Science.gov

Sample records for subthalamic pgo-like waves

  1. Evidence of Subthalamic PGO-like Waves During REM Sleep in Humans: A Deep Brain Polysomnographic Study

    PubMed Central

    Fernández-Mendoza, Julio; Lozano, Beatriz; Seijo, Fernando; Santamarta-Liébana, Elena; Ramos-Platón, Maria José; Vela-Bueno, Antonio; Fernández-González, Fernando

    2009-01-01

    Study Objectives: The aim of this study was to examine whether the subthalamic nucleus (STN) plays a role in the transmission of PGO-like waves during REM sleep in humans. Design: Simultaneous recordings from deep brain electrodes to record local field potentials (LFPs), and standard polysomnography to ascertain sleep/wake states. Setting: Main Hospital, department of clinical neurophysiology sleep laboratory. Participants: 12 individuals with Parkinson's disease, with electrodes implanted in the STN; and, as a control for localization purposes, 4 cluster headache patients with electrodes implanted in the posterior hypothalamus. Interventions: All subjects underwent functional neurosurgery for implantation of deep brain stimulation electrodes. Results: Sharp, polarity-reversed LFPs were recorded within the STN during REM sleep in humans. These subthalamic PGO-like waves (2–3 Hz, 80–200 μV, and 300–500 msec) appeared during REM epochs as singlets or in clusters of 3–13 waves. During the pre-REM period, subthalamic PGO-like waves were temporally related to drops in the submental electromyogram and/or onset of muscular atonia. Clusters of PGO-like waves occurred typically before and during the bursts of rapid eye movements and were associated with an enhancement in fast (15–35 Hz) subthalamic oscillatory activity. Conclusion: Subthalamic PGO-like waves can be recorded during pre-REM and REM sleep in humans. Our data suggest that the STN may play an active role in an ascending activating network implicated in the transmission of PGO waves during REM sleep in humans. Citation: Fernández-Mendoza J; Lozano B; Seijo F; Santamarta-Liébana E; Ramos-Platón MJ; Vela-Bueno A; Fernández-González F. Evidence of subthalamic PGO-like waves during REM sleep in humans: a deep brain polysomnographic study. SLEEP 2009;32(9):1117-1126. PMID:19750916

  2. The subthalamic nucleus influences visuospatial attention in humans.

    PubMed

    Schmalbach, Barbara; Günther, Veronika; Raethjen, Jan; Wailke, Stefanie; Falk, Daniela; Deuschl, Günther; Witt, Karsten

    2014-03-01

    Spatial attention is a lateralized feature of the human brain. Whereas the role of cortical areas of the nondominant hemisphere on spatial attention has been investigated in detail, the impact of the BG, and more precisely the subthalamic nucleus, on signs and symptoms of spatial attention is not well understood. Here we used unilateral deep brain stimulation of the subthalamic nucleus to reversibly, specifically, and intraindividually modify the neuronal BG outflow and its consequences on signs and symptoms of visuospatial attention in patients suffering from Parkinson disease. We tested 13 patients with Parkinson disease and chronic deep brain stimulation in three stimulation settings: unilateral right and left deep brain stimulation of the subthalamic nucleus as well as bilateral deep brain stimulation of the subthalamic nucleus. In all three stimulation settings, the patients viewed a set of pictures while an eye-tracker system recorded eye movements. During the exploration of the visual stimuli, we analyzed the time spent in each visual hemispace, as well as the number, duration, amplitude, peak velocity, acceleration peak, and speed of saccades. In the unilateral left-sided stimulation setting, patients show a shorter ipsilateral exploration time of the extrapersonal space, whereas number, duration, and speed of saccades did not differ between the different stimulation settings. These results demonstrated reduced visuospatial attention toward the side contralateral to the right subthalamic nucleus that was not being stimulated in a unilateral left-sided stimulation. Turning on the right stimulator, the reduced visuospatial attention vanished. These results support the involvement of the subthalamic nucleus in modulating spatial attention. Therefore, the subthalamic nucleus is part of the subcortical network that subserves spatial attention.

  3. Subthalamic Nucleus Stimulation Modulates Thalamic Neuronal Activity

    PubMed Central

    Xu, Weidong; Russo, Gary S.; Hashimoto, Takao; Zhang, Jianyu; Vitek, Jerrold L.

    2009-01-01

    Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is an effective tool for the treatment of advanced Parkinson’s disease. The mechanism by which STN DBS elicits its beneficial effect, however, remains unclear. We previously reported STN stimulation increased the rate and produced a more regular and periodic pattern of neuronal activity in the internal segment of the globus pallidus (GPi). Here we extend our observations to neurons in the pallidal (ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)) and cerebellar (ventralis lateralis posterior pars oralis (VPLo)) receiving areas of the motor thalamus during STN DBS. Stimulation parameters that produced improvement in rigidity and bradykinesia resulted in changes in the pattern and power of oscillatory activity of neuronal activity that were similar in both regions of the motor thalamus. Neurons in both VA/VLo and VPLo tended to become more periodic and regular with a shift in oscillatory activity from low to high frequencies. Burst activity was reduced in VA/VLo, but was not significantly changed in VPLo. There was also a significant shift in the population of VA/VLo neurons that were inhibited during STN DBS, while VPLo neurons tended to be activated. These data are consistent with the hypothesis that STN DBS increases output from the nucleus and produces a change in the pattern and periodicity of neuronal activity in the basal ganglia thalamic network, and that these changes include cerebellar pathways likely via activation of adjacent cerebello-thalamic fiber bundles. PMID:19005057

  4. Comparing Realistic Subthalamic Nucleus Neuron Models

    NASA Astrophysics Data System (ADS)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  5. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease.

    PubMed

    Marsden, J F; Limousin-Dowsey, P; Ashby, P; Pollak, P; Brown, P

    2001-02-01

    Ten patients with Parkinson's disease were seen following bilateral or unilateral implantation of macroelectrodes into the subthalamic nucleus. Local field potentials (LFPs) were recorded from adjacent subthalamic nucleus macroelectrode (STNME) contacts simultaneously with EEG activity over the supplementary motor (Cz-FCz) and sensorimotor (C3/4-FC3/4) areas and EMG activity from the contralateral wrist extensors during isometric and phasic wrist movements. Significant coherence was seen between STNME LFPs and Cz-FCz, STNME LFPs and C3/4-FC3/4, and STNME LFPs and EMG over the range 7-45 Hz. EEG phase-led STNME LFPs by 24.4 ms (95% confidence interval 19.8 to 29.0 ms). EMG also led STNME LFPs, but time differences tended to cluster around one of two values: 6.3 ms (-0.7 to 13.3 ms) and 46.5 ms (26.2 to 66.8 ms). Recordings from the STNME contact that demonstrated the most consistent coherence with Cz-FCz in the 15-30 Hz band coincided with the contact which, when electrically stimulated at high frequencies, produced the most effective clinical response in eight out of nine (89%) subjects (P < 0.01). Oscillatory activity at 15-30 Hz may therefore prove of use in localizing the subthalamic nucleus target that provides the best clinical effect on stimulation. These results extend the hypothesis that coherent activity may be useful in binding together related activities in simultaneously active motor centres. The presence of coherence between EEG and STNME LFPs in both the beta and the gamma band (as opposed to only the beta band between EEG and cerebellar thalamus) suggests that there may be some relative frequency selectivity in the communication between different motor structures.

  6. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical

  7. Effects of dopaminergic and subthalamic stimulation on musical performance.

    PubMed

    van Vugt, Floris T; Schüpbach, Michael; Altenmüller, Eckart; Bardinet, Eric; Yelnik, Jérôme; Hälbig, Thomas D

    2013-05-01

    Although subthalamic-deep brain stimulation (STN-DBS) is an efficient treatment for Parkinson's disease (PD), its effects on fine motor functions are not clear. We present the case of a professional violinist with PD treated with STN-DBS. DBS improved musical articulation, intonation and emotional expression and worsened timing relative to a timekeeper (metronome). The same effects were found for dopaminergic treatment. These results suggest that STN-DBS, mimicking the effects of dopaminergic stimulation, improves fine-tuned motor behaviour whilst impairing timing precision.

  8. Subthalamic nucleus neuronal activity in Parkinson's disease and epilepsy subjects.

    PubMed

    Montgomery, Erwin B

    2008-01-01

    Activity from 113 subthalamic nucleus (STN) neurons from two epilepsy patients and 103 neurons from 9 Parkinson's disease (PD) patients undergoing DBS surgery showed no significant differences in frequencies (PD, mean 7.5+/-7.0 spikes/s (sps), epilepsy mean 7.8+/-8.5 sps) or in the coefficients of variation of mean discharge frequencies per 1s epochs. A striking relationship between mean discharge frequencies per 1 s epochs and the standard deviations for both groups were consistent with a random Poisson processes. These and similar findings call into question theories that posit increased STN activity is causal to parkinsonism.

  9. Modulation of motor inhibition by subthalamic stimulation in obsessive-compulsive disorder

    PubMed Central

    Kibleur, A; Gras-Combe, G; Benis, D; Bastin, J; Bougerol, T; Chabardès, S; Polosan, M; David, O

    2016-01-01

    High-frequency deep brain stimulation of the subthalamic nucleus can be used to treat severe obsessive-compulsive disorders that are refractory to conventional treatments. The mechanisms of action of this approach possibly rely on the modulation of associative-limbic subcortical–cortical loops, but remain to be fully elucidated. Here in 12 patients, we report the effects of high-frequency stimulation of the subthalamic nucleus on behavior, and on electroencephalographic responses and inferred effective connectivity during motor inhibition processes involved in the stop signal task. First, we found that patients were faster to respond and had slower motor inhibition processes when stimulated. Second, the subthalamic stimulation modulated the amplitude and delayed inhibition-related electroencephalographic responses. The power of reconstructed cortical current densities decreased in the stimulation condition in a parietal–frontal network including cortical regions of the inhibition network such as the superior parts of the inferior frontal gyri and the dorsolateral prefrontal cortex. Finally, dynamic causal modeling revealed that the subthalamic stimulation was more likely to modulate efferent connections from the basal ganglia, modeled as a hidden source, to the cortex. The connection from the basal ganglia to the right inferior frontal gyrus was significantly decreased by subthalamic stimulation. Beyond motor inhibition, our study thus strongly suggests that the mechanisms of action of high-frequency subthalamic stimulation are not restricted to the subthalamic nucleus, but also involve the modulation of distributed subcortical–cortical networks. PMID:27754484

  10. Disynaptic Subthalamic Input to the Posterior Cerebellum in Rat

    PubMed Central

    Jwair, Saad; Coulon, Patrice; Ruigrok, Tom J. H.

    2017-01-01

    In the last decade, the interplay between basal ganglia and cerebellar functions has been increasingly advocated to explain their joint operation in both normal and pathological conditions. Yet, insight into the neuroanatomical basis of this interplay between both subcortical structures remains sparse and is mainly derived from work in primates. Here, in rodents, we have studied the existence of a potential disynaptic connection between the subthalamic nucleus (STN) and the cerebellar cortex as has been demonstrated earlier for the primate. A mixture of unmodified rabies virus (RABV: CVS 11) and cholera toxin B-subunit (CTb) was injected at places in the posterior cerebellar cortex of nine rats. The survival time was chosen to allow for disynaptic retrograde transneuronal infection of RABV. We examined the STN for neurons infected with RABV in all nine cases and related the results with the location of the RABV/CTb injection site, which ranged from the vermis of lobule VII, to the paravermis and hemispheres of the paramedian lobule and crus 2a. We found that cases with injection sites in the vermis of lobule VII showed prominent RABV labeling in the STN. In contrast, almost no subthalamic labeling was noted in cases with paravermal or hemispheral injection sites. We show circumstantial evidence that not only the pontine nuclei but also the pedunculotegmental nucleus may act as the intermediary in the connection from STN to cerebellar cortex. This finding implies that in the rat the STN links disynaptically to the vermal part of lobule VII of the cerebellar cortex, without any major involvement of the cerebellar areas that are linked to sensorimotor functions. As vermal lobule VII recently has been shown to process disynaptic input from the retrosplenial and orbitofrontal cortices, we hypothesize that in the rat the subthalamic input to cerebellar function might be used to influence more prominently non-motor functions of the cerebellum than motor functions. This

  11. Disynaptic Subthalamic Input to the Posterior Cerebellum in Rat.

    PubMed

    Jwair, Saad; Coulon, Patrice; Ruigrok, Tom J H

    2017-01-01

    In the last decade, the interplay between basal ganglia and cerebellar functions has been increasingly advocated to explain their joint operation in both normal and pathological conditions. Yet, insight into the neuroanatomical basis of this interplay between both subcortical structures remains sparse and is mainly derived from work in primates. Here, in rodents, we have studied the existence of a potential disynaptic connection between the subthalamic nucleus (STN) and the cerebellar cortex as has been demonstrated earlier for the primate. A mixture of unmodified rabies virus (RABV: CVS 11) and cholera toxin B-subunit (CTb) was injected at places in the posterior cerebellar cortex of nine rats. The survival time was chosen to allow for disynaptic retrograde transneuronal infection of RABV. We examined the STN for neurons infected with RABV in all nine cases and related the results with the location of the RABV/CTb injection site, which ranged from the vermis of lobule VII, to the paravermis and hemispheres of the paramedian lobule and crus 2a. We found that cases with injection sites in the vermis of lobule VII showed prominent RABV labeling in the STN. In contrast, almost no subthalamic labeling was noted in cases with paravermal or hemispheral injection sites. We show circumstantial evidence that not only the pontine nuclei but also the pedunculotegmental nucleus may act as the intermediary in the connection from STN to cerebellar cortex. This finding implies that in the rat the STN links disynaptically to the vermal part of lobule VII of the cerebellar cortex, without any major involvement of the cerebellar areas that are linked to sensorimotor functions. As vermal lobule VII recently has been shown to process disynaptic input from the retrosplenial and orbitofrontal cortices, we hypothesize that in the rat the subthalamic input to cerebellar function might be used to influence more prominently non-motor functions of the cerebellum than motor functions. This

  12. The subthalamic nucleus during decision-making with multiple alternatives.

    PubMed

    Keuken, Max C; Van Maanen, Leendert; Bogacz, Rafal; Schäfer, Andreas; Neumann, Jane; Turner, Robert; Forstmann, Birte U

    2015-10-01

    Several prominent neurocomputational models predict that an increase of choice alternatives is modulated by increased activity in the subthalamic nucleus (STN). In turn, increased STN activity allows prolonged accumulation of information. At the same time, areas in the medial frontal cortex such as the anterior cingulate cortex (ACC) and the pre-SMA are hypothesized to influence the information processing in the STN. This study set out to test concrete predictions of STN activity in multiple-alternative decision-making using a multimodal combination of 7 Tesla structural and functional Magnetic Resonance Imaging, and ancestral graph (AG) modeling. The results are in line with the predictions in that increased STN activity was found with an increasing amount of choice alternatives. In addition, our study shows that activity in the ACC is correlated with activity in the STN without directly modulating it. This result sheds new light on the information processing streams between medial frontal cortex and the basal ganglia.

  13. Intermuscular coherence in Parkinson's disease: effects of subthalamic nucleus stimulation.

    PubMed

    Marsden, J; Limousin-Dowsey, P; Fraix, V; Pollak, P; Odin, P; Brown, P

    2001-05-08

    It remains unclear how high frequency stimulation of the subthalamic nucleus (STN) improves parkinsonism. We hypothesized that stimulation may affect the organization of the cortical drive to voluntarily activated muscle. Normally this is characterized by oscillations at 15-30 Hz, manifest in coherence between muscles in the same frequency band. We therefore investigated the effects of STN stimulation on electromyographic (EMG) activity in co-contracting distal arm muscles in nine subjects with Parkinson's disease off drugs. Without stimulation, coherence between EMG signals was diminished at 15-30 Hz compared with nine controls. STN stimulation increased coherence in the 15-30 Hz band, so that it approached that in healthy subjects. The results suggest that STN stimulation facilitates the normal cortical drive to muscles.

  14. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold.

    PubMed

    Cavanagh, James F; Wiecki, Thomas V; Cohen, Michael X; Figueroa, Christina M; Samanta, Johan; Sherman, Scott J; Frank, Michael J

    2011-09-25

    It takes effort and time to tame one's impulses. Although medial prefrontal cortex (mPFC) is broadly implicated in effortful control over behavior, the subthalamic nucleus (STN) is specifically thought to contribute by acting as a brake on cortico-striatal function during decision conflict, buying time until the right decision can be made. Using the drift diffusion model of decision making, we found that trial-to-trial increases in mPFC activity (EEG theta power, 4-8 Hz) were related to an increased threshold for evidence accumulation (decision threshold) as a function of conflict. Deep brain stimulation of the STN in individuals with Parkinson's disease reversed this relationship, resulting in impulsive choice. In addition, intracranial recordings of the STN area revealed increased activity (2.5-5 Hz) during these same high-conflict decisions. Activity in these slow frequency bands may reflect a neural substrate for cortico-basal ganglia communication regulating decision processes.

  15. Short pulse width widens the therapeutic window of subthalamic neurostimulation

    PubMed Central

    Reich, Martin M; Steigerwald, Frank; Sawalhe, Anna D; Reese, Rene; Gunalan, Kabilar; Johannes, Silvia; Nickl, Robert; Matthies, Cordula; McIntyre, Cameron C; Volkmann, Jens

    2015-01-01

    We explored the impact of pulse durations <60 μsec on the therapeutic window of subthalamic neurostimulation in Parkinson's disease. Current thresholds for full rigidity control and first muscle contractions were evaluated at pulse durations between 20 and 120 μsec during a monopolar review session in four patients. The average therapeutic window was 2.16 mA at 60 μsec, which proportionally increased by 182% at 30 μsec, while decreasing by 46% at 120 μsec. Measured chronaxies and model data suggest, that pulse durations <60 μsec lead to a focusing of the neurostimulation effect on smaller diameter axons close to the electrode while avoiding stimulation of distant pyramidal tract fibers. PMID:25909087

  16. Freezing and hypokinesia of gait induced by stimulation of the subthalamic region.

    PubMed

    Tommasi, Giorgio; Lopiano, Leonardo; Zibetti, Maurizio; Cinquepalmi, Annina; Fronda, Chiara; Bergamasco, Bruno; Ducati, Alessandro; Lanotte, Michele

    2007-07-15

    We report a case of a Parkinson's disease patient treated by bilateral deep brain stimulation of the subthalamic nucleus, who developed freezing and hypokinesia of gait induced by stimulation through a left-side misplaced electrode which was more antero-medial than the planned trajectory. Subsequently, correct repositioning of the left electrode afforded complete relief of gait disturbances. Freezing and hypokinesia of gait may be side effects of deep brain stimulation of the subthalamic region due to current spreading antero-medially to the subthalamic nucleus. These side effects are not subject to habituation and restrict any increase in stimulation parameters. We hypothesize that pallidal projections to the pedunculopontine nucleus could be responsible for these gait disturbances in our patient.

  17. Muscarinic antagonists microinjected into the subthalamic nucleus decrease muscular rigidity in reserpinized rats.

    PubMed

    Hernández-López, S; Flores, G; Rosales, M G; Sierra, A; Martínez-Fong, D; Aceves, J

    1996-08-09

    The ability of anticholinergic agents microinjected into the subthalamic nucleus to reduce reserpine-induced muscular rigidity was assessed in rats. The electromyographical activity of the gastrocnemius-soleus muscle was used as a parameter of muscular rigidity. Reserpine (5 mg/kg i.p.) produced the appearance of electromyographical activity. The muscarinic antagonists M3 (1.27 nmol of 4-DAMP) and M1 (2.36 nmol of pirenzepine) markedly reduced the reserpine-induced electromyographical activity, whereas the M2 antagonist AFDX-116 (2.37 nmol) had no effect. These results suggest that a high cholinergic tone in the subthalamic nucleus is associated with the reserpine-induced muscular rigidity. Moreover, the M3 muscarinic antagonist is more effective than the M1 muscarinic antagonist in reducing the muscular rigidity in reserpinized rats, a model of Parkinson's disease, by blocking the high cholinergic tone in the subthalamic nucleus.

  18. Subthalamic stimulation influences postmovement cortical somatosensory processing in Parkinson's disease.

    PubMed

    Devos, D; Labyt, E; Cassim, F; Bourriez, J L; Reyns, N; Touzet, G; Blond, S; Guieu, J D; Derambure, P; Destée, A; Defebvre, L

    2003-10-01

    In Parkinson's disease, poor motor performance (resulting primarily from abnormal cortical activation during movement preparation and execution) may also be due to impaired sensorimotor integration and defective cortical activity termination of the ongoing movement, thus delaying preparation of the following one. Reduced movement-related synchronization of the beta rhythm in Parkinson's disease compared to controls has been put forward as evidence for impaired postmovement cortical deactivation. We assessed the effects of subthalamic deep brain stimulation and l-dopa on beta rhythm synchronization over the premotor and primary sensorimotor cortex. Ten advanced patients performed self-paced wrist flexion in four conditions according to the presence or not of stimulation and l-dopa. Compared to without treatment, the motor score improved by approximately 60%; the beta synchronization was present over the contralateral frontocentral region and increased significantly over the contralateral central region under stimulation and under l-dopa, with a maximal effect when both treatments were associated. Our advanced patients displayed very focused and attenuated beta rhythm synchronization which, under stimulation, increased over the contralateral premotor and primary sensorimotor cortex. Stimulation and l-dopa both partly restored postmovement cortical deactivation in advanced Parkinson's disease, although the respective mechanisms probably differ. They may improve bradykinesia and cortical deactivation by reestablishing movement-related somatosensory processing at the end of the movement through the basal ganglia into the cortex.

  19. Neuronal Complexity in Subthalamic Nucleus is Reduced in Parkinson's Disease.

    PubMed

    Vyas, Saurabh; Huang, He; Gale, John T; Sarma, Sridevi V; Montgomery, Erwin B

    2016-01-01

    Several theories posit increased Subthalamic Nucleus (STN) activity is causal to Parkinsonism, yet in our previous study we showed that activity from 113 STN neurons from two epilepsy patients and 103 neurons from nine Parkinson's disease (PD) patients demonstrated no significant differences in frequencies or in the coefficients of variation of mean discharge frequencies per 1-s epochs. We continued our analysis using point process modeling to capture higher order temporal dynamics; in particular, bursting, beta-band oscillations, excitatory and inhibitory ensemble interactions, and neuronal complexity. We used this analysis as input to a logistic regression classifier and were able to differentiate between PD and epilepsy neurons with an accuracy of 92%. We also found neuronal complexity, i.e., the number of states in a neuron's point process model, and inhibitory ensemble dynamics, which can be interpreted as a reduction in complexity, to be the most important features with respect to classification accuracy. Even in a dataset with no significant differences in firing rate, we observed differences between PD and epilepsy for other single-neuron measures. Our results suggest PD comes with a reduction in neuronal "complexity," which translates to a neuron's ability to encode information; the more complexity, the more information the neuron can encode. This is also consistent with studies correlating disease to loss of variability in neuronal activity, as the lower the complexity, the less variability.

  20. Subthalamic nucleus stimulation affects incentive salience attribution in Parkinson's disease.

    PubMed

    Serranová, Tereza; Jech, Robert; Dušek, Petr; Sieger, Tomáš; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen

    2011-10-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can induce nonmotor side effects such as behavioral and mood disturbances or body weight gain in Parkinson's disease (PD) patients. We hypothesized that some of these problems could be related to an altered attribution of incentive salience (ie, emotional relevance) to rewarding and aversive stimuli. Twenty PD patients (all men; mean age ± SD, 58.3 ± 6 years) in bilateral STN DBS switched ON and OFF conditions and 18 matched controls rated pictures selected from the International Affective Picture System according to emotional valence (unpleasantness/pleasantness) and arousal on 2 independent visual scales ranging from 1 to 9. Eighty-four pictures depicting primary rewarding (erotica and food) and aversive fearful (victims and threat) and neutral stimuli were selected for this study. In the STN DBS ON condition, the PD patients attributed lower valence scores to the aversive pictures compared with the OFF condition (P < .01) and compared with controls (P < .01). The difference between the OFF condition and controls was less pronounced (P < .05). Furthermore, postoperative weight gain correlated with arousal ratings from the food pictures in the STN DBS ON condition (P < .05 compensated for OFF condition). Our results suggest that STN DBS increases activation of the aversive motivational system so that more relevance is attributed to aversive fearful stimuli. In addition, STN DBS-related sensitivity to food reward stimuli cues might drive DBS-treated patients to higher food intake and subsequent weight gain.

  1. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro.

    PubMed

    Liebig, Luise; von Ameln-Mayerhofer, Andreas; Hentschke, Harald

    2015-01-01

    3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.

  2. Inhibiting subthalamic nucleus decreases cocaine demand and relapse: therapeutic potential.

    PubMed

    Bentzley, Brandon S; Aston-Jones, Gary

    2016-03-03

    Preclinical evidence indicates that inactivation of subthalamic nucleus (STN) may be effective for treating cocaine addiction, and therapies that target STN, e.g. deep brain stimulation, are available indicating that this may have clinical promise. Here, we assessed the therapeutic potential of STN inactivation using a translationally relevant economic approach that quantitatively describes drug-taking behavior, and tested these results with drug-seeking tasks. Economic demand for cocaine was assessed in rats (n = 11) using a within-session threshold procedure in which cocaine price (responses/mg cocaine) was sequentially increased throughout the session. Cocaine demand was assessed in this manner immediately after bilateral microinfusions into STN of either vehicle (artificial cerebrospinal fluid) or the GABAA receptor agonist muscimol. A separate group of animals (n = 8) was tested for changes in cocaine seeking either during extinction or in response to cocaine-associated cues. Muscimol-induced inhibition of STN significantly attenuated cocaine consumption at high prices, drug seeking during extinction and cued reinstatement of cocaine seeking. In contrast, STN inhibition did not reduce cocaine consumption at low prices or locomotor activity. Thus, STN inactivation reduced economic demand for cocaine and multiple measures of drug seeking during extinction. In view of the association between economic demand and addiction severity in both rat and human, these results indicate that STN inactivation has substantial clinical potential for treatment of cocaine addiction.

  3. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity

    PubMed Central

    Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea

    2017-01-01

    Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the

  4. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity.

    PubMed

    Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea

    2017-02-01

    Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the

  5. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study.

    PubMed

    Aulická, Stefania Rusnáková; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Halámek, Josef; Baláž, Marek; Bočková, Martina; Chrastina, Jan; Rektor, Ivan

    2014-10-01

    We studied the appearance of broadband oscillatory changes (ranging 2-45 Hz) induced by a cognitive task with two levels of complexity. The event-related de/synchronizations (ERD/S) in the subthalamic nucleus (STN) and in the anterior cingulate cortex (ACC) were evaluated in an executive function test. Four epilepsy surgery candidates with intracerebral electrodes implanted in the ACC and three Parkinson's disease patients with externalized deep brain stimulation electrodes implanted in the STN participated in the study. A Flanker test (FT) with visual stimuli (arrows) was performed. Subjects reacted to four types of stimuli presented on the monitor by pushing the right or left button: congruent arrows to the right or left side (simple task) and incongruent arrows to the right or left side (more difficult complex task). We explored the activation of STN and the activation of the ACC while processing the FT. Both conditions, i.e. congruent and incongruent, induced oscillatory changes in the ACC and also STN with significantly higher activation during incongruent trial. At variance with the ACC, in the STN not only the ERD beta but also the ERD alpha activity was significantly more activated by the incongruent condition. In line with our earlier studies, the STN appears to be involved in activities linked with increased cognitive load. The specificity and complexity of task-related activation of the STN might indicate the involvement of the STN in processes controlling human behaviour, e.g. in the selection and inhibition of competing alternatives.

  6. Diving Response in Rats: Role of the Subthalamic Vasodilator Area

    PubMed Central

    Golanov, Eugene V.; Shiflett, James M.; Britz, Gavin W.

    2016-01-01

    Diving response (DR) is a powerful integrative response targeted toward survival of the hypoxic/anoxic conditions. Being present in all animals and humans, it allows to survive adverse conditions like diving. Earlier, we discovered that forehead stimulation affords neuroprotective effect, decreasing infarction volume triggered by permanent occlusion of the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead induces DR in rats, which, in turn, exerts neuroprotection. We compared autonomic [AP, heart rate (HR), cerebral blood flow (CBF)] and EEG responses to the known DR-triggering stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses in AP, HR, CBF, and EEG to cold stimulation of the forehead and ammonia vapors instillation into the nasal cavity were comparable and differed significantly from responses to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator area (SVA), which is known to participate in CBF regulation and to afford neuroprotection upon excitation, failed to affect autonomic components of the DR evoked by forehead cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimulation of the forehead triggers physiological response comparable to the response evoked by ammonia vapor instillation into nasal cavity, which is considered as stimulus triggering protective DR. These observations may explain the neuroprotective effect of the forehead stimulation. Data demonstrate that SVA does not directly participate in the autonomic adjustments accompanying DR; however, it is involved in diving-evoked modulation of EEG. We suggest that forehead stimulation can be employed as a stimulus capable of triggering oxygen-conserving DR and can be used for neuroprotective therapy. PMID:27708614

  7. Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus.

    PubMed

    Herz, Damian M; Zavala, Baltazar A; Bogacz, Rafal; Brown, Peter

    2016-04-04

    If humans are faced with difficult choices when making decisions, the ability to slow down responses becomes critical in order to avoid suboptimal choices. Current models of decision making assume that the subthalamic nucleus (STN) mediates this function by elevating decision thresholds, thereby requiring more evidence to be accumulated before responding [1-9]. However, direct electrophysiological evidence for the exact role of STN during adjustment of decision thresholds is lacking. Here, we show that trial-by-trial variations in STN low-frequency oscillatory activity predict adjustments of decision thresholds before subjects make a response. The relationship between STN activity and decision thresholds critically depends on the subjects' level of cautiousness. While increased oscillatory activity of the STN predicts elevated decision thresholds during high levels of cautiousness, it predicts decreased decision thresholds during low levels of cautiousness. This context-dependent relationship may be mediated by increased influence of the medial prefrontal cortex (mPFC)-STN pathway on decision thresholds during high cautiousness. Subjects who exhibit a stronger increase in phase alignment of low-frequency oscillatory activity in mPFC and STN before making a response have higher decision thresholds and commit fewer erroneous responses. Together, our results demonstrate that STN low-frequency oscillatory activity and corresponding mPFC-STN coupling are involved in determining how much evidence subjects accumulate before making a decision. This finding might explain why deep-brain stimulation of the STN can impair subjects' ability to slow down responses and can induce impulsive suboptimal decisions.

  8. Subthalamic nucleus stimulation and somatosensory temporal discrimination in Parkinson's disease.

    PubMed

    Conte, Antonella; Modugno, Nicola; Lena, Francesco; Dispenza, Sabrina; Gandolfi, Barbara; Iezzi, Ennio; Fabbrini, Giovanni; Berardelli, Alfredo

    2010-09-01

    Whereas numerous studies document the effects of dopamine medication and deep brain stimulation on motor function in patients with Parkinson's disease, few have investigated deep brain stimulation-induced changes in sensory functions. In this study of 13 patients with Parkinson's disease, we tested the effects of deep brain stimulation on the somatosensory temporal discrimination threshold. To investigate whether deep brain stimulation and dopaminergic medication induce similar changes in somatosensory discrimination, somatosensory temporal discrimination threshold values were acquired under four experimental conditions: (i) medication ON/deep brain stimulation on; (ii) medication ON/deep brain stimulation off; (iii) medication OFF/deep brain stimulation on; and (iv) medication OFF/deep brain stimulation off. Patients also underwent clinical and neuropsychological evaluations during each experimental session. Somatosensory temporal discrimination threshold values obtained in patients were compared with 13 age-matched healthy subjects. Somatosensory temporal discrimination threshold values were significantly higher in patients than in healthy subjects. In patients, somatosensory temporal discrimination threshold values were significantly lower when patients were studied in medication ON than in medication OFF conditions. Somatosensory temporal discrimination threshold values differed significantly between deep brain stimulation on and deep brain stimulation off conditions only when the patients were studied in the medication ON condition and were higher in the deep brain stimulation on/medication ON than in the deep brain stimulation off/medication ON condition. Dopamine but not subthalamic nucleus deep brain stimulation restores the altered somatosensory temporal discrimination in patients with Parkinson's disease. Deep brain stimulation degrades somatosensory temporal discrimination by modifying central somatosensory processing whereas dopamine restores the

  9. Functional anatomy of subthalamic nucleus stimulation in Parkinson disease

    PubMed Central

    Eisenstein, Sarah A.; Koller, Jonathan M.; Black, Kathleen D.; Campbell, Meghan C.; Lugar, Heather M.; Ushe, Mwiza; Tabbal, Samer D.; Karimi, Morvarid; Hershey, Tamara; Perlmutter, Joel S.; Black, Kevin J.

    2014-01-01

    Objective We developed a novel method to map behavioral effects of deep brain stimulation (DBS) across a 3D brain region and to assign statistical significance after stringent Type I error correction. This method was applied to behavioral changes in Parkinson disease (PD) induced by subthalamic nucleus (STN) DBS to determine whether these responses depended on anatomical location of DBS. Method Fifty-one PD participants with STN DBS were evaluated off medication, with DBS off and during unilateral STN DBS with clinically optimized settings. Dependent variables included DBS-induced changes in Unified Parkinson Disease Rating Scale (UPDRS) subscores, kinematic measures of bradykinesia and rigidity, working memory, response inhibition, mood, anxiety, and akathisia. Weighted t-tests at each voxel produced p images showing where DBS most significantly affected each dependent variable based on outcomes of participants with nearby DBS. Finally, a permutation test computed the probability that this p image indicated significantly different responses based on stimulation site. Results Most motor variables improved with DBS anywhere in the STN region, but several motor, cognitive and affective responses significantly depended on precise location stimulated, with peak p values in superior STN/zona incerta (quantified bradykinesia), dorsal STN (mood, anxiety), and inferior STN/substantia nigra (UPDRS tremor, working memory). Interpretation Our method identified DBS-induced behavioral changes that depended significantly on DBS site. These results do not support complete functional segregation within STN, since movement improved with DBS throughout, and mood improved with dorsal STN DBS. Rather, findings support functional convergence of motor, cognitive and limbic information in STN. PMID:24953991

  10. Neural Correlates of Decision Thresholds in the Human Subthalamic Nucleus

    PubMed Central

    Herz, Damian M.; Zavala, Baltazar A.; Bogacz, Rafal; Brown, Peter

    2016-01-01

    Summary If humans are faced with difficult choices when making decisions, the ability to slow down responses becomes critical in order to avoid suboptimal choices. Current models of decision making assume that the subthalamic nucleus (STN) mediates this function by elevating decision thresholds, thereby requiring more evidence to be accumulated before responding [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, direct electrophysiological evidence for the exact role of STN during adjustment of decision thresholds is lacking. Here, we show that trial-by-trial variations in STN low-frequency oscillatory activity predict adjustments of decision thresholds before subjects make a response. The relationship between STN activity and decision thresholds critically depends on the subjects’ level of cautiousness. While increased oscillatory activity of the STN predicts elevated decision thresholds during high levels of cautiousness, it predicts decreased decision thresholds during low levels of cautiousness. This context-dependent relationship may be mediated by increased influence of the medial prefrontal cortex (mPFC)-STN pathway on decision thresholds during high cautiousness. Subjects who exhibit a stronger increase in phase alignment of low-frequency oscillatory activity in mPFC and STN before making a response have higher decision thresholds and commit fewer erroneous responses. Together, our results demonstrate that STN low-frequency oscillatory activity and corresponding mPFC-STN coupling are involved in determining how much evidence subjects accumulate before making a decision. This finding might explain why deep-brain stimulation of the STN can impair subjects’ ability to slow down responses and can induce impulsive suboptimal decisions. PMID:26996501

  11. Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease

    PubMed Central

    van Wijk, Bernadette C.M.; Beudel, Martijn; Jha, Ashwani; Oswal, Ashwini; Foltynie, Tom; Hariz, Marwan I.; Limousin, Patricia; Zrinzo, Ludvic; Aziz, Tipu Z.; Green, Alexander L.; Brown, Peter; Litvak, Vladimir

    2016-01-01

    Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit. PMID:26971483

  12. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    PubMed

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way.

  13. Subthalamic Nucleus Stimulation and Dysarthria in Parkinson's Disease: A PET Study

    ERIC Educational Resources Information Center

    Pinto, Serge; Thobois, Stephane; Costes, Nicolas; Le Bars, Didier; Benabid, Alim-Louis; Broussolle, Emmanuel; Pollak, Pierre; Gentil, Michele

    2004-01-01

    In Parkinson's disease, functional imaging studies during limb motor tasks reveal cerebral activation abnormalities that can be reversed by subthalamic nucleus (STN) stimulation. The effect of STN stimulation on parkinsonian dysarthria has not, however, been investigated using PET. The aim of the present study was to evaluate the effect of STN…

  14. Subthalamic Neurons Encode Both Single- and Multi-Limb Movements in Parkinson’s Disease Patients

    PubMed Central

    Tankus, Ariel; Strauss, Ido; Gurevich, Tanya; Mirelman, Anat; Giladi, Nir; Fried, Itzhak; Hausdorff, Jeffrey M.

    2017-01-01

    The subthalamic nucleus (STN) is the main target for neurosurgical treatment of motor signs of Parkinson’s disease (PD). Despite the therapeutic effect on both upper and lower extremities, its role in motor control and coordination and its changes in Parkinson’s disease are not fully clear. We intraoperatively recorded single unit activity in ten patients with PD who performed repetitive feet or hand movements while undergoing implantation of a deep brain stimulator. We found both distinct and overlapping representations of upper and lower extremity movement kinematics in subthalamic units and observed evidence for re-routing to a multi-limb representation that participates in limb coordination. The well-known subthalamic somatotopy showed a large overlap of feet and hand representations in the PD patients. This overlap and excessive amounts of kinematics or coordination units may reflect pathophysiology or compensatory mechanisms. Our findings thus explain, at the single neuron level, the important subthalamic role in motor control and coordination and indicate the effect of PD on the neuronal representation of movement. PMID:28211850

  15. Reversible improvement in severe freezing of gait from Parkinson's disease with unilateral interleaved subthalamic brain stimulation.

    PubMed

    Brosius, Stephanie N; Gonzalez, Christopher L; Shuresh, Joshita; Walker, Harrison C

    2015-12-01

    Freezing of gait causes considerable morbidity in patients with Parkinson's disease and is often refractory to conventional treatments. In this double-blind, randomized evaluation, unilateral interleaved deep brain stimulation in the subthalamic nucleus/substantia nigra pars reticulata region significantly improved freezing of gait in a patient with advanced Parkinson's disease.

  16. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  17. Characterization of Ca(2+) channels in rat subthalamic nucleus neurons.

    PubMed

    Song, W J; Baba, Y; Otsuka, T; Murakami, F

    2000-11-01

    The subthalamic nucleus (STN) plays a key role in motor control. Although previous studies have suggested that Ca(2+) conductances may be involved in regulating the activity of STN neurons, Ca(2+) channels in this region have not yet been characterized. We have therefore investigated the subtypes and functional characteristics of Ca(2+) conductances in STN neurons, in both acutely isolated and slice preparations. Acutely isolated STN cells were identified by retrograde filling with the fluorescent dye, Fluoro-Gold. In acutely isolated STN neurons, Cd(2+)-sensitive, depolarization-activated Ba(2+) currents were observed in all cells studied. The current-voltage relationship and current kinetics were characteristic of high-voltage-activated Ca(2+) channels. The steady-state voltage-dependent activation curves and inactivation curves could both be fitted with a single Boltzmann function. Currents evoked with a prolonged pulse, however, inactivated with multiple time constants, suggesting either the presence of more than one Ca(2+) channel subtype or multiple inactivation processes with a single channel type in STN neurons. Experiments using organic Ca(2+) channel blockers revealed that on average, 21% of the current was nifedipine sensitive, 52% was sensitive to omega-conotoxin GVIA, 16% was blocked by a high concentration of omega-agatoxin IVA (200 nM), and the remainder of the current (9%) was resistant to the co-application of all blockers. These currents had similar voltage dependencies, but the nifedipine-sensitive current and the resistant current activated at slightly lower voltages. omega-Agatoxin IVA at 20 nM was ineffective in blocking the current. Together, the above results suggest that acutely isolated STN neurons have all subtypes of high-voltage-activated Ca(2+) channels except for P-type, but have no low-voltage-activated channels. Although acutely isolated neurons provide a good preparation for whole cell voltage-clamp study, dendritic processes are

  18. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation.

    PubMed

    Li, S; Arbuthnott, G W; Jutras, M J; Goldberg, J A; Jaeger, D

    2007-12-01

    Deep brain stimulation (DBS) is an effective treatment of Parkinson's disease (PD) for many patients. The most effective stimulation consists of high-frequency biphasic stimulation pulses around 130 Hz delivered between two active sites of an implanted depth electrode to the subthalamic nucleus (STN-DBS). Multiple studies have shown that a key effect of STN-DBS that correlates well with clinical outcome is the reduction of synchronous and oscillatory activity in cortical and basal ganglia networks. We hypothesized that antidromic cortical activation may provide an underlying mechanism responsible for this effect, because stimulation is usually performed in proximity to cortical efferent pathways. We show with intracellular cortical recordings in rats that STN-DBS did in fact lead to antidromic spiking of deep layer cortical neurons. Furthermore, antidromic spikes triggered a dampened oscillation of local field potentials in cortex with a resonant frequency around 120 Hz. The amplitude of antidromic activation was significantly correlated with an observed suppression of slow wave and beta band activity during STN-DBS. These findings were seen in ketamine-xylazine or isoflurane anesthesia in both normal and 6-hydroxydopamine (6-OHDA)-lesioned rats. Thus antidromic resonant activation of cortical microcircuits may make an important contribution toward counteracting the overly synchronous and oscillatory activity characteristic of cortical activity in PD.

  19. Subthalamic prelemniscal radiation stimulation for the treatment of Parkinson's disease: electrophysiological characterization of the area.

    PubMed

    Jiménez, F; Velasco, F; Velasco, M; Brito, F; Morel, C; Márquez, I; Pérez, M L

    2000-01-01

    Previous reports have provided evidence of a reticulo-thalamic system, extending from the mesencephalic reticular formation (MRF) to the ventrolateral thalamus (VL), involved in the production of tremor. In humans, a funnel of fibers in the posterior subthalamus named the prelemniscal radiations (Raprl) has been described as an exquisite target to treat tremor in cases of Parkinson's disease. In the present study, a group of 14 patients suffering from Parkinson's disease, with prominent unilateral tremor and rigidity, were implanted with tetrapolar depth brain stimulation (DBS) electrodes in Raprl to perform chronic electrical stimulation (ES) for the treatment of patient symptoms. Electrodes were left externalized to corroborate their placement throughout MRI studies and also to perform the following electrophysiological battery: (a) recording of somatosensory-evoked responses (SEP) through different electrode contacts and scalp by means of a paradigm to study the attention process; (b) evoking scalp EEG responses by stimulation with low (3 cps, 6 cps) and high (60-120 cps) frequencies with stimuli delivered through different electrode contacts, and (c) studying recovery cycle (RC) potentials in the Raprl while the upper MRF was being stimulated and, conversely, the RC in MRF while Raprl was being stimulated, before and after subacute Raprl stimulation. Thereafter, the electrodes were internalized and connected to a pulse generator (IPG) to carry on chronic ES, while the effects of stimulation were determined through a quantitative evaluation that measured phasic and tonic muscular activity with EMG recordings during different motor tasks. Results indicate the following: (a) that late, but not early, SEP components were recorded in Raprl and modulated in different attentive conditions; (b) that bilateral recruiting responses and spike and wave complexes were elicited by Raprl through low-frequency stimulation, while bilateral positive DC shifts induced by high

  20. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making

    PubMed Central

    Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K.; Murphy, Gillian; Keeley, Sophie; Whone, Alan L.

    2012-01-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus–response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the ‘normalization term’ in Bayes’ theorem). Here, we test these theories by investigating 22 patients with Parkinson’s disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions—information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their

  1. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making.

    PubMed

    Coulthard, Elizabeth J; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K; Murphy, Gillian; Keeley, Sophie; Whone, Alan L

    2012-12-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a

  2. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico

  3. Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson's disease.

    PubMed

    Lee, Kendall H; Blaha, Charles D; Harris, Brent T; Cooper, Shannon; Hitti, Frederick L; Leiter, James C; Roberts, David W; Kim, Uhnoh

    2006-02-01

    The precise mechanism whereby continuous high-frequency electrical stimulation of the subthalamic nucleus ameliorates motor symptoms of Parkinson's disease is unknown. We examined the effects of high-frequency stimulation of regions dorsal to and within the subthalamic nucleus on dopamine efflux in the striatum of urethane-anaesthetized rats using constant potential amperometry. Complementary extracellular electrophysiological studies determined the activity of subthalamic nucleus neurons in response to similar electrical stimulation of the subthalamic nucleus. High-frequency stimulation of the subthalamic nucleus increased action potential firing in the subthalamic nucleus only during the initial stimulation period and was followed by a cessation of firing over the remainder of stimulation. Electrical stimulation of the subthalamic nucleus with 15 pulses elicited stimulus-time-locked increases in striatal dopamine efflux with maximal peak effects occurring at 50 Hz frequency and 300 microA intensity. Extended subthalamic nucleus stimulation (1000 pulses at 50 Hz; 300 microA) elicited a similar peak increase in striatal dopamine efflux that was followed by a relatively lower steady-state elevation in extracellular dopamine over the course of stimulation. In contrast, extended stimulation immediately adjacent and dorsal to the subthalamic nucleus resulted in an 11-fold greater increase in dopamine efflux that remained elevated over the course of the stimulation. Immunohistochemical staining for tyrosine hydroxylase revealed catecholaminergic fibers running immediately dorsal to and through the subthalamic nucleus. Taken together, these results suggest that enhanced dopamine release within the basal ganglia may be an important mechanism whereby high-frequency stimulation of the subthalamic nucleus improves motor symptoms of Parkinson's disease.

  4. Comparison of weight gain and energy intake after subthalamic versus pallidal stimulation in Parkinson's disease.

    PubMed

    Sauleau, Paul; Leray, Emmanuelle; Rouaud, Tiphaine; Drapier, Sophie; Drapier, Dominique; Blanchard, Sophie; Drillet, Gwenolla; Péron, Julie; Vérin, Marc

    2009-10-30

    To compare body mass index (BMI) and daily energy intake (DEI) after subthalamic versus pallidal deep brain stimulation (DBS). Weight gain following DBS in Parkinson's disease patients remains largely unexplained and no comparison of subthalamic and pallidal (GPi) stimulation has yet been performed. BMI and DEI, dopaminergic drug administration and motor scores were recorded in 46 patients with PD before STN (n = 32) or GPi (n = 14) DBS and 3 and 6 months after. At M6, BMI had increased by an average of 8.4% in the STN group and 3.2% in the GPi group. BMI increased in 28 STN and 9 GPi patients. This increase was significantly higher in the STN group (P < 0.048) and the difference remained significant after adjustment for reduced dopaminergic medication; 28.6% of GPi patients were overweight at 6 months (14.3% preoperatively) versus 37.5% of STN patients (21.9% preoperatively). Changes in BMI were negatively correlated with changes in dyskinesia in the GPi-DBS group. Food intake did not change in the two groups, either quantitatively or qualitatively. Frequent weight gain, inadequately explained by motor improvement or reduced dopaminergic drug dosage, occurred in subthalamic DBS patients. The difference between groups suggests additional factors in the STN group, such as homeostatic control center involvement.

  5. Weight gain following subthalamic nucleus deep brain stimulation: a PET study.

    PubMed

    Sauleau, Paul; Le Jeune, Florence; Drapier, Sophie; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Lalys, Florent; Robert, Gabriel; Drapier, Dominique; Vérin, Marc

    2014-12-01

    Several hypotheses have been put forward to explain weight gain after deep brain stimulation (DBS), but none provides a fully satisfactory account of this adverse effect. We analyzed the correlation between changes in brain metabolism (using positron emission tomography [PET] imaging) and weight gain after bilateral subthalamic nucleus DBS in patients with Parkinson's disease. Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose 3 months before and 4 months after the start of subthalamic nucleus deep brain stimulation in 23 patients with Parkinson's disease. Motor complications (United Parkinson's Disease Rating Scale [UPDRS]-IV scores) and dopaminergic medication were included in the analysis to control for their possible influence on brain metabolism. Mean ± standard deviation (SD) body mass index increased significantly by 0.8 ± 1.5 kg/m(2) (P = 0.03). Correlations were found between weight gain and changes in brain metabolism in limbic and associative areas, including the orbitofrontal cortex (Brodmann areas [BAs] 10 and 11), lateral and medial parts of the temporal lobe (BAs 20, 21, 22,39 and 42), anterior cingulate cortex (BA 32), and retrosplenial cortex (BA 30). However, we found no correlation between weight gain and metabolic changes in sensorimotor areas. These findings suggest that changes in associative and limbic processes contribute to weight gain after subthalamic nucleus DBS in Parkinson's disease.

  6. Weight gain is associated with medial contact site of subthalamic stimulation in Parkinson's disease.

    PubMed

    Růžička, Filip; Jech, Robert; Nováková, Lucie; Urgošík, Dušan; Vymazal, Josef; Růžička, Evžen

    2012-01-01

    The aim of our study was to assess changes in body-weight in relation to active electrode contact position in the subthalamic nucleus. Regular body weight measurements were done in 20 patients with advanced Parkinson's disease within a period of 18 months after implantation. T1-weighted (1.5T) magnetic resonance images were used to determine electrode position in the subthalamic nucleus and the Unified Parkinson's disease rating scale (UPDRS-III) was used for motor assessment. The distance of the contacts from the wall of the third ventricle in the mediolateral direction inversely correlated with weight gain (r = -0.55, p<0.01) and with neurostimulation-related motor condition expressed as the contralateral hemi-body UPDRS-III (r = -0.42, p<0.01). Patients with at least one contact within 9.3 mm of the wall experienced significantly greater weight gain (9.4 ± (SD)4.4 kg, N = 11) than those with both contacts located laterally (3.9 ± 2.7 kg, N = 9) (p<0.001). The position of the active contact is critical not only for motor outcome but is also associated with weight gain, suggesting a regional effect of subthalamic stimulation on adjacent structures involved in the central regulation of energy balance, food intake or reward.

  7. Chronic stress-like syndrome as a consequence of medial site subthalamic stimulation in Parkinson's disease.

    PubMed

    Růžička, Filip; Jech, Robert; Nováková, Lucie; Urgošík, Dušan; Bezdíček, Ondřej; Vymazal, Josef; Růžička, Evžen

    2015-02-01

    Considering the functional organization of the subthalamic nucleus (STN), we hypothesized that subthalamic deep brain stimulation (STN-DBS) in Parkinson's disease might have a differential impact on the hypothalamic-pituitary-adrenal axis in relation to the position of active stimulating contact within the STN. In addition, we searched for any STN-DBS-related morning plasma cortisol changes in association with postoperative anxiety and weight gain. A plasma cortisol measurement was performed on the day of initiation of bilateral STN-DBS and repeated after 1 and 17 months in twenty patients with advanced Parkinson's disease. The body weight change and anxiety scores following the implantation were assessed as well. The electrode positions in the STN were determined on T1-weighted magnetic resonance images. After initiation of stimulation, cortisol levels significantly decreased and the cortisol changes after 1 and 17 months strongly correlated with the position of active contact in the subthalamic area. Patients with at least one contact located more medially in the STN experienced a significantly greater decrease of cortisol than those with one or both active contacts more laterally. Furthermore, the lower cortisol levels were strongly associated with higher trait anxiety and weight gain. These changes mimicked the effects of chronic stress and suggest the disturbing impact of STN-DBS on limbic and motivational systems.

  8. The subthalamic nucleus modulates the early phase of probabilistic classification learning.

    PubMed

    Weiss, Daniel; Lam, Judith M; Breit, Sorin; Gharabaghi, Alireza; Krüger, Rejko; Luft, Andreas R; Wächter, Tobias

    2014-07-01

    Previous models proposed that the subthalamic nucleus (STN) is critical in the early phase of skill acquisition. We hypothesized that subthalamic deep brain stimulation modulates the learning curve in early classification learning. Thirteen idiopathic Parkinson's disease patients (iPD) with subthalamic deep brain stimulation (STN-DBS), 9 medically treated iPD, and 21 age-matched healthy controls were tested with a probabilistic classification task. STN-DBS patients were tested with stimulation OFF and ON, and medically treated patients with medication OFF and ON, respectively. Performance and reaction time were analyzed on the first 100 consecutive trials as early learning phase. Moreover, data were separated for low and high-probability patterns, and more differentiated strategy analyses were used. The major finding was a significant modulation of the learning curve in DBS patients with stimulation ON: although overall learning was similar to healthy controls, only the stimulation ON group showed a transient significant performance dip from trials '41-60' that rapidly recovered. Further analysis indicated that this might be paralleled by a modulation of the learning strategy, particularly on the high-probability patterns. The reaction time was unchanged during the dip. Our study supports that the STN serves as a relay in early classification learning and directs attention toward unacquainted content. The STN might play a role in balancing the short-term success against strategy optimization for improved long-term outcome.

  9. Parkinson's disease progression at 30 years: a study of subthalamic deep brain-stimulated patients.

    PubMed

    Merola, Aristide; Zibetti, Maurizio; Angrisano, Serena; Rizzi, Laura; Ricchi, Valeria; Artusi, Carlo A; Lanotte, Michele; Rizzone, Mario G; Lopiano, Leonardo

    2011-07-01

    Clinical findings in Parkinson's disease suggest that most patients progressively develop disabling non-levodopa-responsive symptoms during the course of the disease. Nevertheless, several heterogeneous factors, such as clinical phenotype, age at onset and genetic aspects may influence the long-term clinical picture. In order to investigate the main features of long-term Parkinson's disease progression, we studied a cohort of 19 subjects treated with subthalamic nucleus deep brain stimulation after >20 years of disease, reporting clinical and neuropsychological data up to a mean of 30 years from disease onset. This group of patients was characterized by an early onset of disease, with a mean age of 38.63 years at Parkinson's disease onset, which was significantly lower than in the other long-term subthalamic nucleus deep brain stimulation follow-up cohorts reported in the literature. All subjects were regularly evaluated by a complete Unified Parkinson's Disease Rating Scale, a battery of neuropsychological tests and a clinical interview, intended to assess the rate of non-levodopa-responsive symptom progression. Clinical data were available for all patients at presurgical baseline and at 1, 3 and 5 years from the subthalamic nucleus deep brain stimulation surgical procedure, while follow-up data after >7 years were additionally reported in a subgroup of 14 patients. The clinical and neuropsychological performance progressively worsened during the course of follow-up; 64% of patients gradually developed falls, 86% dysphagia, 57% urinary incontinence and 43% dementia. A progressive worsening of motor symptoms was observed both in 'medication-ON' condition and in 'stimulation-ON' condition, with a parallel reduction in the synergistic effect of 'medication-ON/stimulation-ON' condition. Neuropsychological data also showed a gradual decline in the performances of all main cognitive domains, with an initial involvement of executive functions, followed by the impairment

  10. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson's disease.

    PubMed

    Hirschmann, Jan; Hartmann, Christian J; Butz, Markus; Hoogenboom, Nienke; Ozkurt, Tolga E; Elben, Saskia; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2013-12-01

    Electrophysiological studies suggest that rest tremor in Parkinson's disease is associated with an alteration of oscillatory activity. Although it is well known that tremor depends on cortico-muscular coupling, it is unclear whether synchronization within and between brain areas is specifically related to the presence and severity of tremor. To tackle this longstanding issue, we took advantage of naturally occurring spontaneous tremor fluctuations and investigated cerebral synchronization in the presence and absence of rest tremor. We simultaneously recorded local field potentials from the subthalamic nucleus, the magnetoencephalogram and the electromyogram of forearm muscles in 11 patients with Parkinson's disease (all male, age: 52-74 years). Recordings took place the day after surgery for deep brain stimulation, after withdrawal of anti-parkinsonian medication. We selected epochs containing spontaneous rest tremor and tremor-free epochs, respectively, and compared power and coherence between subthalamic nucleus, cortex and muscle across conditions. Tremor-associated changes in cerebro-muscular coherence were localized by Dynamic Imaging of Coherent Sources. Subsequently, cortico-cortical coupling was analysed by computation of the imaginary part of coherency, a coupling measure insensitive to volume conduction. After tremor onset, local field potential power increased at individual tremor frequency and cortical power decreased in the beta band (13-30 Hz). Sensor level subthalamic nucleus-cortex, cortico-muscular and subthalamic nucleus-muscle coherence increased during tremor specifically at tremor frequency. The increase in subthalamic nucleus-cortex coherence correlated with the increase in electromyogram power. On the source level, we observed tremor-associated increases in cortico-muscular coherence in primary motor cortex, premotor cortex and posterior parietal cortex contralateral to the tremulous limb. Analysis of the imaginary part of coherency revealed

  11. Encoding of sequence boundaries in the subthalamic nucleus of patients with Parkinson's disease.

    PubMed

    Herrojo Ruiz, María; Rusconi, Marco; Brücke, Christof; Haynes, John-Dylan; Schönecker, Thomas; Kühn, Andrea A

    2014-10-01

    Sequential behaviour is widespread not only in humans but also in animals, ranging in different degrees of complexity from locomotion to birdsong or music performance. The capacity to learn new motor sequences relies on the integrity of basal ganglia-cortical loops. In Parkinson's disease the execution of habitual action sequences as well as the acquisition of novel sequences is impaired partly due to a deficiency in being able to generate internal cues to trigger movement sequences. In addition, patients suffering from Parkinson's disease have difficulty initiating or terminating a self-paced sequence of actions. Direct recordings from the basal ganglia in these patients show an increased level of beta (14-30 Hz) band oscillatory activity associated with impairment in movement initiation. In this framework, the current study aims to evaluate in patients with Parkinson's disease the neuronal activity in the subthalamic nucleus related to the encoding of sequence boundaries during the explicit learning of sensorimotor sequences. We recorded local field potential activity from the subthalamic nucleus of 12 patients who underwent deep brain stimulation for the treatment of advanced Parkinson's disease, while the patients in their usual medicated state practiced sequences of finger movements on a digital piano with corresponding auditory feedback. Our results demonstrate that variability in performance during an early phase of sequence acquisition correlates across patients with changes in the pattern of subthalamic beta-band oscillations; specifically, an anticipatory suppression of beta-band activity at sequence boundaries is linked to better performance. By contrast, a more compromised performance is related to attenuation of beta-band activity before within-sequence elements. Moreover, multivariate pattern classification analysis reveals that differential information about boundaries and within-sequence elements can be decoded at least 100 ms before the keystroke

  12. Modulation of gait coordination by subthalamic stimulation improves freezing of gait.

    PubMed

    Fasano, Alfonso; Herzog, Jan; Seifert, Elena; Stolze, Henning; Falk, Daniela; Reese, René; Volkmann, Jens; Deuschl, Günther

    2011-04-01

    The effect of subthalamic deep brain stimulation on gait coordination and freezing of gait in patients with Parkinson's disease is incompletely understood. The purpose of this study was to investigate the extent to which modulation of symmetry and coordination between legs by subthalamic deep brain stimulation alters the frequency and duration of freezing of gait in patients with Parkinson's disease. We recruited 13 post-subthalamic deep brain stimulation patients with Parkinson's disease with off freezing of gait and evaluated them in the following 4 conditions: subthalamic deep brain stimulation on (ON) and stimulation off (OFF), 50% reduction of stimulation voltage for the leg with shorter step length (worse side reduction) and for the leg with longer step length (better side reduction). Gait analysis was performed on a treadmill and recorded by an optoelectronic analysis system. We measured frequency and duration of freezing of gait episodes. Bilateral coordination of gait was assessed by the Phase Coordination Index, quantifying the ability to generate antiphase stepping. From the OFF to the ON state, freezing of gait improved in frequency (2.0 ± 0.4 to 1.4 ± 0.5 episodes) and duration (12.2 ± 2.6 to 2.6 ± 0.8 seconds; P = .005). Compared with the ON state, only better side reduction further reduced freezing of gait frequency (0.2 ± 0.2) and duration of episodes (0.2 ± 0.2 seconds; P = .03); worse side reduction did not change frequency (1.3 ± 0.4) but increased freezing of gait duration (5.2 ± 2.1 seconds). The better side reduction-associated improvements were accompanied by normalization of gait coordination, as measured by phase coordination index (16.5% ± 6.0%), which was significantly lower than in the other 3 conditions. Reduction of stimulation voltage in the side contralateral to the leg with longer step length improves frequency and duration of freezing of gait through normalization of gait symmetry and coordination in subthalamic deep brain

  13. Ultra-High Field MRI Post Mortem Structural Connectivity of the Human Subthalamic Nucleus, Substantia Nigra, and Globus Pallidus

    PubMed Central

    Plantinga, Birgit R.; Roebroeck, Alard; Kemper, Valentin G.; Uludağ, Kâmil; Melse, Maartje; Mai, Jürgen; Kuijf, Mark L.; Herrler, Andreas; Jahanshahi, Ali; ter Haar Romeny, Bart M.; Temel, Yasin

    2016-01-01

    Introduction: The subthalamic nucleus, substantia nigra, and globus pallidus, three nuclei of the human basal ganglia, play an important role in motor, associative, and limbic processing. The network of the basal ganglia is generally characterized by a direct, indirect, and hyperdirect pathway. This study aims to investigate the mesoscopic nature of these connections between the subthalamic nucleus, substantia nigra, and globus pallidus and their surrounding structures. Methods: A human post mortem brain specimen including the substantia nigra, subthalamic nucleus, and globus pallidus was scanned on a 7 T MRI scanner. High resolution diffusion weighted images were used to reconstruct the fibers intersecting the substantia nigra, subthalamic nucleus, and globus pallidus. The course and density of these tracks was analyzed. Results: Most of the commonly established projections of the subthalamic nucleus, substantia nigra, and globus pallidus were successfully reconstructed. However, some of the reconstructed fiber tracks such as the connections of the substantia nigra pars compacta to the other included nuclei and the connections with the anterior commissure have not been shown previously. In addition, the quantitative tractography approach showed a typical degree of connectivity previously not documented. An example is the relatively larger projections of the subthalamic nucleus to the substantia nigra pars reticulata when compared to the projections to the globus pallidus internus. Discussion: This study shows that ultra-high field post mortem tractography allows for detailed 3D reconstruction of the projections of deep brain structures in humans. Although the results should be interpreted carefully, the newly identified connections contribute to our understanding of the basal ganglia. PMID:27378864

  14. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    PubMed Central

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico

  15. Subthalamic local field potentials in Parkinson's disease and isolated dystonia: An evaluation of potential biomarkers.

    PubMed

    Wang, Doris D; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman E; Miller, Andrew M; Ostrem, Jill L; Galifianakis, Nicholas B; San Luciano, Marta; Starr, Philip A

    2016-05-01

    Local field potentials (LFP) recorded from the subthalamic nucleus in patients with Parkinson's disease (PD) demonstrate prominent oscillations in the beta (13-30 Hz) frequency range, and reduction of beta band spectral power by levodopa and deep brain stimulation (DBS) is correlated with motor symptom improvement. Several features of beta activity have been theorized to be specific biomarkers of the parkinsonian state, though these have rarely been studied in non-parkinsonian conditions. To compare resting state LFP features in PD and isolated dystonia and evaluate disease-specific biomarkers, we recorded subthalamic LFPs from 28 akinetic-rigid PD and 12 isolated dystonia patients during awake DBS implantation. Spectral power and phase-amplitude coupling characteristics were analyzed. In 26/28 PD and 11/12 isolated dystonia patients, the LFP power spectrum had a peak in the beta frequency range, with similar amplitudes between groups. Resting state power did not differ between groups in the theta (5-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), broadband gamma (50-200 Hz), or high frequency oscillation (HFO, 250-350 Hz) bands. Analysis of phase-amplitude coupling between low frequency phase and HFO amplitude revealed significant interactions in 19/28 PD and 6/12 dystonia recordings without significant differences in maximal coupling or preferred phase. Two features of subthalamic LFPs that have been proposed as specific parkinsonian biomarkers, beta power and coupling of beta phase to HFO amplitude, were also present in isolated dystonia, including focal dystonias. This casts doubt on the utility of these metrics as disease-specific diagnostic biomarkers.

  16. Predicting quality of life outcomes after subthalamic nucleus deep brain stimulation

    PubMed Central

    Cooper, Scott E.; Griffith, Sandra D.; Machado, Andre G.

    2014-01-01

    Objectives: To examine disease, treatment, cognitive, and psychological factors associated with quality of life (QoL) before and after surgery and assess the ability to predict QoL outcomes. Methods: We identified a retrospective, cross-sectional sample of 85 patients with Parkinson disease who underwent subthalamic deep brain stimulation (DBS). Patients' QoL was categorized as “improved” and “stable/worsened” using reliable change indices. Univariate correlational analyses identified relationships between Parkinson's Disease Questionnaire–39 ratings and disease (Unified Parkinson's Disease Rating Scale–III [UPDRS-III] motor scores on and off medications, disease duration), treatment (medication burden, unilateral vs bilateral DBS), cognitive (neuropsychological battery), and psychological (depression) variables. Step-wise multiple linear regression and logistic regression models included selected preoperative variables to predict change in QoL ratings and QoL outcome after surgery. Results: Fifty-one percent of patients reported clinically significant improvements in QoL while 47% reported stable QoL and 2% worsened. Motor scores (UPDRS-III) were not relevant to QoL changes, potentially because of the rarity of poor motor outcomes, while single-trial learning and depression scores were the most important variables in predicting QoL changes. There was a subtle additional benefit to undergoing bilateral subthalamic nucleus DBS. Conclusions: The findings provide greater insight into the nonmotor features that contribute to the success of subthalamic nucleus DBS procedures from the patient's perspective and raise questions about the treatment focus and emphasis on symptom profiles in DBS candidacy evaluations. PMID:25274851

  17. Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson's disease

    PubMed Central

    Daniele, A; Albanese, A; Contarino, M; Zinzi, P; Barbier, A; Gasparini, F; Romito, L; Bentivoglio, A; Scerrati, M

    2003-01-01

    Objective: To investigate cognitive and behavioural effects of bilateral lead implants for high frequency stimulation (HFS) of the subthalamic nucleus in patients with Parkinson's disease; and to discriminate between HFS and the effects of surgical intervention on cognitive function by carrying out postoperative cognitive assessments with the stimulators turned on or off. Methods: Motor, cognitive, behavioural, and functional assessments were undertaken in 20 patients with Parkinson's disease before implantation and then at three, six, and 12 months afterwards. Nine patients were also examined 18 months after surgery. Postoperative cognitive assessments were carried out with stimulators turned off at three and 18 months, and turned on at six and 12 months. Results: Cognitive assessment showed a significant postoperative decline in performance on tasks of letter verbal fluency (across all postoperative assessments, but more pronounced at three months) and episodic verbal memory (only at three months, with stimulators off). At three, six, and 12 months after surgery, there was a significant improvement in the mini-mental state examination and in a task of executive function (modified Wisconsin card sorting test). On all postoperative assessments, there was an improvement in parkinsonian motor symptoms, quality of life, and activities of daily living while off antiparkinsonian drugs. A significant postoperative decrease in depressive and anxiety symptoms was observed across all assessments. Similar results were seen in the subgroup of nine patients with an 18 month follow up. Following implantation, three patients developed transient manic symptoms and one showed persistent psychic akinesia. Conclusions: Bilateral HFS of the subthalamic nucleus is a relatively safe procedure with respect to long term cognitive and behavioural morbidity, although individual variability in postoperative cognitive and behavioural outcome invites caution. Stimulation of the subthalamic

  18. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease

    PubMed Central

    Krack, Paul; Lang, Anthony E.; Lozano, Andres M.; Dujardin, Kathy; Schüpbach, Michael; D’Ambrosia, James; Thobois, Stephane; Tamma, Filippo; Herzog, Jan; Speelman, Johannes D.; Samanta, Johan; Kubu, Cynthia; Rossignol, Helene; Poon, Yu-Yan; Saint-Cyr, Jean A.; Ardouin, Claire; Moro, Elena

    2008-01-01

    Subthalamic nucleus deep brain stimulation improves motor symptoms and quality of life in advanced Parkinson's disease. As after other life-altering surgeries, suicides have been reported following deep brain stimulation for movement disorders. We sought to determine the suicide rate following subthalamic nucleus deep brain stimulation for Parkinson's disease by conducting an international multicentre retrospective survey of movement disorder and surgical centres. We further sought to determine factors associated with suicide attempts through a nested case-control study. In the survey of suicide rate, 55/75 centres participated. The completed suicide percentage was 0.45% (24/5311) and attempted suicide percentage was 0.90% (48/5311). Observed suicide rates in the first postoperative year (263/100 000/year) (0.26%) were higher than the lowest and the highest expected age-, gender- and country-adjusted World Health Organization suicide rates (Standardized Mortality Ratio for suicide: SMR 12.63–15.64; P < 0.001) and remained elevated at the fourth postoperative year (38/100 000/year) (0.04%) (SMR 1.81–2.31; P < 0.05). The excess number of deaths was 13 for the first postoperative year and one for the fourth postoperative year. In the case-control study of associated factors, 10 centres participated. Twenty-seven attempted suicides and nine completed suicides were compared with 70 controls. Postoperative depression (P < 0.001), being single (P = 0.007) and a previous history of impulse control disorders or compulsive medication use (P = 0.005) were independent associated factors accounting for 51% of the variance for attempted suicide risk. Attempted suicides were also associated (P < 0.05) with being younger, younger Parkinson's disease onset and a previous suicide attempt. Completed suicides were associated with postoperative depression (P < 0.001). Postoperative depression remained a significant factor associated with attempted and completed suicides after

  19. Combined pallidal and subthalamic nucleus stimulation in sporadic dystonia-parkinsonism.

    PubMed

    Wöhrle, Johannes C; Blahak, Christian; Capelle, Hans-Holger; Fogel, Wolfgang; Bäzner, Hansjoerg; Krauss, Joachim K

    2012-01-01

    Multifocal deep brain stimulation (DBS) is a new technique that has been introduced recently. A 39-year-old man with dystonia-parkinsonism underwent the simultaneous implantation of subthalamic nucleus (STN) and globus pallidus internus (GPi) DBS electrodes. While bilateral STN DBS controlled the parkinsonian symptoms well and allowed for a reduction in levodopa, the improvement of dystonia was only temporary. Additional GPi DBS also alleviated dystonic symptoms. Formal assessment at the 1-year follow-up showed that both the parkinsonian symptoms and the dystonia were markedly improved via continuous bilateral combined STN and GPi stimulation. Sustained benefit was achieved at 3 years postoperatively.

  20. Mood Response to Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson Disease

    PubMed Central

    Campbell, Meghan C.; Black, Kevin J.; Weaver, Patrick M.; Lugar, Heather M.; Videen, Tom O.; Tabbal, Samer D.; Karimi, Morvarid; Perlmutter, Joel S.; Hershey, Tamara

    2012-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson disease (PD) improves motor function but has variable effects on mood. Little is known about the relationship between electrode contact location and mood response. We identified the anatomical location of electrode contacts and measured mood response to stimulation with the Visual Analog Scale in 24 STN DBS PD patients. Participants reported greater positive mood, decreased anxiety and apathy with bilateral and unilateral stimulation. Left DBS improved mood more than right DBS. Right DBS-induced increase in positive mood was related to more medial and dorsal contact locations. These results highlight the functional heterogeneity of the STN. PMID:22450611

  1. Addiction in Parkinson's disease: impact of subthalamic nucleus deep brain stimulation.

    PubMed

    Witjas, Tatiana; Baunez, Christelle; Henry, Jean Marc; Delfini, Marie; Regis, Jean; Cherif, André Ali; Peragut, Jean Claude; Azulay, Jean Philippe

    2005-08-01

    In Parkinson's disease, dopamine dysregulation syndrome (DDS) is characterized by severe dopamine addiction and behavioral disorders such as manic psychosis, hypersexuality, pathological gambling, and mood swings. Here, we describe the case of 2 young parkinsonian patients suffering from disabling motor fluctuations and dyskinesia associated with severe DDS. In addition to alleviating the motor disability in both patients, subthalamic nucleus (STN) deep brain stimulation greatly reduced the behavioral disorders as well as completely abolished the addiction to dopaminergic treatment. Dopaminergic addiction in patients with Parkinson's disease, therefore, does not constitute an obstacle to high-frequency STN stimulation, and this treatment may even cure the addiction.

  2. Statistical Power of Studies Examining the Cognitive Effects of Subthalamic Nucleaus Deep Brain Stimulation in Parkinson’s Disease

    DTIC Science & Technology

    2006-01-01

    bilateral subthalamic nucleus stimulation in Parkinson’s disease. Archives of Clinical Neuropsychology , 19, 165–181. 36 STEVEN PAUL WOODS ET AL. Patel...Formulae, illustrative numerical examples, and heuristic interpretation of effect size analyses for neuropsychological researchers. Archives of Clinical Neuropsychology , 16, 653–667. 38 STEVEN PAUL WOODS ET AL.

  3. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease

    PubMed Central

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.

    2016-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437

  4. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.

    2016-09-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.

  5. Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…

  6. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  7. Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder.

    PubMed

    Burbaud, Pierre; Clair, Anne-Hélène; Langbour, Nicolas; Fernandez-Vidal, Sara; Goillandeau, Michel; Michelet, Thomas; Bardinet, Eric; Chéreau, Isabelle; Durif, Franck; Polosan, Mircea; Chabardès, Stephan; Fontaine, Denys; Magnié-Mauro, Marie-Noelle; Houeto, Jean-Luc; Bataille, Benoît; Millet, Bruno; Vérin, Marc; Baup, Nicolas; Krebs, Marie-Odile; Cornu, Philippe; Pelissolo, Antoine; Arbus, Christophe; Simonetta-Moreau, Marion; Yelnik, Jérôme; Welter, Marie-Laure; Mallet, Luc

    2013-01-01

    Doubt, and its behavioural correlate, checking, is a normal phenomenon of human cognition that is dramatically exacerbated in obsessive-compulsive disorder. We recently showed that deep brain stimulation in the associative-limbic area of the subthalamic nucleus, a central core of the basal ganglia, improved obsessive-compulsive disorder. To understand the physiological bases of symptoms in such patients, we recorded the activity of individual neurons in the therapeutic target during surgery while subjects performed a cognitive task that gave them the possibility of unrestricted repetitive checking after they had made a choice. We postulated that the activity of neurons in this region could be influenced by doubt and checking behaviour. Among the 63/87 task-related neurons recorded in 10 patients, 60% responded to various combinations of instructions, delay, movement or feedback, thus highlighting their role in the integration of different types of information. In addition, task-related activity directed towards decision-making increased during trials with checking in comparison with those without checking. These results suggest that the associative-limbic subthalamic nucleus plays a role in doubt-related repetitive thoughts. Overall, our results not only provide new insight into the role of the subthalamic nucleus in human cognition but also support the fact that subthalamic nucleus modulation by deep brain stimulation reduced compulsive behaviour in patients with obsessive-compulsive disorder.

  8. Effects of Stimulation of the Subthalamic Nucleus on Naming and Reading Nouns and Verbs in Parkinson's Disease

    ERIC Educational Resources Information Center

    Silveri, Maria Caterina; Ciccarelli, Nicoletta; Baldonero, Eleonora; Piano, Carla; Zinno, Massimiliano; Soleti, Francesco; Bentivoglio, Anna Rita; Albanese, Alberto; Daniele, Antonio

    2012-01-01

    An impairment for verbs has been described in patients with Parkinson's disease (PD), suggesting that a disruption of frontal-subcortical circuits may result in dysfunction of the neural systems involved in action-verb processing. A previous study suggested that deep brain stimulation (DBS) of the subthalamic nucleus (STN) during verb generation…

  9. [Cross Frequency Coupling Characteristic Analysis in Subthalamic Local Field Potentials of Parkinson's Disease].

    PubMed

    Wang, Zongbao; Huang, Yongzhi; Zhang, Xinjing; Geng, Xinyi; Chen, Xiao; Wang, Shouyan

    2015-08-01

    Pathological neural activity in subthalamic nucleus (STN) is closely related to the symptoms of Parkinson' s disease. Local field potentials (LFPs) recordings from subthalamic nucleus show that power spectral peaks exist at tremor, double tremor and tripble tremor frequencies, respectively. The interaction between these components in the multi-frequency tremor may be related to the generation of tremor. To study the linear and nonlinear relationship between those components, we analyzed STN LFPs from 9 Parkinson's disease patients using time frequency, cross correlation, Granger casuality and bi-spectral analysis. Results of the time-frequency analysis and cross-frequency correlation analysis demonstrated that the power density of those components significantly decreased as the alleviation of tremor and cross-correlation (0.18-0.50) exists during tremor period. Granger causality of the time-variant amplitude showed stronger contribution from tremor to double tremor components, and contributions from both tremor and double tremor components to triple tremor component. Quadratic phase couplings among these three components were detected by the bispectral approaches. The linear and nonlinear relationships existed among the multi-components and certainly confirmed that the dependence cross those frequencies and neurological mechanism of tremor involved complicate neural processes.

  10. Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients.

    PubMed

    Amtage, Florian; Henschel, Kathrin; Schelter, Björn; Vesper, Jan; Timmer, Jens; Lücking, Carl Hermann; Hellwig, Bernhard

    2008-09-19

    Tremor in Parkinson's disease (PD) is generated by an oscillatory neuronal network consisting of cortex, basal ganglia and thalamus. The subthalamic nucleus (STN) which is part of the basal ganglia is of particular interest, since deep brain stimulation of the STN is an effective treatment for PD including Parkinsonian tremor. It is controversial if and how the STN contributes to tremor generation. In this study, we analyze neuronal STN activity in seven patients with Parkinsonian rest tremor who underwent stereotactic surgery for deep brain stimulation. Surface EMG was recorded from the wrist flexors and extensors. Simultaneously, neuronal spike activity was registered in different depths of the STN using an array of five microelectrodes. After spike-sorting, spectral coherence was analyzed between spike activity of STN neurons and tremor activity. Significant coherence at the tremor frequency was detected between EMG and neuronal STN activity in 76 out of 145 neurons (52.4%). In contrast, coherence in the beta band occurred only in 10 out of 145 neurons (6.9%). Tremor-coherent STN activity was widely distributed over the STN being more frequent in its dorsal parts (70.8-88.9%) than in its ventral parts (25.0-48.0%). Our results suggest that synchronous neuronal STN activity at the tremor frequency contributes to the pathogenesis of Parkinsonian tremor. The wide-spread spatial distribution of tremor-coherent spike activity argues for the recruitment of an extended network of subthalamic neurons for tremor generation.

  11. Comparison of oscillatory activity in subthalamic nucleus in Parkinson's disease and dystonia

    PubMed Central

    Jiang, Yin; Ashkan, Keyoumars; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander; Aziz, Tipu; Brown, Peter; Wang, Shouyan

    2017-01-01

    Objectives Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been successfully used to treat both Parkinson's disease (PD) and dystonia. Local field potentials (LFPs) recorded from the STN of PD patients demonstrate prominent beta frequency band activity. It is unclear whether such activity occurs in the STN in dystonia, and, if not, whether dystonia has another distinctive neural population activity in the STN. Methods Twelve patients with PD, and eight patients with dystonia underwent DBS electrode implantation targeting the STN. Seven dystonia patients were off medication and one was on aripiprazole and clonazepam. LFPs were recorded from the DBS electrodes in PD in the on/off medication states and in dystonia. Power spectra and temporal dynamics measured by the with Lempel-Ziv complexity of the LFPs were compared among these states. Results Normalised power spectra and Lempel-Ziv complexity of subthalamic LFPs differed between dystonia off and PD on/off, and between PD off and on over the low frequency, beta and high gamma bands. Patients with dystonia and off medication had lower beta power but higher low frequency and high gamma power than PD. Spectral power in the low beta frequency (11–20 Hz) range was attenuated in medicated PD. Conclusion The results suggest that dystonia and PD are characterized by different patterns of oscillatory activities even within the same nucleus, and exaggerated beta activity may relate to hypo-dopaminergic status. PMID:27940307

  12. Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus.

    PubMed

    Foffani, G; Bianchi, A M; Baselli, G; Priori, A

    2005-10-15

    Event-related changes of brain electrical rhythms are typically analysed as amplitude modulations of local field potential (LFP) oscillations, like radio amplitude modulation broadcasting. In telecommunications, frequency modulation (FM) is less susceptible to interference than amplitude modulation (AM) and is therefore preferred for high-fidelity transmissions. Here we hypothesized that LFP rhythms detected from deep brain stimulation (DBS) electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease could represent movement-related activity not only in AM but also in FM. By combining adaptive autoregressive identification with spectral power decomposition, we were able to show that FM of low-beta (13-20 Hz) and high-beta (20-35 Hz) rhythms significantly contributes to the involvement of the human STN in movement preparation, execution and recovery, and that the FM patterns are regulated by the dopamine levels in the system. Movement-related FM of beta oscillatory activity in the human subthalamic nucleus therefore provides a novel informational domain for rhythm-based pathophysiological models of cortico-basal ganglia processing.

  13. Activity Parameters of Subthalamic Nucleus Neurons Selectively Predict Motor Symptom Severity in Parkinson's Disease

    PubMed Central

    Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A.; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A.; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K.

    2014-01-01

    Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype. PMID:24790198

  14. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson's disease.

    PubMed

    Sharott, Andrew; Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K; Moll, Christian K E

    2014-04-30

    Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥ 10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype.

  15. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys

    PubMed Central

    Deffains, Marc; Iskhakova, Liliya; Katabi, Shiran; Haber, Suzanne N; Israel, Zvi; Bergman, Hagai

    2016-01-01

    The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI: http://dx.doi.org/10.7554/eLife.16443.001 PMID:27552049

  16. Subthalamic nucleus deep brain stimulation affects distractor interference in auditory working memory.

    PubMed

    Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S

    2017-03-01

    Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition.

  17. Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus

    PubMed Central

    Foffani, G; Bianchi, AM; Baselli, G; Priori, A

    2005-01-01

    Event-related changes of brain electrical rhythms are typically analysed as amplitude modulations of local field potential (LFP) oscillations, like radio amplitude modulation broadcasting. In telecommunications, frequency modulation (FM) is less susceptible to interference than amplitude modulation (AM) and is therefore preferred for high-fidelity transmissions. Here we hypothesized that LFP rhythms detected from deep brain stimulation (DBS) electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease could represent movement-related activity not only in AM but also in FM. By combining adaptive autoregressive identification with spectral power decomposition, we were able to show that FM of low-beta (13–20 Hz) and high-beta (20–35 Hz) rhythms significantly contributes to the involvement of the human STN in movement preparation, execution and recovery, and that the FM patterns are regulated by the dopamine levels in the system. Movement-related FM of beta oscillatory activity in the human subthalamic nucleus therefore provides a novel informational domain for rhythm-based pathophysiological models of cortico-basal ganglia processing. PMID:16123109

  18. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)–P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease. SIGNIFICANCE STATEMENT The subthalamic nucleus (STN) is a key component of the basal ganglia, a group of subcortical nuclei that control movement and are dysregulated in movement disorders such as Parkinson's disease. Subthalamic neurons receive direct excitatory input, but the pharmacology of excitatory

  19. Activation of GABA(A) receptors in subthalamic neurons in vitro: properties of native receptors and inhibition mechanisms.

    PubMed

    Baufreton, J; Garret, M; Dovero, S; Dufy, B; Bioulac, B; Taupignon, A

    2001-07-01

    The subthalamic nucleus (STN) influences the output of the basal ganglia, thereby interfering with motor behavior. The main inputs to the STN are GABAergic. We characterized the GABA(A) receptors expressed in the STN and investigated the response of subthalamic neurons to the activation of GABA(A) receptors. Cell-attached and whole cell recordings were made from rat brain slices using the patch-clamp technique. The newly identified epsilon subunit confers atypical pharmacological properties on recombinant receptors, which are insensitive to barbiturates and benzodiazepines. We tested the hypothesis that native subthalamic GABA(A) receptors contain epsilon proteins. Applications of increasing concentrations of muscimol, a selective GABA(A) agonist, induced Cl(-) and HCO currents with an EC(50) of 5 microM. Currents induced by muscimol were fully blocked by the GABA(A) receptor antagonists, bicuculline and picrotoxin. They were strongly potentiated by the barbiturate, pentobarbital (+190%), and by the benzodiazepines, diazepam (+197%) and flunitrazepam (+199%). Spontaneous inhibitory postsynaptic currents were also significantly enhanced by flunitrazepam. Furthermore, immunohistological experiments with an epsilon subunit-specific antibody showed that the epsilon protein was not expressed within the STN. Native subthalamic GABA(A) receptors did not, therefore, display pharmacological or structural properties consistent with receptors comprising epsilon. Burst firing is a hallmark of Parkinson's disease. Half of the subthalamic neurons have the intrinsic capacity of switching from regular-firing to burst-firing mode when hyperpolarized by current injection. This raises the possibility that activation of GABA(A) receptors might trigger the switch. Statistical analysis of spiking activity established that 90% of intact neurons in vitro were in single-spike firing mode, whereas 10% were in burst-firing mode. Muscimol reversibly stopped recurrent electrical activity in

  20. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making

    PubMed Central

    Zénon, Alexandre; Duclos, Yann; Carron, Romain; Witjas, Tatiana; Baunez, Christelle; Régis, Jean; Azulay, Jean-Philippe; Brown, Peter; Eusebio, Alexandre

    2016-01-01

    Adaptive behaviour entails the capacity to select actions as a function of their energy cost and expected value and the disruption of this faculty is now viewed as a possible cause of the symptoms of Parkinson’s disease. Indirect evidence points to the involvement of the subthalamic nucleus—the most common target for deep brain stimulation in Parkinson’s disease—in cost-benefit computation. However, this putative function appears at odds with the current view that the subthalamic nucleus is important for adjusting behaviour to conflict. Here we tested these contrasting hypotheses by recording the neuronal activity of the subthalamic nucleus of patients with Parkinson’s disease during an effort-based decision task. Local field potentials were recorded from the subthalamic nucleus of 12 patients with advanced Parkinson’s disease (mean age 63.8 years ± 6.8; mean disease duration 9.4 years ± 2.5) both OFF and ON levodopa while they had to decide whether to engage in an effort task based on the level of effort required and the value of the reward promised in return. The data were analysed using generalized linear mixed models and cluster-based permutation methods. Behaviourally, the probability of trial acceptance increased with the reward value and decreased with the required effort level. Dopamine replacement therapy increased the rate of acceptance for efforts associated with low rewards. When recording the subthalamic nucleus activity, we found a clear neural response to both reward and effort cues in the 1–10 Hz range. In addition these responses were informative of the subjective value of reward and level of effort rather than their actual quantities, such that they were predictive of the participant’s decisions. OFF levodopa, this link with acceptance was weakened. Finally, we found that these responses did not index conflict, as they did not vary as a function of the distance from indifference in the acceptance decision. These findings show

  1. The human subthalamic nucleus encodes the subjective value of reward and the cost of effort during decision-making.

    PubMed

    Zénon, Alexandre; Duclos, Yann; Carron, Romain; Witjas, Tatiana; Baunez, Christelle; Régis, Jean; Azulay, Jean-Philippe; Brown, Peter; Eusebio, Alexandre

    2016-06-01

    Adaptive behaviour entails the capacity to select actions as a function of their energy cost and expected value and the disruption of this faculty is now viewed as a possible cause of the symptoms of Parkinson's disease. Indirect evidence points to the involvement of the subthalamic nucleus-the most common target for deep brain stimulation in Parkinson's disease-in cost-benefit computation. However, this putative function appears at odds with the current view that the subthalamic nucleus is important for adjusting behaviour to conflict. Here we tested these contrasting hypotheses by recording the neuronal activity of the subthalamic nucleus of patients with Parkinson's disease during an effort-based decision task. Local field potentials were recorded from the subthalamic nucleus of 12 patients with advanced Parkinson's disease (mean age 63.8 years ± 6.8; mean disease duration 9.4 years ± 2.5) both OFF and ON levodopa while they had to decide whether to engage in an effort task based on the level of effort required and the value of the reward promised in return. The data were analysed using generalized linear mixed models and cluster-based permutation methods. Behaviourally, the probability of trial acceptance increased with the reward value and decreased with the required effort level. Dopamine replacement therapy increased the rate of acceptance for efforts associated with low rewards. When recording the subthalamic nucleus activity, we found a clear neural response to both reward and effort cues in the 1-10 Hz range. In addition these responses were informative of the subjective value of reward and level of effort rather than their actual quantities, such that they were predictive of the participant's decisions. OFF levodopa, this link with acceptance was weakened. Finally, we found that these responses did not index conflict, as they did not vary as a function of the distance from indifference in the acceptance decision. These findings show that low

  2. Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans.

    PubMed

    Tan, Huiling; Pogosyan, Alek; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Brown, Peter

    2016-11-18

    The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55-90 Hz) and beta (13-30m Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces.

  3. Dopamine receptors set the pattern of activity generated in subthalamic neurons.

    PubMed

    Baufreton, J; Zhu, Z-T; Garret, M; Bioulac, B; Johnson, S W; Taupignon, A I

    2005-11-01

    Information processing in the brain requires adequate background neuronal activity. As Parkinson's disease progresses, patients typically become akinetic; the death of dopaminergic neurons leads to a dopamine-depleted state, which disrupts information processing related to movement in a brain area called the basal ganglia. Using agonists of dopamine receptors in the D1 and D2 families on rat brain slices, we show that dopamine receptors in these two families govern the firing pattern of neurons in the subthalamic nucleus, a crucial part of the basal ganglia. We propose a conceptual frame, based on specific properties of dopamine receptors, to account for the dominance of different background firing patterns in normal and dopamine-depleted states.

  4. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    PubMed

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions.

  5. Treatment of dysarthria following subthalamic nucleus deep brain stimulation for Parkinson’s disease

    PubMed Central

    Tripoliti, Elina; Strong, Laura; Hickey, Freya; Foltynie, Tom; Zrinzo, Ludvic; Candelario, Joseph; Hariz, Marwan; Limousin, Patricia

    2011-01-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established treatment for patients with Parkinson’s disease (PD). Speech impairment is a frequent side effect of the surgery. This study examined the efficacy of an intensive speech treatment (the Lee Silverman Voice Treatment, LSVT) on dysarthria after STN-DBS. The LSVT was administered in ten patients with STN-DBS (surgical group) and ten patients without (medical group). Patients were assessed before, immediately after and six months following the speech treatment using sustained phonation, a speech intelligibility scale and monologue. Vocal loudness, speech intelligibility and perceptual ratings were the primary outcome measures. Vocal loudness and perceptual scores improved significantly across tasks for the medical group only. Speech intelligibility did not significantly change for either group. Results in the surgical group were variable with some patients deteriorating. Treatment of dysarthria following STN-DBS needs further investigation due to the variable response to LSVT. PMID:21953693

  6. Parkinson's disease patients with bilateral subthalamic deep brain stimulation gain weight.

    PubMed

    Macia, Frédéric; Perlemoine, Caroline; Coman, Irène; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Gin, Henri; Rigalleau, Vincent; Tison, François

    2004-02-01

    Weight, body mass index (BMI) and energy expenditure/energy intake (EE/EI) was studied in 19 Parkinson's disease (PD) patients after subthalamic deep brain stimulation (STN-DBS) versus 14 nonoperated ones. Operated patients had a significant weight gain (WG, + 9.7 +/- 7 kg) and BMI increase (+ 4.7 kg/m2). The fat mass was higher after STN-DBS. Resting EE (REE; offdrug/ON stimulation) was significantly decreased in STN-DBS patients, while their daily energy expenditure (DEI) was not significantly different. A significant correlation was found among WG, BMI increase, and pre-operative levodopa-equivalent daily dose, their reduction after STN-DBS, and the differential REE related to stimulation and the REE in the offdrug/OFF stimulation condition. In conclusion, STN-DBS in PD induces a significant WG associated with a reduction in REE without DEI adjustment.

  7. Pedunculopontine nucleus evoked potentials from subthalamic nucleus stimulation in Parkinson's disease.

    PubMed

    Neagu, Bogdan; Tsang, Eric; Mazzella, Filomena; Hamani, Clement; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Chen, Robert

    2013-12-01

    The effects of subthalamic nucleus (STN) stimulation on the pedunculopontine nucleus area (PPNR) evoked activities were examined in two patients with Parkinson's disease. The patients had previously undergone bilateral STN deep brain stimulation (DBS) and subsequently received unilateral DBS electrodes in the PPNR. Evoked potentials were recorded from the local field potentials (LFP) from the PPNR with STN stimulation at different frequencies and bipolar contacts. Ipsilateral and contralateral short latency (<2ms) PPNR responses were evoked from left but not from right STN stimulation. In both patients, STN stimulation evoked contralateral PPNR responses at medium latencies between 41 and 45ms. Cortical evoked potentials to single pulse STN stimulation were observed at latencies between 18 and 27ms. These results demonstrate a functional connection between the STN and the PPNR. It likely involves direct projections between the STN and PPNR or polysynaptic pathways with thalamic or cortical relays.

  8. Oscillatory entrainment of subthalamic nucleus neurons and behavioural consequences in rodents and primates.

    PubMed

    Syed, E C J; Benazzouz, A; Taillade, M; Baufreton, J; Champeaux, K; Falgairolle, M; Bioulac, B; Gross, C E; Boraud, T

    2012-11-01

    We investigated the functional role of oscillatory activity in the local field potential (LFP) of the subthalamic nucleus (STN) in the pathophysiology of Parkinson's disease (PD). It has been postulated that beta (15-30 Hz) oscillatory activity in the basal ganglia induces PD motor symptoms. To assess this hypothesis, an LFP showing significant power in the beta frequency range (23 Hz) was used as a stimulus both in vitro and in vivo. We first demonstrated in rat brain slices that STN neuronal activity was driven by the LFP stimulation. We then applied beta stimulation to the STN of 16 rats and two monkeys while quantifying motor behaviour. Although stimulation-induced behavioural effects were observed, stimulation of the STN at 23 Hz induced no significant decrease in motor performance in either rodents or primates. This study is the first to show LFP-induced behaviour in both rats and primates, and highlights the complex relationship between beta power and parkinsonian symptoms.

  9. Imaging Impulsivity in Parkinson's Disease and the Contribution of the Subthalamic Nucleus

    PubMed Central

    Ray, Nicola; Antonelli, Francesca; Strafella, Antonio P.

    2011-01-01

    Taking risks is a natural human response, but, in some, risk taking is compulsive and may be detrimental. The subthalamic nucleus (STN) is thought to play a large role in our ability to inhibit responses. Differences between individuals' ability to inhibit inappropriate responses may underlie both the normal variation in trait impulsivity in the healthy population, as well as the pathological compulsions experienced by those with impulse control disorders (ICDs). Thus, we review the role of the STN in response inhibition, with a particular focus on studies employing imaging methodology. We also review the latest evidence that disruption of the function of the STN by deep brain stimulation in patients with Parkinson's disease can increase impulsivity. PMID:21765999

  10. Modulation of beta oscillations in the subthalamic area during motor imagery in Parkinson's disease.

    PubMed

    Kühn, Andrea A; Doyle, Louise; Pogosyan, Alek; Yarrow, Kielan; Kupsch, Andreas; Schneider, Gerd-Helge; Hariz, Marwan I; Trottenberg, Thomas; Brown, Peter

    2006-03-01

    Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the extent to which the activation during movement is related to efferent processes or feedback-related motor control remains unclear. We used motor imagery (MI), which eliminates peripheral feedback, to further investigate the role of the subthalamic area in the feedforward organization of movement. We recorded local field potential (LPF) activity from the region of the subthalamic nucleus (STN) in eight patients with Parkinson's disease off dopaminergic medication during performance of a warned reaction time task. Patients were instructed to either extend the wrist [motor execution (ME)], to imagine performing the same task without any overt movement (MI), or, in a subgroup, to perform a non-motor visual imagery (VI) task. MI led to event-related desynchronization (ERD) of oscillatory beta activity in the region of the STN in all patients that was similar in frequency, time course and degree to the ERD occurring during ME. The degree of ERD during MI correlated with the ERD in trials of ME and, like ME, was accompanied by a decrease in cortico-STN coherence, so that STN LFP activity during MI was similar to that in ME. The ERD in ME and MI were both significantly larger than the ERD in VI. In contrast, event-related synchronization (ERS) was significantly smaller in trials of MI, and even smaller in trials of VI, than during ME. The data suggest that the activity in the region of the human STN indexed by the ERD during movement is related to the feedforward organization of movement and is relatively independent of peripheral feedback. In contrast, sensorimotor feedback is an important factor in the ERS occurring in the STN area after completion of movement, consistent with a role for this region in trial-to-trial motor learning or the re-establishment of postural set following movements.

  11. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region

    PubMed Central

    Chaturvedi, Ashutosh; Foutz, Thomas J.; McIntyre, Cameron C.

    2012-01-01

    Deep brain stimulation (DBS) has steadily evolved into an established surgical therapy for numerous neurological disorders, most notably Parkinson’s disease (PD). Traditional DBS technology relies on voltage-controlled stimulation with a single source; however, recent engineering advances are providing current-controlled devices with multiple independent sources. These new stimulators deliver constant current to the brain tissue, irrespective of impedance changes that occur around the electrode, and enable more specific steering of current towards targeted regions of interest. In this study, we examined the impact of current steering between multiple electrode contacts to directly activate three distinct neural populations in the subthalamic region commonly stimulated for the treatment of PD: projection neurons of the subthalamic nucleus (STN), globus pallidus internus (GPi) fibers of the lenticular fasiculus, and internal capsule (IC) fibers of passage. We used three-dimensional finite element electric field models, along with detailed multi-compartment cable models of the three neural populations to determine their activations using a wide range of stimulation parameter settings. Our results indicate that selective activation of neural populations largely depends on the location of the active electrode(s). Greater activation of the GPi and STN populations (without activating any side-effect related IC fibers) was achieved by current steering with multiple independent sources, compared to a single current source. Despite this potential advantage, it remains to be seen if these theoretical predictions result in a measurable clinical effect that outweighs the added complexity of the expanded stimulation parameter search space generated by the more flexible technology. PMID:22277548

  12. Impact of Combined Subthalamic Nucleus and Substantia Nigra Stimulation on Neuropsychiatric Symptoms in Parkinson's Disease Patients.

    PubMed

    Hidding, U; Gulberti, A; Horn, A; Buhmann, C; Hamel, W; Koeppen, J A; Westphal, M; Engel, A K; Gerloff, C; Weiss, D; Moll, C K E; Pötter-Nerger, M

    2017-01-01

    The goal of the study was to compare the tolerability and the effects of conventional subthalamic nucleus (STN) and combined subthalamic nucleus and substantia nigra (STN+SNr) high-frequency stimulation in regard to neuropsychiatric symptoms in Parkinson's disease patients. In this single center, randomized, double-blind, cross-over clinical trial, twelve patients with advanced Parkinson's disease (1 female; age: 61.3 ± 7.3 years; disease duration: 12.3 ± 5.4 years; Hoehn and Yahr stage: 2.2 ± 0.39) were included. Apathy, fatigue, depression, and impulse control disorder were assessed using a comprehensive set of standardized rating scales and questionnaires such as the Lille Apathy Rating Scale (LARS), Modified Fatigue Impact Scale (MFIS), Becks Depression Inventory (BDI-I), Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale (QUIP-RS), and Parkinson's Disease Questionnaire (PDQ-39). Three patients that were initially assigned to the STN+SNr stimulation mode withdrew from the study within the first week due to discomfort. Statistical comparison of data retrieved from patients who completed the study revealed no significant differences between both stimulation conditions in terms of mean scores of scales measuring apathy, fatigue, depression, impulse control disorder, and quality of life. Individual cases showed an improvement of apathy under combined STN+SNr stimulation. In general, combined STN+SNr stimulation seems to be safe in terms of neuropsychiatric side effects, although careful patient selection and monitoring in the short-term period after changing stimulation settings are recommended.

  13. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NASA Astrophysics Data System (ADS)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-08-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson’s disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The objective of this study is to compare the performances of a new HD lead with a conventional cylindrical contact (CC) lead. Approach. A computational model, consisting of a finite element electric field model combined with multi-compartment neuron and axon models representing different neural populations in the subthalamic region, was used to evaluate the two leads. We compared ring-mode and steering-mode stimulation with the HD lead to single contact stimulation with the CC lead. These stimulation modes were tested for the lead: (1) positioned in the centroid of the STN, (2) shifted 1 mm towards the internal capsule (IC), and (3) shifted 2 mm towards the IC. Under these conditions, we quantified the number of STN neurons that were activated without activating IC fibers, which are known to cause side-effects. Main results. The modeling results show that the HD lead is able to mimic the stimulation effect of the CC lead. Additionally, in steering-mode stimulation there was a significant increase of activated STN neurons compared to the CC mode. Significance. From the model simulations we conclude that the HD lead in steering-mode with optimized stimulation parameter selection can stimulate more STN cells. Next, the clinical impact of the increased number of activated STN cells should be tested and balanced across the increased complexity of identifying the optimized stimulation parameter settings for the HD lead.

  14. Impact of Combined Subthalamic Nucleus and Substantia Nigra Stimulation on Neuropsychiatric Symptoms in Parkinson's Disease Patients

    PubMed Central

    Horn, A.; Hamel, W.; Koeppen, J. A.; Westphal, M.; Engel, A. K.; Gerloff, C.; Moll, C. K. E.

    2017-01-01

    The goal of the study was to compare the tolerability and the effects of conventional subthalamic nucleus (STN) and combined subthalamic nucleus and substantia nigra (STN+SNr) high-frequency stimulation in regard to neuropsychiatric symptoms in Parkinson's disease patients. In this single center, randomized, double-blind, cross-over clinical trial, twelve patients with advanced Parkinson's disease (1 female; age: 61.3 ± 7.3 years; disease duration: 12.3 ± 5.4 years; Hoehn and Yahr stage: 2.2 ± 0.39) were included. Apathy, fatigue, depression, and impulse control disorder were assessed using a comprehensive set of standardized rating scales and questionnaires such as the Lille Apathy Rating Scale (LARS), Modified Fatigue Impact Scale (MFIS), Becks Depression Inventory (BDI-I), Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale (QUIP-RS), and Parkinson's Disease Questionnaire (PDQ-39). Three patients that were initially assigned to the STN+SNr stimulation mode withdrew from the study within the first week due to discomfort. Statistical comparison of data retrieved from patients who completed the study revealed no significant differences between both stimulation conditions in terms of mean scores of scales measuring apathy, fatigue, depression, impulse control disorder, and quality of life. Individual cases showed an improvement of apathy under combined STN+SNr stimulation. In general, combined STN+SNr stimulation seems to be safe in terms of neuropsychiatric side effects, although careful patient selection and monitoring in the short-term period after changing stimulation settings are recommended. PMID:28246572

  15. Mismatch negativity-like potential (MMN-like) in the subthalamic nuclei in Parkinson's disease patients.

    PubMed

    Minks, Eduard; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Shaw, Daniel J; Bareš, Martin

    2014-12-01

    An infrequent change to an otherwise repetitive sequence of stimuli leads to the generation of mismatch negativity (MMN), even in the absence of attention. This evoked negative response occurs in the scalp-recorded electroencephalogram (EEG) over the temporal and frontal cortices, 100-250 ms after onset of the deviant stimulus. The MMN is used to detect sensory information processing. The aim of our study was to investigate whether MMN can be recorded in the subthalamic nuclei (STN) as evidence of auditory information processing on an unconscious level within this structure. To our knowledge, MMN has never been recorded in the human STN. We recorded intracerebral EEG using a MMN paradigm in five patients with Parkinson's disease (PD) who were implanted with depth electrodes in the subthalamic nuclei (STN). We found far-field MMN when intracerebral contacts were connected to an extracranial reference electrode. In all five PD patients (and nine of ten intracerebral electrodes), we also found near-field MMN-like potentials when intracerebral contacts were referenced to one another, and in some electrodes, we observed phase reversals in these potentials. The mean time-to-peak latency of the intracerebral MMN-like potentials was 214 ± 38 ms (median 219 ms). We reveal MMN-like potentials in bilateral STN. This finding provides evidence that STN receives sensory (auditory) information from other structures. The question for further research is whether STN receives such signals through a previously described hyperdirect pathway between STN and frontal cortex (a known generator of the MMN potential) and if the STN contributes to sensorimotor integration.

  16. A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons.

    PubMed

    Wilson, Charles J; Weyrick, Angela; Terman, David; Hallworth, Nicholas E; Bevan, Mark D

    2004-05-01

    Subthalamic nucleus neurons exhibit reverse spike-frequency adaptation. This occurs only at firing rates of 20-50 spikes/s and higher. Over this same frequency range, there is an increase in the steady-state frequency-intensity (F-I) curve's slope (the secondary range). Specific blockade of high-voltage activated calcium currents reduced the F-I curve slope and reverse adaptation. Blockade of calcium-dependent potassium current enhanced secondary range firing. A simple model that exhibited these properties used spike-triggered conductances similar to those in subthalamic neurons. It showed: 1) Nonaccumulating spike afterhyperpolarizations produce positively accelerating F-I curves and spike-frequency adaptation that is complete after the second spike. 2) Combinations of accumulating aftercurrents result in a linear F-I curve, whose slope depends on the relative contributions of inward and outward currents. Spike-frequency adaptation can be gradual. 3) With both accumulating and nonaccumulating aftercurrents, primary and secondary ranges will be present in the F-I curve. The slope of the primary range is determined by the nonaccumulating conductance; the accumulating conductances govern the secondary range. The transition is determined by the relative strengths of accumulating and nonaccumulating currents. 4) Spike-threshold accommodation contributes to the secondary range, reducing its slope at high firing rates. Threshold accommodation can stabilize firing when inward aftercurrents exceed outward ones. 5) Steady-state reverse adaptation results when accumulated inward aftercurrents exceed outward ones. This requires spike-threshold accommodation. Transient speedup arises when inward currents are smaller than outward ones at steady state, but accumulate more rapidly. 6) The same mechanisms alter firing in response to irregular patterns of synaptic conductances, as cell excitability fluctuates with changes in firing rate.

  17. Neuronal Activity in the Subthalamic Nucleus Modulates the Release of Dopamine in the Monkey Striatum

    PubMed Central

    Shimo, Yasushi; Wichmann, Thomas

    2009-01-01

    The primate subthalamic nucleus (STN) is commonly seen as a relay nucleus between the external and internal pallidal segments, and as an input station for cortical and thalamic information into the basal ganglia. In rodents, STN activity is also known to influence neuronal activity in the dopaminergic substantia nigra pars compacta (SNc) through inhibitory and excitatory mono- and polysynaptic pathways. Although the anatomical connections between STN and SNc are not entirely the same in primates as in rodents, the electrophysiologic and microdialysis experiments presented here show directly that this functional interaction can also be demonstrated in primates. In three Rhesus monkeys, extracellular recordings from SNc during microinjections into the STN revealed that transient pharmacologic activation of the subthalamic nucleus by the acetylcholine-receptor agonist carbachol substantially increased burst firing of single nigral neurons. Transient inactivation of the STN with microinjections of the GABA-A-receptor agonist muscimol had the opposite effect. While the firing rates of individual SNc neurons changed in response to the activation or inactivation of the STN, these changes were not consistent across the entire population of SNc cells. Permanent lesions of the STN, produced in two animals with the fiber-sparing neurotoxin ibotenic acid, reduced burst firing and firing rates of SNc neurons, and substantially decreased dopamine levels in the primary recipient area of SNc projections, the striatum, as measured with microdialysis. These results suggest that activity in the primate SNc is prominently influenced by neuronal discharge in the STN, which may thus alter dopamine release in the striatum. PMID:19087163

  18. Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans.

    PubMed

    Vaillancourt, David E; Mayka, Mary A; Thulborn, Keith R; Corcos, Daniel M

    2004-09-01

    The basal ganglia, motor cortex, and cerebellum have been implicated as a circuit that codes for movement velocity. Since movement velocity covaries with the magnitude of force exerted and previous studies have shown that similar regions scale in activation for velocity and force, the scaling of neuronal activity with movement velocity could be due to the force exerted. The present study implemented a parametric functional magnetic resonance imaging (fMRI) design to determine which brain regions directly scale with the rate of change of force production, independent of the magnitude of force exerted. Nine healthy adults produced force with their right middle finger and thumb at 25% of their maximal voluntary contraction across four conditions: (1) fast pulse, (2) fast hold, (3) medium hold, and (4) slow hold. There were three primary findings: (i) the activation volume in multiple regions increased with the duration of the force contraction, (ii) only the activation volume in the bilateral internal globus pallidus and left subthalamic nucleus parametrically scaled with the rate of change of force production, and (iii) there was an inverse relation between the activation volume in the subthalamic nucleus and internal globus pallidus with the rate of change of force production. The current findings are the first to have used neuroimaging techniques in humans to segregate the functional anatomy of the internal globus pallidus from external globus pallidus, distinguish functional activation in the globus pallidus from the putamen, and demonstrate task-dependent scaling in the subthalamic nucleus and internal globus pallidus. We conclude that fast, ballistic force production is preprogrammed, requiring a small metabolic demand from the basal ganglia. In contrast, movements that require the internal regulation of the rate of change of force are associated with increased metabolic demand from the subthalamic nucleus and internal segment of the globus pallidus.

  19. Striatal Glutamate and GABA after High Frequency Subthalamic Stimulation in Parkinsonian Rat

    PubMed Central

    Lee, Kyung Jin; Shim, Insop; Sung, Jae Hoon; Hong, Jae Taek; Kim, Il sup; Cho, Chul Bum

    2017-01-01

    Objective High frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment of advanced Parkinson’s disease. However, the neurochemical basis of its effects remains unknown. The aim of this study is to investigate the effects of STN HFS in intact and 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rat model on changes of principal neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA) in the striatum. Methods The authors examined extracellular glutamate and GABA change in the striatum on sham group, 6-OHDA group, and 6-OHDA plus deep brain stimulation (DBS) group using microdialysis methods. Results High-pressure liquid chromatography was used to quantify glutamate and GABA. The results show that HFS-STN induces a significant increase of extracellular glutamate and GABA in the striatum of 6-OHDA plus DBS group compared with sham and 6-OHDA group. Conclusion Therefore, the clinical results of STN-HFS are not restricted to the direct STN targets but involve widespread adaptive changes within the basal ganglia. PMID:28264233

  20. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease

    PubMed Central

    Atherton, Jeremy F; McIver, Eileen L; Mullen, Matthew RM; Wokosin, David L; Surmeier, D James; Bevan, Mark D

    2016-01-01

    The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI: http://dx.doi.org/10.7554/eLife.21616.001 PMID:27995895

  1. The human subthalamic nucleus and globus pallidus internus differentially encode reward during action control.

    PubMed

    Justin Rossi, Peter; Peden, Corinna; Castellanos, Oscar; Foote, Kelly D; Gunduz, Aysegul; Okun, Michael S

    2017-04-01

    The subthalamic nucleus (STN) and globus pallidus internus (GPi) have recently been shown to encode reward, but few studies have been performed in humans. We investigated STN and GPi encoding of reward and loss (i.e., valence) in humans with Parkinson's disease. To test the hypothesis that STN and GPi neurons would change their firing rate in response to reward- and loss-related stimuli, we recorded the activity of individual neurons while participants performed a behavioral task. In the task, action choices were associated with potential rewarding, punitive, or neutral outcomes. We found that STN and GPi neurons encode valence-related information during action control, but the proportion of valence-responsive neurons was greater in the STN compared to the GPi. In the STN, reward-related stimuli mobilized a greater proportion of neurons than loss-related stimuli. We also found surprising limbic overlap with the sensorimotor regions in both the STN and GPi, and this overlap was greater than has been previously reported. These findings may help to explain alterations in limbic function that have been observed following deep brain stimulation therapy of the STN and GPi. Hum Brain Mapp 38:1952-1964, 2017. © 2017 Wiley Periodicals, Inc.

  2. Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network.

    PubMed

    Holgado, Alejo J Nevado; Terry, John R; Bogacz, Rafal

    2010-09-15

    The advance of Parkinson's disease is associated with the existence of abnormal oscillations within the basal ganglia with frequencies in the beta band (13-30 Hz). While the origin of these oscillations remains unknown, there is some evidence suggesting that oscillations observed in the basal ganglia arise due to interactions of two nuclei: the subthalamic nucleus (STN) and the globus pallidus pars externa (GPe). To investigate this hypothesis, we develop a computational model of the STN-GPe network based upon anatomical and electrophysiological studies. Significantly, our study shows that for certain parameter regimes, the model intrinsically oscillates in the beta range. Through an analytical study of the model, we identify a simple set of necessary conditions on model parameters that guarantees the existence of beta oscillations. These conditions for generation of oscillations are described by a set of simple inequalities and can be summarized as follows: (1) The excitatory connections from STN to GPe and the inhibitory connections from GPe to STN need to be sufficiently strong. (2) The time required by neurons to react to their inputs needs to be short relative to synaptic transmission delays. (3) The excitatory input from the cortex to STN needs to be high relative to the inhibition from striatum to GPe. We confirmed the validity of these conditions via numerical simulation. These conditions describe changes in parameters that are consistent with those expected as a result of the development of Parkinson's disease, and predict manipulations that could inhibit the pathological oscillations.

  3. Foxa1 is essential for development and functional integrity of the subthalamic nucleus

    PubMed Central

    Gasser, Emanuel; Johannssen, Helge C.; Rülicke, Thomas; Zeilhofer, Hanns Ulrich; Stoffel, Markus

    2016-01-01

    Inactivation of transcription factor Foxa1 in mice results in neonatal mortality of unknown cause. Here, we report that ablation of Foxa1 causes impaired development and loss of the subthalamic nucleus (STN). Functional deficits in the STN have been implicated in the etiology of Huntington’s and Parkinson’s disease. We show that neuronal ablation by Synapsin1-Cre-mediated Foxa1 deletion is sufficient to induce hyperlocomotion in mice. Transcriptome profiling of STN neurons in conditional Foxa1 knockout mice revealed changes in gene expression reminiscent of those in neurodegenerative diseases. We identified Ppargc1a, a transcriptional co-activator that is implicated in neurodegeneration, as a Foxa1 target. These findings were substantiated by the observation of Foxa1-dependent demise of STN neurons in conditional models of Foxa1 mutant mice. Finally, we show that the spontaneous firing activity of Foxa1-deficient STN neurons is profoundly impaired. Our data reveal so far elusive roles of Foxa1 in the development and maintenance of STN function. PMID:27934886

  4. Subthalamic nucleus - sensorimotor cortex functional connectivity in de novo and moderate Parkinson’s disease

    PubMed Central

    Kurani, A.S.; Seidler, R.D.; Burciu, R.G.; Comella, C.L.; Corcos, D.M.; Okun, M.S.; MacKinnon, C.D.; Vaillancourt, D.E.

    2014-01-01

    Previous research has indicated increased functional connectivity between subthalamic nucleus (STN) and sensorimotor cortex in off-medication Parkinson’s disease (PD) compared with control subjects. It is not clear if the increase in functional connectivity between STN and sensorimotor cortex occurs in de novo PD, which is prior to when patients begin dopamine therapy. Resting state functional magnetic resonance imaging was carried out in 20 de novo (drug-naïve) patients with PD (HY stage: I-II), 19 patients with moderate PD (HY stage: II-III), and 19 healthy controls. The functional connectivity analysis in de novo and moderate PD patients focused on the connectivity of the more affected STN and the sensorimotor cortex. Using resting state functional connectivity analysis, we provide new evidence that people with de novo PD and off-medicated moderate PD have increased functional connectivity between the more affected STN and different regions within the sensorimotor cortex. The overlapping sensorimotor cortex found in both de novo and moderate PD had functional connectivity values that correlated positively with the Unified Parkinson’s Disease Rating Scale part III. This key finding suggests that changes in functional connectivity between STN and sensorimotor cortex occur early in the disease following diagnosis and prior to dopamine therapy. PMID:25095723

  5. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus

    PubMed Central

    Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Šťastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert

    2015-01-01

    Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson’s disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well. PMID:25713375

  6. Effects of subthalamic nucleus stimulation and medication on resting and postural tremor in Parkinson's disease.

    PubMed

    Sturman, Molly M; Vaillancourt, David E; Metman, Leo Verhagen; Bakay, Roy A E; Corcos, Daniel M

    2004-09-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and antiparkinsonian medication have proved to be effective treatments for tremor in Parkinson's disease. To date it is not known how and to what extent STN DBS alone and in combination with antiparkinsonian medication alters the pathophysiology of resting and postural tremor in idiopathic Parkinson's disease. The purpose of this study was to examine the effects of STN DBS and antiparkinsonian medication on the neurophysiological characteristics of resting and postural hand tremor in Parkinson's disease. Resting and postural hand tremor were recorded using accelerometry and surface electromyography (EMG) from 10 Parkinson's disease patients and 10 matched control subjects. The Parkinson's disease subjects were examined under four treatment conditions: (i) off treatment; (ii) STN DBS; (iii) medication; and (iv) medication plus STN DBS. The amplitude, EMG frequency, regularity, and 1-8 Hz tremor-EMG coherence were analysed. Both STN DBS and medication reduced the amplitude, regularity and tremor-EMG coherence, and increased the EMG frequency of resting and postural tremor in Parkinson's disease. STN DBS was more effective than medication in reducing the amplitude and increasing the frequency of resting and postural tremor to healthy physiological levels. These findings provide strong evidence that effective STN DBS normalizes the amplitude and frequency of tremor. The findings suggest that neural activity in the STN is an important modulator of the neural network(s) responsible for both resting and postural tremor genesis in Parkinson's disease.

  7. Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson's disease.

    PubMed

    Ferrarin, M; Rizzone, M; Bergamasco, B; Lanotte, M; Recalcati, M; Pedotti, A; Lopiano, L

    2005-01-01

    Subthalamic nucleus (STN) stimulation, a recent surgical approach to Parkinson's disease (PD), has been shown to be effective in relieving motor symptoms. The present study carried out a full body gait analysis, during overground walking, on ten PD patients with bilaterally implanted STN stimulation devices. Walking performance was analyzed on the same day, in four conditions (Stim Off-Med Off, Stim On-Med Off, Stim Off-Med On, Stim On-Med On). The results showed that, on average, STN stimulation alone (S+M-) and L-dopa alone (S-M+), significantly increased gait speed, stride length and the lower limb joint Range of Motion (ROM) with respect to the basal condition (S-M-); also cadence was found to play a role in velocity increase, particularly when L-dopa was administered. Both treatments improved pelvis and trunk kinematics, and power production at the ankle and hip joints. The combination of the two treatments (S+M+) produced an additional effect on gait speed, stride length, ROM of knee and ankle joints, pelvis obliquity and trunk inclination. Given the additive and synergistic effects, it can be hypothesized that the two treatments have different mechanisms of action. Our results confirm the findings of earlier studies that employed treadmill walking.

  8. Fear recognition is impaired by subthalamic nucleus stimulation in Parkinson's disease.

    PubMed

    Biseul, Isabelle; Sauleau, Paul; Haegelen, Claire; Trebon, Pascale; Drapier, Dominique; Raoul, Sylvie; Drapier, Sophie; Lallement, François; Rivier, Isabelle; Lajat, Youenn; Verin, Marc

    2005-01-01

    Behavioural disturbances such as disorders of mood, apathy or indifference are often observed in Parkinson's disease (PD) patients with chronic high frequency deep brain stimulation of subthalamic nucleus (STN DBS). Neuropsychological modifications causing these adverse events induced by STN DBS remain unknown, even if limbic disturbances are hypothesised. The limbic system supports neural circuits processing emotional information. The aim of this work is to evaluate changes of emotional recognition in PD patients induced by STN DBS. Thirty PD patients were assessed using a computerised paradigm of recognition of emotional facial expressions [Ekman, P., & Friesen, W. V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press], 15 before STN DBS and 15 after. The two patients groups were compared to a group of 15 healthy control subjects. One series of 55 pictures of emotional facial expressions was presented to each patient. Patients had to classify the pictures according to seven basic emotions (happiness, sadness, fear, surprise, disgust, anger and no emotion). The intact ability to percept faces was firstly assured using the Benton Recognition Test. Recognition of fear expressions was significantly and selectively reduced in the post-operative group in comparison to both pre-operative and control groups. Our results demonstrate for the first time a selective reduction of recognition of facial expressions of fear by STN DBS. This impairment could be the first neuropsychological marker of a more general limbic dysfunction, thought to be responsible for the behavioural disorders reported after STN DBS.

  9. Lexical-semantic inhibitory mechanisms in Parkinson's disease as a function of subthalamic stimulation.

    PubMed

    Castner, Joanna E; Copland, David A; Silburn, Peter A; Coyne, Terry J; Sinclair, Felicity; Chenery, Helen J

    2007-11-05

    Inhibitory control may be affected by Parkinson's disease (PD) due to impairment within the non-motor basal ganglia-thalamocortical circuits. The present study aimed to identify the effects of chronic stimulation of the subthalamic nucleus (STN) on lexical-semantic inhibitory control. Eighteen participants with PD who had undergone surgery for deep brain stimulation (DBS) of the STN, completed a picture-word interference (PWI) task and the Hayling test in on and off stimulation conditions. The results of PD participants were compared with 21 non-neurologically impaired control participants. PD participants performed no differently from controls on the PWI task, and no significant differences between on and off stimulation conditions were revealed, therefore suggesting that PD participants are not impaired in lexical-semantic interference control. In contrast, in the off stimulation condition, PD participants had significantly delayed reaction times and increased errors on the inhibition section of the Hayling test compared with the STN stimulation condition and control participants. These results suggest that PD patients are impaired in aspects of inhibitory control that are dependent on behavioural inhibition (such as the suppression of prepotent responses) and selection from competing alternatives without the presence of external cues. Furthermore, STN stimulation acts to restore these behavioural inhibitory processes.

  10. Involvement of the subthalamic nucleus in engagement with behaviourally relevant stimuli.

    PubMed

    Sauleau, Paul; Eusebio, Alexandre; Thevathasan, Wesley; Yarrow, Kielan; Pogosyan, Alek; Zrinzo, Ludvic; Ashkan, Keyoumars; Aziz, Tipu; Vandenberghe, Wim; Nuttin, Bart; Brown, Peter

    2009-03-01

    In this study we investigate how the basal ganglia (BG) may process the behavioural relevance of environmental cues by recording local field potentials (LFPs) in the subthalamic nucleus of patients with Parkinson's disease who had undergone implantation of electrodes for deep brain stimulation. Fourteen patients were recorded as they performed a paradigm dissociating warning cue presentation from programming related to execution of specific tasks. Target and non-target warning cues of differing behavioural relevance were contrasted, and we evaluated if warning cue-evoked activities varied according to whether the eventual task to be performed was motor or cognitive and whether patients were receiving or withdrawn from dopaminergic therapy. Warning cues evoked a complex temporal sequence of activities with three epochs over the 760 ms following the onset of the warning cue. In contrast to the initial evoked LFP, evoked activities over two later periods were significantly influenced by behavioural relevance and by treatment state. The early activity was likely related to the initial orientating of attention induced by a novel target, while the delayed responses in our paradigm may reflect processing related to the non-motor resource implications of cues. The results suggest that the BG are intimately involved in the evaluation of changes in the environment and of their behavioural significance. The latter process is partly modulated by dopamine. Weakness in this function might contribute to the behavioural impairment that can follow BG lesions and surgery.

  11. Involvement of subthalamic nucleus in the stimulatory effect of Delta(9)-tetrahydrocannabinol on dopaminergic neurons.

    PubMed

    Morera-Herreras, T; Ruiz-Ortega, J A; Gómez-Urquijo, S; Ugedo, L

    2008-02-06

    The cannabinoid CB1 receptor which is densely located in the basal ganglia is known to participate in the regulation of movement. The present study sought to determine the mechanisms underlying the effect of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) on neurons in the substantia nigra pars compacta (SNpc) using single-unit extracellular recordings in anesthetized rats. Administration of Delta(9)-THC (0.25-2 mg/kg, i.v.) increased the firing rate of SNpc neurons (maximal effect: 33.54+/-6.90%, n=8) without modifying other firing parameters (coefficient of variation and burst firing). This effect was completely blocked by the cannabinoid receptor antagonist rimonabant (0.5 mg/kg, i.v.). In addition, the blockade of excitatory amino acids receptors by kynurenic acid (0.5 microM, i.c.v.) or a chemical lesion of the subthalamic nucleus (STN) with ibotenic acid abolished Delta(9)-THC effect. These results indicate that CB1 receptor activation modulates SNpc neuronal activity by an indirect mechanism involving excitatory amino acids, probably released from STN axon terminals in the SNpc.

  12. Vocal emotion decoding in the subthalamic nucleus: An intracranial ERP study in Parkinson's disease.

    PubMed

    Péron, Julie; Renaud, Olivier; Haegelen, Claire; Tamarit, Lucas; Milesi, Valérie; Houvenaghel, Jean-François; Dondaine, Thibaut; Vérin, Marc; Sauleau, Paul; Grandjean, Didier

    2017-01-12

    Using intracranial local field potential (LFP) recordings in patients with Parkinson's disease (PD) undergoing deep brain stimulation (DBS), we explored the electrophysiological activity of the subthalamic nucleus (STN) in response to emotional stimuli in the auditory modality. Previous studies focused on the influence of visual stimuli. To this end, we recorded LFPs within the STN in response to angry, happy, and neutral prosodies in 13 patients with PD who had just undergone implantation of DBS electrodes. We observed specific modulation of the right STN in response to anger and happiness, as opposed to neutral prosody, occurring at around 200-300ms post-onset, and later at around 850-950ms post-onset for anger and at around 3250-3350ms post-onset for happiness. Taken together with previous reports of modulated STN activity in response to emotional visual stimuli, the present results appear to confirm that the STN is involved in emotion processing irrespective of stimulus valence and sensory modality.

  13. Deep Brain Stimulation Frequency of the Subthalamic Nucleus Affects Phonemic and Action Fluency in Parkinson's Disease

    PubMed Central

    da Cruz, Aline Nunes; Beber, Bárbara Costa

    2016-01-01

    Introduction. Deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) has been linked to a decline in verbal fluency. The decline can be attributed to surgical effects, but the relative contributions of the stimulation parameters are not well understood. This study aimed to investigate the impact of the frequency of STN-DBS on the performance of verbal fluency tasks in patients with PD. Methods. Twenty individuals with PD who received bilateral STN-DBS were evaluated. Their performances of verbal fluency tasks (semantic, phonemic, action, and unconstrained fluencies) upon receiving low-frequency (60 Hz) and high-frequency (130 Hz) STN-DBS were assessed. Results. The performances of phonemic and action fluencies were significantly different between low- and high-frequency STN-DBS. Patients showed a decrease in these verbal fluencies for high-frequency STN-DBS. Conclusion. Low-frequency STN-DBS may be less harmful to the verbal fluency of PD patients. PMID:28050309

  14. Subthalamic nucleus--sensorimotor cortex functional connectivity in de novo and moderate Parkinson's disease.

    PubMed

    Kurani, Ajay S; Seidler, Rachael D; Burciu, Roxana G; Comella, Cynthia L; Corcos, Daniel M; Okun, Michael S; MacKinnon, Colum D; Vaillancourt, David E

    2015-01-01

    Previous research has indicated increased functional connectivity between subthalamic nucleus (STN) and sensorimotor cortex in off-medication Parkinson's disease (PD) compared with control subjects. It is not clear if the increase in functional connectivity between STN and sensorimotor cortex occurs in de novo PD, which is before patients begin dopamine therapy. Resting-state functional magnetic resonance imaging was carried out in 20 de novo (drug naïve) patients with PD (Hoehn and Yahr stage: I-II), 19 patients with moderate PD (Hoehn and Yahr stage: II-III), and 19 healthy controls. The functional connectivity analysis in de novo and moderate PD patients focused on the connectivity of the more affected STN and the sensorimotor cortex. Using resting-state functional connectivity analysis, we provide new evidence that people with de novo PD and off-medicated moderate PD have increased functional connectivity between the more affected STN and different regions within the sensorimotor cortex. The overlapping sensorimotor cortex found in both de novo and moderate PD had functional connectivity values that correlated positively with the Unified Parkinson's Disease Rating Scale part III. This key finding suggests that changes in functional connectivity between STN and sensorimotor cortex occur early in the disease following diagnosis and before dopamine therapy.

  15. Oscillatory activity in the subthalamic nucleus during arm reaching in Parkinson's disease.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned

    2012-08-01

    Oscillatory activities in the brain within the beta (15-30 Hz) and gamma (70-90 Hz) ranges have been implicated in the generation of voluntary movement. However, their roles remain unclear. Here, we record local field potential activity from the region of the subthalamic nucleus during movement of the contralateral limb in 11 patients with Parkinson's disease. Patients were on their normal dopaminergic medication and were cued to perform arm-reaching movements after a delay period at three different speeds: 'slow', 'normal', and 'fast'. Beta activity desynchronized earlier in response to the cue indicating an upcoming fast reach than to the cues for slow or normal speed movement. There was no difference in the degree of beta desynchronization between reaching speeds and beta desynchronization was established prior to movement onset in all cases. In contrast, synchronization in the gamma range developed during the reaching movement, and was especially pronounced during fast reaching. Thus the timing of suppression in the beta band depended on task demands, whereas the degree of increase in gamma oscillations depended on movement speed. These findings point to functionally segregated roles for different oscillatory frequencies in motor preparation and performance.

  16. Effects of subthalamic nucleus stimulation on characteristics of EMG activity underlying reaction time in Parkinson's disease.

    PubMed

    Kumru, Hatice; Summerfield, Christopher; Valldeoriola, Francesc; Valls-Solé, Josep

    2004-01-01

    We examined the effects of high-frequency deep brain stimulation of the subthalamic nucleus (STN-DBS) on characteristics of electromyographic (EMG) activity of the agonist muscle in 8 patients with Parkinson's disease (PD). Patients were examined during STN-DBS (ON), and 30 minutes after switching off both stimulators (OFF). They were asked to make a ballistic movement in paradigms of simple reaction time (SRT) and choice reaction time (CRT) tasks. Onset of movement (MOVonset) was measured as the latency of the initial displacement from baseline of the signal from an accelerometer attached to the dorsum of the hand. In the associated EMG activity, recorded from wrist extensor muscles, we measured onset latency (EMGonset), size of the first EMG burst (EMGsize), and number of EMG bursts (EMGbursts) counted between EMGonset and task execution. MOVonset and EMGonset were significantly shorter in ON than in OFF conditions in CRT. EMGsize was larger, EMGbursts were reduced, and peak of the acceleration profile was larger in ON compared with OFF conditions in both SRT and CRT. Our results indicate that STN-DBS induces a significant improvement in motor performance of reaction time tasks in PD patients. Such improvement is associated with a change in features of the EMG activity suggesting an increase in the excitability of the motor pathways engaged in ballistic movements.

  17. Effect of unilateral versus bilateral electrostimulation in subthalamic nucleus on speech in Parkinsons disease

    NASA Astrophysics Data System (ADS)

    Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan

    2004-05-01

    Previously, it was found that 16 right-handed patients with idiopathic Parkinsons disease who underwent unilateral implantation of deep brain stimulator in subthalamic nucleus (STN) showed significant improvement in their nonspeech motor functions. Eight of the 16 patients had stimulator in the left STN and eight in the right STN. In contrast, their speech function showed very mild improvement that was limited to the respiratory/phonotory subsystems. Further, there seemed a trend that the patients with right STN stimulation did better than those with left STN stimulation. It was speculated that the difference might be due to a micro lesion caused by the surgical procedure to the corticobulbar fibers run in the left internal capsule. This paper reports speech changes associated with bilateral DBS in STN in four of the 16 subjects who elected to have deep brain stimulator implanted in STN on the opposite side of the brain at a later time. Results show negative changes in speech after bilateral DBS in STN. The changes were not limited to the micro lesion effect due to the surgery itself, but also related to the active stimulation on the dominant hemisphere for speech processing. [Work supported by NIH.

  18. Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans

    PubMed Central

    Tan, Huiling; Pogosyan, Alek; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Brown, Peter

    2016-01-01

    The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55–90 Hz) and beta (13–30m Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces. DOI: http://dx.doi.org/10.7554/eLife.19089.001 PMID:27855780

  19. Deep Brain Stimulation Frequency of the Subthalamic Nucleus Affects Phonemic and Action Fluency in Parkinson's Disease.

    PubMed

    Fagundes, Valéria de Carvalho; Rieder, Carlos R M; da Cruz, Aline Nunes; Beber, Bárbara Costa; Portuguez, Mirna Wetters

    2016-01-01

    Introduction. Deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) has been linked to a decline in verbal fluency. The decline can be attributed to surgical effects, but the relative contributions of the stimulation parameters are not well understood. This study aimed to investigate the impact of the frequency of STN-DBS on the performance of verbal fluency tasks in patients with PD. Methods. Twenty individuals with PD who received bilateral STN-DBS were evaluated. Their performances of verbal fluency tasks (semantic, phonemic, action, and unconstrained fluencies) upon receiving low-frequency (60 Hz) and high-frequency (130 Hz) STN-DBS were assessed. Results. The performances of phonemic and action fluencies were significantly different between low- and high-frequency STN-DBS. Patients showed a decrease in these verbal fluencies for high-frequency STN-DBS. Conclusion. Low-frequency STN-DBS may be less harmful to the verbal fluency of PD patients.

  20. Subthalamic nucleus activity dissociates proactive and reactive inhibition in patients with Parkinson's disease.

    PubMed

    Benis, Damien; David, Olivier; Lachaux, Jean-Philippe; Seigneuret, Eric; Krack, Paul; Fraix, Valérie; Chabardès, Stéphan; Bastin, Julien

    2014-05-01

    Models of action selection postulate the critical involvement of the subthalamic nucleus (STN), especially in reactive inhibition processes when inappropriate responses to a sudden stimulus must be overridden. The STN could also play a key role during proactive inhibition, when subjects prepare to potentially suppress their actions. Here, we hypothesized that STN responses to reactive and proactive inhibitory control might be driven by different underlying mechanisms with specific temporal profiles. Direct neural recordings in twelve Parkinson's disease patients during a modified stop signal task (SST) revealed a decrease of beta band activity (βA, 13-35Hz) in the STN during reactive inhibition of smaller amplitude and shorter duration than during motor execution. Crucially, the onset latency of this relative increase of βA took place before the stop signal reaction time. It could thus be thought of as a "stop" signal inhibiting thalamo-cortical activity that would have supported motor execution. Finally, results also revealed a higher level of βA in the STN during proactive inhibition, which correlated with patient's inhibitory performances. We propose that βA in the STN would here participate in the implementation of a "hold your horse" signal to delay motor responses, thus prioritizing accuracy as compared to speed. In brief, our results provide strong electrophysiological support for the hypothesized role of the STN during executive control underlying proactive and reactive response suppression.

  1. Side-effects of subthalamic stimulation in Parkinson's disease: clinical evolution and predictive factors.

    PubMed

    Guehl, D; Cuny, E; Benazzouz, A; Rougier, A; Tison, F; Machado, S; Grabot, D; Gross, C; Bioulac, B; Burbaud, P

    2006-09-01

    Chronic bilateral high-frequency stimulation of the subthalamic nucleus (STN) is an alternative treatment for disabling forms of Parkinson's disease when on-off fluctuations and levodopa-induced dyskinesias compromise patients' quality of life. The aim of this study was to assess the evolution of side-effects during the first year of follow-up and search for clinical predictive factors accounting for their occurrence. We compared the frequency of side-effects at 3 and 12 months after surgery in a cohort of 44 patients. The off-medication scores of Unified Parkinson's Disease Rating Scale (UPDRS) II, III, axial symptoms, disease duration and age at surgery were retained for correlation analysis. Dysarthria/hypophonia, weight gain and postural instability were the most frequent chronic side-effects. Whereas dysarthria/hypophonia remained stable over time, weight gain and postural instability increased during the first year post-op. High axial and UPDRS II scores at surgery were predictive of dysarthria/hypophonia. Age and axial score at surgery were positively correlated with postural instability. Despite the occurrence of side-effects, the benefit/side-effects ratio of STN stimulation was largely positive during the first year of follow-up. Age, intensity of axial symptoms and UDPRS II off-medication score before surgery are predictive factors of dysarthria/hypophonia and postural instability after surgery.

  2. Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding

    PubMed Central

    Frühholz, Sascha; Ceravolo, Leonardo; Grandjean, Didier

    2016-01-01

    Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson’s disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions. PMID:26400857

  3. Prior pallidotomy reduces and modifies neuronal activity in the subthalamic nucleus of Parkinson's disease patients.

    PubMed

    Zaidel, A; Moran, A; Marjan, G; Bergman, H; Israel, Z

    2008-01-01

    Parkinson's disease (PD) patients with prior radio-frequency lesions in the internal segment of the globus pallidus (GPi, pallidotomy), whose symptoms have deteriorated, may be candidates for further invasive treatment such as subthalamic deep brain stimulation (STN DBS). Six patients with prior pallidotomy (five unilaterally; one bilaterally) underwent bilateral STN DBS. The microelectrode recordings (MERs, used intraoperatively for STN verification), ipsilateral and contralateral to pallidotomy, and MERs from 11 matched PD patients who underwent bilateral STN DBS without prior pallidotomy were compared. For each trajectory, average, variance and mean successive difference (MSD, a measure of irregularity) of the root mean square (RMS) of the STN MER were calculated. The RMS in trajectories ipsilateral to pallidotomy showed significant reduction of the mean average and MSD of STN activity when compared with trajectories from patients without prior pallidotomy. The RMS parameters contralateral to pallidotomy tend to lie between those ipsilateral to pallidotomy and those without prior pallidotomy. The average STN power spectral density of oscillatory activity was notably lower ipsilateral to pallidotomy than contralateral, or without prior pallidotomy. The finding that pallidotomy reduces STN activity and changes firing characteristics, in conjunction with the effectiveness of STN DBS despite prior pallidotomy, calls for reappraisal and modification of the current model of the basal ganglia (BG) cortical network. It highlights the critical role of direct projections from the BG to brain-stem structures and suggests a possible GPi-STN reciprocal positive-feedback mechanism.

  4. Pallidotomy suppresses beta power in the subthalamic nucleus of Parkinson's disease patients.

    PubMed

    Contarino, Maria Fiorella; Bour, Lo J; Bot, Maarten; Van Den Munckhof, Pepijn; Speelman, Johannes D; Schuurman, P Richard; De Bie, Rob M A

    2011-04-01

    Parkinsonian patients, who have had a unilateral pallidotomy, may require bilateral deep brain stimulation of the subthalamic nucleus (STN), due to disease progression. The current model of the basal ganglia circuitry does not predict a direct effect of pallidotomy on the neuronal activity of the ipsilateral STN. To date, only three studies have investigated the effect of pallidotomy on overall activity of the STN or neuronal firing rate, but not on the spectral content of the neuronal oscillatory activity. Moreover, none of these studies attempted to differentiate the effects on the dorsal (sensory-motor) and ventral (associative-limbic) parts of the STN. We studied the effect of pallidotomy on spectral power in six frequency bands in the STN ipsilateral and contralateral to pallidotomy from seven patients and in 60 control nuclei of patients without prior functional neurosurgery, and investigated whether this effect is different on the dorsal and ventral STN. The data show that pallidotomy suppresses beta power (13-30 Hz) in the ipsilateral STN. This effect tends predominantly to be present in the dorsal part of the STN. In addition, spectral power in the frequency range 3-30 Hz is significantly higher in the dorsal part than in the ventral part. The effect of pallidotomy on STN neural activity is difficult to explain with the current model of basal ganglia circuitry and should be envisaged in the context of complex modulatory interactions in the basal ganglia.

  5. Locations of movement-related cells in the human subthalamic nucleus in Parkinson's disease.

    PubMed

    Theodosopoulos, Philip V; Marks, William J; Christine, Chadwick; Starr, Philip A

    2003-07-01

    The subthalamic nucleus (STN) is an emerging target for deep brain stimulator (DBS) implantation for the treatment of advanced Parkinson's disease (PD). Understanding the somatotopic organization of the STN is important for surgical navigation within the nucleus. We analyzed intraoperative data obtained during 54 procedures for the implantation of STN stimulators to assess the locations of movement-related cells. Cells were considered movement-related if they exhibited modulation of the cell discharge during passive movement of the contralateral upper or lower extremity. Microelectrode track reconstructions were plotted on a human brain atlas, using the location of the DBS electrode from postoperative magnetic resonance images as a registration mark in reconstructing microelectrode track locations. Movement-related cells were predominantly located in the dorsal part of the nucleus. The majority of the cells were related to proximal joint manipulation. Arm-related cells were located laterally and at the rostral and caudal poles, whereas leg-related cells were located medially and centrally. The finding of three or more leg-related cells on a given microelectrode track was predictive of a medial localization within the motor area. Our findings are consistent with the small number of published studies on STN somatopy in the human and the nonhuman primate.

  6. Reduced Verbal Fluency following Subthalamic Deep Brain Stimulation: A Frontal-Related Cognitive Deficit?

    PubMed Central

    Houvenaghel, Jean-François; Le Jeune, Florence; Dondaine, Thibaut; Esquevin, Aurore; Robert, Gabriel Hadrien; Péron, Julie; Haegelen, Claire; Drapier, Sophie; Jannin, Pierre; Lozachmeur, Clément; Argaud, Soizic; Duprez, Joan; Drapier, Dominique; Vérin, Marc; Sauleau, Paul

    2015-01-01

    Objective The decrease in verbal fluency in patients with Parkinson’s disease (PD) undergoing subthalamic nucleus deep brain stimulation (STN-DBS) is usually assumed to reflect a frontal lobe-related cognitive dysfunction, although evidence for this is lacking. Methods To explore its underlying mechanisms, we combined neuropsychological, psychiatric and motor assessments with an examination of brain metabolism using F-18 fluorodeoxyglucose positron emission tomography, in 26 patients with PD, 3 months before and after surgery. We divided these patients into two groups, depending on whether or not they exhibited a postoperative deterioration in either phonemic (10 patients) or semantic (8 patients) fluency. We then compared the STN-DBS groups with and without verbal deterioration on changes in clinical measures and brain metabolism. Results We did not find any neuropsychological change supporting the presence of an executive dysfunction in patients with a deficit in either phonemic or semantic fluency. Similarly, a comparison of patients with or without impaired fluency on brain metabolism failed to highlight any frontal areas involved in cognitive functions. However, greater changes in cognitive slowdown and apathy were observed in patients with a postoperative decrease in verbal fluency. Conclusions These results suggest that frontal lobe-related cognitive dysfunction could play only a minor role in the postoperative impairment of phonemic or semantic fluency, and that cognitive slowdown and apathy could have a more decisive influence. Furthermore, the phonemic and semantic impairments appeared to result from the disturbance of distinct mechanisms. PMID:26448131

  7. Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks

    PubMed Central

    Herz, Damian M; Tan, Huiling; Brittain, John-Stuart; Fischer, Petra; Cheeran, Binith; Green, Alexander L; FitzGerald, James; Aziz, Tipu Z; Ashkan, Keyoumars; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Bogacz, Rafal; Brown, Peter

    2017-01-01

    Optimal decision-making requires balancing fast but error-prone and more accurate but slower decisions through adjustments of decision thresholds. Here, we demonstrate two distinct correlates of such speed-accuracy adjustments by recording subthalamic nucleus (STN) activity and electroencephalography in 11 Parkinson’s disease patients during a perceptual decision-making task; STN low-frequency oscillatory (LFO) activity (2–8 Hz), coupled to activity at prefrontal electrode Fz, and STN beta activity (13–30 Hz) coupled to electrodes C3/C4 close to motor cortex. These two correlates differed not only in their cortical topography and spectral characteristics but also in the relative timing of recruitment and in their precise relationship with decision thresholds. Increases of STN LFO power preceding the response predicted increased thresholds only after accuracy instructions, while cue-induced reductions of STN beta power decreased thresholds irrespective of instructions. These findings indicate that distinct neural mechanisms determine whether a decision will be made in haste or with caution. DOI: http://dx.doi.org/10.7554/eLife.21481.001 PMID:28137358

  8. Human Subthalamic Nucleus Theta and Beta Oscillations Entrain Neuronal Firing During Sensorimotor Conflict

    PubMed Central

    Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A.

    2017-01-01

    Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. PMID:26494798

  9. Impact of Bilateral Subthalamic Stimulation on Motor/Cognitive Functions in Parkinson's Disease

    PubMed Central

    ASAHI, Takashi; NAKAMICHI, Naomi; TAKAIWA, Akiko; KASHIWAZAKI, Daina; KOH, Masaki; DOUGU, Nobuhiro; TAKASHIMA, Shutaro; TANAKA, Kortaro; KURODA, Satoshi

    2014-01-01

    It is still unclear whether deep brain stimulation targeted to the bilateral subthalamic nucleus (STN-DBS) affects cognitive function in Parkinson's disease (PD). This prospective study was aimed to systemically evaluate the impact of bilateral STN-DBS on motor and cognitive functions in patients with PD. This study included totally 11 Japanese patients with medically intolerant PD. Neurological and cognitive status was precisely evaluated before and 1 year after bilateral STN-DBS, using unified Parkinson's disease rating scale (UPDRS), levodopa equivalent doses, mini-mental state examination (MMSE), Japanese adult reading test (JART), repeatable battery for the assessment of neuropsychological status (RBANS), and Wechsler adult intelligence scale-revised (WAIS-R). Preoperative RBANS and WAIS-R identified cognitive dysfunction that could not be detected by MMSE and JART. Before surgery, PD patients had significantly impaired immediate memory and attention. Motor function significantly improved 1 year after bilateral STN-DBS. Bilateral STN-DBS did not affect any score on cognitive examinations. However, postoperative improvements of total score on RBANS and performance intelligence quotient (PIQ) scores on WAIS-R were closely related to those of UPDRS part III off (R2 = 0.61, P < 0.01; R2 = 0.39, P < 0.05, respectively). These findings strongly suggest that bilateral STN-DBS may significantly improve cognitive function in a certain subgroup of patients whose therapeutic effects on motor function are prominent. PMID:24872253

  10. Effect of unilateral versus bilateral electrostimulation in subthalamic nucleus on speech in Parkinsons disease

    NASA Astrophysics Data System (ADS)

    Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan

    2001-05-01

    Previously, it was found that 16 right-handed patients with idiopathic Parkinsons disease who underwent unilateral implantation of deep brain stimulator in subthalamic nucleus (STN) showed significant improvement in their nonspeech motor functions. Eight of the 16 patients had stimulator in the left STN and eight in the right STN. In contrast, their speech function showed very mild improvement that was limited to the respiratory/phonotory subsystems. Further, there seemed a trend that the patients with right STN stimulation did better than those with left STN stimulation. It was speculated that the difference might be due to a micro lesion caused by the surgical procedure to the corticobulbar fibers run in the left internal capsule. This paper reports speech changes associated with bilateral DBS in STN in four of the 16 subjects who elected to have deep brain stimulator implanted in STN on the opposite side of the brain at a later time. Results show negative changes in speech after bilateral DBS in STN. The changes were not limited to the micro lesion effect due to the surgery itself, but also related to the active stimulation on the dominant hemisphere for speech processing. [Work supported by NIH.

  11. Subthalamic nucleus local field potential activity helps encode motor effort rather than force in parkinsonism.

    PubMed

    Tan, Huiling; Pogosyan, Alek; Ashkan, Keyoumars; Cheeran, Binith; FitzGerald, James J; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter

    2015-04-15

    Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response.

  12. Resting-state functional connectivity of subthalamic nucleus in different Parkinson's disease phenotypes.

    PubMed

    Wang, Zhan; Chen, Huimin; Ma, Huizi; Ma, Lingyan; Wu, Tao; Feng, Tao

    2016-12-15

    Previous studies showed that the subthalamic nucleus (STN) plays a crucial role in Parkinson's disease (PD) pathophysiology. During rest, PD phenotypes exhibit different STN functional connectivity. STN functional connectivity was examined in 31 PD patients [12 tremor-dominant (TD) and 19 posture instability gait difficulty (PIGD)] and 22 healthy controls (HC). Compared with controls and PIGD patients, the TD patients exhibited higher functional connectivity between the bilateral STN and the left cerebellar anterior lobe. Compared with the TD and HC groups, in the PIGD subgroup functional connectivity was lower between the left putamen and the STN, as well as between the pons and the STN. In the PIGD subgroup, functional connectivity was greater between the STN and bilateral occipital lobe, which positively correlated with PIGD scores in PD patients. Additionally, STN-cerebellum connectivity positively correlated with the tremor score, and STN-putamen connectivity negatively correlated with the PIGD score in PD patients. PD subtypes with distinguished STN functional connectivity might explain the various pathophysiological mechanisms in tremor and gait disorders. Increased coupling between the STN and cerebellum might underlie the neural substrate of PD tremors. Lower functional connectivity between the STN and putamen might underpin PD gait and posture disturbances, while higher functional connectivity between the STN and visual cortex might play a compensatory role.

  13. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control

    PubMed Central

    Tewari, Alia; Jog, Rachna; Jog, Mandar S.

    2016-01-01

    The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson’s disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN. PMID:26973474

  14. The modulatory role of subthalamic nucleus in cognitive functions - a viewpoint.

    PubMed

    Rektor, Ivan; Bočková, Martina; Chrastina, Jan; Rektorová, Irena; Baláž, Marek

    2015-04-01

    The modifications of electrophysiological activities of subthalamic nucleus (STN) by non-motor tasks, i.e. movement observation, emotional stimuli and impulse control, were reported repeatedly. Despite being a small structure, STN is apparently involved in a variety of functions. Based on our own electrophysiological recordings and results of other groups we believe that it acts as an indirect modulator which may be involved in tuning the functional systems. STN may modulate specific cognitive activities via contextual modulation of certain cortical areas. Our findings support the hypothesis of a cortical-STN bypass (via hyperdirect pathway) of "classical" basal ganglia-thalamocortical circuitry, at least during the processing of certain cognitive functions. The modulation of cognitive functions appears to be selective, probably determined by the involvement of cortical neuronal populations interconnected with STN. There could also exist a spatial overlap of areas within STN regulating various functions. That may explain the fact that some non-motor symptoms of Parkinson's disease may improve after deep brain stimulation of STN. These improvements are likely caused by combination of direct stimulation effect on non-motor function and overall beneficial effect of motor improvement on quality of life.

  15. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    PubMed

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-05-03

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.

  16. Verbal fluency in patients receiving bilateral versus left-sided deep brain stimulation of the subthalamic nucleus for Parkinson's disease.

    PubMed

    Sjöberg, Rickard L; Lidman, Elin; Häggström, Björn; Hariz, Marwan I; Linder, Jan; Fredricks, Anna; Blomstedt, Patric

    2012-05-01

    The purpose of this study was to investigate the relative effects of unilateral (left-sided) versus bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) on verbal fluency. To do this, 10 Parkinson's disease patients with predominantly bilateral motor symptoms who received bilateral STN DBS were compared with 6 patients suffering from predominantly unilateral symptoms who received STN DBS on the left side only. The results suggest that unilateral STN DBS of the speech dominant hemisphere is associated with significantly less declines in measures of verbal fluency as compared to bilateral stimulation.

  17. Capgras Syndrome in a Patient with Parkinson's Disease after Bilateral Subthalamic Nucleus Deep Brain Stimulation: A Case Report

    PubMed Central

    Kyrtsos, Christina Rose; Stahl, Mark C.; Eslinger, Paul; Subramanian, Thyagarajan; Lucassen, Elisabeth B.

    2015-01-01

    Capgras syndrome is a delusional misidentification syndrome (DMS) which can be seen in neurodegenerative diseases such as Lewy body dementia and, to a lesser extent, in Parkinson's disease (PD). Here, we report the case of a 78-year-old man with a history of idiopathic PD who developed Capgras syndrome following bilateral subthalamic nucleus deep brain stimulation (DBS) implantation. As the risk of DMS has been related to deficits in executive, memory, and visuospatial function preoperatively, this case highlights the importance of continuing to improve patient selection for DBS surgery. Capgras syndrome is a rare potential complication of DBS surgery in PD patients with preexisting cognitive decline. PMID:26078747

  18. Spatio-spectral characterization of local field potentials in the subthalamic nucleus via multitrack microelectrode recordings.

    PubMed

    Telkes, I; Ince, N F; Onaran, I; Abosch, A

    2015-08-01

    Deep brain stimulation of the subthalamic nucleus (STN) is a highly effective treatment for motor symptoms of Parkinson's disease. However, precise intraoperative localization of STN remains a procedural challenge. In the present study, local field potentials (LFPs) were recorded from three tracks during microelectrode recording-based (MER) targeting of STN, in five patients. The raw LFP data were preprocessed in original recording setup and then data quality was compared to data with common average derivation. The depth-frequency maps were generated according to preprocessing results for each patient and spectral characteristics of LFPs were explored at each depth across different tracks and different subjects. Spatio-spectral analysis of LFP was investigated to see whether LFP activity can be used for optimal track selection and STN border identification. Analysis show that monopolar derivation suffer from various artifacts and/or power line noise which makes the interpretation of target localization very difficult in most of the subjects. Unlikely, bipolar derivation helps to recover the neurological signals and investigation of signal characteristics. The frequency-vs-depth maps using a modified Welch periodogram with robust statistics, demonstrated that a median-based spectrum estimation approach eliminates outliers pretty well by preserving band-specific LFP activity. The results indicate that there is a clear oscillatory beta activity around 20 Hz in all subjects. 1/f normalization reveals the high frequency oscillations (HFOs) between 200-to-350 Hz in two subjects. It's noted that the optimal track selection is not consistent with the track having highest beta band oscillations in two out of five subjects. In conclusion, microelectrode-derived LFP recordings may provide an alternative approach to single unit activity (SUA)-based MER, for localizing the target STN borders during DBS surgery. Despite the small number of subjects, the present study adds to

  19. Oscillatory subthalamic nucleus activity is modulated by dopamine during emotional processing in Parkinson's disease.

    PubMed

    Huebl, Julius; Spitzer, Bernhard; Brücke, Christof; Schönecker, Thomas; Kupsch, Andreas; Alesch, François; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-11-01

    Dopaminergic denervation in Parkinson's disease (PD) leads to motor deficits but also depression, lack of motivation and apathy. These symptoms can be reversed by dopaminergic treatment, which may even lead to an increased hedonic tone in some patients with PD. Here, we tested the effects of dopamine on emotional processing as indexed by changes in local field potential (LFP) activity of the subthalamic nucleus (STN) in 28 PD patients undergoing deep brain stimulation. LFP activity from the STN was recorded after the administration of levodopa (ON group) or after overnight withdrawal of medication (OFF group) during presentation of an emotional picture-viewing task. Neutral and emotionally arousing pleasant and unpleasant stimuli were chosen from the International Affective Picture System. We found a double dissociation of the alpha band response depending on dopamine state and stimulus valence: dopamine enhanced the processing of pleasant stimuli, while activation during unpleasant stimuli was reduced, as indexed by the degree of desynchronization in the alpha frequency band. This pattern was reversed in the OFF state and more pronounced in the subgroup of non-depressed PD patients. Further, we found an early gamma band increase with unpleasant stimuli that occurred when ON but not OFF medication and was correlated with stimulus arousal. The late STN alpha band decrease is thought to represent active processing of sensory information. Our findings support the idea that dopamine enhances approach-related processes during late stimulus evaluation in PD. The early gamma band response may represent local encoding of increased attention, which varies as a function of stimulus arousal.

  20. Bilateral subthalamic stimulation effects on oral force control in Parkinson's disease.

    PubMed

    Pinto, Serge; Gentil, Michèle; Fraix, Valérie; Benabid, Alim-Louis; Pollak, Pierre

    2003-02-01

    Dysarthria in Parkinson's disease (PD) consists of articulatory, phonatory and respiratory impairment. Bilateral subthalamic nucleus (STN) stimulation greatly improves motor disability, but its long-term effect on speech within a large group of patients has not been precisely evaluated. The aim of this study was to determine the effect of bilateral STN stimulation on oral force control in PD. We measured forces of the upper lip, lower lip and tongue in twenty-six PD patients treated with bilateral STN stimulation. Measurements of the articulatory organ force, as well as a motor evaluation using the Unified Parkinson's Disease Rating Scale (UPDRS), were made with and without STN stimulation. Maximal voluntary force (MVF), reaction time (RT), movement time (MT), imprecision of the peak force (PF) and the hold phase (HP) were all improved with STN stimulation during the articulatory force task, as well as the motor examination scores of the UPDRS. It seems that the beneficial STN stimulation-induced effect on articulatory forces persisted whatever the duration of post-surgical follow-up. However, dysarthria evaluated by the UPDRS was worse in two subgroups of patients with a one to two year and three to five year post-surgical follow-up, in comparison with a subgroup of patients with a three month follow-up. STN stimulation has a beneficial long-term effect on the articulatory organs involved in speech production, and this indicates that parkinsonian dysarthria is associated, at least in part, with an alteration in STN neuronal activity. Nevertheless, to confirm the persistence of the beneficial effect of STN stimulation on parkinsonian dysarthria, a longitudinal evaluation is still needed.

  1. Clinical and economic results of bilateral subthalamic nucleus stimulation in Parkinson's disease

    PubMed Central

    Fraix, V; Houeto, J‐L; Lagrange, C; Pen, C Le; Krystkowiak, P; Guehl, D; Ardouin, C; Welter, M‐L; Maurel, F; Defebvre, L; Rougier, A; Benabid, A‐L; Mesnage, V; Ligier, M; Blond, S; Burbaud, P; Bioulac, B; Destée, A; Cornu, P; Pollak, P

    2006-01-01

    Background High frequency stimulation of the subthalamic nucleus (STN) is an alternative but expensive neurosurgical treatment for parkinsonian patients with levodopa induced motor complications. Objective To assess the safety, clinical effects, quality of life, and economic cost of STN stimulation. Methods We conducted a prospective multicentre study in 95 consecutive Parkinson's disease (PD) patients receiving bilateral STN stimulation and assessed its effects over 12 months. A double blind randomised motor evaluation was carried out at 3 month follow up, and quality of life, self care ability, and predictive factors of outcome following surgery were assessed. The cost of PD was estimated over 6 months before and after surgery. Results The Unified Parkinson's Disease Rating Scale (UPDRS) motor score improved by 57% (p<0.0001) and activities of daily living improved by 48% (p<0.0001) at 12 month follow up. Double blind motor scoring improved by 51% at 3 month follow up (p<0.0001). The total PD Quality of Life Questionnaire (PDQL‐37) score improved by 28% (p<0.001). The better the preoperative motor score after a levodopa challenge, the better the outcome after STN stimulation. Five patients developed an intracerebral haematoma during electrode implantation with permanent after effects in two. The 6 month costs of PD decreased from €10 087 before surgery to €1673 after surgery (p<0.0001) mainly because of the decrease in medication. These savings allowed a return on the procedure investment, estimated at €36 904 over 2.2 years. Conclusions STN stimulation has good outcomes with relatively low risk and little cost burden in PD patients with levodopa induced motor complications. PMID:16543519

  2. The Good and Bad Differentially Encoded within the Subthalamic Nucleus in Rats

    PubMed Central

    Breysse, Emmanuel; Pelloux, Yann

    2015-01-01

    Abstract The subthalamic nucleus (STN) has only recently been added into the reward circuit. It has been shown to encode information regarding rewards (4% sucrose, 32% cocaine). To investigate the encoding of negative value, STN neurons were recorded in rats performing a task using discriminative stimuli predicting various rewards and especially during the replacement of a positive reinforcer (4% sucrose) by an aversive reinforcer (quinine). The results show that STN neurons encode information relative to both positive and aversive reinforcers via specialized subpopulations. The specialization is reset when the context is modified (change from a favorable context (4% vs 32% sucrose) to an unfavorable context (quinine vs 32% sucrose). An excitatory response to the cue light predicting the reward seems to be associated with the preferred situation, suggesting that STN plays a role in encoding the relative value of rewards. STN also seems to play a critical role in the encoding of execution error. Indeed, various subpopulations of neurons responding exclusively at early (i.e., “oops neurons”) or at correct lever release were identified. The oops neurons respond mostly when the preferred reward (32% sucrose) is missed. Furthermore, STN neurons respond to reward omission, suggesting a role in reward prediction error. These properties of STN neurons strengthen its position in the reward circuit as a key cerebral structure through which reward-related processes are mediated. It is particularly important given the fact that STN is the target of surgical treatment for Parkinson’s disease and obsessive compulsive disorders, and has been suggested for the treatment of addiction as well. PMID:26478913

  3. Cholinergic and non-cholinergic mesopontine tegmental neurons projecting to the subthalamic nucleus in the rat

    PubMed Central

    Kita, Takako; Kita, Hitoshi

    2010-01-01

    The subthalamic nucleus (STN) receives cholinergic and non-cholinergic projections from the mesopontine tegmentum. This study investigated the numbers and distributions of neurons involved in these projections in rats using Fluorogold (FG) retrograde tracing combined with immunostaining of choline acetyltransferase and a neuron-specific nuclear protein. The results suggest that a small population of cholinergic neurons mainly in the caudoventral part of the pedunculopontine tegmental nucleus (PPN), approximately 360 neurons (≈10% of total) in the homolateral and 80 neurons (≈2%) in the contralateral PPN, projects to the STN. In contrast, the number of non-cholinergic neurons projecting to the STN was estimated to be 9 times as much, with approximately 3300 in the homolateral side and 1300 neurons in the contralateral side. A large gathering of the FG-labeled non-cholinergic neurons was found rostrodorsomedial to the caudolateral PPN. The biotinylated dextran amine (BDA) anterograde tracing method was used to substantiate the mesopontine-STN projections. Injection of BDA into the caudoventral PPN labeled numerous thin fibers with small en-passant varicosities in the STN. Injection of BDA into the non-cholinergic neuron-rich area labeled a moderate number of thicker fibers with patches of aggregates of larger boutons. The densities of labeled fibers and the number of retrogradely labeled cells in the mesopontine tegmentum suggested that the terminal field formed in the STN by each cholinergic neuron is more extensive than that by each non-cholinergic neuron. The findings suggest that cholinergic and non-cholinergic mesopontine afferents may carry different information to the STN. PMID:21198985

  4. Modulation of nutritional state in Parkinsonian patients with bilateral subthalamic nucleus stimulation.

    PubMed

    Guimarães, Joana; Matos, Eduarda; Rosas, Maria José; Vieira-Coelho, Augusta; Borges, Nuno; Correia, Flora; Vaz, Rui; Garrett, Carolina

    2009-12-01

    Chronic bilateral subthalamic stimulation (DBS-STN) provides considerable clinical benefits in Parkinson disease patients, with improvement in primary symptoms and resolution of side effects of chronic pharmacological treatment. Apart from its therapeutic effects on PD symptoms, DBS-STN also appears to induce weight gain, which may itself induce critical metabolic disorders and limit the benefits of surgery. No data are available in literature showing the efficacy of a nutritional intervention to prevent rapid and/or excessive weight gain after DBSSTN. Fifty-seven PD patients were included in this study and were divided into two groups: Group 1 comprised 16 patients with a nutritional intervention immediately after surgery (1 week after); Group 2 comprised 41 patients with a nutritional intervention in a later period after surgery (mean time of 2.5 ± 1.6 years). Weight, body mass index (BMI), percentage of fat mass, levodopa daily dose (LDD) and part III of the Unified Parkinson's disease rating scale (UPDRS) were studied before and after an individualized and structured nutritional intervention. Three months after nutritional intervention, Group 1 had a mean BMI (24.1 ± 2.99), that was not significantly different (p = 0.114) from BMI before intervention, with stability of the weight and in percentage of fat mass. In Group 2 all the patients gained weight, reaching to 13.17 ± 10%; a total of 63% of patients became overweight (BMI 25 kg/m(2)). Three months after nutritional intervention, Group 2 had a mean BMI (24.80 ± 2.45) that was significantly (p = 0.03) different from BMI before intervention (26.75 ± 2.99), although percentage of fat mass was higher in women. With this study, we have conclude that nutritional intervention adequate to patient-age, disease characteristics, medical therapy with L-dopa and physical activity, is effective incontrolling weight after DBS-STN surgery.

  5. Tremor reduction by subthalamic nucleus stimulation and medication in advanced Parkinson's disease.

    PubMed

    Blahak, Christian; Wöhrle, Johannes C; Capelle, Hans-Holger; Bäzner, Hansjörg; Grips, Eva; Weigel, Ralf; Hennerici, Michael G; Krauss, Joachim K

    2007-02-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has proved to be effective for tremor in Parkinson's disease (PD). Most of the recent studies used only clinical data to analyse tremor reduction. The objective of our study was to quantify tremor reduction by STN DBS and antiparkinsonian medication in elderly PD patients using an objective measuring system. Amplitude and frequency of resting tremor and re-emergent resting tremor during postural tasks were analysed using an ultrasound-based measuring system and surface electromyography. In a prospective study design nine patients with advanced PD were examined preoperatively off and on medication, and twice postoperatively during four treatment conditions: off treatment, on STN DBS, on medication, and on STN DBS plus medication. While both STN DBS and medication reduced tremor amplitude, STN DBS alone and the combination of medication and STN DBS were significantly superior to pre- and postoperative medication. STN DBS but not medication increased tremor frequency, and off treatment tremor frequency was significantly reduced postoperatively compared to baseline. These findings demonstrate that STN DBS is highly effective in elderly patients with advanced PD and moderate preoperative tremor reduction by medication. Thus, with regard to the advanced impact on the other parkinsonian symptoms, STN DBS can replace thalamic stimulation in this cohort of patients. Nevertheless, medication was still effective postoperatively and may act synergistically. The significantly superior efficacy of STN DBS on tremor amplitude and its impact on tremor frequency in contrast to medication might be explained by the influence of STN DBS on additional neural circuits independent from dopaminergic neurotransmission.

  6. GABAA-receptor activation in the subthalamic nucleus compensates behavioral asymmetries in the hemiparkinsonian rat.

    PubMed

    Petri, David; Pum, Martin; Vesper, Jan; Huston, Joseph P; Schnitzler, Alfons

    2013-09-01

    The subthalamic nucleus (STN) has a pivotal role in the pathophysiology of Parkinson's disease (PD). Modulation of STN activity (by lesions, pharmacological or electrical stimulation) has been shown to improve motor parameters in PD patients and in animal models of PD. In an attempt to characterize the neurochemical bases for such antiparkinsonian action, we address specific neurotransmitter systems via local pharmacological manipulation of the STN in hemiparkinsonian rats. Here, we have focused on the GABAergic and glutamatergic receptors in the STN. In animals with unilateral 6-hydroxydopamine lesions of the nigro-striatal tract, we administered either the selective GABAA-agonist muscimol (0.5 μg and 1.0 μg), the non-competitive N-methyl-d-aspartate (NMDA)-antagonist MK-801 (dizocilpine; 2.5 μg), or vehicle (0.25 μl) into the STN. The effects of GABAergic and glutamatergic modulation of the STN on motor parameters were assessed by gauging rotational behavior and locomotion. Application of muscimol ipsilateral to the side of dopamine-depletion influenced turning behavior in a dose-dependent fashion, with the low dose re-adjusting turning behavior to a non-biased distribution, and the high dose evoking contraversive turning. The administration of MK-801 did not have such effects. These findings give evidence for the involvement of GABAergic activation in the STN in the compensation of motor asymmetries in the hemiparkinsonian rat, whereas N-methyl-d-aspartate (NMDA)-antagonism was ineffective in this model of PD.

  7. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation.

    PubMed

    Mure, Hideo; Tang, Chris C; Argyelan, Miklos; Ghilardi, Maria-Felice; Kaplitt, Michael G; Dhawan, Vijay; Eidelberg, David

    2012-02-22

    We used a network approach to study the effects of anti-parkinsonian treatment on motor sequence learning in humans. Eight Parkinson's disease (PD) patients with bilateral subthalamic nucleus (STN) deep brain stimulation underwent H(2)(15)O positron emission tomography (PET) imaging to measure regional cerebral blood flow (rCBF) while they performed kinematically matched sequence learning and movement tasks at baseline and during stimulation. Network analysis revealed a significant learning-related spatial covariance pattern characterized by consistent increases in subject expression during stimulation (p = 0.008, permutation test). The network was associated with increased activity in the lateral cerebellum, dorsal premotor cortex, and parahippocampal gyrus, with covarying reductions in the supplementary motor area (SMA) and orbitofrontal cortex. Stimulation-mediated increases in network activity correlated with concurrent improvement in learning performance (p < 0.02). To determine whether similar changes occurred during dopaminergic pharmacotherapy, we studied the subjects during an intravenous levodopa infusion titrated to achieve a motor response equivalent to stimulation. Despite consistent improvement in motor ratings during infusion, levodopa did not alter learning performance or network activity. Analysis of learning-related rCBF in network regions revealed improvement in baseline abnormalities with STN stimulation but not levodopa. These effects were most pronounced in the SMA. In this region, a consistent rCBF response to stimulation was observed across subjects and trials (p = 0.01), although the levodopa response was not significant. These findings link the cognitive treatment response in PD to changes in the activity of a specific cerebello-premotor cortical network. Selective modulation of overactive SMA-STN projection pathways may underlie the improvement in learning found with stimulation.

  8. Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task.

    PubMed

    Aleksandrova, Lily R; Creed, Meaghan C; Fletcher, Paul J; Lobo, Daniela S S; Hamani, Clement; Nobrega, José N

    2013-05-15

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option for the motor symptoms of Parkinson's disease (PD). However, several recent studies have found an association between STN-DBS and increased impulsivity. Currently, it is not clear whether the observed increase in impulsivity results from STN-DBS per se, or whether it involves an interaction with the underlying PD neuropathology and/or intake of dopaminergic drugs. We investigated the effects of STN-DBS on performance of intact rats on two tasks measuring impulsive responding: a novel rat gambling task (rGT) and a differential reinforcement of low rate responding (DRL20s) schedule. Following initial behavioural training, animals received electrode implantation into the STN (n=24) or sham surgery (n=24), and were re-tested on their assigned behavioural task, with or without STN-DBS. Bilateral STN-DBS administered for two hours immediately prior to testing, had no effects on rGT choice behaviour or on DRL response inhibition (p>0.05). However, STN-DBS significantly increased premature responding in the rGT task (p=0.0004), an effect that took several sessions to develop and persisted in subsequent trials when no stimulation was given. Consistent with the notion of distinct facets of impulsivity with unique neurochemical underpinnings, we observed differential effects of STN-DBS in the two tasks employed. These results suggest that STN-DBS in the absence of parkinsonism may not lead to a general loss of inhibitory control, but may instead affect impulsivity under specific conditions.

  9. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease.

    PubMed

    Saint-Cyr, J A; Trépanier, L L; Kumar, R; Lozano, A M; Lang, A E

    2000-10-01

    The aim of this study was to examine possible neuropsychological changes in patients with advanced idiopathic Parkinson's disease treated with bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN). Eleven patients (age = 67 +/- 8 years, years with Parkinson's disease = 15 +/- 3, verbal IQ = 114 +/- 12) were evaluated (in their best 'on state') with tests assessing processes reliant on the functional integrity of frontal striatal circuitry, prior to the procedure (n = 11), at 3-6 months (n = 11) and at 9-12 months (n =10) post-operatively. Six of these patients were older than 69 years. Despite clinical motor benefits at 3-6 months post-operative, significant declines were noted in working memory, speed of mental processing, bimanual motor speed and co-ordination, set switching, phonemic fluency, long-term consolidation of verbal material and the encoding of visuospatial material. Declines were more consistently observed in patients who were older than 69 years, leading to a mental state comparable with progressive supranuclear palsy. 'Frontal' behavioural dyscontrol without the benefit of insight was also reported by half (three of six) of the caregivers of the elderly subgroup. At 9-12 months postoperative, only learning based on multiple trials had recovered. Tasks reliant on the integrity of frontal striatal circuitry either did not recover or gradually worsened over time. Bilateral STN DBS can have a negative impact on various aspects of frontal executive functioning, especially in patients older than 69 years. Future studies will evaluate a larger group of patients and examine the possible reversibility of these effects by turning the DBS off.

  10. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients123

    PubMed Central

    Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons

    2016-01-01

    Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622

  11. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks.

    PubMed

    Delaville, Claire; McCoy, Alex J; Gerber, Colin M; Cruz, Ana V; Walters, Judith R

    2015-04-29

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29-36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29-36 Hz LFP power. However, mPFC and STN both showed peaks in the 45-55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45-55 Hz activity, the amplitude of the exaggerated 29-36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system.

  12. Timing and direction selectivity of subthalamic and pallidal neurons in patients with Parkinson disease.

    PubMed

    Williams, Ziv M; Neimat, Joseph S; Cosgrove, G Rees; Eskandar, Emad N

    2005-05-01

    Current models of basal ganglia function suggest that some manifestations of Parkinson disease (PD) arise from abnormal activity and decreased selectivity of neurons in the subthalamic nucleus (STN) and globus pallidus internus (Gpi). Our goal was to examine the timing and direction selectivity of neuronal activity relative to visually guided movements in the STN and Gpi of patients with PD. Recordings were made from 152 neurons in the STN and 33 neurons in the Gpi of awake subjects undergoing surgery for PD. Corresponding EMG data were obtained for half the cells. We employed a structured behavioral task in which the subjects used a joystick to guide a cursor to one of four targets displayed on a monitor. Each direction was tested over multiple trials. Movement-related modulation of STN activity began on average 264+/-10 ms before movement initiation and 92+/-13 ms before initial EMG activity, while modulation of Gpi activity began 204+/-21 ms before overt movement initiation. In the STN, 40% of cells demonstrated perimovement activity, and of these 64% were directionally selective. In Gpi, 45% of cells showed perimovement activity of which 80% were selective. In both nuclei, directionally selective cells had significantly lower baseline firing rates than nonselective cells (41+/-5 vs 59+/-4 spikes/s in STN, and 50+/-9 vs 74+/-15 spikes/s in Gpi). These results suggest that STN activity occurs earlier than previously reported, and that higher neuronal firing rates maybe associated with decreased direction selectivity in PD patients.

  13. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.

    PubMed

    Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.

  14. Increasing extracellular potassium results in subthalamic neuron activity resembling that seen in a 6-hydroxydopamine lesion.

    PubMed

    Strauss, Ulf; Zhou, Fu-Wen; Henning, Jeannette; Battefeld, Arne; Wree, Andreas; Köhling, Rüdiger; Haas, Stefan Jean-Pierre; Benecke, Reiner; Rolfs, Arndt; Gimsa, Ulrike

    2008-06-01

    Abnormal neuronal activity in the subthalamic nucleus (STN) plays a crucial role in the pathophysiology of Parkinson's disease (PD). Although altered extracellular potassium concentration ([K+]o) and sensitivity to [K+]o modulates neuronal activity, little is known about the potassium balance in the healthy and diseased STN. In vivo measurements of [K+]o using ion-selective electrodes demonstrated a twofold increase in the decay time constant of lesion-induced [K+]o transients in the STN of adult Wistar rats with a unilateral 6-hydroxydopamine (6-OHDA) median forebrain bundle lesion, employed as a model of PD, compared with nonlesioned rats. Various [K+]o concentrations (1.5-12.5 mM) were applied to in vitro slice preparations of three experimental groups of STN slices from nonlesioned control rats, ipsilateral hemispheres, and contralateral hemispheres of lesioned rats. The majority of STN neurons of nonlesioned rats and in slices contralateral to the lesion fired spontaneously, predominantly in a regular pattern, whereas those in slices ipsilateral to the lesion fired more irregularly or even in bursts. Experimentally increased [K+]o led to an increase in the number of spontaneously firing neurons and action potential firing rates in all groups. This was accompanied by a decrease in the amplitude of post spike afterhyperpolarization (AHP) and the amplitude and duration of the posttrain AHP. Lesion effects in ipsilateral neurons at physiological [K+]o resembled the effects of elevated [K+]o in nonlesioned rats. Our data suggest that changed potassium sensitivity due to conductivity alterations and delayed clearance may be critical for shaping STN activity in parkinsonian states.

  15. The subthalamic nucleus keeps you high on emotion: behavioral consequences of its inactivation.

    PubMed

    Pelloux, Yann; Meffre, Julie; Giorla, Elodie; Baunez, Christelle

    2014-01-01

    The subthalamic nucleus (STN) belongs to the basal ganglia and is the current target for the surgical treatment of neurological and psychiatric disorders such as Parkinson's Disease (PD) and obsessive compulsive disorders (OCD), but also a proposed site for the treatment of addiction. It is therefore very important to understand its functions in order to anticipate and prevent possible side-effects in the patients. Although the involvement of the STN is well documented in motor, cognitive and motivational processes, less is known regarding emotional processes. Here we have investigated the direct consequences of STN inactivation by excitotoxic lesions on emotional processing and reinforcement in the rat. We have used various behavioral procedures to assess affect for neutral, positive and negative reinforcers in STN lesioned rats. STN lesions reduced affective responses for positive (sweet solutions) and negative (electric foot shock, Lithium Chloride-induced sickness) reinforcers while they had no effect on responses for a more neutral reinforcer (novelty induced place preference (NIPP)). Furthermore, when given the choice between saccharine, a sweet but non caloric solution, and glucose, a more bland but caloric solution, in contrast to sham animals that preferred saccharine, STN lesioned animals preferred glucose over saccharine. Taken altogether these results reveal that STN plays a critical role in emotional processing. These results, in line with some clinical observations in PD patients subjected to STN surgery, suggest possible emotional side-effects of treatments targeting the STN. They also suggest that the increased motivation for sucrose previously reported cannot be due to increased pleasure, but could be responsible for the decreased motivation for cocaine reported after STN inactivation.

  16. Dopaminergic therapy and subthalamic stimulation in Parkinson's disease: a review of 5-year reports.

    PubMed

    Romito, Luigi M; Albanese, Alberto

    2010-11-01

    The long-term efficacy and safety of deep brain stimulation (DBS) implant for Parkinson's disease (PD) is described in several recent papers. This procedure has been reported to permit a stable reduction of dopaminergic therapy requirements for up to 5 years, although some expectation of deterioration in non-dopaminergic signs has been recently stated. Our aim is to perform a literature-based review of papers available describing long-term post-operative follow-up after a bilateral implant for subthalamic DBS (STN-DBS). Only peer-reviewed published papers with a post-operative follow-up of at least 5 years were considered. Clinical outcome, disease progression and side effects were assessed at baseline and 2 (or 3 years) and 5 years after surgery. Seven papers were included in the review. A total of 238 patients were analyzed. STN-DBS was confirmed to be an effective treatment for selected patients with PD. In all studies, off-related motor symptoms improved dramatically, compared with pre-implant, at 2 (or 3, according to the study) years and this result persisted at 5-year evaluations. Antiparkinsonian drug reductions, improvements in motor fluctuations and dyskinesias, functional measures and the progression of underlying PD were also reported in all series. Some axial scores, in particular postural stability and speech, improved transiently. Persisting adverse effects included eyelid opening apraxia, weight gain, psychiatric disorders, depression, dysarthria, dyskinesias, and apathy. The present review of the 5-year observations confirms that STN-DBS is a powerful method in the management of PD, but its long-term effects must be thoroughly assessed.

  17. Change of the melanocortin system caused by bilateral subthalamic nucleus stimulation in Parkinson's disease.

    PubMed

    Escamilla-Sevilla, F; Pérez-Navarro, M J; Muñoz-Pasadas, M; Sáez-Zea, C; Jouma-Katati, M; Piédrola-Maroto, G; Ramírez-Navarro, A; Mínguez-Castellanos, A

    2011-10-01

    OBJECTIVES - Determine whether bilateral subthalamic nucleus stimulation (STN-DBS) in Parkinson's disease (PD) is associated with an increase in neuropeptide Y (NPY) and/or resistance to inhibition by leptin in relation to post-surgery weight gain. MATERIALS AND METHODS - This prospective study included 20 patients who underwent bilateral STN-DBS and 17 who refused surgery. Data were obtained at baseline, 3 and 6 months on neurological and nutritional status, including determination of body mass index (BMI) and serum NPY and leptin levels. RESULTS -  NPY and leptin levels changed over time, with a distinct pattern. The BMI increase at 6 months was greater in the surgical group (5.5 ± 6.3% vs 0.5 ± 3.5%; P = 0.035). Medical group exhibited a reduction in leptin level (-2.0 ± 4.3 ng/ml) and a consequent increase in NPY level (72.4 ± 58.7 pmol/ml). However, STN-DBS patients showed an increase in leptin (3.1 ± 5.0 ng/ml; P = 0.001 vs medical group) and also in NPY (12.1 ± 53.6 pmol/ml; P = 0.022 vs medical group) levels, which suggests resistance to inhibition by leptin. Rise in NPY level correlated with higher stimulation voltages. CONCLUSIONS -  Bilateral STN-DBS causes disruption of the melanocortin system, probably related to diffusion of the electric current to the hypothalamus. This mechanism may in part explain the weight gain of patients with PD after surgery.

  18. Effective connectivity of the subthalamic nucleus–globus pallidus network during Parkinsonian oscillations

    PubMed Central

    Nevado-Holgado, Alejo J; Mallet, Nicolas; Magill, Peter J; Bogacz, Rafal

    2014-01-01

    In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus pallidus (GP) neuron inappropriately synchronise their firing in time with slow (∼1 Hz) or beta (13–30 Hz) oscillations in cortex. We recorded the activities of STN, Type-I GP (GP-TI) and Type-A GP (GP-TA) neurons in anaesthetised Parkinsonian rats during such oscillations to constrain a series of computational models that systematically explored the effective connections and physiological parameters underlying neuronal rhythmic firing and phase preferences in vivo. The best candidate model, identified with a genetic algorithm optimising accuracy/complexity measures, faithfully reproduced experimental data and predicted that the effective connections of GP-TI and GP-TA neurons are quantitatively different. Estimated inhibitory connections from striatum were much stronger to GP-TI neurons than to GP-TA neurons, whereas excitatory connections from thalamus were much stronger to GP-TA and STN neurons than to GP-TI neurons. Reciprocal connections between GP-TI and STN neurons were matched in weight, but those between GP-TA and STN neurons were not; only GP-TI neurons sent substantial connections back to STN. Different connection weights between and within the two types of GP neuron were also evident. Adding to connection differences, GP-TA and GP-TI neurons were predicted to have disparate intrinsic physiological properties, reflected in distinct autonomous firing rates. Our results elucidate potential substrates of GP functional dichotomy, and emphasise that rhythmic inputs from striatum, thalamus and cortex are important for setting activity in the STN–GP network during Parkinsonian beta oscillations, suggesting they arise from interactions between most nodes of basal ganglia–thalamocortical circuits. PMID:24344162

  19. Sixty Hertz Neurostimulation Amplifies Subthalamic Neural Synchrony in Parkinson’s Disease

    PubMed Central

    Blumenfeld, Zack; Velisar, Anca; Miller Koop, Mandy; Hill, Bruce C.; Shreve, Lauren A.; Quinn, Emma J.; Kilbane, Camilla; Yu, Hong; Henderson, Jaimie M.; Brontë-Stewart, Helen

    2015-01-01

    High frequency subthalamic nucleus (STN) deep brain stimulation (DBS) improves the cardinal motor signs of Parkinson’s disease (PD) and attenuates STN alpha/beta band neural synchrony in a voltage-dependent manner. While there is a growing interest in the behavioral effects of lower frequency (60 Hz) DBS, little is known about its effect on STN neural synchrony. Here we demonstrate for the first time that during intra-operative 60 Hz STN DBS, one or more bands of resting state neural synchrony were amplified in the STN in PD. We recorded intra-operative STN resting state local field potentials (LFPs) from twenty-eight STNs in seventeen PD subjects after placement of the DBS lead (model 3389, Medtronic, Inc.) before and during three randomized neurostimulation sets (130 Hz/1.35V, 130 Hz/2V, 60 Hz/2V). During 130 Hz/2V DBS, baseline (no DBS) STN alpha (8 – 12 Hz) and beta (13 – 35 Hz) band power decreased (N=14, P < 0.001 for both), whereas during 60 Hz/2V DBS, alpha band and peak frequency power increased (P = 0.012, P = 0.007, respectively). The effect of 60 Hz/2V DBS opposed that of power-equivalent (130 Hz/1.35V) DBS (alpha: P < 0.001, beta: P = 0.006). These results show that intra-operative 60 Hz STN DBS amplified whereas 130 Hz STN DBS attenuated resting state neural synchrony in PD; the effects were frequency-specific. We demonstrate that neurostimulation may be useful as a tool to selectively modulate resting state resonant bands of neural synchrony and to investigate its influence on motor and non-motor behaviors in PD and other neuropsychiatric diseases. PMID:25807463

  20. MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson's disease

    PubMed Central

    Patel, N; Plaha, P; O'Sullivan, K; McCarter, R; Heywood, P; Gill, S

    2003-01-01

    Objective: Bilateral chronic high frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) has emerged as an appropriate therapy for patients with advanced Parkinson's disease refractory to medical therapy. Advances in neuroimaging and neurophysiology have led to the development of varied targeting methods for the delivery of this treatment. Intraoperative neurophysiological and clinical monitoring is regarded by many to be mandatory for accurate STN localisation. We have examined efficacy of bilateral STN stimulation using a predominantly magnetic resonance imaging (MRI)-directed technique. Methods: DBS leads were stereotactically implanted into the STN using an MRI directed method, with intraoperative macrostimulation used purely for adjustment. The effects of DBS were evaluated in 16 patients followed up to 12 months, and compared with baseline assessments. Assessments were performed in both off and on medication states, and were based on the Unified Parkinson's Disease Rating Scale (UPDRS) and timed motor tests. Functional status outcomes were examined using the PDQ-39 quality of life questionnaire. A battery of psychometric tests was used to assess cognition. Results: After 12 months, stimulation in the off medication state resulted in significant improvements in Activities of Daily Living and Motor scores (UPDRS parts II and III) by 62% and 61% respectively. Timed motor tests were significantly improved in the off medication state. Motor scores (UPDRS part III) were significantly improved by 40% in the on medication state. Dyskinesias and off duration were significantly reduced and the mean dose of L-dopa equivalents was reduced by half. Psychometric test scores were mostly unchanged or improved. Adverse events were few. Conclusions: An MRI directed targeting method for implantation of DBS leads into the STN can be used safely and effectively, and results are comparable with studies using intraoperative microelectrode neurophysiological

  1. Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity

    NASA Astrophysics Data System (ADS)

    Cagnan, Hayriye; Dolan, Kevin; He, Xuan; Fiorella Contarino, Maria; Schuurman, Richard; van den Munckhof, Pepijn; Wadman, Wytse J.; Bour, Lo; Martens, Hubert C. F.

    2011-08-01

    Microelectrode recording (MER) along surgical trajectories is commonly applied for refinement of the target location during deep brain stimulation (DBS) surgery. In this study, we utilize automatically detected MER features in order to locate the subthalamic nucleus (STN) employing an unsupervised algorithm. The automated algorithm makes use of background noise level, compound firing rate and power spectral density along the trajectory and applies a threshold-based method to detect the dorsal and the ventral borders of the STN. Depending on the combination of measures used for detection of the borders, the algorithm allocates confidence levels for the annotation made (i.e. high, medium and low). The algorithm has been applied to 258 trajectories obtained from 84 STN DBS implantations. MERs used in this study have not been pre-selected or pre-processed and include all the viable measurements made. Out of 258 trajectories, 239 trajectories were annotated by the surgical team as containing the STN versus 238 trajectories by the automated algorithm. The agreement level between the automatic annotations and the surgical annotations is 88%. Taking the surgical annotations as the golden standard, across all trajectories, the algorithm made true positive annotations in 231 trajectories, true negative annotations in 12 trajectories, false positive annotations in 7 trajectories and false negative annotations in 8 trajectories. We conclude that our algorithm is accurate and reliable in automatically identifying the STN and locating the dorsal and ventral borders of the nucleus, and in a near future could be implemented for on-line intra-operative use.

  2. Early versus delayed bilateral subthalamic deep brain stimulation for parkinson's disease: a decision analysis.

    PubMed

    Espay, Alberto J; Vaughan, Jennifer E; Marras, Connie; Fowler, Rob; Eckman, Mark H

    2010-07-30

    The long-term benefits of subthalamic nucleus deep brain stimulation (STN DBS) applied earlier in the disease course, before significant disability accumulates, remain to be determined. We developed a Markov state transition decision analytic model to compare effectiveness in quality-adjusted life years (QALYs) of STN DBS applied to patients with PD at an "early" ("off time" 10-20%) versus "delayed" stage ("off time" >40%). A lifelong time horizon and societal perspective were assumed. Probabilities and rates were obtained from literature review; utilities were derived using the time trade-off technique and a computer-assisted utility assessment software tool applied to a cohort of 22 STN-DBS and 21 non-STN-DBS PD patients. Uncertainty was assessed through one- and two-way sensitivity analyses and probabilistic sensitivity analysis using second-order Monte Carlo simulations. Early STN DBS was preferred with a quality-adjusted life expectancy of 22.3 QALYs, a gain of 2.5 QALYs over those with delayed surgery (19.8 QALYs). Early STN DBS was preferred in 69% of 5,000 Monte Carlo simulations. Early surgery was robustly favored through most sensitivity analyses. Delayed STN DBS afforded greater QALYs when using utility estimates exclusively from non-STN-DBS patients and, for the entire group, if the rate of motor progression were to exceed 25% per year. Although decision modeling requires assumptions and simplifications, our exploratory analysis suggests that STN DBS performed in early PD may convey greater quality-adjusted life expectancy when compared to a delayed procedure. These findings support further evaluation of early STN DBS in a controlled clinical trial.

  3. Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson's disease.

    PubMed

    Sidiropoulos, Christos; Walsh, Richard; Meaney, Christopher; Poon, Y Y; Fallis, Melanie; Moro, Elena

    2013-09-01

    Axial symptoms such as freezing of gait and falls are common manifestations of advanced Parkinson's disease (PD) and are partially responsive to medical treatment. High-frequency (≥130 Hz) deep brain stimulation (DBS) of the subthalamic nucleus (STN) is highly efficacious in ameliorating appendicular symptoms in PD. However, it is typically less effective in improving axial symptomatology, especially in the long term. We have studied the effects of low-frequency stimulation (LFS) (≤80 Hz) for improving speech, gait and balance dysfunction in the largest patient population to date. PD patients with bilateral STN-DBS and resistant axial symptoms were switched from chronic 130 Hz stimulation to LFS and followed up to 4 years. Primary outcome measures were total motor UPDRS scores, and axial and gait subscores before and after LFS. Bivariate analyses and correlation coefficients were calculated for the different conditions. Potential predictors of therapeutic response were also investigated. Forty-five advanced PD patients who had high frequency stimulation (HFS) for 39.5 ± 27.8 consecutive months were switched to LFS. LFS was kept on for a median period of 111.5 days before the assessment. There was no significant improvement in any of the primary outcomes between HFS and LFS, although a minority of patients preferred to be maintained on LFS for longer periods of time. No predictive factors of response could be identified. There was overall no improvement from LFS in axial symptoms. This could be partly due to some study limitations. Larger prospective trials are warranted to better clarify the impact of stimulation frequency on axial signs.

  4. Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease

    PubMed Central

    Kim, Sang Jin; Udupa, Kaviraja; Ni, Zhen; Moro, Elena; Gunraj, Carolyn; Mazzella, Filomena; Lozano, Andres M.; Hodaie, Mojgan; Lang, Anthony E.

    2015-01-01

    Objective: We hypothesized that subthalamic nucleus (STN) deep brain stimulation (DBS) will improve long-term potentiation (LTP)-like plasticity in motor cortex in Parkinson disease (PD). Methods: We studied 8 patients with PD treated with STN-DBS and 9 age-matched healthy controls. Patients with PD were studied in 4 sessions in medication (Med) OFF/stimulator (Stim) OFF, Med-OFF/Stim-ON, Med-ON/Stim-OFF, and Med-ON/Stim-ON states in random order. Motor evoked potential amplitude and cortical silent period duration were measured at baseline before paired associated stimulation (PAS) and at 3 different time intervals (T0, T30, T60) up to 60 minutes after PAS in the abductor pollicis brevis and abductor digiti minimi muscles. Results: Motor evoked potential size significantly increased after PAS in controls (+67.7% of baseline at T30) and in patients in the Med-ON/Stim-ON condition (+55.8% of baseline at T30), but not in patients in the Med-OFF/Stim-OFF (−0.4% of baseline at T30), Med-OFF/Stim-ON (+10.3% of baseline at T30), and Med-ON/Stim-OFF conditions (+17.3% of baseline at T30). Cortical silent period duration increased after PAS in controls but not in patients in all test conditions. Conclusions: Our findings suggest that STN-DBS together with dopaminergic medications restore LTP-like plasticity in motor cortex in PD. Restoration of cortical plasticity may be one of the mechanisms of how STN-DBS produces clinical benefit. PMID:26156511

  5. Subthalamic and Cortical Local Field Potentials Associated with Pilocarpine-Induced Oral Tremor in the Rat

    PubMed Central

    Long, Lauren L.; Podurgiel, Samantha J.; Haque, Aileen F.; Errante, Emily L.; Chrobak, James J.; Salamone, John D.

    2016-01-01

    Tremulous jaw movements (TJMs) are rapid vertical deflections of the lower jaw that resemble chewing but are not directed at any particular stimulus. In rodents, TJMs are induced by neurochemical conditions that parallel those seen in human Parkinsonism, including neurotoxic or pharmacological depletion of striatal dopamine (DA), DA antagonism, and cholinomimetic administration. Moreover, TJMs in rodents can be attenuated by antiparkinsonian agents, including levodopa (L-DOPA), DA agonists, muscarinic antagonists, and adenosine A2A antagonists. In human Parkinsonian patients, exaggerated physiological synchrony is seen in the beta frequency band in various parts of the cortical/basal ganglia/thalamic circuitry, and activity in the tremor frequency range (3–7 Hz) also has been recorded. The present studies were undertaken to determine if tremor-related local field potential (LFP) activity could be recorded from motor cortex (M1) or subthalamic nucleus (STN) during the TJMs induced by the muscarinic agonist pilocarpine, which is a well-known tremorogenic agent. Pilocarpine induced a robust TJM response that was marked by rhythmic electromyographic (EMG) activity in the temporalis muscle. Compared to periods with no tremor activity, TJM epochs were characterized by increased LFP activity in the tremor frequency range in both neocortex and STN. Tremor activity was not associated with increased synchrony in the beta frequency band. These studies identified tremor-related LFP activity in parts of the cortical/basal ganglia circuitry that are involved in the pathophysiology of Parkinsonism. This research may ultimately lead to identification of the oscillatory neural mechanisms involved in the generation of tremulous activity, and promote development of novel treatments for tremor disorders. PMID:27378874

  6. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia.

  7. Striatal Molecular Signature of Subchronic Subthalamic Nucleus High Frequency Stimulation in Parkinsonian Rat

    PubMed Central

    Lortet, Sylviane; Lacombe, Emilie; Boulanger, Nicolas; Rihet, Pascal; Nguyen, Catherine; Goff, Lydia Kerkerian-Le; Salin, Pascal

    2013-01-01

    This study addresses the molecular mechanisms underlying the action of subthalamic nucleus high frequency stimulation (STN-HFS) in the treatment of Parkinson's disease and its interaction with levodopa (L-DOPA), focusing on the striatum. Striatal gene expression profile was assessed in rats with nigral dopamine neuron lesion, either treated or not, using agilent microarrays and qPCR verification. The treatments consisted in anti-akinetic STN-HFS (5 days), chronic L-DOPA treatment inducing dyskinesia (LIDs) or the combination of the two treatments that exacerbated LIDs. STN-HFS modulated 71 striatal genes. The main biological processes associated with the differentially expressed gene products include regulation of growth, of apoptosis and of synaptic transmission, and extracellular region is a major cellular component implicated. In particular, several of these genes have been shown to support survival or differentiation of striatal or of dopaminergic neurons. These results indicate that STN HFS may induce widespread anatomo-functional rearrangements in the striatum and create a molecular environment favorable for neuroprotection and neuroplasticity. STN-HFS and L-DOPA treatment share very few common gene regulation features indicating that the molecular substrates underlying their striatal action are mostly different; among the common effects is the down-regulation of Adrb1, which encodes the adrenergic beta-1- receptor, supporting a major role of this receptor in Parkinson's disease. In addition to genes already reported to be associated with LIDs (preprodynorphin, thyrotropin-releasing hormone, metabotropic glutamate receptor 4, cannabinoid receptor 1), the comparison between DOPA and DOPA/HFS identifies immunity-related genes as potential players in L-DOPA side effects. PMID:23593219

  8. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    PubMed Central

    Eitan, Renana; Shamir, Reuben R.; Linetsky, Eduard; Rosenbluh, Ovadya; Moshel, Shay; Ben-Hur, Tamir; Bergman, Hagai; Israel, Zvi

    2013-01-01

    Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN), an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson's disease (PD). This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12–30 Hz), the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs. In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS) surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and psychiatric

  9. Effects of dopamine depletion on information flow between the subthalamic nucleus and external globus pallidus.

    PubMed

    Cruz, Ana V; Mallet, Nicolas; Magill, Peter J; Brown, Peter; Averbeck, Bruno B

    2011-10-01

    Abnormal oscillatory synchrony is increasingly acknowledged as a pathophysiological hallmark of Parkinson's disease, but what promotes such activity remains unclear. We used novel, nonlinear time series analyses and information theory to capture the effects of dopamine depletion on directed information flow within and between the subthalamic nucleus (STN) and external globus pallidus (GPe). We compared neuronal activity recorded simultaneously from these nuclei in 6-hydroxydopamine-lesioned Parkinsonian rats with that in dopamine-intact control rats. After lesioning, both nuclei displayed pronounced augmentations of beta-frequency (∼20 Hz) oscillations and, critically, information transfer between STN and GPe neurons was increased. Furthermore, temporal profiles of the directed information transfer agreed with the neurochemistry of these nuclei, being "excitatory" from STN to GPe and "inhibitory" from GPe to STN. Separation of the GPe population in lesioned animals into "type-inactive" (GP-TI) and "type-active" (GP-TA) neurons, according to definitive firing preferences, revealed distinct temporal profiles of interaction with STN and each other. The profile of GP-TI neurons suggested their output is of greater causal significance than that of GP-TA neurons for the reduced activity that periodically punctuates the spiking of STN neurons during beta oscillations. Moreover, STN was identified as a key candidate driver for recruiting ensembles of GP-TI neurons but not GP-TA neurons. Short-latency interactions between GP-TI and GP-TA neurons suggested mutual inhibition, which could rhythmically dampen activity and promote anti-phase firing across the two subpopulations. Results thus indicate that information flow around the STN-GPe circuit is exaggerated in Parkinsonism and further define the temporal interactions underpinning this.

  10. Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease

    PubMed Central

    Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117

  11. Deep brain stimulation of the subthalamic nucleus: All that glitters isn't gold?

    PubMed

    Galati, Salvatore; Stefani, Alessandro

    2015-04-15

    With the silver anniversary of deep brain stimulation (DBS) behind us, this would seem to be a good juncture to consider its successes and unanswered questions. Bilateral subthalamic nucleus (STN) stimulation has changed the clinical perspective of several thousand Parkinson's disease (PD) patients worldwide. A recent reappraisal animates the field with strong arguments in favor of an anticipation of the stereotactic approach in patients with as little as 5 to 6 years of disease history if they manifest motor complications. From what was once a no-choice option, STN-DBS is now becoming more and more attractive to neurologists dealing with movement disorders. Despite the development of new pharmacological treatment and renewed rehabilitation programs able to modify the severity of drug-related complications, a resurgence of stimulation therapy reminiscent of an old era of medicine with an attendant blinkered mindset has emerged. Yet, the DBS-mediated effects are modest on critical aspects such as gait impairment and extremely variable depending on the clinical phenotype and individual clinical profile. Hence, the indication for DBS should become more, and not less, individually tailored. Those physicians considering deep brain stimulation (DBS) as a therapeutic option need to evaluate results beyond short-term quality of life, giving the correct weight to the direct and indirect costs over the longer term as well as to life prognosis. Unequivocal recourse to early-stimulation surgery necessitates investigations not limited to a mere comparative assessment versus drug-mediated benefits, but instead showing evidence of a clear degree of disease-modifying effect or a rescue of basal ganglia plasticity.

  12. Effects of Subthalamic Nucleus Stimulation on Emotional Prosody Comprehension in Parkinson's Disease

    PubMed Central

    Kreifelts, Benjamin; Krüger, Rejko; Wächter, Tobias

    2011-01-01

    Background Although impaired decoding of emotional prosody has frequently been associated with Parkinson's disease (PD), to date only few reports have sought to explore the effect of Parkinson's treatment on disturbances of prosody decoding. In particular, little is known about how surgical treatment approaches such as high frequency deep brain stimulation (DBS) affect emotional speech perception in patients with PD. Accordingly, the objective of this study was to evaluate the effect of subthalamic nucleus (STN) stimulation on prosody processing. Methodology/Principal Findings To this end the performance of 13 PD patients on three tasks requiring the decoding of emotional speech was assessed and subsequently compared to the performance of healthy control individuals. To delineate the effect of STN-DBS, all patients were tested with stimulators turned on as well as with stimulators turned off. Results revealed that irrespective of whether assessments were made “on” or “off” stimulation, patients' performance was less accurate as compared to healthy control participants on all tasks employed in this study. However, while accuracy appeared to be unaffected by stimulator status, a facilitation of reactions specific to highly conflicting emotional stimulus material (i.e. stimulus material presenting contradicting emotional messages on a verbal and non-verbal prosodic level) was observed during “on” stimulation assessments. Conclusion In sum, presented results suggest that the processing of emotional speech is indeed modulated by STN-DBS. Observed alterations might, on the one hand, reflect a more efficient processing of highly conflicting stimulus material following DBS. However, on the other hand, given the lack of an improvement in accuracy, increased impulsivity associated with STN stimulation needs to be taken into consideration. PMID:21552518

  13. Effects of varying subthalamic nucleus stimulation on apraxia of lid opening in Parkinson's disease.

    PubMed

    Tommasi, Giorgio; Krack, Paul; Fraix, Valérie; Pollak, Pierre

    2012-09-01

    Apraxia of lid opening (ALO) is a non-paralytic inability to open the eyes or sustain lid elevation at will. The exact pathophysiological mechanisms underlying the syndrome are still unknown. ALO has been reported in patients with Parkinson's disease (PD) after subthalamic nucleus (STN) deep brain stimulation (DBS), suggesting a possible involvement of the basal ganglia. We aimed to assess the effects of varying STN stimulation voltage on ALO in PD patients. Seven out of 14 PD patients with bilateral STN stimulation consecutively seen in our centre presented with ALO. We progressively increased voltage on each STN, using either 130 Hz (high-frequency stimulation, HFS) or 2 or 3 Hz (low-frequency stimulation, LFS). In five patients, HFS induced ALO time-locked to stimulation in 7 out of 10 STNs at a voltage higher than that used for chronic stimulation. LFS induced myoclonus in the pretarsal orbicularis oculi muscle (pOOm) with a rhythm synchronous to the frequency. In the other two patients with ALO already present at the time of the study, HFS improved ALO in 3 out of 4 STNs. ALO recurred within minutes of stimulation arrest. Our findings show that STN-DBS can have opposite effects on ALO. On the one hand, ALO is thought to be a corticobulbar side effect due to lateral current spreading from the STN, in which case it is necessary to use voltages below the ALO-inducing threshold. On the other hand, ALO may be considered a form of off-phase focal dystonia possibly improved by increasing the stimulation voltages.

  14. Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation on Tongue Movements in Speakers with Parkinson's Disease Using Electropalatography: A Pilot Study

    ERIC Educational Resources Information Center

    Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J.; Limousin, Patricia

    2011-01-01

    Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using…

  15. Articulatory Closure Proficiency in Patients with Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus and Caudal Zona Incerta

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik; van Doorn, Jan

    2014-01-01

    Purpose: The present study aimed at comparing the effects of deep brain stimulation (DBS) treatment of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) on the proficiency in achieving oral closure and release during plosive production of people with Parkinson's disease. Method: Nineteen patients participated preoperatively and…

  16. Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals

    PubMed Central

    Chowdhury, Rumana; Guitart-Masip, Marc; Lambert, Christian; Dolan, Raymond J.; Düzel, Emrah

    2013-01-01

    Flexible instrumental learning is required to harness the appropriate behaviors to obtain rewards and to avoid punishments. The precise contribution of dopaminergic midbrain regions (substantia nigra/ventral tegmental area [SN/VTA]) to this form of behavioral adaptation remains unclear. Normal aging is associated with a variable loss of dopamine neurons in the SN/VTA. We therefore tested the relationship between flexible instrumental learning and midbrain structural integrity. We compared task performance on a probabilistic monetary go/no-go task, involving trial and error learning of: “go to win,” “no-go to win,” “go to avoid losing,” and “no-go to avoid losing” in 42 healthy older adults to previous behavioral data from 47 younger adults. Quantitative structural magnetization transfer images were obtained to index regional structural integrity. On average, both some younger and some older participants demonstrated a behavioral asymmetry whereby they were better at learning to act for reward (“go to win” > “no-go to win”), but better at learning not to act to avoid punishment (“no-go to avoid losing” > “go to avoid losing”). Older, but not younger, participants with greater structural integrity of the SN/VTA and the adjacent subthalamic nucleus could overcome this asymmetry. We show that interindividual variability among healthy older adults of the structural integrity within the SN/VTA and subthalamic nucleus relates to effective acquisition of competing instrumental responses. PMID:23623600

  17. Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: From history to the interaction with the monoaminergic systems.

    PubMed

    Faggiani, E; Benazzouz, A

    2017-04-01

    Parkinson's disease is the second most common neurodegenerative disorder, characterized by the manifestation of motor symptoms, which are mainly attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra. Based on advancements in the understanding of the pathophysiology of the disease, especially in animal models, the subthalamic nucleus has been pointed as a major target for deep brain stimulation in the treatment of motor symptoms, first developed in non-human primate and then successfully transfered to parkinsonian patients. Nevertheless, despite the focus on motor deficits, Parkinson's disease is also characterized by the manifestation of non-motor symptoms, which can be due to the additional degeneration of norepinephrine, serotonin and cholinergic systems. The pathophysiology of the non-motor symptoms is under studied and consequently not well treated. Furthermore, data from the literature about the impact of subthalamic deep brain stimulation on non-motor disorders are controversial and still under debate. Similarly, the risk of mood disorders post-deep brain stimulation surgery remains also controversial. Here, we review the clinical and experimental data of this neurosurgical approach on motor and non-motor behaviors and provide evidence for its interaction with the monoaminergic systems.

  18. Spatial Localization of Sources in the Rat Subthalamic Motor Region Using an Inverse Current Source Density Method

    PubMed Central

    van Dijk, Kees J.; Janssen, Marcus L. F.; Zwartjes, Daphne G. M.; Temel, Yasin; Visser-Vandewalle, Veerle; Veltink, Peter H.; Benazzouz, Abdelhamid; Heida, Tjitske

    2016-01-01

    Objective: In this study we introduce the use of the current source density (CSD) method as a way to visualize the spatial organization of evoked responses in the rat subthalamic nucleus (STN) at fixed time stamps resulting from motor cortex stimulation. This method offers opportunities to visualize neuronal input and study the relation between the synaptic input and the neural output of neural populations. Approach: Motor cortex evoked local field potentials and unit activity were measured in the subthalamic region, with a 3D measurement grid consisting of 320 measurement points and high spatial resolution. This allowed us to visualize the evoked synaptic input by estimating the current source density (CSD) from the measured local field potentials, using the inverse CSD method. At the same time, the neuronal output of the cells within the grid is assessed by calculating post stimulus time histograms. Main results: The CSD method resulted in clear and distinguishable sources and sinks of the neuronal input activity in the STN after motor cortex stimulation. We showed that the center of the synaptic input of the STN from the motor cortex is located dorsal to the input from globus pallidus. Significance: For the first time we have performed CSD analysis on motor cortex stimulation evoked LFP responses in the rat STN as a proof of principle. Our results suggest that the CSD method can be used to gain new insights into the spatial extent of synaptic pathways in brain structures. PMID:27857684

  19. Systemically administered oxytocin decreases methamphetamine activation of the subthalamic nucleus and accumbens core and stimulates oxytocinergic neurons in the hypothalamus.

    PubMed

    Carson, Dean S; Hunt, Glenn E; Guastella, Adam J; Barber, Lachlan; Cornish, Jennifer L; Arnold, Jonathon C; Boucher, Aurelie A; McGregor, Iain S

    2010-10-01

    Recent preclinical evidence indicates that the neuropeptide oxytocin may have potential in the treatment of drug dependence and drug withdrawal. Oxytocin reduces methamphetamine self-administration, conditioned place preference and hyperactivity in rodents. However, it is unclear how oxytocin acts in the brain to produce such effects. The present study examined how patterns of neural activation produced by methamphetamine were modified by co-administered oxytocin. Male Sprague-Dawley rats were pretreated with either 2 mg/kg oxytocin (IP) or saline and then injected with either 2 mg/kg methamphetamine (IP) or saline. After injection, locomotor activity was measured for 80 minutes prior to perfusion. As in previous studies, co-administered oxytocin significantly reduced methamphetamine-induced behaviors. Strikingly, oxytocin significantly reduced methamphetamine-induced Fos expression in two regions of the basal ganglia: the subthalamic nucleus and the nucleus accumbens core. The subthalamic nucleus is of particular interest given emerging evidence for this structure in compulsive, addiction-relevant behaviors. When administered alone, oxytocin increased Fos expression in several regions, most notably in the oxytocin-synthesizing neurons of the supraoptic nucleus and paraventricular nucleus of the hypothalamus. This provides new evidence for central actions of peripheral oxytocin and suggests a self-stimulation effect of exogenous oxytocin on its own hypothalamic circuitry. Overall, these results give further insight into the way in which oxytocin might moderate compulsive behaviors and demonstrate the capacity of peripherally administered oxytocin to induce widespread central effects.

  20. [Single and Network Neuron Activity of Subthalamic Nucleus at Impulsive and Delayed (Self-Control) Reactions in Choice Behavior].

    PubMed

    Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh

    2015-01-01

    During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC.

  1. Excitatory postsynaptic potentials trigger a plateau potential in rat subthalamic neurons at hyperpolarized states.

    PubMed

    Otsuka, T; Murakami, F; Song, W J

    2001-10-01

    The subthalamic nucleus (STN) directly innervates the output structures of the basal ganglia, playing a key role in basal ganglia function. It is therefore important to understand the regulatory mechanisms for the activity of STN neurons. In the present study, we aimed to investigate how the intrinsic membrane properties of STN neurons interact with their synaptic inputs, focusing on their generation and the properties of the long-lasting, plateau potential. Whole cell recordings were obtained from STN neurons in slices prepared from postnatal day 14 (P14) to P20 rats. We found that activation of glutamate receptor-mediated excitatory synaptic potentials (EPSPs) evoked a plateau potential in a subpopulation of STN neurons (n = 13/22), in a voltage-dependent manner. Plateau potentials could be induced only when the cell was hyperpolarized to more negative than about -75 mV. Plateau potentials, evoked with a depolarizing current pulse, again only from a hyperpolarized state, were observed in about half of STN neurons tested (n = 162/327). Only in neurons in which a plateau potential could be evoked by current injection did EPSPs evoke plateau potentials. L-type Ca(2+) channels, Ca(2+)-dependent K(+) channels, and TEA-sensitive K(+) channels were found to be involved in the generation of the potential. The stability of the plateau potential, tested by the injection of a negative pulse current during the plateau phase, was found to be robust at the early phase of the potential, but decreased toward the end. As a result the early part of the plateau potential was resistant to membrane potential perturbations and would be able to support a train of action potentials. We conclude that excitatory postsynaptic potentials, evoked in a subpopulation of STN neurons at a hyperpolarized state, activate L-type Ca(2+) and other channels, leading to the generation of a plateau potential. Thus about half of STN neurons can transform short-lasting synaptic excitation into a long

  2. Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson's disease.

    PubMed

    Faist, M; Xie, J; Kurz, D; Berger, W; Maurer, C; Pollak, P; Lücking, C H

    2001-08-01

    The fundamental disturbance of the parkinsonian gait is the reduction in walking velocity. This is mainly due to reduction in stride length, while cadence (steps/min) is slightly enhanced. Treatment with L-dopa increases stride length while cadence is unchanged. Chronic stimulation of the thalamus has no effect on Parkinsonian gait. The efficacy of electrical stimulation of the subthalamic nucleus (STN) on gait in advanced Parkinson's disease has been clearly demonstrated clinically. The aim of the present study was to quantify the changes in gait measures induced by STN stimulation and L-dopa and to assess possible differential or additive effects. Eight Parkinson's disease patients (mean +/- SD age 48.1 +/- 7.3 years) with chronic bilateral STN stimulation (mean duration of disease 13.3 +/- 2.4 years, mean stimulation time 15.4 +/- 10.6 months) and 12 age-matched controls were investigated. Subjects walked on a special treadmill with a closed-loop ultrasound control system that used the subject's position to adjust treadmill speed continuously for the actual walking velocity. In an appropriate crossover design, spatiotemporal gait measures and leg joint angle movements were assessed for at least 120 stride cycles in four treatment conditions: with and without stimulation and with and without a suprathreshold dose of L-dopa. With STN stimulation, there were increases of almost threefold in mean walking velocity (from 0.35 to 0.96 m/s) and stride length (from 0.34 to 0.99 m). Cadence remained constant. The range of motion of the major leg joints also increased. L-Dopa alone had a slightly weaker effect, with an increase in walking velocity to 0.94 m/s and in stride length to 0.92 m at a similar cadence. These increased values were in the range of those for healthy age-matched subjects performing the same task. The combination of both treatments further increased the mean walking velocity to 1.19 m/s and stride length to 1.20 m at an unchanged cadence. However, not

  3. Subthalamic nucleus stimulation modulates motor cortex oscillatory activity in Parkinson's disease.

    PubMed

    Devos, D; Labyt, E; Derambure, P; Bourriez, J L; Cassim, F; Reyns, N; Blond, S; Guieu, J D; Destée, A; Defebvre, L

    2004-02-01

    In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but failed to improve impaired motor preparation. PET studies indicate that subthalamic nucleus (STN) stimulation partly reverses the abnormal premotor pattern of brain activation during movement. By monitoring MRD, we aimed to assess changes in premotor and PSM cortex oscillatory activity induced by bilateral STN stimulation and to compare these changes with those induced by l-dopa. Ten Parkinson's disease patients and a group of healthy, age-matched controls performed self-paced wrist flexions in each of four conditions: without either stimulation or l-dopa (the 'off' condition), with stimulation and without l-dopa (On Stim), with l-dopa and without stimulation ('on drug'), and with both stimulation and l-dopa (On Both). Compared with the Off condition, in both the On Stim and the On Drug condition the Unified Parkinson's Disease Rating Scale (UPDRS) III score decreased by about 60% and in the On Both condition it decreased by 80%. The desynchronization latency over central regions contralateral to movement and the movement desynchronization over bilateral central regions were significantly increased by stimulation and by l-dopa, with a maximal effect when the two were associated. Furthermore, desynchronization latency significantly decreased over bilateral frontocentral regions in the three treatment conditions compared with the Off condition. In Parkinson's disease, STN stimulation may induce a change in abnormal cortical oscillatory activity patterns (similar to that produced by l-dopa) by decreasing the abnormal spreading of desynchronization over frontocentral regions and increasing PSM cortex activity during movement

  4. Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease

    PubMed Central

    Zrinzo, L.; Martinez-Torres, I.; Frost, E.; Pinto, S.; Foltynie, T.; Holl, E.; Petersen, E.; Roughton, M.; Hariz, M.I.; Limousin, P.

    2011-01-01

    Objective: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson disease (PD). Following STN-DBS, speech intelligibility can deteriorate, limiting its beneficial effect. Here we prospectively examined the short- and long-term speech response to STN-DBS in a consecutive series of patients to identify clinical and surgical factors associated with speech change. Methods: Thirty-two consecutive patients were assessed before surgery, then 1 month, 6 months, and 1 year after STN-DBS in 4 conditions on- and off-medication with on- and off-stimulation using established and validated speech and movement scales. Fifteen of these patients were followed up for 3 years. A control group of 12 patients with PD were followed up for 1 year. Results: Within the surgical group, speech intelligibility significantly deteriorated by an average of 14.2% ± 20.15% off-medication and 16.9% ± 21.8% on-medication 1 year after STN-DBS. The medical group deteriorated by 3.6% ± 5.5% and 4.5% ± 8.8%, respectively. Seven patients showed speech amelioration after surgery. Loudness increased significantly in all tasks with stimulation. A less severe preoperative on-medication motor score was associated with a more favorable speech response to STN-DBS after 1 year. Medially located electrodes on the left STN were associated with a significantly higher risk of speech deterioration than electrodes within the nucleus. There was a strong relationship between high voltage in the left electrode and poor speech outcome at 1 year. Conclusion: The effect of STN-DBS on speech is variable and multifactorial, with most patients exhibiting decline of speech intelligibility. Both medical and surgical issues contribute to deterioration of speech in STN-DBS patients. Classification of evidence: This study provides Class III evidence that STN-DBS for PD results in deterioration in speech intelligibility in all combinations of medication and stimulation states at 1

  5. Motor responses of muscles supplied by cranial nerves to subthalamic nucleus deep brain stimuli.

    PubMed

    Costa, João; Valls-Solé, Josep; Valldeoriola, Francesc; Rumià, Jordi; Tolosa, Eduardo

    2007-01-01

    The distribution of human corticobulbar motor excitatory and inhibitory output is not fully understood. In particular, it is unclear whether the pattern of innervation is the same for upper and lower facial muscles, and what is the motor cortical area giving rise to such innervation. We used electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease to activate motor tracts at a subcortical level. We examined the excitatory and inhibitory effects of unilateral single STN deep brain stimulation (sSTN-DBS) in 14 patients by taking recordings from facial, cervical and upper limb muscles on both sides. We measured the latency and amplitude of the motor-evoked potentials (MEPs), and the latency and duration of the silent periods, and compared ipsilateral with contralateral responses and responses obtained in different muscles. Unilateral sSTN-DBS induced strictly contralateral MEPs in the trapezius, deltoid, biceps and thenar muscles. The same stimulus always induced bilateral MEPs in the orbicularis oculi, orbicularis oris, masseter and sternocleidomastoid at a mean latency in the range 6.0-9.1 ms. MEP latencies in the orbicularis oculi and orbicularis oris were significantly longer than in the masseter and sternocleidomastoid (P < 0.01). A short latency small action potential was recorded in the ipsilateral orbicularis oculi that was likely generated by activation of extraocular muscles. During sustained voluntary muscle contraction, a silent period was recorded at similar onset latency on both sides. This period was significantly shorter in orbicularis oculi than in masseter, and in the ipsilateral side for both muscles (P < 0.01). sSTN-DBS is able to activate the descending projecting fibres in the corticobulbar tract eliciting bilateral MEPs and silent periods in facial and cranial muscles. This suggests that fibres to both ipsi- and contralateral motor nuclei descend together at the level of the STN. These findings are relevant in

  6. Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson's disease: results from a randomized trial.

    PubMed

    Witt, Karsten; Granert, Oliver; Daniels, Christine; Volkmann, Jens; Falk, Daniela; van Eimeren, Thilo; Deuschl, Günther

    2013-07-01

    Deep brain stimulation of the subthalamic nucleus improves motor functions in patients suffering from advanced Parkinson's disease but in some patients, it is also associated with a mild decline in cognitive functioning about one standard deviation from the preoperative state. We assessed the impact of the cortical lead entry point, the subcortical electrode path and the position of the active electrode contacts on neuropsychological changes after subthalamic nucleus-deep brain stimulation compared to a control group of patients receiving best medical treatment. Sixty-eight patients with advanced Parkinson's disease were randomly assigned to have subthalamic nucleus-deep brain stimulation or best medical treatment for Parkinson's disease. All patients had a blinded standardized neuropsychological exam (Mattis Dementia Rating scale, backward digit span, verbal fluency and Stroop task performance) at baseline and after 6 months of treatment. Patients with subthalamic nucleus-deep brain stimulation were defined as impaired according to a mild decline of one or more standard deviations compared to patients in the best medical treatment group. The cortical entry point of the electrodes, the electrode trajectories and the position of the active electrode contact were transferred into a normalized brain volume by an automated, non-linear registration algorithm to allow accurate statistical group analysis using pre- and postoperative magnetic resonance imaging data. Data of 31 patients of the subthalamic nucleus-deep brain stimulation group and 31 patients of the best medical treatment group were analysed. The subthalamic nucleus-deep brain stimulation group showed impaired semantic fluency compared with the best medical treatment group 6 months after surgery (P = 0.02). Electrode trajectories intersecting with caudate nuclei increased the risk of a decline in global cognition and working memory performance. Statistically, for every 0.1 ml overlap with a caudate nucleus

  7. Older Candidates for Subthalamic Deep Brain Stimulation in Parkinson's Disease Have a Higher Incidence of Psychiatric Serious Adverse Events

    PubMed Central

    Cozac, Vitalii V.; Ehrensperger, Michael M.; Gschwandtner, Ute; Hatz, Florian; Meyer, Antonia; Monsch, Andreas U.; Schuepbach, Michael; Taub, Ethan; Fuhr, Peter

    2016-01-01

    Objective: To investigate the incidence of serious adverse events (SAE) of subthalamic deep brain stimulation (STN-DBS) in elderly patients with Parkinson's disease (PD). Methods: We investigated a group of 26 patients with PD who underwent STN-DBS at mean age 63.2 ± 3.3 years. The operated patients from the EARLYSTIM study (mean age 52.9 ± 6.6) were used as a comparison group. Incidences of SAE were compared between these groups. Results: A higher incidence of psychosis and hallucinations was found in these elderly patients compared to the younger patients in the EARLYSTIM study (p < 0.01). Conclusions: The higher incidence of STN-DBS-related psychiatric complications underscores the need for comprehensive psychiatric pre- and postoperative assessment in older DBS candidates. However, these psychiatric SAE were transient, and the benefits of DBS clearly outweighed its adverse effects. PMID:27375478

  8. The time course of the return of upper limb bradykinesia after cessation of subthalamic stimulation in Parkinson's disease.

    PubMed

    Keresztenyi, Zoltan; Valkovic, Peter; Eggert, Thomas; Steude, Ulrich; Hermsdörfer, Joachim; Laczko, Jozsef; Bötzel, Kai

    2007-10-01

    To investigate the time span within which bradykinesia re-occurs, we registered movement parameters immediately after the termination of deep brain stimulation of the subthalamic nucleus (STN) in nine Parkinson patients with chronically implanted bilateral STN electrodes. Two repetitive movements were investigated: finger-tapping and forearm pronation-supination. When stimulation was switched off, the amplitude and velocity of the investigated movements significantly declined, but the frequency did not. The time course of this decline was modeled by an exponential function that yielded time constants between 15 and 30s. The effect of stimulation had completely disappeared within 1 min. These results suggest that it is necessary to wait at least for 1 min after the end of stimulation before performing further assessments.

  9. Types of neurons of the subthalamic nucleus and zona incerta in the guinea pig--Nissl and Golgi study.

    PubMed

    Robak, A; Bogus-Nowakowska, K; Szteyn, S

    2000-01-01

    The studies were carried out on the subthalamus of adult guinea pigs. Golgi impregnation, Nissl and Klüver-Barrera methods were used for the study. In Nissl stained sections the subthalamic neuronal population consists of multipolar, fusiform, oval and pear-shaped perikarya. In two studied areas: nucleus subthalamicus (STN) and zona incerta (ZI) three types of neurons were distinguished. Type I, multipolar neurons with quadrangular, triangular or oval perikarya. They have 3-6 primary dendrites which run slightly wavy and spread out in all directions. Type II, bipolar neurons with fusiform or semilunar perikarya, they have two primary dendrites. Type III, pear-shaped neurons with 1-2 dendritic trunks arising from one pole of the neuron. In all types of neurons axon emerges from the perikaryon or initial segment of a dendritic trunk and can be followed at a maximum distance of about 50 microns.

  10. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation.

    PubMed

    Duay, Valérie; Bresson, Xavier; Castro, Javier Sanchez; Pollo, Claudio; Cuadra, Meritxell Bach; Thiran, Jean-Philippe

    2008-01-01

    This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

  11. Perceived articulatory precision in patients with Parkinson's disease after deep brain stimulation of subthalamic nucleus and caudal zona incerta.

    PubMed

    Eklund, Elisabeth; Qvist, Johanna; Sandström, Lena; Viklund, Fanny; Van Doorn, Jan; Karlsson, Fredrik

    2015-02-01

    The effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and caudal zona incerta (cZi) on speech articulation in patients with Parkinson's disease (PD) was investigated. Read speech samples were collected from nine patients with STN-DBS and 10 with cZi-DBS. The recordings were made pre-operatively and 12 months post-operatively with stimulator on and off (on medication). Blinded, randomised, repeated perceptual assessments were performed on words and isolated fricatives extracted from the recordings to assess (1) overall articulatory quality ratings, (2) frequency of occurrence of misarticulation patterns and (3) fricative production. Statistically significant worsening of articulatory measures on- compared with off-stimulation occurred in the cZi-DBS group, with deteriorated articulatory precision ratings, increased presence of misarticulations (predominately altered realisations of plosives and fricatives) and a reduced accuracy in fricative production. A similar, but not significant, trend was found for the STN-DBS group.

  12. Mechanisms of body weight gain in patients with Parkinson's disease after subthalamic stimulation.

    PubMed

    Montaurier, C; Morio, B; Bannier, S; Derost, P; Arnaud, P; Brandolini-Bunlon, M; Giraudet, C; Boirie, Y; Durif, F

    2007-07-01

    Chronic bilateral subthalamic stimulation leads to a spectacular clinical improvement in patients with motor complications. However, the post-operative body weight gain involved may limit the benefits of surgery and induce critical metabolic disorders. Twenty-four Parkinsonians (61.1 +/- 1.4 years) were examined 1 month before (M - 1) and 3 months after (M + 3) surgery. Body composition and energy expenditure (EE) were measured (1) over 36 h in calorimetric chambers (CC) with rigorous control of food intakes and activities [sleep metabolic rate, resting activities, meals, 3 or 4 sessions of 20 min on a training bicycle at 13 km/h and daily EE] and (2) in resting conditions (basal metabolic rate) during an acute L-dopa challenge (M - 1) or according to acute 'off' and 'on' stimulation (M + 3). Before surgery, EE was compared between the Parkinsonian patients and healthy subjects matched for height and body composition (metabolic rate during sleep, daily EE) or matched to predicted values (basal metabolic rate). Before surgery, in Parkinsonian men but not women, (1) daily EE was higher while sleep metabolic rate was lower compared to healthy matched men (+9.2 +/- 3.9 and -8.2 +/- 2.3%, respectively, P < 0.05) and (2) basal metabolic rate (L-dopa 'on') was higher than predicted basal metabolic rate (+11.5 +/- 4.0%, P < 0.05) but was further increased without L-dopa (+8.4 +/- 3.2% vs L-dopa 'on', P < 0.05). EE during daily activities was higher during 'off' periods compared to 'on' periods for both men (+19.3 +/- 3.3%, P < 0.0001) and women (+16.1 +/- 4.7%, P < 0.01). After surgery, there was a 3.4 +/- 0.6 kg (P < 0.0001) body weight increase together with fat mass (P < 0.0001) and fat-free mass (P < 0.05) in Parkinsonian men and a 2.6 +/- 0.8 kg (P < 0.05) body weight increase together with fat mass (P < 0.05) in Parkinsonian women. Sleep metabolic rate increased in men (+7.5 +/- 2.0%, P < 0.01) to reach control values but remained unchanged in women. Daily EE

  13. The Subthalamic Nucleus becomes a Generator of Bursts in the Dopamine-Depleted State. Its High Frequency Stimulation Dramatically Weakens Transmission to the Globus Pallidus

    PubMed Central

    Ammari, Rachida; Bioulac, Bernard; Garcia, Liliana; Hammond, Constance

    2011-01-01

    Excessive burst firing in the dopamine-depleted basal ganglia correlates with severe motor symptoms of Parkinson's disease that are attenuated by high frequency electrical stimulation of the subthalamic nucleus (STN). Here we test the hypothesis that pathological bursts in dopamine-deprived basal ganglia are generated within the STN and transmitted to globus pallidus neurons. To answer this question we recorded excitatory synaptic currents and potentials from subthalamic and pallidal neurons in the basal ganglia slice (BGS) from dopamine-depleted mice while continuously blocking GABAA receptors. In control mice, a single electrical stimulus delivered to the internal capsule or the rostral pole of the STN evoked a short duration, small amplitude, monosynaptic EPSC in subthalamic neurons. In contrast, in the dopamine-depleted BGS, this monosynaptic EPSC was amplified and followed by a burst of polysynaptic EPSCs that eventually reverberated three to seven times, providing a long lasting response that gave rise to bursts of EPSCs and spikes in GP neurons. Repetitive (10–120 Hz) stimulation delivered to the STN in the dopamine-depleted BGS attenuated STN-evoked bursts of EPSCs in pallidal neurons after several minutes of stimulation but only high frequency (90–120 Hz) stimulation replaced them with small amplitude EPSCs at 20 Hz. We propose that the polysynaptic pathway within the STN amplifies subthalamic responses to incoming excitation in the dopamine-depleted basal ganglia, thereby transforming the STN into a burst generator and entraining pallidal neurons in pathogenic bursting activities. High frequency stimulation of the STN prevents the transmission of this pathological activity to globus pallidus and imposes a new glutamatergic synaptic noise on pallidal neurons. PMID:21716635

  14. Prospective comparative study on cost-effectiveness of subthalamic stimulation and best medical treatment in advanced Parkinson's disease.

    PubMed

    Valldeoriola, Francesc; Morsi, Ossama; Tolosa, Eduardo; Rumià, Jordi; Martí, Maria José; Martínez-Martín, Pablo

    2007-11-15

    This is an open, prospective, longitudinal study designed to compare two cohorts of patients with advanced Parkinson's disease during 1 year, one undergoing bilateral subthalamic stimulation (STN-DBS) and the other receiving the best medical treatment (BMT), with respect to the clinical effects observed and the medical expenses produced. Assessments were done by using clinical measures and a generic health related quality of life scale. A questionnaire was used to collect direct healthcare resources. As a measure of cost-effectiveness, we calculated life years gained adjusted by health-related quality of life (QALY) and the incremental cost-effectiveness ratio (ICER). Clinical and demographic variables of both groups were comparable at baseline. Total UPDRS scores improved from 50.5 +/- 3.6 to 28.5 +/- 3.8 in STN-DBS patients and worsened from 44.3 +/- 3.3 to 54.2 +/- 4 in the control group. Pharmacological costs in the operated patients were 3,799 +/- 940 euro, while in the BMT group the costs were 13,208 +/- 4,966 euro. Other medical costs were 1,280 +/- 720 euro in the STN-DBS group and 4,017 +/- 2,962 euro in BMT patients. Nondirect medical costs were 4,079 +/- 1,289 in operated patients and 2,787 +/- 1,209 euro in the BMT group. Mean QALYs were 0.7611 +/- 0.03 in STN-DBS and 0.5401 +/- 0.06 in BMT patients. In STN-DBS patients, the ICER needed to obtain an improvement of one point in the total UPDRS score was of 239.8 euro and the ICER/QALY was of 34,389 euro. Cost-effectiveness parameters were mostly related to the degree of clinical improvement and the reduction of pharmacological costs after STN-DBS. An ICER of 34,389 euro/QALY is within appropriate limits to consider subthalamic stimulation as an efficient therapy.

  15. A long-term follow-up of weight changes in subthalamic nucleus stimulated Parkinson's disease patients.

    PubMed

    Foubert-Samier, A; Maurice, S; Hivert, S; Guelh, D; Rigalleau, V; Burbaud, P; Cuny, E; Meissner, W; Tison, F

    2012-02-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) constitutes the mainstay treatment in advanced Parkinson's disease (PD) with motor fluctuations. Despite its efficacy on motor signs and quality of life, emergent adverse events have been recently reported. Among them, weight gain (WG) is a recognized adverse event of subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD). Also, WG is poorly known at the long-term and predisposing factors have not yet been identified. We conducted a cross-sectional study of WG in 47 STN-DBS PD patients between 1999-2006. Data on disease history, motor status and dopaminergic drug treatment were retrospectively collected at surgery and 1 year post-surgery. Weight at disease diagnosis and at surgery, as well as the current weight and height were gathered by an autoquestionnaire. Moreover, the weight before surgery was obtained and verified in medical files in more than 90% of our patients. Sixty-six patients who underwent surgery between 1999-2006 were included, but six were deceased, four refused to participate and nine were lost for follow-up. So, 47 (71%) were retained in our analysis. A total of 78.7% of patients gained weight. On average 4.7 years follow up after surgery, the mean weight gain was +7.2±8.1kg compared to the preoperative assessment (p<0.001) and the mean BMI gain was +2.7±3.0kg/m(2) compared to pre-surgery values (p<0.001). The patients gained more weight after surgery than they had lost during disease evolution before surgery. Women and patients with a more severe UPDRS-III "off" drug score before surgery significantly gained more weight. Our study provides further evidence that the WG is a problem after STN-DBS and concerns a majority of patients at the long term. It may expose them to complications that should be considered for prevention and the patient's information before surgery.

  16. A Kv3-like persistent, outwardly rectifying, Cs+-permeable, K+ current in rat subthalamic nucleus neurones

    PubMed Central

    Wigmore, Mark A; Lacey, Michael G

    2000-01-01

    A persistent outward K+ current (IPO), activated by depolarization from resting potential, has been identified and characterized in rat subthalamic nucleus (SThN) neurones using whole-cell voltage-clamp recording in brain slices.IPO both rapidly activated (τ= 8 ms at +5 mV) and deactivated (τ= 2 ms at −68 mV), while showing little inactivation. Tail current reversal potentials varied with extracellular K+ concentration in a Nernstian manner.Intracellular Cs+ did not alter either IPO amplitude or the voltage dependence of activation, but blocked transient (A-like) outward currents activated by depolarization. When extracellular K+ was replaced with Cs+, IPO tail current reversal potentials were dependent upon the extracellular Cs+ concentration, indicating an ability to conduct Cs+, as well as K+.IPO was blocked by Ba2+ (1 mm), 4-aminopyridine (1 mm) and tetraethylammonium (TEA; 20 mm), with an IC50 for TEA of 0.39 mm.The IPO conductance appeared maximal (38 nS) at around +27 mV, half-maximal at −13 mV, with the threshold for activation at around −38 mV.TEA (1 mm) blocked the action potential after-hyperpolarization and permitted accommodation of action potential firing at frequencies greater than around 200 Hz.We conclude that IPO, which shares many characteristics of currents attributable to Kv3.1 K+ channels, enables high-frequency spike trains in SThN neurones. PMID:10990536

  17. Long-Latency Somatosensory Evoked Potentials of the Subthalamic Nucleus in Patients with Parkinson’s Disease

    PubMed Central

    Trenado, Carlos; Elben, Saskia; Friggemann, Lena; Gruhn, Sonja; Groiss, Stefan Jun; Vesper, Jan; Schnitzler, Alfons; Wojtecki, Lars

    2017-01-01

    Somatosensory evoked potentials (SSEPs) are a viable way to measure processing of somatosensory information. SSEPs have been described at the scalp and the cortical level by electroencephalographic, magnetoencephalographic and intracranial cortical recordings focusing on short-latency (SL; latency<40 ms) and long-latency (LL; latency>40 ms) SSEPs as well as by deep brain stimulation (DBS) electrode studies targeting SL-SSEPs. Unfortunately, LL-SSEPs have not been addressed at the subcortical level aside from the fact that studies targeting the characteristics and generators of SSEPs have been neglected for the last ten years. To cope with these issues, we investigated LL-SSEPs of the subthalamic nucleus (STN) in twelve patients with Parkinson’s disease (PD) that underwent deep brain stimulation (DBS) treatment. In a postoperative setting, LL-SSEPs were elicited by median nerve stimulation (MNS) to the patient’s wrists. Ipsilateral or contralateral MNS was applied with a 3 s inter-stimulus interval. Here, we report about four distinctive LL-SSEPs (“LL–complex” consisting of P80, N100, P140 and N200 component), which were recorded by using monopolar/bipolar reference and ipsi/contralateral MNS. Phase reversal and/or maximum amplitude provided support for the generation of such LL-SSEPs within the STN, which also underscores a role of this subcortical structure in sensory processing. PMID:28081139

  18. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease.

    PubMed

    Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.

  19. A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations.

    PubMed

    Spieles-Engemann, A L; Collier, T J; Sortwell, C E

    2010-10-01

    In this review we outline some relevant considerations with regards to the rat model of deep brain stimulation of the subthalamic nucleus (STN DBS). In order to optimize the rat STN DBS model in terms of predictive validity for the clinical situation we propose that the STN stimulation experimental design parameters in rodents should incorporate the following features: (i) stimulation parameters that demonstrate functional alleviation of symptoms induced by nigrostriatal dopamine (DA) denervation; (ii) stimulation duration that is relatively long-term and continuous; (iii) stimulation that is initiated at a time when the denervation status of the nigrostriatal system is known to be partial and progressing; (iv) stimulation current spread that is minimized and optimized to closely approximate the clinical situation; (v) the appropriate control conditions are included; and (vi) implantation to the STN target is verified post-mortem. Further research that examines the effect of long-term STN DBS on the neurophysiology and neurochemistry of STN circuitry is warranted. The rat model of functionally relevant long-term STN DBS provides a most favorable preclinical experimental platform in which to conduct these studies.

  20. The effects of unilateral versus bilateral subthalamic nucleus deep brain stimulation on prosaccades and antisaccades in Parkinson's disease.

    PubMed

    Goelz, Lisa C; David, Fabian J; Sweeney, John A; Vaillancourt, David E; Poizner, Howard; Metman, Leonard Verhagen; Corcos, Daniel M

    2017-02-01

    Unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease improves skeletomotor function assessed clinically, and bilateral STN DBS improves motor function to a significantly greater extent. It is unknown whether unilateral STN DBS improves oculomotor function and whether bilateral STN DBS improves it to a greater extent. Further, it has also been shown that bilateral, but not unilateral, STN DBS is associated with some impaired cognitive-motor functions. The current study compared the effect of unilateral and bilateral STN DBS on sensorimotor and cognitive aspects of oculomotor control. Patients performed prosaccade and antisaccade tasks during no stimulation, unilateral stimulation, and bilateral stimulation. There were three sets of findings. First, for the prosaccade task, unilateral STN DBS had no effect on prosaccade latency and it reduced prosaccade gain; bilateral STN DBS reduced prosaccade latency and increased prosaccade gain. Second, for the antisaccade task, neither unilateral nor bilateral stimulation had an effect on antisaccade latency, unilateral STN DBS increased antisaccade gain, and bilateral STN DBS increased antisaccade gain to a greater extent. Third, bilateral STN DBS induced an increase in prosaccade errors in the antisaccade task. These findings suggest that while bilateral STN DBS benefits spatiotemporal aspects of oculomotor control, it may not be as beneficial for more complex cognitive aspects of oculomotor control. Our findings are discussed considering the strategic role the STN plays in modulating information in the basal ganglia oculomotor circuit.

  1. Subthalamic deep brain stimulation restores automatic response activation and increases susceptibility to impulsive behavior in patients with Parkinson's disease.

    PubMed

    Plessow, Franziska; Fischer, Rico; Volkmann, Jens; Schubert, Torsten

    2014-06-01

    Repeatedly reported deficits of patients with Parkinson's disease (PD) in selecting an appropriate action in the face of competing response alternatives has led to the conclusion of a basal ganglia (BG) involvement in response selection and impulse control. Despite capacious research, it remains elusive how BG dysfunction affects processes subserving goal-directed behavior. Even more problematically, since PD pathology transcends a BG dysfunction due to dopamine depletion in the nigrostriatal DA system (by also comprising alterations in extrastriatal dopamine availability and other neurotransmitter systems), it is not yet clear which aspects of these deficits are actually caused by BG dysfunction. To address this question, the present study investigated 13 off-medication PD patients with bilateral therapeutic subthalamic deep brain stimulation (DBS) both with and without stimulation (DBSON and DBSOFF, respectively) and 26 healthy controls. All participants performed a task that tests the relation between automatic response impulses and goal-directed action selection. Results show an improvement of automatic response activation under DBSON, increasing the susceptibility to impulsive responses, and a reduced impact of automatic response activation under DBSOFF. We argue that the BG determine the efficiency of the regulation and transmission of stimulus-driven bottom-up response activation required for efficient response selection.

  2. Improvement of Advanced Parkinson's Disease Manifestations with Deep Brain Stimulation of the Subthalamic Nucleus: A Single Institution Experience.

    PubMed

    Rabie, Ahmed; Verhagen Metman, Leo; Fakhry, Mazen; Eassa, Ayman Youssef Ezeldin; Fouad, Wael; Shakal, Ahmed; Slavin, Konstantin V

    2016-12-13

    We present our experience at the University of Illinois at Chicago (UIC) in deep brain stimulation (DBS) of the subthalamic nucleus (STN), describing our surgical technique, and reporting our clinical results, and morbidities. Twenty patients with advanced Parkinson's disease (PD) who underwent bilateral STN-DBS were studied. Patients were assessed preoperatively and followed up for one year using the Unified Parkinson's Disease Rating Scale (UPDRS) in "on" and "off" medication and "on" and "off" stimulation conditions. At one-year follow-up, we calculated significant improvement in all the motor aspects of PD (UPDRS III) and in activities of daily living (UPDRS II) in the "off" medication state. The "off" medication UPDRS improved by 49.3%, tremors improved by 81.6%, rigidity improved by 50.0%, and bradykinesia improved by 39.3%. The "off" medication UPDRS II scores improved by 73.8%. The Levodopa equivalent daily dose was reduced by 54.1%. The UPDRS IVa score (dyskinesia) was reduced by 65.1%. The UPDRS IVb score (motor fluctuation) was reduced by 48.6%. Deep brain stimulation of the STN improves the cardinal motor manifestations of the idiopathic PD. It also improves activities of daily living, and reduces medication-induced complications.

  3. Long-Term Task- and Dopamine-Dependent Dynamics of Subthalamic Local Field Potentials in Parkinson’s Disease

    PubMed Central

    Hanrahan, Sara J.; Nedrud, Joshua J.; Davidson, Bradley S.; Farris, Sierra; Giroux, Monique; Haug, Aaron; Mahoor, Mohammad H.; Silverman, Anne K.; Zhang, Jun Jason; Hebb, Adam Olding

    2016-01-01

    Subthalamic nucleus (STN) local field potentials (LFP) are neural signals that have been shown to reveal motor and language behavior, as well as pathological parkinsonian states. We use a research-grade implantable neurostimulator (INS) with data collection capabilities to record STN-LFP outside the operating room to determine the reliability of the signals over time and assess their dynamics with respect to behavior and dopaminergic medication. Seven subjects were implanted with the recording augmented deep brain stimulation (DBS) system, and bilateral STN-LFP recordings were collected in the clinic over twelve months. Subjects were cued to perform voluntary motor and language behaviors in on and off medication states. The STN-LFP recorded with the INS demonstrated behavior-modulated desynchronization of beta frequency (13–30 Hz) and synchronization of low gamma frequency (35–70 Hz) oscillations. Dopaminergic medication did not diminish the relative beta frequency oscillatory desynchronization with movement. However, movement-related gamma frequency oscillatory synchronization was only observed in the medication on state. We observed significant inter-subject variability, but observed consistent STN-LFP activity across recording systems and over a one-year period for each subject. These findings demonstrate that an INS system can provide robust STN-LFP recordings in ambulatory patients, allowing for these signals to be recorded in settings that better represent natural environments in which patients are in a variety of medication states. PMID:27916831

  4. Subthalamic deep brain stimulation reduces pathological information transmission to the thalamus in a rat model of parkinsonism

    PubMed Central

    Anderson, Collin J.; Sheppard, Daylan T.; Huynh, Rachel; Anderson, Daria Nesterovich; Polar, Christian A.; Dorval, Alan D.

    2015-01-01

    The degeneration of dopaminergic neurons in the substantia nigra pars compacta leads to parkinsonian motor symptoms via changes in electrophysiological activity throughout the basal ganglia. High-frequency deep brain stimulation (DBS) partially treats these symptoms, but the mechanisms are unclear. We hypothesize that motor symptoms of Parkinson’s disease (PD) are associated with increased information transmission from basal ganglia output neurons to motor thalamus input neurons and that therapeutic DBS of the subthalamic nucleus (STN) treats these symptoms by reducing this extraneous information transmission. We tested these hypotheses in a unilateral, 6-hydroxydopamine-lesioned rodent model of hemiparkinsonism. Information transfer between basal ganglia output neurons and motor thalamus input neurons increased in both the orthodromic and antidromic directions with hemiparkinsonian (hPD) onset, and these changes were reversed by behaviorally therapeutic STN-DBS. Omnidirectional information increases in the parkinsonian state underscore the detrimental nature of that pathological information and suggest a loss of information channel independence. Therapeutic STN-DBS reduced that pathological information, suggesting an effective increase in the number of independent information channels. We interpret these data with a model in which pathological information and fewer information channels diminishes the scope of possible motor activities, driving parkinsonian symptoms. In this model, STN-DBS restores information-channel independence by eliminating or masking the parkinsonism-associated information, and thus enlarges the scope of possible motor activities, alleviating parkinsonian symptoms. PMID:26217192

  5. Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus.

    PubMed

    Lai, Hsin-Yi; Younce, John R; Albaugh, Daniel L; Kao, Yu-Chieh Jill; Shih, Yen-Yu Ian

    2014-01-01

    Deep brain stimulation (DBS) represents a widely used therapeutic tool for the symptomatic treatment of movement disorders, most commonly Parkinson's disease (PD). High frequency stimulation at both the subthalamic nucleus (STN) and internal globus pallidus (GPi) has been used with great success for the symptomatic treatment of PD, although the therapeutic mechanisms of action remain elusive. To better understand how DBS at these target sites modulates neural circuitry, the present study used functional blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to map global brain responses to DBS at the STN and GPi of the rat. Robust activation centered in the ipsilateral motor cortex was observed during high frequency stimulation at either target site, with peak responses observed at a stimulation frequency of 100Hz. Of note, frequency tuning curves were generated, demonstrating that cortical activation was maximal at clinically-relevant stimulation frequencies. Divergent responses to stimulation were noted in the contralateral hemisphere, with strong cortical and striatal negative BOLD signal during stimulation of the GPi, but not STN. The frequency-dependence of the observed motor cortex activation at both targets suggests a relationship with the therapeutic effects of STN and GPi DBS, with both DBS targets being functionally connected with motor cortex at therapeutic stimulation frequencies.

  6. Cognitive Changes following Bilateral Deep Brain Stimulation of Subthalamic Nucleus in Parkinson's Disease: A Meta-Analysis.

    PubMed

    Xie, Yi; Meng, Xiangyu; Xiao, Jinsong; Zhang, Jie; Zhang, Junjian

    2016-01-01

    Background. Nowadays, it has been largely acknowledged that deep brain stimulation of subthalamic nucleus (STN DBS) can alleviate motor symptoms of Parkinson's disease, but its effects on cognitive function remain unclear, which are not given enough attention by many clinical doctors and researchers. To date, 3 existing meta-analyses focusing on this issue included self-control studies and have not drawn consistent conclusions. The present study is the first to compare effect sizes of primary studies that include control groups, hoping to reveal the net cognitive outcomes after STN DBS and the clinical significance. Methods. A structured literature search was conducted using strict criteria. Only studies with control group could be included. Data on age, duration of disease, levodopa equivalent dosage (LED), and multiple cognitive scales were collected and pooled. Results. Of 172 articles identified, 10 studies (including 3 randomized controlled trials and 7 nonrandomized controlled studies) were eligible for inclusion. The results suggest that STN DBS results in decreased global cognition, memory, verbal fluency, and executive function compared with control group. No significant difference is found in other cognitive domains. Conclusions. STN DBS seems relatively safe with respect to cognitive function, and further studies should focus on the exact mechanisms of possible verbal deterioration after surgery in the future.

  7. Subthalamic deep brain stimulation reduces pathological information transmission to the thalamus in a rat model of parkinsonism.

    PubMed

    Anderson, Collin J; Sheppard, Daylan T; Huynh, Rachel; Anderson, Daria Nesterovich; Polar, Christian A; Dorval, Alan D

    2015-01-01

    The degeneration of dopaminergic neurons in the substantia nigra pars compacta leads to parkinsonian motor symptoms via changes in electrophysiological activity throughout the basal ganglia. High-frequency deep brain stimulation (DBS) partially treats these symptoms, but the mechanisms are unclear. We hypothesize that motor symptoms of Parkinson's disease (PD) are associated with increased information transmission from basal ganglia output neurons to motor thalamus input neurons and that therapeutic DBS of the subthalamic nucleus (STN) treats these symptoms by reducing this extraneous information transmission. We tested these hypotheses in a unilateral, 6-hydroxydopamine-lesioned rodent model of hemiparkinsonism. Information transfer between basal ganglia output neurons and motor thalamus input neurons increased in both the orthodromic and antidromic directions with hemiparkinsonian (hPD) onset, and these changes were reversed by behaviorally therapeutic STN-DBS. Omnidirectional information increases in the parkinsonian state underscore the detrimental nature of that pathological information and suggest a loss of information channel independence. Therapeutic STN-DBS reduced that pathological information, suggesting an effective increase in the number of independent information channels. We interpret these data with a model in which pathological information and fewer information channels diminishes the scope of possible motor activities, driving parkinsonian symptoms. In this model, STN-DBS restores information-channel independence by eliminating or masking the parkinsonism-associated information, and thus enlarges the scope of possible motor activities, alleviating parkinsonian symptoms.

  8. A point process approach to identifying and tracking transitions in neural spiking dynamics in the subthalamic nucleus of Parkinson's patients

    NASA Astrophysics Data System (ADS)

    Deng, Xinyi; Eskandar, Emad N.; Eden, Uri T.

    2013-12-01

    Understanding the role of rhythmic dynamics in normal and diseased brain function is an important area of research in neural electrophysiology. Identifying and tracking changes in rhythms associated with spike trains present an additional challenge, because standard approaches for continuous-valued neural recordings—such as local field potential, magnetoencephalography, and electroencephalography data—require assumptions that do not typically hold for point process data. Additionally, subtle changes in the history dependent structure of a spike train have been shown to lead to robust changes in rhythmic firing patterns. Here, we propose a point process modeling framework to characterize the rhythmic spiking dynamics in spike trains, test for statistically significant changes to those dynamics, and track the temporal evolution of such changes. We first construct a two-state point process model incorporating spiking history and develop a likelihood ratio test to detect changes in the firing structure. We then apply adaptive state-space filters and smoothers to track these changes through time. We illustrate our approach with a simulation study as well as with experimental data recorded in the subthalamic nucleus of Parkinson's patients performing an arm movement task. Our analyses show that during the arm movement task, neurons underwent a complex pattern of modulation of spiking intensity characterized initially by a release of inhibitory control at 20-40 ms after a spike, followed by a decrease in excitatory influence at 40-60 ms after a spike.

  9. Two opposite effects of Delta(9)-tetrahydrocannabinol on subthalamic nucleus neuron activity: involvement of GABAergic and glutamatergic neurotransmission.

    PubMed

    Morera-Herreras, Teresa; Ruiz-Ortega, Jose Angel; Ugedo, Luisa

    2010-01-01

    Activation of CB1 cannabinoid receptors in the basal ganglia interferes with movement regulation. The aim of this study was to characterize the effect of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) on neurons in the subthalamic nucleus (STN) and to elucidate the mechanisms involved in this effect using single-unit extracellular recordings in anesthetized rats. Administration of Delta(9)-THC (0.25-2 mg/kg, i.v.) stimulated (by 107% +/- 32%) neurons mainly recorded in the ventromedial portion of the caudal STN, whereas it inhibited (by 65% +/- 4%) neurons recorded in the dorsolateral portion of the rostral STN. The CB1 receptor antagonist rimonabant (1 mg/kg, i.v.) completely reverted these effects. The excitatory effect of Delta(9)-THC on STN neurons was not observed after antagonism of GABA(A) receptors by bicuculline administration (10 ng, icv.) or after chemical lesion of the globus pallidus with ibotenic acid. The inhibitory effect was abolished when excitatory amino acid receptors were blocked by kynurenic acid (0.5 mumol, icv.). These results indicate that CB1 receptor activation modulates STN neuron activity by indirect mechanisms involving glutamatergic and GABAergic neurotransmission.

  10. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    PubMed

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  11. Anatomo-clinical correlation of intraoperative stimulation-induced side-effects during HF-DBS of the subthalamic nucleus.

    PubMed

    Tamma, F; Caputo, E; Chiesa, V; Egidi, M; Locatelli, M; Rampini, P; Cinnante, C; Pesenti, A; Priori, A

    2002-09-01

    The efficacy of deep brain stimulation of the subthalamic nucleus (STN) is dependent on the accuracy of targeting. In order to reduce the number of passes and, consequently, the duration of surgery and risk of bleeding, we have set up a new method based on direct magnetic resonance imaging (MRI) localisation of the STN. This procedure allows a short duration of the neurophysiological session (one or two initial tracks). Whenever a supplementary track is needed, the stimulation-induced side effects are analysed to choose from one of the remaining holes in Ben's gun. A good knowledge of anatomical structures surrounding the STN is mandatory to relate side effects to the actual position of the track. In our series of 11 patients (22 sides, 37 tracks), the most common and reproducible side effects were those characterised by motor, sensorial, oculomotor and vegetative signs and symptoms. Moreover, the therapeutic window (distance between the current intensity needed to obtain the best clinical effect and the intensity capable to induce side effects) predicted clinical efficacy in the long-term, and contributed to the choice of which among the examined tracks had to be implanted with the chronic macroelectrode.

  12. Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus in Patients with Parkinson's Disease: Effects on Diadochokinetic Rate

    PubMed Central

    Karlsson, Fredrik; Unger, Elin; Wahlgren, Sofia; Blomstedt, Patric; Linder, Jan; Nordh, Erik; Zafar, Hamayun; van Doorn, Jan

    2011-01-01

    The hypokinetic dysarthria observed in Parkinson's disease (PD) affects the range, speed, and accuracy of articulatory gestures in patients, reducing the perceived quality of speech acoustic output in continuous speech. Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) and of the caudal zona incerta (cZi-DBS) are current surgical treatment options for PD. This study aimed at investigating the outcome of STN-DBS (7 patients) and cZi-DBS (7 patients) in two articulatory diadochokinesis tasks (AMR and SMR) using measurements of articulation rate and quality of the plosive consonants (using the percent measurable VOT metric). The results indicate that patients receiving STN-DBS increased in articulation rate in the Stim-ON condition in the AMR task only, with no effect on production quality. Patients receiving cZi-DBS decreased in articulation rate in the Stim-ON condition and further showed a reduction in production quality. The data therefore suggest that cZi-DBS is more detrimental for extended articulatory movements than STN-DBS. PMID:22007342

  13. Intensive Voice Treatment (LSVT®LOUD) for Parkinson’s disease following Deep Brain Stimulation of the Subthalamic Nucleus

    PubMed Central

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose Intensive voice therapy (LSVT®LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes for surgical subjects were comparable to non-surgical cohorts. Methods Eight subjects with PD (four with STN-DBS and four without) received LSVT LOUD four times a week for four weeks. Four additional subjects with PD remained untreated. Voice intensity (SPL), Vowel Articulation Index (VAI), the Voice Handicap Index (VHI), and a structured interview were evaluated before and after treatment and again six months later. Results Both treated groups showed significant increases in SPL from pre to post and six-month follow up. VAI was significantly higher for the treated groups compared to the untreated subjects at follow up. Several treated individuals had significant clinical improvement in VHI scores, particularly within the LSVT-DBS group. Treated individuals reported improvements in voice and speech in structured interviews; however, answers suggest more variable long-term maintenance within the LSVT-DBS group. The untreated group exhibited no significant changes in any measure throughout the study. Conclusions Results support LSVT LOUD for treating voice and speech in individuals with PD following STN-DBS surgery. However, modifications may be required to maintain functional improvements. PMID:21724193

  14. Characteristic laryngoscopic findings in Parkinson's disease patients after subthalamic nucleus deep brain stimulation and its correlation with voice disorder.

    PubMed

    Tsuboi, Takashi; Watanabe, Hirohisa; Tanaka, Yasuhiro; Ohdake, Reiko; Yoneyama, Noritaka; Hara, Kazuhiro; Ito, Mizuki; Hirayama, Masaaki; Yamamoto, Masahiko; Fujimoto, Yasushi; Kajita, Yasukazu; Wakabayashi, Toshihiko; Sobue, Gen

    2015-12-01

    Speech and voice disorders are one of the most common adverse effects in Parkinson's disease (PD) patients treated with subthalamic nucleus deep brain stimulation (STN-DBS). However, the pathophysiology of voice and laryngeal dysfunction after STN-DBS remains unclear. We assessed 47 PD patients (22 treated with bilateral STN-DBS (PD-DBS) and 25 treated medically (PD-Med); all patients in both groups matched by age, sex, disease duration, and motor and cognitive function) using the objective and subjective voice assessment batteries (GRBAS scale and Voice Handicap Index), and laryngoscopy. Laryngoscopic examinations revealed that PD-DBS patients showed a significantly higher incidence of incomplete glottal closure (77 vs 48 %; p = 0.039), hyperadduction of the false vocal folds (73 vs 44 %; p = 0.047), anteroposterior hypercompression (50 vs 20 %; p = 0.030) and asymmetrical glottal movement (50 vs 16 %; p = 0.002) than PD-Med patients. On- and off-stimulation assessment revealed that STN-DBS could induce or aggravate incomplete glottal closure, hyperadduction of the false vocal folds, anteroposterior hypercompression, and asymmetrical glottal movement. Incomplete glottal closure and hyperadduction of the false vocal folds significantly correlated with breathiness and strained voice, respectively (r = 0.590 and 0.539). We should adjust patients' DBS settings in consideration of voice and laryngeal functions as well as motor function.

  15. Interleaved programming of subthalamic deep brain stimulation to avoid adverse effects and preserve motor benefit in Parkinson's disease.

    PubMed

    Ramirez-Zamora, Adolfo; Kahn, Max; Campbell, Joannalee; DeLaCruz, Priscilla; Pilitsis, Julie G

    2015-03-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is the most common surgical treatment for managing motor complications in Parkinson's disease (PD). Ultimately, outcomes depend on a variety of factors including lead location, access and expertize in programming and PD medical management. Nevertheless, achieving ideal programming settings can be difficult in certain patients, leading to suboptimal control of symptoms and stimulation-induced side effects, notably dysarthria and dyskinesia. Interleaved stimulation (ILS) is a newer programming technique that attempts to optimize the stimulation field, improving control of symptoms while minimizing stimulation-induced adverse effects. A retrospective chart review was performed on PD patients receiving STN DBS over the past 12 months. Clinical and demographic data were collected from patients identified as having received ILS. The rationale and clinical efficacy of ILS was analyzed. Nine patients received ILS due to incomplete PD symptom control or stimulation-induced side effects after attempting multiple programming options. Appropriate lead location was confirmed with postoperative MRI except in one case. Following ILS, patients reported improvement in symptoms and resolution of side effects, while preserving adequate control in Parkinsonism with a mean improvement in UPDRS-MOTOR scores of 51.2 %. ILS continues to emerge as a safe and effective programming strategy for maximizing symptom control in PD while diminishing stimulation-induced side effects.

  16. Improvement of Advanced Parkinson’s Disease Manifestations with Deep Brain Stimulation of the Subthalamic Nucleus: A Single Institution Experience

    PubMed Central

    Rabie, Ahmed; Verhagen Metman, Leo; Fakhry, Mazen; Eassa, Ayman Youssef Ezeldin; Fouad, Wael; Shakal, Ahmed; Slavin, Konstantin V.

    2016-01-01

    We present our experience at the University of Illinois at Chicago (UIC) in deep brain stimulation (DBS) of the subthalamic nucleus (STN), describing our surgical technique, and reporting our clinical results, and morbidities. Twenty patients with advanced Parkinson’s disease (PD) who underwent bilateral STN-DBS were studied. Patients were assessed preoperatively and followed up for one year using the Unified Parkinson’s Disease Rating Scale (UPDRS) in “on” and “off” medication and “on” and “off” stimulation conditions. At one-year follow-up, we calculated significant improvement in all the motor aspects of PD (UPDRS III) and in activities of daily living (UPDRS II) in the “off” medication state. The “off” medication UPDRS improved by 49.3%, tremors improved by 81.6%, rigidity improved by 50.0%, and bradykinesia improved by 39.3%. The “off” medication UPDRS II scores improved by 73.8%. The Levodopa equivalent daily dose was reduced by 54.1%. The UPDRS IVa score (dyskinesia) was reduced by 65.1%. The UPDRS IVb score (motor fluctuation) was reduced by 48.6%. Deep brain stimulation of the STN improves the cardinal motor manifestations of the idiopathic PD. It also improves activities of daily living, and reduces medication-induced complications. PMID:27983589

  17. Effect of subthalamic nucleus stimulation during exercise on the mesolimbocortical dopaminergic region in Parkinson's disease: a positron emission tomography study.

    PubMed

    Nozaki, Takao; Sugiyama, Kenji; Yagi, Shunsuke; Yoshikawa, Etsuji; Kanno, Toshihiko; Asakawa, Tetsuya; Ito, Tae; Terada, Tatsuhiro; Namba, Hiroki; Ouchi, Yasuomi

    2013-03-01

    To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [(11)C]raclopride (BP(ND)) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [(11)C]raclopride BP(ND) in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.

  18. D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance.

    PubMed

    Baufreton, Jérôme; Garret, Maurice; Rivera, Alicia; de la Calle, Adélaïda; Gonon, François; Dufy, Bernard; Bioulac, Bernard; Taupignon, Anne

    2003-02-01

    Dopamine is a crucial factor in basal ganglia functioning. In current models of basal ganglia, dopamine is postulated to act on striatal neurons. However, it may also act on the subthalamic nucleus (STN), a key nucleus in the basal ganglia circuit. The data presented here were obtained in brain slices using whole-cell patch clamp. They reveal that D5 dopamine receptors strengthen electrical activity in the subset of subthalamic neurons endowed with burst-firing capacity, resulting in longer discharges of spontaneous or evoked bursts. To distinguish between D1 and D5 subtypes, the action of agonists in the D1/D5 receptor family was first investigated on rat subthalamic neurons. Single-cell reverse transcription-PCR profiling showed that burst-competent neurons only expressed D5 receptors. Accordingly, receptors localized in postsynaptic membranes within the STN were labeled by a D5-specific antibody. Second, agonists in the D1/D5 family were tested in mouse brain slices. It was found that these agonists were active in D1 receptor knock-out mice in a similar way to wild-type mice or rats. This proved that D5 rather than D1 receptors were involved. Pharmacological tools (dihydropyridines, omega-conotoxins, and calciseptine) were used to identify the target of D5 receptors as an L-type channel. This was reached via G-protein and protein kinase A. The action of dopamine on D5 receptors therefore shapes neuronal activity. It contributes to normal information processing in basal ganglia outside striatum. This finding may be useful in drug therapy for various disorders involving changes in STN activity, such as Parkinson's disease and related disorders.

  19. In vivo Exploration of the Connectivity between the Subthalamic Nucleus and the Globus Pallidus in the Human Brain Using Multi-Fiber Tractography

    PubMed Central

    Pujol, Sonia; Cabeen, Ryan; Sébille, Sophie B.; Yelnik, Jérôme; François, Chantal; Fernandez Vidal, Sara; Karachi, Carine; Zhao, Yulong; Cosgrove, G. Rees; Jannin, Pierre; Kikinis, Ron; Bardinet, Eric

    2017-01-01

    The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson’s disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson’s disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the

  20. Camptocormia and deep brain stimulation: The interesting overlapping etiologies and the therapeutic role of subthalamic nucleus-deep brain stimulation in Parkinson disease with camptocormia

    PubMed Central

    Ekmekci, Hakan; Kaptan, Hulagu

    2016-01-01

    Background: Camptocormia is known as “bent spine syndrome” and defined as a forward hyperflexion. The most common etiologic factor is related with the movement disorders, mainly in Parkinson's disease (PD). Case Description: We present the case of a 51-year-old woman who has been followed with PD for the last 10 years, and also under the therapy for PD. An unappreciated correlation low back pain with camptocormia developed. She underwent deep brain stimulation (DBS) in the subthalamic nucleus bilaterally and improved her bending posture. Conclusion: The relationship between the DBS and camptocormia is discussed in this unique condition. PMID:26958425

  1. Different patterns of medication change after subthalamic or pallidal stimulation for Parkinson's disease: target related effect or selection bias?

    PubMed Central

    Minguez-Castellan..., A; Escamilla-Sevilla, F; Katati, M; Martin-Linares, J; Meersmans, M; Ortega-Moreno, A; Arjona, V

    2005-01-01

    Background: Bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) is favoured over bilateral globus pallidus internus (Gpi) DBS for symptomatic treatment of advanced Parkinson's disease (PD) due to the possibility of reducing medication, despite lack of definitive comparative evidence. Objective: To analyse outcomes after one year of bilateral Gpi or STN DBS, with consideration of influence of selection bias on the pattern of postsurgical medication change. Methods: The first patients to undergo bilateral Gpi (n = 10) or STN (n = 10) DBS at our centre were studied. They were assessed presurgically and one year after surgery (CAPIT protocol). Results: Before surgery the Gpi DBS group had more dyskinesias and received lower doses of medication. At one year, mean reduction in UPDRS off medication score was 35% and 39% in the Gpi and STN groups, respectively (non-significant difference). Dyskinesias reduced in proportion to presurgical severity. The levodopa equivalent dose was significantly reduced only in the STN group (24%). This study high-lights the absence of significant differences between the groups in clinical scales and medication dose at one year. In the multivariate analysis of predictive factors for off-state motor improvement, the presurgical levodopa equivalent dose showed a direct relation in the STN and an inverse relation in the Gpi group. Conclusion: Differences in the patterns of medication change after Gpi and STN DBS may be partly due to a patient selection bias. Both procedures may be equally useful for different subgroups of patients with advanced PD, Gpi DBS especially for patients with lower threshold for dyskinesia. PMID:15607992

  2. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.

    PubMed

    Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen

    2016-11-01

    Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.

  3. Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model.

    PubMed

    Zaidel, Adam; Spivak, Alexander; Shpigelman, Lavi; Bergman, Hagai; Israel, Zvi

    2009-09-15

    Positive therapeutic response without adverse side effects to subthalamic nucleus deep brain stimulation (STN DBS) for Parkinson's disease (PD) depends to a large extent on electrode location within the STN. The sensorimotor region of the STN (seemingly the preferred location for STN DBS) lies dorsolaterally, in a region also marked by distinct beta (13-30 Hz) oscillations in the parkinsonian state. In this study, we present a real-time method to accurately demarcate subterritories of the STN during surgery, based on microelectrode recordings (MERs) and a Hidden Markov Model (HMM). Fifty-six MER trajectories were used, obtained from 21 PD patients who underwent bilateral STN DBS implantation surgery. Root mean square (RMS) and power spectral density (PSD) of the MERs were used to train and test an HMM in identifying the dorsolateral oscillatory region (DLOR) and nonoscillatory subterritories within the STN. The HMM demarcations were compared to the decisions of a human expert. The HMM identified STN-entry, the ventral boundary of the DLOR, and STN-exit with an error of -0.09 +/- 0.35, -0.27 +/- 0.58, and -0.20 +/- 0.33 mm, respectively (mean +/- standard deviation), and with detection reliability (error < 1 mm) of 95, 86, and 91%, respectively. The HMM was successful despite a very coarse clustering method and was robust to parameter variation. Thus, using an HMM in conjunction with RMS and PSD measures of intraoperative MER can provide improved refinement of STN entry and exit in comparison with previously reported automatic methods, and introduces a novel (intra-STN) detection of a distinct DLOR-ventral boundary.

  4. Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson’s disease

    PubMed Central

    Shimamoto, Shoichi; Ryapolova-Webb, Elena S.; Ostrem, Jill L.; Galifianakis, Nicholas B.; Miller, Kai J.; Starr, Philip A.

    2013-01-01

    In Parkinson’s disease (PD), striatal dopamine denervation results in a cascade of abnormalities in the single unit activity of downstream basal ganglia nuclei that include increased firing rate, altered firing patterns, and increased oscillatory activity. However, the effects of these abnormalities on cortical function are poorly understood. Here, in humans undergoing deep brain stimulator implantation surgery, we utilize the novel technique of subdural electrocorticography in combination with subthalamic nucleus (STN) single unit recording to study basal ganglia-cortex interactions at the millisecond time scale. We show that in patients with PD, STN spiking is synchronized with primary motor cortex (M1) local field potentials in two distinct patterns: First, STN spikes are phase-synchronized with M1 rhythms in the theta, alpha, or beta (4-30 Hz) bands. Second, STN spikes are synchronized with M1 gamma activity over a broad spectral range (50-200 Hz). The amplitude of STN spike-synchronized gamma activity in M1 is itself rhythmically modulated by the phase of a lower frequency rhythm (phase-amplitude coupling), such that “waves” of phase-synchronized gamma activity precede the occurrence of STN spikes. We show the disease specificity of these phenomena in PD, by comparison with STN-M1 paired recordings performed in a group of patients with a different disorder, primary cranio-cervical dystonia. Our findings support a model of the basal ganglia-thalamocortical loop in PD in which gamma activity in primary motor cortex, modulated by the phase of low frequency rhythms, drives STN unit discharge. PMID:23616531

  5. The role of the sub-thalamic nucleus in the preparation of volitional movement termination in Parkinson's disease.

    PubMed

    Hsu, Yi-Ting; Lai, Hsin-Yi; Chang, Yao-Chuan; Chiou, Shang-Ming; Lu, Ming-Kuei; Lin, Yu-Chin; Liu, Yen-Liang; Chen, Chiung-Chu; Huang, Hui-Chun; Chien, Ting-Fang; Lin, Shinn-Zong; Chen, You-Yin; Tsai, Chon-Haw

    2012-01-01

    The sub-thalamic nucleus (STN) is relevant to the preparation of movement ignition but its role in movement termination is uncertain. Fourteen patients with Parkinson's disease (PD) received local field potentials (LFPs) recording at the left STN on the fourth day after deep brain stimulation surgery. They performed phasic and tonic movements of the right wrist extensor. Movement onset (Mon) and movement offset (Moff) of the electromyographic activities were used as triggers to determine an eight-second LFPs epoch for time-frequency analysis. Movement-related power changes were assessed by repeated measures analysis of variance with within-subject factors of Event (Mon and Moff), Period (ten time periods for phasic movement and six time periods for tonic movement), and Frequency (alpha, low-beta, and high-beta). There was significant triple interaction in both the phasic and tonic movements. By post-hoc analysis, high-beta event-related de-synchronization (ERD) appeared earlier (3s prior to Mon) than those of low-beta and alpha for the Mon phasic movement. There was no alpha ERD for the Mon tonic movement. Alpha, low-beta, and high-beta ERD all appeared about 1s prior to the Moff tonic movement. The current findings suggest that STN participates in the preparation of volitional movement termination but via a different mechanism from that in movement initiation. Unlike asynchronous ERD frequency bands present in movement initiation, a simultaneous ERD across wide frequency bands in STN may play a pivotal role in terminating volitional movement.

  6. Electrode Position and Current Amplitude Modulate Impulsivity after Subthalamic Stimulation in Parkinsons Disease—A Computational Study

    PubMed Central

    Mandali, Alekhya; Chakravarthy, V. Srinivasa; Rajan, Roopa; Sarma, Sankara; Kishore, Asha

    2016-01-01

    Background: Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) is highly effective in alleviating motor symptoms of Parkinson's disease (PD) which are not optimally controlled by dopamine replacement therapy. Clinical studies and reports suggest that STN-DBS may result in increased impulsivity and de novo impulse control disorders (ICD). Objective/Hypothesis: We aimed to compare performance on a decision making task, the Iowa Gambling Task (IGT), in healthy conditions (HC), untreated and medically-treated PD conditions with and without STN stimulation. We hypothesized that the position of electrode and stimulation current modulate impulsivity after STN-DBS. Methods: We built a computational spiking network model of basal ganglia (BG) and compared the model's STN output with STN activity in PD. Reinforcement learning methodology was applied to simulate IGT performance under various conditions of dopaminergic and STN stimulation where IGT total and bin scores were compared among various conditions. Results: The computational model reproduced neural activity observed in normal and PD conditions. Untreated and medically-treated PD conditions had lower total IGT scores (higher impulsivity) compared to HC (P < 0.0001). The electrode position that happens to selectively stimulate the part of the STN corresponding to an advantageous panel on IGT resulted in de-selection of that panel and worsening of performance (P < 0.0001). Supratherapeutic stimulation amplitudes also worsened IGT performance (P < 0.001). Conclusion(s): In our computational model, STN stimulation led to impulsive decision making in IGT in PD condition. Electrode position and stimulation current influenced impulsivity which may explain the variable effects of STN-DBS reported in patients. PMID:27965590

  7. Continuous bilateral infusion of vigabatrin into the subthalamic nucleus: Effects on seizure threshold and GABA metabolism in two rat models.

    PubMed

    Gey, Laura; Gernert, Manuela; Löscher, Wolfgang

    2016-07-01

    The subthalamic nucleus (STN) plays a crucial role as a regulator of basal ganglia outflow but also influences the activity of cortical and limbic structures, so that it is widely used as a therapeutic target in different brain diseases, including epilepsy. In addition to electrical stimulation of the STN, targeted delivery of anti-seizure drugs to the STN may constitute an alternative treatment approach in patients with pharmacoresistant epilepsy. In the present experimental study, we investigated the anti-seizure and adverse effects of chronic infusion of vigabatrin into the STN of rats. Vigabatrin is a clinically approved anti-seizure drug, which acts by increasing brain GABA levels by irreversibly inhibiting GABA-aminotransferase (GABA-T). Based on functional and neurochemical effects of acute STN microinjection, doses for continuous infusion were calculated and administered, using an innovative drug infusion technology. Bilateral infusion of only 10μg/day vigabatrin over 3weeks into the STN resulted in an almost complete inhibition of GABA-T and 4-fold increase in GABA in the target region, which was associated with a significant increase in seizure threshold, determined once weekly by i.v. infusion of pentylenetetrazole (PTZ). Lower doses or unilateral infusion were less effective, both on PTZ seizures and on kindled seizures. Bilateral infusion into substantia nigra pars reticulata was less effective and more toxic than STN infusion. In part of the rats, tolerance to the anti-seizure effect developed. The data demonstrate that chronic administration of very low, nontoxic doses of vigabatrin into STN is an effective means of increasing local GABA concentrations and seizure threshold.

  8. A new biomarker for subthalamic deep brain stimulation for patients with advanced Parkinson’s disease—a pilot study

    NASA Astrophysics Data System (ADS)

    Gmel, Gerrit E.; Hamilton, Tara J.; Obradovic, Milan; Gorman, Robert B.; Single, Peter S.; Chenery, Helen J.; Coyne, Terry; Silburn, Peter A.; Parker, John L.

    2015-12-01

    Objective. Deep brain stimulation (DBS) has become the standard treatment for advanced stages of Parkinson’s disease (PD) and other motor disorders. Although the surgical procedure has improved in accuracy over the years thanks to imaging and microelectrode recordings, the underlying principles that render DBS effective are still debated today. The aim of this paper is to present initial findings around a new biomarker that is capable of assessing the efficacy of DBS treatment for PD which could be used both as a research tool, as well as in the context of a closed-loop stimulator. Approach. We have used a novel multi-channel stimulator and recording device capable of measuring the response of nervous tissue to stimulation very close to the stimulus site with minimal latency, rejecting most of the stimulus artefact usually found with commercial devices. We have recorded and analyzed the responses obtained intraoperatively in two patients undergoing DBS surgery in the subthalamic nucleus (STN) for advanced PD. Main results. We have identified a biomarker in the responses of the STN to DBS. The responses can be analyzed in two parts, an initial evoked compound action potential arising directly after the stimulus onset, and late responses (LRs), taking the form of positive peaks, that follow the initial response. We have observed a morphological change in the LRs coinciding with a decrease in the rigidity of the patients. Significance. These initial results could lead to a better characterization of the DBS therapy, and the design of adaptive DBS algorithms that could significantly improve existing therapies and help us gain insights into the functioning of the basal ganglia and DBS.

  9. Effects of subthalamic nucleus deep brain stimulation and levodopa on energy production rate and substrate oxidation in Parkinson's disease.

    PubMed

    Perlemoine, Caroline; Macia, Frédéric; Tison, François; Coman, Isabelle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Baillet, Laurence; Gin, Henri; Rigalleau, Vincent

    2005-02-01

    Patients with Parkinson's disease (PD) often lose weight, but after subthalamic nucleus deep brain stimulation (STN-DBS), they gain weight. We compared daily energy intake (DEI), resting energy expenditure (REE) and substrate oxidation rates (measured by indirect calorimetry) in nineteen STN-DBS-treated patients (Group S), thirteen others on pharmacologic treatment by levodopa (Group L) and eight control subjects. We also determined the acute effects of STN-DBS and levodopa on REE and substrate oxidation rates. STN-DBS treated patients gained 9.7 (SEM 7.1) kg after surgery, whereas patients on pharmacologic treatment lost 3.8 (SEM 10.0) kg since diagnosis. In STN-DBS-treated patients, REE (-16.5 %; P<0.001), lipid oxidation (-27 %; P<0.05) and protein oxidation (-46 %; P<0.05) were decreased, whereas glucose oxidation was elevated (+81 %; P<0.05) as compared to patients on pharmacologic treatment. Levodopa acutely reduced REE (-8.3 %; P<0.05) and glucose oxidation (-37 %; P<0.01) with a slight hyperglycaemic effect (after levodopa challenge: 5.6 (SEM 0.8) v. before levodopa challenge: 5.3 (SEM 0.6) mmol/l; P<0.01). Switching 'on' STN-DBS acutely reduced REE (-17.5 %; P<0.01) and lipid oxidation (-24 %; P<0.001) 30 min after starting stimulation. Fasting glycaemia was slightly but significantly reduced (5.4 (SEM 1.4) v. 5.5 (SEM 1.3) mmol/l; P<0.01). After STN-DBS, the normalization of REE and the reduction in lipid and protein oxidation contribute to the restoration of weight. As levodopa decreases glucose oxidation, the reduction in daily dose of levodopa in STN-DBS-treated patients helps prevent the effect of weight gain on glycaemia.

  10. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease

    PubMed Central

    Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng

    2016-01-01

    Abstract Background: Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. Methods: We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. Results: We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. Conclusions: ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have

  11. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    PubMed Central

    Hu, Y; Liu, X

    2015-01-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  12. D2 dopamine receptors modulate neuronal resonance in subthalamic nucleus and cortical high-voltage spindles through HCN channels.

    PubMed

    Yang, Chen; Yan, Zhiqiang; Zhao, Bo; Wang, Julei; Gao, Guodong; Zhu, Junling; Wang, Wenting

    2016-06-01

    The high-voltage spindles (HVSs), one of the characteristic oscillations that include theta frequencies in the basal ganglia (BG)-cortical system, are involved in immobile behavior and show increasing power in Parkinson's disease (PD). Our previous results suggested that the D2 dopamine receptor might be involved in HVSs modulations in a rat model of PD. Membrane resonance is one of the cellular mechanisms of network oscillation; therefore, we investigated how dopamine modulates the theta frequency membrane resonance of neurons in the subthalamic nucleus (STN), a central pacemaker of BG, and whether such changes in STN neurons subsequently alter HVSs in the BG-cortical system. In particular, we tested whether dopamine modulates HVSs through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels-dependent membrane resonance in STN neurons. We found that an antagonist of D2 receptors, but not of D1 receptors, inhibited membrane resonance and HCN currents of STN neurons through a G-protein activity in acute brain slices. Our further in vivo experiments using local injection of a D2 receptor antagonist or an HCN blocker in STNs of free-moving rats showed an increase in HVSs power and correlation in the BG-cortical system. Local injection of lamotrigine, an HCN agonist, counteracted the effect induced by the D2 antagonist. Taken together, our results revealed a potential cellular mechanism underlying HVSs activity modulation in the BG-cortical system, i.e. tuning HCN activities in STN neurons through dopamine D2 receptors. Our findings might lead to a new direction in PD treatment by providing promising new drug targets for HVSs activity modulation.

  13. Movement-Related Discharge in the Macaque Globus Pallidus during High-Frequency Stimulation of the Subthalamic Nucleus

    PubMed Central

    Zimnik, Andrew J.; Nora, Gerald J.; Desmurget, Michel

    2015-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an “informational lesion,” whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism. PMID:25740526

  14. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys.

    PubMed

    Masilamoni, Gunasingh Jeyaraj; Groover, Olivia; Smith, Yoland

    2017-04-01

    There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD.

  15. Modulation of motor cortex neuronal activity and motor behavior during subthalamic nucleus stimulation in the normal primate.

    PubMed

    Johnson, Luke A; Xu, Weidong; Baker, Kenneth B; Zhang, Jianyu; Vitek, Jerrold L

    2015-04-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for advanced Parkinson's disease (PD). An emerging hypothesis is that the therapeutic benefit of DBS is derived from direct modulation of primary motor cortex (M1), yet little is known about the influence of STN DBS on individual neurons in M1. We investigated the effect of STN DBS, delivered at discrete interval intensities (20, 40, 60, 80, and 100%) of corticospinal tract threshold (CSTT), on motor performance and M1 neuronal activity in a naive nonhuman primate. Motor performance during a food reach and retrieval task improved during low-intensity stimulation (20% CSTT) but worsened as intensity approached the threshold for activation of corticospinal fibers (80% and 100% CSTT). To assess cortical effects of STN DBS, spontaneous, extracellular neuronal activity was collected from M1 neurons before, during, and after DBS at the same CSTT stimulus intensities. STN DBS significantly modulated the firing of a majority of M1 neurons; however, the direction of effect varied with stimulus intensity such that, at 20% CSTT, most neurons were suppressed, whereas at the highest stimulus intensities the majority of neurons were activated. At a population level, firing rates increased as stimulus intensity increased. These results show that STN DBS influences both motor performance and M1 neuronal activity systematically according to stimulus intensity. In addition, the unanticipated reduction in reach times suggests that STN DBS, at stimulus intensities lower than typically used for treatment of PD motor signs, can enhance normal motor performance.

  16. D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus

    PubMed Central

    Baufreton, Jérôme; Bevan, Mark D

    2008-01-01

    Reciprocally connected glutamatergic subthalamic nucleus (STN) and GABAergic external globus pallidus (GP) neurons normally exhibit weakly correlated, irregular activity but following the depletion of dopamine in Parkinson's disease they express more highly correlated, rhythmic bursting activity. Patch clamp recording was used to test the hypothesis that dopaminergic modulation reduces the capability of GABAergic inputs to pattern ‘pathological’ activity in STN neurons. Electrically evoked GABAA receptor-mediated IPSCs exhibited activity-dependent plasticity in STN neurons, i.e. IPSCs evoked at frequencies between 1 and 50 Hz exhibited depression that increased with the frequency of activity. Dopamine, the D2-like dopamine receptor agonist quinpirole and external media containing a low [Ca2+] reduced both the magnitude of IPSCs evoked at 1–50 Hz and synaptic depression at 10–50 Hz. Dopamine/quinpirole also reduced the frequency but not the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. D1-like and D4 agonists were ineffective and D2/3 but not D4 receptor antagonists reversed the effects of dopamine or quinpirole. Together these data suggest that presynaptic D2/3 dopamine receptors modulate the short-term dynamics of GABAergic transmission in the STN by lowering the initial probability of transmitter release. Simulated GABAA receptor-mediated synaptic conductances representative of control or modulated transmission were then generated in STN neurons using the dynamic clamp technique. Dopamine-modulated transmission was less effective at resetting autonomous activity or generating rebound burst firing than control transmission. The data therefore support the conclusion that dopamine acting at presynaptic D2-like receptors reduces the propensity for GABAergic transmission to generate correlated, bursting activity in STN neurons. PMID:18292127

  17. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector.

    PubMed

    Koshimizu, Yoshinori; Fujiyama, Fumino; Nakamura, Kouichi C; Furuta, Takahiro; Kaneko, Takeshi

    2013-06-15

    The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway.

  18. Dual effects of intermittent or continuous L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-OHDA lesion.

    PubMed

    Nielsen, Kirsten M; Soghomonian, Jean-Jacques

    2003-09-15

    Intermittent oral doses of levodopa (L-DOPA) are routinely used to treat Parkinson's disease, but with prolonged use can result in adverse motor complications, such as dyskinesia. Continuous administration of L-DOPA achieves therapeutic efficacy without producing this effect, yet the molecular mechanisms are unclear. This study examined, by in situ hybridization histochemistry, the effects of continuous or intermittent L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Results were compared to 6-OHDA-treated rats receiving vehicle. Our results provide original evidence that continuous L-DOPA normalizes the 6-OHDA-lesion-induced increase in mRNA levels encoding for the 67 kDa isoform of glutamate decarboxylase in neurons of the globus pallidus and cytochrome oxidase subunit I mRNA levels in the subthalamic nucleus. The extent of normalization did not differ between the continuous and intermittent groups. In addition, intermittent L-DOPA induced an increase in the mRNA levels encoding for the 65 kDa isoform of glutamate decarboxylase in globus pallidus neurons ipsilateral to the lesion and a bilateral increase in c-fos mRNA expression in the subthalamic nucleus. These results suggest that continuous L-DOPA tends to normalize the 6-OHDA-lesion-induced alterations in cell signaling in the pallido-subthalamic loop. On the other hand, we propose that chronic intermittent L-DOPA exerts a dual effect by normalizing cell signaling in a subpopulation of neurons in the globus pallidus and subthalamic nucleus while inducing abnormal signaling in another subpopulation.

  19. Accumulation of cytoplasmic calcium, but not apamin-sensitive afterhyperpolarization current, during high frequency firing in rat subthalamic nucleus cells

    PubMed Central

    Teagarden, Mark; Atherton, Jeremy F; Bevan, Mark D; Wilson, Charles J

    2008-01-01

    The autonomous firing pattern of neurons in the rat subthalamic nucleus (STN) is shaped by action potential afterhyperpolarization currents. One of these is an apamin-sensitive calcium-dependent potassium current (SK). The duration of SK current is usually considered to be limited by the clearance of calcium from the vicinity of the channel. When the cell is driven to fire faster, calcium is expected to accumulate, and this is expected to result in accumulation of calcium-dependent AHP current. We measured the time course of calcium transients in the soma and proximal dendrites of STN neurons during spontaneous firing and their accumulation during driven firing. We compared these to the time course and accumulation of AHP currents using whole-cell and perforated patch recordings. During spontaneous firing, a rise in free cytoplasmic calcium was seen after each action potential, and decayed with a time constant of about 200 ms in the soma, and 80 ms in the dendrites. At rates higher than 10 Hz, calcium transients accumulated as predicted. In addition, there was a slow calcium transient not predicted by summation of action potentials that became more pronounced at high firing frequency. Spike AHP currents were measured in voltage clamp as tail currents after 2 ms voltage pulses that triggered action currents. Apamin-sensitive AHP (SK) current was measured by subtraction of tail currents obtained before and after treatment with apamin. SK current peaked between 10 and 15 ms after an action potential, had a decay time constant of about 30 ms, and showed no accumulation. At frequencies between 5 and 200 spikes s−1, the maximal SK current remained the same as that evoked by a single action potential. AHP current did not have time to decay between action potentials, so at frequencies above 50 spikes s−1 the apamin-sensitive current was effectively constant. These results are inconsistent with the view that the decay of SK current is governed by calcium dynamics. They

  20. High Frequency Stimulation of the Subthalamic Nucleus Leads to Presynaptic GABA(B)-Dependent Depression of Subthalamo-Nigral Afferents

    PubMed Central

    Dvorzhak, Anton; Gertler, Christoph; Harnack, Daniel; Grantyn, Rosemarie

    2013-01-01

    Patients with akinesia benefit from chronic high frequency stimulation (HFS) of the subthalamic nucleus (STN). Among the mechanisms contributing to the therapeutic success of HFS-STN might be a suppression of activity in the output region of the basal ganglia. Indeed, recordings in the substantia nigra pars reticulata (SNr) of fully adult mice revealed that HFS-STN consistently produced a reduction of compound glutamatergic excitatory postsynaptic currents at a time when the tetrodotoxin-sensitive components of the local field potentials had already recovered after the high frequency activation. These observations suggest that HFS-STN not only alters action potential conduction on the way towards the SNr but also modifies synaptic transmission within the SNr. A classical conditioning-test paradigm was then designed to better separate the causes from the indicators of synaptic depression. A bipolar platinum-iridium macroelectrode delivered conditioning HFS trains to a larger group of fibers in the STN, while a separate high-ohmic glass micropipette in the rostral SNr provided test stimuli at minimal intensity to single fibers. The conditioning-test interval was set to 100 ms, i.e. the time required to recover the excitability of subthalamo-nigral axons after HFS-STN. The continuity of STN axons passing from the conditioning to the test sites was examined by an action potential occlusion test. About two thirds of the subthalamo-nigral afferents were occlusion-negative, i.e. they were not among the fibers directly activated by the conditioning STN stimulation. Nonetheless, occlusion-negative afferents exhibited signs of presynaptic depression that could be eliminated by blocking GABA(B) receptors with CGP55845 (1 µM). Further analysis of single fiber-activated responses supported the proposal that the heterosynaptic depression of synaptic glutamate release during and after HFS-STN is mainly caused by the tonic release of GABA from co-activated striato

  1. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease.

    PubMed

    Karimi, M; Golchin, N; Tabbal, S D; Hershey, T; Videen, T O; Wu, J; Usche, J W M; Revilla, F J; Hartlein, J M; Wernle, A R; Mink, J W; Perlmutter, J S

    2008-10-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (r(s) = -0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (r(s) = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (r(s) = -0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor

  2. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease.

    PubMed

    Marin, C; Bonastre, M; Mengod, G; Cortés, R; Rodríguez-Oroz, M C; Obeso, J A

    2013-12-01

    The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.

  3. Accumulation of cytoplasmic calcium, but not apamin-sensitive afterhyperpolarization current, during high frequency firing in rat subthalamic nucleus cells.

    PubMed

    Teagarden, Mark; Atherton, Jeremy F; Bevan, Mark D; Wilson, Charles J

    2008-02-01

    The autonomous firing pattern of neurons in the rat subthalamic nucleus (STN) is shaped by action potential afterhyperpolarization currents. One of these is an apamin-sensitive calcium-dependent potassium current (SK). The duration of SK current is usually considered to be limited by the clearance of calcium from the vicinity of the channel. When the cell is driven to fire faster, calcium is expected to accumulate, and this is expected to result in accumulation of calcium-dependent AHP current. We measured the time course of calcium transients in the soma and proximal dendrites of STN neurons during spontaneous firing and their accumulation during driven firing. We compared these to the time course and accumulation of AHP currents using whole-cell and perforated patch recordings. During spontaneous firing, a rise in free cytoplasmic calcium was seen after each action potential, and decayed with a time constant of about 200 ms in the soma, and 80 ms in the dendrites. At rates higher than 10 Hz, calcium transients accumulated as predicted. In addition, there was a slow calcium transient not predicted by summation of action potentials that became more pronounced at high firing frequency. Spike AHP currents were measured in voltage clamp as tail currents after 2 ms voltage pulses that triggered action currents. Apamin-sensitive AHP (SK) current was measured by subtraction of tail currents obtained before and after treatment with apamin. SK current peaked between 10 and 15 ms after an action potential, had a decay time constant of about 30 ms, and showed no accumulation. At frequencies between 5 and 200 spikes s(-1), the maximal SK current remained the same as that evoked by a single action potential. AHP current did not have time to decay between action potentials, so at frequencies above 50 spikes s(-1) the apamin-sensitive current was effectively constant. These results are inconsistent with the view that the decay of SK current is governed by calcium dynamics. They

  4. High frequency stimulation of the subthalamic nucleus has beneficial antiparkinsonian effects on motor functions in rats, but less efficiency in a choice reaction time task.

    PubMed

    Darbaky, Yassine; Forni, Claude; Amalric, Marianne; Baunez, Christelle

    2003-08-01

    Chronic subthalamic nucleus high frequency stimulation (STN HFS) improves motor function in Parkinson's disease. However, its efficacy on cognitive function and the mechanisms involved are less known. The aim of this study was to assess the effects of STN HFS in hemiparkinsonian awake rats performing different specific motor tests and a cognitive operant task. Unilateral STN HFS applied in unilaterally DA-depleted rats decreased the apomorphine-induced circling behaviour and reduced catalepsy induced by the neuroleptic haloperidol. DA-depleted rats exhibited severe deficits in the operant task, among which the inability to perform the task was not alleviated by STN HFS. However, in a few animals showing less impairment, STN HFS significantly reduced the contralateral neglect induced by the lesion. These results are the first to demonstrate a beneficial effect of STN HFS applied in awake rats on basic motor functions. However, STN HFS appears to be less effective on impaired cognitive functions.

  5. Bilateral subthalamic nucleus deep brain stimulation for refractory total body dystonia secondary to metabolic autopallidotomy in a 4-year-old boy with infantile methylmalonic acidemia: case report.

    PubMed

    Chakraborti, Santo; Hasegawa, Harutomo; Lumsden, Daniel E; Ali, Wisam; Kaminska, Margaret; Lin, Jean-Pierre; Ashkan, Keyoumars

    2013-10-01

    The methylmalonic acidemias (MMAs) are a group of inborn errors of metabolism resulting in the accumulation of methylmalonic acid in body tissues and fluids. A recognized complication of MMA is bilateral liquefaction of the globus pallidi, resulting in a fulminant total body dystonia of childhood often refractory to medical treatment. This case of total body dystonia due to MMA in a 4-year-old boy had been medically refractory for 15 months. Complete metabolic destructive liquefaction of the pallidi, that is, autopallidotomy, necessitated an alternative, bilateral subthalamic nucleus (STN) target for deep brain stimulation (DBS) with a marked improvement in dystonia and reduction in pain. The case illustrates the efficacy of STN DBS in this condition and the technical challenges in targeting the STN in a small child.

  6. Subthalamic nucleus-deep brain stimulation for early motor complications in Parkinson's disease-the EARLYSTIM trial: early is not always better.

    PubMed

    Mestre, Tiago A; Espay, Alberto J; Marras, Connie; Eckman, Mark H; Pollak, Pierre; Lang, Anthony E

    2014-12-01

    Subthalamic nucleus deep brain stimulation (STN-DBS) has revolutionized the management of disabling motor complications in Parkinson's disease. The EARLYSTIM trial applied this treatment to patients who had been experiencing motor complications for less than three years. STN-DBS significantly improved all primary and secondary outcome measures while best medical therapy failed to provide any improvement at the two-year follow-up time point. On face value these results strongly favor the application of STN-DBS far earlier than is currently applied, when patients are just beginning to experience problems with motor complications. Here we review the application of early DBS and the EARLYSTIM trial from the perspectives of clinical issues, health economics and study design and patient expectation of benefit. We conclude that the most relevant issue is not when to operate but on whom and that early is not always better. © 2014 International Parkinson and Movement Disorder Society.

  7. Investigation of morphometric variability of subthalamic nucleus, red nucleus, and substantia nigra in advanced Parkinson's disease patients using automatic segmentation and PCA-based analysis.

    PubMed

    Xiao, Yiming; Jannin, Pierre; D'Albis, Tiziano; Guizard, Nicolas; Haegelen, Claire; Lalys, Florent; Vérin, Marc; Collins, D Louis

    2014-09-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective surgical therapy to treat Parkinson's disease (PD). Conventional methods employ standard atlas coordinates to target the STN, which, along with the adjacent red nucleus (RN) and substantia nigra (SN), are not well visualized on conventional T1w MRIs. However, the positions and sizes of the nuclei may be more variable than the standard atlas, thus making the pre-surgical plans inaccurate. We investigated the morphometric variability of the STN, RN and SN by using label-fusion segmentation results from 3T high resolution T2w MRIs of 33 advanced PD patients. In addition to comparing the size and position measurements of the cohort to the Talairach atlas, principal component analysis (PCA) was performed to acquire more intuitive and detailed perspectives of the measured variability. Lastly, the potential correlation between the variability shown by PCA results and the clinical scores was explored.

  8. Neural Circuit Modulation During Deep Brain Stimulation at the Subthalamic Nucleus for Parkinson's Disease: What Have We Learned from Neuroimaging Studies?

    PubMed Central

    Albaugh, Daniel L.

    2014-01-01

    Abstract Deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) represents a powerful clinical tool for the alleviation of many motor symptoms that are associated with Parkinson's disease. Despite its extensive use, the underlying therapeutic mechanisms of STN-DBS remain poorly understood. In the present review, we integrate and discuss recent literature examining the network effects of STN-DBS for Parkinson's disease, placing emphasis on neuroimaging findings, including functional magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These techniques enable the noninvasive detection of brain regions that are modulated by DBS on a whole-brain scale, representing a key experimental strength given the diffuse and far-reaching effects of electrical field stimulation. By examining these data in the context of multiple hypotheses of DBS action, generally developed through clinical and physiological observations, we define a multitude of consistencies and inconsistencies in the developing literature of this rapidly moving field. PMID:24147633

  9. Resting-state functional magnetic resonance imaging of the subthalamic microlesion and stimulation effects in Parkinson's disease: Indications of a principal role of the brainstem.

    PubMed

    Holiga, Štefan; Mueller, Karsten; Möller, Harald E; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L; Jech, Robert

    2015-01-01

    During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.

  10. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation

    PubMed Central

    Haynes, William I. A.; Haber, Suzanne N.

    2013-01-01

    The identification of a hyperdirect cortico-subthalamic nucleus connection highlighted the important role of the subthalamic nucleus (STN) in regulating behavior. However, this pathway was shown primarily from motor areas. Hyperdirect pathways associated with cognitive and motivational cortical regions are particularly relevant given recent data from deep brain stimulation, both for neurological and psychiatric disorders. Our experiments were designed to: demonstrate the existence and organization of prefrontal-STN projections, help delineate the ‘limbic’ STN, and determine whether convergence between cortico-STN fibers from functionally diverse cortical areas exists in the STN. We injected anterograde tracers in the ventromedial prefrontal, orbitofrontal, anterior cingulate and dorsal prefrontal cortices of Macaca nemestrina & M. fascicularis to analyze the organization of terminals and passing fibers in the STN. Results show a topographically organized prefrontal hyperdirect pathway in primates. Limbic areas project to the medial tip of the nucleus, straddling its border and extending into the lateral hypothalamus. Associative areas project to the medial half, motor areas to the lateral half. Limbic projections terminated primarily rostrally and motor projections more caudally. The extension of limbic projections into the lateral hypothalamus, suggests that this region be included in the STN. A high degree of convergence exists between projections from functionally diverse cortical areas, creating potentially important interfaces between terminal fields. Taken together, the results provide an anatomical substrate to extend the role of the hyperdirect pathway in models of basal ganglia function, and new keys for understanding deep brain stimulation effects on cognitive and motivational aspects of behavior. PMID:23486951

  11. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  12. Gravity Waves

    Atmospheric Science Data Center

    2013-04-19

    article title:  Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...

  13. Subthalamic Nucleus Deep Brain Stimulation Modulate Catecholamine Levels with Significant Relations to Clinical Outcome after Surgery in Patients with Parkinson’s Disease

    PubMed Central

    Yamamoto, Tatsuya; Uchiyama, Tomoyuki; Higuchi, Yoshinori; Asahina, Masato; Hirano, Shigeki; Yamanaka, Yoshitaka; Kuwabara, Satoshi

    2015-01-01

    Aims Although subthalamic nucleus deep brain stimulation (STN-DBS) is effective in patients with advanced Parkinson’s disease (PD), its physiological mechanisms remain unclear. Because STN-DBS is effective in patients with PD whose motor symptoms are dramatically alleviated by L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, the higher preoperative catecholamine levels might be related to the better clinical outcome after surgery. We aimed to examine the correlation between the preoperative catecholamine levels and postoperative clinical outcome after subthalamic nucleus deep brain stimulation. The effectiveness of STN-DBS in the patient who responded well to dopaminergic medication suggest the causal link between the dopaminergic system and STN-DBS. We also examined how catecholamine levels were modulated after subthalamic stimulation. Methods In total 25 patients with PD were enrolled (Mean age 66.2 ± 6.7 years, mean disease duration 11.6 ± 3.7 years). Mean levodopa equivalent doses were 1032 ± 34.6 mg before surgery. Cerebrospinal fluid and plasma catecholamine levels were measured an hour after oral administration of antiparkinsonian drugs before surgery. The mean Unified Parkinson’s Disease Rating Scale scores (UPDRS) and the Parkinson’s disease Questionnaire-39 (PDQ-39) were obtained before and after surgery. Of the 25 patients, postoperative cerebrospinal fluid and plasma were collected an hour after oral administration of antiparkinsonian drugs during on stimulation at follow up in 11 patients. Results Mean levodopa equivalent doses significantly decreased after surgery with improvement in motor functions and quality of life. The preoperative catecholamine levels had basically negative correlations with postoperative motor scores and quality of life, suggesting that higher preoperative catecholamine levels were related to better outcome after STN-DBS. The preoperative plasma levels of L-DOPA had significantly negative correlations with

  14. Dominant efficiency of nonregular patterns of subthalamic nucleus deep brain stimulation for Parkinson’s disease and obsessive-compulsive disorder in a data-driven computational model

    NASA Astrophysics Data System (ADS)

    Karamintziou, Sofia D.; Deligiannis, Nick G.; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stephan; David, Olivier; Stathis, Pantelis G.; Tagaris, George A.; Boviatsis, Efstathios J.; Sakas, Damianos E.; Polychronaki, Georgia E.; Tsirogiannis, George L.; Nikita, Konstantina S.

    2016-02-01

    Objective. Almost 30 years after the start of the modern era of deep brain stimulation (DBS), the subthalamic nucleus (STN) still constitutes a standard stimulation target for advanced Parkinson’s disease (PD), but the use of STN-DBS is also now supported by level I clinical evidence for treatment-refractory obsessive-compulsive disorder (OCD). Disruption of neural synchronization in the STN has been suggested as one of the possible mechanisms of action of standard and alternative patterns of STN-DBS at a local level. Meanwhile, recent experimental and computational modeling evidence has signified the efficiency of alternative patterns of stimulation; however, no indications exist for treatment-refractory OCD. Here, we comparatively simulate the desynchronizing effect of standard (regular at 130 Hz) versus temporally alternative (in terms of frequency, temporal variability and the existence of bursts or pauses) patterns of STN-DBS for PD and OCD, by means of a stochastic dynamical model and two microelectrode recording (MER) datasets. Approach. The stochastic model is fitted to subthalamic MERs acquired during eight surgical interventions for PD and eight surgical interventions for OCD. For each dynamical system simulated, we comparatively assess the invariant density (steady-state phase distribution) as a measure inversely related to the desynchronizing effect yielded by the applied patterns of stimulation. Main results. We demonstrate that high (130 Hz)—and low (80 Hz)—frequency irregular patterns of stimulation, and low-frequency periodic stimulation interrupted by bursts of pulses, yield in both pathologic conditions a significantly stronger desynchronizing effect compared with standard STN-DBS, and distinct alternative patterns of stimulation. In PD, values of the invariant density measure are proven to be optimal at the dorsolateral oscillatory region of the STN including sites with the optimal therapeutic window. Significance. In addition to providing

  15. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity

    PubMed Central

    West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5–12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15–20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics. PMID:27826233

  16. Are Two Leads Always Better Than One: An Emerging Case for Unilateral Subthalamic Deep Brain Stimulation in Parkinson’s disease

    PubMed Central

    Alberts, J. L.; Hass, C.J.; Vitek, J. L.; Okun, M.S.

    2008-01-01

    Bilateral subthalamic (STN) deep brain stimulation (DBS) provides significant symptom relief for the majority of well-screened patients suffering with Parkinson’s disease (PD). Implantation of stimulating electrodes bilaterally in a single session has become standard in most operating theaters worldwide. There is, however, limited evidence-based support for this approach. Although bilateral surgical procedures have been shown, using standardized clinical ratings, to provide greater motor benefits compared to unilateral procedures, bilateral procedures are more likely to be associated with increased acute and long- term complications including post-operative confusion, speech difficulties and cognitive dysfunction. Unilateral stimulation has been shown to provide significant benefits for appendicular and axial symptoms. The relative benefit of implanting one versus two sides and whether the degree of benefit associated with the second side is worth the potential risk of doing so have not been examined systematically. The relative magnitude of benefit associated with unilateral versus bilateral procedures is likely to vary from patient to patient, particularly in those patients with asymmetric symptomatology. As such, there are likely subsets of patients who do not require and therefore should not be exposed to the potential complications associated with bilateral simultaneous implantation. This review and commentary will outline our current understanding of the benefits associated with unilateral and bilateral STN DBS and discuss the role of unilateral or staged unilateral procedures as an alternative surgical approach for patients with advanced PD. PMID:18718469

  17. Effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson's disease treated with subthalamic deep brain stimulation.

    PubMed

    Törnqvist, Anna Lena; Schalén, Lucyna; Rehncrona, Stig

    2005-04-01

    We evaluated the effects of different electrical parameter settings on the intelligibility of speech in patients with Parkinson's disease (PD) bilaterally treated with deep brain stimulation (DBS) in the subthalamic nucleus (STN). Ten patients treated with DBS for 15 +/- 5 months (mean, SD) with significant (P < 0.01) symptom reduction (Unified Parkinson's Disease Rating Scale III) were included. In the medication off condition, video laryngostroboscopy was performed and then, in random order, 11 DBS parameter settings were tested. Amplitude was increased and decreased by 25%, frequency was varied in the range 70 to 185 pps, and each of the contacts was tested separately as a cathode. The patients read a standard running text and five nonsense sentences per setting. A listener panel transcribed the nonsense sentences as perceived and valued the quality of speech on a visual analogue scale. With the patients' normally used settings, there was no significant (P = 0.058) group difference between DBS OFF and ON, but in four patients the intelligibility deteriorated with DBS ON. The higher frequencies or increased amplitude caused significant (P < 0.02) impairments of intelligibility, whereas changing the polarity between the separate contacts did not. The settings of amplitude and frequency have a major influence on the intelligibility of speech, emphasizing the importance of meticulous parameter adjustments when programming DBS to minimize side effects related to speech.

  18. Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat.

    PubMed

    Tait, David S; Phillips, Janice M; Blackwell, Andrew D; Brown, Verity J

    2017-03-14

    Patients with Parkinson's disease (PD) show cognitive impairments, including difficulty in shifting attention between perceptual dimensions of complex stimuli. Inactivation of the subthalamic nucleus (STN) has been shown to be effective in ameliorating the motor abnormalities associated with striatal dopamine (DA) depletion, but it is possible that STN inactivation might result in additional, perhaps attentional, deficits. This study examined the effects of: DA depletion from the dorsomedial striatum (DMS); lesions of the STN area; and the effects of the two lesions together, on the ability to shift attentional set in the rat. In a single session, rats performed the intradimensional/extradimensional (ID/ED) test of attentional set-shifting. This comprises a series of seven, two-choice discriminations, including acquisitions of novel discriminations in which the relevant stimulus is either in the currently attended dimension (ID) or the currently unattended dimension (ED shift) and reversals (REVs) following each acquisition stage. Bilateral lesions were made by injection of 6-hydroxydopamine (6-OHDA) into the DMS, resulting in a selective impairment in reversal learning. Large bilateral ibotenic acid lesions centered on the STN resulted in an increase in trials to criterion in the initial stages, but learning rate improved within the session. There was no evidence of a 'cost' of set-shifting - the ED stage was completed in fewer trials than the ID stage - and neither was there a cost of reversal learning. Strikingly, combined lesions of both regions did not resemble the effects of either lesion alone and resulted in no apparent deficits.

  19. Bilateral high-frequency stimulation of the subthalamic nucleus on attentional performance: transient deleterious effects and enhanced motivation in both intact and parkinsonian rats

    PubMed Central

    Baunez, Christelle; Christakou, Anastasia; Chudasama, Yogita; Forni, Claude; Robbins, Trevor W.

    2007-01-01

    It is now well established that subthalamic nucleus high-frequency stimulation (STN HFS) alleviates motor problems in Parkinson's disease. However, its efficacy for cognitive function remains a matter of debate. The aim of this study was to assess the effects of STN HFS in rats performing a visual attentional task. Bilateral STN HFS was applied in intact and in bilaterally dopamine (DA)-depleted rats. In all animals, STN HFS had a transient debilitating effect on all the variables measured in the task. In DA-depleted rats, STN HFS did not alleviate the deficits induced by the DA lesion such as omissions and latency to make correct responses, but induced perseverative approaches to the food magazine, an indicator of enhanced motivation. In sham-operated controls, STN HFS significantly reduced accuracy and induced perseverative behaviour, mimicking partially the effects of bilateral STN lesions in the same task. These results are in line with the hypothesis that STN HFS only partially mimics inactivation of STN produced by lesioning and confirm the motivational exacerbation induced by STN inactivation. PMID:17331214

  20. Increase in body weight is a non-motor side effect of deep brain stimulation of the subthalamic nucleus in Parkinson's disease.

    PubMed

    Novakova, Lucie; Ruzicka, Evzen; Jech, Robert; Serranova, Tereza; Dusek, Petr; Urgosik, Dusan

    2007-02-01

    Deep brain stimulation of the subthalamic nucleus (DBS STN) is an effective treatment method in advanced Parkinson's disease (PD) providing marked improvement of its major motor symptoms. In addition, non-motor effects have been reported including weight gain in PD patients after DBS STN. Using retrospective survey, we aimed to evaluate weight changes in our patients with advanced PD treated with DBS STN. We inquired 25 PD patients (16 men, 9 women), of mean age 55 (42-65) years, mean PD duration 15 (9-21) years, who previously received bilateral DBS STN. We obtained valid data from 23 patients. In the first survey, 1 to 45 months after DBS, weight gain was found in all patients comparing to pre-DBS period. The mean increase was 9.4 kg (from 1 to 25 kg). The patients' mean body mass index (BMI) increased from 23.7 to 27.0 kg/m2, i.e. by 3.3 kg/m2 (+2 to +6.1 kg/m2). In the repeated survey one year later, in 12 of the patients body weight moderately decreased, 3 did not change, and 6 patients further increased their weight. Possible explanations of body weight gain after DBS STN include a reduction of energy output related to elimination of dyskinesias, improved alimentation or direct influence on function of lateral hypothalamus by DBS STN.

  1. Deep brain stimulation of the pedunculopontine tegmental nucleus modulates neuronal hyperactivity and enhanced beta oscillatory activity of the subthalamic nucleus in the rat 6-hydroxydopamine model.

    PubMed

    Alam, Mesbah; Heissler, Hans E; Schwabe, Kerstin; Krauss, Joachim K

    2012-01-01

    Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) area has been introduced as a novel surgical therapy for dopamine refractory gait problems, freezing and postural instability in the late stage of Parkinson's disease (PD). Lesions of the pedunculopontine tegmental (PPTg) nucleus, the equivalent of the PPN in rodents, were shown to reduce the elevated discharge rate of the subthalamic nucleus (STN) in the 6-hydroxydopamine (6-OHDA) rat model of PD. In order to further elucidate the modulatory effect of the PPTg on the STN we examined the effect of 25 Hz low frequency PPTg stimulation on neuronal single unit activity and oscillatory local field potentials (LFPs) of the STN, and on the electrocorticogram (ECoG) of the primary motor cortex region in rats with unilateral 6-OHDA induced nigrostriatal lesions. Stimulation of the PPTg reduced the enhanced firing rate in the STN, without affecting the firing pattern or approximate entropy (ApEn). It also reduced the activity in the beta band (15-30 Hz) of the STN, which is elevated in 6-OHDA lesioned rats, without affecting beta activity in the motor cortex. We showed a modulatory effect of PPTg stimulation on altered neuronal STN activity in the PD 6-OHDA rat model, indicating that PPTg DBS may alter activity of the basal ganglia circuitry at least partially. It remains unclear, however, how these changes are exactly mediated and whether they are relevant with regard to the descending PPTg projections in the lower brainstem.

  2. High-frequency stimulation of the subthalamic nucleus counteracts cortical expression of major histocompatibility complex genes in a rat model of Parkinson's disease.

    PubMed

    Grieb, Benjamin; Engler, Gerhard; Sharott, Andrew; von Nicolai, Constantin; Streichert, Thomas; Papageorgiou, Ismini; Schulte, Alexander; Westphal, Manfred; Lamszus, Katrin; Engel, Andreas K; Moll, Christian K E; Hamel, Wolfgang

    2014-01-01

    High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson's disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidromic activation of corticofugal fibers. However, STN-HFS-induced changes of the sensorimotor cortex are hitherto unexplored. To address this question at a genomic level, we performed mRNA expression analyses using Affymetrix microarray gene chips and real-time RT-PCR in sensorimotor cortex of parkinsonian and control rats following STN-HFS. Experimental parkinsonism was induced in Brown Norway rats by bilateral nigral injections of 6-hydroxydopamine and was assessed histologically, behaviorally, and electrophysiologically. We applied prolonged (23h) unilateral STN-HFS in awake and freely moving animals, with the non-stimulated hemisphere serving as an internal control for gene expression analyses. Gene enrichment analysis revealed strongest regulation in major histocompatibility complex (MHC) related genes. STN-HFS led to a cortical downregulation of several MHC class II (RT1-Da, Db1, Ba, and Cd74) and MHC class I (RT1CE) encoding genes. The same set of genes showed increased expression levels in a comparison addressing the effect of 6-hydroxydopamine lesioning. Hence, our data suggest the possible association of altered microglial activity and synaptic transmission by STN-HFS within the sensorimotor cortex of 6-hydroxydopamine treated rats.

  3. Hemisphere-Specific Effects of Subthalamic Nucleus Deep Brain Stimulation on Speaking Rate and Articulatory Accuracy of Syllable Repetitions in Parkinson's Disease.

    PubMed

    Wang, Emily Q; Metman, Leo Verhagen; Bakay, Roy A E; Arzbaecher, Jean; Bernard, Bryan; Corcos, Daniel M

    2006-01-01

    This study tested the hypothesis that left versus right deep brain stimulation (DBS) of the subthalamic nucleus (STN) would have differential effects on speech. Twenty right-handed individuals with advanced Parkinson's disease (PD) underwent unilateral STN DBS. Ten were operated on the right and 10 on the left hemisphere as indicated by severity of nonspeech motor function. Speech was evaluated before surgery and 3 to 6 months after surgery with stimulator-off and with stimulator-on, with all participants off anti-parkinsonian medication for 12 hours before evaluation. Evaluators and patient speakers were blinded to the stimulator status at the postsurgery evaluations. Motor performance was assessed with UPDRS-III. Each participant produced three samples of diadochokinetic syllables. Syllable rate, syllable and vowel duration, VOT, and F0 were obtained. The diadochokinetic syllables were rated for articulatory accuracy and speaking rate. Twenty graduate clinicians served as judges. The samples were randomly presented via headphones. A mixed ANOVA with repeated measures was used to assess the significance of the changes in UPRS-III scores and speech measures. The results indicated that unilateral STN DBS produced improvement in nonspeech motor function regardless of the side of stimulation. In contrast, the changes in articulatory accuracy and syllable rate associated with the STN DBS were hemisphere specific.

  4. Frequency-Specific Synchronization in the Bilateral Subthalamic Nuclei Depending on Voluntary Muscle Contraction and Relaxation in Patients with Parkinson’s Disease

    PubMed Central

    Kato, Kenji; Yokochi, Fusako; Iwamuro, Hirokazu; Kawasaki, Takashi; Hamada, Kohichi; Isoo, Ayako; Kimura, Katsuo; Okiyama, Ryoichi; Taniguchi, Makoto; Ushiba, Junichi

    2016-01-01

    The volitional control of muscle contraction and relaxation is a fundamental component of human motor activity, but how the processing of the subcortical networks, including the subthalamic nucleus (STN), is involved in voluntary muscle contraction (VMC) and voluntary muscle relaxation (VMR) remains unclear. In this study, local field potentials (LFPs) of bilateral STNs were recorded in patients with Parkinson’s disease (PD) while performing externally paced VMC and VMR tasks of the unilateral wrist extensor muscle. The VMC- or VMR-related oscillatory activities and their functional couplings were investigated over the theta (4–7 Hz), alpha (8–13 Hz), beta (14–35 Hz), and gamma (40–100 Hz) frequency bands. Alpha and beta desynchronizations were observed in bilateral STNs at the onset of both VMC and VMR tasks. On the other hand, theta and gamma synchronizations were prominent in bilateral STNs specifically at the onset of the VMC task. In particular, just after VMC, theta functional coupling between the bilateral STNs increased, and the theta phase became coupled to the gamma amplitude within the contralateral STN in a phase-amplitude cross-frequency coupled manner. On the other hand, the prominent beta-gamma cross-frequency couplings observed in the bilateral STNs at rest were reduced by the VMC and VMR tasks. These results suggest that STNs are bilaterally involved in the different performances of muscle contraction and relaxation through the theta-gamma and beta-gamma networks between bilateral STNs in patients with PD. PMID:27064969

  5. The Parkinsonian Subthalamic Network: Measures of Power, Linear, and Non-linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity.

    PubMed

    West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.

  6. Making waves

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  7. Nonlinear Waves

    DTIC Science & Technology

    1989-06-15

    following surprising situation. Namely associated with the integrable nonlinear Schrodinger equations are standard numerical schemes which exhibit at...36. An Initial Boundary Value Problem for the Nonlinear Schrodinger Equations , A.S. Fokas, Physica D March 1989. 37. Evolution Theory, Periodic... gravity waves and wave excitation phenomena related to moving pressure distributions; numerical approximation and computation; nonlinear optics; and

  8. Microfluidic waves

    PubMed Central

    Utz, Marcel; Begley, Matthew R.; Haj-Hariri, Hossein

    2012-01-01

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s−1 result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  9. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  10. Moreton Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.

    1999-01-01

    "Moreton waves," named for the observer who popularized them, are a solar phenomenon also known in scientific literature as "Moreton-Ramsey wave," "flare waves," "flare-associated waves," "MHD blast waves," "chromospheric shock fronts" and various other combinations of terms which connote violently propagating impulsive disturbances. It is unclear whether all of the observations to which these terms have been applied pertain to a single physical phenomenon: there has perhaps been some overlap between the observations and the assumed physical properties of the observed occurrence. Moreton waves are ideally observed in the wings of H alpha, and appear as semi-circular fronts propagating at speeds ranging from several hundred to over a thousand km/sec. They form an arc, or "brow shape" which can span up to 180 degrees. Extrapolating the speed and locations of the arc indicates that the phenomenon's origin intersects well with the impulsive phase of the associated H alpha flare (if the flare exhibits an impulsive phase). However, the arc may not form or may not be observable until it is tens of megameters from the flaring region, and subsequently can propagate to distances exceeding 100 megameters. The high speeds and distances of propagation, plus the associated radio and energetic particle observations, provided strong evidence of a coronal, rather than a chromospheric origin. The H alpha manifestation of the wave is assumed to be the "ground track" or "skirt" of a three-dimensional disturbance.

  11. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  12. Betting on DBS: Effects of Subthalamic Nucleus Deep Brain Stimulation on Risk-Taking and Decision-Making in Patients with Parkinson’s Disease

    PubMed Central

    Brandt, Jason; Rogerson, Mark; Al-Joudi, Haya; Reckess, Gila; Shpritz, Barnett; Umeh, Chizoba C.; Aljehani, Noha; Mills, Kelly; Mari, Zoltan

    2014-01-01

    Objective Concerns persist that deep brain stimulation (DBS) for Parkinson’s disease (PD) increases impulsivity and/or induces excessive reward-seeking. We report here the performance of PD patients with implanted subthalamic nucleus electrodes, with stimulation on and off, on three laboratory tasks of risk-taking and decision-making. They are compared to PD patients maintained on medication and normal control subjects. Methods and Results In the Game of Dice Task, a test of “risky” decision-making, PD patients with or without DBS made highest-risk bets more often, and ended up with less money, than normal controls. There was a trend for DBS stimulation to ameliorate this effect. Deal or No-Deal is an “ambiguous” decision-making task that assessed preference for risk (holding on to one’s briefcase) over a “sure thing” (accepting the banker’s offer). Here, DBS patients were more conservative with stimulation on than off. They accepted smaller offers from the banker and won less money in the DBS-on condition. Overall, the two PD groups won less money than healthy participants. The Framing Paradigm assessed willingness to gamble on a fixed (unambiguous) prize depending on whether the reward was “framed” as a loss or a gain. Nonsurgical PD patients tended to be more risk-averse than normal subjects, whereas DBS patients were more willing to gamble for gains as well as losses both on and off stimulation. Conclusions On “risky” decision-making tasks, DBS patients were more risk-taking than normal, but stimulation may temper this tendency. In contrast, in an “ambiguous risk” situation, DBS patients were more risk-averse (conservative) than normal, and this tendency was greatest with stimulation. PMID:25486385

  13. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    PubMed

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits.

  14. Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson’s Disease

    PubMed Central

    Canessa, Andrea; Pozzi, Nicolò G.; Arnulfo, Gabriele; Brumberg, Joachim; Reich, Martin M.; Pezzoli, Gianni; Ghilardi, Maria F.; Matthies, Cordula; Steigerwald, Frank; Volkmann, Jens; Isaias, Ioannis U.

    2016-01-01

    Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson’s disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement. PMID:27999534

  15. High-Frequency Stimulation of the Subthalamic Nucleus Restores Neural and Behavioral Functions During Reaction Time Task in a Rat Model of Parkinson’s Disease

    PubMed Central

    Li, Xiang-Hong; Wang, Jin-Yan; Gao, Ge; Chang, Jing-Yu; Woodward, Donald J.; Luo, Fei

    2015-01-01

    Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson’s disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating corticobasal ganglia circuits. PMID:20025062

  16. Connectivity of the subthalamic nucleus and globus pallidus pars interna to regions within the speech network: a meta-analytic connectivity study.

    PubMed

    Manes, Jordan L; Parkinson, Amy L; Larson, Charles R; Greenlee, Jeremy D; Eickhoff, Simon B; Corcos, Daniel M; Robin, Donald A

    2014-07-01

    Cortico-basal ganglia connections are involved in a range of behaviors within motor, cognitive, and emotional domains; however, the whole-brain functional connections of individual nuclei are poorly understood in humans. The first aim of this study was to characterize and compare the connectivity of the subthalamic nucleus (STN) and globus pallidus pars interna (GPi) using meta-analytic connectivity modeling. Structure-based activation likelihood estimation meta-analyses were performed for STN and GPi seeds using archived functional imaging coordinates from the BrainMap database. Both regions coactivated with caudate, putamen, thalamus, STN, GPi, and GPe, SMA, IFG, and insula. Contrast analyses also revealed coactivation differences within SMA, IFG, insula, and premotor cortex. The second aim of this study was to examine the degree of overlap between the connectivity maps derived for STN and GPi and a functional activation map representing the speech network. To do this, we examined the intersection of coactivation maps and their respective contrasts (STN > GPi and GPi > STN) with a coordinate-based meta-analysis of speech function. In conjunction with the speech map, both STN and GPi coactivation maps revealed overlap in the anterior insula with GPi map additionally showing overlap in the supplementary motor area (SMA). Among cortical regions activated by speech tasks, STN was found to have stronger connectivity than GPi with regions involved in cognitive linguistic processes (pre-SMA, dorsal anterior insula, and inferior frontal gyrus), while GPi demonstrated stronger connectivity to regions involved in motor speech processes (middle insula, SMA, and premotor cortex).

  17. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats.

    PubMed

    El Arfani, Anissa; Bentea, Eduard; Aourz, Najat; Ampe, Ben; De Deurwaerdère, Philippe; Van Eeckhaut, Ann; Massie, Ann; Sarre, Sophie; Smolders, Ilse; Michotte, Yvette

    2014-10-01

    Long term treatment with L-3,4-dihydroxyphenylalanine (L-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the L-DOPA dose. N-methyl-D-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of L-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of L-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The L-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the L-DOPA-induced DA release in shams. However, MK 801 enhanced the L-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with L-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.

  18. Using “Functional” Target Coordinates of the Subthalamic Nucleus to Assess the Indirect and Direct Methods of the Preoperative Planning: Do the Anatomical and Functional Targets Coincide?

    PubMed Central

    Rabie, Ahmed; Verhagen Metman, Leo; Slavin, Konstantin V.

    2016-01-01

    Objective: To answer the question of whether the anatomical center of the subthalamic nucleus (STN), as calculated indirectly from stereotactic atlases or by direct visualization on magnetic resonance imaging (MRI), corresponds to the best functional target. Since the neighboring red nucleus (RN) is well visualized on MRI, we studied the relationships of the final target to its different borders. Methods: We analyzed the data of 23 PD patients (46 targets) who underwent bilateral frame-based STN deep brain stimulation (DBS) procedure with microelectrode recording guidance. We calculated coordinates of the active contact on DBS electrode on postoperative MRI, which we referred to as the final “functional/optimal” target. The coordinates calculated by the atlas-based “indirect” and “direct” methods, as well as the coordinates of the different RN borders were compared to these final coordinates. Results: The mean ± SD of the final target coordinates was 11.7 ± 1.5 mm lateral (X), 2.4 ± 1.5 mm posterior (Y), and 6.1 ± 1.7 mm inferior to the mid-commissural point (Z). No significant differences were found between the “indirect” X, Z coordinates and those of the final targets. The “indirect” Y coordinate was significantly posterior to Y of the final target, with mean difference of 0.6 mm (p = 0.014). No significant differences were found between the “direct” X, Y, and Z coordinates and those of the final targets. Conclusions: The functional STN target is located in direct proximity to its anatomical center. During preoperative targeting, we recommend using the “direct” method, and taking into consideration the relationships of the final target to the mid-commissural point (MCP) and the different RN borders. PMID:28009826

  19. High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat.

    PubMed

    Salin, Pascal; Manrique, Christine; Forni, Claude; Kerkerian-Le Goff, Lydia

    2002-06-15

    High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is now recognized as an effective treatment for advanced Parkinson's disease, but the molecular basis of its effects remains unknown. This study examined the effects of unilateral STN HFS (2 hr of continuous stimulation) in intact and hemiparkinsonian awake rats on STN neuron metabolic activity and on neurotransmitter-related gene expression in the basal ganglia, by means of in situ hybridization histochemistry and immunocytochemistry. In both intact and hemiparkinsonian rats, this stimulation was found to induce c-fos protein expression but to decrease cytochrome oxidase subunit I mRNA levels in STN neurons. STN HFS did not affect the dopamine lesion-mediated overexpression of enkephalin mRNA or the decrease in substance P in the ipsilateral striatum. The lesion-induced increases in intraneuronal glutamate decarboxylase 67 kDa isoform (GAD67) mRNA levels on the lesion side were reversed by STN HFS in the substantia nigra, partially antagonized in the entopeduncular nucleus but unaffected in the globus pallidus. The stimulation did not affect neuropeptide or GAD67 mRNA levels in the side contralateral to the dopamine lesion or in intact animals. These data furnish the first evidence that STN HFS decreases the metabolic activity of STN neurons and antagonizes dopamine lesion-mediated cellular defects in the basal ganglia output structures. They provide molecular substrate to the therapeutic effects of this stimulation consistent with the current hypothesis that HFS blocks STN neuron activity. However, the differential impact of STN HFS on the effects of dopamine lesion among structures receiving direct STN inputs suggests that this stimulation may not cause simply interruption of STN outflow.

  20. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    PubMed Central

    Gulberti, A.; Moll, C.K.E.; Hamel, W.; Buhmann, C.; Koeppen, J.A.; Boelmans, K.; Zittel, S.; Gerloff, C.; Westphal, M.; Schneider, T.R.; Engel, A.K.

    2015-01-01

    Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS) and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing. PMID:26594626

  1. In Parkinson's disease on a probabilistic Go/NoGo task deep brain stimulation of the subthalamic nucleus only interferes with withholding of the most prepotent responses.

    PubMed

    Georgiev, Dejan; Dirnberger, Georg; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan

    2016-04-01

    The evidence on the impact of subthalamic nucleus deep brain stimulation (STN-DBS) on action restraint on Go/NoGO reaction time (RT) tasks in Parkinson's disease (PD) is inconsistent; with some studies reporting no effect and others finding that STN stimulation interferes with withholding of responses and results in more commission errors relative to STN-DBS off. We used a task in which the probability of Go stimuli varied from 100% (simple RT task) to 80, 50 and 20% (probabilistic Go/NoGo RT task), thus altering the prepotency of the response and the difficulty in withholding it on NoGo trials. Twenty PD patients with STN-DBS, ten unoperated PD patients and ten healthy controls participated in the study. All participants were tested twice; the order of on versus off stimulation for STN-DBS PD patients was counterbalanced. Both STN-DBS and unoperated PD patients were tested on medication. The results indicated that STN-DBS selectively decreased discriminability when the response was most prepotent (high--80%, as compared to low Go probability trials--50 and 20%). Movement times were faster with STN stimulation than with DBS off across different Go probability levels. There was neither an overall nor a selective effect of STN-DBS on RTs depending on the level of Go probability. Furthermore, compared to healthy controls, both STN-DBS and unoperated PD patients were more prone to making anticipatory errors; which was not influenced by STN stimulation. The results provide evidence for 'load-dependent' effects of STN stimulation on action restraint as a function of the prepotency of the Go response.

  2. Subthalamic Stimulation Reduces Vowel Space at the Initiation of Sustained Production: Implications for Articulatory Motor Control in Parkinson’s Disease

    PubMed Central

    Sidtis, John J.; Alken, Amy G.; Tagliati, Michele; Alterman, Ron; Van Lancker Sidtis, Diana

    2016-01-01

    Background: Stimulation of the subthalamic nuclei (STN) is an effective treatment for Parkinson’s disease, but complaints of speech difficulties after surgery have been difficult to quantify. Speech measures do not convincingly account for such reports. Objective: This study examined STN stimulation effects on vowel production, in order to probe whether DBS affects articulatory posturing. The objective was to compare positioning during the initiation phase with the steady prolongation phase by measuring vowel spaces for three “corner” vowels at these two time frames. Methods: Vowel space was measured over the initial 0.25 sec of sustained productions of high front (/i/), high back (/u/) and low vowels (/a/), and again during a 2 sec segment at the midpoint. Eight right-handed male subjects with bilateral STN stimulation and seven age-matched male controls were studied based on their participation in a larger study that included functional imaging. Mean values: age = 57±4.6 yrs; PD duration = 12.3±2.7 yrs; duration of DBS = 25.6±21.2 mos, and UPDRS III speech score = 1.6±0.7. STN subjects were studied off medication at their therapeutic DBS settings and again with their stimulators off, counter-balanced order. Results: Vowel space was larger in the initiation phase compared to the midpoint for both the control and the STN subjects off stimulation. With stimulation on, however, the initial vowel space was significantly reduced to the area measured at the mid-point. For the three vowels, the acoustics were differentially affected, in accordance with expected effects of front versus back position in the vocal tract. Conclusions: STN stimulation appears to constrain initial articulatory gestures for vowel production, raising the possibility that articulatory positions normally used in speech are similarly constrained. PMID:27003219

  3. Cognition and Depression Following Deep Brain Stimulation of the Subthalamic Nucleus and Globus Pallidus Pars Internus in Parkinson's Disease: A Meta-Analysis.

    PubMed

    Combs, Hannah L; Folley, Bradley S; Berry, David T R; Segerstrom, Suzanne C; Han, Dong Y; Anderson-Mooney, Amelia J; Walls, Brittany D; van Horne, Craig

    2015-12-01

    Parkinson's disease (PD) is a common, degenerative disorder of the central nervous system. Individuals experience predominantly extrapyramidal symptoms including resting tremor, rigidity, bradykinesia, gait abnormalities, cognitive impairment, depression, and neurobehavioral concerns. Cognitive impairments associated with PD are diverse, including difficulty with attention, processing speed, executive functioning, memory recall, visuospatial functions, word-retrieval, and naming. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is FDA approved and has been shown to be effective in reducing motor symptoms of PD. Studies have found that stimulating STN and GPi are equally effective at improving motor symptoms and dyskinesias; however, there has been discrepancy as to whether the cognitive, behavioral, and mood symptoms are affected differently between the two targets. The present study used random-effects meta-analytic models along with a novel p-curve analytic procedure to compare the potential cognitive and emotional impairments associated with STN-DBS in the current literature to those associated with GPi-DBS. Forty-one articles were reviewed with an aggregated sample size of 1622 patients. Following STN-DBS, small declines were found in psychomotor speed, memory, attention, executive functions, and overall cognition; and moderate declines were found in both semantic and phonemic fluency. However, GPi-DBS resulted in fewer neurocognitive declines than STN-DBS (small declines in attention and small-moderate declines in verbal fluency). With regards to its effect on depression symptomatology, both GPi-DBS and STN-DBS resulted in lower levels of depressive symptoms post-surgery. From a neurocognitive standpoint, both GPi-DBS and STN-DBS produce subtle cognitive declines but appears to be relatively well tolerated.

  4. Modulation of short waves by long waves. [ocean wave interactions

    NASA Technical Reports Server (NTRS)

    Reece, A. M., Jr.

    1978-01-01

    Wave-tank experiments were performed to investigate the cyclic short-wave energy changes, related in phase to an underlying long wave, which occur during active generation of the short-wave field by wind. Measurements of time series of the short-wave slope were made by a laser-optical system, where the basic long-wave parameters were controlled and wind speeds were accurately reproducible. The short-wave slope variances were found to exhibit cyclic variations that are related to the phase of the long wave. The variations result from two combined effects: (1) the short wave frequency is varied by the long-wave orbital velocity; (2) the energy of the short waves is modulated by the actions of aerodynamic and hydrodynamic couplings that operate on the short waves in a manner related to the long-wave phase.

  5. Forelimb dyskinesia mediated by high-frequency stimulation of the subthalamic nucleus is linked to rapid activation of the NR2B subunit of N-methyl-D-aspartate receptors.

    PubMed

    Quintana, Adrien; Melon, Christophe; Kerkerian-Le Goff, Lydia; Salin, Pascal; Savasta, Marc; Sgambato-Faure, Véronique

    2010-08-01

    Dyskinesia is a major side-effect of chronic l-DOPA administration, the reference treatment for Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing the L-DOPA requirement. However, inappropriate stimulation can also trigger dyskinetic movements, in both human and rodents. We investigated whether STN-HFS-evoked forelimb dyskinesia involved changes in glutamatergic neurotransmission as previously reported for L-DOPA-induced dyskinesias, focusing on the role of NR2B-containing N-methyl-D-aspartate receptors (NR2B/NMDARs). We applied STN-HFS in normal rats at intensities above and below the threshold for triggering forelimb dyskinesia. Dyskinesiogenic STN-HFS induced the activation of NR2B (as assessed by immunodetection of the phosphorylated residue Tyr(1472)) in neurons of the subthalamic nucleus, entopeduncular nucleus, motor thalamus and forelimb motor cortex. The severity of STN-HFS-induced forelimb dyskinesia was decreased in a dose-dependent manner by systemic injections of CP-101,606, a selective blocker of NR2B/NMDARs, but was either unaffected or increased by the non-selective N-methyl-D-aspartate receptor antagonist, MK-801.

  6. Making WAVES.

    ERIC Educational Resources Information Center

    Hindes, Victoria A.; Hom, Keri; Brookshaw, Keith

    About 46% of high school graduates enrolled in California State Universities need remedial courses in both math and English to prepare them for college level. These students typically earned B averages in their high school math and English classes. In order to address this issue, Shasta College launched Operation WAVES (Win by Achieving Valuable…

  7. Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation.

    PubMed

    Petersen, Mikkel V; Lund, Torben E; Sunde, Niels; Frandsen, Jesper; Rosendal, Frederikke; Juul, Niels; Østergaard, Karen

    2016-07-08

    OBJECTIVE Diffusion-weighted MRI (DWI) and tractography allows noninvasive mapping of the structural connections of the brain, and may provide important information for neurosurgical planning. The hyperdirect pathway, connecting the subthalamic nucleus (STN) with the motor cortex, is assumed to play a key role in mediating the effects of deep brain stimulation (DBS), which is an effective but poorly understood treatment for Parkinson disease. This study aimed to apply recent methodological advances in DWI acquisition and analysis to the delineation of the hyperdirect pathway in patients with Parkinson disease selected for surgery. METHODS High spatial and angular resolution DWI data were acquired preoperatively from 5 patients with Parkinson disease undergoing DBS. The authors compared the delineated hyperdirect pathways and associated STN target maps generated by 2 different tractography methods: a tensor-based deterministic method, typically available in clinical settings, and an advanced probabilistic method based on constrained spherical deconvolution. In addition, 10 high-resolution data sets with the same scanning parameters were acquired from a healthy control participant to assess the robustness of the tractography results. RESULTS Both tractography approaches identified connections between the ipsilateral motor cortex and the STN. However, the 2 methods provided substantially different target regions in the STN, with the target center of gravity differing by > 1.4 mm on average. The probabilistic method (based on constrained spherical deconvolution) plausibly reconstructed a continuous set of connections from the motor cortex, terminating in the dorsolateral region of the STN. In contrast, the tensor-based method reconstructed a comparatively sparser and more variable subset of connections. Furthermore, across the control scans, the probabilistic method identified considerably more consistent targeting regions within the STN compared with the deterministic

  8. Deep brain stimulation of pallidal versus subthalamic for patients with Parkinson’s disease: a meta-analysis of controlled clinical trials

    PubMed Central

    Xu, Fan; Ma, Wenbin; Huang, Yongmin; Qiu, Zhihai; Sun, Lei

    2016-01-01

    Background Parkinson’s disease (PD) is a common neurodegenerative disorder that affects many people every year. Deep brain stimulation (DBS) is an effective nonpharmacological method to treat PD motor symptoms. This meta-analysis was conducted to evaluate the efficacy of subthalamic nucleus (STN)-DBS versus globus pallidus internus (GPi)-DBS in treating advanced PD. Methods Controlled clinical trials that compared STN-DBS to GPi-DBS for short-term treatment of PD in adults were researched up to November 2015. The primary outcomes were the Unified Parkinson’s Disease Rating Scale Section (UPDRS) III score and the levodopa-equivalent dosage (LED) after DBS. The secondary outcomes were the UPDRS II score and the Beck Depression Inventory (BDI) score. Results Totally, 13 studies containing 1,148 PD patients were included in this meta-analysis to compare STN-DBS versus GPi-DBS. During the off-medication state, the pooled weighted mean difference (WMD) of UPDRS III and II scores were −2.18 (95% CI =−5.11 to 0.74) and −1.96 (95% CI =−3.84 to −0.08), respectively. During the on-medication state, the pooled WMD of UPDRS III and II scores were 0.15 (95% CI =−1.14 to 1.44) and 1.01 (95% CI =0.12 to 1.89), respectively. After DBS, the pooled WMD of LED and BDI were −254.48 (95% CI =−341.66) and 2.29 (95% CI =0.83 to 3.75), respectively. Conclusion These results indicate that during the off-medication state, the STN-DBS might be superior to GPi-DBS in improving the motor function and activities of daily living for PD patients; but during the on-medication state, the opposite result is observed. Meanwhile, the STN-DBS is superior at reducing the LED, whereas the GPi-DBS shows a significantly greater reduction in BDI score after DBS. PMID:27382286

  9. Chronic Methamphetamine Self-Administration Dysregulates Oxytocin Plasma Levels and Oxytocin Receptor Fibre Density in the Nucleus Accumbens Core and Subthalamic Nucleus of the Rat.

    PubMed

    Baracz, S J; Parker, L M; Suraev, A S; Everett, N A; Goodchild, A K; McGregor, I S; Cornish, J L

    2016-04-01

    The neuropeptide oxytocin attenuates reward and abuse for the psychostimulant methamphetamine (METH). Recent findings have implicated the nucleus accumbens (NAc) core and subthalamic nucleus (STh) in oxytocin modulation of acute METH reward and relapse to METH-seeking behaviour. Surprisingly, the oxytocin receptor (OTR) is only modestly involved in both regions in oxytocin attenuation of METH-primed reinstatement. Coupled with the limited investigation of the role of the OTR in psychostimulant-induced behaviours, we primarily investigated whether there are cellular changes to the OTR in the NAc core and STh, as well as changes to oxytocin plasma levels, after chronic METH i.v. self-administration (IVSA) and after extinction of drug-taking. An additional aim was to examine whether changes to central corticotrophin-releasing factor (CRF) and plasma corticosterone levels were also apparent because of the interaction of oxytocin with stress-regulatory mechanisms. Male Sprague-Dawley rats were trained to lever press for i.v. METH (0.1 mg/kg/infusion) under a fixed-ratio 1 schedule or received yoked saline infusions during 2-h sessions for 20 days. An additional cohort of rats underwent behavioural extinction for 15 days after METH IVSA. Subsequent to the last day of IVSA or extinction, blood plasma was collected for enzyme immunoassay, and immunofluorescence was conducted on NAc core and STh coronal sections. Rats that self-administered METH had higher oxytocin plasma levels, and decreased OTR-immunoreactive (-IR) fibres in the NAc core than yoked controls. In animals that self-administered METH and underwent extinction, oxytocin plasma levels remained elevated, OTR-IR fibre density increased in the STh, and a trend towards normalisation of OTR-IR fibre density was evident in the NAc core. CRF-IR fibre density in both brain regions and corticosterone plasma levels did not change across treatment groups. These findings demonstrate that oxytocin systems, both centrally

  10. On neutron surface waves

    SciTech Connect

    Ignatovich, V. K.

    2009-01-15

    It is shown that neutron surface waves do not exist. The difference between the neutron wave mechanics and the wave physics of electromagnetic and acoustic processes, which allows the existence of surface waves, is analyzed.

  11. Gravity Waves

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1985-01-01

    Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.

  12. Making Waves: Seismic Waves Activities and Demonstrations

    NASA Astrophysics Data System (ADS)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  13. Capillary rogue waves.

    PubMed

    Shats, M; Punzmann, H; Xia, H

    2010-03-12

    We report the first observation of extreme wave events (rogue waves) in parametrically driven capillary waves. Rogue waves are observed above a certain threshold in forcing. Above this threshold, frequency spectra broaden and develop exponential tails. For the first time we present evidence of strong four-wave coupling in nonlinear waves (high tricoherence), which points to modulation instability as the main mechanism in rogue waves. The generation of rogue waves is identified as the onset of a distinct tail in the probability density function of the wave heights. Their probability is higher than expected from the measured wave background.

  14. Nonlinear Waves.

    DTIC Science & Technology

    1986-05-27

    con- €"" straints:’. *’Permanent address: Dipartimento di Fisica . Universita di Roma 1. 00185 u 11lia. tr(a U(x)) = 0. (7a. 2469 1. Math,. PyS. 26 (10...Tenenblat Universidade de Brasilia Departamento de Matematica Brasilia, Brasil September 1985 , - . Abstract The generalized wave equation and generalized...Permanent addrems: Dipartimento di Fisica . Universita di Roma t3 U, 0. Roma. Italy The linear limit of i3) provides the most general solution ot 2614 J. MatM

  15. Wave Dissipation and Balance - NOPP Wave Project

    DTIC Science & Technology

    2014-09-30

    processes that affect wind-generated ocean gravity waves. The various dissipative processes that contribute to the spectral wave evolution are isolated...over mature ocean surface wave spectra. J. Phys. Oceanogr., 34:3345–2358, 2004. K. Hasselmann. On the non-linear energy transfer in a gravity wave...P. Giovanangeli. Air flow structure over short- gravity breaking water waves. Boundary-Layer Meteorol., 126:477–705, 2008. doi: 10.1007/s10546-007

  16. CMS-Wave

    DTIC Science & Technology

    2014-10-27

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE CMS -Wave 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward-marching, finite...difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction, diffraction, reflection

  17. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock...Bay, NY WaveNet application in Gulf of Mexico CMS -Wave and BOUSS-2D are two numerical wave models, and WaveNet and TideNet are two web-based

  18. ASTER Waves

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels

  19. Waves and Tsunami Project

    ERIC Educational Resources Information Center

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  20. Surface wave tomography

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    Vertically polarized shear wave velocity (VSV), determined primarily from fundamental mode Rayleigh waves, and the difference between the velocity of horizontally polarized shear waves (VSH) and VSV, therefore a measure of anisotropy, are shown.

  1. Auroral plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1989-01-01

    A review is given of auroral plasma wave phenomena, starting with the earliest ground-based observations and ending with the most recent satellite observations. Two types of waves are considered, electromagnetic and electrostatic. Electromagnetic waves include auroral kilometric radiation, auroral hiss, ELF noise bands, and low-frequency electric and magnetic noise. Electrostatic waves include upper hybrid resonance emissions, electron cyclotron waves, lower hybrid waves, ion cyclotron waves and broadband electrostatic noise. In each case, a brief overview is given describing the observations, the origin of the instability, and the role of the waves in the physics of the auroral acceleration region.

  2. Dispersive wave emission from wave breaking.

    PubMed

    Conforti, Matteo; Trillo, Stefano

    2013-10-01

    We show that pulses undergoing wave breaking in nonlinear weakly dispersive fibers radiate, owing to phase-matching (assisted by higher-order dispersion) of linear dispersive waves with the shock-wave front. Our theoretical results perfectly explain the radiation observed recently from pulses propagating in the normal dispersion (i.e., nonsolitonic) regime.

  3. A Simple Wave Driver

    ERIC Educational Resources Information Center

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  4. Finsler p p -waves

    NASA Astrophysics Data System (ADS)

    Fuster, Andrea; Pabst, Cornelia

    2016-11-01

    In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.

  5. Phonons, Atoms, and Waves

    ERIC Educational Resources Information Center

    Reid, John S.

    1977-01-01

    Discussed are how the thermal vibrations of a solid are described in terms of lattice waves, how these waves interact with other waves, or with themselves, and how one is led from such a description in terms of waves to the concept of a phonon. (Author/MA)

  6. Planetary plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1993-01-01

    The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.

  7. Teleseismic S wave microseisms.

    PubMed

    Nishida, Kiwamu; Takagi, Ryota

    2016-08-26

    Although observations of microseisms excited by ocean swells were firmly established in the 1940s, the source locations remain difficult to track. Delineation of the source locations and energy partition of the seismic wave components are key to understanding the excitation mechanisms. Using a seismic array in Japan, we observed both P and S wave microseisms excited by a severe distant storm in the Atlantic Ocean. Although nonlinear forcing of an ocean swell with a one-dimensional Earth model can explain P waves and vertically polarized S waves (SV waves), it cannot explain horizontally polarized S waves (SH waves). The precise source locations may provide a new catalog for exploring Earth's interior.

  8. Weakly nonlinear magnetohydrodynamic wave interactions

    SciTech Connect

    Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.

    1999-06-01

    Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}

  9. Wave Dissipation and Balance - NOPP Wave Project

    DTIC Science & Technology

    2012-09-30

    ocean with the atmosphere, land and solid Earth. Waves also define in many ways the appearance of the ocean seen by remote- sensing instruments. Beyond...waves, sediments and remote sensing systems, and to improve our forecasting and hindcasting capacity of these phenomena from the global ocean to the...feedback on the wave model quality APPROACH AND WORK PLAN By combining theoretical advances with numerical models, remote sensing and field

  10. ULF Waves at Mercury

    NASA Astrophysics Data System (ADS)

    Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.

    2016-02-01

    This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.

  11. Fracture channel waves

    NASA Astrophysics Data System (ADS)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  12. Wave Meteorology and Soaring

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  13. Detonation Wave Profile

    SciTech Connect

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  14. The Iowa wave machines

    NASA Astrophysics Data System (ADS)

    Daffron, John D.; Greenslade, Thomas B.; Stille, Dale

    2010-03-01

    Wave machines are a staple of demonstration lectures, and a good pair of wave machines can make the idea of transverse and longitudinal waves clearly evident to students. The demonstration apparatus collection of the University of Iowa contains examples of transverse and longitudinal wave machines that will be of interest to readers of The Physics Teacher. These machines probably date from about 1925 and may have been locally produced. You too can build them.

  15. WaveNet

    DTIC Science & Technology

    2015-10-30

    modeling and planning missions which require metocean data ( winds , waves, tides, water levels). It allows users to access, process, and analyze wave...and wind data from different data sources (Figure 1), and provides a combination of analysis and graphical capabilities to minimize the complexity and...employs techniques to minimize complexity and uncertainty of data processing. WaveNet is a decision-support tool that provides wave and wind data

  16. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  17. Coronal heating by waves

    NASA Technical Reports Server (NTRS)

    Hollweg, J. V.

    1983-01-01

    Alfven waves or Alfvenic surface waves carry enough energy into the corona to provide the coronal energy requirements. Coronal loop resonances are an appealing means by which large energy fluxes enter active region loops. The wave dissipation mechanism still needs to be elucidated, but a Kolmogoroff turbulent cascade is fully consistent with the heating requirements in coronal holes and active region loops.

  18. Waves of Hanta

    NASA Astrophysics Data System (ADS)

    Abramson, Guillermo

    2003-03-01

    A spatially extended model of the hantavirus infection in deer mice is analyzed. Traveling waves solutions of the infected and susceptible populations are studied in different regimes, controlled by an environmental parameter. The wave of infection is shown to lag behind the wave of susceptible population, and the delay between the two is analyzed numerically and through a piecewise linearization.

  19. Wave turbulence in annular wave tank

    NASA Astrophysics Data System (ADS)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  20. Fast wave current drive

    SciTech Connect

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.

  1. Spectra of Surface Waves

    DTIC Science & Technology

    1989-03-22

    with a wave follower during Marsen. J. Gophysical Res. 88, 9844-9849. 11. Hughes, B.A., 1978. The effects on internal waves on surface waves : 2...Spectra of Surface Waves K. Watson March 1989 JSR-88-130 Approved for public release; distribution unlimited. DTIC SELECTE JUN0 11989 0 JASONE The...Arlington, VA 22209 8503Z 11. TITLE (hlde Secvfty Cof.kaftn) SPECTRA OF SURFACE WAVES (U) 12. PERSONAL AUTHOfRS) K. Watson 13a. TYPE OF REPORT 13b. TIME

  2. Waves of energy

    NASA Astrophysics Data System (ADS)

    Smith, F. G. W.; Charlier, R. H.

    1981-06-01

    Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator; a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll); a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump); a turbine located at the bottom of an open-topped pipe (the Masuda buoy); a completely submerged closed air chamber from which runs a large pipe open to the sea; a wave piston which acts by the compression of air to drive a turbine; a massive structure with upper and lower reservoirs (the Russel rectifier); and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft.) It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.

  3. [F-waves].

    PubMed

    Wang, F C; Massart, N; Kaux, J-F; Bouquiaux, O

    2011-12-01

    F-waves result from the discharge of the motoneurons following their antidromic activation. The F-wave appears, as an indirect (the F-wave latency decreases when the stimulation site moves away from the muscular detection) and late response (occurring after the M response). In practice, the most useful parameter is the F-wave minimal latency, provided that at least seven distinct F-waves are evoked. When the analysis is relative either to the controlateral side, or to a former examination, this parameter is one of most sensitive in electroneuromyography. F-wave evocation implies conduction along the entire peripheral nervous system, and particularly its proximal part, which is not investigated by nervous trunks conduction velocity studies. Thus, F wave study is the most useful in plexopathies and polyradiculonevritis. In the early phase of Guillain-Barré syndrome, their absence may be the unique sign indicative of proximal conduction blocks.

  4. Impact of chronic subthalamic high-frequency stimulation on metabolic basal ganglia activity: a 2-deoxyglucose uptake and cytochrome oxidase mRNA study in a macaque model of Parkinson's disease.

    PubMed

    Meissner, Wassilios; Guigoni, Celine; Cirilli, Laetitia; Garret, Maurice; Bioulac, Bernard H; Gross, Christian E; Bezard, Erwan; Benazzouz, Abdelhamid

    2007-03-01

    The mechanisms of action of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) remain only partially understood. Hitherto, experimental studies have suggested that STN-HFS reduces the activity of STN neurons. However, some recent reports have challenged this view, showing that STN-HFS might also increase the activity of globus pallidus internalis (GPi) neurons that are under strong excitatory drive of the STN. In addition, most results emanate from studies applying acute STN-HFS, while parkinsonian patients receive chronic stimulation. Thus, the present study was designed to assess the effect of chronic (10 days) STN-HFS in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primate. For this purpose, 2-deoxyglucose (2-DG) uptake, a measure of global synaptic activity, was assessed in the basal ganglia and the motor thalamus after chronic unilateral STN-HFS. Cytochrome oxidase subunit 1 (COI) mRNA expression, a marker of efferent metabolic activity, was additionally assessed in the globus pallidus. Chronic STN-HFS (i) reversed abnormally decreased 2-DG uptake in the STN of parkinsonian nonhuman primates, (ii) reversed abnormally increased 2-DG accumulation in the GPi while COI mRNA expression was increased, suggesting global activation of GPi neurons, and (iii) reversed abnormally increased 2-DG uptake in the ventrolateral motor thalamus nucleus. The simultaneous decrease in 2-DG uptake and increase in COI mRNA expression are difficult to reconcile with the current model of basal ganglia function and suggest that the mechanisms by which STN-HFS exerts its clinical benefits are more complex than a simple reversal of abnormal activity in the STN and its targets.

  5. Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption

    PubMed Central

    Smith-Anttila, Casey J.A.; Nordenankar, Karin; Arvidsson, Emma; Mahmoudi, Souha; Zampera, André; Wärner Jonsson, Hanna; Bergquist, Jonas; Lévesque, Daniel; Andersson, Malin; Dumas, Sylvie

    2016-01-01

    The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson’s disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system. PMID:27699212

  6. L-DOPA-induced dyskinesia in adult rats with a unilateral 6-OHDA lesion of dopamine neurons is paralleled by increased c-fos gene expression in the subthalamic nucleus.

    PubMed

    Soghomonian, Jean-Jacques

    2006-05-01

    Levodopa (L-DOPA), the metabolic precursor of dopamine, is widely used as a pharmacological agent for the symptomatic treatment of Parkinson's disease. However, long-term L-DOPA use results in abnormal involuntary movements such as dyskinesias. There is evidence that abnormal cell signaling in the basal ganglia is involved in L-DOPA-induced dyskinesia. The subthalamic nucleus (STN) plays a key role in the circuitry of the basal ganglia and in the pathophysiology of Parkinson's disease. However, the contribution of the STN to L-DOPA-induced dyskinesias remains unclear. The objective of this work was to study the effects of acute or chronic systemic administration of L-DOPA to adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of dopamine neurons on c-fos expression in the STN and test the hypothesis that these effects correlate with L-DOPA-induced dyskinesias. c-fos mRNA expression was measured in the STN by in situ hybridization histochemistry at the single cell level. Our results confirm earlier evidence that the chronic administration of L-DOPA to rats with a unilateral 6-OHDA lesion increases c-fos expression in the STN. We also report that c-fos expression can be increased following an acute injection of L-DOPA to 6-OHDA-lesioned rats but not following a chronic injection of L-DOPA to sham-operated, unlesioned rats. Finally, we provide evidence that the occurrence and severity of dyskinesia is correlated with c-fos mRNA levels in the ipsilateral STN. These results suggest that altered cell signaling in the STN is involved in some of the behavioral effects induced by systemic L-DOPA administration.

  7. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  8. Linear Elastic Waves

    NASA Astrophysics Data System (ADS)

    Revenough, Justin

    Elastic waves propagating in simple media manifest a surprisingly rich collection of phenomena. Although some can't withstand the complexities of Earth's structure, the majority only grow more interesting and more important as remote sensing probes for seismologists studying the planet's interior. To fully mine the information carried to the surface by seismic waves, seismologists must produce accurate models of the waves. Great strides have been made in this regard. Problems that were entirely intractable a decade ago are now routinely solved on inexpensive workstations. The mathematical representations of waves coded into algorithms have grown vastly more sophisticated and are troubled by many fewer approximations, enforced symmetries, and limitations. They are far from straightforward, and seismologists using them need a firm grasp on wave propagation in simple media. Linear Elastic Waves, by applied mathematician John G. Harris, responds to this need.

  9. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  10. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  11. Millimeter Wave Ocular Effects

    DTIC Science & Technology

    1987-02-20

    illustrates the rabbit head in holder by photography (a), thermography (b) and thermographic profile (c). The temperature of the cornea was measured using an...and graphs of profiles of the 40 temperatures difference (final-initial) of the rabbit cornea heated by the focused beam of millimeter waves from the...antenna. 5. Cooling of the cornea by air flow. 43 6. Temperature as a function of power applied using 45 continuous wave millimeter waves of

  12. Kinesthetic Transverse Wave Demonstration

    NASA Astrophysics Data System (ADS)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  13. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  14. Optical rogue waves.

    PubMed

    Solli, D R; Ropers, C; Koonath, P; Jalali, B

    2007-12-13

    Recent observations show that the probability of encountering an extremely large rogue wave in the open ocean is much larger than expected from ordinary wave-amplitude statistics. Although considerable effort has been directed towards understanding the physics behind these mysterious and potentially destructive events, the complete picture remains uncertain. Furthermore, rogue waves have not yet been observed in other physical systems. Here, we introduce the concept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new real-time detection technique, we study a system that exposes extremely steep, large waves as rare outcomes from an almost identically prepared initial population of waves. Specifically, we report the observation of rogue waves in an optical system, based on a microstructured optical fibre, near the threshold of soliton-fission supercontinuum generation--a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input. We model the generation of these rogue waves using the generalized nonlinear Schrödinger equation and demonstrate that they arise infrequently from initially smooth pulses owing to power transfer seeded by a small noise perturbation.

  15. Oceanic-wave-measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T.

    1980-01-01

    Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

  16. Power from Ocean Waves.

    ERIC Educational Resources Information Center

    Newman, J. N.

    1979-01-01

    Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)

  17. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  18. Mask Waves Benchmark

    DTIC Science & Technology

    2007-10-01

    24 . Measured frequency vs. set frequency for all data .............................................. 23 25. Benchmark Probe#1 wave amplitude variation...4 8 A- 24 . Wave amplitude by probe, blower speed, lip setting for 0.768 Hz on the short I b an k...frequency and wavemaker bank .................................... 24 B- 1. Coefficient of variation as percentage for all conditions for long bank and bridge

  19. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  20. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  1. The Relativistic Wave Vector

    ERIC Educational Resources Information Center

    Houlrik, Jens Madsen

    2009-01-01

    The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…

  2. Slow frictional waves

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  3. Waves in polar lows

    NASA Astrophysics Data System (ADS)

    Orimolade, A. P.; Furevik, B. R.; Noer, G.; Gudmestad, O. T.; Samelson, R. M.

    2016-08-01

    In a rather stationary fetch, one would not expect large waves in polar low situations. However, the picture changes when one considers a moving fetch. The significant wave heights that may be associated with the recorded polar lows on the Norwegian continental shelf from December 1999 to October 2015 are estimated using a one-dimensional parametric wave model. A comparison of the measured and the forecasted significant wave heights in two recent polar low cases in the Barents Sea is presented. The estimated significant wave heights show that the values could have been up to and above 9 m. The forecasted significant wave heights considerably underestimated the measured significant wave heights in the two recent polar low cases that are considered. Furthermore, a generalization of the fetch-limited wave equation in polar lows is proposed, which allows the wind field to vary in space and time, and is shown to give results that are consistent with the one-dimensional parametric model.

  4. Thermal-Wave Imaging.

    ERIC Educational Resources Information Center

    Rosencwaig, Allan

    1982-01-01

    Thermal features of and beneath the surface of a sample can be detected and imaged with a thermal-wave microscope. Various methodologies for the excitation and detection of thermal waves are discussed, and several applications, primarily in microelectronics, are presented. (Author)

  5. Search for Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Tsubono, K.

    The current status of the experimental search for gravitational waves is reviewed here. The emphasis is on the Japanese TAMA project. We started operation of the TAMA300 laser interferometric detector in 1999, and are now collecting and analyzing observational data to search for gravitational wave signals.

  6. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  7. Experiments on excitation waves

    NASA Astrophysics Data System (ADS)

    Müller, S. C.

    Recent trends in the experimentation on chemical and biochemical excitation waves are presented. In the Belousov-Zhabotinsky reaction, which is the most suitable chemical laboratory system for the study of wave propagation in excitable medium, the efficient control of wave dynamics by electrical fields and by light illumination is illustrated. In particular, the effects of a feedback control are shown. Further new experiments in this system are concerned with three-dimensional topologies and boundary effects. Important biological applications are found in the aggregation of slime mould amoebae, in proton waves during oscillatory glycolysis, and in waves of spreading depression in neuronal tissue as studied by experiments in chicken retina. Numerical simulations with appropriate reaction-diffusion models complement a large number of these experimental findings.

  8. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  9. Project GlobWave

    NASA Astrophysics Data System (ADS)

    Busswell, Geoff; Ash, Ellis; Piolle, Jean-Francois; Poulter, David J. S.; Snaith, Helen; Collard, Fabrice; Sheera, Harjit; Pinnock, Simon

    2010-12-01

    The ESA GlobWave project is a three year initiative, funded by ESA and CNES, to service the needs of satellite wave product users across the globe. Led by Logica UK, with support from CLS, IFREMER, SatOC and NOCS, the project will provide free access to satellite wave data and products in a common format, both historical and in near real time, from various European and American SAR and altimeter missions. Building on the successes of similar projects for Sea Surface Temperature and ocean colour, the project aims to stimulate increased use and analysis of satellite wave products. In addition to common-format satellite data the project will provide comparisons with in situ measurements, interactive data analysis tools and a pilot spatial wave forecast verification scheme for operational forecast production centres. The project will begin operations in January 2010, with direction from regular structured user consultation.

  10. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  11. Gravity-Wave astronomy

    NASA Astrophysics Data System (ADS)

    Grishchuk, Leonid Petrovich

    The article concerns astronomical phenomena , related with discovery of gravitational waves of various nature: 1) primordial (relic) gravitational waves, analogous to MWBR 2) gravitational waves due to giant collisions in the Universe between 2a) Macroscopic black Holes in the centers of Galaxies 2b) Tidal disruption of neutron stars by Black holes 2c) deformations of the space-time by stellar mass Black Holes moving near giant Black Holes in the centers of Galaxies 2d) Supernovae phenomena 2e) accretion phenomena on Black Holes and Neutron stars. The Earth based interferometric technics (LIGO Project) to detect gravitational waves is described as well as the perspectiva for a space Laser Interferometric Antena (LISA)is discussed. The article represents a modified text of the Plenary talk "Gravity-Wave astronomy" given at the XI International gravitational Conference (July 1986, Stockholm, Sweden).

  12. Sculpting Waves (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Engheta, Nader

    2015-09-01

    In electronics controlling and manipulating flow of charged carriers has led to design of numerous functional devices. In photonics, by analogy, this is done through controlling photons and optical waves. However, the challenges and opportunities are different in these two fields. Materials control waves, and as such they can tailor, manipulate, redirect, and scatter electromagnetic waves and photons at will. Recent development in condensed matter physics, nanoscience, and nanotechnology has made it possible to tailor materials with unusual parameters and extreme characteristics and with atomic precision and thickness. One can now construct structures much smaller than the wavelengths of visible light, thus ushering in unprecedented possibilities and novel opportunities for molding fields and waves at the nanoscale with desired functionalities. At such subwavelength scales, sculpting optical fields and waves provides a fertile ground for innovation and discovery. I will discuss some of the exciting opportunities in this area, and forecast some future directions and possibilities.

  13. Spatial equation for water waves

    NASA Astrophysics Data System (ADS)

    Dyachenko, A. I.; Zakharov, V. E.

    2016-02-01

    A compact spatial Hamiltonian equation for gravity waves on deep water has been derived. The equation is dynamical and can describe extreme waves. The equation for the envelope of a wave train has also been obtained.

  14. Standing Waves on a Shoestring.

    ERIC Educational Resources Information Center

    Hendrix, Laura

    1992-01-01

    Describes the construction of a wave generator used to review the algebraic relationships of wave motion. Students calculate and measure the weight needed to create tension to generate standing waves at the first eight harmonics. (MDH)

  15. Dynamics of baroclinic wave systems

    NASA Technical Reports Server (NTRS)

    Barcilon, Albert; Weng, Hengyi

    1989-01-01

    The research carried out in the past year dealt with nonlinear baroclinic wave dynamics. The model consisted of an Eady baroclinic basic state and uneven Elkman dissipation at the top and bottom boundaries with/without slopes. The method of solution used a truncated spectral expansion with three zonal waves and one or two meridional modes. Numerical experiments were performed on synoptic scale waves or planetary scale waves with/without wave-wave interaction.

  16. Three-dimensional SPACE fluid-attenuated inversion recovery at 3 T to improve subthalamic nucleus lead placement for deep brain stimulation in Parkinson's disease: from preclinical to clinical studies.

    PubMed

    Senova, Suhan; Hosomi, Koichi; Gurruchaga, Jean-Marc; Gouello, Gaëtane; Ouerchefani, Naoufel; Beaugendre, Yara; Lepetit, Hélène; Lefaucheur, Jean-Pascal; Badin, Romina Aron; Dauguet, Julien; Jan, Caroline; Hantraye, Philippe; Brugières, Pierre; Palfi, Stéphane

    2016-08-01

    OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson's Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR-guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy

  17. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  18. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  19. Shoaling internal solitary waves

    NASA Astrophysics Data System (ADS)

    Sutherland, B. R.; Barrett, K. J.; Ivey, G. N.

    2013-09-01

    The evolution and breaking of internal solitary waves in a shallow upper layer as they approach a constant bottom slope is examined through laboratory experiments. The waves are launched in a two-layer fluid through the standard lock-release method. In most experiments, the wave amplitude is significantly larger than the depth of the shallow upper layer so that they are not well described by Korteweg-de Vries theory. The dynamics of the shoaling waves are characterized by the Iribarren number, Ir, which measures the ratio of the topographic slope to the square root of the characteristic wave slope. This is used to classify breaking regimes as collapsing, plunging, surging, and nonbreaking for increasing values of Ir. For breaking waves, the maximum interface descent, Hi⋆, is predicted to depend upon the topographic slope, s, and the incident wave's amplitude and width, Asw and Lsw, respectively, as Hi⋆≃4sAswLsw. This prediction is corroborated by our experiments. Likewise, we apply simple heuristics to estimate the speed of interface descent, and we characterize the speed and range of the consequent upslope flow of the lower layer after breaking has occurred.

  20. Undamped electrostatic plasma waves

    SciTech Connect

    Valentini, F.; Perrone, D.; Veltri, P.; Califano, F.; Pegoraro, F.; Morrison, P. J.; O'Neil, T. M.

    2012-09-15

    Electrostatic waves in a collision-free unmagnetized plasma of electrons with fixed ions are investigated for electron equilibrium velocity distribution functions that deviate slightly from Maxwellian. Of interest are undamped waves that are the small amplitude limit of nonlinear excitations, such as electron acoustic waves (EAWs). A deviation consisting of a small plateau, a region with zero velocity derivative over a width that is a very small fraction of the electron thermal speed, is shown to give rise to new undamped modes, which here are named corner modes. The presence of the plateau turns off Landau damping and allows oscillations with phase speeds within the plateau. These undamped waves are obtained in a wide region of the (k,{omega}{sub R}) plane ({omega}{sub R} being the real part of the wave frequency and k the wavenumber), away from the well-known 'thumb curve' for Langmuir waves and EAWs based on the Maxwellian. Results of nonlinear Vlasov-Poisson simulations that corroborate the existence of these modes are described. It is also shown that deviations caused by fattening the tail of the distribution shift roots off of the thumb curve toward lower k-values and chopping the tail shifts them toward higher k-values. In addition, a rule of thumb is obtained for assessing how the existence of a plateau shifts roots off of the thumb curve. Suggestions are made for interpreting experimental observations of electrostatic waves, such as recent ones in nonneutral plasmas.

  1. Global Coronal Waves

    NASA Astrophysics Data System (ADS)

    Chen, P. F.

    2016-02-01

    After the Solar and Heliospheric Observatory (SOHO) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named ``EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the Solar Dynamics Observatory (SDO) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal loop. Such a two-wave paradigm was proposed more than 13 years ago, and now is being recognized by more and more colleagues. In this paper, we review how various controversies can be resolved in the two-wave framework and how important it is to have two different names for the two types of coronal waves.

  2. Glutamatergic Retinal Waves

    PubMed Central

    Kerschensteiner, Daniel

    2016-01-01

    Spontaneous activity patterns propagate through many parts of the developing nervous system and shape the wiring of emerging circuits. Prior to vision, waves of activity originating in the retina propagate through the lateral geniculate nucleus (LGN) of the thalamus to primary visual cortex (V1). Retinal waves have been shown to instruct the wiring of ganglion cell axons in LGN and of thalamocortical axons in V1 via correlation-based plasticity rules. Across species, retinal waves mature in three stereotypic stages (I–III), in which distinct circuit mechanisms give rise to unique activity patterns that serve specific functions in visual system refinement. Here, I review insights into the patterns, mechanisms, and functions of stage III retinal waves, which rely on glutamatergic signaling. As glutamatergic waves spread across the retina, neighboring ganglion cells with opposite light responses (ON vs. OFF) are activated sequentially. Recent studies identified lateral excitatory networks in the inner retina that generate and propagate glutamatergic waves, and vertical inhibitory networks that desynchronize the activity of ON and OFF cells in the wavefront. Stage III wave activity patterns may help segregate axons of ON and OFF ganglion cells in the LGN, and could contribute to the emergence of orientation selectivity in V1. PMID:27242446

  3. Wave-wave interactions in solar type III radio bursts

    SciTech Connect

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  4. Stress wave focusing transducers

    SciTech Connect

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  5. Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.

    ERIC Educational Resources Information Center

    Leung, W. P.

    1980-01-01

    Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)

  6. Towards Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Losurdo, Giovanni

    This chapter is meant to introduce the reader to the forthcoming network of second-generation interferometric detectors of gravitational waves, at a time when their construction is close to completion and there is the ambition to detect gravitational waves for the first time in the next few years and open the way to gravitational wave astronomy. The legacy of first-generation detectors is discussed before giving an overview of the technology challenges that have been faced to make advanced detectors possible. The various aspects outlined here are then discussed in more detail in the subsequent chapters of the book.

  7. Circular rogue wave clusters.

    PubMed

    Kedziora, David J; Ankiewicz, Adrian; Akhmediev, Nail

    2011-11-01

    Using the Darboux transformation technique and numerical simulations, we study the hierarchy of rational solutions of the nonlinear Schrödinger equation that can be considered as higher order rogue waves in this model. This analysis reveals the existence of rogue wave clusters with a high level of symmetry in the (x,t) plane. These structures arise naturally when the shifts in the Darboux scheme are taken to be eigenvalue dependent. We have found single-shell structures where a central higher order rogue wave is surrounded by a ring of first order peaks on the (x,t) plane.

  8. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  9. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M

    2014-01-01

    Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.

  10. Wave Dissipation and Balance - NOPP Wave Project

    DTIC Science & Technology

    2011-09-01

    with a common structure , and now estimating the “cumulative term” with the breaking probabilities used for the main dissipation term. This has led to a...captured by the new parameterizations, but that will require the analysis of more detailed measurement campaigns Ardhuin et al. (2011b). These result have...much more flat bias as a function of wave height (figure 1). A detailed case study of the February 2011 storm Quirin, in the North Atlantic, has shown

  11. Measurement of high frequency waves using a wave follower

    NASA Technical Reports Server (NTRS)

    Tang, S.; Shemdin, O. H.

    1983-01-01

    High frequency waves were measured using a laser-optical sensor mounted on a wave follower. Measured down-wind wave slope spectra are shown to be wind speed dependent; the mean square wave-slopes are generally larger than those measured by Cox and Munk (1954) using the sun glitter method.

  12. Resonance wave pumping with surface waves

    NASA Astrophysics Data System (ADS)

    Carmigniani, Remi; Gharib, Morteza; Violeau, Damien; Caltech-ENPC Collaboration

    2015-11-01

    The valveless impedance pump enables the production or amplification of a flow without the use of integrated mobile parts, thus delaying possible failures. It is usually composed of fluid-filled flexible tubing, closed by solid tubes. The flexible tube is pinched at an off-centered position relative to the tube ends. This generates a complex wave dynamic that results in a pumping phenomenon. It has been previously reported that pinching at intrinsic resonance frequencies of the system results in a strong pulsating flow. A case of a free surface wave pump is investigated. The resonance wave pump is composed of a rectangular tank with a submerged plate separating the water into a free surface and a recirculation rectangular section connected through two openings at each end of the tank. A paddle placed at an off-center position above the submerged plate is controlled in a heaving motion with different frequencies and amplitudes. Similar to the case of valveless impedance pump, we observed that near resonance frequencies strong pulsating flow is generated with almost no oscillations. A linear theory is developed to pseudo-analytically evaluate these frequencies. In addition, larger scale applications were simulated using Smoothed Particle Hydrodynamic codes.

  13. Traveling-wave photodetector

    DOEpatents

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  14. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  15. Turbulence generation by waves

    SciTech Connect

    Kaftori, D.; Nan, X.S.; Banerjee, S.

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  16. Heat Wave Safety Checklist

    MedlinePlus

    ... heat has caused more deaths than all other weather events, including floods. A heat wave is a ... care for heat- related emergencies … ❏ Listen to local weather forecasts and stay aware of upcoming temperature changes. ❏ ...

  17. Nonlinear thermal surface waves

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.

    1984-09-01

    It is shown that density profile modifications near a plasma surface can survive at moving localized spots because of the radiation pressure of leaking wave field fluctuations. The properties of these luminous surface cavitons are studied.

  18. WindWaveFloat

    SciTech Connect

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  19. Magnetoresistive waves in plasmas

    NASA Astrophysics Data System (ADS)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  20. Sound wave transmission (image)

    MedlinePlus

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  1. Inventing the Wave Catchers.

    ERIC Educational Resources Information Center

    Fisher, Arthur

    1983-01-01

    Physicists and engineers advance the state of several arts in the design of gravitational-wave detection equipment. Provides background information and discusses the equipment (including laser interferometer), its use, and results of several experimental studies. (JN)

  2. Near Shore Wave Processes

    DTIC Science & Technology

    2016-06-07

    to breaking waves described using the roller concept (Lippmann and Thornton, 1999), alongshore wind stress, cross-shore advection of mean momentum of...Lippmann and Thornton, 1999), and O[10] percent improvement by including the momentum mixing by the advection of the longshore current momentum by the mean...process modeling of breaking waves, momentum mixing due to the interaction of longshore and cross-shore vertical mean profiles, and bottom shear stress

  3. Vortex waves in sunspots

    NASA Astrophysics Data System (ADS)

    López Ariste, A.; Centeno, R.; Khomenko, E.

    2016-06-01

    Context. Waves in the magnetized solar atmosphere are one of the favourite means of transferring and depositing energy into the solar corona. The study of waves brings information not just on the dynamics of the magnetized plasma, but also on the possible ways in which the corona is heated. Aims: The identification and analysis of the phase singularities or dislocations provide us with a complementary approach to the magnetoacoustic and Aflvén waves propagating in the solar atmosphere. They allow us to identify individual wave modes, shedding light on the probability of excitation or the nature of the triggering mechanism. Methods: We use a time series of Doppler shifts measured in two spectral lines, filtered around the three-minute period region. The data show a propagating magnetoacoustic slow mode with several dislocations and, in particular, a vortex line. We study under what conditions the different wave modes propagating in the umbra can generate the observed dislocations. Results: The observed dislocations can be fully interpreted as a sequence of sausage and kink modes excited sequentially on average during 15 min. Kink and sausage modes appear to be excited independently and sequentially. The transition from one to the other lasts less than three minutes. During the transition we observe and model the appearance of superoscillations inducing large phase gradients and phase mixing. Conclusions: The analysis of the observed wave dislocations leads us to the identification of the propagating wave modes in umbrae. The identification in the data of superoscillatory regions during the transition from one mode to the other may be an important indicator of the location of wave dissipation.

  4. Sound Waves Levitate Substrates

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  5. Kinematics Under Wind Waves

    DTIC Science & Technology

    1989-09-01

    components of the total velocity field, negligible measurement noise, and a completely linear wave field. Yefimov and Khristoforov (1971) have investigated...The directional spreading of the real wave field must also be considered ([82] and [3]). Yefimov and Khristoforov concluded that the spectrum of the...different. As observed by Yefimov and Khristoforov the upper linit of high coherence decreased with increasing depth (Figure 9). The horizontal

  6. Wave Propagation Program

    SciTech Connect

    McCandless, Kathleen; Petersson, Anders; Nilsson, Stefan; Sjogreen, Bjorn

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  7. WaveNet

    DTIC Science & Technology

    2014-10-27

    Studies (WIS), Coastal Data Information Program (CDIP), Great Lakes Observing System (GLOS), Great Lakes Coastal Forecasting System (GLCFS), and...Army Engineer Research and Development Center,CIRP - The Coastal Inlets Research Program,3909 Halls Ferry Road,Vicksburg,MS,39180 8. PERFORMING... Coastal Inlets Research Program WaveNet WaveNet is a web-based, Graphical-User-Interface (GUI) data management tool developed for the Corps’ coastal

  8. Millimeter Wave Nonreciprocal Devices.

    DTIC Science & Technology

    1983-01-03

    gradients of the dc bias field saturation magnetization , or magnetic anisotrophy can control mode properties of magnetostatic waves (MSW) propagating in...measures microwave magnetic field patterns of magnetostatic waves in LPE- YIG thin films has been developed. The probe’s sensing element is either a... magnetic resonance mode of a YIG sphere. Theoretical analyses show that there is a critical ratio between the -4-Ai p. , , . , l!~ mj radius of the

  9. Hysteretic Faraday waves.

    PubMed

    Périnet, Nicolas; Falcón, Claudio; Chergui, Jalel; Juric, Damir; Shin, Seungwon

    2016-06-01

    We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate subcritically toward highly nonlinear ones with twice their amplitude. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results.

  10. Ultrasonic Lamb wave tomography

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin R.; Malyarenko, Eugene V.; Hinders, Mark K.

    2002-12-01

    Nondestructive evaluation (NDE) of aerospace structures using traditional methods is a complex, time-consuming process critical to maintaining mission readiness and flight safety. Limited access to corrosion-prone structure and the restricted applicability of available NDE techniques for the detection of hidden corrosion or other damage often compound the challenge. In this paper we discuss our recent work using ultrasonic Lamb wave tomography to address this pressing NDE technology need. Lamb waves are ultrasonic guided waves, which allow large sections of aircraft structures to be rapidly inspected for structural flaws such as disbonds, corrosion and delaminations. Because the velocity of Lamb waves depends on thickness, for example, the travel times of the fundamental Lamb modes can be converted into a thickness map of the inspection region. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. Our work focuses on tomographic reconstruction to produce quantitative maps that can be easily interpreted by technicians or fed directly into structural integrity and lifetime prediction codes. Laboratory measurements discussed here demonstrate that Lamb wave tomography using a square perimeter array of transducers with algebraic reconstruction tomography is appropriate for detecting flaws in aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this paper.

  11. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  12. Ocean wave electric generators

    SciTech Connect

    Rosenberg, H.R.

    1986-02-04

    This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbine and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.

  13. A simple wave driver

    NASA Astrophysics Data System (ADS)

    Kağan Temiz, Burak; Yavuz, Ahmet

    2015-08-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the wheel starts to turn at a constant angular speed. A rod that is fixed on the wheel turns at the same constant angular speed, too. A tight string that the wave will be created on is placed at a distance where the rod can touch the string. During each rotation of the wheel, the rod vibrates the string up and down. The vibration frequency of this rod equals the wheel’s rotation frequency, and this frequency value can be measured easily with a small magnet and a bicycle speedometer. In this way, the frequency of the waves formed in the rope can also be measured.

  14. The gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  15. Wave Momentum Flux Parameter: A Descriptor for Nearshore Waves

    DTIC Science & Technology

    2004-07-16

    characterizing the wave nonlinearity. D 2004 Elsevier B.V. All rights reserved. Keywords: Coastal structures; Iribarren number; Nonlinear waves; Solitary...Local Iribarren number, n tanaffiffiffiffiffiffi H=L p Deepwater Iribarren number, no tanaffiffiffiffiffiffiffiffiffi Ho=Lo p or...solitary waves, although there are some definitions for solitary wave length which would allow use of the other wave parameters.2. The Iribarren number One

  16. Rain waves-wind waves interaction application to scatterometry

    NASA Technical Reports Server (NTRS)

    Kharif, C.; Giovanangeli, J. P.; Bliven, L.

    1989-01-01

    Modulation of a rain wave pattern by longer waves has been studied. An analytical model taking into account capillarity effects and obliquity of short waves has been developed. Modulation rates in wave number and amplitude have been computed. Experiments were carried out in a wave tank. First results agree with theoretical models, but higher values of modulation rates are measured. These results could be taken into account for understanding the radar response from the sea surface during rain.

  17. Invariants of 4-wave interactions

    NASA Astrophysics Data System (ADS)

    Balk, A.; Ferapontov, E.

    1993-05-01

    We give a complete description of one-dimensional 4-wave resonance interactions in which some extra quantities (besides momentum, energy, number of quasiparticles) are conserved. In this way we obtain new consideration laws for the kinetic equations for waves. In particular, we consider waves in optical fibers, the system of four resonantly interacting wave packets, long wave interactions of annihilation-creation type, various wave systems with quadratic dispersion laws. The results can be important for various problems concerning nonlinear wave dynamics, e.g. for nonlinear optics of waveguides.

  18. Longitudinal shear wave and transverse dilatational wave in solids.

    PubMed

    Catheline, S; Benech, N

    2015-02-01

    Dilatation wave involves compression and extension and is known as the curl-free solution of the elastodynamic equation. Shear wave on the contrary does not involve any change in volume and is the divergence-free solution. This letter seeks to examine the elastodynamic Green's function through this definition. By separating the Green's function in divergence-free and curl-free terms, it appears first that, strictly speaking, the longitudinal wave is not a pure dilatation wave and the transverse wave is neither a pure shear wave. Second, not only a longitudinal shear wave but also a transverse dilatational wave exists. These waves are shown to be a part of the solution known as coupling terms. Their special motion is carefully described and illustrated.

  19. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  20. Potential changes of wave steepness and occurrence of rogue waves

    NASA Astrophysics Data System (ADS)

    Bitner-Gregersen, Elzbieta M.; Toffoli, Alessandro

    2015-04-01

    Wave steepness is an important characteristic of a sea state. It is also well established that wave steepness is one of the parameter responsible for generation of abnormal waves called also freak or rogue waves. The study investigates changes of wave steepness in the past and future wave climate in the North Atlantic. The fifth assessment report IPCC (2013) uses four scenarios for future greenhouse gas concentrations in the atmosphere called Representative Concentration Pathways (RCP). Two of these scenarios RCP 4.5 and RCP 8.5 have been selected to project future wave conditions in the North Atlantic. RCP 4.5 is believed to achieve the political target of a maximum global mean temperature increase of 2° C while RPC 8.5 is close to 'business as usual' and expected to give a temperature increase of 4° C or more. The analysis includes total sea, wind sea and swell. Potential changes of wave steepness for these wave systems are shown and compared with wave steepness derived from historical data. Three historical data sets with different wave model resolutions are used. The investigations show also changes in the mean wind direction as well as in the relative direction between wind sea and swell. Consequences of wave steepness changes for statistics of surface elevation and generation of rogue waves are demonstrated. Uncertainties associated with wave steepness projections are discussed.

  1. Optical Dark Rogue Wave

    NASA Astrophysics Data System (ADS)

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  2. Bent Marshak Waves

    SciTech Connect

    Hurricane, O A; Hammer, J H

    2005-10-11

    Radiation driven heat waves (Marshak Waves) are ubiquitous in astrophysics and terrestrial laser driven high energy density plasma physics (HEDP) experiments. Generally, the equations describing Marshak waves are so nonlinear, that solutions involving more than one spatial dimension require simulation. However, in this paper we show how one may analytically solve the problem of the two-dimensional nonlinear evolution of a Marshak wave, bounded by lossy walls, using an asymptotic expansion in a parameter related to the wall albedo and a simplification of the heat front equation of motion. Three parameters determine the nonlinear evolution, a modified Markshak diffusion constant, a smallness parameter related to the wall albedo, and the spacing of the walls. The final nonlinear solution shows that the Marshak wave will be both slowed and bent by the non-ideal boundary. In the limit of a perfect boundary, the solution recovers the original diffusion-like solution of Marshak. The analytic solution will be compared to a limited set of simulation results and experimental data.

  3. Optical Dark Rogue Wave.

    PubMed

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-11

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  4. Waves in Motion

    NASA Astrophysics Data System (ADS)

    McGourty, L.; Rideout, K.

    2005-12-01

    "Waves in Motion" This teaching unit was created by Leslie McGourty and Ken Rideout under the Research Experience for Teachers (RET) program at MIT Haystack Observatory during the summer of 2005. The RET program is funded by a grant from the National Science Foundation. The goals of this teaching unit are to deepen students' understanding about waves, wave motion, and the electromagnetic spectrum as a whole. Specifically students will comprehend the role radio waves play in our daily lives and in the investigation of the universe. The lessons can be used in a high school physics, earth science or astronomy curriculum. The unit consists of a series of interlocking lectures, activities, and investigations that can be used as stand alone units to supplement a teacher's existing curriculum, as an independent investigation for a student, or as a long exploration into radio astronomy with a theme of waves in space: how and where they carry their information. Special emphasis is given to the Relativity theories in honor of the "World Year of Physics" to celebrate Einstein's 1905 contributions. The lessons are currently being implemented at the high school level, the preliminary results of which will be presented. At the end of the academic year, the units will be evaluated and updated, reflecting student input and peer review after which they will be posted on the internet for teachers to use in their classrooms.

  5. Rupture, waves and earthquakes.

    PubMed

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  6. Optical Dark Rogue Wave

    PubMed Central

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099

  7. Rupture, waves and earthquakes

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  8. Fast wave current drive

    NASA Astrophysics Data System (ADS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Experiments on the fast wave in the range of high ion cyclotron harmonics in the ACT-1 device show that current drive is possible with the fast wave just as it is for the lower hybrid wave, except that it is suitable for higher plasma densities. A 140° loop antenna launched the high ion cyclotron harmonic fast wave [ω/Ω=O(10)] into a He+ plasma with ne≂4×1012 cm-3 and B=4.5 kG. Probe and magnetic loop diagnostics and FIR laser scattering confirmed the presence of the fast wave, and the Rogowski loop indicated that the circulating plasma current increased by up to 40A with 1 kW of coupled power, which is comparable to lower hybrid current drive in the same device with the same unidirectional fast electron beam used as the target for the rf. A phased antenna array would be used for FWCD in a tokamak without the E-beam.

  9. Pilot-Wave Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bush, John W. M.

    2015-01-01

    Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article reviews experimental evidence indicating that the walking droplets exhibit certain features previously thought to be exclusive to the microscopic, quantum realm. It then reviews theoretical descriptions of this hydrodynamic pilot-wave system that yield insight into the origins of its quantum-like behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the potential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie's original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.

  10. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  11. Tango waves in a bidomain model of fertilization calcium waves

    NASA Astrophysics Data System (ADS)

    Li, Yue-Xian

    2003-12-01

    Fertilization of an egg cell is marked by one or several Ca 2+ waves that travel across the intra-cellular space, called fertilization Ca 2+ waves. Patterns of Ca 2+ waves observed in mature or immature oocytes include traveling fronts and pulses as well as concentric and spiral waves. These patterns have been studied in other excitable media in physical, chemical, and biological systems. Here, we report the discovery of a new wave phenomenon in the numerical study of a bidomain model of fertilization Ca 2+ waves. This wave is a front that propagates in a back-and-forth manner that resembles the movement of tango dancers, thus is called a tango wave. When the medium is excitable, a forward-moving tango wave can generate traveling pulses that propagate down the space without reversal. The study shows that the occurrence of tango waves is related to spatial inhomogeneity in the local dynamics. This is tested and confirmed by simulating similar waves in a medium with stationary spatial inhomogeneity. Similar waves are also obtained in a FitzHugh-Nagumo system with a linear spatial ramp. In both the bidomain model of Ca 2+ waves and the FitzHugh-Nagumo system, the front is stable when the slope of a linear ramp is large. As the slope decreases beyond a critical value, front oscillations occur. The study shows that tango waves facilitate the dispersion of localized Ca 2+. Key features of the bidomain model underlying the occurrence of tango waves are revealed. These features are commonly found in egg cells of a variety of species. Thus, we predict that tango waves can occur in real egg cells provided that a slowly varying inhomogeneity does occur following the sperm entry. The observation of tango wave-like waves in nemertean worm and ascidian eggs seems to support such a prediction.

  12. Neural field theory of nonlinear wave-wave and wave-neuron processes

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Roy, N.

    2015-06-01

    Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.

  13. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  14. Standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  15. TIMING OF SHOCK WAVES

    DOEpatents

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  16. Hysteretic Faraday waves

    NASA Astrophysics Data System (ADS)

    Périnet, Nicolas; Falcón, Claudio; Chergui, Jalel; Shin, Seungwon; Juric, Damir

    2016-11-01

    We study with numerical simulations the two-dimensional Faraday waves in two immiscible incompressible fluids when the lower fluid layer is shallow. After the appearance of the well known subharmonic stationary waves, a further instability is observed while the control parameter passes a secondary threshold. A new state then arises, composed of stationary waves with about twice the original pattern amplitude. The bifurcation presents hysteresis: there exists a finite range of the control parameter in which both states are stable. By means of a simple stress balance, we show that a change of the shear stress can explain this hysteresis. Our predictions based on this model are in agreement with our numerical results. Project funded by FONDECYT Grants 1130354, 3140522 and the National Research Foundation of Korea (NRF- 2014R1A2A1A11051346). Computations supported by the supercomputing infrastructures of the NLHPC (ECM-02) and GENCI (IDRIS).

  17. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  18. Communication at millimeter waves

    NASA Astrophysics Data System (ADS)

    Kamal, A. K.; Christopher, P. F.

    The advantage and disadvantages of millimeter waves for terrestrial and satellite communications are enumerated. Atmospheric attenuation is discussed in detail, with brief attention given to signal loss in particulates, sandstorms, snow, hail, and fog. Short closed forms are then found for gaseous attenuation on ground-satellite paths. An exponential rain loss probability density function is used in generating atmospheric loss at arbitrary required availability. It is pointed out that this loss (as a function of frequency) can be used to pick optimum carrier frequencies as a function of location, required availability, elevation angle, and system cost. An estimate is made of the rate-of-change of millimeter wave device availability. Special attention is given to GaAs FETs, not only because they will be useful, but because one phase of their millimeter wave performance is predictable: their noise performance as a function of frequency can be estimated with the aid of a Fukui equation.

  19. Discrete wave equation upscaling

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Hanasoge, Shravan M.

    2017-01-01

    We present homogenisation technique for the uniformly discretised wave equation, based on the derivation of an effective equation for the low-wavenumber component of the solution. The method produces a down-sampled, effective medium, thus making the solution of the effective equation less computationally expensive. Advantages of the method include its conceptual simplicity and ease of implementation, the applicability to any uniformly discretised wave equation in one, two or three dimensions, and the absence of any constraints on the medium properties. We illustrate our method with a numerical example of wave propagation through a one-dimensional multiscale medium, and demonstrate the accurate reproduction of the original wavefield for sufficiently low frequencies.

  20. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  1. Piezoelectric wave motor

    DOEpatents

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  2. Solar system plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  3. Planetary radio waves

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  4. Human waves in stadiums

    NASA Astrophysics Data System (ADS)

    Farkas, I.; Helbing, D.; Vicsek, T.

    2003-12-01

    Mexican wave first widely broadcasted during the 1986 World Cup held in Mexico, is a human wave moving along the stands of stadiums as one section of spectators stands up, arms lifting, then sits down as the next section does the same. Here we use variants of models originally developed for the description of excitable media to demonstrate that this collective human behaviour can be quantitatively interpreted by methods of statistical physics. Adequate modelling of reactions to triggering attempts provides a deeper insight into the mechanisms by which a crowd can be stimulated to execute a particular pattern of behaviour and represents a possible tool of control during events involving excited groups of people. Interactive simulations, video recordings and further images are available at the webpage dedicated to this work: http://angel.elte.hu/wave.

  5. The Virtual Wave Observatory (VWO)

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.

    2008-01-01

    Heliophysics wave data are currently not easily searchable by computers, making identifying pertinent wave data features for analyses and cross comparisons difficult and laborious. Since wave data analysis requires specialized knowledge about waves, which spans the spectrum of microphysics to macrophysics, researchers having varied expertise cannot easily use wave data. To resolve these difficulties and to allow wave data to contribute more fully to Heliophysics research, we are developing a Virtual Wave Observatory (VWO) whose goal is to enable all Heliophysics wave data to become searchable, understandable and usable by the Heliophysics community. The VWO objective is to enable search of multiple and distributed wave data (from both active and passive measurements). This presentation provides and overview of the VWO, a new VxO component within the emerging distributed Heliophysics data and model environment.

  6. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  7. Explosive plane-wave lens

    DOEpatents

    Marsh, Stanley P.

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  8. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  9. Adaptive multiconfigurational wave functions

    SciTech Connect

    Evangelista, Francesco A.

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  10. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  11. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  12. The role of Biot slow waves in electroseismic wave phenomena.

    PubMed

    Pride, Steven R; Garambois, Stéphane

    2002-02-01

    The electromagnetic fields that are generated as a spherical seismic wave (either P or S) traverses an interface separating two porous materials are numerically modeled both with and without the generation of Biot slow waves at the interface. In the case of an incident fast-P wave, the predicted electric-field amplitudes when slow waves are neglected can easily be off by as much as an order of magnitude. In the case of an incident S wave, the error is much smaller (typically on the order of 10% or less) because not much S-wave energy gets converted into slow waves. In neglecting the slow waves, only six plane waves (reflected and transmitted fast-P, S, and EM waves) are available with which to match the eight continuity conditions that hold at each interface. This overdetermined problem is solved by placing weights on the eight continuity conditions so that those conditions that are most important for obtaining the proper response are emphasized. It is demonstrated that when slow waves are neglected, it is best to also neglect the continuity of the Darcy flow and fluid pressure across an interface. The principal conclusion of this work is that to properly model the electromagnetic (EM) fields generated at an interface by an incident seismic wave, the full Biot theory that allows for generation of slow waves must be employed.

  13. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  14. Theory of Detonation Waves

    DTIC Science & Technology

    1942-05-04

    and progresses through .an explosive. Such a theory must explain how the head of the detonation wave initiates· the reaction (and the detonation ... theory of detonation is based on the assumption that the actual value of 9’ is this lower limit Cf1 ! This is tho so-called hypothesis of’ Chapman and...DEVELOP!i!ENT Progress Report on 11 Theory of Detonation Waves 11 to April 1, 1942 by John von Nounr.n Institute for Adv&nccd Study Princeton

  15. Alaska Wave Data Index

    DTIC Science & Technology

    1991-04-01

    13. Directional wave spectra: 14a. Con. wind data: Y 14b. Location sensor: Narwhal Island 14c. Period of record: 07/78-10/78 isa. Con. current data: Y... Narwhal Island 14c. Period of record: 07/78-10/78 15a. Con. current data: Y 15b. Location meters: S. of Cross Island & W of Stockton Island at Newport...10. Sample: 11. Burst sampling: 12. Burst Interval: 13. Directional wave spectra: 14a. Con. wind data: Y 14b. Location sensor: Narwhal Island 14c

  16. Vacuum Beat Wave Accelerator

    NASA Astrophysics Data System (ADS)

    Moore, C. I.; Hafizi, B.; Ting, A.; Burris, H. R.; Sprangle, P.; Esarey, E.; Ganguly, A.; Hirshfield, J. L.

    1997-11-01

    The Vacuum Beat Wave Accelerator (VBWA) is a particle acceleration scheme which uses the non-linear ponderomotive beating of two different frequency laser beams to accelerate electrons. A proof-of-principle experiment to demonstrate the VBWA is underway at the Naval Research Laboratory (NRL). This experiment will use the beating of a 1054 nm and 527 nm laser pulse from the NRL T-cubed laser to generate the beat wave and a 4.5 MeV RF electron gun as the electron source. Simulation results and the experimental design will be presented. The suitability of using axicon or higher order Gaussian laser beams will also be discussed.

  17. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  18. Mechanics, Waves and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  19. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  20. THERMOPLASTIC WAVES IN MAGNETARS

    SciTech Connect

    Beloborodov, Andrei M.; Levin, Yuri E-mail: yuri.levin@monash.edu.au

    2014-10-20

    Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure, and velocity, and discuss implications for observed magnetar activity.

  1. Caustics for spherical waves

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia; Motohashi, Hayato

    2017-03-01

    We study the development of caustics in shift-symmetric scalar field theories by focusing on simple waves with an S O (p )-symmetry in an arbitrary number of space dimensions. We show that the pure Galileon, the DBI-Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of caustic-free theories, highlighting a link between the caustic-free condition for simple S O (p )-waves and the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.

  2. Triangular rogue wave cascades.

    PubMed

    Kedziora, David J; Ankiewicz, Adrian; Akhmediev, Nail

    2012-11-01

    By numerically applying the recursive Darboux transformation technique, we study high-order rational solutions of the nonlinear Schrödinger equation that appear spatiotemporally as triangular arrays of Peregrine solitons. These can be considered as rogue wave cascades and complement previously discovered circular cluster forms. In this analysis, we reveal a general parametric restriction for their existence and investigate the interplay between cascade and cluster forms. As a result, we demonstrate how to generate many more hybrid rogue wave solutions, including semicircular clusters that resemble claws.

  3. Leapfrogging Kelvin waves

    NASA Astrophysics Data System (ADS)

    Hietala, N.; Hänninen, R.; Salman, H.; Barenghi, C. F.

    2016-12-01

    Two vortex rings can form a localized configuration whereby they continually pass through one another in an alternating fashion. This phenomenon is called leapfrogging. Using parameters suitable for superfluid helium-4, we describe a recurrence phenomenon that is similar to leapfrogging, which occurs for two coaxial straight vortex filaments with the same Kelvin wave mode. For small-amplitude Kelvin waves we demonstrate that our full Biot-Savart simulations closely follow predictions obtained from a simplified model that provides an analytical approximation developed for nearly parallel vortices. Our results are also relevant to thin-cored helical vortices in classical fluids.

  4. Eye Movements and Abducens Motoneuron Behavior after Cholinergic Activation of the Nucleus Reticularis Pontis Caudalis

    PubMed Central

    Márquez-Ruiz, Javier; Escudero, Miguel

    2010-01-01

    Study Objectives: The aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). Methods: Six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. Results: Unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. Conclusion The cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep. Citation: Márquez-Ruiz J; Escudero M. Eye movements and abducens motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis. SLEEP 2010;33(11):1517-1527. PMID:21102994

  5. Rogue wave observation in a water wave tank.

    PubMed

    Chabchoub, A; Hoffmann, N P; Akhmediev, N

    2011-05-20

    The conventional definition of rogue waves in the ocean is that their heights, from crest to trough, are more than about twice the significant wave height, which is the average wave height of the largest one-third of nearby waves. When modeling deep water waves using the nonlinear Schrödinger equation, the most likely candidate satisfying this criterion is the so-called Peregrine solution. It is localized in both space and time, thus describing a unique wave event. Until now, experiments specifically designed for observation of breather states in the evolution of deep water waves have never been made in this double limit. In the present work, we present the first experimental results with observations of the Peregrine soliton in a water wave tank.

  6. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  7. Localized coherence of freak waves

    NASA Astrophysics Data System (ADS)

    Latifah, Arnida L.; van Groesen, E.

    2016-09-01

    This paper investigates in detail a possible mechanism of energy convergence leading to freak waves. We give examples of a freak wave as a (weak) pseudo-maximal wave to illustrate the importance of phase coherence. Given a time signal at a certain position, we identify parts of the time signal with successive high amplitudes, so-called group events, that may lead to a freak wave using wavelet transform analysis. The local coherence of the critical group event is measured by its time spreading of the most energetic waves. Four types of signals have been investigated: dispersive focusing, normal sea condition, thunderstorm condition and an experimental irregular wave. In all cases presented in this paper, it is shown that a high correlation exists between the local coherence and the appearance of a freak wave. This makes it plausible that freak waves can be developed by local interactions of waves in a wave group and that the effect of waves that are not in the immediate vicinity is minimal. This indicates that a local coherence mechanism within a wave group can be one mechanism that leads to the appearance of a freak wave.

  8. Surface gravity-wave lensing.

    PubMed

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water.

  9. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  10. Resonant Alfven Wave Excitation

    NASA Astrophysics Data System (ADS)

    Hameiri, Eliezer

    1999-11-01

    Much of the theory of the Alfven wave resonance phenomenon was developed for a tokamak configuration where the magnetic field winds around the torus without entering the boundary. Thus, boundary conditions did not have to be considered.( J. Tataronis and W. Grossmann, Z. Phys. 261), 203 (1973). In most space plasma situations such as the magnetosphere or the Sun, as well as in the scrape-off layer of a divertor tokamak, this is not the case. When boundary conditions are considered, it is generally assumed for simplicity that the boundary is perfectly conducting, which implies that the Alfven wave bounce frequencies are real and the resonance phenomenon can be detected by some singularity in the equations. The nature of the singularity is usually described in terms of a Frobenius series.( A.N. Wright and M.J. Thompson, Phys. Plamsas 1), 691 (1994). In this work we consider resistive boundaries, which imply that the fast wave eigenfrequency is real, but the Alfven frequency is not. Thus, there is no exact resonance and no singularity in the equations. The solution of the problem is carried out asymptotically by finding an exact Laplace integral representation for the solution and then matching various regions. The energy transferred to the Alfven wave appears to be rather small.

  11. Gravitational waves from technicolor

    SciTech Connect

    Jaervinen, Matti; Sannino, Francesco; Kouvaris, Chris

    2010-03-15

    We investigate the production and possible detection of gravitational waves stemming from the electroweak phase transition in the early universe in models of minimal walking technicolor. In particular we discuss the two possible scenarios in which one has only one electroweak phase transition and the case in which the technicolor dynamics allows for multiple phase transitions.

  12. Nonclassical Matter Wave Sources

    DTIC Science & Technology

    2007-11-02

    Broglie to Heisenberg ”, invited talk, Alexander von Humboldt 18th Symposium, “100 Years Werner Heisenberg --- Works and Impact”, Bamberg, Germany, 2001...From de Broglie waves to Heisenberg ferromagnets”, Fortschritte der Physik 50, 664 (2002). 17. C. P. Search, H. Pu, W. Zhang, B. P. Anderson and P

  13. Waves and Crops

    ERIC Educational Resources Information Center

    Bennett, J.

    1973-01-01

    Discusses wave patterns on the surfaces of ripening wheat and barley crops when the wind is moderately strong. Examines the structure of the turbulence over such natural surfaces and conditions under which the crop may be damaged by the wind. (JR)

  14. ``Lurching waves'' in DPGraph

    NASA Astrophysics Data System (ADS)

    Ayers, R. Dean; Inan, Nader

    2003-10-01

    Introductory treatments of waves usually emphasize undamped traveling waves and ideal standing waves with perfect nodes. Those are just special cases from a larger class of waves in which the crests perform a characteristic ``lurching'' or ``galloping'' motion. The variation of a terminal reflection coefficient and the constant for damping in propagation generates a continuum of more realistic behaviors that connect the special, simple cases. Attempts to develop this larger class verbally and mathematically might seem abstract and complicated, but the use of kinetic computer graphics in an interactive mode makes their introduction straightforward. Preliminary observations and explorations with these images can then lead naturally to a mathematical treatment at a level appropriate for the audience. Software from DPGraph has been particularly convenient for the development of the figures. The fact that programming must be done using analytic expressions and no iterations is a valuable constraint; it forces the user to stay close to fundamentals in the physics and mathematics. Exploratory studies then encourage the programmer to ask analytic questions that might not have been considered otherwise. Several representative figures will be presented. [Work supported by the Paul S. Veneklasen Research Foundation and the CSULB Scholarly and Creative Activities Committee.

  15. Deflagration Wave Profiles

    SciTech Connect

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  16. Submillimeter wave heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Manohara, Harish (Inventor); Siegel, Peter H. (Inventor); Ward, John (Inventor)

    2011-01-01

    In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.

  17. Waves and Water Beetles

    ERIC Educational Resources Information Center

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  18. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  19. Oblique dust density waves

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  20. Fast Deflagration Waves.

    DTIC Science & Technology

    1980-07-01

    Fendell (1970) to finite Mach numbers, and uncovered the existence of very slow deflagration waves. JI.. -2- 2. The governing equations The governing...FlapmSI,$ Cambridge University Press. 2. Buckmaster, J. 1976. The quenching of deflagration vaves. Combust. Flme. 26, 151-162. 3. Bush, W.B. & Fendell , F.E

  1. Coded excitation plane wave imaging for shear wave motion detection.

    PubMed

    Song, Pengfei; Urban, Matthew W; Manduca, Armando; Greenleaf, James F; Chen, Shigao

    2015-07-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave SNR compared with conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2 to 4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (body mass index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue.

  2. Gravitational-Wave Detection (ii). Current Gravitational Wave Detector Results

    NASA Astrophysics Data System (ADS)

    Kanda, Nobuyuki

    2005-11-01

    The workshop session C1ii was focused on the results of recent operating detectors. 10 speakers presented the latest results of each experiments: ALLEGRO, GEO, LIGO, TAMA and VIRGO experiments. There were reports about searches for gravitational waves in analysis of observation data. The results are of no detection of gravitational waves, but observational upper-limits of gravitational waves are improved.

  3. Facial expression recognition and subthalamic nucleus stimulation

    PubMed Central

    Schroeder, U; Kuehler, A; Hennenlotter, A; Haslinger, B; Tronnier, V; Krause, M; Pfister, R; Sprengelmeyer, R; Lange, K; Ceballos-Baumann, A

    2004-01-01

    Objective: To study the impact of STN stimulation in Parkinson's disease on perception of facial expressions. Results: There was a selective reduction in recognition of angry faces, but not other expressions, during STN stimulation. Conclusions: The findings may have important implications for social adjustment in these patients. PMID:15026519

  4. Transformation method and wave control

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Hu, Jin; Hu, Geng-Kai

    2010-12-01

    Transformation method provides an efficient way to control wave propagation by materials. The transformed relations for field and material during a transformation are essential to fulfill this method. We propose a systematic method to derive the transformed relations for a general physic process, the constraint conditions are obtained by considering geometrical and physical constraint during a mapping. The proposed method is applied to Navier's equation for elastodynamics, Helmholtz's equation for acoustic wave and Maxwell's equation for electromagnetic wave, the corresponding transformed relations are derived, which can be used in the framework of transformation method for wave control. We show that contrary to electromagnetic wave, the transformed relations are not uniquely determined for elastic wave and acoustic wave, so we have a freedom to choose them differently. Using the obtained transformed relations, we also provide some examples for device design, a concentrator for elastic wave, devices for illusion acoustic and illusion optics are conceived and validated by numerical simulations.

  5. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  6. Locally homogeneous pp-waves

    NASA Astrophysics Data System (ADS)

    Globke, Wolfgang; Leistner, Thomas

    2016-10-01

    We show that every n-dimensional locally homogeneous pp-wave is a plane wave, provided it is indecomposable and its curvature operator, when acting on 2-forms, has rank greater than one. As a consequence we obtain that indecomposable, Ricci-flat locally homogeneous pp-waves are plane waves. This generalises a classical result by Jordan, Ehlers and Kundt in dimension 4. Several examples show that our assumptions on indecomposability and the rank of the curvature are essential.

  7. Evaluation of ADCP Wave Measurements

    DTIC Science & Technology

    2006-12-01

    pitch , roll , and heave motions that can place a ship’s stability in jeopardy (Beal, 1991). Wave conditions can also change rapidly and this can...measure the horizontal buoy displacements (yielding wave direction). Another type of buoy known as a “ pitch and roll buoy” (Longuet-Higgins et al...1963) measures tilt angles or pitch and roll to calculate wave direction. Newer buoys use global positioning systems (GPS) to obtain wave height and

  8. Extreme events in Faraday waves

    NASA Astrophysics Data System (ADS)

    Punzmann, Horst; Shats, Michael; Xia, Hua

    2014-05-01

    Observations of extreme wave events in the ocean are rare due to their low statistical probability. In the laboratory however, the evolution of extreme wave events can be studied in great detail with high spatial and temporal resolution. The reported surface wave experiments in the short wavelength gravity-capillary range aim to contribute to the understanding of some of the underlying mechanisms for rogue wave generation. In this talk, we report on extreme wave events in parametrically excited Faraday waves. Faraday waves appear if a fluid is accelerated (normal to the fluid surface) above a critical threshold. A variety of novel tools have been deployed to characterize the 2D surface elevation. The results presented show spatio-temporal and statistical data on the surface wave conditions leading up to extreme wave events. The peak in wave amplitude during such an event is shown to exceed six times the standard deviation of the average wave field with significantly increased statistical probability compared to the background wave field [1]. The experiments also show that parametrically excited waves can be viewed as assembles of oscillons [2] (or oscillating solitons) where modulation instability seems to play a crucial role in their formation. More detailed studies on the oscillon dynamics reveal that the onset of an increased probability of extreme wave events correlates with the increase in the oscillons mobility and merger [3]. Reference: 1. Xia H., Maimbourg T., Punzmann H., and Shats M., Oscillon dynamics and rogue wave generation in Faraday surface ripples, Physical Review Letters 109, 114502 (2012) 2. Shats M., Xia H., and Punzmann H., Parametrically excited water surface ripples as ensembles of oscillons, Physical Review Letters 108, 034502 (2012) 3. Shats M., Punzmann H., Xia H., Capillary rogue waves, Physical Review Letters, 104, 104503 (2010)

  9. Observed Statistics of Extreme Waves

    DTIC Science & Technology

    2006-12-01

    9 Figure 5. An energy stealing wave as a solution to the NLS equation . (From: Dysthe and...shown that nonlinear interaction between four colliding waves can produce extreme wave behavior. He utilized the NLS equation in his numerical ...2000) demonstrated the formation of extreme waves using the Korteweg de Vries ( KdV ) equation , which is valid in shallow water. It was shown in the

  10. Are Rogue Waves Really Unexpected?

    NASA Astrophysics Data System (ADS)

    Fedele, Francesco

    2016-05-01

    An unexpected wave is defined by Gemmrich & Garrett (2008) as a wave that is much taller than a set of neighboring waves. Their definition of "unexpected" refers to a wave that is not anticipated by a casual observer. Clearly, unexpected waves defined in this way are predictable in a statistical sense. They can occur relatively often with a small or moderate crest height, but large unexpected waves that are rogue are rare. Here, this concept is elaborated and statistically described based on a third-order nonlinear model. In particular, the conditional return period of an unexpected wave whose crest exceeds a given threshold is developed. This definition leads to greater return periods or on average less frequent occurrences of unexpected waves than those implied by the conventional return periods not conditioned on a reference threshold. Ultimately, it appears that a rogue wave that is also unexpected would have a lower occurrence frequency than that of a usual rogue wave. As specific applications, the Andrea and WACSIS rogue wave events are examined in detail. Both waves appeared without warning and their crests were nearly $2$-times larger than the surrounding $O(10)$ wave crests, and thus unexpected. The two crest heights are nearly the same as the threshold~$h_{0.3\\cdot10^{6}}\\sim1.6H_{s}$ exceeded on average once every~$0.3\\cdot 10^{6}$ waves, where $H_s$ is the significant wave height. In contrast, the Andrea and WACSIS events, as both rogue and unexpected, would occur slightly less often and on average once every~$3\\cdot10^{6}$ and~$0.6\\cdot10^6$ waves respectively.

  11. Observations of running penumbral waves.

    NASA Technical Reports Server (NTRS)

    Zirin, H.; Stein, A.

    1972-01-01

    Quiet sunspots with well-developed penumbrae show running intensity waves with period running around 300 sec. The waves appear connected with umbral flashes of exactly half the period. Waves are concentric, regular, with velocity constant around 10 km/sec. They are probably sound waves and show intensity fluctuation in H alpha centerline or wing of 10 to 20%. The energy is tiny compared to the heat deficit of the umbra.

  12. Modeling Seismic Noise Body Waves

    NASA Astrophysics Data System (ADS)

    Stutzmann, E.; Farra, V.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.

    2014-12-01

    Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. The sources correspond to pressure fluctuations close to the ocean surface. They generate acoustic waves in the ocean, which are then converted into P, SV, and Rayleigh waves in the deeper Earth layers. Rayleigh waves are the most energetic noise signal but body wave amplitude can be extracted using beamforming analysis. We analyze several typhoons recorded by the Southern California Seismic Network and we show that the detected P-wave amplitudes are frequency dependent. In order to understand the body wave generation mechanism, we model the P-wave amplitude. The sources are the power spectral density of the pressure derived from the ocean wave interaction model. They are distributed along the ocean surface and they are frequency dependent. We then compute the site effect of the ocean layer upon body waves generated by the noise sources. The site effect can be described as the constructive interference of multiply reflected P waves in the ocean that are then converted to P waves at the ocean-crust interface. It varies with frequency and ocean depth. Finally we compute the propagation from the source area to the network by taking into account seismic attenuation and geometrical spreading. We show that the modeled P-wave amplitude reproduce well the frequency dependent variations of the measured P-wave. This frequency dependent effect is due to both the source and site effect. We define the effective source as the product of the power spectral density of the pressure close to the surface and the site effect. We show that its maximum is consistent with the source location obtained by back projecting the slowness derived from the beamforming analysis. Finally, we show that body wave analysis enable to efficiently constrain the amount of sources generated by ocean wave reflected at the coast.

  13. ULF waves in the magnetosphere

    SciTech Connect

    Takahashi, Kazue )

    1991-01-01

    Research efforts in the area of magnetospheric ULF waves in the 1987-1990 period are reviewed. Attention is given to externally excited hydromagnetic waves including field line resonance, the global cavity mode, bow-shock-associated upstream waves, and Kelvin-Helmholtz waves. Consideration is given to internally excited Pc 4-5 pulsations and the role of these pulsations in the diffusion of ring-current ions based on the observed properties of the pulsations. 154 refs.

  14. Nonlinear Waves on Stochastic Support: Calcium Waves in Astrocyte Syncytia

    NASA Astrophysics Data System (ADS)

    Jung, P.; Cornell-Bell, A. H.

    Astrocyte-signaling has been observed in cell cultures and brain slices in the form of Calcium waves. Their functional relevance for neuronal communication, brain functions and diseases is, however, not understood. In this paper, the propagation of intercellular calcium waves is modeled in terms of waves in excitable media on a stochastic support. We utilize a novel method to decompose the spatiotemporal patterns into space-time clusters (wave fragments). Based on this cluster decomposition, a statistical description of wave patterns is developed.

  15. Wave/current interaction model

    NASA Technical Reports Server (NTRS)

    Liu, A. K.

    1988-01-01

    The wave-current interaction for the application to remote sensing data via numerical simulations and data comparison is modelled. Using the field data of surface current shear, wind condition and ambient wave spectrum, the numerical simulations of directional wave spectrum evolution were used to interpret and to compare with the aircraft data from Radar Ocean Wave Spectrometer (ROWS) and Surface Contour Radar (SCR) across the front during Frontal Air Sea Interaction Experiment (FASINEX). The wave-ice interaction was inspired by the observation of large amplitude waves hundreds of kms inside the ice pack in the Weddell Sea, resulting in breakup of the ice pack. The developed analysis of processes includes the refraction of waves at the pack edge, the effects of pack compression on wave propagation, wave train stability and buckling stability in the ice pack. Sources of pack compression and interaction between wave momentum and pack compression are investigated. Viscous camping of propagating waves in the marginal ice zone are also studied. The analysis suggests an explanation for the change in wave dispersion observed from the ship and the sequence of processes that cause ice pack breakup, pressure ridge formation and the formation of open bands of water.

  16. Energy in a String Wave

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  17. Modelling seismic noise body waves

    NASA Astrophysics Data System (ADS)

    Stutzmann, Éléonore; Gualtieri, Lucia; Farra, Veronique; Capdeville, Yann; Schimmel, Martin; Ardhuin, Fabrice; Morelli, Andrea

    2014-05-01

    Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. We present the theory for computing the site effect of the ocean layer upon body waves generated by noise sources distributed along the ocean surface. We show that the ocean site effect can be described as the constructive interference of multiply reflected P-waves in the ocean that are then converted to either P-waves or SV-waves at the ocean-crust interface.The site effect varies strongly with period and ocean depth and that it is is stronger for P-waves than for S-waves. We validate our computation by comparing the theoretical noise body-wave sources with the sources inferred from beamforming analysis of the three seismogram components recorded by the Southern California Seismic Network. We use rotated traces for the beamforming analysis, and we show that we clearly detect P-waves generated by ocean gravity wave interactions along the track of typhoon Ioke (September 2006). We model the variability of the recorded P-waves associated with the typhon. We do not detect the corresponding SV-waves, and we demonstrate that this is because their amplitude is too weak to be detected.

  18. Wave-particle dynamics of wave breaking in the self-excited dust acoustic wave.

    PubMed

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  19. Wave motions and wave heating in the upper solar atmosphere

    NASA Astrophysics Data System (ADS)

    Poletto, G.

    The experimental and theoretical evidence favoring the wave heating mechanism in the low chromosphere is briefly reviewed, and the possibility of maintaining this mechanism, with proper modifications, in the higher layer is studied. Wave mode candidates for heating at high levels are analyzed, including gravity waves and Alfven waves. Waves in the upper chromosphere and the transition region are considered, showing power spectra of oscillations in lines forming at increasing heights in the solar atmosphere, fluctuations in UV line intensity, the predicted relationship between velocity and intensity modulation for acoustic waves, and sample results from UV spectrometer and polarimeter observations. It is concluded that in the upper chromosphere and transition regions, observations fail to reveal an acoustic flux adequate to compensate for the energy losses in these layers. Alfven waves, observed in the solar wind, could supply the required energy flux, but their presence cannot either be confirmed or ruled out.

  20. Wave-particle dualism of spiral waves dynamics.

    PubMed

    Biktasheva, I V; Biktashev, V N

    2003-02-01

    We demonstrate and explain a wave-particle dualism of such classical macroscopic phenomena as spiral waves in active media. That means although spiral waves appear as nonlocal processes involving the whole medium, they respond to small perturbations as effectively localized entities. The dualism appears as an emergent property of a nonlinear field and is mathematically expressed in terms of the spiral waves response functions, which are essentially nonzero only in the vicinity of the spiral wave core. Knowledge of the response functions allows quantitatively accurate prediction of the spiral wave drift due to small perturbations of any nature, which makes them as fundamental characteristics for spiral waves as mass is for the condensed matter.

  1. Resonance wave pumping: wave mass transport pumping

    NASA Astrophysics Data System (ADS)

    Carmigniani, Remi; Violeau, Damien; Gharib, Morteza

    2016-11-01

    It has been previously reported that pinching at intrinsic resonance frequencies a valveless pump (or Liebau pump) results in a strong pulsating flow. A free-surface version of the Liebau pump is presented. The experiment consists of a closed tank with a submerged plate separating the water into a free-surface and a recirculation section connected through two openings at each end of the tank. A paddle is placed at an off-centre position at the free-surface and controlled in a heaving motion with different frequencies and amplitudes. Near certain frequencies identified as resonance frequencies through a linear potential theory analysis, the system behaves like a pump. Particle Image Velocimetry (PIV) is performed in the near free surface region and compared with simulations using Volume of Fluid (VOF) method. The mean eulerian mass flux field (ρ) is extracted. It is observed that the flow is located in the vicinity of the surface layer suggesting Stokes Drift (or Wave Mass Transport) is the source of the pumping. A model is developped to extend the linear potential theory to the second order to take into account these observations. The authors would like to acknowledge the Gordon and Betty Moore Foundation for their generous support.

  2. Gravitational wave astronomy.

    NASA Astrophysics Data System (ADS)

    Finn, L. S.

    Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.

  3. Gravity wave initiated convection

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  4. Waving potential in graphene.

    PubMed

    Yin, Jun; Zhang, Zhuhua; Li, Xuemei; Yu, Jin; Zhou, Jianxin; Chen, Yaqing; Guo, Wanlin

    2014-05-06

    Nanoscale materials offer much promise in the pursuit of high-efficient energy conversion technology owing to their exceptional sensitivity to external stimulus. In particular, experiments have demonstrated that flowing water over carbon nanotubes can generate electric voltages. However, the reported flow-induced voltages are in wide discrepancy and the proposed mechanisms remain conflictive. Here we find that moving a liquid-gas boundary along a piece of graphene can induce a waving potential of up to 0.1 V. The potential is proportional to the moving velocity and the graphene length inserted into ionic solutions, but sharply decreases with increasing graphene layers and vanishes in other materials. This waving potential arises from charge transfer in graphene driven by a moving boundary of an electric double layer between graphene and ionic solutions. The results reveal a unique electrokinetic phenomenon and open prospects for functional sensors, such as tsunami monitors.

  5. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  6. Nonlinear Hysteretic Torsional Waves.

    PubMed

    Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

    2015-07-31

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  7. Supersymmetric string waves

    SciTech Connect

    Bergshoeff, E.A. ); Kallosh, R.; Ortin, T. )

    1993-06-15

    We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dialton, axion, and gauge fields. Some conspiracy between the metric and the axion field is required. The [alpha][prime] stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations are shown to vanish for a special class of these solutions that we call supersymmetric string waves (SSW's). In the SSW solutions, there exists a conspiracy not only between the metric and the axion field, but also between the gauge fields and the metric, since the embedding of the spin connection in the gauge group is required.

  8. Wave transformation over coral reefs

    NASA Astrophysics Data System (ADS)

    Young, Ian R.

    1989-07-01

    Ocean wave attenuation on coral reefs is discussed using data obtained from a preliminary field experiment and from the Seasat altimeter. Marked attenuation of the waves is observed, the rate being consistent with existing theories of bottom friction and wave breaking decay. In addition, there is a significant broadening of the spectrum during propagation across reefs. Three-dimensional effects, such as refraction and defraction, can also lead to substantial wave height reduction for significant distances adjacent to coral reefs. As a result, a matrix of such reefs provides significantly more wave attenuation than may initially be expected.

  9. Gravity waves on shear flows

    NASA Astrophysics Data System (ADS)

    Miles, John

    2001-09-01

    The eigenvalue problem for gravity waves on a shear flow of depth h and non-inflected velocity profile U(y) (typically parabolic) is revisited, following Burns (1953) and Yih (1972). Complementary variational formulations that provide upper and lower bounds to the Froude number F as a function of the wave speed c and wavenumber k are constructed. These formulations are used to improve Burns's long-wave approximation and to determine Yih's critical wavenumber k[low asterisk], for which the wave is stationary (c = 0) and to which k must be inferior for the existence of an upstream running wave.

  10. Snell's Law for Spin Waves.

    PubMed

    Stigloher, J; Decker, M; Körner, H S; Tanabe, K; Moriyama, T; Taniguchi, T; Hata, H; Madami, M; Gubbiotti, G; Kobayashi, K; Ono, T; Back, C H

    2016-07-15

    We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

  11. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  12. Snell's Law for Spin Waves

    NASA Astrophysics Data System (ADS)

    Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.

    2016-07-01

    We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

  13. Spatiotemporal chaos involving wave instability

    NASA Astrophysics Data System (ADS)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  14. Introduction to the Physics of Waves

    NASA Astrophysics Data System (ADS)

    Freegarde, Tim

    2012-11-01

    Preface; 1. The essence of wave motion; 2. Wave equations and their solution; 3. Further wave equations; 4. Sinusoidal waveforms; 5. Complex wavefunctions; 6. Huygens wave propagation; 7. Geometrical optics; 8. Interference; 9. Fraunhofer diffraction; 10. Longitudinal waves; 11. Continuity conditions; 12. Boundary conditions; 13. Linearity and superpositions; 14. Fourier series and transforms; 15. Waves in three dimensions; 16. Operators for wave motions; 17. Uncertainty and quantum mechanics; 18. Waves from moving sources; 19. Radiation from moving charges; Appendix: vector mathematics; Index.

  15. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    SciTech Connect

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  16. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  17. Large Waves in Channels

    DTIC Science & Technology

    1987-06-20

    69 4.2.1 Data of Peregrine . ..... ......... .69 4.2.2 Lituya Bay Landslide Wave .. ........ .. 69 1......................7 6...iii LIST OF ILLUSTIATIONS Figure la: Map of Lituya Bay Showing Forest Trimline .......... (Miller, 1960) Figure Ib: Photo ra h of Lituya Bay Before...have felt it appropriate to present some new results even here, as will be shown later. Lituya Bay is situated on the Gulf of Alaska south of Yakutat

  18. Internal Ocean Waves

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1

  19. Nonlinear Wave Propagation.

    DTIC Science & Technology

    1987-11-23

    generalized wave equation (GWE) when (z) 0 (1-Z2)/2: - X(z). (1.5) The compatibility condition required for the existence of solutions to these B~icklund...Phys. tion of a class of nonlocal nonlinear evolution equations , A 15 (1982) 781. INS *47, Clarkson University (1985), to be published in J. Math... semilinear form. The above approach will fail if there exist linearizable quasilinear equations which can not be mapped to a semilinear from. It is shown in

  20. Catching the Telecom Wave

    NASA Astrophysics Data System (ADS)

    Tian, Jing

    2001-03-01

    The telecom wave is sweeping the globe; however, many of us feel caught in backwater disciplines. How does one leverage her skills to become a player in a fast-growing field? This talk will suggest some strategies and share some personal experiences: in transitioning from established companies (electronics and biotech) to a very early stage telecom start-up; in choosing an appropriate industry segment and the right startup; and in preparing for immersing oneself in the start up environment.