSRM) Certification Program provides confidence that the RSRM and its components/subsystems meet or exceed Mission Oriented Requirements when manufactured per design requirements and specified/approved processes. Certification is based on documented results of tests, analyses, inspections, similarity, and demonstrations. Evidencing information is provided to certify that each RSRM component/subsystem satisfies design, mission related requirements and objectives.

  17. Security Controls in the Stockpoint Logistics Integrated Communications Environment (SPLICE).

    DTIC Science & Technology

    1985-03-01

    call programs as authorized after checks by the Terminal Management Subsystem on SAS databases . SAS overlays the TANDEM GUARDIAN operating system to...Security Access Profile database (SAP) and a query capability generating various security reports. SAS operates with the System Monitor (SMON) subsystem...system to DDN and other components. The first SAS component to be reviewed is the SAP database . SAP is organized into two types of files. Relational

  18. JOB BUILDER remote batch processing subsystem

    NASA Technical Reports Server (NTRS)

    Orlov, I. G.; Orlova, T. L.

    1980-01-01

    The functions of the JOB BUILDER remote batch processing subsystem are described. Instructions are given for using it as a component of a display system developed by personnel of the System Programming Laboratory, Institute of Space Research, USSR Academy of Sciences.

  19. Image acquisition unit for the Mayo/IBM PACS project

    NASA Astrophysics Data System (ADS)

    Reardon, Frank J.; Salutz, James R.

    1991-07-01

    The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.

  20. Return Beam Vidicon (RBV) panchromatic two-camera subsystem for LANDSAT-C

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A two-inch Return Beam Vidicon (RBV) panchromatic two camera Subsystem, together with spare components was designed and fabricated for the LANDSAT-C Satellite; the basis for the design was the Landsat 1&2 RBV Camera System. The purpose of the RBV Subsystem is to acquire high resolution pictures of the Earth for a mapping application. Where possible, residual LANDSAT 1 and 2 equipment was utilized.

  1. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    NASA Technical Reports Server (NTRS)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    1992-01-01

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  2. MIUS Integration and Subsystem Test (MIST) data system

    NASA Technical Reports Server (NTRS)

    Pringle, L. M.

    1977-01-01

    A data system for use in testing integrated subsystems of a modular integrated utility system (MIUS) is presented. The MIUS integration and subsystem test (MIST) data system is reviewed from its conception through its checkout and operation as the controlling portion of the MIST facility. The MIST data system provides a real time monitoring and control function that allows for complete evaluation of the performance of the mechanical and electrical subsystems, as well as controls the operation of the various components of the system. In addition to the aforementioned capabilities, the MIST data system provides computerized control of test operations such that minimum manpower is necessary to set up, operate, and shut down subsystems during test periods.

  3. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses

    PubMed Central

    Andrews-Hanna, Jessica R.; Saxe, Rebecca; Yarkoni, Tal

    2014-01-01

    A growing number of studies suggest the brain’s “default network” becomes engaged when individuals recall their personal past or simulate their future. Recent reports of heterogeneity within the network raises the possibility that these autobiographical processes are comprised of multiple component processes, each supported by distinct functional-anatomic subsystems. We previously hypothesized that a medial temporal subsystem contributes to autobiographical memory and future thought by enabling individuals to retrieve prior information and bind this information into a mental scene. Conversely, a dorsal medial subsystem was proposed to support social-reflective aspects of autobiographical thought, allowing individuals to reflect on the mental states of one’s self and others (i.e. “mentalizing”). To test these hypotheses, we first examined activity in the default network subsystems as participants performed two commonly employed tasks of episodic retrieval and mentalizing. In a subset of participants, relationships among task-evoked regions were examined at rest, in the absence of an overt task. Finally, large-scale fMRI meta-analyses were conducted to identify brain regions that most strongly predicted the presence of episodic retrieval and mentalizing, and these results were compared to meta-analyses of autobiographical tasks. Across studies, laboratory-based episodic retrieval tasks were preferentially linked to the medial temporal subsystem, while mentalizing tasks were preferentially linked to the dorsal medial subsystem. In turn, autobiographical tasks engaged aspects of both subsystems. These results suggest the default network is a heterogeneous brain system whose subsystems support distinct component processes of autobiographical thought. PMID:24486981

  4. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses.

    PubMed

    Andrews-Hanna, Jessica R; Saxe, Rebecca; Yarkoni, Tal

    2014-05-01

    A growing number of studies suggest the brain's "default network" becomes engaged when individuals recall their personal past or simulate their future. Recent reports of heterogeneity within the network raise the possibility that these autobiographical processes comprised of multiple component processes, each supported by distinct functional-anatomic subsystems. We previously hypothesized that a medial temporal subsystem contributes to autobiographical memory and future thought by enabling individuals to retrieve prior information and bind this information into a mental scene. Conversely, a dorsal medial subsystem was proposed to support social-reflective aspects of autobiographical thought, allowing individuals to reflect on the mental states of one's self and others (i.e. "mentalizing"). To test these hypotheses, we first examined activity in the default network subsystems as participants performed two commonly employed tasks of episodic retrieval and mentalizing. In a subset of participants, relationships among task-evoked regions were examined at rest, in the absence of an overt task. Finally, large-scale fMRI meta-analyses were conducted to identify brain regions that most strongly predicted the presence of episodic retrieval and mentalizing, and these results were compared to meta-analyses of autobiographical tasks. Across studies, laboratory-based episodic retrieval tasks were preferentially linked to the medial temporal subsystem, while mentalizing tasks were preferentially linked to the dorsal medial subsystem. In turn, autobiographical tasks engaged aspects of both subsystems. These results suggest the default network is a heterogeneous brain system whose subsystems support distinct component processes of autobiographical thought. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Synchronous orbit power technology needs

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.; Billerbeck, W. J.

    1979-01-01

    The needs are defined for future geosynchronous orbit spacecraft power subsystem components, including power generation, energy storage, and power processing. A review of the rapid expansion of the satellite communications field provides a basis for projection into the future. Three projected models, a mission model, an orbit transfer vehicle model, and a mass model for power subsystem components are used to define power requirements and mass limitations for future spacecraft. Based upon these three models, the power subsystems for a 10 kw, 10 year life, dedicated spacecraft and for a 20 kw, 20 year life, multi-mission platform are analyzed in further detail to establish power density requirements for the generation, storage and processing components of power subsystems as related to orbit transfer vehicle capabilities. Comparison of these requirements to state of the art design values shows that major improvements, by a factor of 2 or more, are needed to accomplish the near term missions. However, with the advent of large transfer vehicles, these requirements are significantly reduced, leaving the long lifetime requirement, associated with reliability and/or refurbishment, as the primary development need. A few technology advances, currently under development, are noted with regard to their impacts on future capability.

  6. Mini MAX-DOAS Measurements of Air Pollutants over China

    NASA Astrophysics Data System (ADS)

    Staadt, Steffen; Hao, Nan; Trautmann, Thomas

    2016-08-01

    This study continues the work of Clémer et al., (2010) and is aimed to improve trace gas retrievals with mini MAX-DOAS measurements in Nanjing. Based on that work, aerosol extinction vertical profiles are retrieved using the bePRO inversion algorithm developed by the Royal Belgian Institute for Space Aeronomy (BIRA- IASB). Afterwards, the tropospheric trace gas vertical profiles and vertical column densities (VCDs) are retrieved by applying the optimal estimation method to the O4 MAX-DOAS measurements. The Profiles for N O2 , S O2 , glyoxal, formaldehyde and nitrous acid are obtained with different results and different settings for the DOAS measurement. The AODs show small positive correlation against the AERONET values. For NO2, the retrieval shows reasonable concentrations in winter as opposed to summer and has small positive correlations with GOME-2 data. The SO2 VCDs are not correlated with the GOME-2 data, due to high uncertainties from MAX-DOAS and satellite retrievals, while the vertical mixing ratios (VMR) show good agreement with in-situ data (SORPES) at Nanjing. Nitrous acid shows a maximum in winter and a minimum in summer, while glyoxal has its maximum in August and September.

  7. Spatial variance and assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-Highway.

    PubMed

    Shabbir, Yasir; Khokhar, Muhammad Fahim; Shaiganfar, Reza; Wagner, Thomas

    2016-05-01

    This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas. Copyright © 2015. Published by Elsevier B.V.

  8. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei; Horch, Elliott P., E-mail: atokovinin@ctio.noao.edu, E-mail: horche2@southernct.edu

    Statistical characterization of secondary subsystems in binaries helps to distinguish between various scenarios of multiple-star formation. The Differential Speckle Survey Instrument was used at the Gemini-N telescope for several hours in 2015 July to probe the binarity of 25 secondary components in nearby solar-type binaries. Six new subsystems were resolved, with meaningful detection limits for the remaining targets. The large incidence of secondary subsystems agrees with other similar studies. The newly resolved subsystem HIP 115417 Ba,Bb causes deviations in the observed motion of the outer binary from which an astrometric orbit of Ba,Bb with a period of 117 years ismore » deduced.« less

  10. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  11. Advanced On-the-Job Training System: System Specification

    DTIC Science & Technology

    1990-05-01

    3.1.5.2.10 Evaluation Subsystem spotfor the Traking Devopment and Deliery Subsystem ..... 22 3.1.5.2.11 TrIning Development=dDelivery Subsystem sL...e. Alsys Ada compiler f. Ethernet Local Area Network reference manual(s) g. Infotron 992 network reference manual(s) h. Computer Program Source...1989 a. Daily check of mainframe components, including all elements critical to support the terminal network . b. Restoration of mainframe equipment

  12. Conceptual design and evaluation of selected Space Station concepts, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The partially closed cycle environmental control and Life Support Subsystems is examined. Components of the system include air pressure control, heat control, water management, air and water quality monitors, fire detection and suppression, personnel escape, and EVA support subsystems.

  13. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.

  14. Spacecraft Design Thermal Control Subsystem

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  15. Simplified power processing for ion-thruster subsystems

    NASA Technical Reports Server (NTRS)

    Wessel, F. J.; Hancock, D. J.

    1983-01-01

    Compared to chemical propulsion, ion propulsion offers distinct payload-mass increases for many future low-thrust earth-orbital and deep-space missions. Despite this advantage, the high initial cost and complexity of ion-propulsion subsystems reduce their attractiveness for most present and near-term spacecraft missions. Investigations have, therefore, been conducted with the objective to attempt to simplify the power-processing unit (PPU), which is the single most complex and expensive component in the thruster subsystem. The present investigation is concerned with a program to simplify the design of the PPU employed in a 8-cm mercury-ion-thruster subsystem. In this program a dramatic simplification in the design of the PPU could be achieved, while retaining essential thruster control and subsystem operational flexibility.

  16. Overview of NASA GRC Electrified Aircraft Propulsion Systems Analysis Methods

    NASA Technical Reports Server (NTRS)

    Schnulo, Sydney

    2017-01-01

    The accurate modeling and analysis of electrified aircraft propulsion concepts require intricate subsystem system component coupling. The major challenge in electrified aircraft propulsion concept modeling lies in understanding how the subsystems "talk" to each other and the dependencies they have on one another.

  17. Prototype solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  18. Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan

    NASA Astrophysics Data System (ADS)

    Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.

    2007-12-01

    The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.

  19. Radial velocities of southern visual multiple stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra, E-mail: atokovinin@ctio.noao.edu, E-mail: pribulla@ta3.sk, E-mail: debra.fischer@gmail.com

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out tomore » have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.« less

  20. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  1. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  2. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  3. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written...) Data processing, display, and recording. A flight safety system must include one or more subsystems... accordance with the flight safety analysis required by subpart C of this part; (5) Display and record raw...

  4. Overview of SDCM - The Spacecraft Design and Cost Model

    NASA Technical Reports Server (NTRS)

    Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.

    1988-01-01

    The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.

  5. AMSEC Users Guide.

    DTIC Science & Technology

    1976-11-01

    Hardware • System functional configuration characteristics • Component aging mechanisms (engineering) • Subsystem/component FMEAs • Subsystem...modified to fit the specific mission(s) under investigation. 60 — .- m. • •. mi . ui ••_!!•»•••’ i • .. ••Mil ’’•^•^••BWW^WlWi^Wi...8217 / t / / / s y / ’ / / * y hO | -;-; • / / 1, r T ", 60 / / / • f tl’Jt, s s 1 / ’ • Mode 7 B=4.0 ^ / 7 / 0 Mode 8

  6. Development of a preprototype vapor compression distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, K. L.

    1978-01-01

    The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.

  7. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River

    NASA Astrophysics Data System (ADS)

    Hong, Qianqian; Liu, Cheng; Chan, Ka Lok; Hu, Qihou; Xie, Zhouqing; Liu, Haoran; Si, Fuqi; Liu, Jianguo

    2018-04-01

    In this paper, we present ship-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of tropospheric trace gases' distribution along the Yangtze River during winter 2015. The measurements were performed along the Yangtze River between Shanghai and Wuhan, covering major industrial areas in eastern China. Tropospheric vertical column densities (VCDs) of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) were retrieved using the air mass factor calculated by the radiative transfer model. Enhanced tropospheric NO2 and SO2 VCDs were detected over downwind areas of industrial zones over the Yangtze River. In addition, spatial distributions of atmospheric pollutants are strongly affected by meteorological conditions; i.e., positive correlations were found between concentration of pollutants and wind speed over these areas, indicating strong influence of transportation of pollutants from high-emission upwind areas along the Yangtze River. Comparison of tropospheric NO2 VCDs between ship-based MAX-DOAS and Ozone Monitoring Instrument (OMI) satellite observations shows good agreement with each other, with a Pearson correlation coefficient (R) of 0.82. In this study, the NO2 / SO2 ratio was used to estimate the relative contributions of industrial sources and vehicle emissions to ambient NO2 levels. Analysis results of the NO2 / SO2 ratio show a higher contribution of industrial NO2 emissions in Jiangsu Province, while NO2 levels in Jiangxi and Hubei provinces are mainly related to vehicle emissions. These results indicate that different pollution control strategies should be applied in different provinces. In addition, multiple linear regression analysis of ambient carbon monoxide (CO) and odd oxygen (Ox) indicated that the primary emission and secondary formation of HCHO contribute 54.4 ± 3.7 % and 39.3 ± 4.3 % to the ambient HCHO, respectively. The largest contribution from primary emissions in winter suggested that photochemically induced secondary formation of HCHO is reduced due to lower solar irradiance in winter. Our findings provide an improved understanding of major pollution sources along the eastern part of the Yangtze River which are useful for designing specific air pollution control policies.

  8. The Mariner Venus Mercury flight data subsystem.

    NASA Technical Reports Server (NTRS)

    Whitehead, P. B.

    1972-01-01

    The flight data subsystem (FDS) discussed handles both the engineering and scientific measurements performed on the MVM'73. It formats the data into serial data streams, and sends it to the modulation/demodulation subsystem for transmission to earth or to the data storage subsystem for storage on a digital tape recorder. The FDS is controlled by serial digital words, called coded commands, received from the central computer sequencer of from the ground via the modulation/demodulation subsystem. The eight major blocks of the FDS are: power converter, timing and control, engineering data, memory, memory input/output and control, nonimaging data, imaging data, and data output. The FDS incorporates some 4000 components, weighs 17 kg, and uses 35 W of power. General data on the mission and spacecraft are given.

  9. Microbiology operations and facilities aboard restructured Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis A.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.

  10. Life Support System Technologies for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2007-01-01

    The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.

  11. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  12. Imaging Survey of Subsystems in Secondary Components to Nearby Southern Dwarfs

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2014-10-01

    To improve the statistics of hierarchical multiplicity, secondary components of wide nearby binaries with solar-type primaries were surveyed at the SOAR telescope for evaluating the frequency of subsystems. Images of 17 faint secondaries were obtained with the SOAR Adaptive Module that improved the seeing; one new 0.''2 binary was detected. For all targets, photometry in the g', i', z' bands is given. Another 46 secondaries were observed by speckle interferometry, resolving 7 close subsystems. Adding literature data, the binarity of 95 secondary components is evaluated. We found that the detection-corrected frequency of secondary subsystems with periods in the well-surveyed range from 103 to 105 days is 0.21 ± 0.06—same as the normal frequency of such binaries among solar-type stars, 0.18. This indicates that wide binaries are unlikely to be produced by dynamical evolution of N-body systems, but are rather formed by fragmentation. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory, the University of North Carolina at Chapel Hill, and Michigan State University.

  13. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  14. Space Synthetic Biology Project

    NASA Technical Reports Server (NTRS)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the project in selecting the best approaches to the application of bioelectrochemical technologies to ECLS. Figure 1 shows results of simulation of charge transport in an experimental system. Figure 2 shows one of five conceptual designs for ECLS subsystems based on bioelectrochemical reactors. Also during the first 2 years, some work was undertaken to gather fundamental data (conductivities, overpotentials) relevant to the modeling efforts.

  15. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  16. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  17. A Decade of Change in NO2 and SO2 over the Canadian Oil Sands As Seen from Space

    NASA Technical Reports Server (NTRS)

    Mclinden, Chris A.; Fioletov, Vitali; Krotkov, Nickolay A.; Li, Can; Boersma, K. Folkert; Adams, Cristen

    2015-01-01

    A decade (20052014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide(NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the oil sands, primarily over an area of intensive surface mining, NO2 tropospheric vertical column densities (VCDs) are seen to be increasing by as much as 10year, with the location of the largest trends in a newly developing NO2 lobe well removed from surface monitoring stations. SO2 VCDs in the oil sands have remained approximately constant. The only other significant increase in the region was seen in NO2 over Bakken gas fields in North Dakota which showed increases of up to5yr. By contrast, other locations in the region show substantial declines in both pollutants, providing strong evidence to the efficacy of environmental pollution control measures implemented by both nations. The OMI-derived trends were found to be consistent with those from the Canadian surface monitoring network, although in the case of SO2, it was necessary to apply a correction in order to remove the residual signal from volcanic eruptions present in the OMI data.

  18. A description of STEMS-- the stand and tree evaluation and modeling system.

    Treesearch

    David M. Belcher; Margaret R. Holdaway; Gary J. Brand

    1982-01-01

    This paper describes STEMS (Stand and Tree Evaluation and Modeling System), the current computerized Lake State tree growth projection system. It presents the program structure, discusses the growth and mortality components, the management subsystem, and the regeneration subsystem. Some preliminary results of model testing are presented and an application is...

  19. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...

  20. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...

  1. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...

  2. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...

  3. 14 CFR 415.129 - Flight safety system test data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., acceptance, age surveillance, and preflight testing of a flight safety system and its subsystems and..., subsystem, and component testing requirements of part 417 of this chapter and appendix E to part 417 of this... demonstrate similarity by performing the analysis required by appendix E of part 417 of this chapter. The...

  4. The ICCB Computer Based Faculty and Staff Utilization Subsystem.

    ERIC Educational Resources Information Center

    Lach, Ivan J.

    The Illinois Community College Board (ICCB) Faculty and Staff Utilization subsystem, a component of the ICCB management information system, was designed to produce meaningful and useful information reports for the analysis of faculty and staff, as a resource, in Illinois community colleges. Accommodating the complex nature of staffing at the 49…

  5. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  6. Detectors for the James Webb Space Telescope near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica

    2004-10-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  7. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  8. Magellan attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Olschansky, David G.

    1987-01-01

    In the spring of 1989, the Magellan spacecraft will embark on a two-year mission to map the surface of the planet Venus. Guiding it there will be the Attitude and Articulation Control Subsystem (AACS). To ensure reliable operations the AACS is being put through a rigorous test program at Martin Marietta Denver Aerospace. Before Magellan ever leaves the Space Shuttle bay from which it is to be launched, its components will have flown a simulated spaceflight in a ground-based lab. The primary objectives of the test program are to verify form, fit, and function of the AACS, particularly subsystem external interfaces and functional operation of the flight software. This paper discusses the Magellan Closed Loop Test Systems which makes realistic tests possible by simulating the dynamic and 'visual' flight environment for AACS components in the lab.

  9. The Solutions Data Base Component of the Water Pollution Abatement Subsystem (WPAS) of the Pollution Abatement Management System. (PAMS).

    DTIC Science & Technology

    1981-04-01

    Facilities EngineerATTN: DAEN-MPC Fitzs ;mons Amy Medical Center ATTN: DAEN-PE Army Instl. and Major Activities (CONuS; waiter Reed Army Medical center ATTN...S)St. Paul Fort Sheridan 21st Support ComandTulsa Fort Stewart4 Vicksburg Fort Wainmright AN: AREA (5) Walls Walla Vancouver Bks. Wilmington US Am...ABG/DEEE Patrick AFB, FL 32925 ATTN: XRQ ’ C Bandy, John T. The Solutions Data Base component of the Water Pollution Abatement Subsystem (WPAS) of the

  10. Evaluation and qualification of commercial opto-electronic components for the MOHA subsystem in ESA's SMOS mission

    NASA Astrophysics Data System (ADS)

    Gutierrez, Francisco; Cordero, Enrique; Sánchez, Carolina; Barbero, Juan; Mosberger, Martin; Boehle, Peter; Tornell, Manuel; Lundmark, Karin

    2017-11-01

    A dedicated evaluation and qualification campaign has been performed on several optical COTS components in order to use them on ESA's SMOS mission. The evaluation phase consisted of a set of critical tests and analyses and led to the selection of the flight lot component. After selection of the components, one lot of each component has been qualified for the SMOS mission. The overall approach is presented together with a summary of all activities performed. The whole task has been handled in a joint effort between ESA, EADS CASA Espacio (prime contractor), Contraves Space AG (MOHA subsystem), TECNOLOGICA SA (component qualification experts) and the respective manufacturers, each party providing their specific know-how. Test results are presented and the issues discovered and lessons learned are addressed. Special emphasis is given to particular tests for which dedicated setups had to be designed due to the unavailability of standard equipment.

  11. Hybrid Vehicle Program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  12. Galileo attitude and articulation control subsystem closed loop testing

    NASA Technical Reports Server (NTRS)

    Lembeck, M. F.; Pignatano, N. D.

    1983-01-01

    In order to ensure the reliable operation of the Attitude and Articulation Control Subsystem (AACS) which will guide the Galileo spacecraft on its two and one-half year journey to Jupiter, the AACS is being rigorously tested. The primary objectives of the test program are the verification of the AACS's form, fit, and function, especially with regard to subsystem external interfaces and the functional operation of the flight software. Attention is presently given to the Galileo Closed Loop Test System, which simulates the dynamic and 'visual' flight environment for AACS components in the laboratory.

  13. Small spacecraft power and thermal subsystems

    NASA Technical Reports Server (NTRS)

    Eakman, D.; Lambeck, R.; Mackowski, M.; Slifer, L., Jr.

    1994-01-01

    This white paper provides a general guide to the conceptual design of satellite power and thermal control subsystems with special emphasis on the unique design aspects associated with small satellites. The operating principles of these technologies are explained and performance characteristics of current and projected components are provided. A tutorial is presented on the design process for both power and thermal subsystems, with emphasis on unique issues relevant to small satellites. The ability of existing technology to meet future performance requirements is discussed. Conclusions and observations are presented that stress cost-effective, high-performance design solutions.

  14. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  15. SP-100 GES/NAT radiation shielding systems design and development testing

    NASA Astrophysics Data System (ADS)

    Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank

    1991-01-01

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.

  16. Space Tug avionics definition study. Volume 4: Supporting trade studies and analyses

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Analyses and trade studies were performed for the evaluation of the most desirable solutions to space tug subsystem requirements. These were accomplished at system, subsystem, and at component levels. The criteria, the candidate options evaluated, the selection process, and the recommended solutions that have been integrated together in the configuration descriptions are reported.

  17. Mathematical modeling of moving boundary problems in thermal energy storage

    NASA Technical Reports Server (NTRS)

    Solomon, A. D.

    1980-01-01

    The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.

  18. Meeting the Daily Information Needs of Retail Supply Managers: A decision Support System for Base Level Supply

    DTIC Science & Technology

    1989-09-01

    in terms of its component parts: a data base subsystem, a modelir,. subsystem and a integrated user interface ( Boncze ’ and others, 1980:342). At the...Directorate of Supply (LGS) Division Chief. Personal Interview. AFLMC/LGS, Gunter AFB AL, 20 January 198q. Keen, Peter G. W. "Value Analysis

  19. A Design for Composing and Extending Vehicle Models

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.; Neuhaus, Jason R.

    2003-01-01

    The Systems Development Branch (SDB) at NASA Langley Research Center (LaRC) creates simulation software products for research. Each product consists of an aircraft model with experiment extensions. SDB treats its aircraft models as reusable components, upon which experiments can be built. SDB has evolved aircraft model design with the following goals: 1. Avoid polluting the aircraft model with experiment code. 2. Discourage the copy and tailor method of reuse. The current evolution of that architecture accomplishes these goals by reducing experiment creation to extend and compose. The architecture mechanizes the operational concerns of the model's subsystems and encapsulates them in an interface inherited by all subsystems. Generic operational code exercises the subsystems through the shared interface. An experiment is thus defined by the collection of subsystems that it creates ("compose"). Teams can modify the aircraft subsystems for the experiment using inheritance and polymorphism to create variants ("extend").

  20. Proposed Schematics for an Advanced Development Lunar Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Conger, Bruce; Chullen, Cinda; Barnes, Bruce; Leavitt, Greg

    2010-01-01

    The latest development of the NASA space suit is an integrated assembly made up of primarily a Pressure Garment System (PGS) and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen (O2) subsystem, a ventilation subsystem, and a thermal subsystem. This paper baselines a detailed schematic of the PLSS to provide a basis for current and future PLSS development efforts. Both context diagrams and detailed schematics describe the hardware components and overall functions for all three of the PLSS subsystems. The various modes of operations for the PLSS are also presented. A comparison of the proposed PLSS to the Apollo and Shuttle PLSS designs is presented, highlighting several anticipated improvements over the historical PLSS architectures.

  1. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  2. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  3. Propulsion system research and development for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu

    To improve the statistics of hierarchical multiplicity, secondary components of wide nearby binaries with solar-type primaries were surveyed at the SOAR telescope for evaluating the frequency of subsystems. Images of 17 faint secondaries were obtained with the SOAR Adaptive Module that improved the seeing; one new 0.''2 binary was detected. For all targets, photometry in the g', i', z' bands is given. Another 46 secondaries were observed by speckle interferometry, resolving 7 close subsystems. Adding literature data, the binarity of 95 secondary components is evaluated. We found that the detection-corrected frequency of secondary subsystems with periods in the well-surveyed rangemore » from 10{sup 3} to 10{sup 5} days is 0.21 ± 0.06—same as the normal frequency of such binaries among solar-type stars, 0.18. This indicates that wide binaries are unlikely to be produced by dynamical evolution of N-body systems, but are rather formed by fragmentation.« less

  5. Carbon, nitrogen and phosphorus dynamics in nine sub-systems of the Sylt-Rømø Bight ecosystem, German Wadden Sea

    NASA Astrophysics Data System (ADS)

    Baird, Dan; Asmus, Harald; Asmus, Ragnhild

    2011-01-01

    Flow networks of nine sub-systems consisting of 59 components each of the Sylt-Rømø Bight, German Wadden Sea, were constructed depicting the standing stocks and flows of material and energy within and between the sub-systems. Carbon, nitrogen and phosphorous were used as currencies for each sub-system, thus resulting in 27 network models, which were analyzed by ecological network analytical protocols. Results show substantial variability in the dynamics of these elements within and between the nine sub-systems, which differ in habitat structure, species diversity and in the standing stocks of their constituent living and non-living components. The relationship between the biodiversity and selected information indices and ratios, derived from ecological network analysis, of individual sub-systems is variable and differ substantially between them. Ecosystem properties such as the structure and magnitude of the recycling of these elements, number of cycles, and total sub-system activity were calculated and discussed, highlighting the differences between and complexity of the flow of C, N and P in a coastal marine ecosystem. The average number of cycles increase from 179 for C, to 16,923 and 20,580 for N and P respectively, while the average amount of recycled material, as measured by the Finn Cycling Index (FCI), increase from 17% for C, to 52% for P and to 61% for N. The number of cycles and the FCI vary considerably between the sub-systems for the different elements. The largest number of cycles of all three elements was observed in the muddy sand flat sub-system, but the highest FCIs were computed for both C (32%) and N (85%) in the Arenicola Flats, and in sparse Zostera noltii sea grass beds for P (67%). Indices reflecting on the growth, organization and resilience of the sub-systems also showed considerable variability between and within the inter-tidal ecosystems in the Bight. Indices such as, for example, the relative ascendency ratios increase on average from C to N to P, whereas others, such as the Average Mutual Information and Flow Diversity indices, were found to be higher in the N models than in the C or P ones.

  6. Optimization of Borehole Thermal Energy Storage System Design Using Comprehensive Coupled Simulation Models

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Formhals, Julian; Bär, Kristian; Sass, Ingo

    2017-04-01

    Large-scale borehole thermal energy storage (BTES) is a promising technology in the development of sustainable, renewable and low-emission district heating concepts. Such systems consist of several components and assemblies like the borehole heat exchangers (BHE), other heat sources (e.g. solarthermics, combined heat and power plants, peak load boilers, heat pumps), distribution networks and heating installations. The complexity of these systems necessitates numerical simulations in the design and planning phase. Generally, the subsurface components are simulated separately from the above ground components of the district heating system. However, as fluid and heat are exchanged, the subsystems interact with each other and thereby mutually affect their performances. For a proper design of the overall system, it is therefore imperative to take into account the interdependencies of the subsystems. Based on a TCP/IP communication we have developed an interface for the coupling of a simulation package for heating installations with a finite element software for the modeling of the heat flow in the subsurface and the underground installations. This allows for a co-simulation of all system components, whereby the interaction of the different subsystems is considered. Furthermore, the concept allows for a mathematical optimization of the components and the operational parameters. Consequently, a finer adjustment of the system can be ensured and a more precise prognosis of the system's performance can be realized.

  7. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  8. ASDTIC: A feedback control innovation

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  9. Flexible radiator system

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1982-01-01

    The soft tube radiator subsystem is described including applicable system requirements, the design and limitations of the subsystem components, and the panel manufacturing method. The soft tube radiator subsystem is applicable to payloads requiring 1 to 12 kW of heat rejection for orbital lifetimes per mission of 30 days or less. The flexible radiator stowage volume required is about 60% and the system weight is about 40% of an equivalent heat rejection rigid panel. The cost should also be considerably less. The flexible radiator is particularly suited to shuttle orbiter sortie payloads and also whose mission lengths do not exceed the 30 day design life.

  10. Development assessment of wash water reclamation

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1976-01-01

    An analytical study assessment of state-of-the-art wash water reclamation technology is presented. It covers all non-phase-change unit operations, unit processes and subsystems currently under development by NASA. Each approach to wash water reclamation is described in detail. Performance data are given together with the projected weights and sizes of key components and subsystems. It is concluded that a simple multifiltration subsystem composed of surface-type cartridge filters, carbon adsorption and ion exchange resins is the most attractive approach for spacecraft wash water reclamation in earth orbital missions of up to 10 years in duration.

  11. Apollo experience report: Crew provisions and equipment subsystem

    NASA Technical Reports Server (NTRS)

    Mcallister, F.

    1972-01-01

    A description of the construction and use of crew provisions and equipment subsystem items for the Apollo Program is presented. The subsystem is composed principally of survival equipment, bioinstrumentation devices, medical components and accessories, water- and waste-management equipment, personal-hygiene articles, docking aids, flight garments (excluding the pressure garment assembly), and various other crew-related accessories. Particular attention is given to items and assemblies that presented design, development, or performance problems: the crew optical alinement sight system, the metering water dispenser, and the waste-management system. Changes made in design and materials to improve the fire safety of the hardware are discussed.

  12. ASDTIC - A feedback control innovation.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Schoenfeld, A. D.

    1972-01-01

    The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.

  13. AEOSS runtime manual for system analysis on Advanced Earth-Orbital Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hwa-Ping

    1990-01-01

    Advanced earth orbital spacecraft system (AEOSS) enables users to project the required power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxiliary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius' 4th Dimension with a Macintosh version. Because of the licensing agreements, two versions of the AEOSS documents were prepared. This version, AEOSS Runtime Manual, is permitted to be distributed with a finite number of the restrictive 4D Runtime version. It can perform all contained applications without any programming alterations.

  14. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/electrical power generation subsystem

    NASA Technical Reports Server (NTRS)

    Patton, Jeff A.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  15. MAX-DOAS observations and their application to the validation of satellite and model data in Wuxi, China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wagner, T.; Xie, P.; Theys, N.; De Smedt, I.; Koukouli, M.; Stavrakou, T.; Beirle, S.; Li, A.

    2015-12-01

    Thomas Wagner1, Pinhua Xie2, Nicolas Theys3, Isabelle De Smedt3, MariLiza Koukouli4, Trissevgeni Stavrakou3, Steffen Beirle1, Ang Li2,1) Satellite group, Max Planck institute for Chemistry, Mainz, Germany2) Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China 3) BIRA-IASB, Brussels, Belgium 4) Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece From 2011 to 2014 a MAX-DOAS instrument developed by the Anhui Institute of Optics and Fine Mechanics institute is operated in Wuxi, China, which is locatd about 100 km west of Shanghai. We determine the tropospheric vertical column densities (VCDs), near surface concentrations and vertical profiles of aerosols, NO2, SO2, HCHO from the MAX-DOAS observations using the optimal estimation profile retrieval algorithm (refered to as "PriAM"). We verified the results by comparing them with results from independent techniques, such as sun photometer (AERONET), a visibility meter and a long-path DOAS instrument. We acquire the cloud and aerosol conditions using a cloud classification scheme based on the MAX-DOAS observations (Wang et al., AMTD, 2015). Based on the obtained results, we characterize the effect of the clouds on the trace gas and aerosol profiles retrieved from MAX-DOAS. Then we characterize the diurnal, annual and weekly variations of the trace gases and aerosols and validate the tropospheric trace gas VCDs derived from the Ozone Monitoring instrument (OMI) on the Aura satellite platform as well as the model results from the IMAGES, CHIMERE and Lotos-Euros models and analyse the agreement depending on the cloud and aerosol conditions. Besides the direct comparison with the satellite data, we also use the trace gas and aerosol profiles derived from MAX-DOAS to recalculate the air mass factor (AMF) for the satellite observations and to evaluate the corresponding improvement of the satellite VCDs. In some periods with strong aerosol pollution, we evaluate the effect of the aerosols on the satellite cloud retrievals and the corresponding errors of the tropospheric AMF of the trace gases. Here should be noted that aerosol effects on the AMF is not yet considered in the published satellite products, which can cause appreciable errors of the tropospheric VCD of satellite products around polluted regions.

  16. The influence of aerosols and land-use type on NO2 satellite retrieval over China

    NASA Astrophysics Data System (ADS)

    Liu, Mengyao; Lin, Jintai; Boersma, Folkert; Eskes, Henk; Chimot, Julien

    2017-04-01

    Both aerosols and surface reflectance have a strong influence on the retrieval of NO2 tropospheric vertical column densities (VCDs), especially over China with its heavy aerosol loading and rapid changes in land-use type. However, satellite retrievals of NO2 VCDs usually do not explicitly account for aerosol optical effects and surface reflectance anisotropy (BRDF) that varies in space and time. We develop an improved algorithm to derive tropospheric AMFs and VCDs over China from the OMI instrument - POMINO and DOMINO. This method can also be applied to TropOMI NO2 retrievals in the future. With small pixels of TropOMI and higher probability of encountering clear-sky scenes, the influence of BRDF and aerosol interference becomes more important than for OMI. Daily aerosol information is taken from the GEOS-Chem chemistry transport model and the aerosol optical depth (AOD) is adjusted via MODIS AOD climatology. We take the MODIS MCD43C2 C5 product to account for BRDF effects. The relative altitude of NO2 and aerosols is critical factor influencing the NO2 retrieval. In order to evaluate the aerosol extinction profiles (AEP) of GEOS-Chem improve our algorithm, we compare the GEOS-Chem simulation with CALIOP and develop a CALIOP AEP climatology to regulate the model's AEP. This provides a new way to include aerosol information into the tracer gas retrieval for OMI and TropOMI. Preliminary results indicate that the model performs reasonably well in reproducing the AEP shape. However, it seems to overestimate aerosols under 2km and underestimate above. We find that relative humidity (RH) is an important factor influencing the AEP shape when comparing the model with observations. If we adjust the GEOS-Chem RH to CALIOP's RH, the correlations of their AEPs also improve. Besides, take advantage of our retrieval method, we executed sensitivity tests to analyze their influences on NO2 trend and spatiotemporal variations in retrieval. It' the first time to investigate influence from aerosols and surface reflectance in 10-year period (2005-2015) in the real retrieval. We find their influences are largely time and space dependent, but their effects on trend are small, leading relative 7% differences in different areas.

  17. Multi-satellite sensor study on precipitation-induced emission pulses of NOx from soils in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Veres, Patrick R.; Williams, Jonathan; Wagner, Thomas

    2016-07-01

    We present a top-down approach to infer and quantify rain-induced emission pulses of NOx ( ≡ NO + NO2), stemming from biotic emissions of NO from soils, from satellite-borne measurements of NO2. This is achieved by synchronizing time series at single grid pixels according to the first day of rain after a dry spell of prescribed duration. The full track of the temporal evolution several weeks before and after a rain pulse is retained with daily resolution. These are needed for a sophisticated background correction, which accounts for seasonal variations in the time series and allows for improved quantification of rain-induced soil emissions. The method is applied globally and provides constraints on pulsed soil emissions of NOx in regions where the NOx budget is seasonally dominated by soil emissions. We find strong peaks of enhanced NO2 vertical column densities (VCDs) induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Detailed investigations show that the rain-induced NO2 pulse detected by the OMI (Ozone Monitoring Instrument), GOME-2 and SCIAMACHY satellite instruments could not be explained by other sources, such as biomass burning or lightning, or by retrieval artefacts (e.g. due to clouds). For the Sahel region, absolute enhancements of the NO2 VCDs on the first day of rain based on OMI measurements 2007-2010 are on average 4 × 1014  molec cm-2 and exceed 1 × 1015  molec cm-2 for individual grid cells. Assuming a NOx lifetime of 4 h, this corresponds to soil NOx emissions in the range of 6 up to 65 ng N m-2 s-1, which is in good agreement with literature values. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced (2 × 1014  molec cm-2) compared to the background over the following 2 weeks, suggesting potential further emissions during that period of about 3.3 ng N m-2 s-1. The pulsed emissions contribute about 21-44 % to total soil NOx emissions over the Sahel.

  18. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Astrophysics Data System (ADS)

    Stenger, F. J.

    1982-12-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  19. Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator

    NASA Technical Reports Server (NTRS)

    Stenger, F. J.

    1982-01-01

    The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.

  20. SP-100 GES/NAT radiation shielding systems design and development testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.

    1991-01-10

    Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less

  1. Trend analysis of tropospheric NO2 column density over East Asia during 2000-2010: multi-satellite observations and model simulations with the updated REAS emission inventory

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Irie, H.; Kurokawa, J.; Ohara, T.

    2013-04-01

    Satellite observations of the tropospheric NO2 vertical column density (VCD) are closely correlated to surface NOx emissions and can thus be used to estimate the latter. In this study, the NO2 VCDs simulated by a regional chemical transport model with data from the updated Regional Emission inventory in ASia (REAS) version 2.1 were validated by comparison with multi-satellite observations (GOME, SCIAMACHY, GOME-2, and OMI) between 2000 and 2010. Rapid growth in NO2 VCD driven by expansion of anthropogenic NOx emissions was revealed above the central eastern China region, except during the economic downturn. In contrast, slightly decreasing trends were captured above Japan. The modeled NO2 VCDs using the updated REAS emissions reasonably reproduced the annual trends observed by multi-satellites, suggesting that the NOx emissions growth rate estimated by the updated inventory is robust. On the basis of the close linear relationship of modeled NO2 VCD, observed NO2 VCD, and anthropogenic NOx emissions, the NOx emissions in 2009 and 2010 were estimated. It was estimated that the NOx emissions from anthropogenic sources in China beyond doubled between 2000 and 2010, reflecting the strong growth of anthropogenic emissions in China with the rapid recovery from the economic downturn during late 2008 and mid-2009.

  2. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailedmore » subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)« less

  3. Component Database for the APS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veseli, S.; Arnold, N. D.; Jarosz, D. P.

    The Advanced Photon Source Upgrade (APS-U) project will replace the existing APS storage ring with a multi-bend achromat (MBA) lattice to provide extreme transverse coherence and extreme brightness x-rays to its users. As the time to replace the existing storage ring accelerator is of critical concern, an aggressive one-year removal/installation/testing period is being planned. To aid in the management of the thousands of components to be installed in such a short time, the Component Database (CDB) application is being developed with the purpose to identify, document, track, locate, and organize components in a central database. Three major domains are beingmore » addressed: Component definitions (which together make up an exhaustive "Component Catalog"), Designs (groupings of components to create subsystems), and Component Instances (“Inventory”). Relationships between the major domains offer additional "system knowledge" to be captured that will be leveraged with future tools and applications. It is imperative to provide sub-system engineers with a functional application early in the machine design cycle. Topics discussed in this paper include the initial design and deployment of CDB, as well as future development plans.« less

  4. The 10 micrometer transmitter

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, fabrication tests, and engineering model components of a 10.6 mum wideband transceiver system are reported. The effort emphasized the transmitter subsystem, including the development of the laser, the modulator driver, and included productization of both the transmitter and local oscillator lasers. The transmitter subsystem is functionally compatible with the receiver engineering model terminal, and has undergone high data rate communication system testing against that terminal.

  5. Implementation of the Ohio College Library Center's Proposed Serials Control Subsystem at the University of South Florida Library: Some Preliminary Considerations.

    ERIC Educational Resources Information Center

    Twitchell, Anne; Sprehn, Mary

    An evaluation of the Ohio College Library Center's (OCLC) proposed Serials Control Subsystem was undertaken to determine what effect the system would have on the operation of the Serials Department at the University of South Florida (USF) Library. The system would consist of three components: 1) claiming--identifying missing issues and generating…

  6. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  7. Preprototype nitrogen supply subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Fort, J. H.; Schubert, F. H.

    1982-01-01

    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size.

  8. Photovoltaic power conditioning subsystem: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-01

    Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  9. Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; O'Callahan, John

    2009-01-01

    Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.

  10. Hydraulic elements in reduction of vibrations in mechanical systems

    NASA Astrophysics Data System (ADS)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  11. Principal Components Analysis of a JWST NIRSpec Detector Subsystem

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting; hide

    2013-01-01

    We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements

  12. Subsystem Hazard Analysis Methodology for the Ares I Upper Stage Source Controlled Items

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael S.; Winner, David R.

    2010-01-01

    This article describes processes involved in developing subsystem hazard analyses for Source Controlled Items (SCI), specific components, sub-assemblies, and/or piece parts, of the NASA ARES I Upper Stage (US) project. SCIs will be designed, developed and /or procured by Boeing as an end item or an off-the-shelf item. Objectives include explaining the methodology, tools, stakeholders and products involved in development of these hazard analyses. Progress made and further challenges in identifying potential subsystem hazards are also provided in an effort to assist the System Safety community in understanding one part of the ARES I Upper Stage project.

  13. Characterization of a low concentrator photovoltaics module

    NASA Astrophysics Data System (ADS)

    Butler, B. A.; van Dyk, E. E.; Vorster, F. J.; Okullo, W.; Munji, M. K.; Booysen, P.

    2012-05-01

    Low concentration photovoltaic (LCPV) systems have the potential to reduce the cost per kWh of electricity compared to conventional flat-plate photovoltaics (PV) by up to 50%. The cost-savings are realised by replacing expensive PV cells with relatively cheaper optical components to concentrate incident solar irradiance onto a receiver and by tracking the sun along either 1 axis or 2 axes. A LCPV module consists of three interrelated subsystems, viz., the optical, electrical and the thermal subsystems, which must be considered for optimal module design and performance. Successful integration of these subsystems requires the balancing of cost, performance and reliability. In this study LCPV experimental prototype modules were designed, built and evaluated with respect to optimisation of the three subsystems and overall performance. This paper reports on the optical and electrical evaluation of a prototype LCPV module.

  14. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  15. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  16. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Moser, R. L.; Veatch, M.

    1983-01-01

    Generic power-system elements and their potential faults are identified. Automation functions and their resulting benefits are defined and automation functions between power subsystem, central spacecraft computer, and ground flight-support personnel are partitioned. All automation activities were categorized as data handling, monitoring, routine control, fault handling, planning and operations, or anomaly handling. Incorporation of all these classes of tasks, except for anomaly handling, in power subsystem hardware and software was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are long mission lifetime, modular growth, high-performance flexibility, a need to accommodate different electrical user-load equipment, onorbit assembly/maintenance/servicing, and potentially large number of power subsystem components. A significant effort in algorithm development and validation is essential in meeting the 1987 technology readiness date for the space station.

  17. Electrochemical carbon dioxide concentrator subsystem development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Heppner, D. B.; Bunnell, C. T.

    1986-01-01

    The most promising concept for a regenerative CO2 removal system for long duration manned space flight is the Electrochemical CO2 Concentrator (EDC), which allows for the continuous, efficient removal of CO2 from the spacecraft cabin. This study addresses the advancement of the EDC system by generating subsystem and ancillary component reliability data through extensive endurance testing and developing related hardware components such as electrochemical module lightweight end plates, electrochemical module improved isolation valves, an improved air/liquid heat exchanger and a triple redundant relative humidity sensor. Efforts included fabrication and testing the EDC with a Sabatier CO2 Reduction Reactor and generation of data necessary for integration of the EDC into a space station air revitalization system. The results verified the high level of performance, reliability and durability of the EDC subsystem and ancillary hardware, verified the high efficiency of the Sabatier CO2 Reduction Reactor, and increased the overall EDC technology engineering data base. The study concluded that the EDC system is approaching the hardware maturity levels required for space station deployment.

  18. Visuospatial deficits in schizophrenia: central executive and memory subsystems impairments.

    PubMed

    Leiderman, Eduardo A; Strejilevich, Sergio A

    2004-06-01

    Object and spatial visual working memory are impaired in schizophrenic patients. It is not clear if the impairments reside in each memory subsystem alone or also in the central executive component that coordinates these processes. In order to elucidate which memory component is impaired, we developed a paradigm with single spatial and object working memory tasks and dual ones with two different delays (5 and 30 s). Fifteen schizophrenic patients and 14 control subjects performed these tests. Schizophrenic patients had a poorer performance compared to normal controls in all tasks and in all time delays. Both schizophrenics and controls performed significantly worse in the object task than in the spatial task. The performance was even worse in the dual task compared to the singles ones in schizophrenic patients but not in controls. These data suggest that visuospatial performance deficits in schizophrenia are due to both visuospatial memory subsystems impairments and central executive ones. The pattern of deficits observed points to a codification or evocation deficit and not to a maintenance one.

  19. Evolution of the 1-mlb mercury ion thruster subsystem

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Banks, B. A.

    1978-01-01

    The developmental history, performance, and major lifetests of each component of the present 1-mlb (4.5 mN) thruster system are traced over the past 10 years. The 1-mlb thruster subsystem consists of an 8 cm diameter ion thruster mounted on 2 axis gimbals, a mercury propellant tank, a power electronics unit, a controller/digital interface unit, and necessary electrical harnesses plus propellant tankage and feed lines.

  20. RF subsystem design for microwave communication receivers

    NASA Astrophysics Data System (ADS)

    Bickford, W. J.; Brodsky, W. G.

    A system review of the RF subsystems of (IFF) transponders, tropscatter receivers and SATCOM receivers is presented. The quantity potential for S-band and X-band IFF transponders establishes a baseline requirement. From this, the feasibility of a common design for these and other receivers is evaluated. Goals are established for a GaAs MMIC (monolithic microwave integrated circuit) device and related local oscillator preselector and self-test components.

  1. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the mechanical/structural assembly of the beam builder is reported. The following structures were investigated: cross brace magazine/dispenser subsystem; and rolling mill supply reel, guide, and drive. The fabrication facility design and a detail design of all major subsystem components are discussed. The number of spot welds per structural joint were reduced which enables the doubling of length of truss which can be produced within known electrode life limits.

  2. The Bio-Logic and machinery of plant morphogenesis.

    PubMed

    Niklas, Karl J

    2003-04-01

    Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.

  3. Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater

    NASA Technical Reports Server (NTRS)

    Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.

    1979-01-01

    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.

  4. Integration of functional safety systems on the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Williams, Timothy R.; Hubbard, Robert P.; Shimko, Steve

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) was envisioned from an early stage to incorporate a functional safety system to ensure the safety of personnel and equipment within the facility. Early hazard analysis showed the need for a functional safety system. The design used a distributed approach in which each major subsystem contains a PLC-based safety controller. This PLC-based system complies with the latest international standards for functional safety. The use of a programmable controller also allows for flexibility to incorporate changes in the design of subsystems without adversely impacting safety. Various subsystems were built by different contractors and project partners but had to function as a piece of the overall control system. Using distributed controllers allows project contractors and partners to build components as standalone subsystems that then need to be integrated into the overall functional safety system. Recently factory testing was concluded on the major subsystems of the facility. Final integration of these subsystems is currently underway on the site. Building on lessons learned in early factory tests, changes to the interface between subsystems were made to improve the speed and ease of integration of the entire system. Because of the distributed design each subsystem can be brought online as it is delivered and assembled rather than waiting until the entire facility is finished. This enhances safety during the risky period of integration and testing. The DKIST has implemented a functional safety system that has allowed construction of subsystems in geographically diverse locations but that function cohesively once they are integrated into the facility currently under construction.

  5. Statistical Design Model (SDM) of satellite thermal control subsystem

    NASA Astrophysics Data System (ADS)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  6. Development of Testing Station for Prototype Rover Thermal Subsystem

    NASA Technical Reports Server (NTRS)

    Burlingame, Kaitlin

    2010-01-01

    In order to successfully and efficiently explore the moon or other planets, a vehicle must be built to assist astronauts as they travel across the surface. One concept created to meet this need is NASA's Space Exploration Vehicle (SEV). The SEV, a small pressurized cabin integrated onto a 12-wheeled chassis, can support two astronauts up to 14 days. Engineers are currently developing the second generation of the SEV, with the goal of being faster, more robust, and able to carry a heavier payload. In order to function properly, the rover must dissipate heat produced during operation and maintain an appropriate temperature profile inside the rover. If these activities do not occur, components of the rover will start to break down, eventually leading to the failure of the rover. On the rover, these requirements are the responsibility of the thermal subsystem. My project for the summer was to design and build a testing station to facilitate the design and testing of the new thermal subsystem. As the rover develops, initial low fidelity parts can be interchanged for the high fidelity parts used on the rover. Based on a schematic of the proposed thermal system, I sized and selected parts for each of the components in the thermal subsystem. For the components in the system that produced heat but had not yet been finalized or fabricated, I used power resistors to model their load patterns. I also selected all of the fittings to put the system together and a mounting platform to support the testing station. Finally, I implemented sensors at various points in the system to measure the temperature, pressure, and flow rate, and a data acquisition system to collect this information. In the future, the information from these sensors will be used to study the behavior of the subsystem under different conditions and select the best part for the rover.

  7. Evaluating the potential for secondary mass savings in vehicle lightweighting.

    PubMed

    Alonso, Elisa; Lee, Theresa M; Bjelkengren, Catarina; Roth, Richard; Kirchain, Randolph E

    2012-03-06

    Secondary mass savings are mass reductions that may be achieved in supporting (load-bearing) vehicle parts when the gross vehicle mass (GVM) is reduced. Mass decompounding is the process by which it is possible to identify further reductions when secondary mass savings result in further reduction of GVM. Maximizing secondary mass savings (SMS) is a key tool for maximizing vehicle fuel economy. In today's industry, the most complex parts, which require significant design detail (and cost), are designed first and frozen while the rest of the development process progresses. This paper presents a tool for estimating SMS potential early in the design process and shows how use of the tool to set SMS targets early, before subsystems become locked in, maximizes mass savings. The potential for SMS in current passenger vehicles is estimated with an empirical model using engineering analysis of vehicle components to determine mass-dependency. Identified mass-dependent components are grouped into subsystems, and linear regression is performed on subsystem mass as a function of GVM. A Monte Carlo simulation is performed to determine the mean and 5th and 95th percentiles for the SMS potential per kilogram of primary mass saved. The model projects that the mean theoretical secondary mass savings potential is 0.95 kg for every 1 kg of primary mass saved, with the 5th percentile at 0.77 kg/kg when all components are available for redesign. The model was used to explore an alternative scenario where realistic manufacturing and design limitations were implemented. In this case study, four key subsystems (of 13 total) were locked-in and this reduced the SMS potential to a mean of 0.12 kg/kg with a 5th percentile of 0.1 kg/kg. Clearly, to maximize the impact of mass reduction, targets need to be established before subsystems become locked in.

  8. A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH Robo-AO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Reed L.; Bui, Khanh; Dekany, Richard G.

    2015-01-20

    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the Sloan Digital Sky Survey i' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 10'' to quantify the still poorly constrained frequency of their subsystems. Of the 214 secondaries observed, 39 containmore » such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary subsystems with periods from 10{sup 3.5} to 10{sup 5} days is 0.12 ± 0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of subsystems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100 yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a subsample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10{sup 6} to 10{sup 7.5} days (separations on the order of 500 AU), the frequency of tertiary components is 0.16 ± 0.03, exceeding the frequency of similar systems among all targets (0.09) by almost a factor of two. Measurements of binary stars with Robo-AO allowed us to compute first orbits for 9 pairs and to improve orbits of another 11 pairs.« less

  9. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  10. Advanced Ground Systems Maintenance Prognostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project implements prognostics capabilities to predict when a component, system or subsystem will no longer meet desired functional or performance criteria, called the "end of life." The capability also provides an assessment of the "remaining useful life" of a hardware component.

  11. A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Carney, R. R.

    1983-01-01

    A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.

  12. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  13. On-orbit experience with the HEAO attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Hoffman, D. P.; Berkery, E. A.

    1978-01-01

    The first satellite (HEAO-1) in the High Energy Astronomy Observatory Program series was launched successfully on Aug. 12, 1977. To date it has completed over nine months of orbital operation in a science data gathering mode. During this period all attitude control modes have been exercised and all primary mission objectives have been achieved. This paper highlights the characteristics of the attitude control subsystem design and compares the predicted performance with the actual flight operations experience. Environmental disturbance modeling, component hardware/software characteristics, and overall attitude control performance are reviewed and are found to compare very well with the prelaunch analytical predictions. Brief comments are also included regarding the operations aspects of the attitude control subsystem. The experience in this regard demonstrates the effectiveness of the design flexibility afforded by the presence of a general purpose digital processor in the subsystem flight hardware implementation.

  14. Decomposition-aggregation stability analysis. [for large scale dynamic systems with application to spinning Skylab control system

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Weissenberger, S.; Cuk, S. M.

    1973-01-01

    This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.

  15. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  16. Shuttle cryogenic supply system optimization study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Technical information on different cryogenic supply systems is presented for selecting representative designs. Parametric data and sensitivity studies, and an evaluation of related technology status are included. An integrated mathematical model for hardware program support was developed. The life support system, power generation, and propellant supply are considered. The major study conclusions are the following: Optimum integrated systems tend towards maximizing liquid storage. Vacuum jacketing of tanks is a major effect on integrated systems. Subcritical storage advantages over supercritical storage decrease as the quantity of propellant or reactant decreases. Shuttle duty cycles are not severe. The operational mode has a significant effect on reliability. Components are available for most subsystem applications. Subsystems and components require a minimum amount of technology development.

  17. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, within a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability, and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation, testing results, and other information. Where appropriate, actual performance history was used to calculate failure rates for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to assess compliance with requirements and to highlight design or performance shortcomings for further decision making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability, and maintainability analysis, and present findings and observation based on analysis leading to the Ground Operations Project Preliminary Design Review milestone.

  18. Hierarchical modeling for reliability analysis using Markov models. B.S./M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Fagundo, Arturo

    1994-01-01

    Markov models represent an extremely attractive tool for the reliability analysis of many systems. However, Markov model state space grows exponentially with the number of components in a given system. Thus, for very large systems Markov modeling techniques alone become intractable in both memory and CPU time. Often a particular subsystem can be found within some larger system where the dependence of the larger system on the subsystem is of a particularly simple form. This simple dependence can be used to decompose such a system into one or more subsystems. A hierarchical technique is presented which can be used to evaluate these subsystems in such a way that their reliabilities can be combined to obtain the reliability for the full system. This hierarchical approach is unique in that it allows the subsystem model to pass multiple aggregate state information to the higher level model, allowing more general systems to be evaluated. Guidelines are developed to assist in the system decomposition. An appropriate method for determining subsystem reliability is also developed. This method gives rise to some interesting numerical issues. Numerical error due to roundoff and integration are discussed at length. Once a decomposition is chosen, the remaining analysis is straightforward but tedious. However, an approach is developed for simplifying the recombination of subsystem reliabilities. Finally, a real world system is used to illustrate the use of this technique in a more practical context.

  19. Quaternary pulse position modulation electronics for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.

    1991-01-01

    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (GPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.

  20. Quaternary pulse position modulation electronics for free-space laser communications

    NASA Technical Reports Server (NTRS)

    Budinger, J. M.; Kerslake, S. D.; Nagy, L. A.; Shalkhauser, M. J.; Soni, N. J.; Cauley, M. A.; Mohamed, J. H.; Stover, J. B.; Romanofsky, R. R.; Lizanich, P. J.

    1991-01-01

    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented.

  1. ESIM_DSN Web-Enabled Distributed Simulation Network

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth; Novotny, John

    2002-01-01

    In this paper, the eSim(sup DSN) approach to achieve distributed simulation capability using the Internet is presented. With this approach a complete simulation can be assembled from component subsystems that run on different computers. The subsystems interact with each other via the Internet The distributed simulation uses a hub-and-spoke type network topology. It provides the ability to dynamically link simulation subsystem models to different computers as well as the ability to assign a particular model to each computer. A proof-of-concept demonstrator is also presented. The eSim(sup DSN) demonstrator can be accessed at http://www.jsc.draper.com/esim which hosts various examples of Web enabled simulations.

  2. Development of an advanced Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Cusick, R. J.

    1981-01-01

    A preprototype Sabatier CO2 reduction subsystem was successfully designed, fabricated and tested. The lightweight, quick starting (less than 5 minutes) reactor utlizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a simple, passively controlled reactor design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with process flows equivalent to a crew size of up to five persons. The subsystem requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation.

  3. Apollo experience report: Launch escape propulsion subsystem

    NASA Technical Reports Server (NTRS)

    Townsend, N. A.

    1973-01-01

    The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.

  4. Tropospheric Nitrogen Dioxide Column Density Trends Seen from the 10-year Record of OMI Measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Irie, H.; Muto, T.; Itahashi, S.; Kurokawa, J. I.

    2015-12-01

    The Ozone Monitoring Instrument (OMI) aboard the Aura satellite recorded the 10-year (2005-2014) of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data. The data set taken over East Asia was analyzed to estimate linear trends on national and grid bases for two periods of 2005-2011 and 2011-2014. The most striking features are leveling-off or decreasing trends seen in NO2 VCDs over China for 2011-2014 after continuous increases for 2005-2011. In particular, a significant reduction by ~14% occurred from 2013 through 2014, attaining to the level of 2009. The grid-basis trend analysis implies that the turnaround seen in the trends occurred on a province or larger spatial scale and was likely due mainly to the technical improvement such as the widespread use of de-NOx units. Another prominent features are seen in Japan, where NO2 VCDs decreased at a rate of ~4% per year from 2005 to 2011. The rate was almost unchanged between the two periods 2005-2011 and 2011-2014, while the significant power substitution of thermal power generation for the nuclear power generation took place in Japan after 2011, when a massive earthquake occurred off the Pacific coast of northern Japan. This reflects a less contribution of NOx emissions from the power plant sector than that from the transport sector in the Pacific Belt Zone lying over metropolitan areas.

  5. MERRA Analytic Services

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; McInerney, M. A.; Tamkin, G. S.; Thompson, J. H.; Gill, R.; Grieg, C. M.

    2012-12-01

    MERRA Analytic Services (MERRA/AS) is a cyberinfrastructure resource for developing and evaluating a new generation of climate data analysis capabilities. MERRA/AS supports OBS4MIP activities by reducing the time spent in the preparation of Modern Era Retrospective-Analysis for Research and Applications (MERRA) data used in data-model intercomparison. It also provides a testbed for experimental development of high-performance analytics. MERRA/AS is a cloud-based service built around the Virtual Climate Data Server (vCDS) technology that is currently used by the NASA Center for Climate Simulation (NCCS) to deliver Intergovernmental Panel on Climate Change (IPCC) data to the Earth System Grid Federation (ESGF). Crucial to its effectiveness, MERRA/AS's servers will use a workflow-generated realizable object capability to perform analyses over the MERRA data using the MapReduce approach to parallel storage-based computation. The results produced by these operations will be stored by the vCDS, which will also be able to host code sets for those who wish to explore the use of MapReduce for more advanced analytics. While the work described here will focus on the MERRA collection, these technologies can be used to publish other reanalysis, observational, and ancillary OBS4MIP data to ESGF and, importantly, offer an architectural approach to climate data services that can be generalized to applications and customers beyond the traditional climate research community. In this presentation, we describe our approach, experiences, lessons learned,and plans for the future.; (A) MERRA/AS software stack. (B) Example MERRA/AS interfaces.

  6. Systems Modeling to Implement Integrated System Health Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John

    2007-01-01

    ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close, touching the same common element, etc.). The context might be defined dynamically (if conditions for the context appear and disappear dynamically) or statically. Although this approach is akin to case-based reasoning, we are implementing it using a software environment that embodies tools to define and manage relationships (of any nature) among objects in a very intuitive manner. Context for higher level inferences (that use detected anomalies or events), primarily for diagnosis and prognosis, are related to causal relationships. This is useful to develop root-cause analysis trees showing an event linked to its possible causes and effects. The innovation pertaining to RCA trees encompasses use of previously defined subsystems as well as individual elements in the tree. This approach allows more powerful implementations of RCA capability in object-oriented environments. For example, if a pressurizable subsystem is leaking, its root-cause representation within an RCA tree will show that the cause is that all elements of that subsystem are suspect of leak. Such a tree would apply to all instances of leak-events detected and all elements in all pressurizable subsystems in the system. Example subsystems in our environment to build IMS include: Pressurizable Subsystem, Fluid-Fill Subsystem, Flow-Thru-Valve Subsystem, and Fluid Supply Subsystem. The software environment for IMS is designed to potentially allow definition of any relationship suitable to create a context to achieve ISHM capability.

  7. Reliability models applicable to space telescope solar array assembly system

    NASA Technical Reports Server (NTRS)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  8. Software Testbed for Developing and Evaluating Integrated Autonomous Subsystems

    NASA Technical Reports Server (NTRS)

    Ong, James; Remolina, Emilio; Prompt, Axel; Robinson, Peter; Sweet, Adam; Nishikawa, David

    2015-01-01

    To implement fault tolerant autonomy in future space systems, it will be necessary to integrate planning, adaptive control, and state estimation subsystems. However, integrating these subsystems is difficult, time-consuming, and error-prone. This paper describes Intelliface/ADAPT, a software testbed that helps researchers develop and test alternative strategies for integrating planning, execution, and diagnosis subsystems more quickly and easily. The testbed's architecture, graphical data displays, and implementations of the integrated subsystems support easy plug and play of alternate components to support research and development in fault-tolerant control of autonomous vehicles and operations support systems. Intelliface/ADAPT controls NASA's Advanced Diagnostics and Prognostics Testbed (ADAPT), which comprises batteries, electrical loads (fans, pumps, and lights), relays, circuit breakers, invertors, and sensors. During plan execution, an experimentor can inject faults into the ADAPT testbed by tripping circuit breakers, changing fan speed settings, and closing valves to restrict fluid flow. The diagnostic subsystem, based on NASA's Hybrid Diagnosis Engine (HyDE), detects and isolates these faults to determine the new state of the plant, ADAPT. Intelliface/ADAPT then updates its model of the ADAPT system's resources and determines whether the current plan can be executed using the reduced resources. If not, the planning subsystem generates a new plan that reschedules tasks, reconfigures ADAPT, and reassigns the use of ADAPT resources as needed to work around the fault. The resource model, planning domain model, and planning goals are expressed using NASA's Action Notation Modeling Language (ANML). Parts of the ANML model are generated automatically, and other parts are constructed by hand using the Planning Model Integrated Development Environment, a visual Eclipse-based IDE that accelerates ANML model development. Because native ANML planners are currently under development and not yet sufficiently capable, the ANML model is translated into the New Domain Definition Language (NDDL) and sent to NASA's EUROPA planning system for plan generation. The adaptive controller executes the new plan, using augmented, hierarchical finite state machines to select and sequence actions based on the state of the ADAPT system. Real-time sensor data, commands, and plans are displayed in information-dense arrays of timelines and graphs that zoom and scroll in unison. A dynamic schematic display uses color to show the real-time fault state and utilization of the system components and resources. An execution manager coordinates the activities of the other subsystems. The subsystems are integrated using the Internet Communications Engine (ICE). an object-oriented toolkit for building distributed applications.

  9. High-resolution mapping of the NO2 spatial distribution over Belgian urban areas based on airborne APEX remote sensing

    NASA Astrophysics Data System (ADS)

    Tack, Frederik; Merlaud, Alexis; Iordache, Marian-Daniel; Danckaert, Thomas; Yu, Huan; Fayt, Caroline; Meuleman, Koen; Deutsch, Felix; Fierens, Frans; Van Roozendael, Michel

    2017-05-01

    We present retrieval results of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs), mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager characterised by a high spatial resolution and high spectral performance. APEX data have been acquired under clear-sky conditions over the two largest and most heavily polluted Belgian cities, i.e. Antwerp and Brussels on 15 April and 30 June 2015. Additionally, a number of background sites have been covered for the reference spectra. The APEX instrument was mounted in a Dornier DO-228 aeroplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). NO2 VCDs were retrieved from spatially aggregated radiance spectra allowing urban plumes to be resolved at the resolution of 60 × 80 m2. The main sources in the Antwerp area appear to be related to the (petro)chemical industry while traffic-related emissions dominate in Brussels. The NO2 levels observed in Antwerp range between 3 and 35 × 1015 molec cm-2, with a mean VCD of 17.4 ± 3.7 × 1015 molec cm-2. In the Brussels area, smaller levels are found, ranging between 1 and 20 × 1015 molec cm-2 and a mean VCD of 7.7 ± 2.1 × 1015 molec cm-2. The overall errors on the retrieved NO2 VCDs are on average 21 and 28 % for the Antwerp and Brussels data sets. Low VCD retrievals are mainly limited by noise (1σ slant error), while high retrievals are mainly limited by systematic errors. Compared to coincident car mobile-DOAS measurements taken in Antwerp and Brussels, both data sets are in good agreement with correlation coefficients around 0.85 and slopes close to unity. APEX retrievals tend to be, on average, 12 and 6 % higher for Antwerp and Brussels, respectively. Results demonstrate that the NO2 distribution in an urban environment, and its fine-scale variability, can be mapped accurately with high spatial resolution and in a relatively short time frame, and the contributing emission sources can be resolved. High-resolution quantitative information about the atmospheric NO2 horizontal variability is currently rare, but can be very valuable for (air quality) studies at the urban scale.

  10. Design criteria monograph on turbopump systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Turbopump assembly for modern liquid propellant rocket engine is complete system in itself. It consists of many components, some of which are themselves subsystems. Monograph deals with turbopump as system, covering selection of proper system type for each application and integration of components into working system.

  11. A Status of the Advanced Space Transportation Program from Planning to Action

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and dramatically reduce the propellant and structural mass of orbit transfer and deep space systems. Flight demonstration of ion propulsion is progressing towards launch. Ion propulsion is the primary propulsion for Deep Space 1; a flyby of comet West-kohoutek-lkemura and asteroid 3352 McAuliffe. Testing of critical solar-thermal propulsion subsystems have been accomplished and planning is continuing for the flight demonstration of an electrodynamic tether orbit transfer system. The forth and final element of the program, Space Transportation Research, has progressed in several areas of propulsion research. This element of the program is focused at long-term (25 years) breakthrough concepts that could bring launch costs to a factor of one hundred below today's cost or dramatically expand planetary travel and enable interstellar travel.

  12. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  13. AEOSS design guide for system analysis on Advanced Earth-Orbital Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Lee, Hwa-Ping

    1990-01-01

    Advanced Earth Orbital Spacecraft System (AEOSS) enables users to project the requried power, weight, and cost for a generic earth-orbital spacecraft system. These variables are calculated on the component and subsystem levels, and then the system level. The included six subsystems are electric power, thermal control, structure, auxillary propulsion, attitude control, and communication, command, and data handling. The costs are computed using statistically determined models that were derived from the flown spacecraft in the past and were categorized into classes according to their functions and structural complexity. Selected design and performance analyses for essential components and subsystems are also provided. AEOSS has the feature permitting a user to enter known values of these parameters, totally and partially, at all levels. All information is of vital importance to project managers of subsystems or a spacecraft system. AEOSS is a specially tailored software coded from the relational database program of the Acius; 4th Dimension with a Macintosh version. Because of the licensing agreement, two versions of the AEOSS documents were prepared. This version AEOSS Design Guide, is for users to exploit the full capacity of the 4th Dimension. It is for a user who wants to alter or expand the program structures, the program statements, and the program procedures. The user has to possess a 4th Dimension first.

  14. Flow Analysis of a Gas Turbine Low- Pressure Subsystem

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.

  15. NPS alternate techsat satellite, design project for AE-4871

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This project was completed as part of AE-4871, Advanced Spacecraft Design. The intent of the course is to provide experience in the design of all the major components in a spacecraft system. Team members were given responsibility for the design of one of the six primary subsystems: power, structures, propulsion, attitude control, telemetry, tracking and control (TT&C), and thermal control. In addition, a single member worked on configuration control, launch vehicle integration, and a spacecraft test plan. Given an eleven week time constraint, a preliminary design of each subsystem was completed. Where possible, possible component selections were also made. Assistance for this project came principally from the Naval Research Laboratory's Spacecraft Technology Branch. Specific information on components was solicited from representatives in industry. The design project centers on a general purpose satellite bus that is currently being sought by the Strategic Defense Initiative.

  16. ATLAS Eventlndex monitoring system using the Kibana analytics and visualization platform

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Favareto, A.; Fernandez Casani, A.; Gallas, E. J.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Hrivnac, J.; Malon, D.; Prokoshin, F.; Salt, J.; Sanchez, J.; Toebbicke, R.; Yuan, R.; ATLAS Collaboration

    2016-10-01

    The ATLAS EventIndex is a data catalogue system that stores event-related metadata for all (real and simulated) ATLAS events, on all processing stages. As it consists of different components that depend on other applications (such as distributed storage, and different sources of information) we need to monitor the conditions of many heterogeneous subsystems, to make sure everything is working correctly. This paper describes how we gather information about the EventIndex components and related subsystems: the Producer-Consumer architecture for data collection, health parameters from the servers that run EventIndex components, EventIndex web interface status, and the Hadoop infrastructure that stores EventIndex data. This information is collected, processed, and then displayed using CERN service monitoring software based on the Kibana analytic and visualization package, provided by CERN IT Department. EventIndex monitoring is used both by the EventIndex team and ATLAS Distributed Computing shifts crew.

  17. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach.

    PubMed

    Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek

    2014-11-01

    This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1991-01-01

    The design of a biomass management system (BMS) for use in a closed loop support system is presented by University of Florida students as the culmination of two design courses. The report is divided into two appendixes, each presenting the results of one of the design courses. The first appendix discusses the preliminary design of the biomass management system and is subdivided into five subsystems: (1) planting and harvesting, (2) food management, (3) resource recovery, (4) refurbishing, and (5) transport. Each subsystem is investigated for possible solutions to problems, and recommendations and conclusions for an integrated BMS are discussed. The second appendix discusses the specific design of components for the BMS and is divided into three sections: (1) a sectored plant growth unit with support systems, (2) a container and receiving mechanism, and (3) an air curtain system for fugitive particle control. In this section components are designed, fabricated, and tested.

  19. Advanced Electrical Materials and Components Development: An Update

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  20. Subsystem Details for the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.

    2004-01-01

    This document provides values at the assembly level for the subsystems described in the Fiscal Year 2004 Advanced Life Support Research and Technology Development Metric (Hanford, 2004). Hanford (2004) summarizes the subordinate computational values for the Advanced Life Support Research and Technology Development (ALS R&TD) Metric at the subsystem level, while this manuscript provides a summary at the assembly level. Hanford (2004) lists mass, volume, power, cooling, and crewtime for each mission examined by the ALS R&TD Metric according to the nominal organization for the Advanced Life Support (ALS) elements. The values in the tables below, Table 2.1 through Table 2.8, list the assemblies, using the organization and names within the Advanced Life Support Sizing Analysis Tool (ALSSAT) for each ALS element. These tables specifically detail mass, volume, power, cooling, and crewtime. Additionally, mass and volume are designated in terms of values associated with initial hardware and resupplied hardware just as they are within ALSSAT. The overall subsystem values are listed on the line following each subsystem entry. These values are consistent with those reported in Hanford (2004) for each listed mission. Any deviations between these values and those in Hanford (2004) arise from differences in when individual numerical values are rounded within each report, and therefore the resulting minor differences should not concern even a careful reader. Hanford (2004) u es the uni ts kW(sub e) and kW(sub th) for power and cooling, respectively, while the nomenclature below uses W(sub e) and W(sub th), which is consistent with the native units within ALSSAT. The assemblies, as specified within ALSSAT, are listed in bold below their respective subsystems. When recognizable assembly components are not listed within ALSSAT, a summary of the assembly is provided on the same line as the entry for the assembly. Assemblies with one or more recognizable components are further described by the indented entries below them. See Yeh, et al. (2002), Yeh, et al. (2003), and Yeh, et al. (2004) for details about ALSSAT organization. Except for the dry food mass listed within the Food Processing, Packaging, and Storage within the Food Subsystem, total values for assemblies would be the sum of their components. The Dry Food Mass, however, is that portion of the food system that was neglected during the computation of the Fiscal Year 2004 ALS R&TD Metric. It is listed here to provide a reference, but it is otherwise ignored in the overall totals. See Hanford (2004) for details of this process and supporting rationale. When applicable, the technology label from ALSSAT is listed in the second column, and the associated abbreviations are listed below in Section 4. For more details of the technologies assumed for each mission, please see Hanford (2004) for descriptions of each subsystem and an overall life support system schematic.

  1. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  2. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 2: Domestic hot water systems

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.

    1980-11-01

    The various types of solar domestic hot water systems are discussed including their advantages and disadvantages. The problems that occur in hydronic solar heating systems are reviewed with emphasis on domestic hot water applicatons. System problems in retrofitting of residential buildings are also discussed including structural and space constraints for various components and subsystems. System design parameters include various collector sizing methods, collector orientation, storage capacity and heat loss from pipes and tanks. The installation costs are broken down by components and subsystems. The approach used for utility economic impact analysis is reviewed. The simulation is described, and the results of the economic impact analysis are given. A summary assessment is included.

  3. 10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...

  4. 10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., components, and procedures. 73.46 Section 73.46 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL... Energy couriers engaged in the transport of special nuclear material. The search function for detection... of Energy vehicles engaged in transporting special nuclear material and emergency vehicles under...

  5. Optimizing and Evaluating an Integrated SPECT-CmT System Dedicated to Improved 3-D Breast Cancer Imaging

    DTIC Science & Technology

    2009-05-01

    sagittal slices of a breast cancer patient (42yrs, 68kg) with implant and biopsy clip and various identified tissues . Glandular Adipose Implant...Biopsy Clip 13 volumetric imaging to effectively differentiate between normal glandular, adipose tissue and the artificial implants. It is...impacting the lowered head section. A. SPECT Sub-System The main component of the SPECT sub-system is a compact 16x20cm2 field of view Cadmium - Zinc

  6. Rapid Damage Assessment. Volume II. Development and Testing of Rapid Damage Assessment System.

    DTIC Science & Technology

    1981-02-01

    pixels/s Camera Line Rate 732.4 lines/s Pixels per Line 1728 video 314 blank 4 line number (binary) 2 run number (BCD) 2048 total Pixel Resolution 8 bits...sists of an LSI-ll microprocessor, a VDI -200 video display processor, an FD-2 dual floppy diskette subsystem, an FT-I function key-trackball module...COMPONENT LIST FOR IMAGE PROCESSOR SYSTEM IMAGE PROCESSOR SYSTEM VIEWS I VDI -200 Display Processor Racks, Table FD-2 Dual Floppy Diskette Subsystem FT-l

  7. Addendum: Development of a preprototype times wastewater recovery subsystem

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.

    1984-01-01

    The results of the second generation operational improvements and the TIMES (Thermoelectric Integrated Membrane Evaporation Subsystem) 2 study are covered. Areas covered in the second generation operational improvements are improved temperature control, water quality improvements, subsytem operational improvements, solid handling improvements, wastewater pretreatment optimization, and membrane rejuvenation concepts. The task for the TIMES 2 study are thermoelectric regenerator improvement, recycle loop pH operational criteria, recycle loop component optimization, and hollow fiber membrane evaporator improvement. Results are presented and conclusions are drawn from both studies.

  8. Efficient assembly of finite-element subsystems with large relative rotations. [for rotorcraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Fuh, Jon-Shen; Panda, Brahmananda; Peters, David A.

    1988-01-01

    A finite element approach is presented for the modeling of rotorcraft undergoing elastic deformation in addition to large rigid body motion with respect to inertial space, with particular attention given to the coupling of the rotor and fuselage subsystems subject to large relative rotations. The component synthesis technique used here allows the coupling of rotors to the fuselage for different rotorcraft configurations. The formulation is general and applicable to any rotorcraft vibration, aeroelasticity, and dynamics problem.

  9. Energy storage and thermal control system design status

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Vanommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for and the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation and storage is described.

  10. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  11. Operation of high power converters in parallel

    NASA Technical Reports Server (NTRS)

    Decker, D. K.; Inouye, L. Y.

    1993-01-01

    High power converters that are used in space power subsystems are limited in power handling capability due to component and thermal limitations. For applications, such as Space Station Freedom, where multi-kilowatts of power must be delivered to user loads, parallel operation of converters becomes an attractive option when considering overall power subsystem topologies. TRW developed three different unequal power sharing approaches for parallel operation of converters. These approaches, known as droop, master-slave, and proportional adjustment, are discussed and test results are presented.

  12. Multiple sensor smart robot hand with force control

    NASA Technical Reports Server (NTRS)

    Killion, Richard R.; Robinson, Lee R.; Bejczy, Antal

    1987-01-01

    A smart robot hand developed at JPL for the Protoflight Manipulator Arm (PFMA) is described. The development of this smart hand was based on an integrated design and subsystem architecture by considering mechanism, electronics, sensing, control, display, and operator interface in an integrated design approach. The mechanical details of this smart hand and the overall subsystem are described elsewhere. The sensing and electronics components of the JPL/PFMA smart hand are summarized and it is described in some detail in control capabilities.

  13. A preliminary investigation of the Environmental Control and Life Support Subsystem (EC/LSS) for the space construction base manufacturing modules

    NASA Technical Reports Server (NTRS)

    Wells, H. B.

    1977-01-01

    The preliminary data of the environmental control and life support subsystem for a space construction base manufacturing module was reported. A space processing module, which is capable of performing production biological experiments, was chosen as a baseline configuration. The primary assemblies and components considered for use were humidity and temperature control, ventilation fan, cabin fan, water separator, condensate storage, overboard dumping, distribution system, contaminant monitoring, cabin sensors, and fire and smoke detection.

  14. Neuropsychological Components of Imagery Processing, Final Technical Report.

    ERIC Educational Resources Information Center

    Kosslyn, Stephen M.

    High-level visual processes make use of stored information, and are invoked during object identification, navigation, tracking, and visual mental imagery. The work presented in this document has resulted in a theory of the component "processing subsystems" used in high-level vision. This theory was developed by considering…

  15. Development status of the small community solar power system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.

    1982-01-01

    The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.

  16. Space shuttle atmospheric revitalization subsystem/active thermal control subsystem computer program (users manual)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A shuttle (ARS) atmosphere revitalization subsystem active thermal control subsystem (ATCS) performance routine was developed. This computer program is adapted from the Shuttle EC/LSS Design Computer Program. The program was upgraded in three noteworthy areas: (1) The functional ARS/ATCS schematic has been revised to accurately synthesize the shuttle baseline system definition. (2) The program logic has been improved to provide a more accurate prediction of the integrated ARS/ATCS system performance. Additionally, the logic has been expanded to model all components and thermal loads in the ARS/ATCS system. (3) The program is designed to be used on the NASA JSC crew system division's programmable calculator system. As written the new computer routine has an average running time of five minutes. The use of desk top type calculation equipment, and the rapid response of the program provides the NASA with an analytical tool for trade studies to refine the system definition, and for test support of the RSECS or integrated Shuttle ARS/ATCS test programs.

  17. Investigation of Techniques for Simulating Communications and Tracking Subsystems on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1991-01-01

    The need to reduce the costs of Space Station Freedom has resulted in a major redesign and downsizing of the Station in general, and its Communications and Tracking (C&T) components in particular. Earlier models and simulations of the C&T Space-to-Ground Subsystem (SGS) in particular are no longer valid. There thus exists a general need for updated, high fidelity simulations of C&T subsystems. This project explored simulation techniques and methods that might be used in developing new simulations of C&T subsystems, including the SGS. Three requirements were placed on the simulations to be developed: (1) they run on IBM PC/XT/AT compatible computers; (2) they be written in Ada as much as possible; and (3) since control and monitoring of the C&T subsystems will involve communication via a MIL-STD-1553B serial bus, that the possibility of commanding the simulator and monitoring its sensors via that bus be included in the design of the simulator. The result of the project is a prototype of a simulation of the Assembly/Contingency Transponder of the SGS, written in Ada, which can be controlled from another PC via a MIL-STD-1553B bus.

  18. Lightning testing at the subsystem level

    NASA Technical Reports Server (NTRS)

    Luteran, Frank

    1991-01-01

    Testing at the subsystem or black box level for lightning hardness is required if system hardness is to be assured at the system level. The often applied philosophy of lighting testing only at the system level leads to extensive end of the line design changes which result in excessive costs and time delays. In order to perform testing at the subsystem level two important factors must be defined to make the testing simulation meaningful. The first factor is the definition of the test stimulus appropriate to the subsystem level. Application of system level stimulations to the subsystem level usually leads to significant overdesign of the subsystem which is not necessary and may impair normal subsystem performance. The second factor is the availability of test equipment needed to provide the subsystem level lightning stimulation. Equipment for testing at this level should be portable or at least movable to enable efficient testing in a design laboratory environment. Large fixed test installations for system level tests are not readily available for use by the design engineers at the subsystem level and usually require special operating skills. The two factors, stimulation level and test equipment availability, must be evaluated together in order to produce a practical, workable test standard. The neglect or subordination of either factor will guarantee failure in generating the standard. It is not unusual to hear that test standards or specifications are waived because a specified stimulation level cannot be accomplished by in-house or independent test facilities. Determination of subsystem lightning simulation level requires a knowledge and evaluation of field coupling modes, peak and median levels of voltages and currents, bandwidths, and repetition rates. Practical limitations on test systems may require tradeoffs in lightning stimulation parameters in order to build practical test equipment. Peak power levels that can be generated at specified bandwidths with standard electrical components must be considered in the design and costing of the test system. Stimulation tests equipment and test methods are closely related and must be considered a test system for lightning simulation. A non-perfect specification that can be reliably and repeatedly applied at the subsystem test level is more desirable than a perfect specification that cannot be applied at all.

  19. Long term changes of tropospheric Nitrogen Dioxide over Pakistan derived from Ozone Monitoring Instrument (OMI) during the time period of October 2004 to December 2014

    NASA Astrophysics Data System (ADS)

    Murtaza, Rabbia; Fahim Khokhar, Muhammad

    2016-07-01

    Urban air pollution is causing huge number of diseases and deaths annually. Nitrogen dioxide is an important component of urban air pollution and a precursor to particulate matter, ground level ozone, and acid rain. The satellite based measurements of nitrogen dioxide from Ozone Monitoring Instrument (OMI) can help in analyzing spatio temporal variability in ground level concentrations within a large urban area. In this study, the spatial and temporal distributions of tropospheric nitrogen dioxide Vertical Column Densities (VCDs) over Pakistan are presented from 2004 to 2014. The results showed that the winter season is having high nitrogen dioxide levels as compared to summers. The increase can be attributed to the anthropogenic activities especially thermal power generation and traffic count. Punjab is one of the major provinces with high nitrogen dioxide levels followed by Sindh, Khyber Pakhtunkhwa and Balochistan. Six hotspots have been examined in the present study such as Lahore, Islamabad, Karachi, Faisalabad, Okara and Multan. Emissions of nitrogen compounds from thermal power plants and transportation sector represent a significant fraction of the total nitrogen dioxide emissions to the atmosphere.

  20. Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Watts, Carly

    2011-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced Extravehicular Activity (EVA) PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station (ISS) Extravehicular Mobility Unit (EMU) PLSS, the advanced PLSS comprises of three subsystems required to sustain the crew during EVA including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). Testing accumulated 239 hours over 45 days, while executing 172 test points. Specific PLSS 1.0 test objectives assessed during this testing include: confirming key individual components perform in a system level test as they have performed during component level testing; identifying unexpected system-level interactions; operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions; simulating nominal transient EVA operational scenarios; simulating contingency EVA operational scenarios; and further evaluating individual technology development components. Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.

  1. Thermal analyses of power subsystem components

    NASA Technical Reports Server (NTRS)

    Morehouse, Jeffrey H.

    1990-01-01

    The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.

  2. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  3. Decompositions of large-scale biological systems based on dynamical properties.

    PubMed

    Soranzo, Nicola; Ramezani, Fahimeh; Iacono, Giovanni; Altafini, Claudio

    2012-01-01

    Given a large-scale biological network represented as an influence graph, in this article we investigate possible decompositions of the network aimed at highlighting specific dynamical properties. The first decomposition we study consists in finding a maximal directed acyclic subgraph of the network, which dynamically corresponds to searching for a maximal open-loop subsystem of the given system. Another dynamical property investigated is strong monotonicity. We propose two methods to deal with this property, both aimed at decomposing the system into strongly monotone subsystems, but with different structural characteristics: one method tends to produce a single large strongly monotone component, while the other typically generates a set of smaller disjoint strongly monotone subsystems. Original heuristics for the methods investigated are described in the article. altafini@sissa.it

  4. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  5. Development of components for an S-band phased array antenna subsystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.

  6. OAO-3 end of mission power subsystem evaluation

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    End of mission tests were performed on the OAO-3 power subsystem in three component areas: solar array, nickel-cadmium batteries and the On-Board Processor (OBP) power boost operation. Solar array evaluation consisted of analyzing array performance characteristics and comparing them to earlier flight data. Measured solar array degradation of 14.1 to 17.7% after 8 1/3 years is in good agreement with theortical radiation damage losses. Battery discharge characteristics were compared to results of laboratory life cycle tests performed on similar cells. Comparison of cell voltage profils reveals close correlation and confirms the validity of real time life cycle simulation. The successful operation of the system in the OBP/power boost regulation mode demonstrates the excellent life, reliability and greater system utilization of power subsystems using maximum power trackers.

  7. Baseline Architecture of ITER Control System

    NASA Astrophysics Data System (ADS)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  8. A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop.

    PubMed

    Zhang, Lifu; Zhang, Heng

    2016-03-26

    Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas.

  9. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  10. Stability testing and analysis of a PMAD dc test bed for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.

    1992-01-01

    The Power Management and Distribution (PMAD) dc Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power dc to dc converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD dc Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.

  11. Stability Testing and Analysis of a PMAD DC Test Bed for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Brush, Andrew S.

    1992-01-01

    The Power Management and Distribution (PMAD) DC Test Bed at the NASA Lewis Research Center is introduced. Its usefulness to the Space Station Freedom Electrical Power (EPS) development and design are discussed in context of verifying system stability. Stability criteria developed by Middlebrook and Cuk are discussed as they apply to constant power DC to DC converters exhibiting negative input impedance at low frequencies. The utility-type Secondary Subsystem is presented and each component is described. The instrumentation used to measure input and output impedance under load is defined. Test results obtained from input and output impedance measurements of test bed components are presented. It is shown that the PMAD DC Test Bed Secondary Subsystem meets the Middlebrook stability criterion for certain loading conditions.

  12. The precision segmented reflectors: Moderate mission figure control subsystem

    NASA Technical Reports Server (NTRS)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  13. Solar-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2002-01-01

    This Monthly Progress Report covers the reporting period August 2002 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  14. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period through June 2001, Phase C/D, Detailed Design and Development Through Launch Plus Thirty Days, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  15. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period July 2001 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme Ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  16. Building Systems Information Clearinghouse Special Report Number One: Manufacturers Compatibility Study.

    ERIC Educational Resources Information Center

    Boice, John R., Ed.

    BSIC has selected data for inclusion, and a method of presentation that-- (1) provides preliminary data, in comparable form, about all relevant systems building products, (2) surveys within the limits imposed, the problems of compatibility between subsystem components and to identify components which are compatible with one another, (3) identifies…

  17. Costs and description of a solar-energy system--Austin, Texas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Heating and cooling system uses Fresnel lens concentrating collectors. Major system components are 36 collectors, 1,500 gallon thermal storage tank, absorption cooler, cooling tower, heating coil, pumps, heat exchanger, and backup heating and air conditioning. Final report includes detailed breakdown of component and installation costs for seven project subsystems.

  18. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219... this section. (c) Durability data engines shall be built from subsystems and components that are...

  19. Development of Cryogenic Engine for GSLV MkIII: Technological Challenges

    NASA Astrophysics Data System (ADS)

    Praveen, RS; Jayan, N.; Bijukumar, KS; Jayaprakash, J.; Narayanan, V.; Ayyappan, G.

    2017-02-01

    Cryogenic engine capable of delivering 200 kN thrust is being developed for the first time in the country by ISRO for powering the upper stage of GSLV Mk-III, the next generation launch vehicle of ISRO capable of launching four tonne class satellites to Geo-synchronous Transfer Orbit(GTO). Development of this engine started a decade ago when various sub-systems development and testing were taken up. Starting with injector element development, the design, realization and testing of the major sub-systems viz the gas generator, turbopumps, start-up system and thrust chamber have been successfully done in a phased manner before conducting a series of developmental tests in the integrated engine mode. Apart from the major sub-systems, many critical components like the igniter, control components etc were independently developed and qualified. During the development program many challenges were faced in almost all areas of propulsion engineering. Systems engineering of the engine was another key challenge in the realization. This paper gives an outlook on various technological challenges faced in the key areas related to the engine development, insight to the solutions and measures taken to overcome the challenges.

  20. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  1. AIAA spacecraft GN&C interface standards initiative: Overview

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian

    1995-01-01

    The American Institute of Aeronautics and Astronautics (AIAA) has undertaken an important standards initiative in the area of spacecraft guidance, navigation, and control (GN&C) subsystem interfaces. The objective of this effort is to establish standards that will promote interchangeability of major GN&C components, thus enabling substantially lower spacecraft development costs. Although initiated by developers of conventional spacecraft GN&C, it is anticipated that interface standards will also be of value in reducing the development costs of micro-engineered spacecraft. The standardization targets are specifically limited to interfaces only, including information (i.e. data and signal), power, mechanical, thermal, and environmental interfaces between various GN&C components and between GN&C subsystems and other subsystems. The current emphasis is on information interfaces between various hardware elements (e.g., between star trackers and flight computers). The poster presentation will briefly describe the program, including the mechanics and schedule, and will publicize the technical products as they exist at the time of the conference. In particular, the rationale for the adoption of the AS1773 fiber-optic serial data bus and the status of data interface standards at the application layer will be presented.

  2. Independent Orbiter Assessment (IOA): Analysis of the active thermal control subsystem

    NASA Technical Reports Server (NTRS)

    Sinclair, S. K.; Parkman, W. E.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Active Thermal Control Subsystem (ATCS) are documented. The major purpose of the ATCS is to remove the heat, generated during normal Shuttle operations from the Orbiter systems and subsystems. The four major components of the ATCS contributing to the heat removal are: Freon Coolant Loops; Radiator and Flow Control Assembly; Flash Evaporator System; and Ammonia Boiler System. In order to perform the analysis, the IOA process utilized available ATCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 310 failure modes analyzed, 101 were determined to be PCIs.

  3. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  4. 14 CFR 417.301 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... undergo analysis and testing that is comparable to that required by this part to demonstrate that the...) Functions, subsystems, and components. When initiated in the event of a launch vehicle failure, a flight...

  5. 14 CFR 417.301 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... undergo analysis and testing that is comparable to that required by this part to demonstrate that the...) Functions, subsystems, and components. When initiated in the event of a launch vehicle failure, a flight...

  6. 14 CFR 417.301 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... undergo analysis and testing that is comparable to that required by this part to demonstrate that the...) Functions, subsystems, and components. When initiated in the event of a launch vehicle failure, a flight...

  7. 14 CFR 417.301 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... undergo analysis and testing that is comparable to that required by this part to demonstrate that the...) Functions, subsystems, and components. When initiated in the event of a launch vehicle failure, a flight...

  8. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Application surveys and performance studies were conducted to determine a solar heating and hot water configuration that could be used in a variety of applications, and to identify subsystem modules that could be utilized in a building block fashion to adapt hardware items to single and multi-family residential and commercial systems. Topics discussed include: subsystem development for the solar collectors, controls, other components, energy management module, and the heating system configuration test. Operational tests conducted at an Illinois farmhouse, and a YWCA in Spokane, Washington are discussed.

  9. Electrochemical carbon dioxide concentrator subsystem math model. [for manned space station

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Carlson, J. N.; Schubert, F. H.

    1974-01-01

    A steady state computer simulation model has been developed to describe the performance of a total six man, self-contained electrochemical carbon dioxide concentrator subsystem built for the space station prototype. The math model combines expressions describing the performance of the electrochemical depolarized carbon dioxide concentrator cells and modules previously developed with expressions describing the performance of the other major CS-6 components. The model is capable of accurately predicting CS-6 performance over EDC operating ranges and the computer simulation results agree with experimental data obtained over the prediction range.

  10. Receiver subsystem analysis report (RADL Item 4-1). The 10-MWe solar thermal central-receiver pilot plant: Solar-facilities design integration

    NASA Astrophysics Data System (ADS)

    1982-04-01

    The results of thermal hydraulic, design for the stress analyses which are required to demonstrate that the receiver design for the Barstow Solar Pilot Plant satisfies the general design and performance requirements during the plant's design life are presented. Recommendations are made for receiver operation. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding.

  11. A multicomputer simulation of the Galileo spacecraft command and data subsystem

    NASA Technical Reports Server (NTRS)

    Zipse, John E.; Yeung, Raymond Y.; Zimmerman, Barbara A.; Morillo, Ronald; Olster, Daniel B.; Flower, Jon W.; Mizuo, Thomas

    1991-01-01

    A detailed simulation of the command and data subsystem of the Galileo spacecraft on a distributed memory multicomputer is described. The simulation is based on an ensemble of Inmos Transputers for simulating, to the bit level, the execution of instruction sequences for the six RCA 1802 microcomputers and the intricate bus traffic between them and other components of the spacecraft. Expressions were developed to estimate the performance of the simulator on a distributed system given the processor clock speed, memory access time, and communication characteristics.

  12. Model description document for a computer program for the emulation/simulation of a space station environmental control and life support system (ESCM)

    NASA Technical Reports Server (NTRS)

    Yanosy, James L.

    1988-01-01

    Emulation/Simulation Computer Model (ESCM) computes the transient performance of a Space Station air revitalization subsystem with carbon dioxide removal provided by a solid amine water desorbed subsystem called SAWD. This manual describes the mathematical modeling and equations used in the ESCM. For the system as a whole and for each individual component, the fundamental physical and chemical laws which govern their operations are presented. Assumptions are stated, and when necessary, data is presented to support empirically developed relationships.

  13. Electrochemical carbon dioxide concentrator advanced technology tasks

    NASA Technical Reports Server (NTRS)

    Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1975-01-01

    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

  14. ERTS 1 launch and flight activation evaluation report, 23 - 26 July 1972. Launch through Orbit 35 and orbit adjust operation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the analysis conducted on the telemetry data from the prelaunch, launch, and flight activation phases of the ERTS-1 spacecraft are presented. It is presented by sub system sections and provides for inter-relationships as they exist between the several subsystems. A brief statement of subsystem characteristics precedes flight evaluation statements. The appendix contains a total list of components flow on ERTS-1 and a complete listing of commands and telemetry functions for reference.

  15. Effective algorithm for solving complex problems of production control and of material flows control of industrial enterprise

    NASA Astrophysics Data System (ADS)

    Mezentsev, Yu A.; Baranova, N. V.

    2018-05-01

    A universal economical and mathematical model designed for determination of optimal strategies for managing subsystems (components of subsystems) of production and logistics of enterprises is considered. Declared universality allows taking into account on the system level both production components, including limitations on the ways of converting raw materials and components into sold goods, as well as resource and logical restrictions on input and output material flows. The presented model and generated control problems are developed within the framework of the unified approach that allows one to implement logical conditions of any complexity and to define corresponding formal optimization tasks. Conceptual meaning of used criteria and limitations are explained. The belonging of the generated tasks of the mixed programming with the class of NP is shown. An approximate polynomial algorithm for solving the posed optimization tasks for mixed programming of real dimension with high computational complexity is proposed. Results of testing the algorithm on the tasks in a wide range of dimensions are presented.

  16. Component qualification and initial build of the AGT 100 advanced automotive gas turbine

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1983-01-01

    In advance of initial dynamometer testing of the AGT 100 engine, all prime components and subsystems were bench/rig tested. Included were compressor, combustor, turbines, regenerator, ceramic components, and electronic control system. Results are briefly reviewed. Initial engine buildup was completed and rolled-out for test cell installation in July 1982. Shakedown testing included motoring and sequential firing of the combustor's three fuel nozzles.

  17. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  18. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  19. A Bayesian Framework for Reliability Analysis of Spacecraft Deployments

    NASA Technical Reports Server (NTRS)

    Evans, John W.; Gallo, Luis; Kaminsky, Mark

    2012-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a two stage sequential Bayesian framework for reliability estimation of spacecraft deployment was developed for this purpose. This process was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the Optical Telescope Element. Initially, detailed studies of NASA deployment history, "heritage information", were conducted, extending over 45 years of spacecraft launches. This information was then coupled to a non-informative prior and a binomial likelihood function to create a posterior distribution for deployments of various subsystems uSing Monte Carlo Markov Chain sampling. Select distributions were then coupled to a subsequent analysis, using test data and anomaly occurrences on successive ground test deployments of scale model test articles of JWST hardware, to update the NASA heritage data. This allowed for a realistic prediction for the reliability of the complex Sunshield deployment, with credibility limits, within this two stage Bayesian framework.

  20. Predicting Speech Intelligibility Decline in Amyotrophic Lateral Sclerosis Based on the Deterioration of Individual Speech Subsystems

    PubMed Central

    Yunusova, Yana; Wang, Jun; Zinman, Lorne; Pattee, Gary L.; Berry, James D.; Perry, Bridget; Green, Jordan R.

    2016-01-01

    Purpose To determine the mechanisms of speech intelligibility impairment due to neurologic impairments, intelligibility decline was modeled as a function of co-occurring changes in the articulatory, resonatory, phonatory, and respiratory subsystems. Method Sixty-six individuals diagnosed with amyotrophic lateral sclerosis (ALS) were studied longitudinally. The disease-related changes in articulatory, resonatory, phonatory, and respiratory subsystems were quantified using multiple instrumental measures, which were subjected to a principal component analysis and mixed effects models to derive a set of speech subsystem predictors. A stepwise approach was used to select the best set of subsystem predictors to model the overall decline in intelligibility. Results Intelligibility was modeled as a function of five predictors that corresponded to velocities of lip and jaw movements (articulatory), number of syllable repetitions in the alternating motion rate task (articulatory), nasal airflow (resonatory), maximum fundamental frequency (phonatory), and speech pauses (respiratory). The model accounted for 95.6% of the variance in intelligibility, among which the articulatory predictors showed the most substantial independent contribution (57.7%). Conclusion Articulatory impairments characterized by reduced velocities of lip and jaw movements and resonatory impairments characterized by increased nasal airflow served as the subsystem predictors of the longitudinal decline of speech intelligibility in ALS. Declines in maximum performance tasks such as the alternating motion rate preceded declines in intelligibility, thus serving as early predictors of bulbar dysfunction. Following the rapid decline in speech intelligibility, a precipitous decline in maximum performance tasks subsequently occurred. PMID:27148967

  1. Predicting Speech Intelligibility Decline in Amyotrophic Lateral Sclerosis Based on the Deterioration of Individual Speech Subsystems.

    PubMed

    Rong, Panying; Yunusova, Yana; Wang, Jun; Zinman, Lorne; Pattee, Gary L; Berry, James D; Perry, Bridget; Green, Jordan R

    2016-01-01

    To determine the mechanisms of speech intelligibility impairment due to neurologic impairments, intelligibility decline was modeled as a function of co-occurring changes in the articulatory, resonatory, phonatory, and respiratory subsystems. Sixty-six individuals diagnosed with amyotrophic lateral sclerosis (ALS) were studied longitudinally. The disease-related changes in articulatory, resonatory, phonatory, and respiratory subsystems were quantified using multiple instrumental measures, which were subjected to a principal component analysis and mixed effects models to derive a set of speech subsystem predictors. A stepwise approach was used to select the best set of subsystem predictors to model the overall decline in intelligibility. Intelligibility was modeled as a function of five predictors that corresponded to velocities of lip and jaw movements (articulatory), number of syllable repetitions in the alternating motion rate task (articulatory), nasal airflow (resonatory), maximum fundamental frequency (phonatory), and speech pauses (respiratory). The model accounted for 95.6% of the variance in intelligibility, among which the articulatory predictors showed the most substantial independent contribution (57.7%). Articulatory impairments characterized by reduced velocities of lip and jaw movements and resonatory impairments characterized by increased nasal airflow served as the subsystem predictors of the longitudinal decline of speech intelligibility in ALS. Declines in maximum performance tasks such as the alternating motion rate preceded declines in intelligibility, thus serving as early predictors of bulbar dysfunction. Following the rapid decline in speech intelligibility, a precipitous decline in maximum performance tasks subsequently occurred.

  2. The Space Telescope SI C&DH system. [Scientific Instrument Control and Data Handling Subsystem

    NASA Technical Reports Server (NTRS)

    Gadwal, Govind R.; Barasch, Ronald S.

    1990-01-01

    The Hubble Space Telescope Scientific Instrument Control and Data Handling Subsystem (SI C&DH) is designed to interface with five scientific instruments of the Space Telescope to provide ground and autonomous control and collect health and status information using the Standard Telemetry and Command Components (STACC) multiplex data bus. It also formats high throughput science data into packets. The packetized data is interleaved and Reed-Solomon encoded for error correction and Pseudo Random encoded. An inner convolutional coding with the outer Reed-Solomon coding provides excellent error correction capability. The subsystem is designed with the capacity for orbital replacement in order to meet a mission life of fifteen years. The spacecraft computer and the SI C&DH computer coordinate the activities of the spacecraft and the scientific instruments to achieve the mission objectives.

  3. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of the regenerative system.

  4. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/fuel cell powerplant subsystem

    NASA Technical Reports Server (NTRS)

    Brown, K. L.; Bertsch, P. J.

    1986-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  5. Brake System Design Optimization : Volume 2. Supplemental Data.

    DOT National Transportation Integrated Search

    1981-04-01

    Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...

  6. Brake System Design Optimization. Volume II : Supplemental Data.

    DOT National Transportation Integrated Search

    1981-06-01

    Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...

  7. 22 CFR 124.13 - Procurement by United States persons in foreign countries (offshore procurement).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (build-to-print means producing an end-item (i.e., system, subsystem or component) from technical... of any information which discloses design methodology, engineering analysis, detailed process...

  8. 22 CFR 124.13 - Procurement by United States persons in foreign countries (offshore procurement).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (build-to-print means producing an end-item (i.e., system, subsystem or component) from technical... of any information which discloses design methodology, engineering analysis, detailed process...

  9. 22 CFR 124.13 - Procurement by United States persons in foreign countries (offshore procurement).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (build-to-print means producing an end-item (i.e., system, subsystem or component) from technical... of any information which discloses design methodology, engineering analysis, detailed process...

  10. 22 CFR 124.13 - Procurement by United States persons in foreign countries (offshore procurement).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (build-to-print means producing an end-item (i.e., system, subsystem or component) from technical... of any information which discloses design methodology, engineering analysis, detailed process...

  11. 22 CFR 124.13 - Procurement by United States persons in foreign countries (offshore procurement).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (build-to-print means producing an end-item (i.e., system, subsystem or component) from technical... of any information which discloses design methodology, engineering analysis, detailed process...

  12. Space Tug systems study (storable). Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space tug program options that consider key issues and mission requirements are assessed, component and subsystem candidates are evaluated, and tug configurations synthesized. Three tug program options are defined and evaluated.

  13. 40 CFR 1051.243 - How do I determine deterioration factors from exhaust durability testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND..., select vehicles, engines, subsystems, or components for testing. Determine deterioration factors based on...

  14. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  15. Making the Invisible Visible: A Model for Delivery Systems in Adult Education

    ERIC Educational Resources Information Center

    Alex, Jennifer L.; Miller, Elizabeth A.; Platt, R. Eric; Rachal, John R.; Gammill, Deidra M.

    2007-01-01

    Delivery systems are not well defined in adult education. Therefore, this article reviews the multiple components that overlap to affect the adult learner and uses them to create a model for a comprehensive delivery system in adult education with these individual components as sub-systems that are interrelated and inter-locked. These components…

  16. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    Stack tests indicate that the discrepancies between calculated and measured temperature profiles are due to reactant cross-over and a lower than expected thermal conductivity of cells. Preliminary results indicate that acceptable contact resistance between cooling plane halves can be achieved without the use of paper. The preliminary design of the enclosure, definition of required labor and equipment for manufacturing repeating components, and the assembly procedures for the benchwork design were developed. Fabrication of components for a second 5-cell stack of the MK-2 design and a second 23-cell stack of the MK-1 design was started. The definition of water and fuel for the reforming subsystem was developed along with a preliminary definition of the control system for the subsystem. The construction and shakedown of the differential catalytic reactor was completed and testing of the first catalyst initiated.

  17. Guidance, Navigation, and Control System Design in a Mass Reduction Exercise

    NASA Technical Reports Server (NTRS)

    Crain, Timothy; Begly, Michael; Jackson, Mark; Broome, Joel

    2008-01-01

    Early Orion GN&C system designs optimized for robustness, simplicity, and utilization of commercially available components. During the System Definition Review (SDR), all subsystems on Orion were asked to re-optimize with component mass and steady state power as primary design metrics. The objective was to create a mass reserve in the Orion point of departure vehicle design prior to beginning the PDR analysis cycle. The Orion GN&C subsystem team transitioned from a philosophy of absolute 2 fault tolerance for crew safety and 1 fault tolerance for mission success to an approach of 1 fault tolerance for crew safety and risk based redundancy to meet probability allocations of loss of mission and loss of crew. This paper will discuss the analyses, rationale, and end results of this activity regarding Orion navigation sensor hardware, control effectors, and trajectory design.

  18. A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop

    PubMed Central

    Zhang, Lifu; Zhang, Heng

    2016-01-01

    Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas. PMID:27023559

  19. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Integration with Models of Other Water Recovery Subsystems

    NASA Technical Reports Server (NTRS)

    Perry, Bruce; Anderson, Molly

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station (ISS) Water Processor Assembly (WPA) to form a complete Water Recovery System (WRS) for future missions. Independent chemical process simulations with varying levels of detail have previously been developed using Aspen Custom Modeler (ACM) to aid in the analysis of the CDS and several WPA components. The existing CDS simulation could not model behavior during thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. The first part of this paper describes modifications to the ACM model of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version of the model can accurately predict behavior during thermal startup for both NaCl solution and pretreated urine feeds. The model is used to predict how changing operating parameters and design features of the CDS affects its performance, and conclusions from these predictions are discussed. The second part of this paper describes the integration of the modified CDS model and the existing WPA component models into a single WRS model. The integrated model is used to demonstrate the effects that changes to one component can have on the dynamic behavior of the system as a whole.

  20. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop optimized operational schema.

  1. System-level musings about system-level science (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, W.

    2009-12-01

    In teleology, a system has a purpose. In physics, a system has a tendency. For example, a mechanical system has a tendency to lower its potential energy. A thermodynamic system has a tendency to increase its entropy. Therefore, if geospace is seen as a system, what is its tendency? Surprisingly or not, there is no simple answer to this question. Or, to flip the statement, the answer is complex, or complexity. We can understand generally why complexity arises, as the geospace boundary is open to influences from the solar wind and Earth’s atmosphere and components of the system couple to each other in a myriad of ways to make the systemic behavior highly nonlinear. But this still begs the question: What is the system-level approach to geospace science? A reductionist view might assert that as our understanding of a component or subsystem progresses to a certain point, we can couple some together to understand the system on a higher level. However, in practice, a subsystem can almost never been observed in isolation with others. Even if such is possible, there is no guarantee that the subsystem behavior will not change when coupled to others. Hence, there is no guarantee that a subsystem, such as the ring current, has an innate and intrinsic behavior like a hydrogen atom. An absolutist conclusion from this logic can be sobering, as one would have to trace a flash of aurora to the nucleosynthesis in the solar core. The practical answer, however, is more promising; it is a mix of the common sense we call reductionism and awareness that, especially when strongly coupled, subsystems can experience behavioral changes, breakdowns, and catastrophes. If the stock answer to the systemic tendency of geospace is complexity, the objective of the system-level approach to geospace science is to define, measure, and understand this complexity. I will use the example of magnetotail dynamics to illuminate some key points in this talk.

  2. Data archiving and serving system implementation in CLEP's GRAS Core System

    NASA Astrophysics Data System (ADS)

    Zuo, Wei; Zeng, Xingguo; Zhang, Zhoubin; Geng, Liang; Li, Chunlai

    2017-04-01

    The Ground Research & Applications System(GRAS) is one of the five systems of China's Lunar Exploration Project(CLEP), it is responsible for data acquisition, processing, management and application, and it is also the operation control center during satellite in-orbit and payload operation management. Chang'E-1, Chang'E-2 and Chang'E-3 have collected abundant lunar exploration data. The aim of this work is to present the implementation of data archiving and Serving in CLEP's GRAS Core System software. This first approach provides a client side API and server side software allowing the creation of a simplified version of CLEPDB data archiving software, and implements all required elements to complete data archiving flow from data acquisition until its persistent storage technology. The client side includes all necessary components that run on devices that acquire or produce data, distributing and streaming to configure remote archiving servers. The server side comprises an archiving service that stores into PDS files all received data. The archiving solution aims at storing data coming for the Data Acquisition Subsystem, the Operation Management Subsystem, the Data Preprocessing Subsystem and the Scientific Application & Research Subsystem. The serving solution aims at serving data for the various business systems, scientific researchers and public users. The data-driven and component clustering methods was adopted in this system, the former is used to solve real-time data archiving and data persistence services; the latter is used to keep the continuous supporting ability of archive and service to new data from Chang'E Mission. Meanwhile, it can save software development cost as well.

  3. NASA Glenn Research Center's Fuel Cell Stack, Ancillary and System Test and Development Laboratory

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.; Prokopius, Kevin P.; Becks, Larry A.; Burger, Thomas H.; Dick, Joseph F.; Rodriguez, George; Bremenour, Frank; Long, Zedock

    2011-01-01

    At the NASA Glenn Research Center, a fully operational fuel cell test and evaluation laboratory is available which is capable of evaluating fuel cell components and systems for future NASA missions. Components and subsystems of various types can be operated and monitored under a variety of conditions utilizing different reactants. This fuel cell facility can test the effectiveness of various component and system designs to meet NASA's needs.

  4. Brake System Design Optimization : Volume 1. A Survey and Assessment.

    DOT National Transportation Integrated Search

    1978-06-01

    Existing freight car braking systems, components, and subsystems are characterized both physically and functionally, and life-cycle costs are examined. Potential improvements to existing systems previously proposed or available are identified and des...

  5. Test Plan Procedure for Experiment T-003

    DOT National Transportation Integrated Search

    1971-05-19

    This document defines the type, sequence, and procedural details required to perform each test on the T-003 experiment aerosol analyzer, its subsystems and components. This plan utilizes the flexibility allowed for instruments in criticality category...

  6. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  7. Mobile MAX-DOAS observation of NO2 and comparison with OMI satellite data in the western coastal areas of the Korean peninsula.

    PubMed

    Chong, Jihyo; Kim, Young J; Gu, Myojeong; Wagner, Thomas; Song, Chul H

    2016-01-01

    Ground-based MAX-DOAS measurements have been used to retrieve column densities of atmospheric absorbers such as NO2, SO2, HCHO, and O3. In this study, mobile MAX-DOAS measurements were conducted to map the 2-D distributions of atmospheric NO2 in the western coastal areas of the Korean peninsula. A Mini-MAX-DOAS instrument was mounted on the rooftop of a mobile lab vehicle with a telescope mounted parallel to the driving direction, pointing forward. The measurements were conducted from 21 to 24 December 2010 along the western coastal areas from Gomso harbor (35.59N, 126.61E) to Gunsan harbor (35.98N, 126.67E). During mobile MAX-DOAS observations, high elevation angles were used to avoid shades from nearby obstacles. For the determination of the tropospheric vertical column density (VCD), the air mass factor (AMF) was retrieved by the so-called geometric approximation. The NO2 VCDs from 20 and 45 degree elevation angles were retrieved from mobile MAX-DOAS measurements. The tropospheric NO2 VCDs derived from mobile MAX-DOAS measurements were compared directly to those retrieved by the OMI satellite observations. Mobile MAX-DOAS VCD was in good agreement with OMI tropospheric VCD on most days. However, OMI tropospheric VCD was much higher than that of mobile MAX-DOAS on 23 December 2010. One probable reason for this difference is that OMI retrieval might overestimate NO2 VCD under haze conditions, when a pollution plume was transported over the measurement site. The mobile MAX-DOAS observations reveal much finer spatial patterns of NO2 distributions, which can provide useful information for the validation of satellite observation of atmospheric trace gases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.

    2003-07-01

    Nitrogen oxides (NO+NO2=NOx) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50% of the total production of NOx. Since human activity in industrialized countries largely follows an artificial seven-day cycle, fossil fuel combustion is expected to be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of NO2 column densities. Applying sophisticated algorithms, vertical column densities (VCD) of tropospheric NO2 can be determined. We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25-50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD allows the identification of anthropogenic sources. In addition, the fraction of emissions subjected to a weekly cycle (mainly transport, power generation) with respect to a constant background (all kind of natural sources, biomass burning, heavy industry) can be estimated. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle over Germany in detail, obtaining a value of about 12 h.

  9. Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Beirle, S.; Platt, U.; Wenig, M.; Wagner, T.

    2003-12-01

    Nitrogen oxides (NO+NO2=NOx and reservoir species) are important trace gases in the troposphere with impact on human health, atmospheric chemistry and climate. Besides natural sources (lightning, soil emissions) and biomass burning, fossil fuel combustion is estimated to be responsible for about 50% of the total production of NOx. Since human activity in industrialized countries largely follows a seven-day cycle, fossil fuel combustion is expected to be reduced during weekends. This "weekend effect" is well known from local, ground based measurements, but has never been analysed on a global scale before. The Global Ozone Monitoring Experiment (GOME) on board the ESA-satellite ERS-2 allows measurements of NO2 column densities. By estimating and subtracting the stratospheric column, and considering radiative transfer, vertical column densities (VCD) of tropospheric NO2 can be determined (e.g. Leue et al., 2001). We demonstrate the statistical analysis of weekly cycles of tropospheric NO2 VCDs for different regions of the world. In the cycles of the industrialized regions and cities in the US, Europe and Japan a clear Sunday minimum of tropospheric NO2 VCD can be seen. Sunday NO2 VCDs are about 25-50% lower than working day levels. Metropolitan areas with other religious and cultural backgrounds (Jerusalem, Mecca) show different weekly patterns corresponding to different days of rest. In China, no weekly pattern can be found. The presence of a weekly cycle in the measured tropospheric NO2 VCD may help to identify the different anthropogenic source categories. Furthermore, we estimated the lifetime of tropospheric NO2 by analysing the mean weekly cycle exemplarily over Germany, obtaining a value of about 6 h in summer and 18-24 h in winter.

  10. Packing the PLSS

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory

    2011-01-01

    NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.

  11. Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.

    2002-01-01

    We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.

  12. Photovoltaic array space power plus diagnostics experiment

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1990-01-01

    The objective is to summarize the five years of hardware development and fabrication represented by the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) Instrument. The original PASP Experiment requirements and background is presented along with the modifications which were requested to transform the PASP Experiment into the PASP Plus Instrument. The PASP Plus hardware and software is described. Test results for components and subsystems are given as well as final system tests. Also included are appendices which describe the major subsystems and present supporting documentation such as block diagrams, schematics, circuit board artwork, drawings, test procedures and test reports.

  13. Development costs for a nuclear electric propulsion stage.

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Prickett, W. Z.

    1973-01-01

    Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.

  14. Space Station accommodation of attached payloads

    NASA Technical Reports Server (NTRS)

    Browning, Ronald K.; Gervin, Janette C.

    1987-01-01

    The Attached Payload Accommodation Equipment (APAE), which provides the structure to attach payloads to the Space Station truss assembly, to access Space Station resources, and to orient payloads relative to specified targets, is described. The main subelements of the APAE include a station interface adapter, payload interface adapter, subsystem support module, contamination monitoring system, payload pointing system, and attitude determination system. These components can be combined to provide accommodations for small single payloads, small multiple payloads, large self-supported payloads, carrier-mounted payloads, and articulated payloads. The discussion also covers the power, thermal, and data/communications subsystems and operations.

  15. Design and optimization of the heat rejection system for a liquid cooled thermionic space nuclear reactor power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, M.P.

    1993-01-15

    The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.

  16. Design and optimization of the heat rejection system for a liquid cooled thermionic space nuclear reactor power system

    NASA Astrophysics Data System (ADS)

    Moriarty, Michael P.

    1993-01-01

    The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.

  17. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results are presented of the first year of a three year project on the automation of the Environmental Control and Life Support System (ECLSS) of the Space Station Freedom (SSF). The results are applicable to other future space mission. The work was done by the Kansas State University NASA/USRA interdisciplinary student design team. The six ECLSS subsystems and how they interact are discussed. Proposed control schemes and their rationale are discussed for the Atmosphere Revitalization (AR) subsystem. Finally, a description of the mathematical models for many components of the ECLSS control system is given.

  18. Vehicle-Level Reasoning Systems: Integrating System-Wide Data to Estimate the Instantaneous Health State

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok N.; Mylaraswmay, Dinkar; Mah, Robert W.; Cooper, Eric G.

    2011-01-01

    At the aircraft level, a Vehicle-Level Reasoning System (VLRS) can be developed to provide aircraft with at least two significant capabilities: improvement of aircraft safety due to enhanced monitoring and reasoning about the aircrafts health state, and also potential cost savings by enabling Condition Based Maintenance (CBM). Along with the benefits of CBM, an important challenge facing aviation safety today is safeguarding against system and component failures and malfunctions. Faults can arise in one or more aircraft subsystem their effects in one system may propagate to other subsystems, and faults may interact.

  19. High-efficiency high-reliability optical components for a large, high-average-power visible laser system

    NASA Astrophysics Data System (ADS)

    Taylor, John R.; Stolz, Christopher J.

    1993-08-01

    Laser system performance and reliability depends on the related performance and reliability of the optical components which define the cavity and transport subsystems. High-average-power and long transport lengths impose specific requirements on component performance. The complexity of the manufacturing process for optical components requires a high degree of process control and verification. Qualification has proven effective in ensuring confidence in the procurement process for these optical components. Issues related to component reliability have been studied and provide useful information to better understand the long term performance and reliability of the laser system.

  20. High-efficiency high-reliability optical components for a large, high-average-power visible laser system

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Stolz, C. J.

    1992-12-01

    Laser system performance and reliability depends on the related performance and reliability of the optical components which define the cavity and transport subsystems. High-average-power and long transport lengths impose specific requirements on component performance. The complexity of the manufacturing process for optical components requires a high degree of process control and verification. Qualification has proven effective in ensuring confidence in the procurement process for these optical components. Issues related to component reliability have been studied and provide useful information to better understand the long term performance and reliability of the laser system.

  1. The TAVERNS emulator: An Ada simulation of the space station data communications network and software development environment

    NASA Technical Reports Server (NTRS)

    Howes, Norman R.

    1986-01-01

    The Space Station DMS (Data Management System) is the onboard component of the Space Station Information System (SSIS) that includes the computers, networks and software that support the various core and payload subsystems of the Space Station. TAVERNS (Test And Validation Environment for Remote Networked Systems) is a distributed approach for development and validation of application software for Space Station. The TAVERNS concept assumes that the different subsystems will be developed by different contractors who may be geographically separated. The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD VAX. The software services described in the DMS Test Bed User's Manual are being emulated on the VAX together with simulations of some of the core subsystems and a simulation of the DCN. The TAVERNS Emulator will be accessible remotely from any VAX that can communicate with the ASD VAX.

  2. Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System

    NASA Astrophysics Data System (ADS)

    Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir

    2010-11-01

    Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.

  3. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  4. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  5. Report on Wind Turbine Subsystem Reliability - A Survey of Various Databases (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, S.

    2013-07-01

    Wind industry has been challenged by premature subsystem/component failures. Various reliability data collection efforts have demonstrated their values in supporting wind turbine reliability and availability research & development and industrial activities. However, most information on these data collection efforts are scattered and not in a centralized place. With the objective of getting updated reliability statistics of wind turbines and/or subsystems so as to benefit future wind reliability and availability activities, this report is put together based on a survey of various reliability databases that are accessible directly or indirectly by NREL. For each database, whenever feasible, a brief description summarizingmore » database population, life span, and data collected is given along with its features & status. Then selective results deemed beneficial to the industry and generated based on the database are highlighted. This report concludes with several observations obtained throughout the survey and several reliability data collection opportunities in the future.« less

  6. Development of a preprototype sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1980-01-01

    A preoprototype Sabatier CO2 Reduction Subsystem was successfully designed, fabricated and tested. The lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical (equivalent to 5 persons steady state). The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  7. Comm for Small Sats: The Lunar Atmosphere and Dust Environment Explorer (LADEE) Communications Subsystem

    NASA Technical Reports Server (NTRS)

    Kuroda, Vanessa M.; Allard, Mark R.; Lewis, Brian; Lindsay, Michael

    2014-01-01

    September 6, 2013 through April 21, 2014 marked the mission lifecycle of the highly successful LADEE (Lunar Atmosphere and Dust Environment Explorer) mission that orbited the moon to gather detailed information about the thin lunar atmosphere. This paper will address the development, risks, and lessons learned regarding the specification, selection, and deployment of LADEE's unique Radio Frequency based communications subsystem and supporting tools. This includes the Electronic Ground Support Equipment (EGSE), test regimes, and RF dynamic link analysis environment developed to meet mission requirements for small, flexible, low cost, high performance, fast turnaround, and reusable spacecraft communication capabilities with easy and reliable application to future similar low cost small satellite missions over widely varying needs for communications and communications system complexity. LADEE communication subsystem key components, architecture, and mission performance will be reviewed toward applicability for future mission planning, design, and utilization.

  8. LSST communications middleware implementation

    NASA Astrophysics Data System (ADS)

    Mills, Dave; Schumacher, German; Lotz, Paul

    2016-07-01

    The LSST communications middleware is based on a set of software abstractions; which provide standard interfaces for common communications services. The observatory requires communication between diverse subsystems, implemented by different contractors, and comprehensive archiving of subsystem status data. The Service Abstraction Layer (SAL) is implemented using open source packages that implement open standards of DDS (Data Distribution Service1) for data communication, and SQL (Standard Query Language) for database access. For every subsystem, abstractions for each of the Telemetry datastreams, along with Command/Response and Events, have been agreed with the appropriate component vendor (such as Dome, TMA, Hexapod), and captured in ICD's (Interface Control Documents).The OpenSplice (Prismtech) Community Edition of DDS provides an LGPL licensed distribution which may be freely redistributed. The availability of the full source code provides assurances that the project will be able to maintain it over the full 10 year survey, independent of the fortunes of the original providers.

  9. Performance monitor system functional simulator, environmental data, orbiter 101(HFT)

    NASA Technical Reports Server (NTRS)

    Parker, F. W.

    1974-01-01

    Information concerning the environment component of the space shuttle performance monitor system simulator (PMSS) and those subsystems operational on the shuttle orbiter 101 used for horizontal flight test (HFT) is provided, along with detailed data for the shuttle performance monitor system (PMS) whose software requirements evolve from three basic PMS functions: (1) fault detection and annunciation; (2) subsystem measurement management; and (3) subsystem configuration management. Information relative to the design and operation of Orbiter systems for HFT is also presented, and the functional paths are identified to the lowest level at which the crew can control the system functions. Measurement requirements are given which are necessary to adequately monitor the health status of the system. PMS process requirements, relative to the measurements which are necessary for fault detection and annunciation of a failed functional path, consist of measurement characteristics, tolerance limits, precondition tests, and correlation measurements.

  10. Development of a preprototype Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1981-01-01

    A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  11. Semantic Entity-Component State Management Techniques to Enhance Software Quality for Multimodal VR-Systems.

    PubMed

    Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich

    2017-04-01

    Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.

  12. 10 CFR 73.26 - Transportation physical protection systems, subsystems, components, and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Only containers weighing 5,000 lbs or more shall be shipped on open rail cars. (4) A voice... standards is available for inspection at the NRC Library, 11545 Rockville Pike, Rockville, Maryland 20852...

  13. The Lower Tiers of the Space Transportation Industrial Base

    DOT National Transportation Integrated Search

    1995-08-01

    The U.S. space transportation industry includes large and small providers of subsystems, components, and materials in areas such as propulsion, avionics, guidance, and structures. For each dollar spent on the procurement of space transportation syste...

  14. 10 CFR 73.46 - Fixed site physical protection systems, subsystems, components, and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... week, maintaining an intensity of approximately 75 percent of maximum heart rate for 20 minutes; (B... television or by other suitable means which limit exposure of responding personnel to possible attack. (7...

  15. Surface cleanliness of fluid systems, specification for

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This specification establishes surface cleanliness levels, test methods, cleaning and packaging requirements, and protection and inspection procedures for determining surface cleanliness. These surfaces pertain to aerospace parts, components, assemblies, subsystems, and systems in contact with any fluid medium.

  16. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  17. Solar powered hybrid sensor module program

    NASA Technical Reports Server (NTRS)

    Johnson, J. M.; Holmes, H. K.

    1985-01-01

    Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed.

  18. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  19. A 200-kW wind turbine generator conceptual design study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A conceptual design study was conducted to define a 200 kW wind turbine power system configuration for remote applications. The goal was to attain an energy cost of 1 to 2 cents per kilowatt-hour at a 14-mph site (mean average wind velocity at an altitude of 30 ft.) The costs of the Clayton, New Mexico, Mod-OA (200-kW) were used to identify the components, subsystems, and other factors that were high in cost and thus candidates for cost reduction. Efforts devoted to developing component and subsystem concepts and ideas resulted in a machine concept that is considerably simpler, lighter in weight, and lower in cost than the present Mod-OA wind turbines. In this report are described the various innovations that contributed to the lower cost and lighter weight design as well as the method used to calculate the cost of energy.

  20. Long term trending of engineering data for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Cox, Ross M.

    1993-01-01

    A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.

  1. Independent Orbiter Assessment (IOA): Analysis of the orbiter main propulsion system

    NASA Technical Reports Server (NTRS)

    Mcnicoll, W. J.; Mcneely, M.; Holden, K. A.; Emmons, T. E.; Lowery, H. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Main Propulsion System (MPS) hardware are documented. The Orbiter MPS consists of two subsystems: the Propellant Management Subsystem (PMS) and the Helium Subsystem. The PMS is a system of manifolds, distribution lines and valves by which the liquid propellants pass from the External Tank (ET) to the Space Shuttle Main Engines (SSMEs) and gaseous propellants pass from the SSMEs to the ET. The Helium Subsystem consists of a series of helium supply tanks and their associated regulators, check valves, distribution lines, and control valves. The Helium Subsystem supplies helium that is used within the SSMEs for inflight purges and provides pressure for actuation of SSME valves during emergency pneumatic shutdowns. The balance of the helium is used to provide pressure to operate the pneumatically actuated valves within the PMS. Each component was evaluated and analyzed for possible failure modes and effects. Criticalities were assigned based on the worst possible effect of each failure mode. Of the 690 failure modes analyzed, 349 were determined to be PCIs.

  2. Statistical Rick Estimation for Communication System Design --- A Preliminary Look

    NASA Astrophysics Data System (ADS)

    Babuscia, A.; Cheung, K.-M.

    2012-02-01

    Spacecraft are complex systems that involve different subsystems with multiple relationships among them. For these reasons, the design of a spacecraft is a time-evolving process that starts from requirements and evolves over time across different design phases. During this process, a lot of changes can happen. They can affect mass and power at the component level, at the subsystem level, and even at the system level. Each spacecraft has to respect the overall constraints in terms of mass and power: for this reason, it is important to be sure that the design does not exceed these limitations. Current practice in system models primarily deals with this problem, allocating margins on individual components and on individual subsystems. However, a statistical characterization of the fluctuations in mass and power of the overall system (i.e., the spacecraft) is missing. This lack of adequate statistical characterization would result in a risky spacecraft design that might not fit the mission constraints and requirements, or in a conservative design that might not fully utilize the available resources. Due to the complexity of the problem and to the different expertise and knowledge required to develop a complete risk model for a spacecraft design, this article is focused on risk estimation for a specific spacecraft subsystem: the communication subsystem. The current research aims to be a proof of concept of a risk-based design optimization approach, which can then be further expanded to the design of other subsystems as well as to the whole spacecraft. The objective of this research is to develop a mathematical approach to quantify the likelihood that the major design drivers of mass and power of a space communication system would meet the spacecraft and mission requirements and constraints through the mission design lifecycle. Using this approach, the communication system designers will be able to evaluate and to compare different communication architectures in a risk trade-off perspective. The results described in this article include a baseline communication system design tool and a statistical characterization of the design risks through a combination of historical mission data and expert opinion contributions. An application example of the communication system of a university spacecraft is presented. IPNPR Volume 42-189 Tagged File.txt

  3. Nematicity in FeSe single crystals probed by pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, C. W.; Cheng, P. C.; Wu, K. H.; Juang, J. Y.; Wang, S.-H.; Chiang, J.-C.; Lin, J.-Y.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    The anisotropic quasiparticle dynamics in FeSe single crystals have been studied by polarized pump-probe spectroscopy. Two distinguishable relaxation components were unambiguously observed in transient reflectivity changes (ΔR / R) . The orientation-dependent fast component with the timescale of 0.1-1.5 ps associated with the electronic structure clearly shows two-fold symmetry, which further reveals the gap opening along ky below the temperature of structure phase transition (Ts) and the electronic nematicity can persist up to 200 K. For the slow component with the timescale of 8-25 ps, it is assigned to the energy relaxation through spin sub-system and also shows a two-fold symmetry below Ts. However, this two-fold symmetry is dramatically weakened above Ts and surprisingly persists up to at least 200 K. Consequently, the high-temperature nematic fluctuations in FeSe may be driven by the order parameters which associated with both charge (orbital) and spin sub-systems. This project is financially sponsored by the MOST, Taiwan, (Grants No. 103-2923-M-009-001-MY3) and the MOE-ATU plan at NCTU.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu

    Seven spectroscopic orbits in nearby solar-type multiple stars are presented. The primary of the chromospherically active star HIP 9642 is a 4.8 day double-lined pair; the outer 420 year visual orbit is updated, but remains poorly constrained. HIP 12780 is a quadruple system consisting of the resolved 6.7 year pair FIN 379 Aa,Ab, for which the combined orbit, masses, and orbital parallax are determined here, and the single-lined binary Ba,Bb with a period of 27.8 days. HIP 28790 is a young quintuple system composed of two close binaries, Aa,Ab and Ba,Bb, with periods of 221 and 13 days, respectively, and a singlemore » distant component C. Its subsystem Ba,Bb is peculiar, having a spectroscopic mass ratio of 0.89 but a magnitude difference of ∼2.2 mag. HIP 64478 also contains five stars: the A-component is a 29 year visual pair with a previously known 4 day twin subsystem, while the B-component is a contact binary with a period of 5.8 hr, seen nearly pole-on.« less

  5. Communication interval selection in distributed heterogeneous simulation of large-scale dynamical systems

    NASA Astrophysics Data System (ADS)

    Lucas, Charles E.; Walters, Eric A.; Jatskevich, Juri; Wasynczuk, Oleg; Lamm, Peter T.

    2003-09-01

    In this paper, a new technique useful for the numerical simulation of large-scale systems is presented. This approach enables the overall system simulation to be formed by the dynamic interconnection of the various interdependent simulations, each representing a specific component or subsystem such as control, electrical, mechanical, hydraulic, or thermal. Each simulation may be developed separately using possibly different commercial-off-the-shelf simulation programs thereby allowing the most suitable language or tool to be used based on the design/analysis needs. These subsystems communicate the required interface variables at specific time intervals. A discussion concerning the selection of appropriate communication intervals is presented herein. For the purpose of demonstration, this technique is applied to a detailed simulation of a representative aircraft power system, such as that found on the Joint Strike Fighter (JSF). This system is comprised of ten component models each developed using MATLAB/Simulink, EASY5, or ACSL. When the ten component simulations were distributed across just four personal computers (PCs), a greater than 15-fold improvement in simulation speed (compared to the single-computer implementation) was achieved.

  6. A Systems Model for Power Technology Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2002-01-01

    A computer model is under continuing development at NASA Glenn Research Center that enables first-order assessments of space power technology. The model, an evolution of NASA Glenn's Array Design Assessment Model (ADAM), is an Excel workbook that consists of numerous spreadsheets containing power technology performance data and sizing algorithms. Underlying the model is a number of databases that contain default values for various power generation, energy storage and power management and distribution component parameters. These databases are actively maintained by a team of systems analysts so that they contain state-of-art data as well as the most recent technology performance projections. Sizing of the power subsystems can be accomplished either by using an assumed mass specific power (W/kg) or energy (Wh/kg) or by a bottoms-up calculation that accounts for individual component performance and masses. The power generation, energy storage and power management and distribution subsystems are sized for given mission requirements for a baseline case and up to three alternatives. This allows four different power systems to be sized and compared using consistent assumptions and sizing algorithms. The component sizing models contained in the workbook are modular so that they can be easily maintained and updated. All significant input values have default values loaded from the databases that can be over-written by the user. The default data and sizing algorithms for each of the power subsystems are described in some detail. The user interface and workbook navigational features are also discussed. Finally, an example study case that illustrates the model's capability is presented.

  7. Overview of space power electronic's technology under the CSTI High Capacity Power Program

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    1994-01-01

    The Civilian Space Technology Initiative (CSTI) is a NASA Program targeted at the development of specific technologies in the areas of transportation, operations and science. Each of these three areas consists of major elements and one of the operation's elements is the High Capacity Power element. The goal of this element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA initiatives. The High Capacity Power element is broken down into several subelements that includes energy conversion in the areas of the free piston Stirling power converter and thermoelectrics, thermal management, power management, system diagnostics, and environmental compatibility and system's lifetime. A recent overview of the CSTI High capacity Power element and a description of each of the program's subelements is given by Winter (1989). The goals of the Power Management subelement are twofold. The first is to develop, test, and demonstrate high temperature, radiation-resistant power and control components and circuits that will be needed in the Power Conditioning, Control and Transmission (PCCT) subsystem of a space nuclear power system. The results obtained under this goal will also be applicable to the instrumentation and control subsystem of a space nuclear reactor. These components and circuits must perform reliably for lifetimes of 7-10 years. The second goal is to develop analytical models for use in computer simulations of candidate PCCT subsystems. Circuits which will be required for a specific PCCT subsystem will be designed and built to demonstrate their performance and, also, to validate the analytical models and simulations. The tasks under the Power Management subelement will now be described in terms of objectives, approach and present status of work.

  8. Advanced Electrical Materials and Component Development

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2003-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give a description and status of the internal and external research sponsored by NASA Glenn Research Center on soft magnetic materials, dielectric materials and capacitors, and high quality silicon carbide (SiC) atomically smooth substrates. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will be briefly discussed.

  9. Radiation hardening of components and systems for nuclear rocket vehicle applications

    NASA Technical Reports Server (NTRS)

    Greenhow, W. A.; Cheever, P. R.

    1972-01-01

    The results of the analysis of the S-2 and S-4B components, although incomplete, indicate that many Saturn 5 components and subsystems, e.g., pumps, valves, etc., can be radiation hardened to meet NRV requirements by material substitution and minor design modifications. Results of these analyses include (1) recommended radiation tolerance limits for over 100 material applications; (2) design data which describes the components of each system; (3) presentation of radiation hardening examples of systems; and (4) designing radiation effects tests to supply data for selecting materials.

  10. Causality Analysis: Identifying the Leading Element in a Coupled Dynamical System

    PubMed Central

    BozorgMagham, Amir E.; Motesharrei, Safa; Penny, Stephen G.; Kalnay, Eugenia

    2015-01-01

    Physical systems with time-varying internal couplings are abundant in nature. While the full governing equations of these systems are typically unknown due to insufficient understanding of their internal mechanisms, there is often interest in determining the leading element. Here, the leading element is defined as the sub-system with the largest coupling coefficient averaged over a selected time span. Previously, the Convergent Cross Mapping (CCM) method has been employed to determine causality and dominant component in weakly coupled systems with constant coupling coefficients. In this study, CCM is applied to a pair of coupled Lorenz systems with time-varying coupling coefficients, exhibiting switching between dominant sub-systems in different periods. Four sets of numerical experiments are carried out. The first three cases consist of different coupling coefficient schemes: I) Periodic–constant, II) Normal, and III) Mixed Normal/Non-normal. In case IV, numerical experiment of cases II and III are repeated with imposed temporal uncertainties as well as additive normal noise. Our results show that, through detecting directional interactions, CCM identifies the leading sub-system in all cases except when the average coupling coefficients are approximately equal, i.e., when the dominant sub-system is not well defined. PMID:26125157

  11. Verification and Validation Testing of the Parachute Decelerator System Prior to the First Supersonic Flight Dynamics Test for the Low Density Supersonic Decelerator Program

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Witkowski, Allen

    2015-01-01

    The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.

  12. Viewfinder/tracking system for Skylab

    NASA Technical Reports Server (NTRS)

    Casey, W. L.

    1975-01-01

    Basic component of system is infrared spectrometer designed for manual target acquisition, pointing and tracking, and data-take initiation. System incorporates three main subsystems which include: (1) viewfinder telescope, (2) control panel and electronics assembly, and (3) IR-spectrometer case assembly.

  13. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  14. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  15. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  16. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  17. 48 CFR 917.7201-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... demonstrations of various forms of non-nuclear energy and technology utilization. (b) Each program opportunity... Section 917.7201-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... acceptability of particular energy technologies, systems, subsystems, and components. Program opportunity...

  18. Portable Electron-Beam Free-Form Fabrication System

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Petersen, Daniel D.; Taminger, Karen M.; Hafley, Robert A.

    2005-01-01

    A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber when not under vacuum. During operation, wire will be fed to a fixed location, entering the melted pool created by the electron beam. Heated by the electron beam, the wire will melt and fuse to either the substrate or with the previously deposited metal wire fused on top of the positioning table. Based on a computer aided design (CAD) model and controlled by a computer, the positioning subsystem

  19. Strength Variation of Parachute Joints

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2017-01-01

    A parachute joint is defined as a location where a component is sewn or connected to another component. During the design and developmental phase of a parachute system, the joints for each structural component are isolated and tested through a process called seam and joint testing. The objective of seam and joint testing is to determine the degradation on a single component due to interaction with other components; this data is then used when calculating the margin of safety for that component. During the engineering developmental phase of CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, testing was completed for every joint of the six subsystems: the four parachutes (main, drogue, pilot, and FBCP [forward bay cover parachute]), the retention release bridle, and the retention panels. The number of joint tests for these subsystems totaled 92, which provides a plethora of data and results for further analysis. In this paper, the data and results of these seam and joint tests are examined to determine the effects, if any, of different operators and sewing machines on the strength of parachute joints. Other variables are also studied to determine their effect on joint strength, such as joint complexity, joint strength magnitude, material type, and material construction. Findings reveal that an optimally-run seam and joint test program could result in an increased understanding of the structure of the parachute; this should lead to a parachute built with optimal components, potentially saving system weight and volume.

  20. Live Virtual Constructive (LVC): Interface Control Document (ICD) for the LVC Gateway. [Flight Test 3

    NASA Technical Reports Server (NTRS)

    Jovic, Srba

    2015-01-01

    This Interface Control Document (ICD) documents and tracks the necessary information required for the Live Virtual and Constructive (LVC) systems components as well as protocols for communicating with them in order to achieve all research objectives captured by the experiment requirements. The purpose of this ICD is to clearly communicate all inputs and outputs from the subsystem components.

  1. Optical fiber technology for space: challenges of development and qualification

    NASA Astrophysics Data System (ADS)

    Goepel, Michael

    2017-11-01

    Using fiber optical components and assemblies for space flight applications brings several challenges for the design and the qualification process. Good knowledge of the system and environmental requirements is needed to derive design decisions and select suitable components for the fiber optical subsystem. Furthermore, the manufacturing process and integration limitations are providing additional constraints, which have to be considered at the beginning of the design phase. Besides Commercial off the shelf (COTS) components, custom made parts are often necessary.

  2. Effective Ad-Hoc Committees.

    ERIC Educational Resources Information Center

    Young, David G.

    1983-01-01

    Ad-hoc committees may be symbolic, informational, or action committees. A literature survey indicates such committees' structural components include a suprasystem and three subsystems involving linkages, production, and implementation. Other variables include size, personal factors, and timing. All the factors carry implications about ad-hoc…

  3. Exploration Systems Health Management Facilities and Testbed Workshop

    NASA Technical Reports Server (NTRS)

    Wilson, Scott; Waterman, Robert; McCleskey, Carey

    2004-01-01

    Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).

  4. 48 CFR 223.7304 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hexavalent Chromium 223.7304 Exceptions. The prohibition in 223.7303 does not apply to— (a) Legacy systems and their related parts, subsystems, and components that already contain hexavalent chromium. However, alternatives to hexavalent chromium shall be considered by the appropriate official during system modifications...

  5. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    1984-06-01

    Research on electric motor vehicles is reported in the areas of active material utilization and active material integrity; design and fabrication of components, advanced cells, and modules; cell testing; and battery thermal management and electrolyte circulation subsystems.

  6. 40 CFR 89.117 - Test fleet selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and... establishing deterioration factors, the manufacturer shall select the engines, subsystems, or components to be used to determine exhaust emission deterioration factors for each engine-family control system...

  7. TID Test Results for 4th Generation iPad(TradeMark)

    NASA Technical Reports Server (NTRS)

    Guertin, S. M.; Allen, G. R.; McClure, S. S.; LaBel, K. A.

    2013-01-01

    TID testing of 4th generation iPads is reported. Of iPad subsystems, results indicate that the charging circuitry and display drivers fail at lowest TID levels. Details of construction are investigated for additional testing of components.

  8. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  9. Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1997-01-01

    The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.

  10. Preliminary thermal design of the COLD-SAT spacecraft

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  11. Crew systems: integrating human and technical subsystems for the exploration of space.

    PubMed

    Connors, M M; Harrison, A A; Summit, J

    1994-07-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  12. Crew systems: integrating human and technical subsystems for the exploration of space

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  13. Anomalous thermospin effect in the low-buckled Dirac materials

    NASA Astrophysics Data System (ADS)

    Gusynin, V. P.; Sharapov, S. G.; Varlamov, A. A.

    2014-10-01

    A strong spin Nernst effect with nontrivial dependences on the carrier concentration and electric field applied is expected in silicene and other low-buckled Dirac materials. These Dirac materials can be considered as being made of two independent electron subsystems of the two-component gapped Dirac fermions. For each subsystem, the gap breaks a time-reversal symmetry and thus plays the role of an effective magnetic field. Accordingly, the standard Kubo formalism has to be altered by including the effective magnetization in order to satisfy the third law of thermodynamics. We explicitly demonstrate this by calculating the magnetization and showing how the correct thermoelectric coefficient emerges.

  14. Debris measure subsystem of the nanosatellite IRECIN

    NASA Astrophysics Data System (ADS)

    Ferrante, M.; di Ciolo, L.; Ortenzi, A.; Petrozzi, M.; del Re, V.

    2003-09-01

    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes an Electronic real-time system that acquires space debris measures. It uses a piezo-electric sensor. The described device is a subsystem on board of the IRECIN nanosatellite composed mainly by a r.i.s.c. microprocessor, an electronic part that interfaces to the debris sensor in order to provide a low noise electrical and suitable range to ADC 12 bit converter, and finally a memory in order to store the data. The microprocessor handles the Debris Measure System measuring the impacts number, their intensity and storing their waves form. This subsystem is able to communicate with the other IRECIN subsystems through I2C Bus and principally with the "Main Microprocessor" subsystem allowing the data download directly to the Ground Station. Moreover this subsystem lets free the "Main Microprocessor Board" from the management and charge of debris data. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Development Group. The proposed system is implemented on the IRECIN, a modular nanosatellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit. debris and micrometeoroids mass and velocity.

  15. A regenerable carbon dioxide removal and oxygen recovery system for the Japanese Experiment Module.

    PubMed

    Otsuji, K; Hirao, M; Satoh, S

    1987-01-01

    The Japanese Space Station Program is now under Phase B study by the National Space Development Agency of Japan in participation with the U.S. Space Station Program. A Japanese Space Station participation will be a dedicated pressurized module to be attached to the U.S. Space Station, and is called Japanese Experiment Module (JEM). Astronaut scientists will conduct various experimental operations there. Thus an environment control and life support system is required. Regenerable carbon dioxide removal and collection technique as well as oxygen recovery technique has been studied and investigated for several years. A regenerable carbon dioxide removal subsystem using steam desorbed solid amine and an oxygen recovery subsystem using Sabatier methane cracking have a good possibility for the application to the Japanese Experiment Module. Basic performance characteristics of the carbon dioxide removal and oxygen recovery subsystem are presented according to the results of a fundamental performance test program. The trace contaminant removal process is also investigated and discussed. The solvent recovery plant for the regeneration of various industrial solvents, such as hydrocarbons, alcohols and so on, utilizes the multi-bed solvent adsorption and steam desorption process, which is very similar to the carbon dioxide removal subsystem. Therefore, to develop essential components including adsorption tank (bed), condenser. process controller and energy saving system, the technology obtained from the experience to construct solvent recovery plant can be easily and effectively applicable to the carbon dioxide removal subsystem. The energy saving efficiency is evaluated for blower power reduction, steam reduction and waste heat utilization technique. According to the above background, the entire environment control and life support system for the Japanese Experiment Module including the carbon dioxide removal and oxygen recovery subsystem is evaluated and proposed.

  16. Solid Rocket Booster (SRB) - Evolution and Lessons Learned During the Shuttle Program

    NASA Technical Reports Server (NTRS)

    Kanner, Howard S.; Freeland, Donna M.; Olson, Derek T.; Wood, T. David; Vaccaro, Mark V.

    2011-01-01

    The Solid Rocket Booster (SRB) element integrates all the subsystems needed for ascent flight, entry, and recovery of the combined Booster and Motor system. These include the structures, avionics, thrust vector control, pyrotechnic, range safety, deceleration, thermal protection, and retrieval systems. This represents the only human-rated, recoverable and refurbishable solid rocket ever developed and flown. Challenges included subsystem integration, thermal environments and severe loads (including water impact), sometimes resulting in hardware attrition. Several of the subsystems evolved during the program through design changes. These included the thermal protection system, range safety system, parachute/recovery system, and others. Obsolescence issues occasionally required component recertification. Because the system was recovered, the SRB was ideal for data and imagery acquisition, which proved essential for understanding loads and system response. The three main parachutes that lower the SRBs to the ocean are the largest parachutes ever designed, and the SRBs are the largest structures ever to be lowered by parachutes. SRB recovery from the ocean was a unique process and represented a significant operational challenge; requiring personnel, facilities, transportation, and ground support equipment. The SRB element achieved reliability via extensive system testing and checkout, redundancy management, and a thorough postflight assessment process. Assembly and integration of the booster subsystems was a unique process and acceptance testing of reused hardware components was required for each build. Extensive testing was done to assure hardware functionality at each level of stage integration. Because the booster element is recoverable, subsystems were available for inspection and testing postflight, unique to the Shuttle launch vehicle. Problems were noted and corrective actions were implemented as needed. The postflight assessment process was quite detailed and a significant portion of flight operations. The SRBs provided fully redundant critical systems including thrust vector control, mission critical pyrotechnics, avionics, and parachute recovery system. The design intent was to lift off with full redundancy. On occasion, the redundancy management scheme was needed during flight operations. This paper describes some of the design challenges, how the design evolved with time, and key areas where hardware reusability contributed to improved system level understanding.

  17. Solar thermal program summary. Volume 1: Overview, fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology, energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

  18. fEITER - a new EIT instrument for functional brain imaging

    NASA Astrophysics Data System (ADS)

    Davidson, J. L.; Wright, P.; Ahsan, S. T.; Robinson, R. L.; Pomfrett, C. J. D.; McCann, H.

    2010-04-01

    We report on human tests of the new EIT-based system fEITER (functional Electrical Impedance Tomography of Evoked Responses), targeted principally at functional brain imaging. It is designed and built to medical standard BS EN 60601-1:2006 and clinical trials have been approved by the MHRA in the UK. fEITER integrates an EIT sub-system with an evoked response sub-system capable of providing visual, auditory or other stimuli, and the timing of each stimulus is recorded within the EIT data to a resolution of 500 microseconds. The EIT sub-system operates at 100 frames per second using 20 polar/near-polar current patterns distributed among 32 scalp electrodes that are arranged in a 3-dimensional array on the subject. Presently, current injection is fixed in firmware at 1 mA pk-pk and 10 kHz. Performance testing on inanimate subjects has shown voltage measurement SNR better than 75 dB, at 100 frames per second. We describe the fEITER system and give example topographic results for a human subject under no-stimulus (i.e. reference) conditions and on application of auditory stimuli. The system's excellent noise properties and temporal resolution show clearly the influence of basic physiological phenomena on the EIT voltages. In response to stimulus presentation, the voltage data contain fast components (~100 ms) and components that persist for many seconds.

  19. A Distributed Approach to System-Level Prognostics

    DTIC Science & Technology

    2012-09-01

    the end of (useful) life ( EOL ) and/or the remaining useful life (RUL) of components, subsystems, or systems. The prognostics problem itself can be...system state estimate, computes EOL and/or RUL. In this paper, we focus on a model-based prognostics approach (Orchard & Vachtse- vanos, 2009; Daigle...been focused on individual components, and determining their EOL and RUL, e.g., (Orchard & Vachtsevanos, 2009; Saha & Goebel, 2009; Daigle & Goebel

  20. Cost decomposition of linear systems with application to model reduction

    NASA Technical Reports Server (NTRS)

    Skelton, R. E.

    1980-01-01

    A means is provided to assess the value or 'cst' of each component of a large scale system, when the total cost is a quadratic function. Such a 'cost decomposition' of the system has several important uses. When the components represent physical subsystems which can fail, the 'component cost' is useful in failure mode analysis. When the components represent mathematical equations which may be truncated, the 'component cost' becomes a criterion for model truncation. In this latter event component costs provide a mechanism by which the specific control objectives dictate which components should be retained in the model reduction process. This information can be valuable in model reduction and decentralized control problems.

  1. The 9th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented dealing with performance and development of various spacecraft components, mechanical devices, and subsystems. Topics discussed include: manipulator arms, the Skylab Parasol, cooling system performance, extendable booms, magnetically suspended reaction wheels, the Skylab Trash Airlock, magnetometers, actuators, life support systems, and technology transfer.

  2. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  3. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  4. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  5. 49 CFR 236.903 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electrical, mechanical, hardware, or software) that is part of a system or subsystem. Configuration..., including the hardware components and software version, is documented and maintained through the life-cycle... or compensates individuals to perform the duties specified in § 236.921 (a). Executive software means...

  6. An expert system for diagnostics and estimation of steam turbine components condition

    NASA Astrophysics Data System (ADS)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.

  7. Human evolution in the age of the intelligent machine

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1983-01-01

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  8. Optimisation study of a vehicle bumper subsystem with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.

    2012-10-01

    This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).

  9. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  10. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Tim; Slezak, Lee; Johnson, Chris

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selectionsmore » and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.« less

  11. CBERS-03 Satellite Power Supply Subsystem

    NASA Astrophysics Data System (ADS)

    Almeida, Mario C. P.; Bo, Han

    2005-05-01

    The second China Brazil Earth Resources Satellite, CBERS-2, was successfully launched on October 21st, 2003 from the Taiyuan Satellite Launch Center, China, through a Long March 4B launcher.The cooperation between China and Brazil for the construction of CBERS satellites is a continued mission and the governments of both countries are committed to building CBERS-3 for the continued and improved services started with the launch of CBERS-1 satellite [1]. Given to its success, the CBERS program is considered as a model for other joint scientific and technological projects between those two countries. CBERS-3 will have new instruments with higher resolution and higher power consumption requirements. The Power Supply Subsystem of CBERS-3 will be a scaled-up version of the one used in the previous missions, but will also present some innovations now possible due to improvements in components, technologies and materials. The modular concept used in the previous design, and repeated in this new mission, will allow the development of the new power subsystem equipments in a straightforward manner.

  12. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: AMSU-A1 Antenna Drive Subsystem, PN 1331720-2, S/N 106

    NASA Technical Reports Server (NTRS)

    Luu, D.

    1999-01-01

    This is the Performance Verification Report, AMSU-A1 Antenna Drive Subsystem, P/N 1331720-2, S/N 106, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The antenna drive subsystem of the METSAT AMSU-A1, S/N 106, P/N 1331720-2, completed acceptance testing per A-ES Test Procedure AE-26002/lD. The test included: Scan Motion and Jitter, Pulse Load Bus Peak Current and Rise Time, Resolver Reading and Position Error, Gain/ Phase Margin, and Operational Gain Margin. The drive motors and electronic circuitry were also tested at the component level. The drive motor test includes: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The electronic circuitry was tested at the Circuit Card Assembly (CCA) level of production; each test exercised all circuit functions. The transistor assembly was tested during the W3 cable assembly (1356941-1) test.

  13. Experimental robot gripper control for handling of soft objects

    NASA Astrophysics Data System (ADS)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  14. Human evolution in the age of the intelligent machine

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  15. Internal Acoustics of the ISS and Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2017-01-01

    It is important to control the acoustic environment inside spacecraft and space habitats to protect for astronaut communications, alarm audibility, and habitability, and to reduce astronauts' risk for sleep disturbance, and hear-ing loss. But this is not an easy task, given the various design trade-offs, and it has been difficult, historically, to achieve. Over time it has been found that successful control of spacecraft acoustic levels is achieved by levying firm requirements at the system-level, using a systems engineering approach for design and development, and then validating these requirements with acoustic testing. In the systems engineering method, the system-level requirements must be flowed down to sub-systems and component noise sources, using acoustic analysis and acoustic modelling to develop allocated requirements for the sub-systems and components. Noise controls must also be developed, tested, and implemented so the sub-systems and components can achieve their allocated limits. It is also important to have management support for acoustics efforts to maintain their priority against the various trade-offs, including mass, volume, power, cost, and schedule. In this extended abstract and companion presentation, the requirements, approach, and results for controlling acoustic levels in most US spacecraft since Apollo will be briefly discussed. The approach for controlling acoustic levels in the future US space vehicle, Orion Multipurpose Crew Vehicle (MPCV), will also be briefly discussed. These discussions will be limited to the control of continuous noise inside the space vehicles. Other types of noise, such as launch, landing, and abort noise, intermittent noise, Extra-Vehicular Activity (EVA) noise, emergency operations/off-nominal noise, noise exposure, and impulse noise are important, but will not be discussed because of time limitations.

  16. Giant gain from spontaneously generated coherence in Y-type double quantum dot structure

    NASA Astrophysics Data System (ADS)

    Al-Nashy, B.; Razzaghi, Sonia; Al-Musawi, Muwaffaq Abdullah; Rasooli Saghai, H.; Al-Khursan, Amin H.

    A theoretical model was presented for linear susceptibility using density matrix theory for Y-configuration of double quantum dots (QDs) system including spontaneously generated coherence (SGC). Two SGC components are included for this system: V, and Λ subsystems. It is shown that at high V-component, the system have a giga gain. At low Λ-system component; it is possible to controls the light speed between superluminal and subluminal using one parameter by increasing SGC component of the V-system. This have applications in quantum information storage and spatially-varying temporal clock.

  17. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  18. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  19. Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.; Beaird, H. G.; Weissinger, W. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.

  20. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  1. Bayesian Approach for Reliability Assessment of Sunshield Deployment on JWST

    NASA Technical Reports Server (NTRS)

    Kaminskiy, Mark P.; Evans, John W.; Gallo, Luis D.

    2013-01-01

    Deployable subsystems are essential to mission success of most spacecraft. These subsystems enable critical functions including power, communications and thermal control. The loss of any of these functions will generally result in loss of the mission. These subsystems and their components often consist of unique designs and applications, for which various standardized data sources are not applicable for estimating reliability and for assessing risks. In this study, a Bayesian approach for reliability estimation of spacecraft deployment was developed for this purpose. This approach was then applied to the James Webb Space Telescope (JWST) Sunshield subsystem, a unique design intended for thermal control of the observatory's telescope and science instruments. In order to collect the prior information on deployable systems, detailed studies of "heritage information", were conducted extending over 45 years of spacecraft launches. The NASA Goddard Space Flight Center (GSFC) Spacecraft Operational Anomaly and Reporting System (SOARS) data were then used to estimate the parameters of the conjugative beta prior distribution for anomaly and failure occurrence, as the most consistent set of available data and that could be matched to launch histories. This allows for an emperical Bayesian prediction for the risk of an anomaly occurrence of the complex Sunshield deployment, with credibility limits, using prior deployment data and test information.

  2. Structural differences in the drone olfactory system of two phylogenetically distant Apis species, A. florea and A. mellifera

    NASA Astrophysics Data System (ADS)

    Brockmann, Axel; Brückner, Dorothea

    2001-01-01

    Male insects that are attracted by sex pheromones to find their female mates over long distances have specialized olfactory subsystems. Morphologically, these subsystems are characterized by a large number of receptor neurons sensitive to components of the female's pheromones and hypertrophied glomerular subunits ('macroglomeruli' or 'macroglomerular complexes') in the antennal lobes, in which the axons of the receptor neurons converge. The olfactory subsystems are adapted for an increased sensitivity to perceive minute amounts of pheromones. In Apis mellifera, drones have 18,600 olfactory poreplate sensilla per antenna, each equipped with receptor neurons sensitive to the queen's sex pheromone, and four voluminous macroglomeruli (MG1-MG4) in the antennal lobes. In contrast, we show that drones of the phylogenetically distant species, Apis florea, have only 1,200 poreplate sensilla per antenna and only two macroglomeruli in their antennal lobes. These macroglomeruli are homologous in anatomical position to the two most prominent macroglomeruli in A. mellifera, the MG1 and MG2, but they are much smaller in size. The morphological and anatomical differences described here suggest major modifications in the sex-pheromone processing subsystem of both species: (1) less pheromone sensitivity in A. florea and (2) a more complex sex-pheromone processing and thus a more complex sex-pheromone communication in A. mellifera.

  3. HDU Pressurized Excursion Module (PEM) Prototype Systems Integration

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a skunk-works approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process included establishment of design standards, negotiation of interfaces between subsystems, and scheduling fit checks and installation activities. A major tool used in integration was a coordinated effort to accurately model all the subsystems using CAD, so that conflicts were identified before physical components came together. Some of the major conclusions showed that up-front modularity that emerged as an artifact of construction, such as the eight 45 degree "pie slices" making up the module whose steel rib edges defined structural mounting and loading points, dictated much of the configurational interfaces between the major subsystems and workstations. Therefore, 'one of the lessons learned included the need to use modularity as a tool for organization in advance, and to work harder to prevent non-critical aspects of the platform from dictating the modularity that may eventually inform the fight system.

  4. 49 CFR 236.911 - Exclusions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system technology. However, a subsystem or component of an office system must comply with the requirements of this subpart if it performs safety-critical functions within, or affects the safety performance... this subpart if they result in a degradation of safety or a material increase in safety-critical...

  5. 49 CFR 236.911 - Exclusions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... system technology. However, a subsystem or component of an office system must comply with the requirements of this subpart if it performs safety-critical functions within, or affects the safety performance... this subpart if they result in a degradation of safety or a material increase in safety-critical...

  6. 49 CFR 236.911 - Exclusions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... system technology. However, a subsystem or component of an office system must comply with the requirements of this subpart if it performs safety-critical functions within, or affects the safety performance... this subpart if they result in a degradation of safety or a material increase in safety-critical...

  7. 49 CFR 236.911 - Exclusions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... system technology. However, a subsystem or component of an office system must comply with the requirements of this subpart if it performs safety-critical functions within, or affects the safety performance... this subpart if they result in a degradation of safety or a material increase in safety-critical...

  8. 49 CFR 236.911 - Exclusions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system technology. However, a subsystem or component of an office system must comply with the requirements of this subpart if it performs safety-critical functions within, or affects the safety performance... this subpart if they result in a degradation of safety or a material increase in safety-critical...

  9. Advanced dc-Traction-Motor Control System

    NASA Technical Reports Server (NTRS)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  10. 48 CFR 207.106 - Additional requirements for major systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of complete technical data packages. (viii) Periodic competitions for subsystem upgrades. (ix... Government to use technical data to competitively reprocure identical items or components of the system if... otherwise entitled to unlimited rights in technical data. (B) If the contracting officer makes a...

  11. 48 CFR 207.106 - Additional requirements for major systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of complete technical data packages. (viii) Periodic competitions for subsystem upgrades. (ix... Government to use technical data to competitively reprocure identical items or components of the system if... otherwise entitled to unlimited rights in technical data. (B) If the contracting officer makes a...

  12. 48 CFR 207.106 - Additional requirements for major systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of complete technical data packages. (viii) Periodic competitions for subsystem upgrades. (ix... Government to use technical data to competitively reprocure identical items or components of the system if... otherwise entitled to unlimited rights in technical data. (B) If the contracting officer makes a...

  13. 48 CFR 207.106 - Additional requirements for major systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of complete technical data packages. (viii) Periodic competitions for subsystem upgrades. (ix... Government to use technical data to competitively reprocure identical items or components of the system if... otherwise entitled to unlimited rights in technical data. (B) If the contracting officer makes a...

  14. 48 CFR 207.106 - Additional requirements for major systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of complete technical data packages. (viii) Periodic competitions for subsystem upgrades. (ix... Government to use technical data to competitively reprocure identical items or components of the system if... otherwise entitled to unlimited rights in technical data. (B) If the contracting officer makes a...

  15. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    NASA Technical Reports Server (NTRS)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  16. Advanced RF Front End Technology

    NASA Technical Reports Server (NTRS)

    Herman, M. I.; Valas, S.; Katehi, L. P. B.

    2001-01-01

    The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.

  17. KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician moves a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician moves a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”

  18. KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician turns on a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”

    NASA Image and Video Library

    2003-08-27

    KENNEDY SPACE CENTER, FLA. - During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician turns on a switch. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”

  19. Spacecraft design project multipurpose satellite bus MPS

    NASA Technical Reports Server (NTRS)

    Kellman, Lyle; Riley, John; Szostak, Michael; Watkins, Joseph; Willhelm, Joseph; Yale, Gary

    1990-01-01

    The thrust of this project was to design not a single spacecraft, but to design a multimission bus capable of supporting several current payloads and unnamed, unspecified future payloads. Spiraling costs of spacecraft and shrinking defense budgets necessitated a fresh look at the feasibility of a multimission spacecraft bus. The design team chose two very diverse and different payloads, and along with them two vastly different orbits, to show that multimission spacecraft buses are an area where indeed more research and effort needs to be made. Tradeoffs, of course, were made throughout the design, but optimization of subsystem components limited weight and volume penalties, performance degradation, and reliability concerns. Simplicity was chosen over more complex, sophisticated and usually more efficient designs. Cost of individual subsystem components was not a primary concern in the design phase, but every effort was made to chose flight tested and flight proven hardware. Significant cost savings could be realized if a standard spacecraft bus was indeed designed and purchased in finite quantities.

  20. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Astrophysics Data System (ADS)

    Silverman, Edward M.

    1995-08-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  1. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M.

    1995-01-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  2. Decentralized adaptive control of robot manipulators with robust stabilization design

    NASA Technical Reports Server (NTRS)

    Yuan, Bau-San; Book, Wayne J.

    1988-01-01

    Due to geometric nonlinearities and complex dynamics, a decentralized technique for adaptive control for multilink robot arms is attractive. Lyapunov-function theory for stability analysis provides an approach to robust stabilization. Each joint of the arm is treated as a component subsystem. The adaptive controller is made locally stable with servo signals including proportional and integral gains. This results in the bound on the dynamical interactions with other subsystems. A nonlinear controller which stabilizes the system with uniform boundedness is used to improve the robustness properties of the overall system. As a result, the robot tracks the reference trajectories with convergence. This strategy makes computation simple and therefore facilitates real-time implementation.

  3. Thermal design and test of a high power spacecraft transponder platform

    NASA Technical Reports Server (NTRS)

    Stipandic, E. A.; Gray, A. M.; Gedeon, L.

    1975-01-01

    The high power transponder subsystem on board the Communications Technology Satellite (CTS) requires some unique thermal control techniques to maintain the required temperature limits throughout all mission phases. The transponder subsystem includes redundant 20-W output travelling wave tubes and a single 200-W output TWT with highly concentrated thermal dissipations of 70 W and 143 W, respectively. A thermal control system which maintains all components within the required temperature ranges has been designed and verified in thermal balance testing. Included in the design are second surface quartz mirrors on an aluminum honeycomb platform, high thermal conductivity aluminum doubler plates, commandable thermal control heaters and a Variable Conductance Heat Pipe System (VCHPS).

  4. Wash water reclamation technology for advanced manned spacecraft

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1977-01-01

    The results of an analytical study and assessment of state-of-the-art wash water reclamation technology for advanced manned spacecraft is presented. All non-phase-change unit operations, unit processes, and subsystems currently under development by NASA are considered. Included among these are: filtration, ultrafiltration, carbon adsorption, ion exchange, chemical pretreatment, reverse osmosis, hyperfiltration, and certain urea removal techniques. Performance data are given together with the projected weights and sizes of key components and subsystems. In the final assessment, a simple multifiltration approach consisting of surface-type cartridge filters, carbon adsorption and ion exchange resins receives the highest rating for six-man orbital missions of up to 10 years in duration.

  5. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  6. GEOS axial booms

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.

    1979-01-01

    A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.

  7. Intelligent Elements for the ISHM Testbed and Prototypes (ITP) Project

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Park, Han; Schwabacher, Mark; Watson, Michael; Mackey, Ryan; Fijany, Amir; Trevino, Luis; Weir, John

    2005-01-01

    Deep-space manned missions will require advanced automated health assessment capabilities. Requirements such as in-space assembly, long dormant periods and limited accessibility during flight, present significant challenges that should be addressed through Integrated System Health Management (ISHM). The ISHM approach will provide safety and reliability coverage for a complete system over its entire life cycle by determining and integrating health status and performance information from the subsystem and component levels. This paper will focus on the potential advanced diagnostic elements that will provide intelligent assessment of the subsystem health and the planned implementation of these elements in the ISHM Testbed and Prototypes (ITP) Project under the NASA Exploration Systems Research and Technology program.

  8. Orbiter integrated active thermal control subsystem test

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.

    1980-01-01

    Integrated subsystem level testing of the systems within the orbiter active thermal chamber capable of simulating ground, orbital, and entry temperature and pressure profiles. The test article was in a closed loop configuration that included flight type and functionally simulated protions of all ATCS components for collecting, transporting, and rejecting orbiter waste heat. Specially designed independently operating equipment simulated the transient thermal input from the cabin, payload, fuel cells, freon cold plates, hydraulic system, and space environment. Test team members using data, controls, and procedures available to a flight crew controlled the operation of the ATCS. The ATCS performance met or exceeded all thermal and operational requirements for planned and contingency mission support.

  9. XNsim: Internet-Enabled Collaborative Distributed Simulation via an Extensible Network

    NASA Technical Reports Server (NTRS)

    Novotny, John; Karpov, Igor; Zhang, Chendi; Bedrossian, Nazareth S.

    2007-01-01

    In this paper, the XNsim approach to achieve Internet-enabled, dynamically scalable collaborative distributed simulation capabilities is presented. With this approach, a complete simulation can be assembled from shared component subsystems written in different formats, that run on different computing platforms, with different sampling rates, in different geographic locations, and over singlelmultiple networks. The subsystems interact securely with each other via the Internet. Furthermore, the simulation topology can be dynamically modified. The distributed simulation uses a combination of hub-and-spoke and peer-topeer network topology. A proof-of-concept demonstrator is also presented. The XNsim demonstrator can be accessed at http://www.jsc.draver.corn/xn that hosts various examples of Internet enabled simulations.

  10. Affordable Development and Qualification Strategy for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.; Doughty, Glen E.; Bhattacharyya, Samit K.

    2013-01-01

    Nuclear Thermal Propulsion (NTP) is a concept which uses a nuclear reactor to heat a propellant to high temperatures without combustion and can achieve significantly greater specific impulse than chemical engines. NTP has been considered many times for human and cargo missions beyond low earth orbit. A lot of development and technical maturation of NTP components took place during the Rover/NERVA program of the 60's and early 70's. Other NTP programs and studies followed attempting to further mature the NTP concept and identify a champion customer willing to devote the funds and support the development schedule to a demonstration mission. Budgetary constraints require the use of an affordable development and qualification strategy that takes into account all the previous work performed on NTP to construct an existing database, and include lessons learned and past guidelines followed. Current guidelines and standards NASA uses for human rating chemical rocket engines is referenced. The long lead items for NTP development involve the fuel elements of the reactor and ground testing the engine system, subsystem, and components. Other considerations which greatly impact the development plans includes the National Space Policy, National Environmental Policy Act, Presidential Directive/National Security Council Memorandum #25 (Scientific or Technological Experiments with Possible Large-Scale Adverse Environmental Effects and Launch of Nuclear Systems into Space), and Safeguards and Security. Ground testing will utilize non-nuclear test capabilities to help down select components and subsystems before testing in a nuclear environment to save time and cost. Existing test facilities with minor modifications will be considered to the maximum extent practical. New facilities will be designed to meet minimum requirements. Engine and test facility requirements are based on the driving mission requirements with added factors of safety for better assurance and reliability. Emphasis will be placed on small engines, since the smaller the NTP engine, the easier it is to transport, assemble/disassemble, and filter the exhaust during tests. A new ground test concept using underground bore holes (modeled after the underground nuclear test program) to filter the NTP engine exhaust is being considered. The NTP engine system design, development, test, and evaluation plan includes many engine components and subsystems, which are very similar to those used in chemical engines, and can be developed in conjunction with them Other less mature NTP engine components and subsystems (e.g., reactor) will be thoroughly analyzed and tested to acceptable levels recommended by the referenced standards and guidelines. The affordable development strategy also considers a prototype flight test, as a final step in the development process. Preliminary development schedule estimates show that an aggressive development schedule (without much margin) will be required to be flight ready for a 2033 human mission to Mars.

  11. Implementation of Integrated System Fault Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John; Morris, Jon; Smith, Harvey; Turowski, Mark

    2008-01-01

    Fault Management to support rocket engine test mission with highly reliable and accurate measurements; while improving availability and lifecycle costs. CORE ELEMENTS: Architecture, taxonomy, and ontology (ATO) for DIaK management. Intelligent Sensor Processes; Intelligent Element Processes; Intelligent Controllers; Intelligent Subsystem Processes; Intelligent System Processes; Intelligent Component Processes.

  12. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  13. FROM COAST TO OFFSHORE: SOME PROGRESS ON DEVELOPING MULTI-RESOURCE DESIGNS FOR GREAT LAKES MONITORING

    EPA Science Inventory

    In the next generation of monitoring the condition of very large aquatic systems, we need to explore designs that integrate across multiple aquatic resource types, including coastal subsystems, nearshore, and offshore components, which together make up the total hydroscape. This ...

  14. Accounting for water management issues within hydrological simulation: Alternative modelling options and a network optimization approach

    NASA Astrophysics Data System (ADS)

    Efstratiadis, Andreas; Nalbantis, Ioannis; Rozos, Evangelos; Koutsoyiannis, Demetris

    2010-05-01

    In mixed natural and artificialized river basins, many complexities arise due to anthropogenic interventions in the hydrological cycle, including abstractions from surface water bodies, groundwater pumping or recharge and water returns through drainage systems. Typical engineering approaches adopt a multi-stage modelling procedure, with the aim to handle the complexity of process interactions and the lack of measured abstractions. In such context, the entire hydrosystem is separated into natural and artificial sub-systems or components; the natural ones are modelled individually, and their predictions (i.e. hydrological fluxes) are transferred to the artificial components as inputs to a water management scheme. To account for the interactions between the various components, an iterative procedure is essential, whereby the outputs of the artificial sub-systems (i.e. abstractions) become inputs to the natural ones. However, this strategy suffers from multiple shortcomings, since it presupposes that pure natural sub-systems can be located and that sufficient information is available for each sub-system modelled, including suitable, i.e. "unmodified", data for calibrating the hydrological component. In addition, implementing such strategy is ineffective when the entire scheme runs in stochastic simulation mode. To cope with the above drawbacks, we developed a generalized modelling framework, following a network optimization approach. This originates from the graph theory, which has been successfully implemented within some advanced computer packages for water resource systems analysis. The user formulates a unified system which is comprised of the hydrographical network and the typical components of a water management network (aqueducts, pumps, junctions, demand nodes etc.). Input data for the later include hydraulic properties, constraints, targets, priorities and operation costs. The real-world system is described through a conceptual graph, whose dummy properties are the conveyance capacity and the unit cost of each link. Unit costs are either real or artificial, and positive or negative. Positive costs are set to prohibit undesirable fluxes and negative ones to force fulfilling water demands for various uses. The assignment of costs is based on a recursive algorithm that implements the physical constraints and the user-specified hierarchy for the water uses. Referring to the desired management policy, an optimal allocation is achieved regarding the unknown fluxes within the hydrosystem (flows, abstractions, water losses) by minimizing the total transportation cost through the graph. The mathematical structure of the problem enables use of accurate and exceptionally fast solvers. The proposed methodology is effective, efficient and easy to implement, in order to link on-line multiple modelling components, thus ensuring a comprehensive overview of the process interactions in complex and heavily modified hydrosystems. It is applicable to hydrological simulators of the semi-distributed type, in which it allows integrating groundwater models and flood routing schemes within decision support modules. The methodology is implemented within the HYGROGEIOS computer package, which is illustrated by example applications in modified river basins in Greece.

  15. OXC management and control system architecture with scalability, maintenance, and distributed managing environment

    NASA Astrophysics Data System (ADS)

    Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun

    2002-07-01

    In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.

  16. Learning to juggle: on the assembly of functional subsystems into a task-specific dynamical organization.

    PubMed

    Huys, R; Daffertshofer, A; Beek, P J

    2003-04-01

    We examined the development of task-specific couplings among functional subsystems (i.e., ball circulation, respiration, and body sway) when learning to juggle a three-ball cascade, with a focus on learning-induced changes in the coupling between ball movements and respiration and the coupling between ball movements and body sway. Six novices practiced to juggle three balls in cascade fashion for one hour per day for twenty days. On specific days (7 in total), ball movements, center-of-pressure (CoP) trajectories and respiration traces were measured simultaneously. Discrete, time-continuous and spectral analyses revealed that the spatio-temporal variability of the juggling patterns decreased with practice and that the degree to which the task constraints were satisfied increased gradually. No conclusive evidence was found for ball movement-respiration coupling. In contrast, clear-cut evidence was found for the presence of 1:3 and 2:3 frequency locking between the vertical component of the ball trajectories and both the anterior-posterior and the medio-lateral components of the CoP. Incidence and expression of these mode locks varied across individuals and altered in the course of learning. Gradual changes in locking strength, appearances and disappearances of mode locks, as well as abrupt transitions between coupled states were observed. These results indicate that dissimilar learning dynamics may arise in the functional embedding of subsystems into a task-specific organization and that motor equivalence is an inherent property of such emerging task-specific organizations.

  17. General Pressurization Model in Simscape

    NASA Technical Reports Server (NTRS)

    Servin, Mario; Garcia, Vicky

    2010-01-01

    System integration is an essential part of the engineering design process. The Ares I Upper Stage (US) is a complex system which is made up of thousands of components assembled into subsystems including a J2-X engine, liquid hydrogen (LH2) and liquid oxygen (LO2) tanks, avionics, thrust vector control, motors, etc. System integration is the task of connecting together all of the subsystems into one large system. To ensure that all the components will "fit together" as well as safety and, quality, integration analysis is required. Integration analysis verifies that, as an integrated system, the system will behave as designed. Models that represent the actual subsystems are built for more comprehensive analysis. Matlab has been an instrument widely use by engineers to construct mathematical models of systems. Simulink, one of the tools offered by Matlab, provides multi-domain graphical environment to simulate and design time-varying systems. Simulink is a powerful tool to analyze the dynamic behavior of systems over time. Furthermore, Simscape, a tool provided by Simulink, allows users to model physical (such as mechanical, thermal and hydraulic) systems using physical networks. Using Simscape, a model representing an inflow of gas to a pressurized tank was created where the temperature and pressure of the tank are measured over time to show the behavior of the gas. By further incorporation of Simscape into model building, the full potential of this software can be discovered and it hopefully can become a more utilized tool.

  18. Response prediction techniques and case studies of a path blocking system based on Global Transmissibility Direct Transmissibility method

    NASA Astrophysics Data System (ADS)

    Wang, Zengwei; Zhu, Ping; Zhao, Jianxuan

    2017-02-01

    In this paper, the prediction capabilities of the Global Transmissibility Direct Transmissibility (GTDT) method are further developed. Two path blocking techniques solely using the easily measured variables of the original system to predict the response of a path blocking system are generalized to finite element models of continuous systems. The proposed techniques are derived theoretically in a general form for the scenarios of setting the response of a subsystem to zero and of removing the link between two directly connected subsystems. The objective of this paper is to verify the reliability of the proposed techniques by finite element simulations. Two typical cases, the structural vibration transmission case and the structure-borne sound case, in two different configurations are employed to illustrate the validity of proposed techniques. The points of attention for each case have been discussed, and conclusions are given. It is shown that for the two cases of blocking a subsystem the proposed techniques are able to predict the new response using measured variables of the original system, even though operational forces are unknown. For the structural vibration transmission case of removing a connector between two components, the proposed techniques are available only when the rotational component responses of the connector are very small. The proposed techniques offer relative path measures and provide an alternative way to deal with NVH problems. The work in this paper provides guidance and reference for the engineering application of the GTDT prediction techniques.

  19. An Update on the Performance of Li-Ion Rechargeable Batteries on Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumara, Bugga V.; Smart, M. C.; Whitcanack, L. D.; Chin, K. B.; Ewell, R. C.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2006-01-01

    NASA's Mars Rovers, Spirit and Opportunity have been exploring the surface of Mars for the last thirty months, far exceeding the primary mission life of three months, performing astounding geological studies to examine the habitability of Mars. Such an extended mission life may be attributed to impressive performances of several subsystems, including power subsystem components, i.e., solar array and batteries. The novelty and challenge for this mission in terms of energy storage is the use of lithium-ion batteries, for the first time in a major NASA mission, for keeping the rover electronics warm, and supporting nighttime experimentation and communications. The use of Li-ion batteries has considerably enhanced or even enabled these rovers, by providing greater mass and volume allocations for the payload and wider range of operating temperatures for the power subsystem and thus reduced thermal management. After about 800 days of exploration, there is only marginal change in the end-of discharge (EOD) voltages of the batteries or in their capacities, as estimated from in-flight voltage data and corroborated by ground testing of prototype batteries. Enabled by such impressive durability from the Li-ion batteries, both from a cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond 1000 sols, though other components have started showing signs of decay. In this paper, we will update the performance characteristics of these batteries on both Spirit and Opportunity.

  20. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to examine pilot mental models of the aircraft subsystems and their use in diagnosis tasks. Future research plans include piloted simulation evaluation of the diagnosis decision aiding concepts and crew interface issues. Information is given in viewgraph form.

  1. Aquarius' Object-Oriented, Plug and Play Component-Based Flight Software

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Shahabuddin, Mohammad

    2013-01-01

    The Aquarius mission involves a combined radiometer and radar instrument in low-Earth orbit, providing monthly global maps of Sea Surface Salinity. Operating successfully in orbit since June, 2011, the spacecraft bus was furnished by the Argentine space agency, Comision Nacional de Actividades Espaciales (CONAE). The instrument, built jointly by NASA's Caltech/JPL and Goddard Space Flight Center, has been successfully producing expectation-exceeding data since it was powered on in August of 2011. In addition to the radiometer and scatterometer, the instrument contains an command & data-handling subsystem with a computer and flight software (FSW) that is responsible for managing the instrument, its operation, and its data. Aquarius' FSW is conceived and architected as a Component-based system, in which the running software consists of a set of Components, each playing a distinctive role in the subsystem, instantiated and connected together at runtime. Component architectures feature a well-defined set of interfaces between the Components, visible and analyzable at the architectural level (see [1]). As we will describe, this kind of an architecture offers significant advantages over more traditional FSW architectures, which often feature a monolithic runtime structure. Component-based software is enabled by Object-Oriented (OO) techniques and languages, the use of which again is not typical in space mission FSW. We will argue in this paper that the use of OO design methods and tools (especially the Unified Modeling Language), as well as the judicious usage of C++, are very well suited to FSW applications, and we will present Aquarius FSW, describing our methods, processes, and design, as a successful case in point.

  2. Sand and Dust Testing of Wheeled and Tracked Vehicles and Stationary Equipment

    DTIC Science & Technology

    2009-11-18

    early stages of development of an automotive system or stationary equipment there may be components and sub-systems that need to be tested for...suitability to operate in dust before final prototypes are available for end item or system-level testing. At this stage of development, component or...Method 510, or TOP 1-2-621 does not include functional operation during active testing. Additionally, testing by using either of these two documents is

  3. Truck Noise IX : Noise Reduction Study of an In-Service Diesel-Powered Truck : Volume 1. Text.

    DOT National Transportation Integrated Search

    1977-02-01

    A series of tests to measure the noise contributions of subsystems were performed on a truck with a conventional short cab, equipped with a Cummins V-903 engine. The data acquired in these tests were used to select retrofittable components which woul...

  4. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Allen, M. (Editor)

    1980-01-01

    Progress is reported in the following: the Stirling reference engine system design; components and subsystems; F-40 baseline Stirling engine installation and test; the first automotive engine to be built on the program; computer development activities; and technical assistance to the Government. The overall program philosophy is outlined, and data and results are given.

  5. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  6. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  7. 49 CFR 236.907 - Product Safety Plan (PSP).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... product components and their physical relationship in the subsystem or system; (2) A description of the... in § 236.909 and appendix B to this part; (8) A hazard mitigation analysis, including a complete and... principles and assumptions; (11) A human factors analysis, including a complete description of all human...

  8. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  9. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  10. 49 CFR 236.907 - Product Safety Plan (PSP).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... product components and their physical relationship in the subsystem or system; (2) A description of the... in § 236.909 and appendix B to this part; (8) A hazard mitigation analysis, including a complete and... principles and assumptions; (11) A human factors analysis, including a complete description of all human...

  11. 40 CFR 89.118 - Deterioration factors and service accumulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., subsystems, or components selected by the manufacturer under § 89.117(d). The manufacturer shall describe the... must be based on good engineering judgment. (iii) Engineering analysis for established technologies. (A) In the case where an engine family uses established technology, an analysis based on good engineering...

  12. Truck Noise IX : Noise Reduction Study of an In-Service Diesel Powered Truck : Volume 2. Appendix.

    DOT National Transportation Integrated Search

    1977-02-01

    A series of tests to measure the noise contributions of subsystems were performed on a truck with a conventional short cab, equipped with a Cummins V-903 engine. The data acquired in these tests were used to select retrofittable components which woul...

  13. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  14. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  15. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  16. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  17. 14 CFR 417.305 - Command control system testing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Command control system testing. 417.305..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety System § 417.305 Command control system testing. (a) General. (1) A command control system, including its subsystems and components must undergo...

  18. The International Space Station Comparative Maintenance Analysis(CMAM)

    DTIC Science & Technology

    2004-09-01

    External Component • Entire ORU Database 2. Database Connectivity The CMAM ORU database consists of three tables: an ORU master parts list , an ISS...Flight table, and an ISS Subsystem table. The ORU master parts list and the ISS Flight table can be updated or modified from the CMAM user interface

  19. 49 CFR 571.122 - Standard No. 122; Motorcycle brake systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mile before any brake application. Skid number means the frictional resistance of a pavement measured... control designed so that a leakage-type failure of a pressure component in a single subsystem (except... pounds). S5.8Service brake system design durability. Each motorcycle shall be capable of completing all...

  20. 77 FR 6548 - Notice of Availability of Ballistic Survivability, Lethality and Vulnerability Analyses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ..., Lethality and Vulnerability Analyses AGENCY: Department of the Army, DoD. ACTION: Notice of availability...) is a leader in ballistic survivability, lethality and vulnerability (SLV) analyses. ARL/SLAD conducts SLV analyses, using the MUVES-S2 vulnerability model, to quantify system, subsystem and/or component...

  1. A fault tolerant spacecraft supercomputer to enable a new class of scientific discovery

    NASA Technical Reports Server (NTRS)

    Katz, D. S.; McVittie, T. I.; Silliman, A. G., Jr.

    2000-01-01

    The goal of the Remote Exploration and Experimentation (REE) Project is to move supercomputeing into space in a coste effective manner and to allow the use of inexpensive, state of the art, commercial-off-the-shelf components and subsystems in these space-based supercomputers.

  2. 49 CFR 236.901 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... control systems, subsystems, and components that are safety-critical products, as defined in § 236.903..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Standards for Processor-Based Signal and Train Control Systems § 236.901 Purpose and scope. (a) What is the purpose of this...

  3. 14 CFR 417.307 - Support systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... subsystem, component, and part that can affect the reliability of the support system must have written..., evaluate the data for validity, and provide valid data for display and recording; (3) Perform any... input and processed data at a rate that maintains the validity of the data and at no less than 0.1...

  4. Contractor point of view for system development and test program

    NASA Technical Reports Server (NTRS)

    Koide, F. K.; Ringer, D. E.; Earl, C. E.

    1981-01-01

    Industry's practice of testing space qualified hardware is examined. An overview of the Global Positioning System (GPS) Test Program is discussed from the component level to the sub-system compatibility tests with the space vehicle and finally to the launch site tests, all related to the Rubidium clock.

  5. Trajectory correction propulsion for TOPS

    NASA Technical Reports Server (NTRS)

    Long, H. R.; Bjorklund, R. A.

    1972-01-01

    A blowdown-pressurized hydrazine propulsion system was selected to provide trajectory correction impulse for outer planet flyby spacecraft as the result of cost/mass/reliability tradeoff analyses. Present hydrazine component and system technology and component designs were evaluated for application to the Thermoelectric Outer Planet Spacecraft (TOPS); while general hydrazine technology was adequate, component design changes were deemed necessary for TOPS-type missions. A prototype hydrazine propulsion system was fabricated and fired nine times for a total of 1600 s to demonstrate the operation and performance of the TOPS propulsion configuration. A flight-weight trajectory correction propulsion subsystem (TCPS) was designed for the TOPS based on actual and estimated advanced components.

  6. State-of-the art of dc components for secondary power distribution of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Krauthamer, Stanley; Gangal, Mukund; Das, Radhe S. L.

    1991-01-01

    120-V dc secondary power distribution has been selected for Space Station Freedom. State-of-the art components and subsystems are examined in terms of performance, size, and topology. One of the objectives of this work is to inform Space Station users what is available in power supplies and power control devices. The other objective is to stimulate interest in the component industry so that more focused product development can be started. Based on results of this study, it is estimated that, with some redesign, modifications, and space qualification, may of these components may be applied to Space Station needs.

  7. Solid freeform fabrication apparatus and methods

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Watson, J. Kevin (Inventor); Hafley, Robert A. (Inventor); Petersen, Daniel D. (Inventor)

    2007-01-01

    An apparatus for formation of a three dimensional object comprising a sealed container; an electron beam subsystem capable of directing energy within said container; a positioning subsystem contained within said container; a wire feed subsystem contained within said container; an instrumentation subsystem electronically connected to said electron beam subsystem, positioning subsystem, and wire feed subsystem; and a power distribution subsystem electrically connected to said electron beam subsystem, positioning subsystem, wire feed subsystem, and said instrumentation subsystem.

  8. Constituents and functional implications of the rat default mode network.

    PubMed

    Hsu, Li-Ming; Liang, Xia; Gu, Hong; Brynildsen, Julia K; Stark, Jennifer A; Ash, Jessica A; Lin, Ching-Po; Lu, Hanbing; Rapp, Peter R; Stein, Elliot A; Yang, Yihong

    2016-08-02

    The default mode network (DMN) has been suggested to support a variety of self-referential functions in humans and has been fractionated into subsystems based on distinct responses to cognitive tasks and functional connectivity architecture. Such subsystems are thought to reflect functional hierarchy and segregation within the network. Because preclinical models can inform translational studies of neuropsychiatric disorders, partitioning of the DMN in nonhuman species, which has previously not been reported, may inform both physiology and pathophysiology of the human DMN. In this study, we sought to identify constituents of the rat DMN using resting-state functional MRI (rs-fMRI) and diffusion tensor imaging. After identifying DMN using a group-level independent-component analysis on the rs-fMRI data, modularity analyses fractionated the DMN into an anterior and a posterior subsystem, which were further segregated into five modules. Diffusion tensor imaging tractography demonstrates a close relationship between fiber density and the functional connectivity between DMN regions, and provides anatomical evidence to support the detected DMN subsystems. Finally, distinct modulation was seen within and between these DMN subcomponents using a neurocognitive aging model. Taken together, these results suggest that, like the human DMN, the rat DMN can be partitioned into several subcomponents that may support distinct functions. These data encourage further investigation into the neurobiological mechanisms of DMN processing in preclinical models of both normal and disease states.

  9. Multi-Mission Power Analysis Tool (MMPAT) Version 3

    NASA Technical Reports Server (NTRS)

    Wood, Eric G.; Chang, George W.; Chen, Fannie C.

    2012-01-01

    The Multi-Mission Power Analysis Tool (MMPAT) simulates a spacecraft power subsystem including the power source (solar array and/or radioisotope thermoelectric generator), bus-voltage control, secondary battery (lithium-ion or nickel-hydrogen), thermostatic heaters, and power-consuming equipment. It handles multiple mission types including heliocentric orbiters, planetary orbiters, and surface operations. Being parametrically driven along with its user-programmable features can reduce or even eliminate any need for software modifications when configuring it for a particular spacecraft. It provides multiple levels of fidelity, thereby fulfilling the vast majority of a project s power simulation needs throughout the lifecycle. It can operate in a stand-alone mode with a graphical user interface, in batch mode, or as a library linked with other tools. This software can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. Added flexibility is provided through user-designed state models and table-driven parameters. MMPAT is designed to be used by a variety of users, such as power subsystem engineers for sizing power subsystem components; mission planners for adjusting mission scenarios using power profiles generated by the model; system engineers for performing system- level trade studies using the results of the model during the early design phases of a spacecraft; and operations personnel for high-fidelity modeling of the essential power aspect of the planning picture.

  10. Utilizing a Suited Manikin Test Apparatus and Space Suit Ventilation Loop to Evaluate Carbon Dioxide Washout

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike

    2015-01-01

    NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.

  11. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    NASA Astrophysics Data System (ADS)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  12. Modular HPC I/O characterization with Darshan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Shane; Carns, Philip; Harms, Kevin

    2016-11-13

    Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientificmore » applications and computing platforms calls for greater flexibililty and scope in I/O characterization.« less

  13. Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel

    NASA Technical Reports Server (NTRS)

    McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.

    1999-01-01

    The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.

  14. Engineering aspects of a thermal control subsystem for the 25 kW power module

    NASA Technical Reports Server (NTRS)

    Schroeder, P. E.

    1979-01-01

    The paper presents the key trade study results, analysis results, and the recommended thermal control approach for the 25 kW power module defined by NASA. Power conversion inefficiencies and component heat dissipation results in a minimum heat rejection requirement of 9 kW to maintain the power module equipment at desired temperature levels. Additionally, some cooling capacity should be provided for user payloads in the sortie and free-flying modes. The baseline thermal control subsystem includes a dual-loop-pumped Freon-21 coolant with the heat rejected from deployable existing orbiter radiators. Thermal analysis included an assessment of spacecraft orientations, radiator shapes and locations, and comparison of hybrid heat pipe and all liquid panels.

  15. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  16. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  17. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  18. Functional Testing of the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-01-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  19. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  20. An Assessment of Smallsat Technology to Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chan, Steve

    1997-01-01

    This reports the results of a general study for NASA Lewis in relation to the use of small satellites for a Mars Relay Satellite (MRS) that supports communications between Mars and Earth: commands to, and telemetry from, Mars Landers and Rover. The scope of the study encompasses a survey of small satellites, those that are lower than 800 kg in mass, by NASA, DoD, and commercial companies. Additionally, surveys in advanced technologies in the area of composite materials, propulsion subsystems, battery subsystems, communications components and subsystems, and ground operations are also provided, A summary of NASA Mars Programs and their status as relevant to MRS is also included. Attempts to draw detailed cost conclusion is generally not possible due to its proprietary nature. In any event, cost is driven by market demands rather than new technologies. A preliminary comparison with the cost estimate of the S-Tel/OSC report did suggest the possibility of cost savings for the MRS by the use of production busses. On the other hand, cost savings in normalized terms from the use of automated ground systems were obtained with some degree of details.

Top