Science.gov

Sample records for subtropical north pacific

  1. Marine debris collects within the North Pacific Subtropical Convergence Zone.

    PubMed

    Pichel, William G; Churnside, James H; Veenstra, Timothy S; Foley, David G; Friedman, Karen S; Brainard, Russell E; Nicoll, Jeremy B; Zheng, Quanan; Clemente-Colón, Pablo

    2007-08-01

    Floating marine debris, particularly derelict fishing gear, is a hazard to fish, marine mammals, turtles, sea birds, coral reefs, and even human activities. To ameliorate the economic and environmental impact of marine debris, we need to efficiently locate and retrieve dangerous debris at sea. Guided by satellite-derived information, we made four flights north of Hawaii in March and April 2005. During these aerial surveys, we observed over 1800 individual pieces of debris, including 122 derelict fishing nets. The largest debris concentrations were found just north of the North Pacific Transition Zone Chlorophyll Front (TZCF) within the North Pacific Subtropical Convergence Zone (STCZ). Debris densities were significantly correlated with sea-surface temperature (SST), chlorophyll-a concentration (Chla), and the gradient of Chla. A Debris Estimated Likelihood Index (DELI) was developed to predict where high concentrations of debris would be most likely in the North Pacific during spring and early summer.

  2. Enhanced warming of the subtropical mode water in the North Pacific and North Atlantic

    NASA Astrophysics Data System (ADS)

    Sugimoto, Shusaku; Hanawa, Kimio; Watanabe, Tomowo; Suga, Toshio; Xie, Shang-Ping

    2017-09-01

    Over the past six decades, the subtropical surface ocean has warmed at rates close to those of global mean surface ocean temperature except in western boundary current regions where the surface warming is locally enhanced by a factor of two. Changes in the subsurface ocean, however, remain unclear because of lack of data. Compiling historical temperature measurements--some available for the first time--here we show that the subtropical mode water has warmed over the past six decades in both the North Pacific and North Atlantic. The rate of the warming is twice as large in the mode waters than at the surface. Subtropical mode waters are important water masses of vertically uniform temperature that are a few hundred metres thick and distributed widely in the main thermocline of the subtropical oceans. The enhanced warming of subtropical mode waters can be traced back to the surface warming in the formation regions along the western boundary current extensions. Furthermore, we detect increased temperature stratification and decreased dissolved oxygen in the subtropical mode waters. The latter change has clear implications for predicting biogeochemical responses to climate warming.

  3. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre

    PubMed Central

    Gradoville, Mary R.; Crump, Byron C.; Letelier, Ricardo M.; Church, Matthew J.; White, Angelicque E.

    2017-01-01

    Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C) and dinitrogen (N2) fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG). The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99%) from Trichodesmium Clade I (i.e., T. thiebautii), which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme) identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S rRNA gene sequence

  4. The annual silica cycle of the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Brzezinski, Mark A.; Krause, Jeffrey W.; Church, Matthew J.; Karl, David M.; Li, Binglin; Jones, Janice L.; Updyke, Brett

    2011-10-01

    Silica cycling in the upper 175 m of the North Pacific Subtropical Gyre was examined over a two year period (January 2008-December 2009) at the Hawaii Ocean Time-series (HOT) station ALOHA. Silicic acid concentrations in surface waters ranged from 0.6 to 1.6 μM, exhibiting no clear seasonal trends. Biogenic silica concentrations and silica production rates increased by an order of magnitude each summer following stratification of the upper 50 m reaching values of 157 nmol Si L -1 and 81 nmol Si L -1 d -1, in 2008 and 2009, respectively. Sea surface height anomalies together with analyses of variability in isothermal surfaces at 150-175 m indicated that the summer periods of elevated biogenic silica were associated with anticyclonic mesoscale features during both years. Lithogenic silica concentrations increased in the spring during the known period of maximum atmospheric dust concentrations with maximum values of 36 nmol Si L -1 in the upper 10 m. Dust deposition would enhance levels of dissolved iron in surface waters, but there was no response of diatom biomass or silica production to increases in near-surface ocean lithogenic silica concentrations suggesting iron sufficiency of diatom silica production rates. Low ambient silicic acid concentrations restricted silica production rates to an average of 43% of maximum potential rates. Si sufficiency only occurred during the summer period when diatom biomass was elevated suggesting that bloom diatoms are adapted to exploit low silicic acid concentrations. Annual silica production at HOT is estimated to be 63 mmol Si m -2 a -1 with summer blooms contributing 29% of the annual total. Diatoms are estimated to account for 3-7% of total phytoplankton primary productivity, but 9-20% of organic carbon export confirming past suggestions that diatoms are relatively minor contributors to primary productivity and autotrophic biomass, but important contributors to new and export production in oligotrophic open-ocean ecosystems

  5. Variability of chromophytic phytoplankton in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Li, Binglin; Karl, David M.; Letelier, Ricardo M.; Bidigare, Robert R.; Church, Matthew J.

    2013-09-01

    Eukaryotic phytoplankton play important roles in regulating productivity and material export in oligotrophic ocean ecosystems. In this study, we examined the vertical and temporal variability in planktonic Chromalveolate (hereafter chromophyte) assemblages over a 2-year period (2007-2009) at Station ALOHA (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Polymerase chain reaction (PCR) amplification, cloning, and sequencing of form ID rbcL genes from samples collected at nearly monthly intervals provided information on the diversity, abundances, and variability associated with chromophytic phytoplankton. Despite persistently oligotrophic conditions, the euphotic zone of this habitat supported a phylogenetically diverse assemblage of chromophytic algae, including representatives of various genera of diatoms, pelagophytes, prymnesiophytes, and dinoflagellates. Quantitative PCR (qPCR) amplification of diatom, prymnesiophyte, and pelagophyte rbcL phylotypes revealed that the population structure of these assemblages was highly variable in time, with gene abundances often varying more than an order of magnitude between successive months. Diatom rbcL genes were typically the most abundant in both the upper and lower regions of the euphotic zone, while rbcL gene abundances of the prymnesiophytes and pelagophytes were significantly greater (One-way ANOVA, P<0.05) in the lower regions of the euphotic zone (75-125 m) than in the upper euphotic zone (5-45 m). Similarly, we observed elevated concentrations of 19-hexanoxyfucoxanthin and 19-butanoxyfucoxanin (diagnostic pigments of prymnesiophytes and pelagophytes, respectively) in the lower euphotic zone, while concentrations of fucoxanthin (a diagnostic diatom pigment) demonstrated less vertical structure. Analyses of samples collected using sediment traps deployed at 150 m revealed that members of diatoms, prymnesiophytes, and pelagophytes all contributed to material export out of the upper ocean. None of the

  6. Special issue on the advances in understanding of the North Pacific subtropical front ecosystem

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip; Seki, Michael P.; Ichii, Taro

    2017-01-01

    Subtropical, oligotrophic oceanic gyres are the largest marine ecosystems in the world. They provide important habitat for many higher trophic level species of fish, squid, seabirds, and marine mammals, with some taxa undergoing extensive seasonal migrations between the subtropical frontal region and summer feeding grounds in the subarctic. Knowledge of the structure, variability, and trends of these regions has developed slowly because of their immense size, remote location, and cost of sampling. The first consolidation of the general understanding of the physical nature of the subtropical North Pacific Ocean (and subarctic transition) was published 25 years ago (Roden, 1991) with important information on its relationship to biota added by the now defunct International North Pacific Fisheries Commission (INPFC, 1992; Ito et al., 1993). At that time, a research imperative had arisen from a need by governments to understand the effects of large-scale pelagic driftnet fishing on marine ecosystems (Wetherall, 1991).

  7. Environmental drivers of mesozooplankton biomass variability in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Valencia, Bellineth; Landry, Michael R.; Décima, Moira; Hannides, Cecelia C. S.

    2016-12-01

    The environmental drivers of zooplankton variability are poorly explored for the central subtropical Pacific, where a direct bottom-up food-web connection is suggested by increasing trends in primary production and mesozooplankton biomass at station ALOHA (A Long-term Oligotrophic Habitat Assessment) over the past 20 years (1994-2013). Here we use generalized additive models (GAMs) to investigate how these trends relate to the major modes of North Pacific climate variability. A GAM based on monthly mean data explains 43% of the temporal variability in mesozooplankton biomass with significant influences from primary productivity (PP), sea surface temperature (SST), North Pacific Gyre Oscillation (NPGO), and El Niño. This result mainly reflects the seasonal plankton cycle at station ALOHA, in which increasing light and SST lead to enhanced nitrogen fixation, productivity, and zooplankton biomass during summertime. Based on annual mean data, GAMs for two variables suggest that PP and 3-4 year lagged NPGO individually account for 40% of zooplankton variability. The full annual mean GAM explains 70% of variability of zooplankton biomass with significant influences from PP, 4 year lagged NPGO, and 4 year lagged Pacific Decadal Oscillation (PDO). The NPGO affects wind stress, sea surface height, and subtropical gyre circulation and has been linked to mideuphotic zone anomalies in salinity and PP at station ALOHA. Our study broadens the known impact of this climate mode on plankton dynamics in the North Pacific. While lagged transport effects are also evident for subtropical waters, our study highlights a strong coupling between zooplankton fluctuations and PP, which differs from the transport-dominated climate influences that have been found for North Pacific boundary currents.

  8. Recent increase in surface fCO2 in the western subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Kim, Dongseon; Choi, Yujeong; Kim, Tae-Wook; Park, Geun-Ha

    2017-05-01

    We observed unusually high levels (> 440 μatm) of carbon dioxide fugacity (fCO2) in surface seawater in the western subtropical North Pacific, the area where Subtropical Mode Water is formed, during summer 2015. The NOAA Kuroshio Extension Observatory moored buoy located in this region also measured high CO2 values, up to 500 μatm during this period. These high sea surface fCO2 (fCO2SW) values are explained by much higher normalized total dissolved inorganic carbon and slightly higher normalized total alkalinity concentrations in this region compared to the equatorial Pacific. Moreover, these values are much higher than the climatological CO2 values, even considering increasing atmospheric CO2, indicating a recent large increase in sea surface CO2 concentrations. A large seasonal change in sea surface temperature contributed to higher surface fCO2SW in the summer of 2015.

  9. Seasonal variability in the phytoplankton community of the North Pacific Subtropical Gyre

    SciTech Connect

    Winn, C.D.; Campbell, L.; Christian, J.R.

    1995-12-01

    This study was performed to assess seasonal cycles in fluorescence and chlorophyll concentrations in the North Pacific Subtropical Gyre. Flow cytometry and continuous in situ flash fluorescence were used to measureme in situ fluorescence, extracted chlorophyll a, primary productivity, extracted adenosine 5-triphosphate, and fluorescence per cell. Chlorophyll a concentrations increased in winter and decreased in summer in the upper euphotic zone. In the lower euphotic zone, however, chlorophyll a concentrations increased in spring and decreased in fall. The winter increase in the upper zone appeared to be caused by photoadaptation to decreased light intensity. The seasonal variation in the lower zone was indicative of a change in primary production rate and phytoplankton biomass due to increased light intensity. Based on the similarities of these observations to satellite data and other regional data, the seasonal patterns identified in this study may be common to large areas of subtropical oceans. 52 refs., 7 figs., 2 tabs.

  10. Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Levine, Naomi M.

    2016-02-01

    Subtropical gyres contribute significantly to global ocean productivity. As the climate warms, the strength of these gyres as a biological carbon pump is predicted to diminish due to increased stratification and depleted surface nutrients. We present results suggesting that the impact of submesoscale physics on phytoplankton in the oligotrophic ocean is substantial and may either compensate or exacerbate future changes in carbon cycling. A new statistical tool was developed to quantify surface patchiness from sea surface temperatures. Chlorophyll concentrations in the North Pacific Subtropical Gyre were shown to be enhanced by submesoscale frontal dynamics with an average increase of 38% (maximum of 83%) during late winter. The magnitude of this enhancement is comparable to the observed decline in chlorophyll due to a warming of ~1.1°C. These results highlight the need for an improved understanding of fine-scale physical variability in order to predict the response of marine ecosystems to projected climate changes.

  11. Uncertainty in future projections of the North Pacific subtropical high and its implication for California winter precipitation change

    NASA Astrophysics Data System (ADS)

    Choi, Jung; Lu, Jian; Son, Seok-Woo; Frierson, Dargan M. W.; Yoon, Jin-Ho

    2016-01-01

    This study examines future projections of sea level pressure change in the North Pacific and its impact on winter precipitation changes in California. The multimodel analysis, based on the Coupled Model Intercomparison Project phase 5 models under the Representative Concentration Pathway 8.5 scenario, shows a robust sea level pressure change in the late 21st century over the western North Pacific in which both the Aleutian Low and the North Pacific subtropical high (NPSH) shift poleward in concert with a widening of the Hadley cell. This change is partly explained by a systematic increase of static stability in the subtropics. Despite its robustness, the projected NPSH changes over the eastern North Pacific exhibit a substantial intermodel spread, contributing as a cause for uncertain projections of precipitation changes in California. This intermodel spread in the eastern North Pacific is associated with a Pacific Decadal Oscillation-like surface temperature change in the western North Pacific and the resulting meridional temperature gradient change. This study points to a major source of uncertainty for the response of winter precipitation to global warming over the West Coast of North America: atmosphere-ocean coupling in the North Pacific.

  12. Interannual variability of the subtropical countercurrent eddies in the North Pacific associated with the Western-Pacific teleconnection pattern

    NASA Astrophysics Data System (ADS)

    Chow, Chun Hoe; Tseng, Yu-heng; Hsu, Huang-Hsiung; Young, Chih-Chieh

    2017-07-01

    The connection and the relevant dynamical processes between oceanic eddies in the North Pacific Subtropical Countercurrent (STCC) region and the atmospheric Western-Pacific (WP) teleconnection is investigated on interannual timescales. North of the STCC region, the local northerly surface wind anomalies cool the ocean surface during negative phases of the WP teleconnection. The local surface cooling modifies the meridional gradient of sea surface temperature (SST), strengthening the SST front at its south. In the STCC region, we show the meridional gradient of surface-heat-flux forcing caused by the local surface cooling is the same order as the Ekman-convergence forcing. The strengthened SST front then leads to the pycnocline shoaling in the STCC region, which can also enhance the growth of baroclinic instability to produce more oceanic eddies, in addition to the enhanced STCC proposed previously. These dynamics are reversed during the positive phases of WP teleconnection.

  13. Summer Diatom Blooms in the North Pacific Subtropical Gyre: 2008–2009

    PubMed Central

    Villareal, Tracy A.; Brown, Colbi G.; Brzezinski, Mark A.; Krause, Jeffrey W.; Wilson, Cara

    2012-01-01

    The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (∼30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 102–103 fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22–34°N occur within a broader temperature range (21–26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 102–103 over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 µm chl a fraction (∼40–90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 µm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 µm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the

  14. Responses of the East Asian jet stream to the North Pacific subtropical front in spring

    NASA Astrophysics Data System (ADS)

    Zhang, Leying; Xu, Haiming; Shi, Ning; Deng, Jiechun

    2017-02-01

    This study concerns atmospheric responses to the North Pacific subtropical front (NPSTF) in boreal spring over the period 1982-2014. Statistical results show that a strong NPSTF in spring can significantly enhance the East Asian jet stream (EAJS). Both transient eddy activity and the atmospheric heat source play important roles in this process. The enhanced atmospheric temperature gradient due to a strong NPSTF increases atmospheric baroclinicity, resulting in an intensification of transient eddy and convection activities. On the one hand, the enhanced transient eddy activities can excite an anomalous cyclonic circulation with a quasi-baraotropical structure in the troposphere to the north of the NPSTF. Accordingly, the related westerly wind anomalies around 30°N can intensify the component of the EAJS over the Northeast Pacific. On the other hand, an enhanced atmospheric heat source over the NPSTF, which is related to increased rainfall, acts to excite an anomalous cyclonic circulation system in the troposphere to the northwest of the NPSTF, which can explain the enhanced component of the EAJS over the Northwest Pacific. The two mechanisms may combine to enhance the EAJS.

  15. The Influences of the Atlantic Multidecadal Oscillation on the Mean Strength of the North Pacific Subtropical High during Boreal Winter

    NASA Astrophysics Data System (ADS)

    Lyu, K.; Yu, J. Y.; Paek, H.

    2016-12-01

    The Atlantic Multidecadal Oscillation (AMO) has been shown to be capable of exerting significant influences on the Pacific climate. In this study, we analyze reanalysis datasets and conduct forced and coupled experiments with an atmospheric general circulation model (AGCM) to explain why the winter North Pacific subtropical high strengthens and expands northwestward during the positive phase of the AMO. The results show that the tropical Atlantic warming associated with the positive phase leads to a westward displacement of the Pacific Walker circulation and a cooling of the tropical Pacific Ocean, thereby inducing anomalous descending motion over the central tropical Pacific. The descending motion then excites a stationary Rossby wave pattern that extends northward to produce a nearly-barotropic anticyclone over the North Pacific. A diagnosis based on the quasi-geostrophic vertical velocity equation reveals that the stationary wave pattern also results in enhanced subsidence over the northeastern Pacific via the anomalous advections of vorticity and temperature. The anomalous barotropic anticyclone and the enhanced subsidence are the two mechanisms that increase the sea level pressure over the North Pacific. The latter mechanism occurs to the southeast of the former one and thus is more influential in the subtropical high region. Both mechanisms can be produced in forced and coupled AGCMs but are displaced northward as a result of stationary wave patterns that differ from those observed. This explains why the model-simulated North Pacific sea level pressure responses to the AMO tend to be biased northward.

  16. Oxygen production/consumption rates in the upper layer of the northwestern subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Tsubono, K.; Suga, T.; Sukigara, C.; Kobayashi, T.; Hosoda, S.

    2010-12-01

    The cycling of nutrients in the subtropical gyre is crucial in sustaining primary production and the biological pump. Recently it has been proposed that subtropical mode water (STMW) and its subduction processes play a major role in sustaining nutrient distribution in the permanent pycnocline in the subtropical gyres and also facilitating nutrient supply to the euphotic zone. It is not easy, however, to describe temporal evolution of nutrients themselves associated with those processes over a few months to a year or so. As an alternative approach, we examine temporal evolution of dissolved oxygen, which increases or decreases associated with the nutrient utilization by primary production or its production by remineralization. We analyze time-series data of dissolved oxygen obtained by profiling floats drifting over several months to a year in the upper layer of the northwestern subtropical North Pacific. The purpose of this study is to document the temporal variation of dissolved oxygen in STMW and its adjacent layers, to estimate oxygen production/consumption rates at each vertical level, and to discuss their implication in nutrient cycle. The dissolved oxygen in the subsurface layer centered at 50-70 m continuously increased over a few months after the formation of the seasonal pycnocline, resulting in a distinctive shallow oxygen maximum (SOM). Since the SOM is insulated from the atmosphere, the net increase in its oxygen concentration must be attributable to biological oxygen production. On the other hand, a continuous decrease in dissolved oxygen over several months is observed in the layer below 100 m probably due to biological consumption. The estimation of the oxygen production/consumption rates is done by applying the least square method for the time series of dissolved oxygen either at each depth or each isopycnal surface. The Net Community Production (NCP) is estimated for the depth range of 0-100m, where the remarkable oxygen increase occurs. The

  17. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    PubMed

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-26

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  18. Response of North Pacific eastern subtropical mode water to greenhouse gas versus aerosol forcing

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Luo, Yiyong

    2016-04-01

    Mode water is a distinct water mass characterized by a near vertical homogeneous layer or low potential vorticity, and is considered essential for understanding ocean climate variability. Based on the output of GFDL CM3, this study investigates the response of eastern subtropical mode water (ESTMW) in the North Pacific to two different single forcings: greenhouse gases (GHGs) and aerosol. Under GHG forcing, ESTMW is produced on lighter isopycnal surfaces and is decreased in volume. Under aerosol forcing, in sharp contrast, it is produced on denser isopycnal surfaces and is increased in volume. The main reason for the opposite response is because surface ocean-to-atmosphere latent heat flux change over the ESTMW formation region shoals the mixed layer and thus weakens the lateral induction under GHG forcing, but deepens the mixed layer and thus strengthens the lateral induction under aerosol forcing. In addition, local wind changes are also favorable to the opposite response of ESTMW production to GHG versus aerosol.

  19. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Tianjun; Lin, Ailan; Wu, Bo; Gu, Dejun; Li, Chunhui; Zheng, Bin

    2015-11-01

    The Western North Pacific Subtropical High (WNPSH) regulates East Asian climate in summer. Anomalous WNPSH causes floods, droughts and heat waves in China, Japan and Korea. The potential change of the WNPSH under global warming is concerned by Asian people, but whether the WNPSH would be enhanced or weakened remains inconclusive. Based on the multi-model climate change projection from the 5th phase of Coupled Model Intercomparison Project (CMIP5), we show evidences that the WNPSH tends to weaken and retreat eastward in the mid-troposphere in response to global warming, accompanied by an eastward expansion of East Asian rain belt along the northwestern flank of WNPSH. Weakened meridional temperature gradient on the northern flank of WNPSH and the associated thermal wind account for the weakened WNPSH in the mid troposphere. We recommend the WNPSH be measured by eddy geopotential height (He) instead of traditionally used geopotential height, especially in climate change studies.

  20. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.

    PubMed

    Dore, John E; Lukas, Roger; Sadler, Daniel W; Karl, David M

    2003-08-14

    The oceans represent a significant sink for atmospheric carbon dioxide. Variability in the strength of this sink occurs on interannual timescales, as a result of regional and basin-scale changes in the physical and biological parameters that control the flux of this greenhouse gas into and out of the surface mixed layer. Here we analyse a 13-year time series of oceanic carbon dioxide measurements from station ALOHA in the subtropical North Pacific Ocean near Hawaii, and find a significant decrease in the strength of the carbon dioxide sink over the period 1989-2001. We show that much of this reduction in sink strength can be attributed to an increase in the partial pressure of surface ocean carbon dioxide caused by excess evaporation and the accompanying concentration of solutes in the water mass. Our results suggest that carbon dioxide uptake by ocean waters can be strongly influenced by changes in regional precipitation and evaporation patterns brought on by climate variability.

  1. Diatoms in the desert: Plankton community response to a mesoscale eddy in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Brown, Susan L.; Landry, Michael R.; Selph, Karen E.; Jin Yang, Eun; Rii, Yoshimi M.; Bidigare, R. R.

    2008-05-01

    As part of the E-Flux project, we documented spatial variability and temporal changes in plankton community structure in a cold-core cyclonic eddy in the lee of the Hawaiian Islands. Cyclone Opal spanned 200 km in diameter, with sharply uplifted isopycnals (80-100 m relative to surrounding waters) and a strongly expressed deep chlorophyll a maximum (DCM) in its central core region of 40 km diameter. Microscopic and flow cytometric analyses of samples from across the eddy revealed dramatic transitions in phytoplankton community structure, reflecting Opal's well-developed physical structure. Upper mixed-layer populations in the eddy resembled those outside the eddy and were dominated by picophytoplankton. In contrast, the DCM was composed of large chain-forming diatoms dominated by Chaetoceros and Rhizosolenia spp. Diatoms attained unprecedented levels of biomass (nearly 90 μg C l -1) in the center of the eddy, accounting for 85% of photosynthetic biomass. Protozoan grazers displayed two- to three-fold higher biomass levels in the eddy center as well. We also found a distinct and persistent layer of senescent diatom cells overlying healthy populations, often separated by less than 10 m, indicating that we were sampling a bloom in a state of decline. Time-series sampling over 8 days showed a successional shift in community structure within the central diatom bloom, from the unexpected large chain-forming species to smaller forms more typical of the subtropical North Pacific. The diatom bloom of Cyclone Opal was a unique, and possibly extreme, example of biological response to physical forcing in the North Pacific subtropical gyre, and its detailed study may therefore help to improve our predictive understanding of environmental controls on plankton community structure.

  2. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre

    PubMed Central

    Goodwin, Deborah S.

    2013-01-01

    Substantial quantities of small plastic particles, termed “microplastic,” have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the “rafting assemblage,” are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem. PMID:24167779

  3. Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre.

    PubMed

    Goldstein, Miriam C; Goodwin, Deborah S

    2013-01-01

    Substantial quantities of small plastic particles, termed "microplastic," have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the "rafting assemblage," are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem.

  4. Subsurface new production in the northwestern subtropical North Pacific fueled by nutrients from the Subtropical Mode Water

    NASA Astrophysics Data System (ADS)

    Suga, T.; Sukigara, C.; Saino, T.; Toyama, K.; Yanagimoto, D.; Hanawa, K.; Shikama, N.; Tsubono, K.; Kobayashi, T.; Hosoda, S.; Hibiya, T.; Furuichi, N.

    2010-12-01

    Substantial sustained subsurface new production during summer in the northwestern subtropical North Pacific is demonstrated, with its mechanism being proposed, based on observation by a profiling float and a synoptic survey by a research vessel. The profiling float equipped with a fluorometer, a dissolved oxygen (DO) sensor, and temperature and salinity sensors was deployed in the Subtropical Mode Water (STMW) formation region. It acquired quasi-Lagrangian, 5-day-interval time-series records from March to July 2006. The time-series distribution of chlorophyll showed a sustained and sizable subsurface maximum at 50-100 m, just above the upper boundary of the STMW, throughout early summer (May-July). The DO concentration in the lower euphotic zone (50-100 m) had been supersaturated in the same period but did not show a net increment. On the other hand, the DO concentration at 100-150 m near the upper edge of the STMW, which was below the euphotic zone, decreased very slightly, in spite of expected oxygen consumption by organisms at least as large as that appearing at 150-300 m. These small temporal variations of dissolved oxygen in the lower euphotic zone and near the upper edge of the STMW are explained by downward oxygen transport due to large diffusion near the top of the STMW. The estimated diffusivity based on an assumption of the large downward transport of oxygen is 1.5 × 10-4 m-2 s-1. The upward nitrate transport into the euphotic zone by the same diffusion is estimated to be 0.7 mmol N m-2 d-1 with using vertical profiles of nitrates obtained by ship-board measurements in the vicinity of the float. Assuming all of the transported nitrate be used for photosynthesis by the phytoplankton, the net community production is estimated to be 4.8 mmol C m-2 d-1. The large diffusivity near the top of the STMW is possibly associated with an abrupt decrease in buoyancy frequency there, which may prevents downward transmission of internal waves generated in the surface

  5. Subtropical North Pacific sea surface temperatures reconstructed at the orbital timescale during the Plio/Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Venti, N. L.; Billups, K.; Herbert, T.

    2011-12-01

    Despite the potential importance of the North Pacific Ocean's role as a connection between high and low latitudes during the Pliocene-Pleistocene climate transition, the region remains largely unexplored. Here we present alkenone-based sea-surface temperature (SST) estimates from Ocean Drilling Program Site 1208 in the Kuroshio Current Extension (KCE), the first from the subtropical North Pacific to span this interval (1.76-3.00 Ma) at orbital resolution (2.5-kyr time step). The reconstruction reveals two pronounced cooling events: a 3°C mean SST decrease at 2.7 Ma, coincident with the expansion of Northern Hemisphere (NH) glaciers to mid-latitudes, and another 3°C mean SST drop at 2.2 Ma, in concert with the end of permanent El Niño in the equatorial Pacific. At the orbital scale, the SST reconstruction closely resembles the benthic marine δ18O record such that temperature minima (as low as 15°C) coincide with glacial stages and SST maxima (as high as 22°C) occur during interglacial stages. Cross-spectral analysis confirms the closeness of the relationship between SST and glacial cycles at the obliquity band-coherent at the 95% level and in-phase. Additionally, with the onset of widespread NH ice sheets at 2.7 Ma, the amplitude of the SST cycle doubles. Thus, major advance of NH glaciers is not only associated with intensified cooling of the subtropical sea surface but also with enhanced SST variability thereafter, emphasizing a close relationship between the subtropical sea surface and high-latitude climate. Cooling of the subtropical sea surface at 2.7 Ma coincides with cooling in the subarctic Pacific (Maslin et al., 1996), but contrasts with continuity in the eastern equatorial Pacific SST cycles (Lawrence et al., 2006). The regional implication of mid-latitude Pacific cooling likely represents the emergence of the Kuroshio as a prominent locus of heat transfer from the ocean to the atmosphere through the cold winter monsoon. The second SST decrease at 2

  6. Arcane epipelagic fishes of the subtropical North Pacific and factors associated with their distribution

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip; Seki, Michael P.

    2017-01-01

    In 1992, a moratorium was declared by the United Nations General Assembly to end the practice of large-scale pelagic driftnet fishing. During two years leading up to the moratorium, three scientific research and fishery observer programs involving Canada, Japan, Korea, China-Taipei and the United States had collected significant amounts of information about the distribution and abundance of the epipelagic fauna in the subtropical North Pacific Ocean. The pan-regional distributions of the fishes in 1990 and 1991, most of which were taken as bycatch in 9910 fishing operations (357,150 km of driftnet) are described. More species were observed per fishing operation in 1991 than in 1990. Principal coordinate analysis of the incidence of the commonly caught fish species was used to show that, except for an anomaly in the region of the Shatsky Rise (165°E), the composition of the catch changed from the coast of Japan across more than 6000 km to the eastern boundary of the fishery (145°W). The analysis suggested that the fish species composition changed rather little with increasing latitude within the southern part of the domain (25-35°N), before changing more rapidly north of the Kuroshio Extension region to a more subarctic, transition zone fauna.

  7. Non-random assembly of bacterioplankton communities in the subtropical north pacific ocean.

    PubMed

    Eiler, Alexander; Hayakawa, Darin H; Rappé, Michael S

    2011-01-01

    The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG.

  8. Non-Random Assembly of Bacterioplankton Communities in the Subtropical North Pacific Ocean

    PubMed Central

    Eiler, Alexander; Hayakawa, Darin H.; Rappé, Michael S.

    2011-01-01

    The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG. PMID:21747815

  9. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles

    NASA Astrophysics Data System (ADS)

    Nicholson, David P.; Wilson, Samuel T.; Doney, Scott C.; Karl, David M.

    2015-05-01

    Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg-1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m-3 d-1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m-2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.

  10. Productivity diagnosed from the diel cycle of particulate carbon in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    White, Angelicque E.; Barone, Benedetto; Letelier, Ricardo M.; Karl, David M.

    2017-04-01

    The rate of primary production (PP) in the ocean is a critical ecosystem function that contributes to the regulation of air-sea CO2 exchange. Historically, oceanographers have relied primarily on in vitro measurements of 14C uptake (14C-PP) as a proxy for PP. Yet it can be difficult to reconcile PP rates measured in vitro with in situ rates such as those based on oxygen. Here we present diel cycles of optically derived particulate organic carbon (POC) measured in the North Pacific Subtropical Gyre. We have calculated gross production (OPTGP) from the daytime increase and nighttime decrease of optically derived POC, assuming that the observed change in POC represents the sum of PP and community losses. We have compared these estimates to parallel 14C-PP incubations and considered sources of difference. We find that OPTGP is strongly related to 14C-PP in this region and that growth and loss rates of POC are tightly coupled.

  11. Modelling the vertical distribution of Prochlorococcus and Synechococcus in the North Pacific Subtropical Ocean.

    PubMed

    Rabouille, Sophie; Edwards, Christopher A; Zehr, Jonathan P

    2007-10-01

    A simple model was developed to examine the vertical distribution of Prochlorococcus and Synechococcus ecotypes in the water column, based on their adaptation to light intensity. Model simulations were compared with a 14-year time series of Prochlorococcus and Synechococcus cell abundances at Station ALOHA in the North Pacific Subtropical Gyre. Data were analysed to examine spatial and temporal patterns in abundances and their ranges of variability in the euphotic zone, the surface mixed layer and the layer in the euphotic zone but below the base of the mixed layer. Model simulations show that the apparent occupation of the whole euphotic zone by a genus can be the result of a co-occurrence of different ecotypes that segregate vertically. The segregation of ecotypes can result simply from differences in light response. A sensitivity analysis of the model, performed on the parameter alpha (initial slope of the light-response curve) and the DIN concentration in the upper water column, demonstrates that the model successfully reproduces the observed range of vertical distributions. Results support the idea that intermittent mixing events may have important ecological and geochemical impacts on the phytoplankton community at Station ALOHA.

  12. Autonomous Sampling of Remote Phytoplankton Blooms in the North Pacific Subtropical Gyre (July-Aug. 2015).

    NASA Astrophysics Data System (ADS)

    Anderson, E. E.; Wilson, C.; Villareal, T. A.

    2016-12-01

    Satellite ocean color data regularly reveals the existence of large (103 km2) phytoplankton blooms in the North Pacific Ocean that can persist for weeks to months and are often associated with N2 fixing diatom symbioses. The basin size and inability to accurately forecast these blooms makes sampling these events difficult outside of the time series at Station ALOHA. We used an autonomous Wave Glider surface vehicle (Honey Badger) to conduct a large regional survey well north of HI to examine bloom composition and key species distribution. Honey Badger was equipped with a gpCTD, downward looking camera, 2 C3 fluorometers, wind and wave sensors, a Turner Designs' Phytoflash, and a Sequoia Scientific LISST-Holo for imaging cells. Most of the data collected was available in near-real time through NOAA's ERDDAP data server. The 159 day mission began 1 June 2015 and covered 6800 km. From 1 July 2015 to 31 August 2015, Honey Badger transited from low levels of chlorophyll-a (chl) (0.06±0.01 mg m-3), through a mesoscale­ bloom, and then into a broad regional chl increase (0.08±0.01 mg m-3) as noted by the AQUA MODIS satellite. Phytoplankton cell counts (> 14,000 Hemiaulus cells L-1) and increased nocturnal Fv:Fm yields (maximum > 0.61) were concurrent with the 0.1 µg Chl L-1 bloom. A separate bloom of the Rhizosolenia-Richelia symbiosis was noted (> 3,000 Rhizosolenia-Richelia cells L-1) within a smaller, short-lived bloom with a biovolume 2.1 times higher than the rest of the southern transect. The broad regional chl increase in the southern leg of the transit was concurrent with a sustained Hemiaulus increase to 102 cells L-1. Diel patterns in Fv:Fm did not suggest Fe limitation anywhere in the transect. Elevated yields were found only in the diatom increases. Honey Badger and the instruments it carried were useful tools for the investigation of remote bloom dynamics in the Eastern North Pacific Subtropical Gyre.

  13. Thermocline ventilation and oxygen utilization rates in the subtropical North Pacific based on CFC distributions during WOCE

    NASA Astrophysics Data System (ADS)

    Sonnerup, Rolf E.; Quay, Paul D.; Bullister, John L.

    1999-05-01

    Thermocline ventilation rates for the subtropical North Pacific are determined using a 1-dimensional (meridional) along-isopycnal advective-diffusive model tuned to chlorofluorocarbon (CFC) concentrations measured along 152°W in 1991 during WOCE P16. Mean southward advection rates in the subtropics range from 1.03 to 0.56 cm s -1 between σθ=25.5 and 26.6. Model-derived ventilation times for the subtropical gyre increase from about 10 to 27 years for that isopycnal range. Oxygen utilization rates (OURs) determined using the advective-diffusive model decrease with depth from 6.6 to 3.2 μmol kg -1 yr -1 between σθ=25.5 and 26.6. Extrapolation of the OUR versus depth trend to the base of the euphotic zone with the 1/ Z power function of Martin et al. (1987) and integration from 500 to 100 m depth implies a carbon export rate from the overlying euphotic zone of 2.2±0.5 moles C m -2 yr -1 at 30°N, 152°W. Analysis of the WOCE radiocarbon and salinity distributions indicates that zonal and cross-isopycnal transport terms would have to be considered in modeling these tracers in the subtropical North Pacific.

  14. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate

    NASA Astrophysics Data System (ADS)

    He, Chao; Lin, Ailan; Gu, Dejun; Li, Chunhui; Zheng, Bin; Wu, Bo; Zhou, Tianjun

    2016-11-01

    The western North Pacific subtropical high (WNPSH) is crucial to the East Asian summer climate, and geopotential height (H) is widely used to measure the WPNSH. However, a rapidly rising trend of H in the future is projected by the models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Diagnoses based on the hypsometric equation suggest that more than 80% of the rise in H are attributable to zonal uniform warming. Because circulation is determined by the gradient of H rather than its absolute magnitude, the spatially uniform rising trend of H gives rise to difficulties when measuring the WNPSH with H. These difficulties include an invalid western boundary of WNPSH in the future and spurious information regarding long-term trends and interannual variability of WNPSH. Using CMIP5 model simulations and reanalysis data, the applicability of a metric based on eddy geopotential height (H e ) to the warming climate is investigated. The results show that the H e metric outperforms the H metric under warming climate conditions. First, the mean state rainfall-H e relationship is more robust than the rainfall-H relationship. Second, the area, intensity, and western boundary indices of WNPSH can be effectively defined by the H e = 0-m contour in future warming climate scenarios without spurious trends. Third, the interannual variability of East Asian summer rainfall is more closely related to the H e -based WNPSH indices. We recommend that the H e metric be adopted as an operational metric on the WNPSH under the current warming climate.

  15. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age.

    PubMed

    Sherwood, Owen A; Guilderson, Thomas P; Batista, Fabian C; Schiff, John T; McCarthy, Matthew D

    2014-01-02

    The North Pacific subtropical gyre (NPSG) plays a major part in the export of carbon and other nutrients to the deep ocean. Primary production in the NPSG has increased in recent decades despite a reduction in nutrient supply to surface waters. It is thought that this apparent paradox can be explained by a shift in plankton community structure from mostly eukaryotes to mostly nitrogen-fixing prokaryotes. It remains uncertain, however, whether the plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. Here we analyse records of bulk and amino-acid-specific (15)N/(14)N isotopic ratios (δ(15)N) preserved in the skeletons of long-lived deep-sea proteinaceous corals collected from the Hawaiian archipelago; these isotopic records serve as a proxy for the source of nitrogen-supported export production through time. We find that the recent increase in nitrogen fixation is the continuation of a much larger, centennial-scale trend. After a millennium of relatively minor fluctuation, δ(15)N decreases between 1850 and the present. The total shift in δ(15)N of -2 per mil over this period is comparable to the total change in global mean sedimentary δ(15)N across the Pleistocene-Holocene transition, but it is happening an order of magnitude faster. We use a steady-state model and find that the isotopic mass balance between nitrate and nitrogen fixation implies a 17 to 27 per cent increase in nitrogen fixation over this time period. A comparison with independent records suggests that the increase in nitrogen fixation might be linked to Northern Hemisphere climate change since the end of the Little Ice Age.

  16. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    DOE PAGES

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; ...

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similaritiesmore » with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as

  17. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    SciTech Connect

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-05-19

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. In conclusion, these data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as

  18. Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Hannides, Cecelia C. S.; Landry, Michael R.; Benitez-Nelson, Claudia R.; Styles, Renée M.; Montoya, Joseph P.; Karl, David M.

    2009-01-01

    Export processes play a major role in regulating global marine primary production by reducing the efficiency of nutrient cycling and turnover in surface waters. Most studies of euphotic zone export focus on passive fluxes, that is, sinking particles. However, active transport, the vertical transfer of material by migrating zooplankton, can also be an important component of carbon (C) and nitrogen (N) removal from the surface ocean. Here we demonstrate that active transport is an especially important mechanism for phosphorus (P) removal from the euphotic zone at Station ALOHA (Hawaii Ocean Time-series program; 22°45'N, 158°W), a P-stressed site in the North Pacific Subtropical Gyre. Migrant excretions in this region are P-rich (C 51:N 12:P 1) relative to sinking particles (C 250:N 31:P 1), and migrant-mediated P fluxes are almost equal in magnitude (82%) to P fluxes from sediment traps. Migrant zooplankton biomass and therefore the importance of this P removal pathway relative to sinking fluxes has increased significantly over the past 12 years, suggesting that active transport may be a major driving force for enhanced P-limitation of biological production in the NPSG. We further assess the C:N:P composition of zooplankton size fractions at Station ALOHA (C 88:N 18:P 1, on average) and discuss migrant-mediated P export in light of the balance between zooplankton and suspended particle stoichiometries. We conclude that, because active transport is such a large component of the total P flux and significantly impacts ecosystem stoichiometry, export processes involving migrant zooplankton must be included in large-scale efforts to understand biogeochemical cycles.

  19. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA)

    PubMed Central

    Letelier, Ricardo M.; Whitmire, Amanda L.; Barone, Benedetto; Bidigare, Robert R.; Church, Matthew J.; Karl, David M.

    2015-01-01

    Abstract The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite‐based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction‐based depth profiles of the PSD and pigment‐based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time‐series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction‐based estimations of relative particle size nor pigment‐based PFTs was found to be significantly related to the rate of 14C‐based PP in the light‐saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present‐day bio‐optical PP models for this region. However, at depths of 100–125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2–20 μm particles. PMID:27812434

  20. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Sherwood, Owen A.; Guilderson, Thomas P.; Batista, Fabian C.; Schiff, John T.; McCarthy, Matthew D.

    2014-01-01

    The North Pacific subtropical gyre (NPSG) plays a major part in the export of carbon and other nutrients to the deep ocean. Primary production in the NPSG has increased in recent decades despite a reduction in nutrient supply to surface waters. It is thought that this apparent paradox can be explained by a shift in plankton community structure from mostly eukaryotes to mostly nitrogen-fixing prokaryotes. It remains uncertain, however, whether the plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. Here we analyse records of bulk and amino-acid-specific 15N/14N isotopic ratios (δ15N) preserved in the skeletons of long-lived deep-sea proteinaceous corals collected from the Hawaiian archipelago; these isotopic records serve as a proxy for the source of nitrogen-supported export production through time. We find that the recent increase in nitrogen fixation is the continuation of a much larger, centennial-scale trend. After a millennium of relatively minor fluctuation, δ15N decreases between 1850 and the present. The total shift in δ15N of -2 per mil over this period is comparable to the total change in global mean sedimentary δ15N across the Pleistocene-Holocene transition, but it is happening an order of magnitude faster. We use a steady-state model and find that the isotopic mass balance between nitrate and nitrogen fixation implies a 17 to 27 per cent increase in nitrogen fixation over this time period. A comparison with independent records suggests that the increase in nitrogen fixation might be linked to Northern Hemisphere climate change since the end of the Little Ice Age.

  1. What factors are driving summer phytoplankton blooms in the North Pacific Subtropical Gyre?

    NASA Astrophysics Data System (ADS)

    White, Angelicque E.; Spitz, Yvette H.; Letelier, Ricardo M.

    2007-12-01

    Annually recurrent summer to fall surface blooms of the dinitrogen (N2) fixing genera Trichodesmium and Richelia have a significant impact on biogeochemical cycling in the North Pacific Subtropical Gyre (NPSG). Yet the environmental determinants of these blooms have not been thoroughly resolved. Here, we combine remote sensing of ocean color, sea surface temperature (SST), sea surface height anomalies (SSHa), wind forcing, and integrated irradiance with the vessel-based time series of the Hawaii Ocean Time-series (HOT) program at Station ALOHA (22.75°N, 158.00°W) and mooring data derived from the National Data Buoy Center (NDBC) buoy 51001 (23.42°N, 162.2°W). With these data sets we attempt to constrain the environmental window under which blooms of large cell-sized N2 fixing organisms increase in abundance in NPSG surface waters using phycoerythrin (PE) as a proxy. For identified blooms, our analyses indicate that these events are confined to the months of June-October, SST in the range of 25°-27°C, and mixed layer depths less than 70 m. Neither wind forcing nor SSHa are correlated (directly or time-lagged) with increases in PE concentrations. Furthermore, blooms do not consistently result in increases of in situ or remotely sensed chlorophyll a. Additional higher-resolution data sets of physical forcing, diazotroph abundance, and biochemical properties, sampled on the timescale of bloom development (days-weeks), will be necessary to the environmental conditions supporting annual summer-fall blooms.

  2. Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Jones, David R.; Karl, David M.; Laws, Edward A.

    1996-10-01

    In field work conducted at 26°N, 155°W, in the North Pacific subtropical gyre, phytoplankton growth rates μp estimated from 14C labeling of chlorophyll a (chl a) averaged approximately one doubling per day in the euphotic zone (0-150 m). Microbial (microalgal plus heterotrophic bacterial) growth rates μm calculated from the incorporation of 3H-adenine into DNA were comparable to or exceeded phytoplankton growth rates at most depths in the euphotic zone. Photosynthetic rates averaged 727 mg C m -2 day -1 Phytoplankton carbon biomass, calculated from 14C labeling of chl a, averaged 7.2 mg m -3 in the euphotic zone. Vertical profiles of particulate DNA and ATP suggested that no more than 15% of particulate DNA was associated with actively growing cells. Heterotrophic bacterial carbon biomass was estimated from a two-year average at station ALOHA (22°45'N, 158°W) of flow cytometric counts of unpigmented, bacteria-size particles which bound DAPI on the assumption that 15% of the particles were actively growing cells and that heterotrophic bacterial cells contained 20 fg C cell -1 The heterotrophic bacterial carbon so calculated averaged 1.1 mg m -3 in the euphotic zone. Heterotrophic bacterial production was estimated to be 164 mg C m -2 day -1 or 23% of the calculated photosynthetic rate. Estimated heterotrophic bacterial growth rates averaged 0.97 day -1 in the euphotic zone and reached 4.7 day - at a depth of 20 m. Most heterotrophic bacterial production occurred in the upper 40 m of the euphotic zone, suggesting that direct excretion by phytoplankton, perhaps due to photorespiration or ultraviolet light effects, was a significant source of dissolved organic carbon for the bacteria.

  3. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.

    PubMed

    Johnson, Kenneth S; Riser, Stephen C; Karl, David M

    2010-06-24

    Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.

  4. Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre

    PubMed Central

    Bryant, Jessica A; Aylward, Frank O; Eppley, John M; Karl, David M; Church, Matthew J; DeLong, Edward F

    2016-01-01

    Few microbial time-series studies have been conducted in open ocean habitats having low seasonal variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat, we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different environmental factors that influence planktonic microbial community diversity than those previously observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity at 25 m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition, microbial community composition at 25 m exhibited significant correlations with solar irradiance. Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25 m communities showed seasonal transitions in composition, and distinct successional cohorts of co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated distinct seasonality in genes originating from cyanophage, and several bacterial clades including SAR116 and SAR324. At 500 m, microbial community diversity and composition did not vary significantly with any measured environmental parameters. The minimal seasonal variability in the NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on surface water microbial diversity. Community composition in NPSG surface waters varied in response to solar irradiance, but less dramatically than reported in other ocean provinces. PMID:26645474

  5. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA)

    NASA Astrophysics Data System (ADS)

    White, Angelicque E.; Letelier, Ricardo M.; Whitmire, Amanda L.; Barone, Benedetto; Bidigare, Robert R.; Church, Matthew J.; Karl, David M.

    2015-11-01

    The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite-based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction-based depth profiles of the PSD and pigment-based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time-series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction-based estimations of relative particle size nor pigment-based PFTs was found to be significantly related to the rate of 14C-based PP in the light-saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present-day bio-optical PP models for this region. However, at depths of 100-125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2-20 μm particles.

  6. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA).

    PubMed

    White, Angelicque E; Letelier, Ricardo M; Whitmire, Amanda L; Barone, Benedetto; Bidigare, Robert R; Church, Matthew J; Karl, David M

    2015-11-01

    The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite-based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction-based depth profiles of the PSD and pigment-based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time-series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction-based estimations of relative particle size nor pigment-based PFTs was found to be significantly related to the rate of (14)C-based PP in the light-saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present-day bio-optical PP models for this region. However, at depths of 100-125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2-20 μm particles.

  7. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre

    PubMed Central

    Fontanez, Kristina M.; Eppley, John M.; Samo, Ty J.; Karl, David M.; DeLong, Edward F.

    2015-01-01

    Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. These data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid

  8. Modeling nutrient cycling in the North Pacific Subtropical Gyre using an eddy-resolving ocean ecosystem model

    NASA Astrophysics Data System (ADS)

    Hiraike, Yuri; Hasumi, Hiroyasu; Itoh, Sachihiko

    2013-04-01

    An eddy-resolving ecosystem model of the North Pacific is used to investigate the impact of mesoscale eddies on the basin-scale nitrate circulation and supply to the euphotic zone. A simple lower trophic level NPZD ecosystem model with iron limitation on nutrient uptake is coupled to a three dimensional off-line ocean circulation model. The model horizontal resolution is 1/10° × 1/10° cosθ. The focus is on the North Pacific Subtropical Gyre (NPSG) where nitrate in the euphotic zone is low by downwelling due to the Ekman convergence. Recent observational and model studies reveal that the mesoscale eddies have significant impact on oceanic biological production in subtropical gyres. Although there are many studies on mesoscale eddies, a basin-scale picture of impact of mesoscale eddies on nitrate circulation and supply to the euphotic zone is presently poorly known. In the Kuroshio Extension (KE) region, the mesoscale eddies exchange water across the front and affect the biological production. In addition, recent model studies show that the mesoscale eddies contribute to the formation and transport of the Subtropical Model Water (STMW). Although it is suggested that the STMW forms in the KE region and is transported to the NPSG, the effect of the STMW on the nitrate circulation and impact on the biological production in the NPSG is not clear. In addition, the STMW is thought to be important in forming of the Subtropical Countercurrent (STCC) which has large mesoscale eddy activities in the NPSG. It is expected that the seasonal variability of the STCC dominates the seasonal variability of biological production. The results from the eddy-resolving model are compared with results from a low-resolution model. The results of sensitivity experiments to model parameters model parameters are also shown. It is expected that tracer experiments and analysis of nutrient budged reveal eddy effect on the basin-scale nutrient circulation and supply to the euphotic zone in the

  9. Differential Assimilation of Inorganic Carbon and Leucine by Prochlorococcus in the Oligotrophic North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin M.; Church, Matthew J.; Doggett, Joseph K.; Karl, David M.

    2015-01-01

    The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using 14C-bicarbonate and 3H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0–175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (Ek) for leucine incorporation was reached at approximately half the light intensity required for light saturation of 14C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar Ek values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using 3H-leucine, whether or not the incubations are conducted in the dark or light, and this should be

  10. Differential Assimilation of Inorganic Carbon and Leucine by Prochlorococcus in the Oligotrophic North Pacific Subtropical Gyre.

    PubMed

    Björkman, Karin M; Church, Matthew J; Doggett, Joseph K; Karl, David M

    2015-01-01

    The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using (14)C-bicarbonate and (3)H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0-175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (E k) for leucine incorporation was reached at approximately half the light intensity required for light saturation of (14)C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar E k values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using (3)H-leucine, whether or not the incubations are conducted in the dark or light, and this should

  11. Enhanced Influence of the Tropical Atlantic SST on the Western North Pacific Subtropical High after late 1970s

    NASA Astrophysics Data System (ADS)

    Hong, C. C.

    2015-12-01

    The western North Pacific subtropical high (WNPSH) in boreal summer shows a remarkable enhancement after the late 1970s. Whereas the sea surface temperature (SST) in the North Indian Ocean (NIO) and the equatorial eastern Pacific (EEP) had been noted to have remarkable local or remote effects on enhancing the WNPSH, the influence of the Atlantic SST, so far, is hardly explored. This article reports a new finding: enhanced relationship between the tropical Atlantic (TA)-SST and the WNPSH after the late 1970s. Regression study suggests that the warm TA-SST produced a zonally overturning circulation anomaly, with descending over the central equatorial Pacific and ascending over the tropical Atlantic/eastern Pacific. The anomalous descending over the central equatorial Pacific likely induced low-level anticyclonic anomaly to the west and therefore enhanced the WNPSH. One implication of this new finding is for predictability. The well-known "spring predictability barrier" (i.e., the influence of El Niño and Southern Oscillation (ENSO) falls dramatically during boreal spring) does not apply to the TA-SST/WNPSH relationship. Conversely, the TA-SST shows consistently high correlation starting from boreal spring when the ENSO influence continues declining. The TA-SST pushes the predictability of the WNPSH in boreal summer approximately one season earlier to boreal spring.

  12. Uncertainty in future projections of the North Pacific subtropical high and its implication for California winter precipitation change: FUTURE CALIFORNIA PRECIPITATION

    SciTech Connect

    Choi, Jung; Lu, Jian; Son, Seok-Woo; Frierson, Dargan M. W.; Yoon, Jin-Ho

    2016-01-27

    This study examines future projections of sea level pressure change in the North Pacific and its impact on winter precipitation changes in California. The multi-model analysis, based on the Coupled Model Inter-comparison Project phase 5 (CMIP5) models under the Representative Concentration Pathway 8.5 (RCP8.5) scenario, shows a robust sea-level pressure change in the late 21st century over the western North Pacific in which both the Aleutian Low and North Pacific Subtropical High (NPSH) shift poleward in concert with a widening of the Hadley Cell. This change is partly explained by a systematic increase of static stability in the subtropics. However, over the eastern North Pacific, the projected NPSH changes exhibit a substantial inter-model spread, resulting in uncertain projections of precipitation changes in California. This inter-model spread in the eastern North Pacific is associated with a Pacific Decadal Oscillation-like surface temperature change in the western North Pacific and the resulting meridional temperature gradient change. This study points to a major source of uncertainty for the response of winter precipitation to global warming over the West Coast of North America: atmosphere-ocean coupling in the North Pacific.

  13. Zonal patterns of δ13C, δ15N and 210Po in the tropical and subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Min; Guo, Laodong; Ma, Qiang; Qiu, Yusheng; Zhang, Run; Lv, E.; Huang, Yipu

    2006-02-01

    Nitrogen fixation process may supply a significant fraction of bioavailable nitrogen to surface waters, increase the oceanic sequestration of atmospheric CO2, and alter the distribution of geochemical parameters. We report a zonal pattern of δ15N and δ13C in particulate organic matter (POM), and ratios of particulate 210Po to dissolved 210Po along a transect through the subtropical and tropical North Pacific. Both 15N and 210Po signals indicated an enhanced N2 fixation in the northwestern subtropical North Pacific. The eastward decrease of N2 fixation along this transect testified the role of aeolian Fe and P in controlling marine N2 fixation. Associated with the zonal variations of 15N and 210Po, the δ13C of suspended POM increased eastward, reflecting the decrease of anthropogenic CO2 concentration in surface seawater from west to east in the study area. Our results highlight the need to examine more closely the mechanisms of possible longitudinal variation in N2 fixation in the ocean and the role of aeolian Fe and P in controlling marine N2 fixation and anthropogenic CO2.

  14. A Molecular Survey of Diatom Communities in the Subpolar and Subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Rico, D. M.; Devol, A.; Ingalls, A. E.; Moffett, J.; Stahl, D.; Armbrust, V.

    2016-02-01

    Because diatoms and other eukaryotic phytoplankton facilitate biogeochemical cycling and carbon export, their biodiversity and community structure can profoundly impact marine ecosystem processes. Although diatom populations differ across oceanographic regions, few studies have assessed how communities are affected by environmental variables. Here, we use 18S rRNA gene sequences to assess biodiversity and diatom community structure in the Northeast Pacific along a cruise track passing through coastal, subpolar, transition zone, and subtropical oceanographic regions. We are focusing on diatoms in the 1.6 μm-53 μm size fraction from surface and chlorophyll maximum depths collected from ten sampling sites. This study will enable us to determine how diatom communities differ in each region, which species co-occur, how nutrient concentration, temperature, and salinity affect community composition, and which of these variables are most influential. Preliminary results show high species richness at coastal stations, decreasing in the open ocean.

  15. Contrasting Relationships between Functional and Species Diversity in Subarctic and Subtropical Copepod Communities across the western North Pacific

    NASA Astrophysics Data System (ADS)

    Garcia-Comas, C.; Chiba, S.; Sugisaki, H.; Hashioka, T.; Smith, S. L.

    2016-02-01

    Understanding how species coexist in rich communities and the role of biodiversity on ecosystem-functioning is a long-standing challenge in ecology. Comparing functional diversity to species diversity may shed light on these questions. Here, we analyze copepod species data from the ODATE collection: 3142 samples collected over a period of 40 years, which includes a 10 o x 10o area of the Oyashio-Kuroshio Transition System, east of Japan (western North Pacific). The area hosts species characteristic of subarctic and subtropical communities. 163 copepod species were classified into five categorical functional traits (i.e., size, food, reproduction, thermal affinity and coastal-offshore habitat), following online databases and local taxonomic keys. We observe a general opposite hump-shaped relationship of species evenness (lower at mid-point) and functional diversity (Rao's Q) (higher at mid-point) with species richness. Subtropical Kuroshio communities tend to be richer with higher species evenness, and yet subarctic and transition waters tend to host communities of higher functional diversity. The distribution of trait values within each functional trait was further examined in relation to the Species Abundances Distribution (SAD). In subtropical communities, the distribution of trait values in the species ranking is homogenous, mirroring the frequency of those trait values in the entire community. In contrast, in subarctic communities the distribution of trait values differs along the species rank, with dominant species having favorable trait values more often than expected by chance (i.e., based on the overall frequency of that trait value in the entire community). Our results suggest that subtropical communities may be niche-saturated towards the most adapted trait values, so that merely having the most adapted trait value confers no strong competitive advantage to a species.

  16. Observations of decadal time scale salinity changes in the subtropical thermocline of the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ren, Li; Riser, Stephen C.

    2010-07-01

    Data from Argo floats indicate that significant salinity changes have occurred in the North Pacific thermocline relative to data collected in the previous two decades, including observations obtained as part of the WOCE hydrographic program. Such a salinity decrease on both isopyncals and isobars implies a freshening scenario in the near-surface source region of this water mass. The frequently repeated meridional section P16 supports this inference. The subsurface salinity freshening likely began in the early 1990s, strengthened through 1997, and continued into the 2000s; the surface salinity freshening had commenced by 1984 and continued through the first decade of the 21st century. The spatial distribution of salinity change on the density surface σ θ=25.5 is examined through comparisons of Argo and most of the North Pacific WOCE sections (1985-1994) and between Argo and the Hydrobase climatology, largely composed of data from the late 1970s through the mid-1980s. Both comparisons show a large-scale, basin-wide decrease in subsurface salinity through the Argo time period used in this analysis (2003-2006). The salinity difference is maximum in the northeast area and spreads southward and westward, approximately following geostrophic streamlines.

  17. Impact of diapycnal mixing on the saturation state of argon in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Ito, T.; Deutsch, C.; Emerson, S.; Hamme, R. C.

    2007-05-01

    Diapycnal mixing plays an important role in both physical and biogeochemical processes in the oceans, yet the rate of tracer mixing has not been adequately quantified. A theoretical analysis predicts that diapycnal mixing should raise the saturation state of noble gases in the thermocline, at a rate proportional to diapycnal diffusivity. We apply this theory to existing measurements of argon in the ventilated thermocline, where the increase in the saturation state should be proportional to the integrated effect of diapycnal mixing. Combining argon observations from time-series stations in the North Pacific with freon ventilation age, we tentatively estimate the regional diapycnal diffusivity at 0.35 +/- 0.21 10-4 m2s-1. Major sources of uncertainty include spatial and temporal variability and sparse sampling. These uncertainties could be significantly reduced using measurements of several noble gases in a transect from the isopycnal outcrop to the interior gyre.

  18. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean.

    PubMed

    McMahon, Kelton W; McCarthy, Matthew D; Sherwood, Owen A; Larsen, Thomas; Guilderson, Thomas P

    2015-12-18

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ(13)C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations.

  19. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    McMahon, Kelton W.; McCarthy, Matthew D.; Sherwood, Owen A.; Larsen, Thomas; Guilderson, Thomas P.

    2015-12-01

    Climate change is predicted to alter marine phytoplankton communities and affect productivity, biogeochemistry, and the efficacy of the biological pump. We reconstructed high-resolution records of changing plankton community composition in the North Pacific Ocean over the past millennium. Amino acid-specific δ13C records preserved in long-lived deep-sea corals revealed three major plankton regimes corresponding to Northern Hemisphere climate periods. Non-dinitrogen-fixing cyanobacteria dominated during the Medieval Climate Anomaly (950-1250 Common Era) before giving way to a new regime in which eukaryotic microalgae contributed nearly half of all export production during the Little Ice Age (~1400-1850 Common Era). The third regime, unprecedented in the past millennium, began in the industrial era and is characterized by increasing production by dinitrogen-fixing cyanobacteria. This picoplankton community shift may provide a negative feedback to rising atmospheric carbon dioxide concentrations.

  20. Zooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012

    NASA Astrophysics Data System (ADS)

    Dai, Luping; Li, Chaolun; Yang, Guang; Sun, Xiaoxia

    2016-03-01

    Horizontal changes in mesozooplankton abundance, biovolume and size spectra at western boundary currents in the subtropical North Pacific during winter 2012 were evaluated by ZooScan measurement on samples collected by net towing from 23 stations. Zooplankton abundance and biovolume ranged from 35.1 to 456.8 ind. m- 3 and 4.3 to 231.7 mm3 m- 3, respectively. Copepoda were the most dominant species, followed by Chaetognatha and Tunicata. According to the Bray-Curtis cluster analysis based on biovolume of zooplankton size classes of each taxonomic group at intervals of 1 (log2 mm3 ind.- 1) between - 6 and 12 and considering the effect of regional factors, zooplankton communities were classified into four groups, which basically coincided with the geographical patterns of different currents: the North Equatorial Current (NEC), the North Equatorial Counter Current (NECC), the Kuroshio Current (KC), and the Mindanao Eddy (ME), respectively. The largest and lowest biovolumes were observed in the NECC region and the NEC region, respectively, and both were dominated by the 0.3 to 1 mm equivalent spherical diameter (ESD) size class, while the ME region was dominant by the 1 to 2 mm ESD size class. The slopes of the normalized biovolume size spectra for each group were slightly lower than - 1 (range from - 0.85 to - 0.92), which indicates that zooplankton communities in the study area were characterized by low productivity and high energy transfer efficiency.

  1. Effect of horizontal grid resolution on simulations of the subtropical mode water in the North Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Ho Jin; Yeop Kim, Sang; Lee, Kyung Eun

    2016-04-01

    We investigate how the Subtopical Mode Water (STMW) can be simulated differently in the North Pacific using a global Ocean General Circulation Model (OGCM) with non-eddying and eddy permitting resolution. The OGCM used in this study is the MOM version 4.1 and has a total of 50 levels along the vertical direction with enhanced resolution near the surface. The CORE version 2 (normal year forcing) data derived from the air-sea flux climatology averaged over 60 years (1948-2007) are used to calculate heat, salt and momentum fluxes with a bulk formula at the sea surface. The sea surface salinity is restored to the climatological monthly mean surface salinity of the Polar Science Center Hydrographic Climatology on a 60-day timescale, to make up the fresh water flux at the sea surface. Two models that have horizontal resolutions of 1° and 1/4 °, respectively, are integrated during 50 years. The inter-annual variation of the STMW volume was well reproduced with the eddy-permitting grid resolution although the model was forced by a climatological atmospheric forcing. The annual formation and erosion volume of STMW varies by 7% and 9% of the mean volume, respectively.

  2. Dissolved hydrogen and nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre

    PubMed Central

    Wilson, Samuel T; del Valle, Daniela A; Robidart, Julie C; Zehr, Jonathan P; Karl, David M

    2013-01-01

    The production of hydrogen (H2) is an inherent component of biological dinitrogen (N2) fixation, and there have been several studies quantifying H2 production relative to N2 fixation in cultures of diazotrophs. However, conducting the relevant measurements for a field population is more complex as shown by this study of N2 fixation, H2 consumption and dissolved H2 concentrations in the oligotrophic North Pacific Ocean. Measurements of H2 oxidation revealed microbial consumption of H2 was equivalent to 1–7% of ethylene produced during the acetylene reduction assay and 11–63% of 15N2 assimilation on a molar scale. Varying abundances of Crocosphaera and Trichodesmium as revealed by nifH gene abundances broadly corresponded with diel changes observed in both N2 fixation and H2 oxidation. However, no corresponding changes were observed in the dissolved H2 concentrations which remained consistently supersaturated (147–560%) relative to atmospheric equilibrium. The results from this field study allow the efficiency of H2 cycling by natural populations of diazotrophs to be compared to cultured representatives. The findings indicate that dissolved H2 concentrations may depend not only on the community composition of diazotrophs but also upon relevant environmental parameters such as light intensity or the presence of other H2-metabolizing microorganisms. PMID:24115620

  3. Dissolved hydrogen and nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre

    PubMed Central

    del Valle, Daniela A.; Robidart, Julie C.; Zehr, Jonathan P.; Karl, David M.

    2013-01-01

    Summary The production of hydrogen (H2) is an inherent component of biological dinitrogen (N2) fixation, and there have been several studies quantifying H2 production relative to N2 fixation in cultures of diazotrophs. However, conducting the relevant measurements for a field population is more complex as shown by this study of N2 fixation, H2 consumption and dissolved H2 concentrations in the oligotrophic North Pacific Ocean. Measurements of H2 oxidation revealed microbial consumption of H2 was equivalent to 1–7% of ethylene produced during the acetylene reduction assay and 11–63% of 15 N2 assimilation on a molar scale. Varying abundances of Crocosphaera and Trichodesmium as revealed by nifH gene abundances broadly corresponded with diel changes observed in both N2 fixation and H2 oxidation. However, no corresponding changes were observed in the dissolved H2 concentrations which remained consistently supersaturated (147–560%) relative to atmospheric equilibrium. The results from this field study allow the efficiency of H2 cycling by natural populations of diazotrophs to be compared to cultured representatives. The findings indicate that dissolved H2 concentrations may depend not only on the community composition of diazotrophs but also upon relevant environmental parameters such as light intensity or the presence of other H2‐metabolizing microorganisms.

  4. Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen

    NASA Astrophysics Data System (ADS)

    Casciotti, K. L.; Trull, T. W.; Glover, D. M.; Davies, D.

    2008-07-01

    Nitrogen supply to surface waters can play an important role in the productivity and ecology of subtropical ecosystems. As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we examined the fluxes of nitrogen into and out of the euphotic zone at station ALOHA in the North Pacific Subtropical Gyre using natural abundance stable isotopic measurements of nitrate ( δN and δO), as well as sinking and suspended particulate nitrogen (δ 15N PN). Paralleling the steep gradient in nitrate concentration in the upper thermocline at ALOHA, we observed a steep gradient in δN, decreasing from a maximum of +7.1‰ at 500 meters (m) to +1.5-2.4‰ at 150 m. δO values also decreased from +3.0‰ at 300 m to +0.7-0.9‰ at 150 m. The decreases in both δN and δO require inputs of isotopically "light" nitrate to balance the upward flux of nitrate with high δN (and δO). We conclude that both nitrogen fixation and diagenetic alteration of the sinking flux contribute to the decrease in δN and δO in the upper thermocline at station ALOHA. While nitrogen fixation is required to explain the nitrogen isotope patterns, the rates of nitrogen fixation may be lower than previously estimated. By including high-resolution nitrate isotope measurements in the nitrogen isotope budget for the euphotic zone at ALOHA, we estimate that approximately 25%, rather than 50%, of export production was fueled by N 2 fixation during our study. On the other hand, this input of N 2-derived production accumulates in the upper thermocline over time, playing a significant role in subtropical nutrient cycling through maintenance of the subsurface nitrate pool. An increase in sinking δ 15N PN between 150 and 300 m, also suggests that fractionation during remineralization contributed to the low δN values observed in this depth range by introducing a subsurface nitrate source that is 0.5‰ lower in δ 15N than the particle flux exported from the euphotic zone. While the time scale of these

  5. Late Quaternary Radiolarian Assemblages as Indicators for Paleoceanographic Changes North of the Subtropical Front, Offshore Eastern New Zealand, Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Lüer, V.; Hollis, C. J.; Willems, H.

    2006-12-01

    Pleistocene-Holocene radiolarian assemblages at ODP Sites 1123 and 1124, offshore eastern New Zealand, southwest Pacific, have been used to determine how past climatic changes have affected oceanographic conditions directly north of the Subtropical Front (STF) during the last 600 kyrs. A ~21 kyr resolution study at Site 1123 (42°S, 3300 m water depth) during marine isotope stages (MIS)15-1 and a high resolution study (~5 kyr) at Site 1124 (39°S, 3980 m water depth) through MIS15-12 and 7-1 reveal similar trends in radiolarian assemblages. Abundant and diverse faunas consist of mainly transitional, subtropical and subantarctic species, typical of temperate waters. At Site 1123, radiolarian abundance and diversity peak in Interglacials (especially MIS9, 7, 1) reaching ~10,000 radiolarians/gram of sediment and 103 taxa, with shallow-dwelling and warm-water species also peaking in abundance (reaching 8% of the total fauna). In Glacials, abundance and diversity decrease (especially MIS12, 10, 2) and cool-water species increase to 15% of the fauna. At Site 1124, radiolarian abundance and diversity are high throughout the studied interval, peaking in MIS5 (~70,000 rads/gram; 122 taxa). Pronounced increases in shallow- dwelling, warm-water taxa occur at the onset of Interglacials of MIS13 and 5 (reaching 15% of the total fauna), whereas abundance of cool-water species increases during Glacials but does not exceed 15% of the total fauna. Overall, our results suggest warmer conditions at Site 1124 during the last 600 kyrs, reflecting sustained influence of subtropical, warm, nutrient-rich East Cape Current (ECC) flow. During Interglacials, warmest conditions at both sites are associated with significant strengthening of the ECC and associated eddies. At Site 1123 abundance of deep-dwelling taxa in MIS13 and 9 might indicate upwelling conditions within Interglacials. During Glacials, northward expansion of cool, nutrient-poor subantarctic waters (SAW) occurs at both sites

  6. Seasonal changes in planktonic foraminifera in the northwestern North Pacific Ocean: sediment trap experiments from subarctic and subtropical gyres

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Azumi; Kawahata, Hodaka; Nishi, Hiroshi; Honda, Makio C.

    Upper ocean environments such as seawater temperature, salinity, thermal structure in the water column, light intensity and food supply affect the assemblage of planktonic foraminifera. Since detailed information on planktonic foraminifera was not available for the northwestern North Pacific, we examined seasonal changes in fluxes and composition of planktonic foraminifera there. Data were collected by sediment traps deployed at three sites (Site 50N (50°01'N, 165°02'E), Site KNOT (43°58'N, 155°03'E), and Site 40N (39°60'N, 165°00'E)) in this area in order to better understand the relationship between the foraminiferal assemblage and surface-ocean environments. Although each planktonic foraminiferal species showed specific seasonal variations in flux, some exhibited similar flux profiles. In order to define these more accurately, correlations among species were calculated and the foraminiferal species classified into four groups: (1) Group A (subpolar species: Neogloboquadrina pachyderma, Globigerina quinqueloba, Globigerina bulloides, and Globigerinita glutinata); (2) Group B (subtropical and tropical species: Globigerinoides ruber and Globigerinoides sacculifer); (3) Group C (post-upwelling species: Neogloboquadrina dutertrei); and (4) Group D (deep-water species: Globorotalia scitula and Globorotalia truncatulinoides). The common environments for each period, based on foraminiferal production and composition, were observed among the three sites. Based upon predominant foraminiferal groups, total foraminiferal fluxes (TFFs), organic matter (OM) fluxes and hydrographic conditions, including sea-surface temperatures (SST) and thermal structure, the surface-ocean environments in the northwestern North Pacific could be generalized into five types. Type I is characterized by a dominance of Group B, with low TFFs under high SST, and Type II is marked by a high flux of Group A. On the other hand, Type III shows low TFFs and low OM fluxes due to low insolation

  7. Heat transport variation due to change of North Pacific subtropical gyre interior flow during 1993-2012

    NASA Astrophysics Data System (ADS)

    Nagano, Akira; Kizu, Shoichi; Hanawa, Kimio; Roemmich, Dean

    2016-12-01

    Applying segment-wise altimetry-based gravest empirical mode method to expendable bathythermograph temperature, Argo salinity, and altimetric sea surface height data in March, June, and November from San Francisco to near Japan (30∘ N, 145∘ E) via Honolulu, we estimated the component of the heat transport variation caused by change in the southward interior geostrophic flow of the North Pacific subtropical gyre in the top 700 m layer during 1993-2012. The volume transport-weighted temperature ( T I) is strongly dependent on the season. The anomaly of T I from the mean seasonal variation, whose standard deviation is 0.14∘C, was revealed to be caused mainly by change in the volume transport in a potential density layer of 25.0-25.5 σ 𝜃 . The anomaly of T I was observed to vary on a decadal or shorter, i.e., quasi-decadal (QD), timescale. The QD-scale variation of T I had peaks in 1998 and 2007, equivalent to the reduction in the net heat transport by 6 and 10 TW, respectively, approximately 1 year before those of sea surface temperature (SST) in the warm pool region, east of the Philippines. This suggests that variation in T I affects the warm pool SST through modification of the heat balance owing to the entrainment of southward transported water into the mixed layer.

  8. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Steinberg, Deborah K.; Cope, Joseph S.; Wilson, Stephanie E.; Kobari, T.

    2008-07-01

    Mesopelagic mesozooplankton communities of an oligotrophic (Hawaii Ocean Time series-HOT station ALOHA) and a mesotrophic (Japanese time-series station K2) environment in the North Pacific Ocean are compared as part of a research program investigating the factors that control the efficiency of particle export to the deep sea (VERtical Transport In the Global Ocean—VERTIGO). We analyzed zooplankton (>350 μm) collected from net tows taken between 0 and 1000 m at each site to investigate the biomass size structure and the abundance of the major taxonomic groups in discrete depth intervals throughout the water column. Biomass of zooplankton at K2 over all depths was approximately an order of a magnitude higher than at ALOHA, with a significantly higher proportion of the biomass at K2 in the larger (>2 mm) size classes. This difference was mostly due to the abundance at K2 of the large calanoid copepods Neocalanus spp. and Eucalanus bungii, which undergo ontogenetic (seasonal) vertical migration. The overall strength of diel vertical migration was higher at K2, with a mean night:day biomass ratio in the upper 150 m of 2.5, vs. a ratio of 1.7 at ALOHA. However, the amplitude of the diel migration (change in weighted mean depth between day and night) was higher at ALOHA for all biomass size classes, perhaps due to deeper light penetration causing deeper migration to avoid visual predators. A number of taxa known to feed on suspended or sinking detritus showed distinct peaks in the mesopelagic zone, which affects particle transport efficiency at both sites. These taxa include calanoid and poecilostomatoid (e.g., Oncaea spp.) copepods, salps, polychaetes, and phaeodarian radiolaria at K2, harpacticoid copepods at ALOHA, and ostracods at both sites. We found distinct layers of carnivores (mainly gelatinous zooplankton) in the mesopelagic at K2 including chaetognaths, hydrozoan medusae, polychaetes, and gymnosome pteropods, and, in the upper mesopelagic zone, of

  9. Evolution of the North Pacific Subtropical Gyre during the past 190 kyr through the interaction of the Kuroshio Current with the surface and intermediate waters

    NASA Astrophysics Data System (ADS)

    Ujiié, Yurika; Asahi, Hirofumi; Sagawa, Takuya; Bassinot, Franck

    2016-11-01

    The North Pacific Subtropical Gyre (NPSG) has two important functions, i.e., one in ocean heat transfer and another as a driving force for circulation of the surface and intermediate waters on the basin scale. In the present study, we describe records of the vertical thermal structures and distributions of water masses in the upper ocean of the subtropical northwest (NW) Pacific for the past 190 kyr, using two sediment cores collected from the Kuroshio Current area in the East China Sea and the NPSG area. During the two glacial periods, the Kuroshio Current was weakened owing to changes in ocean-atmosphere circulation and eustasy. The differences in the Mg/Ca-derived temperatures between surface and thermocline waters show the changes of depth and temperature (warming) of thermocline during glacial periods. Conversely, the planktonic foraminiferal assemblages demonstrate that the indicator of the intermediate water from the central area of the NPSG increased synchronously with thermocline warming during marine isotope stage (MIS) 6. These results suggest that warm intermediate water strongly affected the changes in the water-column structure of the subtropical NW Pacific during MIS 6. However, during MIS 2, cold water had precedence over intermediate water probably owing to the southward shift of the subtropical front associated with the reduced transport of the Kuroshio Current. Thus, the NPSG has evolved differently during the two glacial periods (MIS 2 and MIS 6) through interactions between the Kuroshio Current, surface water, and intermediate water.

  10. Use of Satellite-Derived Water Vapor Data to Investigate Northwestward Expansion of North Pacific Subtropical High During 1995 Summer: Westward Propagating Moisture Pattern

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Chung, Hyo-Sang; Kim, Do-Hyung; Perkey, Donald; Robertson, Franklin R.; Smith, Eric A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The spatial and temporal evolution of the moisture field over the subtropical northwest Pacific during the summer of 1995 is investigated using daily total precipitable water from combined SSM/I-TOVS data and pentad upper tropospheric humidity (UTH) data, in conjunction with NCEP reanalysis data. From analysis of the combined water vapor field, the westward movement of a dry airmass is observed along the 20-30 degrees N latitude zone from near the dateline to the south of Japan throughout the summer of 1995. Extended EOF analysis of total precipitable water reveals that the westward moving pattern takes place in conjunction with an expanding North Pacific subtropical high maintaining an oscillatory component exhibiting a period of some 15-25 days. A concomitant dipole-like oscillating anomalous circulation with approximately a 20-day period between the South China Sea and south of Japan appears to influence the westward expansion of the subtropical high. The analysis also suggests that the fluctuations of the North Pacific high are in response to a local Hadley-type circulation which is induced by westward-moving anomalous convection episodes along 10-20 degrees N.

  11. Use of Satellite-Derived Water Vapor Data to Investigate Northwestward Expansion of North Pacific Subtropical High During 1995 Summer: Westward Propagating Moisture Pattern

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Chung, Hyo-Sang; Kim, Do-Hyung; Perkey, Donald; Robertson, Franklin R.; Smith, Eric A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The spatial and temporal evolution of the moisture field over the subtropical northwest Pacific during the summer of 1995 is investigated using daily total precipitable water from combined SSM/I-TOVS data and pentad upper tropospheric humidity (UTH) data, in conjunction with NCEP reanalysis data. From analysis of the combined water vapor field, the westward movement of a dry airmass is observed along the 20-30 degrees N latitude zone from near the dateline to the south of Japan throughout the summer of 1995. Extended EOF analysis of total precipitable water reveals that the westward moving pattern takes place in conjunction with an expanding North Pacific subtropical high maintaining an oscillatory component exhibiting a period of some 15-25 days. A concomitant dipole-like oscillating anomalous circulation with approximately a 20-day period between the South China Sea and south of Japan appears to influence the westward expansion of the subtropical high. The analysis also suggests that the fluctuations of the North Pacific high are in response to a local Hadley-type circulation which is induced by westward-moving anomalous convection episodes along 10-20 degrees N.

  12. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis

    NASA Astrophysics Data System (ADS)

    Karl, D. M.; Bidigare, R. R.; Letelier, R. M.

    Oceanic productivity, fishery yields and the net marine sequestration of atmospheric greenhouse gases are all controlled by the structure and function of planktonic communities. Detailed paleoceanographic studies have documented abrupt changes in these processes over timescales ranging from centuries to millennia. Most of these major shifts in oceanic productivity and biodiversity are attributable to changes in Earth's climate, manifested through large-scale ocean-atmosphere interactions. By comparison, contemporary biodiversity and plankton community dynamics are generally considered to be "static", in part due to the lack of a suitable time frame of reference, and the absence of oceanic data to document ecosystem change over relatively short timescales (decades to centuries). Here we show that the average concentrations of chlorophyll a (chl a) and the estimated rates of primary production in the surface waters of the North Pacific Subtropical Gyre (NPSG) off Hawaii have more than doubled while the concentrations of dissolved silicate and phosphate have decreased during the past three decades. These changes are accompanied by an increase in the concentration of chl b, suggesting a shift in phytoplankton community structure. We hypothesize that these observed ecosystem trends and other related biogeochemical processes in the upper portion of the NPSG are manifestations of plankton community succession in response to climate variations. The hypothesized photosynthetic population "domain shift" toward an ecosystem dominated by prokaryotes has altered nutrient flux pathways and affected food web structure, new and export production processes, and fishery yields. Further stratification of the surface ocean resulting from global warming could lead to even more enhanced selection pressures and additional changes in biogeochemical dynamics.

  13. Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre.

    PubMed

    Sommer, Stephanie A; Van Woudenberg, Lauren; Lenz, Petra H; Cepeda, Georgina; Goetze, Erica

    2017-08-09

    Although metazoan animals in the mesopelagic zone play critical roles in deep pelagic food webs and in the attenuation of carbon in midwaters, the diversity of these assemblages is not fully known. A metabarcoding survey of mesozooplankton diversity across the epipelagic, mesopelagic and upper bathypelagic zones (0-1500 m) in the North Pacific Subtropical Gyre revealed far higher estimates of species richness than expected given prior morphology-based studies in the region (4,024 OTUs, 10-fold increase), despite conservative bioinformatic processing. Operational taxonomic unit (OTU) richness of the full assemblage peaked at lower epipelagic-upper mesopelagic depths (100-300 m), with slight shoaling of maximal richness at night due to diel vertical migration, in contrast to expectations of a deep mesopelagic diversity maximum as reported for several plankton groups in early systematic and zoogeographic studies. Four distinct depth-stratified species assemblages were identified, with faunal transitions occurring at 100 m, 300 m and 500 m. Highest diversity occurred in the smallest zooplankton size fractions (0.2-0.5 mm), which had significantly lower % OTUs classified due to poor representation in reference databases, suggesting a deep reservoir of poorly understood diversity in the smallest metazoan animals. A diverse meroplankton assemblage also was detected (350 OTUs), including larvae of both shallow and deep living benthic species. Our results provide some of the first insights into the hidden diversity present in zooplankton assemblages in midwaters, and a molecular reappraisal of vertical gradients in species richness, depth distributions and community composition for the full zooplankton assemblage across the epipelagic, mesopelagic and upper bathypelagic zones. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  14. Investigating the Trophic Ecology of the Fish Genus Cyclothone in the North Pacific Subtropical Gyre Using Stable Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Gloeckler, K.; Ko, W.; Choy, C. A.; Hannides, C. C.; Close, H. G.; Popp, B. N.; Drazen, J.

    2016-02-01

    The meso- and bathypelagic fish genus Cyclothone, commonly known as bristlemouths, are the most abundant vertebrates on the planet. Despite their abundance, little is known about their trophic ecology. A few studies have used traditional stomach content analysis and found that the majority of individuals had empty stomachs and a few contained copepod and ostracod remains. We used bulk tissue carbon and nitrogen isotopes, and compound-specific nitrogen isotope analysis of amino acids (AA-CSIA) to investigate the trophic ecology of this genus from individuals collected at Station ALOHA, in the North Pacific Subtropical Gyre. Two cosmopolitan species were abundant, the shallower living Cyclothone alba (425-625 m) and the deeper living Cyclothone pallida (600 - 1300 m), and appear to have different feeding ecologies. While the bulk 13C and 15N contents of C. alba were similar to those of other zooplanktivorous micronekton, the bulk 13C and 15N contents of C. pallida were much higher than those of zooplanktivorous micronekton and suggest either (1) that they feed at a similar trophic level to large predatory fishes such as Thunnus albacares and Coryphaena hipurrus or (2) that the baseline isotopic values of their food web are substantially different. AA-CSIA showed that the trophic position (TP) of C. pallida was 2.3 - 3.2 (±0.28), that is, much lower than the TP of large predatory fishes. Additionally, the δ15N values of the `source' amino acid phenylalanine (d15NPHE) were very high, indicating baseline isotopic values within the range of bacterially-altered suspended particles. Suspended particles have often been overlooked as a significant source of carbon in the deep sea despite discrepancies between the supply of carbon via sinking particles and estimated demand of carbon by deep sea organisms. These results suggest that a suspended particle based food web is important to at least some deep-sea fauna.

  15. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox)

    NASA Astrophysics Data System (ADS)

    Portner, Elan J.; Polovina, Jeffrey J.; Choy, C. Anela

    2017-07-01

    We examined the diet of a common midwater predator, the longnose lancetfish (Alepisaurus ferox, n=1371), with respect to fork length, season, and capture location within the North Pacific Subtropical Gyre (NPSG). While A. ferox fed diversely across 97 prey families, approximately 70% of its diet by wet weight consisted of seven prey families (fishes: Sternoptychidae, Anoplogastridae, Omosudidae, Alepisauridae; hyperiid amphipods: Phrosinidae; octopods: Amphitretidae; polychaetes: Alciopidae). Altogether, these micronekton prey families constitute a poorly known forage community distinct from those exploited by other pelagic predators and poorly sampled by conventional methods. We demonstrate ontogenetic variation in diet between two size classes of A. ferox (<97 cm fork length=;small;, ≥97 cm fork length=;large;). Large A. ferox consumed more fish and octopods, fewer crustaceans, and were more cannibalistic than small A. ferox. Ontogenetic shifts in vertical foraging habitat were observed as the consumption of larger and more mesopelagic prey with increasing fork length. Spatial and seasonal variation in the diet of A. ferox is consistent with expected patterns of variation in prey distribution with respect to oceanographic features of the NPSG. Within both size classes, the diets of specimens collected from the oligotrophic core of the NPSG were more diverse than those collected near the boundaries of the gyre and appeared to track seasonal variation in the position of the northern boundary of the gyre. Our data suggest seasonal and spatial variability in the composition of midwater forage communities exploited by A. ferox across the NPSG, and demonstrate that sustained monitoring of diet could provide valuable insights into long-term changes in these understudied communities.

  16. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  17. Decrease of dissolved oxygen after the mid-1980s in the western North Pacific subtropical gyre along the 137°E repeat section

    NASA Astrophysics Data System (ADS)

    Takatani, Yusuke; Sasano, Daisuke; Nakano, Toshiya; Midorikawa, Takashi; Ishii, Masao

    2012-06-01

    The Japan Meteorological Agency has acquired dissolved oxygen (DO) concentration data each year since 1967 along the 137°E repeat section in the western North Pacific. In this data set we found significant regional temporal trends of decreasing or increasing DO concentrations on various isopycnal surfaces. DO decreases were particularly significant after the mid-1980s in the subtropical gyre; mean rates of DO change at 20-25°N for 1985-2010 were -0.28 ± 0.08 μmol kg-1 yr-1 on 25.5 σθ in North Pacific Subtropical Mode Water (NPSTMW), -0.36 ± 0.08 μmol kg-1 yr-1 on 26.8 σθ in North Pacific Intermediate Water (NPIW), and -0.23 ± 0.04 μmol kg-1 yr-1 on 27.3 σθ in the O2 minimum Layer (OML). The cause of DO decrease differed among isopycnal surfaces. On density surfaces shallower than 26.0 σθ (less than about 400 m), the deepening of isopycnal surfaces and decline of oxygen solubility due to ocean warming have had the greatest influence. In particular, between 25.2 σθ and 25.8 σθ near the NPSTMW their combined contributions accounted for >50% of the DO decrease. In the NPIW core at roughly 26.8 σθ (˜700 m), the decline in DO was attributable to the DO decrease in the formation region. In the OML between 27.0 σθ and 27.3 σθ (˜1000 m), the DO decrease likely resulted from an increase in westward transport of low O2 water due to strengthening of the subtropical gyre. The result of this study shows the importance of the long-term and high-frequency along the 137°E repeat section.

  18. Fertilization Potention of Volcanic Dust in the Low-Nutrient Low-Chlorophyll Western North Pacific Subtropical Gyre: Satellite Evidence and Laboratory Study

    DTIC Science & Technology

    2011-02-08

    19b. TELEPHONE NUMBER {include area code) (228)688-5448 Standard Form 298 IRev 8/98] P’«scnbed by ANSI Sid Z39 18 GLOBAL BIOGEOCHEMICAL CYCLES...North Pacific subtropical gyre: Satellite evidence and laboratory study. Global Biogeochem. Cycles, 25, GBI006, doi: 10.1029/2009GB003758. 4Rescarch...production is a key component in the global carbon cycle [Canadell et ai, 2007]. The open ocean, which accounts for about three quarters of the global

  19. Decoupling between bacterial production and primary production over multiple time scales in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Viviani, Donn A.; Church, Matthew J.

    2017-03-01

    We measured rates of 3H-leucine (3H-Leu) incorporation, as a proxy for bacterial production, at Station ALOHA (22°45‧N, 158°W) in the oligotrophic North Pacific Subtropical Gyre (NPSG). We report measurements conducted between January 2011 and April 2013, examining variability in 3H-Leu incorporation over diel, daily, and monthly time scales. Rates of 3H-Leu were evaluated in the context of contemporaneous 14C-based primary productivity (14C-PP) to identify potential temporal coupling between these measures of productivity. Throughout the upper ocean (0-125 m), rates of 3H-Leu incorporation measured in the light (3H-LeuLight) were stimulated (1.5-fold, on average) relative to measurements in the dark (3H-LeuDark). At monthly scales, rates of 3H-LeuLight and 3H-LeuDark varied 4.9-fold and 3.8-fold, respectively, while rates of 14C-PP varied 1.7-fold. Rates of 14C-PP were often elevated during summer months (May through August) when incident light flux was greatest, while rates of both 3H-LeuLight and 3H-LeuDark often peaked in early fall (August through October) when seawater temperatures were maximal. Near-daily measurements of 3H-Leu incorporation and 14C-PP conducted over a 62-day period in the summer of 2012 revealed that rates of 3H-LeuLight and 3H-LeuDark varied 2.5 and 2.0-fold, respectively, similar to 1.8-fold daily variability observed in rates of 14C-PP. Over diel time scales, rates of 3H-LeuLight and 3H-LeuDark demonstrated different patterns, with rates of 3H-LeuLight elevated at mid-day and rates of 3H-LeuDark greatest in the early evening. Together, these results suggest that in this oligotrophic ecosystem, photosynthetic production of organic matter and bacterial production can be temporally uncoupled across daily to seasonal scales.

  20. Stable isotope analysis of food-web system in subarctic to subtropical region of western North Pacific

    NASA Astrophysics Data System (ADS)

    Aita, M. N.; Minoru, K.; Kobari, T.; Yoshikawa, C.; Ishii, R.

    2016-02-01

    Carbon and nitrogen isotope ratios of biota are controlled by two factors, a metabolic system and a lifestyle of predator and a regional variability of environmental parameters on food web system. To evaluate the environmental factors (i.e., nutrients and temperature) on the basic food web in the marine ecosystem. We studied the seasonal variation of nitrogen and carbon isotope ratios of zooplankton in the subarctic site of K2 (47ºN, 160ºE) and the subtropical one of S1 (30ºN, 145ºE) in the western North Pacific Ocean, both of which are JAMSTEC observation site. Biota were collected in eight depths (0-50, 50-100, 100-150, 150-200, 200-300, 300-500, 500-750, 750-1000m) at both sites using IONESS from February 2010 to July 2011. All samples were classified under a stereomicroscope into species or genus level and used adult stage for isotopic analysis. We also collected water samples from seasonal and vertical (from the surface to 1,000m depth) profiles in δ15N (NO3+ + NO2-) at K2 and S1 in special reference to nitrogen cycles. The δ15N and δ13C values of amphipods and copepod, omnivorous zooplankton in the surface ocean, showed a large seasonal variation. The δ15N values of zooplankton and nitrate ions in the water at the S1 site tended to be lower than those at the K2 site, indicating that the basic food web could be affected by nitrogen fixation. We further compared the trophic fractionation of carbon and nitrogen isotopes (Δδ13C, Δδ15N). It was observed that a simple relationship exists in the Δδ15N/Δδ13C regardless of species and ecosystems. This contention suggests a unified regularity is maintained in the lower to higher trophic level in the marine ecosystem.

  1. Feeding ecology of mesopelagic zooplankton of the subtropical and subarctic North Pacific Ocean determined with fatty acid biomarkers

    NASA Astrophysics Data System (ADS)

    Wilson, S. E.; Steinberg, D. K.; Chu, F.-L. E.; Bishop, J. K. B.

    2010-10-01

    Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone -1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100-300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments

  2. Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during strong La Niña conditions: relationship between distribution and hydrological conditions

    NASA Astrophysics Data System (ADS)

    Girault, M.; Arakawa, H.; Barani, A.; Ceccaldi, H. J.; Hashihama, F.; Gregori, G.

    2014-11-01

    The spatial distribution of heterotrophic prokaryotes was investigated during the Tokyo-Palau cruise in the western part of the North Pacific subtropical gyre (NPSG) along a north-south transect between 33.60 and 13.25° N. The cruise was conducted in three different hydrological areas identified as the Kuroshio region, the Subtropical gyre area and the Transition zone. Two eddies were crossed along the transect: one cold core cyclonic eddy and one warm core anticyclonic eddy and distributions of the heterotrophic prokaryotes were recorded. By using analytical flow cytometry and a nucleic acid staining protocol, heterotrophic prokaryotes were discriminated into three subgroups depending on their nucleic acid content (low, high and very high nucleic acid contents labeled LNA, HNA and VHNA, respectively). Statistical analyses performed on the dataset showed that LNA, mainly associated with temperature and salinity, were dominant in all the hydrological regions. In contrast, HNA distribution seemed to be associated with temperature, salinity, Chl a and silicic acid. A latitudinal increase in the HNA / LNA ratio was observed along the north-south transect and was related to higher phosphate and nitrate concentrations. In the Kuroshio Current, it is suggested that the high concentration of heterotrophic prokaryotes observed at station 4 was linked to the path of the cold cyclonic eddy core. In contrast, it is thought that low concentrations of heterotrophic prokaryotes in the warm core of the anticyclonic gyre (Sta. 9) are related to the low nutrient concentrations measured in the seawater column. Our results showed that the high variability between the various heterotrophic prokaryote cluster abundances depend both on the mesoscale structures and the oligotrophic gradient.

  3. Distribution of sei whales (Balaenoptera borealis) in the subarctic-subtropical transition area of the western North Pacific in relation to oceanic fronts

    NASA Astrophysics Data System (ADS)

    Murase, Hiroto; Hakamada, Takashi; Matsuoka, Koji; Nishiwaki, Shigetoshi; Inagake, Denzo; Okazaki, Makoto; Tojo, Naoki; Kitakado, Toshihide

    2014-09-01

    The subarctic-subtropical transition area of the western North Pacific is an important summer feeding grounds of sei whales. The oceanographic structure and circulation of this area are largely determined by strong oceanic fronts and associated geostrophic currents, namely the Polar Front (PF), Subarctic Front (SAF) and Kuroshio Extension Front (KEF). The relationship between the distribution of sei whales and oceanographic fronts was investigated using a generalized additive model (GAM), and the cetacean sighting survey data and oceanographic observations in July from 2000 to 2007 were used in the analysis. The number of individual sei whales was used as the response variable while the distances from the PF, SAF, and KEF to the whales were used as explanatory variables along with the longitude values. Sei whales were concentrated north and south of the SAF and the areas from 250 to 300 km north and from 100 to 200 km south of the SAF were estimated as high-density areas of sei whales. The entire inter-frontal zone between the PF and SAF featured an elevated concentration of sei whales, and the area south of the PF and along the SAF was identified as an important feeding ground of sei whales in July from 2000 to 2007.

  4. Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Emerson, Steven R.; Bushinsky, Seth M.

    2017-04-01

    Annual net community production (ANCP) in the subtropical Pacific Ocean was determined by using annual oxygen measurements from Argo profiling floats with an upper water column oxygen mass balance model. ANCP was determined to be from 2.0 to 2.4 mol C m-2 yr-1 in the western subtropical North Pacific, 2.4 mol C m-2 yr-1 in the eastern subtropical North Pacific, and near zero in the subtropical South Pacific. Error analysis with the main sources of uncertainty being the accuracy of oxygen measurements and the parameterization of bubble fluxes in winter suggested an uncertainty of 0.3 mol C m-2 yr-1 in subtropical Pacific. The results are in good agreement with previous observations in locations where ANCP has been determined before. These are the first results from the western subtropical North Pacific and subtropical South Pacific where ANCP have not been evaluated before. ANCP for the subtropical South Pacific is significantly lower than in all other open ocean locations where it has been determined by mass balance. Comparison of our observations with net biological carbon export estimated from remote sensing algorithms indicates that observations from the subtropical North Pacific are higher than the satellite estimates, but those in the subtropical South Pacific are lower than satellite-determined carbon export.

  5. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    NASA Astrophysics Data System (ADS)

    Bibby, T. S.; Moore, C. M.

    2011-03-01

    Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response in which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies may therefore be important in driving export in oligotrophic regions of the modern ocean. However, the character and magnitude of the biological response sustained by eddies is variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic) and the waters off Hawai'i (Pacific), alongside mesoscale events that affected the Bermuda Atlantic Time-Series Study (BATS) over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si*) in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE) in the Sargasso Sea upwell locally formed waters with relatively high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with relatively low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed dominance of the phytoplankton community by large-diatom species in MWE and by small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, North Pacific Intermediate Water (NPIW) with high Si* may influence the cyclonic eddies in waters off Hawai'i, which also appear capable of sustaining diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may be related to the chemical composition of the upwelled waters in addition to the physical nature of the eddy.

  6. Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim

    NASA Astrophysics Data System (ADS)

    Zhu, Chunmao; Kawamura, Kimitaka; Kunwar, Bhagawati

    2015-06-01

    Primary biological aerosol particles (PBAPs) play an important role in affecting atmospheric physical and chemical properties. Aerosol samples were collected at Cape Hedo, Okinawa Island, Japan, from October 2009 to February 2012 and analyzed for five primary saccharides and four sugar alcohols as PBAP tracers. We detected high levels of sucrose in spring when blossoming of plants happens and prolifically emits pollen to the air. Concentrations of glucose, fructose, and trehalose showed levels higher than the other saccharides in spring in 2010. In comparison, primary saccharide levels were mutually comparable in spring, summer, and autumn in 2011, indicating the interannual variability of their local production in subtropical forests, which is driven by local temperature and radiation. High trehalose events were found to be associated with Asian dust outflows, indicating that Asian dust also contributes to PBAPs at Okinawa. Sugar alcohols peaked in summer and correlated with local precipitation and temperature, indicating high microbial activities. Positive matrix factorization analysis confirmed that the PBAPs are mainly derived from local vegetation, pollen, and fungal spores. A higher contribution of PBAP tracers to water-soluble organic carbon (WSOC) was found in summer (14.9%). The annual mean ambient loadings of fungal spores and PBAPs were estimated as 0.49 µg m-3 and 4.12 µg m-3, respectively, using the tracer method. We report, for the first time, year-round biomarkers of PBAP and soil dust and their contributions to WSOC in the subtropical outflow region of the Asian continent.

  7. Millennial scale oscillations in bulk δ15N and δ13C over the Mid- to Late Holocene seen in proteinaceous corals from the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Glynn, D. S.; Mccarthy, M. D.; McMahon, K.; Guilderson, T. P.

    2014-12-01

    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on this planet and is an important regulator of biogeochemical cycling and carbon sequestration. With evidence of its expansion in a warming climate, it is necessary to develop a more complete understanding of the variability in productivity and nutrient dynamics in this important ecosystem through time. We constructed a long-term, high resolution record of bulk record of stable nitrogen (δ15N) and carbon isotopes (δ13C) from multiple proteinaceous deep sea corals around Hawaii extending back ~5300 years with few gaps. Our data confirms the decreasing trend in δ15N since the Little Ice Age (1850s), which matches previously published results in part attributed to anthropogenic climate change (e.g. Sherwood et al. 2014). However, while the rate of change since the Little Ice Age (δ15N declines ~1‰ over ~150yrs) remains by far the most rapid throughout the longer record, there also appear to be longer-term (near-millennial scale) climatic oscillations of even greater magnitude (δ15N shifts ~1.5-2‰ over ~1000yrs). After removal of the Seuss Effect, δ13C values also declined ~1.5‰ since the Little Ice Age. Furthermore, there also appear to be oscillations in δ13C of ~1-2‰ over millennial timescales. These results reveal the existence of previously unrecognized long-term oscillations in NPSG biogeochemical cycles, which are likely linked to changes in phytoplankton species composition, food web dynamics, and/or variability in source nutrients and productivity possibly caused by changes in climate. This study provides insight into nutrient dynamics in the NPSG over the past five millennia, and offers a historical baseline to better analyze the effects of current anthropogenic climate forcing.

  8. Spatial and temporal changes in the concentration of various phosphorus pools and their possible biogeochemical roles in the oligotrophic subtropical western North Pacific

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyun; Hama, Takeo; Ishii, Masao; Saito, Shu; Yanagi, Katsumi

    2008-03-01

    Spatial and temporal variations in the concentration of phosphorus pools, including total phosphorus (TP), reactive phosphorus (RP), and nonreactive phosphorus (NP), were evaluated in subtropical regions (10-30°N) of the western North Pacific Ocean along 137°E through eight sampling periods from summer 2003 to spring 2005. RP was depleted at the water surface throughout our observation, varying less than 0.1 μM. The low concentration of RP was restricted to the surface mixing layer, and the concentration obviously increased concomitant with the decrease in water temperature. NP concentration was generally highest at the water surface and gradually decreased with increasing depth, but the depth and temporal variations were not definite compared with those of RP. NP was further divided into two fractions depending on its reactivity to specific ultraviolet (UV) irradiation. The concentration of UV labile organic phosphorus (UVL OP) was consistently low, being comparable with that of RP; their inventories from 0 to 50 m of RP and UVL OP fluctuated with in the range of 0.9-3.2 and 2.0-3.1 mmol m-2, respectively. As for incubation experiments in coastal waters using glucose-1-phosphate, which is fractionated into UVL OP, the UVL OP most likely has a short turnover time due to rapid utilization by microorganisms, indicating a significant role in the phosphorus cycle through the microbial food web. Inventory of the UV stable OP (UVS OP), on the other hand, varied nearly eightfold in the upper 50 m, and the temporal change in TP inventory was exclusively due to that of UVS OP.

  9. Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre: Satellite evidence and laboratory study

    NASA Astrophysics Data System (ADS)

    Lin, I.-I.; Hu, Chuanmin; Li, Yuan-Hui; Ho, Tung-Yuan; Fischer, Tobias P.; Wong, George T. F.; Wu, Jingfeng; Huang, Chih-Wei; Chu, D. Allen; Ko, Dong S.; Chen, Jen-Ping

    2011-03-01

    In the western North Pacific subtropical ocean, the Anatahan volcano of the Mariana Islands erupted on 10 May 2003 for the first time in recorded history. Based on nine different types of remote sensing data provided by NASA, laboratory experiment of the Anatahan samples, and a 3-D ocean circulation model developed by the U.S. Naval Research Laboratory, the postvolcanic ocean biogeochemical response to the Anatahan eruption was explored. It was observed that soon after the eruption, the aerosol optical depth abruptly increased from the pre-eruption loading of ˜0.1 to ˜2. In the week following the eruption, a "bloom-like" patch was observed by NASA's Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) ocean color sensor. Based on the chlorophyll a, fluorescence line height (FLH), at-sensor total radiance, and normalized water-leaving radiance data obtained by MODIS, the cause of the bloom-like patch was diagnosed. The results suggest that the patch was most likely a mixture of suspended volcanic particles and a phytoplankton bloom. FLH was found to be ˜9-17 × 10-3 mW cm-2μm-1 sr-1 in the patch and ˜3-5 × 10-3 mW cm-2μm-1 sr-1 in the ambient water, indicating that a 2-5-fold increase in biological activity occurred during the week following the eruption. Satellite altimetry indicated that the bloom took place in the presence of downwelling and was not a result of upwelled nutrients in this oligotrophic ocean. Analysis of satellite ocean color spectra of the bloom region found similar spectra as the reference Trichodesmium spectra. Laboratory experiments further substantiate the satellite observations which show elevated concentrations of limiting nutrients provided by the Anatahan samples, and the averaged soluble nitrate, phosphate, and Fe were 42, 3.1, and 2.0 nM, respectively. Though it was not possible to obtain in situ observations of the ocean biogeochemical responses that followed the Anatahan eruption, this study provided evidence based on

  10. Ocean noise in the tropical and subtropical Pacific Ocean.

    PubMed

    Sirović, Ana; Wiggins, Sean M; Oleson, Erin M

    2013-10-01

    Ocean ambient noise is well studied in the North Pacific and North Atlantic but is poorly described for most of the worlds' oceans. Calibrated passive acoustic recordings were collected during 2009-2010 at seven locations in the central and western tropical and subtropical Pacific. Monthly and hourly mean power spectra (15-1000 Hz) were calculated in addition to their skewness, kurtosis, and percentile distributions. Overall, ambient noise at these seven sites was 10-20 dB lower than reported recently for most other locations in the North Pacific. At frequencies <100 Hz, spectrum levels were equivalent to those predicted for remote or light shipping. Noise levels in the 40 Hz band were compared to the presence of nearby and distant ships as reported to the World Meteorological Organization Voluntary Observing Ship Scheme (VOS) project. There was a positive, but nonsignificant correlation between distant shipping and low frequency noise (at 40 Hz). There was a seasonal variation in ambient noise at frequencies >200 Hz with higher levels recorded in the winter than in the summer. Several species of baleen whales, humpback (Megaptera novaeangliae), blue (Balaenoptera musculus), and fin (B. physalus) whales, also contributed seasonally to ambient noise in characteristic frequency bands.

  11. Do Sverdrup transports account for the Pacific North Equatorial Countercurrent

    SciTech Connect

    Meyers, G.

    1980-02-20

    Poleward and equatorward geostrophic transports calculated from density are nearly equal to Sverdrup transports calculated from the curl of the wind stress in the North and South Pacific subtropical gyres. But the Sverdrup transports do not account for the Pacific North Equatorial Countercurrent.

  12. Influence of South Pacific Subtropical Dipole on South Pacific Convergence Precipitation

    NASA Astrophysics Data System (ADS)

    Wang, F.

    2016-12-01

    This study analyses the influence of the South Pacific Subtropical Dipole(SPSD) on South Pacific Convergence Zone(SPCZ) and explores its dynamic processes by using SST data HadISST of Hadley center and atmospheric reanalysis data of NCEP-NCAR. Analyses show that South Pacific Subtropical Dipole is linearly independent of ENSO, and SPSD with a strong phase locking peaks in summer(12 2). The location of SPCZ precipitation during January-March is remarkably affected by SPSD event during December-February, and SPCZ precipitation zone moves north and the location of precipitation moves south during negative dipole event. Northeast pole (warmer SST) has positive precipitation anomaly because of lower pressure and convergence of moisture in this area during positive dipole event years. However southwest pole (cooler SST) with higher pressure is dominated by divergence of moisture in order to less precipitation, so SPCZ precipitation zone moves north and the location of precipitation is opposite during negative dipole event. The results of this study provide more knowledge of relationship between SPSD and SPCZ, and it's better to understand climate change and air-sea interaction in south Pacific

  13. Spatial and Temporal Variability in the Concentration and Turnover of the Inorganic Phosphate and Adenosine-5'-triphosphate pools in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Björkman, Karin; Church, Matthew; Karl, David

    2015-04-01

    The microbial community's utilization of inorganic phosphate (Pi) and adenosine-5'-triphosphate (ATP) as a function of the Pi pool concentration was studied over a multi-year period at Station ALOHA (22.75˚N, 158˚W) in the North Pacific Subtropical Gyre (NPSG). Additionally, the spatial variability in these same properties was investigated along an east-west transect from California to Hawaii in the Fall of 2014. We used radiotracer techniques to determine the turnover times of the Pi or ATP pools respectively, and assessed the net production of dissolved organic phosphorus, and Pi hydrolysis rate from ATP. Pi concentrations in the upper water column at Station ALOHA are temporally highly dynamic, with periods of <10 nM-P to near 200 nM-P recorded within the top 50 m over the past decades of observations. During the California to Hawaii transect Pi concentrations showed a similarly large range (<10 to >200 nM-P), emphasizing the spatially and temporally mosaic nature of the upper ocean of this large biome. The Pi-pool turnover time ranged from a few hours to several weeks, and was strongly correlated with measured Pi pool concentrations (r2=0.8; n=30 Station ALOHA; n=15 transect). The calculated Pi uptake rates at Station ALOHA averaged 3.7±1.3 nM-P d-1 (n=30), reflecting the typically low maximum Pi uptake rates of the Prochlorococcus dominated community and the predominantly non-limiting Pi conditions. The Pi uptake rates along the transect were more variable than Station ALOHA (averaging 9.2±4.7 nM=P d-1, n=15), possibly due to a more diverse planktonic community structure, including stations with elevated concentrations of chlorophyll and primary productivity. The turnover time of the dissolved ATP pool was typically substantially shorter than for the Pi-pool (2-5 days at Station ALOHA; 0.3-2.5 days along the transect), likely reflecting its low nanomolar to picomolar ambient pool concentrations. However, at stations with the lowest SRP concentrations the

  14. Microbial Group Specific Uptake Kinetics of Inorganic Phosphate and Adenosine-5′-Triphosphate (ATP) in the North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin; Duhamel, Solange; Karl, David M.

    2012-01-01

    We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5′-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L−1 (n = 22), 4.8 ± 1.9 nmol L−1 day−1 (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10–500 nmol L−1) was small, indicating that the microorganisms were close to their maximum uptake velocity (Vmax). Vmax averaged 8.0 ± 3.6 nmol L−1 day−1 (n = 19) in the >0.2 μm group, with half saturation constants (Km) of 40 ± 28 nmol L−1 (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L−1 the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with Vmax exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean Vmax for γ-P-ATP of 2.8 ± 1.0 nmol L−1 day−1, and Km at 11.5 ± 5.4 nmol L−1 (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had Km values 5–10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi acquisition

  15. Anomalous convective activity over sub-tropical east Pacific during 2015 and associated boreal summer monsoon teleconnections

    NASA Astrophysics Data System (ADS)

    Mujumdar, Milind; Sooraj, K. P.; Krishnan, R.; Preethi, B.; Joshi, Manish K.; Varikoden, Hamza; Singh, Bhupendra B.; Rajeevan, M.

    2017-06-01

    The eastern Pacific Ocean received a record highest number of sub-tropical convective activities during boreal summer (June-September) of 2015, since last four decades. The associated rainfall distribution was also atypical with anomalously enhanced rainfall extending from equator to sub-tropical central-eastern Pacific. The present analysis reveals a pronounced meridional sea surface temperature (SST) gradient across central-eastern Pacific, with the mean SST exceeding 28 °C over sub-tropical north Pacific, setting up favorable conditions for these enhanced convective activities. It is found that these anomalous features promoted northward spanning of westerly anomalies and drastically modified the east-west circulation over sub-tropical north Pacific. This seems to induce large-scale subsidence over the off-equatorial monsoon regions of south and south-east Asia, thus constituting an east-west asymmetry over sub-tropical Indo-Pacific region. Based on our observational study, it can be concluded that the sub-tropical convective activities over east Pacific may play a pivotal role in mediating the Pacific-monsoon teleconnection through the unexplored meridional SST gradient across Pacific.

  16. Ecological patterns, distribution and population structure of Prionace glauca (Chondrichthyes: Carcharhinidae) in the tropical-subtropical transition zone of the north-eastern Pacific.

    PubMed

    Vögler, Rodolfo; Beier, Emilio; Ortega-García, Sofía; Santana-Hernández, Heriberto; Valdez-Flores, J Javier

    2012-02-01

    Regional ecological patterns, distribution and population structure of Prionace glauca were analyzed based on samples collected on-board two long-line fleets operating in oceanic waters (1994-96/2000-02) and in coastal oceanic waters (2003-2009) of the eastern tropical Pacific off México. Generalized additive models were applied to catch per unit of effort data to evaluate the effect of spatial, temporal and environmental factors on the horizontal distribution of the life stages (juvenile, adult) and the sexes at the estimated depth of catch. The presence of breeding areas was explored. The population structure was characterized by the presence of juveniles' aggregations and pregnant females towards coastal waters and the presence of adult males' aggregations towards oceanic waters. The species exhibited horizontal segregation by sex-size and vertical segregation by sex. Distribution of the sex-size groups at oceanic waters was seasonally affected by the latitude; however, at coastal oceanic waters mainly females were influenced by the longitude. Latitudinal changes on the horizontal distribution were coupled to the seasonal forward and backward of water masses through the study area. Adult males showed positive relationship with high temperatures and high-salinities waters (17.0°-20.0 °C; 34.2-34.4) although they were also detected in low-salinities waters. The distribution of juvenile males mainly occurred beyond low temperatures and low-salinities waters (14.0°-15.0 °C; 33.6-34.1), suggesting a wide tolerance of adult males to explore subartic and subtropical waters. At oceanic areas, adult females were aggregated towards latitudes <25.0°N, mainly associated to subtropical waters during summer. The distribution of juvenile females indicated its preference by lower temperatures and more saline waters. Presence of pregnant females suggests that the eastern tropical Pacific off México represents an ecological key region to the reproductive cycle of P. glauca.

  17. On North Pacific circulation and associated marine debris concentration.

    PubMed

    Howell, Evan A; Bograd, Steven J; Morishige, Carey; Seki, Michael P; Polovina, Jeffrey J

    2012-01-01

    Marine debris in the oceanic realm is an ecological concern, and many forms of marine debris negatively affect marine life. Previous observations and modeling results suggest that marine debris occurs in greater concentrations within specific regions in the North Pacific Ocean, such as the Subtropical Convergence Zone and eastern and western "Garbage Patches". Here we review the major circulation patterns and oceanographic convergence zones in the North Pacific, and discuss logical mechanisms for regional marine debris concentration, transport, and retention. We also present examples of meso- and large-scale spatial variability in the North Pacific, and discuss their relationship to marine debris concentration. These include mesoscale features such as eddy fields in the Subtropical Frontal Zone and the Kuroshio Extension Recirculation Gyre, and interannual to decadal climate events such as El Niño and the Pacific Decadal Oscillation/North Pacific Gyre Oscillation. Published by Elsevier Ltd.

  18. Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during a strong La Niña conditions: relationship between distribution and hydrological conditions

    NASA Astrophysics Data System (ADS)

    Girault, M.; Arakawa, H.; Barani, A.; Ceccaldi, H. J.; Hashihama, F.; Gregori, G.

    2015-06-01

    The spatial distribution of heterotrophic prokaryotes was investigated during the Tokyo-Palau cruise in the western part of the North Pacific subtropical gyre (NPSG) along a north-south transect between 33.60 and 13.25° N. The cruise was conducted in three different hydrological areas identified as the Kuroshio region, the subtropical gyre area and the transition zone. Two eddies were crossed along the transect: one cold-core cyclonic eddy and one warm-core anticyclonic eddy and distributions of the heterotrophic prokaryotes were recorded. By using analytical flow cytometry and a nucleic acid staining protocol, heterotrophic prokaryotes were discriminated into three subgroups depending on their nucleic acid content (low, high and very high nucleic acid contents labelled LNA, HNA and VHNA, respectively). Statistical analyses performed on the data set showed that LNA, mainly associated with low temperature and low salinity, were dominant in all the hydrological regions. In contrast, HNA distribution seemed to be associated with temperature, salinity, Chl a and silicic acid. A latitudinal increase in the HNA / LNA ratio was observed along the north-south transect and was related to higher phosphate and nitrate concentrations. However, the opposite relationship observed for the VHNA / HNA ratio suggested that the link between nucleic acid content and oligotrophic conditions is not linear, underlying the complexity of the biodiversity in the VHNA, HNA and LNA subgroups. In the Kuroshio Current, it is suggested that the high concentration of heterotrophic prokaryotes observed at station 4 was linked to the path of the cold cyclonic eddy core. In contrast, it is thought that low concentrations of heterotrophic prokaryotes in the warm core of the anticyclonic gyre (Sta. 9) are related to the low nutrient concentrations measured in the seawater column. Our results showed that the high variability between the various heterotrophic prokaryote cluster abundances depend both

  19. North Pacific Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Many images are made of relatively bright phytoplankton blooms. However, not all such blooms reflect more light than they absorb. SeaWiFS collected this image of a patch in the north Pacific that had been darkened because the photosynthetic pigments of the phytoplankton living there had absorbed more of the incoming solar radiation than the relatively phytoplankton-poor surrounding waters. The Hawaiian islands can be seen through the clouds about 1000 kilometers to the southwest of the patch.

  20. North Pacific Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Many images are made of relatively bright phytoplankton blooms. However, not all such blooms reflect more light than they absorb. SeaWiFS collected this image of a patch in the north Pacific that had been darkened because the photosynthetic pigments of the phytoplankton living there had absorbed more of the incoming solar radiation than the relatively phytoplankton-poor surrounding waters. The Hawaiian islands can be seen through the clouds about 1000 kilometers to the southwest of the patch.

  1. Nitrous oxide cycling in the water column and sediments of the oxygen minimum zone, eastern subtropical North Pacific, Southern California, and Northern Mexico (23°N-34°N)

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Prokopenko, Maria G.; Berelson, William M.

    2014-05-01

    Identifying sources and sinks of N2O can illuminate N cycling processes in marine systems, particularly where changes in dissolved O2 can lead to changes in N cycling pathways (i.e., nitrification versus denitrification). We measured N2O and NO3- concentration and their stable isotope ratios (δ15N and δ18O) in the water column and sediments of the oxygen minimum zone in the nearshore eastern subtropical North Pacific (23°N-34°N). Atmospheric efflux of N2O ranged from 2.2 to 17.9 μmol m-2 d-1 or about 2-20 times higher than in oxygenated regions of the North Pacific. Surface waters were a source of 15N-depleted and 18O-enriched N2O to the atmosphere, indicating a bacterial, not archaeal, nitrification N2O source. Stable isotopes indicated that nitrification in both surface and intermediate waters (˜0-200 m) was the major source of N2O in this study area, with denitrification acting as a small N2O sink in strongly O2-depleted waters. Denitrification had a larger impact on observed patterns of N2O and NO3- concentrations and isotope ratios in the southern oxygen minimum zone. Sediments were generally neutral or a weak sink for N2O, with only one site (Soledad basin) showing a positive efflux of +3.5 ± 1.0 μmol N2O-N m-2 d-1. Sediment fluxes of N2O at all sites were several orders of magnitude smaller than fluxes of dinitrogen, nitrate, and ammonium measured in previous studies and did not appear to impact water column N2O concentrations. N2O was less than 0.1% of the N2 efflux from sedimentary denitrification.

  2. The North Pacific Gyre Mode

    NASA Astrophysics Data System (ADS)

    Schneider, N.; di Lorenzo, E.

    2007-12-01

    Discussion of North Pacific Decadal decadal variability has focused primarily on the Pacific Decadal Oscillation, the leading mode of sea surface temperature anomalies north of the tropics. The PDO appears to result from a superposition of SST pattern forced by the North Pacific atmosphere due to its intrinsic dynamics and teleconnected from the tropics, with a regional impact of the ocean circulation in the frontal regions associated with the Kuroshio/Oyashio and their extensions into the interior. Recent modeling, however, suggest that previously unexplained decadal changes of salinity, nutrient upwelling and chlorophyl in the California Current are not dominated by the PDO. Rather, these are associated with a mode of variability associated with wind driven changes of the North Pacific Gyre. Consideration of this mode variability may thus be important to understand present and future variations of the North Pacific ecosystem, and in the interpretation of climate proxies.

  3. Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    van Mooy, B. A. S.; Moutin, T.; Duhamel, S.; Rimmelin, P.; van Wambeke, F.

    2008-02-01

    Membrane lipid molecules are a major component of planktonic organisms and this is particularly true of the microbial picoplankton that dominate the open ocean; with their high surface-area to volume ratios, the synthesis of membrane lipids places a major demand on their overall cell metabolism. Specifically, the synthesis of cell membrane phospholipids creates a demand for the nutrient phosphorus, and we sought to refine our understanding of the role of phospholipids in the upper ocean phosphorus cycle. We measured the rates of phospholipid synthesis in a transect of the eastern subtropical South Pacific from Easter Island to Concepcion, Chile as part of the BIOSOPE program. Our approach combined standard phosphorus radiotracer incubations and lipid extraction methods. We found that phospholipid synthesis rates varied from less than 1 to greater than 200 pmol P L-1 h-1, and that phospholipid synthesis contributed between less than 5% to greater than 22% of the total PO43- incorporation rate. Changes in the percentage that phospholipid synthesis contributed to total PO43- uptake were strongly correlated with the ratio of primary production to bacterial production, which supported our hypothesis that heterotrophic bacteria were the primary agents of phospholipid synthesis. The spatial variation in phospholipid synthesis rates underscored the importance of heterotrophic bacteria in the phosphorus cycle of the eastern subtropical South Pacific, particularly the hyperoligotrophic South Pacific subtropical gyre.

  4. Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    van Mooy, B. A. S.; Moutin, T.; Duhamel, S.; Rimmelin, P.; van Wambeke, F.

    2007-08-01

    Membrane lipid molecules are a major component of planktonic organisms and this is particularly true of the microbial picoplankton that dominate the open ocean; with their high surface-area to volume ratios, the synthesis of membrane lipids places a major demand on their overall cell metabolism. The synthesis of one class of membrane lipids, the phospholipids, also creates a demand for the nutrient phosphorus, and we sought to refine our understanding of the role of phospholipids in the upper ocean phosphorus cycle. We measured the rates of phospholipid synthesis in a transect of the eastern subtropical South Pacific from Easter Island to Concepcion, Chile as part of the BIOSOPE program. Our approach combined standard phosphorus radiotracer incubations and lipid extraction methods. We found that phospholipid synthesis rates varied from less than 1 to greater than 200 pmol P L-1 h-1, and that phospholipid synthesis contributed between less than 5% to greater than 22% of the total PO43- incorporation rate. Changes in the percentage that phospholipid synthesis contributed to total PO43- incorporation were strongly correlated with the ratio of primary production to bacterial production, which supported our hypothesis that heterotrophic bacteria were the primary agents of phospholipid synthesis. The spatial variation in phospholipid synthesis rates underscored the importance of heterotrophic bacteria in the phosphorus cycle of the eastern subtropical South Pacific, particularly the hyperoligotrophic South Pacific subtropical gyre.

  5. Late Holocene Plankton Domain Shifts in the North Pacific Subtropical Gyre Revealed by Amino Acid Specific δ13C and δ15N Records from Proteinaceous Deep-Sea Corals

    NASA Astrophysics Data System (ADS)

    Sherwood, O.; McMahon, K.; Guilderson, T. P.; Mccarthy, M. D.

    2014-12-01

    Recent observations from station ALOHA have framed a new paradigm about the dynamic nature of subtropical ocean gyres. These vast regions are now known to vary physically and biologically, over a range of timescales, with important implications for the export of carbon to the deep ocean. In the largest of these gyres, the North Pacific subtropical gyre (NPSG), primary production has increased in recent decades despite a reduction in nutrient supply to surface waters. This is thought to be the result of a shift in plankton community structure from mostly eukaryotes to mostly dinitrogen-fixing prokaryotes. It remains uncertain, however, whether the recent plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. To establish historical trends, we analyzed nitrogen (δ15N) and carbon (δ13C) isotopic records preserved in the skeletons of extraordinarily long-lived, proteinaceous deep-sea corals, which feed on, and therefore serve as a proxy for, exported productivity. Specimens of Hawaiian gold coral (Kulamanamana haumeaae) were collected from the Hawaiian archipelago and sampled across the skeletal growth rings to generate high-resolution (5 yr), millennial-length records of "bulk" δ15N and δ13C. After a millennium of relatively minor fluctuation, δ15N decreased by up to 2 per mil between 1850 and the present. Analysis of amino-acid-specific δ15N on a subset of the samples, combined with isotopic mass balance between nitrate and nitrogen fixation, implied a 17 to 27 % increase in nitrogen fixation as the underlying cause for the observed trends. This interpretation is supported by analysis of the δ13C of essential amino acids, which serve as isotopic fingerprints of primary producer origin. Together, these independent lines of evidence describe a domain shift from a dominantly eukaryotic to dinitrogen-fixing prokaryotic plankton community. This shift has been ongoing since the end of the Little Ice Age

  6. Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies

    NASA Astrophysics Data System (ADS)

    Furtado, Jason C.; Di Lorenzo, Emanuele; Anderson, Bruce T.; Schneider, Niklas

    2012-12-01

    The North Pacific Oscillation (NPO) recently (re-)emerged in the literature as a key atmospheric mode in Northern Hemisphere climate variability, especially in the Pacific sector. Defined as a dipole of sea level pressure (SLP) between, roughly, Alaska and Hawaii, the NPO is connected with downstream weather conditions over North America, serves as the atmospheric forcing pattern of the North Pacific Gyre Oscillation (NPGO), and is a potential mechanism linking extratropical atmospheric variability to El Niño events in the tropical Pacific. This paper explores further the forcing dynamics of the NPO and, in particular, that of its individual poles. Using observational data and experiments with a simple atmospheric general circulation model (AGCM), we illustrate that the southern pole of the NPO (i.e., the one near Hawaii) contains significant power at low frequencies (7-10 years), while the northern pole (i.e., the one near Alaska) has no dominant frequencies. When examining the low-frequency content of the NPO and its poles separately, we discover that low-frequency variations (periods >7 years) of the NPO (particularly its subtropical node) are intimately tied to variability in central equatorial Pacific sea surface temperatures (SSTs) associated with the El Niño-Modoki/Central Pacific Warming (CPW) phenomenon. This result suggests that fluctuations in subtropical North Pacific SLP are important to monitor for Pacific low-frequency climate change. Using the simple AGCM, we also illustrate that variability in central tropical Pacific SSTs drives a significant fraction of variability of the southern node of the NPO. Taken together, the results highlight important links between secondary modes (i.e., CPW-NPO-NPGO) in Pacific decadal variability, akin to already established relationships between the primary modes of Pacific climate variability (i.e., canonical El Niño, the Aleutian Low, and the Pacific Decadal Oscillation).

  7. Measurement of dark, particle-generated superoxide and hydrogen peroxide production and decay in the subtropical and temperate North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Roe, Kelly L.; Schneider, Robin J.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    chemiluminescence detection, using dark incubations of unfiltered water samples to simultaneously determine production and decay rates. H2O2 concentrations at Station ALOHA ranged from 7 to 88 nM. Dark production rates and decay rate coefficients were low (mostly <1.5 nM hr-1 and <0.03 h-1, respectively); higher values were detected when biota were pre-concentrated with net tows. These rates of ROS production are lower than those reported by previous studies in other regions of the Pacific Ocean, but could still be significant compared to photochemical production.

  8. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Stephanie E.; Steinberg, Deborah K.; Buesseler, Ken O.

    2008-07-01

    We investigated how fecal pellet characteristics change with depth in order to quantify the extent of particle repackaging by mesopelagic zooplankton in two contrasting open-ocean systems. Material from neutrally buoyant sediment traps deployed in the summer of 2004 and 2005 at 150, 300, and 500 m was analyzed from both a mesotrophic (Japanese time-series station K2) and an oligotrophic (Hawaii Ocean Time series—HOT station ALOHA) environment in the Pacific Ocean as part of the VERtical Transport In the Global Ocean (VERTIGO) project. We quantified changes in the flux, size, shape, and color of particles recognizable as zooplankton fecal pellets to determine how these parameters varied with depth and location. Flux of K2 fecal pellet particulate organic carbon (POC) at 150 and 300 m was four to five times higher than at ALOHA, and at all depths, fecal pellets were two to five times larger at K2, reflective of the disparate zooplankton community structure at the two sites. At K2, the proportion of POC flux that consisted of fecal pellets generally decreased with depth from 20% at 150 m to 5% at 500 m, whereas at ALOHA this proportion increased with depth (and was more variable) from 14% to 35%. This difference in the fecal fraction of POC with increasing depth is hypothesized to be due to differences in the extent of zooplankton-mediated fragmentation (coprohexy) and in zooplankton community structure between the two locations. Both regions provided indications of sinking particle repackaging and zooplankton carnivory in the mesopelagic. At ALOHA, this was reflected in a significant increase in the mean flux of larvacean fecal pellets from 150 to 500 m of 3-46 μg C m -2 d -1, respectively, and at K2 a large peak in larvacean mean pellet flux at 300 m of 3.1 mg C m -2 d -1. Peaks in red pellets produced by carnivores occurred at 300 m at K2, and a variety of other fecal pellet classes showed significant changes in their distribution with depth. There was also

  9. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high

    PubMed Central

    Matsumura, Shinji; Horinouchi, Takeshi

    2016-01-01

    The western Pacific subtropical high (WPSH) has a significant effect on droughts, heat waves, and tropical cyclone tracks over East Asia and the northwest Pacific. The WPSH has intensified during the past three decades, but its causes are not yet well understood. Here we show that the Pacific Decadal Oscillation (PDO) is responsible for the long-term changes in the WPSH through the meridional shift of the subtropical jet, based on comprehensive data analysis and model results. El Niño–Southern Oscillation (ENSO) is the leading forcing of WPSH variability over interannual timescales, whereas the PDO accounts for its low-frequency variability, resulting in it being independent of ENSO with regard to WPSH variability. The PDO in summer can be interpreted as a coupling with the WPSH. Our results provide useful information for projecting long-term changes in the WPSH. PMID:27901052

  10. Pacific Ocean decadal forcing of long-term changes in the western Pacific subtropical high

    NASA Astrophysics Data System (ADS)

    Matsumura, Shinji; Horinouchi, Takeshi

    2016-11-01

    The western Pacific subtropical high (WPSH) has a significant effect on droughts, heat waves, and tropical cyclone tracks over East Asia and the northwest Pacific. The WPSH has intensified during the past three decades, but its causes are not yet well understood. Here we show that the Pacific Decadal Oscillation (PDO) is responsible for the long-term changes in the WPSH through the meridional shift of the subtropical jet, based on comprehensive data analysis and model results. El Niño–Southern Oscillation (ENSO) is the leading forcing of WPSH variability over interannual timescales, whereas the PDO accounts for its low-frequency variability, resulting in it being independent of ENSO with regard to WPSH variability. The PDO in summer can be interpreted as a coupling with the WPSH. Our results provide useful information for projecting long-term changes in the WPSH.

  11. Role of horizontal density advection in seasonal deepening of the mixed layer in the subtropical Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Liu, Qinyu; Lu, Yiqun

    2016-04-01

    The mechanisms behind the seasonal deepening of the mixed layer (ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML (more than 175 m) was found in the region of (22°-30°S, 105°-90°W), reaching its maximum depth (~200 m) near (27°-28°S, 100°W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent (STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22?S to 35?S, while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.

  12. Paleoceanography/climate and taphonomy at intermediate water depth in the Subtropical Western North Pacific Ocean over the last 1 Ma from IODP Exp 350 Sites U1436C and U1437B, Izu arc area.

    NASA Astrophysics Data System (ADS)

    Vautravers, Maryline

    2015-04-01

    IODP Expedition 350 Site U1436C lies in the western part of the Izu fore arc basin, ~60 km east of the arc front volcano Aogashima, at 1776 m water depth. This site is a technical hole (only a 150 m long record) for a potential future deep drilling by Chikyu. Site U1437 is located in the Izu rear arc, ~90 km west of the arc front volcanoes Myojinsho and Myojin Knoll, at 2117 m water depth. At this site in order to study the evolution of the IZU rear arc crust we recovered a 1800 meter long sequence of mud and volcaniclastic sediments. These sites provide a rich and well-preserved record of volcanic eruptions within the area of the Izu Bonin-Arc. However, the material recovered, mostly mud with ash containing generally abundant planktonic foraminifera, can support additional paleoceanographic goals in an area affected by the Kuroshio Current. Also, the hydrographic divide created by the Izu rise provides a rare opportunity to gain some insight into the operation of the global intermediate circulation. The Antarctic Intermediate Water Mass is more influential at the depth of U1437B in the West and the North Pacific Intermediate Water at Site U1436C to the East. We analyzed 460 samples recovered at Sites U1436C and U1437B for a quantitative planktonic foraminifer study, and also for carbonate preservation indices, including: shell weight, percent planktonic foraminifera fragments planktonic foraminifer concentrations, various faunal proxies, and benthic/planktonic ratio. We measured the stable isotopes for a similar number of samples using the thermocline dwelling Neogloboquadrina dutertrei. The dataset presented here covers the last 1 Ma at Site U1437B and 0.9 Ma at Site U1436C. The age models for the two sites are largely established through stable isotope stratigraphy (this study). On their respective age models we evidence based on polar/subpolar versus subtropical faunal assemblages changes qualitative surface water temperature variations recording the changing

  13. High-resolution Records of Proteinaceous Deep-Sea Coral δ13C and δ15N Values in the North Pacific Subtropical Gyre Suggest Major Shifts in Nutrient and Phytoplankton Dynamics over the last 5000 years

    NASA Astrophysics Data System (ADS)

    Glynn, D. S.; McCarthy, M. D.; McMahon, K.; Guilderson, T. P.

    2016-02-01

    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on this planet, and currently expanding in a warming global climate. To understand current and future dynamics in productivity, biogeochemical cycling, and carbon sequestration, we must develop a more complete understanding of the dynamics in this important ecosystem in the past. Low sedimentation rates and high bioturbation make ocean-open sediment cores difficult to interpret at sufficiently high resolution. In contrast, deep-sea corals act as `living sediment traps' and incorporate the signal of sinking organic matter directly into the chronological growth bands of their proteinaceous skeletons. We reconstructed a 5,000 year, high resolution (decadal-scale) record of past changes in stable bulk nitrogen (δ15N) and carbon isotopes (δ13C) from multiple deep-sea corals around the Hawaiian archipelago. Previous studies have indicated a substantial decrease in both δ15N and δ13C (1 to 1.5‰) since the onset of the Industrial Revolution ( 1850s) to 1,000 year lows of 8‰ and -17‰ respectively (Sherwood et al. 2014, McMahon et al. 2015). Our new data now reveals that shifts of this magnitude are not unprecedented in the Mid- to Late Holocene. Our extended record indicates that over multi-millennial time scales there is a large range of natural variability, with δ15N values ranging from 8‰ to 12‰ and δ13C values ranging from -17‰ to -15‰. We propose that these signals reflect primarily shifts in phytoplankton species composition (as indicated by previous compound-specific work with amino acids). Comparisons with climate records suggest that these shifts may be directly linked to past changes in temperature (ocean stratification) and dust inputs. This study represents the first high-resolution record of nutrient and ecosystem dynamics in the NPSG over the past five millennia, and offers a historical baseline to better analyze the effects of current and future anthropogenic

  14. Covariability of western tropical Pacific-North Pacific atmospheric circulation during summer.

    PubMed

    Yun, Kyung-Sook; Yeh, Sang-Wook; Ha, Kyung-Ja

    2015-11-23

    North Pacific subtropical high (NPSH) is permanent high-pressure system over the Northern Pacific Ocean and it extends to the western North Pacific during the boreal summer (June-July-August), which is so called the western North Pacific subtropical high (WNPSH). Here, we examine the covariability of the NPSH-WNPSH during summer using both observation and Coupled Model Intercomparison Project phase 5 (CMIP5) model data. The statistical analyses indicate that the NPSH-WNPSH covariability shows significant decadal variability in the observations, in addition, the in-phase relationship of NPSH-WNPSH is enhanced after the mid-to-late 1990s. A dipole-like sea surface temperature (SST) pattern, i.e., a warming in the western Pacific and a cooling in the eastern Pacific, is dominant after the mid-to-late 1990s, which acts to enhance the covariability of NPSH-WNPSH by modulating the atmospheric teleconnections. However, the covariability of NPSH-WNPSH in the future climate is not much influenced by the anthropogenic forcing but it is largely characterized by the natural decadal-to-interdecadal variability, implying that the enhancement of NPSH-WNPSH covariability after the mid-to-late 1990s could be considered as part of decadal-to-interdecadal variability.

  15. Modelling and Prediction of Regions of the North Pacific

    DTIC Science & Technology

    1991-08-08

    HARVARD UNIVERSITY DIVISION OF APPLIED SCIENCES IT S11 PIERCE HALLAD-A242 424 CMRDE ASCU~r 23ALLAN R. Ro41NSON CABIDE MASSACUSETT 0213 Gordon McKay...Fluid Dynamics Division of Applied Sciences Harvard University Lk t J This was a project for the identification and description of the phenomenology...Oceanography, Harvard University . Roden, G.I., and A.R. Robinson (1989), Subarctic-Subtropical Transition Zone in the North-Eastern Pacific: Mesoscale

  16. Formation Mechanism of Barrier Layer in the Subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Katsura, S.; Oka, E.; Sato, K.

    2014-12-01

    Formation mechanism of barrier layers (BLs) in the subtropical Pacific was investigated by using Argo profiling float data and shipboard hydrographic section data. In this region, BLs were formed mainly in winter in association with the sea surface salinity (SSS) front, which was located on the equator side of the SSS maximum region. While BLs from gridded Argo data were broadly distributed, their distribution from raw Argo profiles was patchy and their temporal scale was shorter than 10 days. Formation mechanism of BLs was attributed to two processes: freshening near the sea surface and salinification in the subsurface. As for the former process, poleward Ekman advection of fresher water from the tropics across the SSS front was dominant, while the effect of precipitation was small. As for the latter process, inflow of high salinity water into mixed layers associated with the SSS front can contribute to the BL formation, but actually the core of subducted Tropical Water was too deep to affect salinity structure in the mixed layers across the seasonal thermocline. These features strongly suggest that tilting of the SSS front is essentially important for the BL formation in the subtropical Pacific. This tilting process can only occur where the contribution of horizontal SSS gradient to the horizontal density gradient is strong, and explains why spatial distribution of BLs corresponded to the SSS front. Seasonal variation of BLs corresponded well to that of mixed layer depth, indicating that the deeper mixed layers are before the BL formation, the thicker BLs are formed when the SSS front is tilted.

  17. Characteristics of the South Pacific subtropical surface salinity maximum

    NASA Astrophysics Data System (ADS)

    Bingham, F.; Busecke, J. J. M.; Gordon, A. L.; Giulivi, C. F.

    2016-02-01

    The surface salinity (SSS) in the eastern South Pacific has a large maximum centered near (21°S, 120°W). It extends approximately 5000 km in the east-west direction and is bounded by the Humboldt Current on the east and the South Pacific Convergence Zone on the west. It is distinct from another much smaller and less distinct SSS maximum feature in the western South Pacific near Australia. It is associated with High evaporation and surface Ekman convergence Weak variability and seasonality on the northern side Fluctuating size driven by changes in southward extent Mean surface currents flowing toward and through the feature from the north Higher tendency for fresh anomalies on northern side These characteristics highlight the role of mesoscale stirring and northward Ekman transport in the formation and maintenance of this prominent feature.

  18. North Pacific decadal variability: insights from a biennial ENSO environment

    NASA Astrophysics Data System (ADS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2016-10-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40°N. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.

  19. North Pacific Decadal Variability: Insights from a Biennial ENSO Environment

    NASA Technical Reports Server (NTRS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2016-01-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40degN. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.

  20. North Pacific decadal variability: insights from a biennial ENSO environment

    NASA Astrophysics Data System (ADS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2017-08-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40°N. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.

  1. North Pacific Decadal Variability: Insights from a Biennial ENSO Environment

    NASA Technical Reports Server (NTRS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2016-01-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40degN. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.

  2. Eastern tropical north Pacific coral radiocarbon reveals North Pacific Gyre Oscillation variability

    NASA Astrophysics Data System (ADS)

    Rafter, P. A.; Ferguson, J. E.; Sanchez, S. C.; Druffel, E. R. M.; Southon, J. R.; Graven, H. D.; Carriquiry, J. D.

    2015-12-01

    The North Pacific Oscillation (NPO) is possibly a major influence on global climate through its influence on the El Niño-Southern Oscillation (ENSO), but the decadal-scale cyclicity and limited observations (≈50 years) of the NPO make it difficult to explore this relationship. One approach to this problem is to use marine archives (e.g., corals and sediments) to build significantly longer records of the oceanic expression of the NPO—the North Pacific Gyre Oscillation (NPGO). For example, the strengthened winds associated with positive NPO sea level pressure distributions increase gyre circulation, increasing upwelling in the coastal northeastern Pacific and equatorward flow of the California Current. However, marine archives along the coast are potentially influenced by both NPGO and ENSO and are not ideal. Here we demonstrate that corals from the Revillagigedo Islands—in the Eastern Tropical North Pacific (ETNP)—provide a relatively "clean" record of NPGO variability. In particular, coral Δ14C and δ18O show fluctuations between salty / Δ14C "young" waters (native to the ETNP) and fresh / Δ14C "old" waters (similar to those upwelled off the California margin). This variability is highly coherent and consistent with the NPGO index, such that positive NPGO (and therefore NPO) corresponds to a increased presence of California Current waters in the ETNP. ENSO appears to have little influence on this record, probably because of minimal change in seawater Δ14C associated with the poleward propagating Kelvin waves associated with ENSO. Pre-instrumental records of NPGO, like these from the Revillagigedo Island corals, are necessary to begin understanding the tropical-subtropical drivers of NPO, ENSO, and other ocean-atmosphere climate phenomena.

  3. Conservation of North Pacific shorebirds

    USGS Publications Warehouse

    Gill, Robert E.; Butler, Robert W.; Tomkovich, Pavel S.; Mundkur, Taej; Handel, Colleen M.

    1994-01-01

    In his introduction to the 1979 Symposium proceedings entitled “Shorebirds in Marine Environments," Frank Pitelka stressed the need for studies and conservation programs that spanned the western hemisphere (Pitelka 1979). In the 15 years since Pitelka's call to arms, the locations of many important migratory and wintering sites for shorebirds have been identified in the Americas (Senner and Howe 1984, Morrison and Ross 1989, Morrison and Butler 1994) and in the East Asian-Australasian flyway (Lane and Parish 1991, Mundkur 1993, Watkins 1993). However, assessments for Central America, the Russian Far East and most of Oceania remain incomplete or lacking.The recognition that shorebird conservation required the protection of habitats throughout the birds' range (e.g., Morrison 1984, Davidson and Evans 1989 in Ens et al. 1990) prompted the establishment of the Western Hemisphere Shorebird Reserve Network (WHSRN) in the Americas in 1985 (Joyce 1986). This program complemented the 1971 Convention on Wetlands of International Importance Especially for Waterbirds (Ramsar Convention, Smart 1987), recognized by more that 50 countries world-wide.Our purpose for writing this paper is to: (1) describe the distribution of North Pacific shorebirds throughout their annual cycle; (2) review the locations of and threats to important sites used by North Pacific shorebirds during the breeding, migration, and wintering periods, and (3) outline a program for international conservation of Pacific shorebirds.

  4. Plastic pollution in the South Pacific subtropical gyre.

    PubMed

    Eriksen, Marcus; Maximenko, Nikolai; Thiel, Martin; Cummins, Anna; Lattin, Gwen; Wilson, Stiv; Hafner, Jan; Zellers, Ann; Rifman, Samuel

    2013-03-15

    Plastic marine pollution in the open ocean of the southern hemisphere is largely undocumented. Here, we report the result of a (4489 km) 2424 nautical mile transect through the South Pacific subtropical gyre, carried out in March-April 2011. Neuston samples were collected at 48 sites, averaging 50 nautical miles apart, using a manta trawl lined with a 333 μm mesh. The transect bisected a predicted accumulation zone associated with the convergence of surface currents, driven by local winds. The results show an increase in surface abundance of plastic pollution as we neared the center and decrease as we moved away, verifying the presence of a garbage patch. The average abundance and mass was 26,898 particles km(-2) and 70.96 g km(-2), respectively. 88.8% of the plastic pollution was found in the middle third of the samples with the highest value of 396,342 particles km(-2) occurring near the center of the predicted accumulation zone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Variability of the North Pacific Current and its bifurcation

    NASA Astrophysics Data System (ADS)

    Cummins, Patrick F.; Freeland, Howard J.

    2007-10-01

    The North Pacific Current (NPC) bifurcates approaching the west coast of North America into a subpolar branch that forms the Alaska Current, and a subtropical branch that includes the California Current. The variability of this current system is discussed using numerical results from a wind-driven, reduced-gravity model. Indices of the strength of the subpolar and subtropical components of the NPC are examined based on output from multi-decadal simulations with the numerical model. This shows periods of both correlated and anti-correlated variability of the subpolar and subtropical gyres. A decomposition of the gyre transport time series indicates that the dominant mode of variability is a “breathing” mode in which the subpolar and subtropical gyres co-vary in response to fluctuations in the strength of the NPC. This finding is consistent with an analysis of dynamic height data of limited duration from the array of Argo drifting floats. The variability of the NPC is also examined using sea surface height (SSH) data from satellite altimetry over the period 1993-2005. The leading mode of SSH over the northeast Pacific dominates the variability of the NPC and is shown to be associated with in-phase variations in the transport of the subtropical and subpolar gyres. A strong correlation is found between time-dependent fluctuations in SSH across the NPC and variations in the strength of the transport of the NPC in the model. This agreement provides evidence for variability of the NPC occuring in direct response to large-scale atmospheric forcing.

  6. Oxygen dynamics in the North Atlantic subtropical gyre

    NASA Astrophysics Data System (ADS)

    Cianca, A.; Santana, R.; Hartman, S. E.; Martín-González, J. M.; González-Dávila, M.; Rueda, M. J.; Llinás, O.; Neuer, S.

    2013-09-01

    Dissolved oxygen (DO) in the ocean is a tracer for most ocean biogeochemical processes including net community production and remineralization of organic matter which in turn constrains the biological carbon pump. Knowledge of oxygen dynamics in the North Atlantic Ocean is mainly derived from observations at the Bermuda Atlantic Time-series Study (BATS) site located in the western subtropical gyre which may skew our view of the biogeochemistry of the subtropical North Atlantic. This study presents and compares a 15 yr record of DO observations from ESTOC (European Station for Time-Series in the Ocean, Canary Islands) in the eastern subtropical North Atlantic with the 20 yr record at BATS. Our estimate for net community production of oxygen was 2.3±0.4 mol O2 m-2 yr-1 and of oxygen consumption was -2.3±0.5 mol O2 m-2 yr-1 at ESTOC, and 4 mol O2 m-2 yr-1 and -4.4±1 mol m-2 yr-1 at BATS, respectively. These values were determined by analyzing the time-series using the Discrete Wavelet Transform (DWT) method. These flux values agree with similar estimates from in-situ observational studies but are higher than those from modeling studies. The difference in net oxygen production rates supports previous observations of a lower carbon export in the eastern compared to the western subtropical Atlantic. The inter-annual analysis showed clear annual cycles at BATS whereas longer cycles of nearly 4 years were apparent at ESTOC. The DWT analysis showed trends in DO anomalies dominated by long-term perturbations at a basin scale for the consumption zones at both sites, whereas yearly cycles dominated the production zone at BATS. The long-term perturbations found are likely associated with ventilation of the main thermocline, affecting the consumption and production zones at ESTOC.

  7. Modeling North Pacific Time Series

    NASA Astrophysics Data System (ADS)

    Overland, J. E.; Percival, D. B.; Mofjeld, H. O.

    2002-05-01

    We present a case study in modeling the North Pacific (NP) index, a time series of the wintertime Aleutian low sea level pressure from 1900 to 1999. We consider three statistical models, namely, a Gaussian stationary autoregressive process, a Gaussian fractionally difference (FD) or ``long-memory" process, and a ``signal plus noise" process consisting of a square wave oscillation with a pentadecadal period embedded in Gaussian white noise. Each model depends upon three parameters, so all three models are equally simple. The shortness of the time series makes it unrealistic to formally prefer one model over the other: we estimate it would take a 300 year record to differentiate between the models. Although the models fit equally well, they have quite different implications for the long-term behavior of the NP index, e.g. generation of regimes of characteristic lengths. Additional information and physical arguments may add support for a particular model. The FD - ``long memory" process suggests multiple physical contributions with different damping constants many North Pacific biological time series which are influenced by atmospheric and oceanic processes, show regime-like ecosystem reorganizations.

  8. Wet Mercury Deposition to a Remote Islet (Pengjiayu) in the Subtropical Northwest Pacific Ocean in 2009-2013

    NASA Astrophysics Data System (ADS)

    Sheu, G. R.; Lin, N. H.

    2014-12-01

    One hundred and ninety-one weekly rainwater samples were collected between 2009 and 2013 at a weather station (25º37'46"N, 122º4'16.5"E, 101.7 m a.s.l.) in Pengjiayu, a remote islet in the subtropical Northwest (NW) Pacific Ocean with an area of 1.14 km2, to study the distribution of rainwater mercury (Hg) concentrations and associated wet deposition fluxes. This is likely one of the longest dataset concerning wet Hg deposition to the subtropical NW Pacific Ocean downwind of the East Asian continent, which is the major source region for Hg emissions worldwide. Sample Hg concentrations ranged from 1.32 to 49.56 ng L-1, with an overall volume-weighted mean (VWM) concentration of 7.78 ng L-1. The annual VWM Hg concentrations were 8.85, 9.16, 7.08, 8.01 and 5.78 ng L-1 for 2009, 2010, 2011, 2012 and 2013, respectively. The annual wet Hg deposition fluxes were 13.54, 20.19, 10.84, 15.57 and 11.46 μg m-2, respectively, about 2.7-5 times the fluxes measured at sites on the Pacific coast of the USA and 1.5-2.8 times the flux measured in Bermuda, indicating higher wet Hg deposition to the NW Pacific Ocean than to the NE Pacific Ocean and the North Atlantic Ocean.

  9. Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010

    NASA Astrophysics Data System (ADS)

    Ibánhez, J. Severino P.; Flores, Manuel; Lefèvre, Nathalie

    2017-01-01

    Following the 2009 Pacific El Niño, a warm event developed in the tropical and subtropical North Atlantic during boreal spring of 2010 promoted a significant increase in the CO2 fugacity of surface waters. This, together with the relaxation of the prevailing wind fields, resulted in the reversal of the atmospheric CO2 absorption capacity of the tropical and subtropical North Atlantic. In the region 0–30°N, 62–10°W, this climatic event led to the reversal of the climatological CO2 sink of ‑29.3 Tg C to a source of CO2 to the atmosphere of 1.6 Tg C from February to May. The highest impact of this event is verified in the region of the North Equatorial Current, where the climatological CO2 uptake of ‑22.4 Tg for that period ceased during 2010 (1.2 Tg C). This estimate is higher than current assessments of the multidecadal variability of the sea-air CO2 exchange for the entire North Atlantic (20 Tg year‑1), and highlights the potential impact of the increasing occurrence of extreme climate events over the oceanic CO2 sink and atmospheric CO2 composition.

  10. Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010

    PubMed Central

    Ibánhez, J. Severino P.; Flores, Manuel; Lefèvre, Nathalie

    2017-01-01

    Following the 2009 Pacific El Niño, a warm event developed in the tropical and subtropical North Atlantic during boreal spring of 2010 promoted a significant increase in the CO2 fugacity of surface waters. This, together with the relaxation of the prevailing wind fields, resulted in the reversal of the atmospheric CO2 absorption capacity of the tropical and subtropical North Atlantic. In the region 0–30°N, 62–10°W, this climatic event led to the reversal of the climatological CO2 sink of −29.3 Tg C to a source of CO2 to the atmosphere of 1.6 Tg C from February to May. The highest impact of this event is verified in the region of the North Equatorial Current, where the climatological CO2 uptake of −22.4 Tg for that period ceased during 2010 (1.2 Tg C). This estimate is higher than current assessments of the multidecadal variability of the sea-air CO2 exchange for the entire North Atlantic (20 Tg year−1), and highlights the potential impact of the increasing occurrence of extreme climate events over the oceanic CO2 sink and atmospheric CO2 composition. PMID:28134309

  11. Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010.

    PubMed

    Ibánhez, J Severino P; Flores, Manuel; Lefèvre, Nathalie

    2017-01-30

    Following the 2009 Pacific El Niño, a warm event developed in the tropical and subtropical North Atlantic during boreal spring of 2010 promoted a significant increase in the CO2 fugacity of surface waters. This, together with the relaxation of the prevailing wind fields, resulted in the reversal of the atmospheric CO2 absorption capacity of the tropical and subtropical North Atlantic. In the region 0-30°N, 62-10°W, this climatic event led to the reversal of the climatological CO2 sink of -29.3 Tg C to a source of CO2 to the atmosphere of 1.6 Tg C from February to May. The highest impact of this event is verified in the region of the North Equatorial Current, where the climatological CO2 uptake of -22.4 Tg for that period ceased during 2010 (1.2 Tg C). This estimate is higher than current assessments of the multidecadal variability of the sea-air CO2 exchange for the entire North Atlantic (20 Tg year(-1)), and highlights the potential impact of the increasing occurrence of extreme climate events over the oceanic CO2 sink and atmospheric CO2 composition.

  12. Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events

    NASA Astrophysics Data System (ADS)

    Ding, Ruiqiang; Li, Jianping; Tseng, Yu-heng; Sun, Cheng; Xie, Fei

    2017-01-01

    Previous studies have indicated that boreal winter subtropical and extratropical sea surface pressure (SLP) anomalies over both the North and South Pacific are significantly related to the El Niño-Southern Oscillation (ENSO) state in the following boreal winter. Here we use observational data and model simulations to show that the ability of the boreal winter North Pacific SLP anomalies to initiate ENSO events a year later may strongly depend on the state of the simultaneous South Pacific SLP anomalies and vice versa. When the boreal winter North Pacific SLP anomalies are of the opposite sign to the simultaneous South Pacific anomalies, the correlation of the North or South Pacific anomalies with the following ENSO state becomes much weaker, and the strength of the ENSO events also tends to be weaker. One possible reason for this is that when the boreal winter North and South Pacific SLP anomalies have the opposite sign, the westerly anomalies over the western-central equatorial Pacific during the following boreal summer are greatly reduced by the interference between the antecedent North and South Pacific SLP anomalies, thereby not favoring the development of ENSO events. Further analysis indicates that a combination of North and South Pacific precursor signals may serve to enhance the ENSO prediction skill.

  13. The role of the cold Okhotsk Sea in the strengthening the Pacific subtropical high and Baiu precipitation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Kenta; Tachibana, Yoshihiro; Nakamura, Tetsu; Yamazaki, Koji; Kodera, Kunihiko

    2016-04-01

    It is commonly known that the formation of a stationery precipitation zone in association with the Baiu front is influenced by the existence of the warm Tibetan Plateau. Some GCM studies in which the Tibetan Plateau is removed pointed out that without the Tibetan Plateau, the Baiu front wound not appear. The cold Okhotsk Sea, which is located to the north of Japan, is also important in forming cold air for the Bai front. This study focused on the role of the Okhotsk Sea in the formation of the Baiu front by using an atmospheric GCM. One GCM is executed without the Okhotsk Sea, in which was changed to an eastern part of the Eurasian continent as if the Okhotsk Sea was totally landfilled (land run). The other (sea run) is a control run under the boundary condition of climatic seasonal changes of the SST over the globe. The comparison of the land run with the sea run showed that precipitation over Japan would weaken in the Baiu season without the Okhotsk Sea, indicating that the existence of the Okhotsk Sea has an impact on the increase in precipitation. The precipitation increase in the sea run is directly accounted by the strengthening of southeast wind in association with the strengthening of the subtropical high located over the Pacific Ocean. The westerly jet, which is located at the northern part of the subtropical high, was also accelerated in the sea run. The subtropical high in association with the accelerated jet was strengthened by meridional atmospheric thermal gradient caused by underlying cold Okhotsk Sea and the warm Pacific Ocean. The strengthened thermal gradient also activated the storm track that extends zonally over the Okhotsk Sea, and the activated storm track further strengthened the jet and subtropical high by wave-mean flow feedback. This feedback loop could further strengthen the Baiu precipitation. In consequence, the Okhotsk plays a significant role in the strengthening the subtropical high and its associated Baiu precipitation.

  14. Interdecadal change of the northward jump time of the western Pacific subtropical high in association with the Pacific decadal oscillation

    NASA Astrophysics Data System (ADS)

    Ye, Tianshu; Shen, Qian; Wang, Kuo; Zhang, Zhisen; Zhao, Junhu

    2015-02-01

    In this paper, the northward jump time of the western Pacific subtropical high (WPSH) is defined and analyzed on the interdecadal timescale. The results show that under global warming, significant interdecadal changes have occurred in the time of the WPSH northward jumps. From 1951 to 2012, the time of the first northward jump of WPSH has changed from "continuously early" to "continuously late", with the transition occurring in 1980. The time of the second northward jump of WPSH shows a similar change, with the transition occurring in 1978. In this study, we offer a new perspective by using the time of the northward jump of WPSH to explain the eastern China summer rainfall pattern change from "north-abundant-south-below-average" to "south-abundant-north-below-average" at the end of the 1970s. The interdecadal change in the time of the northward jump of WPSH corresponds not only with the summer rainfall pattern, but also with the Pacific decadal oscillation (PDO). The WPSH northward jump time corresponding to the cold (warm) phase of the PDO is early (late). Although the PDO and the El Niño-Southern Oscillation (ENSO) both greatly influence the time of the two northward jumps of WPSH, the PDO's effect is noticed before the ENSO's by approximately 1-2 months. After excluding the ENSO influence, we derive composite vertical atmospheric circulation for different phases of the PDO. The results show that during the cold (warm) phase of the PDO, the atmospheric circulations at 200, 500, and 850 hPa all contribute to an earlier (later) northward jump of the WPSH.

  15. Two centuries of coherent decadal climate variability across the Pacific North American region

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Charles, C. D.; Carriquiry, J. D.; Villaescusa, J. A.

    2016-09-01

    The decadal variability of the Pacific Ocean and North American hydroclimate are subjects of immediate concern for society, yet the length of the instrumental record limits full mechanistic understanding of this variability. Here we introduce a 178 year, seasonally resolved coral oxygen isotopic record from Clarion Island (18°N, 115°W), a sampling a subtropical region that is strongly influenced by the decadal-scale fluctuations of the North Pacific Gyre Oscillation and a region that serves as a critical locus for the communication of climate anomalies with the tropics. This Mexican Pacific coral record is highly correlated to coral records from the central tropical Pacific and tree ring records from western North America. Significant changes in the amplitude of oceanic decadal variability in the early nineteenth century are mirrored in the drought reconstructions in western North America. The spatial manifestation of this relationship was relatively invariant, despite notable changes in the climatic mean state.

  16. Heat and salt transport throughout the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

  17. On the Effect of Extratropical Wind Stress Forcing on Pacific Subtropical Cells and Tropical Climate

    NASA Astrophysics Data System (ADS)

    Graffino, Giorgio; Farneti, Riccardo; Kucharski, Fred

    2017-04-01

    The influence of extratropical atmospheric dynamics on the tropical ocean state is a classical example of ocean-atmosphere teleconnection. One way to influence tropical climate is through oceanic SubTropical Cells (STCs), shallow overturning circulation structures connecting the Equatorial Ocean with the subtropical regions. STC are responsible for large mass and energy transports, and their influence on tropical climate, and consequently on the global climate, is fundamental both on the mean and its variability. These circulation structures are present in all basins across the Tropics (Pacific, Atlantic, and Indian Ocean), with different properties and strengths due to the features of each basin. We focus here on the effect of off-equatorial winds on the Pacific STCs, which are the largest and have been previously studied for their potential role in driving low-frequency Pacific variability. Using the Modular Ocean Model version 5 (MOM5), we force the ocean surface with idealized wind stress and wind stress curl anomaly patterns, in order to highlight the influence of subtropical and extratropical forcing on STCs dynamics, and, eventually, on some aspects of Pacific tropical climate. Results have been compared with a control simulation, in which a climatological forcing has been applied at the ocean surface. Our simulations show an increased (reduced) meridional water transport for positive (negative) wind stress anomalies in the Subtropics; the structure of the thermocline at the Equator is modified as well, where cold (warm) anomalies appear. Those signatures result from anomalous values of Equatorial UnderCurrent (EUC), which is partly fed by the STCs. Meridional ocean heat transport is influenced too, showing larger (weaker) values for stronger (weaker) subtropical wind stress. Anomalous circulations are further analyzed for the interior and western boundary transports, and scalings are derived linking subtropical wind stress, STC transports and tropical

  18. Connection between the Eastern Subtropical Mode Water in the South Pacific Ocean and the ENSO cycle

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2012-12-01

    Water subducted in the subtropics is intimately linked to the circulation in the Tropics through the interior mass communication and/or the western boundary, and could potentially affect climate variability on interannual and decadal time scales (Gu and Philander, 1997). The interior mass communication rate between the subtropical and equatorial ocean can be quantified in different ways. For example, Huang and Wang (2001) proposed a method of using the Sverdrup function to quantify the communication rate. Their method is used here to compute the meridional transport function below the Ekman layer in order to investigate the direct communication from the eastern STMW to the equatorial Pacific, and study the connection between the eastern STMW and the ENSO cycle. The western subtropical mode water, however, is less likely to directly participate in the subtropical-tropical exchange because they are mainly formed and confined to the recirculation region of the western subtropical gyre (Ladd and Thompson, 2000). The variability of the Subtropical Mode Water (STMW) formation in the South Pacific Ocean from 1980 to 2004 is investigated in this study, using a high-resolution numerical model and a 3D Lagrangian trajectory model. Variations of subduction rate in the mode waters are closely linked to the El Niño-Southern Oscillation (ENSO) cycle. The eastern STMW could potentially affect the ENSO cycle through the interior communication window that was identified from the virtual streamfunction. Its location and width closely related to the ENSO cycle. The deep westward penetration of the western edge of the window at the equatorial Pacific is evident during the 1998 La Niña event.; Zonal location of the interior communication window for eastern STMW, when the subducted water parcels reach the equatorial Pacific at 10oS. Solid gray (black) line represents the western (eastern) edge of the window.

  19. Number-size distribution of aerosol particles and new particle formation events in tropical and subtropical Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Miura, K.; Kawata, R.; Furutani, H.; Uematsu, M.; Omori, Y.; Tanimoto, H.

    2016-10-01

    Number-size distributions of aerosol particles with diameters of 10-500 nm in the marine boundary layer were observed continually onboard the R/V Hakuho Maru over the equatorial and subtropical North Pacific and South Pacific during December 2011-March 2012. Number-size distributions over each area were parameterized using a sum of up to three lognormal functions. Bi-modal size distributions with peak diameters at 30-80 nm (Aitken mode) and 100-200 nm (accumulation mode) were observed frequently. Larger peak diameters of Aitken and accumulation modes were observed over the eastern equator, where 5-day backward trajectories showed that the air masses had derived from high-chlorophyll oceanic regions without precipitation. Smaller peak diameters and low concentrations were often observed over the North Pacific. The trajectories show that such air mass originated from oceanic regions with less chlorophyll, exhibiting high precipitation frequency. New particle formation (NPF) events have often been observed over the mid-latitude eastern South Pacific with a low condensation sink (CS) and some dimethyl sulfide, although none was observed over the equator, where CS was higher. The lesser CS condition at NPF events was mostly correlated with local precipitation or precipitation along the trajectories within 1 day. These results suggest that differences of the number-size distribution and occasions of NPF events among sea areas most closely accord with precipitation along the trajectories.

  20. Plastic accumulation in the North Atlantic subtropical gyre.

    PubMed

    Law, Kara Lavender; Morét-Ferguson, Skye; Maximenko, Nikolai A; Proskurowski, Giora; Peacock, Emily E; Hafner, Jan; Reddy, Christopher M

    2010-09-03

    Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.

  1. Plastic Accumulation in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender; Morét-Ferguson, Skye; Maximenko, Nikolai A.; Proskurowski, Giora; Peacock, Emily E.; Hafner, Jan; Reddy, Christopher M.

    2010-09-01

    Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.

  2. Possible relationship between East Asian summer monsoon and western North Pacific tropical cyclone genesis frequency

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-04-01

    In the present study, the fact that strong positive correlations have existed between East Asian summer monsoons (EASMs) and western North Pacific tropical cyclone (TC) genesis frequency over the last 37 years was found. To figure out the cause of these correlations, 7 years (positive East Asian summer monsoon index (EASMI) phase) that have the highest values and 7 years (negative EASMI phase) that have the lowest values in the normalized EASM index were selected and the differences in averages between the two phases were analyzed. In the positive EASMI phase, TCs mainly occurred in the northwestern waters of the tropical and subtropical western North Pacific and showed a tendency to move from the far eastern waters of the Philippines, pass the East China Sea, and move northward toward Korea and Japan. On the 500 hPa streamline, whereas anomalous anticyclones developed in the East Asia middle-latitude region, anomalous cyclones developed in the tropical and subtropical western North Pacific. Therefore, in this phase, whereas EASMs were weakened, western North Pacific summer monsoons (WNPSMs) were strengthened so that some more TCs could occur. In addition, in the case of the East China Sea and the southern waters of Japan located between the two anomalous pressure systems, TCs could move some more toward the East Asia middle-latitude region in this phase. According to an analysis of the 850 hPa relative vorticity, negative anomalies were strengthened in the East Asia middle-latitude region while positive anomalies were strengthened in the region south to 25 N. Therefore, in the positive EASMI phase, whereas EASMs were weakened, WNPSMs were strengthened so that some more TCs could occur. According to an analysis of the 850 and 200 hPa horizontal divergence, whereas anomalous downward flows were strengthened in the East Asia middle-latitude region, anomalous upward flows were strengthened in the tropical and subtropical western North Pacific. According to an analysis

  3. ENSO prediction one year in advance using western North Pacific sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Shih-Yu; L'Heureux, Michelle; Chia, Hsin-Hsing

    2012-03-01

    We present evidence that the de-trended, boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) are a skillful predictor for the development of the El Niño-Southern Oscillation (ENSO) by the following winter. The WNP shares some similarities with the Meridional Mode (MM) located in the subtropical central and eastern North Pacific: both are linked to off-equatorial SSTA and low-level wind anomalies, and both appear to be strongly related to wintertime variability in the North Pacific Oscillation (NPO). However, in contrast with the MM, the WNP is associated with an opposite-signed SSTA dipole located off southeastern Asia and in the western tropical Pacific, which is accompanied by equatorial winds that may influence the level of oceanic Kelvin wave activity that precedes ENSO events.

  4. Tropospheric Ozone Over the North Pacific from Ozonesdonde Observations

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Voemel, H.; Chan, C. Y.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.

    2003-01-01

    As part of the TRACE-P mission, ozone vertical profile measurements were made at a number of locations in the North Pacific. At most of the sites there is also a multi-year record of ozonesonde observations. From seven locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, HI), and a site on the west coast of the U.S. (Trinidad Head, CA) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. At all of the sites there is a pronounced spring maximum through the troposphere. There are, however, differences in the timing and strength of this feature. Over Japan the northward movement of the jet during the spring and summer influences the timing of the seasonal maximum. The ozone profiles suggest that transport of ozone rich air from the stratosphere plays a strong role in the development of this maximum. During March and April at Hong Kong ozone is enhanced in a layer that extends from the lower free troposphere into the upper troposphere that likely has its origin in biomass burning in northern Southeast Asia and equatorial Africa. During the winter the Pacific subtropical sites (latitude -25N) are dominated by air with a low-latitude, marine source that gives low ozone amounts particularly in the upper troposphere. In the summer in the boundary layer at all of the sites marine air dominates and ozone amounts are generally quite low (less than 25 ppb). The exception is near large population centers (Tokyo and Taipei but not Hong Kong) where pollution events can give amounts in excess of 80 ppb. During the TRACE-P intensive campaign period (February-April 2001) tropospheric ozone amounts were rather typical of those seen in the long-term records of the stations with multi-year soundings.

  5. Geological history of the western North Pacific

    USGS Publications Warehouse

    Fischer, A.G.; Heezen, B.C.; Boyce, R.E.; Bukry, D.; Douglas, R.G.; Garrison, R.E.; Kling, S.A.; Krasheninnikov, V.; Lisitzin, A.P.; Pimm, A.C.

    1970-01-01

    A considerable portion of the abyssal floor of the western North Pacific was already receiving pelagic sediment in late Jurassic time. Carbonate sediments were later replaced by abyssal clays as the basin deepened and bottom waters became more aggressive. The resulting facies boundary, which can be recognized on seismic profiles, is broadly transgressive; it ranges in age from mid-Cretaceous in the western Pacific to Oligocene in the central Pacific. Cherts are encountered at and below the major facies boundary and appear to have been formed by postdepositional processes.

  6. Seasonal variability of eddy kinetic energy in the North Atlantic subtropical gyre: A high-resolution ocean model analysis

    NASA Astrophysics Data System (ADS)

    Rieck, Jan Klaus; Böning, Claus W.; Greatbatch, Richard J.; Scheinert, Markus

    2016-04-01

    A global ocean model with 1/12° horizontal resolution is used to assess the seasonal cycle of surface eddy kinetic energy (EKE) in the North Atlantic. The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the basin. In the interior North Atlantic subtropical gyre, EKE peaks in summer down to a depth of ˜200 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies toward the surface. An extension of the analysis leads to similar results in the South Atlantic, North Pacific and South Pacific subtropical gyres.

  7. 78 FR 4391 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... National Oceanic and Atmospheric Administration RIN 0648-XC447 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Meetings of the North Pacific Fishery Management Council and...

  8. 77 FR 2961 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... National Oceanic and Atmospheric Administration RIN 0648-XA945 North Pacific Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Meeting of the North Pacific Fishery Management Council Golden King...

  9. 77 FR 65535 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... National Oceanic and Atmospheric Administration RIN 0648-XC314 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery...

  10. 76 FR 13360 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... National Oceanic and Atmospheric Administration RIN 0648-XA283 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery...

  11. 77 FR 67633 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... National Oceanic and Atmospheric Administration RIN 0648-XC349 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery...

  12. 78 FR 54239 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... National Oceanic and Atmospheric Administration RIN 0648-XC845 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery...

  13. 76 FR 49453 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... National Oceanic and Atmospheric Administration RIN 0648-XA624 North Pacific Fishery Management Council; Public Meetings AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery...

  14. The Planktonic Carbon Balance of the Subtropical Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Fernandez, E.; Teira, E.; Perez, V.; Mourino, B.; Serret, P.; Maranon, E.; Huskin, I.; Quevedo, M.; Gonzalez, N.; Anadon, R.; Escanez, J.; de Armas, D.; Fuentes, M.; Niell, X.

    2001-12-01

    This investigation summarises the results derived from fourteen oceanographic cruises which were carried out in the Subtropical Eastern North Atlantic during the last decade as part of different research programmes. We determined the biomass of and carbon fluxes between different compartments with the aim of building up the planktonic carbon balance for the region. Depth-integrated chlorophyll a concentrations did not show significant differences among cruises (18 mg Chla m-2) and was largely constituted by picoplankton (76%). Particulate organic carbon production (POCp) averaged 317 mg C m-2 d-1 and presented a six-fold variation among cruises. 33% of the recently photosynthesised carbon flowed to the dissolved organic pool. The ration between bacterial and photosynthetic biomass ranged between 0.7 and 1.4. The estimated bacterial carbon incorporation rate largely exceeded the rate of dissolved organic carbon production by microbial populations. Independent estimates of the ratio between organic matter production and consumption derived either from direct determinations of oxygen production/respiration rates or from the carbon budget of the microbial community both converged in the heterotrophic behaviour of the planktonic system in the region. Microzooplankton grazing accounted for a large fraction of POCp (between 79 and 105 %). On average, herviborous mesozooplankton removed 15 mg C m-2 d-1, which approximately equals the amount of net POCp not consumed by micrograzers. The results presented in this study stress the need to advocate for allochtonous sources of organic matter to close the carbon budget of the region.

  15. North Pacific decadal climate variability since 1661

    USGS Publications Warehouse

    Biondi, Franco; Gershunov, Alexander; Cayan, Daniel R.

    2001-01-01

    Climate in the North Pacific and North American sectors has experienced interdecadal shifts during the twentieth century. A network of recently developed tree-ring chronologies for Southern and Baja California extends the instrumental record and reveals decadal-scale variability back to 1661. The Pacific decadal oscillation (PDO) is closely matched by the dominant mode of tree-ring variability that provides a preliminary view of multiannual climate fluctuations spanning the past four centuries. The reconstructed PDO index features a prominent bidecadal oscillation, whose amplitude weakened in the late l700s to mid-1800s. A comparison with proxy records of ENSO suggests that the greatest decadal-scale oscillations in Pacific climate between 1706 and 1977 occurred around 1750, 1905, and 1947.

  16. Late-Quaternary climatic change on the American North Pacific Coast

    NASA Technical Reports Server (NTRS)

    Heusser, C. J.; Heusser, L. E.; Peteet, D. M.

    1985-01-01

    The late Quaternary climate of the North Pacific, where according to modelling the solar radiation in the early Holocene at the time of the summer solstice is high and in the late Holocene is relatively low, is investigated. Quantitative temperature and precipitation estimates from southern Alaska are compared with estimates from western Washington and British Columbia. Data extending over more than 10,000 years show a broadly consistent pattern of climatic change in general agreement with predicted variations in solar radiation and their effect on atmospheric circulation and seasonal duration of pressure systems over the North Pacific Ocean. In the early Holocene, the subtropical North Pacific anticyclone annually regulated climate for a longer period at higher latitudes than at present, so that warmth and dryness increased in southern Alaska. The Aleutian low-pressure center intensified during the late Holocene, resulting in colder and more humid coastal climate and increased frequency of glacier growth in the cordillera.

  17. A Subtropical North Atlantic Regional Atmospheric Moisture Budget

    NASA Astrophysics Data System (ADS)

    Bingham, F.; D'Addezio, J. M.

    2014-12-01

    The synergistic effects of evaporation (E), precipitation (P), and Ekman transport make the SPURS (Salinity Processes in the Upper Ocean Regional Study) region in the subtropical North Atlantic (15-30°N, 30-45°W) the ideal location for the world's highest open ocean sea surface salinity. Using the MERRA and ERA-Interim atmospheric reanalyses, we reproduce the mean hydrologic state of the atmosphere over the SPURS region since 1979 and roughly deduce the change in salinity across the meridional domain due solely to interactions between E-P and Ekman transport. Our findings suggest a region that is highly evaporative at a mean rate of 4.87 mm/day with a standard deviation of 1.2 mm/day and little seasonality. Precipitation is much more variable with an annual fall maximum around 3 mm/day but only a mean rate of 1.37 mm/day with a standard deviation of 1.46 mm/day. The resulting E-P variable has a mean rate of 3.50 mm/day with a standard deviation of 1.92 mm/day and matches well with the moisture flux divergence term although the former is typically larger by a small margin. Strong prevailing easterly trade winds generate northward Ekman transports that advect water northward to the salinity maximum around 25°N. A short calculation shows that atmospheric moisture dynamics could potentially account for almost half of the change in salinity between 15°N and 25°N giving an estimate of the role that surface freshwater flux plays in the maintenance of the salinity maximum.

  18. A subtropical North Atlantic regional atmospheric moisture budget

    NASA Astrophysics Data System (ADS)

    D'Addezio, Joseph M.; Bingham, Frederick M.

    2014-12-01

    The synergistic effects of evaporation (E), precipitation (P), and Ekman transport make the Salinity Processes in the Upper Ocean Regional Study (SPURS-1) region in the subtropical North Atlantic (15-30°N, 30-45°W) the natural location for the world's highest open ocean SSS maximum. Using the MERRA and ERA-Interim atmospheric reanalyses, we reproduce the mean hydrologic state of the atmosphere over the SPURS-1 region since 1979 and roughly deduce the change in salinity across the meridional domain due solely to interactions between E-P and Ekman transport. Our findings suggest a region that is highly evaporative at a mean rate of 4.87 mm/d with a standard deviation of 1.2 mm/d and little seasonality. Precipitation is much more variable with an annual fall maximum around 3 mm/d but only a mean rate of 1.37 mm/d with a standard deviation of 1.46 mm/d. The resulting E-P variable has a mean rate of 3.50 mm/d with a standard deviation of 1.92 mm/d and matches well with the moisture flux divergence term although the former is typically larger by a small margin. Strong prevailing easterly trade winds generate northward Ekman transports that advect water toward the salinity maximum around 25°N. A short calculation shows that atmospheric moisture dynamics could potentially account for about one third of the change in salinity between 15°N and 25°N giving an estimate of the role that surface freshwater flux plays in the maintenance of the salinity maximum.

  19. Isotopic evidence of pollutant lead transport from North America to the subtropical North Atlantic gyre

    NASA Astrophysics Data System (ADS)

    Hamelin, B.; Ferrand, J. L.; Alleman, L.; Nicolas, E.; Veron, A.

    1997-10-01

    Lead isotope ratios have been measured in aerosols, seawater, and marine particles collected in 1990-1992 in the subtropical northeastern Atlantic Ocean as part of the JGOFS-EUMELI program. While the atmospheric input has unradiogenic 206Pb/207Pb ratios (1.158 ± 0.006), typical of the tradewinds bringing lead from European countries, all the samples collected in the water column have more radiogenic 206Pb/207Pb (from 1.170 to 1.196). This demonstrates that lead at the Eumeli sites contains a dominant input from American emissions, that has been circulated across the North Atlantic by the subtropical North Atlantic gyre. Using measurements in Sargasso Sea surface waters as an estimate of the isotopic composition of this input ( 206Pb/207Pb = 1.195 ± 0.004 ), we calculate a contribution of 42-57% from America in these waters. This demonstrates that American emissions still dominated lead contamination over the North Atlantic in the early 1990s, in spite of the early reduction of leaded gasoline in the USA. These results also give new evidence of the equilibrium between dissolved and particulate phases during scavenging processes.

  20. Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America

    NASA Astrophysics Data System (ADS)

    Park, Jae-Heung; An, Soon-Il; Kug, Jong-Seong

    2017-02-01

    In this study, the interannual variability of sea surface temperature (SST) and its atmospheric teleconnection over the western North Pacific (WNP) toward the North Pacific/North America during boreal winter are investigated. First, we defined the WNP mode as the first empirical orthogonal function (EOF) mode of SST anomalies over the WNP region (100-165°E, 0-35°N), of which the principle component time-series are significantly correlated with several well-known climate modes such as the warm pool mode which is the second EOF mode of the tropical to North Pacific SST anomalies, North Pacific oscillation (NPO), North Pacific gyre oscillation (NPGO), and central Pacific (CP)-El Niño at 95% confidence level, but not correlated with the eastern Pacific (EP)-El Niño. The warm phase of the WNP mode (sea surface warming) is initiated by anomalous southerly winds through reduction of wind speed with the background of northerly mean winds over the WNP during boreal winter, i.e., reduced evaporative cooling. Meanwhile, the atmospheric response to the SST warming pattern and its diabatic heating further enhance the southerly wind anomaly, referred to the wind-evaporation-SST (WES) feedback. Thus, the WNP mode is developed and maintained through winter until spring, when the northerly mean wind disappears. Furthermore, it is also known that anomalous upper-level divergence associated with WNP mode leads to the NPO-like structure over the North Pacific and the east-west pressure contrast pattern over the North America through Rossby wave propagation, impacting the climate over the North Pacific and North America.

  1. Sensors detect biological change in mid-latitude North Pacific

    NASA Astrophysics Data System (ADS)

    Polovina, Jeffrey J.; Seki, Michael P.; Howell, Evan

    High temporal and spatial resolution ocean color data for the global ocean were collected for January-June 1997 by the Ocean Color and Temperature Scanner (OCTS) from the Japanese ADEOS satellite and for September 1997 to the present by the Sea-viewing Wide Field-of-view sensor (SeaWiFS). These sensors show the North Pacific Subtropical Gyre characterized by surface chlorophyll less than 0.15 mg/m3, while to the north, the Transition Zone and Subarctic Gyre exhibit surface chlorophyll in excess of 0.25 mg/m3 (Figure 1). The boundary between the low and high chlorophyll domains can be characterized by the 0.2 mg/m3 chlorophyll contour line (Figure l). This boundary is termed the Transition Zone Chlorophyll Front (TZCF) because it moves seasonally between the southern and northern limits of the Transition Zone, coinciding with the convergence of cool, vertically mixed, high chlorophyll water found to the north with warmer, stratified, low chlorophyll water on the south. In addition to simply marking the separation between high and low chlorophyll regions, the TZCF is used as a migratory and forage habitat by apex predators including sea turtles and tunas [Polovina et al., 2000].

  2. The relative importance of tropical variability forced from the North Pacific through ocean pathways

    NASA Astrophysics Data System (ADS)

    Solomon, Amy; Shin, Sang-Ik; Alexander, Michael A.; McCreary, Julian P.

    2008-08-01

    To what extent is tropical variability forced from the North Pacific through ocean pathways relative to locally generated variability and variability forced through the atmosphere? To address this question, in this study we use an anomaly-coupled model, consisting of a global, atmospheric general circulation model and a 4½-layer, reduced-gravity, Pacific-Ocean model. Three solutions are obtained; with coupling over the entire basin (CNT), with coupling confined to the tropics and wind stress and heat fluxes in the North and South Pacific specified by climatology (TP), and with coupling confined to the Tropics and wind stress and heat fluxes in the North Pacific specified by output from CNT (NPF). It is found that there are two distinct signals forced in the North Pacific that can impact the tropics through ocean pathways. These two signals are forced by wind stress and surface heat flux anomalies in the subtropical North Pacific. The first signal is relatively fast, impacts tropical variability less than a year after forcing, is triggered from November to March, and propagates as a first-mode baroclinic Rossby wave. The second signal is only triggered during springtime when buoyancy forcing can effectively generate higher-order baroclinic modes through subduction anomalies into the permanent thermocline, and it reaches the equator 4-5 years after forcing. The slow signal is found to initiate tropical variability more efficiently than the fast signal with one standard deviation in subtropical zonal wind stress forcing tropical SST anomalies centered on the equator at 135°W of approximately 0.5°C. Allowing extratropically forced tropical variability is found to shift primarily 2-year ENSO variability in a tropics-alone simulation to a more realistic range of 2-6 years.

  3. Shoe spill in the North Pacific

    NASA Astrophysics Data System (ADS)

    Ebbesmeyer, Curtis C.; Ingraham, , W. James, Jr.

    Approximately 80,000 Nike brand shoes were lost overboard on May 27, 1990, in the north Pacific Ocean (˜48°N 161°W Figure 2). Six months to a year later, thousands of shoes washed ashore in North America from southern Oregon to the Queen Charlotte Islands. Figure 1 shows six shoes found on the beach. We have gathered beachcomber reports and compared the inferred shoe drift with an oceanographic hindcast model and historical drift bottle returns. This spill-of- opportunity provided a calibration point for the model; computer runs for 1946-1991 suggested that drift of floatable material across the northeast Pacific Ocean for May 1990-January 1991 was farther south than the mean of the forty-five simulations.

  4. Monitoring Cetaceans in the North Pacific

    DTIC Science & Technology

    2009-04-01

    whale calls in the North Pacific Ocean: Seasonal and geographical variation 1996-2002. (by: Mary Ann Daher , Kathleen M. Stafford, Joseph E. George...correlates. (by: Kathleen M. Stafford, Sue E. Moore, Mary Ann Daher , Joseph E. George, David Rodriguez, and Kimberly Amaral) PEER-REVIEWED...remotely-sensed environmental variables to compare with current and future datasets. In 2007, a collaborative project with Ms. Mary Ann Daher of

  5. Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre.

    PubMed

    Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent

    2009-09-01

    Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.

  6. 77 FR 38773 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... National Oceanic and Atmospheric Administration North Pacific Fishery Management Council; Public Meeting...), Commerce. ACTION: Notice of committee meeting. SUMMARY: The North Pacific Fishery Management Council's.... through 5 p.m. Pacific time. ADDRESSES: The meeting will be held at the Alaska Fishery Science Center...

  7. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific

    PubMed Central

    Nath, Debashis; Chen, Wen; Graf, Hans-F.; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-01-01

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10–25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals. PMID:26868836

  8. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific.

    PubMed

    Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin

    2016-02-12

    Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.

  9. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific

    NASA Astrophysics Data System (ADS)

    Wu, Chau-Ron

    2013-03-01

    To investigate the interannual variability in the northwestern Pacific, an empirical mode decomposition (EMD) was applied to 17-year Absolute Dynamic Topography (ADT) data west of Luzon Island, the Philippines. The mean sea surface height in this area is an appropriate index for the Kuroshio intrusion into the South China Sea (SCS). Significant interannual fluctuations were extracted by the EMD. The interannual variability was strongly correlated with the Pacific Decadal Oscillation (PDO) index, but not the El Niño-Southern Oscillation (ENSO). This indicated the potential impact of the PDO on the circulation in the area. In the warm phase of the PDO (positive index), a southerly anomalous wind off the Philippines causes a northward shift of the North Equatorial Current Bifurcation Latitude (NECBL). This leads to a weakened Kuroshio off Luzon, favoring Kuroshio intrusion into the SCS. The northward migration of the NECBL also results in a weakened Kuroshio off southeast Taiwan and a larger Kuroshio transport off northeast Taiwan. The abundant westward propagating eddies impinging on the Kuroshio in the Subtropical Countercurrent region increases this transport. Although the ENSO has little effect on monsoonal winds during the warm PDO phase, it has a strong impact on the monsoon and meridional migration of the NECBL during the cold phase of the PDO. Therefore, NECBL variations only show a close correspondence with the ENSO during the cold PDO phase. Because the influence of the ENSO is not stationary, the impact of the PDO should be taken into account when examining interannual variability in the low-latitude western North Pacific.

  10. Evaluating the impacts of eastern North Pacific tropical cyclones on North America utilizing remotely-sensed and reanalysis data

    NASA Astrophysics Data System (ADS)

    Wood, Kimberly M.

    The eastern North Pacific Ocean has the highest density of tropical cyclone genesis events of any tropical basin in the world, and many of these systems form near land before moving westward. However, despite the level of tropical cyclone activity in this basin, and the proximity of the main genesis region to land, tropical cyclone behavior in the eastern North Pacific has been relatively unexplored. When synoptic conditions are favorable, moisture from northward-moving tropical cyclones can be advected into northern Mexico and the southwestern United States, often leading to the development of summertime thunderstorms during the North American monsoon season. An interaction with a mid-latitude trough produces the most rainfall, and the spatial variability of precipitation is greatly affected by the complex topography of the region. Moisture can be advected from a tropical cyclone around the subtropical ridge in place for much of the eastern North Pacific hurricane season and contribute to precipitation. This ridge, when it extends westward over the Pacific Ocean, can also prevent tropical cyclone moisture from impacting the southwestern United States. Northward-moving tropical cyclones often enter an environment with decreasing sea surface temperatures, increasing vertical wind shear, and meridional air temperature and moisture gradients. These key ingredients for extratropical transition are generally present in the eastern North Pacific, but the subtropical ridge prevents many named systems from moving northward, and only 9% of eastern North Pacific tropical cyclones from 1970 to 2011 complete ET according to cyclone phase space. However, over half of the systems that do not complete ET dissipate as cold core cyclones, a structural change that has yet to be explored in other tropical basins. It is difficult to estimate tropical cyclone intensity in a vast ocean area with few direct measurements available. The deviation angle variance technique, an objective

  11. Anomalous western Pacific subtropical high during late summer in weak La Niña years: Contrast between 1981 and 2013

    NASA Astrophysics Data System (ADS)

    Xue, Feng; Fan, Fangxing

    2016-12-01

    Both 1981 and 2013 were weak La Niña years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the western Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak.

  12. Numerical simulation of the relationship between the anomaly of subtropical high over East Asia and the convective activities in the western tropical Pacific

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Lu, Li

    1989-06-01

    In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data. This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geostrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.

  13. Relationship Between Intraseasonal Oscillation and Subtropical Wind Maxima Over the South Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Hurrell, James W.; Speth, P.; Sperling, T.; Funk, A.; Zube, S.

    1991-01-01

    The significance of tropical heat sources on higher latitude jet streams has been examined by numerous investigators. Hurrell and Vincent (1990) provide a summary of many of these investigations in their observational case study of the relationship between tropical heating and subtropical wind maxima in the Southern Hemisphere during SOP-1, FGGE. They showed that the divergent outflow from tropical heating associated with the South Pacific Convergence Zone (SPCZ), acted on by the coriolis force, was an important factor in maintaining the subtropical jet on the poleward side of the SPCZ during the period, 6-20 January 1979. They found a similar, but weaker relationship, over the southern Indian Ocean from 3-17 February 1979, a period when the SPCZ heating was greatly reduced and the jet was essentially non-existent. Since their findings were based on a case study and involved the use of the highly-specialized FGGE data set, the natural questions which arose were: (1) Is this relationship a regular feature of the circulation over the South Pacific? and, (2) If so, can it be detected with a routine data set? Another question posed by Hurrell and Vincent in their papers was:(3) How important was the intraseasonal oscillation in causing the enhanced heating and divergent outflow in the Pacific Ocean in January and southern Indian Ocean in February? The purpose of the present paper is to address the answer to these three questions. To accomplish this, some circulation features for an entire warm season in the Southern Hemisphere were examined. The year selected was 1984-85, and the warm season consisted of the 6-month period, 1 November 1984 - 30 April 1985. This period was chosen because there were numerous cases of the westerly wind maxima over the South Pacific and the intraseasonal oscillation was well documented.

  14. Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles.

    PubMed

    Schmidt, Matthew W; Vautravers, Maryline J; Spero, Howard J

    2006-10-05

    Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.

  15. Bottom water variability in the subtropical northwestern Pacific from 26 kyr BP to present based on Mg / Ca and stable carbon and oxygen isotopes of benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Kimoto, K.; Itaki, T.; Yokoyama, Y.; Miyairi, Y.; Matsuzaki, H.

    2015-06-01

    To understand bottom water variability in the subtropical northwestern Pacific, bottom water temperatures (BWTs), carbon isotopes (δ13C), and oxygen isotopes of seawater (δ18Ow) at a water depth of 1166 m were reconstructed from 26 kyr BP to present. A new regional Mg / Ca calibration for the benthic foraminifera Cibicidoides wuellerstorfi (type B) was established to convert the benthic Mg / Ca value to BWT, based on 26 surface sediment samples and two core-top samples retrieved around Okinawa Island. During the Last Glacial Maximum (LGM), the δ18Ow in the intermediate water in the northwestern South Pacific was ~0.4‰ lower than in the deep South Pacific, indicating a greater vertical salinity gradient than at present. This salinity (and probably density) structure would have led to stratification in the intermediate and deep Pacific, which would, in turn, have greatly influenced carbon storage during the glacial time. The benthic Mg / Ca and δ18Ow records suggest changes that seem to follow Heinrich event 1 (H1) and the Bølling-Alleød (B/A) and Younger Dryas (YD) intervals, with BWT higher during H1 (~17 kyr BP) and YD (~12 kyr BP) and lower during B/A (~14 kyr BP). The warming in the bottom water during H1 suggests increased contribution of North Pacific Intermediate Water (NPIW) to the subtropical northwestern Pacific and decreased upwelling of cooler waters from the abyssal North Pacific. During the interval from 17 to 14.5 kyr BP, the BWT tended to decrease successively in association with a decrease in δ13C values, presumably as a result of increased upwelling of the abyssal waters to the intermediate depths of the North Pacific caused by shoaling and enhancement of the southward return flow of Pacific Deep Water (PDW). During the Holocene, the millennial- to sub-millennial-scale variations in the BWT generally correlate with the sea surface temperatures in the Okhotsk Sea, the source region of the NPIW, suggesting that changes in the BWT are linked

  16. Community structures of actively growing bacteria shift along a north-south transect in the western North Pacific.

    PubMed

    Taniguchi, Akito; Hamasaki, Koji

    2008-04-01

    Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect.

  17. BrO in the Tropical and Subtropical UTLS: Longitudinal Gradients over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Volkamer, R. M.; Dix, B. K.; Baidar, S.; Koenig, T. K.; Coburn, S.; Ortega, I.; Chen, D.; Huey, L. G.; Tanner, D.; Sherwen, T.; Evans, M. J.; Apel, E. C.; Hornbrook, R. S.; Blake, N. J.; Hills, A. J.; Kinnison, D. E.; Lamarque, J. F.; Saiz-Lopez, A.; Pierce, R. B.; Schmidt, J.; Jacob, D. J.; Atlas, E. L.; Pan, L.; Salawitch, R. J.

    2014-12-01

    Bromine oxide (BrO) is a halogen radical that catalytically destroys ozone, modifies the oxidative capacity of the atmosphere and oxidizes atmospheric mercury. About 75% of the global tropospheric ozone loss occurs at tropical latitudes, where the ozone radiative forcing is most sensitive to changes in the ozone concentration. Here we report on BrO observations in the tropical and sub-tropical free troposphere and UTLS. Airborne measurements of BrO vertical profiles were performed by the University of Colorado Airborne Multi Axis DOAS (CU AMAX-DOAS) instrument aboard the NSF/NCAR GV aircraft. We compare BrO profiles measured at tropical and subtropical latitudes over the Western Pacific (CONvective TRansport of Active Species in the Tropics, CONTRAST, field campaign) with tropical BrO profiles measured over the Central (Mauna Loa Observatory fly-by) and Eastern Pacific ocean (Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC, TORERO, experiment). For selected case studies we compare BrO profiles from three independent instruments, i.e., CU AMAX-DOAS, mountain-top MAX-DOAS at Mauna Loa Observatory, and Chemical Ionization Mass Spectrometry and BrO predictions from global models (CAM-Chem, GEOS-Chem and RAQMS).

  18. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. North Pacific Acoustic Laboratory and Deep Water...coherence of the received signal, while the ambient noise field is in direct competition with the received signal. Research conducted in the North Pacific ...The scientific objectives of the North Pacific Acoustic Laboratory and Deep Water Acoustics research are: 1. To study the spatial and temporal

  19. A Decadal-Scale Teleconnection between the North Atlantic Oscillation and Subtropical Eastern Australian Rainfall

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The time series of twentieth-century subtropical eastern Australian rainfall (SEAR) shows evident fluctuations over decadal to multidecadal time scales. Using observations from the period 1900-2013, it was found that SEAR is connected to the North Atlantic Oscillation (NAO) over decadal time scales, with the NAO leading by around 15 yr. The physical mechanism underlying this relationship was investigated. The NAO can have a delayed impact on sea surface temperature (SST) fluctuations in the subpolar Southern Ocean (SO), and these SST changes could in turn contribute to the decadal variability in SEAR through their impacts on the Southern Hemisphere atmospheric circulation. This observed lead of the NAO relative to SO SST and the interhemispheric SST seesaw mechanism are reasonably reproduced in a long-term control simulation of an ocean-atmosphere coupled model. The NAO exerts a delayed effect on the variation of Atlantic meridional overturning circulation that further induces seesaw SST anomalies in the subpolar North Atlantic and SO. With evidence that the NAO precedes SEAR decadal variability via a delayed SO bridge, a linear model for SEAR decadal variability was developed by combination of the NAO and Pacific decadal oscillation (PDO). The observed SEAR decadal variability is considerably well simulated by the linear model, and the relationship between the simulation and observation is stable. SEAR over the coming decade may increase slightly, because of the recent NAO weakening and the return of negative PDO phase.The time series of twentieth-century subtropical eastern Australian rainfall (SEAR) shows evident fluctuations over decadal to multidecadal time scales. Using observations from the period 1900-2013, it was found that SEAR is connected to the North Atlantic Oscillation (NAO) over decadal time scales, with the NAO leading by around 15 yr. The physical mechanism underlying this relationship was investigated. The NAO can have a delayed impact on sea

  20. Southward spreading of the Fukushima-derived radiocesium across the Kuroshio Extension in the North Pacific

    PubMed Central

    Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Aono, Tatsuo; Kouketsu, Shinya; Murata, Akihiko; Kawano, Takeshi

    2014-01-01

    The accident of the Fukushima Dai-ichi nuclear power plant in March 2011 released a large amount of radiocesium into the North Pacific Ocean. Vertical distributions of Fukushima-derived radiocesium were measured at stations along the 149°E meridian in the western North Pacific during the winter of 2012. In the subtropical region, to the south of the Kuroshio Extension, we found a subsurface radiocesium maximum at a depth of about 300 m. It is concluded that atmospheric-deposited radiocesium south of the Kuroshio Extension just after the accident had been transported not only eastward along with surface currents but also southward due to formation/subduction of subtropical mode waters within about 10 months after the accident. The total amount of decay-corrected 134Cs in the mode water was an estimated about 6 PBq corresponding to 10–60% of the total inventory of Fukushima-derived 134Cs in the North Pacific Ocean. PMID:24589762

  1. [Costa Rica mangroves: the north Pacific].

    PubMed

    Zamora-Trejos, Priscilla; Cortés, Jorge

    2009-09-01

    Costa Rica has mangrove forests on both the Caribbean and Pacific coasts. The Pacific side has 99% of the mangrove area of the country. In this review we compile available information on the mangroves of the north Pacific coast of Costa Rica, from Bahía Salinas, on the border with Nicaragua, to the tip of the Peninsula de Nicoya at Cabo Blanco. We provide information on the location of the mangroves and all available information for each mangrove forest. These mangrove communities are smaller in extension and tree sizes, and have lower diversity compared to the mangroves on the southern section of the Pacific coast of Costa Rica. The dominant species are Rhizophora mangle and Rhizophora racemosa along the canal edges, backed by Avicennia germinans, and farther inland Avicennia bicolor, Laguncularia racemosa and Conocarpus erectus. At Potrero Grande a healthy population of Pelliciera rhizophorae, a rare species, has been reported. We recognized 38 mangrove communities in this part of the country, based on the National Wetland Inventory, published papers, field observations, theses, technical reports, and the national topographic maps (1:50,000, Instituto Geográfico Nacional). Relatively detailed information could be found for only five mangrove forests, for 14 more only prelimary and incomplete lists of plants and in some cases of animal species are available, for nine there is even less information, and for nine more only their location is known, which in some cases was not correct. Detail mapping, characterization of the vegetation and fauna, physiological studies, analyses of biogeochemical and physical processes, economic valuations, and determination of the health status of the mangrove of the northern Pacific coast, as well as for the rest of Costa Rica, are neccesary and urgent.

  2. What drives seasonal change in oligotrophic area in the subtropical North Atlantic?

    NASA Astrophysics Data System (ADS)

    Dave, Apurva C.; Barton, Andrew D.; Lozier, M. Susan; McKinley, Galen A.

    2015-06-01

    The oligotrophic regions of the subtropical gyres cover a significant portion of the global ocean, and exhibit considerable but poorly understood intraseasonal, interannual, and longer-term variations in spatial extent. Here using historical observations of surface ocean nitrate, wind, and currents, we have investigated how horizontal and vertical supplies of nitrate control seasonal changes in the size and shape of oligotrophic regions of the subtropical North Atlantic. In general, the oligotrophic region of the subtropical North Atlantic is associated with the region of weak vertical supply of nitrate. Though the total vertical supply of nitrate here is generally greater than the total horizontal supply, we find that seasonal expansion and contraction of the oligotrophic region is consistent with changes in horizontal supply of nitrate. In this dynamic periphery of the subtropical gyre, the seasonal variations in chlorophyll are linked to variations in horizontal nitrate supply that facilitate changes in intracellular pigment concentrations, and to a lesser extent, phytoplankton biomass. Our results suggest that horizontal transports of nutrient are crucial in setting seasonal cycles of chlorophyll in large expanses of the subtropical North Atlantic, and may play a key and underappreciated role in regulating interannual variations in these globally important marine ecosystems.

  3. Relative roles of equatorial central Pacific and western North Pacific precipitation anomalies in ENSO teleconnection over the North Pacific

    NASA Astrophysics Data System (ADS)

    Kim, Sunyong; Son, Hye-Young; Kug, Jong-Seong

    2017-07-01

    It is shown here that the teleconnections of El Niño-Southern Oscillation (ENSO) are contributed by two anomalous precipitation forcings in the equatorial central Pacific (CP; 160°E-120°W, 5°S-5°N) and western North Pacific (WNP; 110°E-150°E, 0°N-20°N). The positive CP precipitation anomalies induce a prevailing cyclonic flow over the North Pacific (120°E-110°W, 20°N-70°N), whereas the negative WNP precipitation forcing tends to induce anticyclonic anomalies over the Kuroshio extension region and North Pacific. It is demonstrated that the equatorial CP and WNP precipitation anomalies play relative roles in generating atmospheric teleconnections over the North Pacific, which can be determined by the competing responses to the CP and WNP precipitation anomalies. The reconstructed teleconnection patterns based on only the two tropical forcings capture the majority of the subseasonal evolution of the ENSO teleconnection. In addition, we find that the diversity of inter-ENSO events in the atmospheric teleconnection can be better-explained by considering the relative roles of the CP and WNP precipitation anomalies.

  4. Eastern tropical North Pacific coral radiocarbon reveals North Pacific Gyre Oscillation (NPGO) variability

    NASA Astrophysics Data System (ADS)

    Rafter, Patrick A.; Sanchez, Sara C.; Ferguson, Julie; Carriquiry, Jose D.; Druffel, Ellen R. M.; Villaescusa, J. A.; Southon, John R.

    2017-03-01

    Fluctuations in oceanic circulation and upwelling associated with the North Pacific Gyre Oscillation (NPGO) are the largest source of salinity and nutrient concentration variability across the Pacific basin. Recent observations suggest NPGO-like variability is intensifying, but longer, ;pre-instrumental; records are required to improve our understanding of NPGO amplitude and phase change. Here, using measurements of coral skeletal chemistry from San Benedicto Island in the Eastern Tropical North Pacific (ETNP), we assess this region's suitability for reconstructing NPGO behavior. We find that coral geochemical proxy measurements of ETNP salinity and dissolved inorganic carbon radiocarbon (Δ14C) content reflect NPGO-driven gyre circulation and regional coastal upwelling. These results provide the basis for reconstructing NPGO-related ocean conditions hundreds of years prior to the modern observational record.

  5. The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre.

    PubMed

    Palter, Jaime B; Lozier, M Susan; Barber, Richard T

    2005-09-29

    Though critically important in sustaining the ocean's biological pump, the cycling of nutrients in the subtropical gyres is poorly understood. The supply of nutrients to the sunlit surface layer of the ocean has traditionally been attributed solely to vertical processes. However, horizontal advection may also be important in establishing the availability of nutrients. Here we show that the production and advection of North Atlantic Subtropical Mode Water introduces spatial and temporal variability in the subsurface nutrient reservoir beneath the North Atlantic subtropical gyre. As the mode water is formed, its nutrients are depleted by biological utilization. When the depleted water mass is exported to the gyre, it injects a wedge of low-nutrient water into the upper layers of the ocean. Contrary to intuition, cold winters that promote deep convective mixing and vigorous mode water formation may diminish downstream primary productivity by altering the subsurface delivery of nutrients.

  6. Ocean salinity changes in the northwest Pacific subtropical gyre: The quasi-decadal oscillation and the freshening trend

    NASA Astrophysics Data System (ADS)

    Nan, Feng; Yu, Fei; Xue, Huijie; Wang, Ran; Si, Guangcheng

    2015-03-01

    Ocean salinity changes play an important role in modulating ocean and climate variability. Analyses of the repeating observations along PN, TK, and 137°E sections reveal that both surface and subsurface salinity in the Northwest Pacific Subtropical Gyre (NPSG) had clear quasi-decadal oscillation (QDO) of ˜10 year and a sustained freshening trend during 1987-2012. Surface salinity in the NPSG troughed in 1989, 1999, and 2008, and peaked in 1993, and 2003. The peak-to-tough range of surface salinity oscillation can reach 0.3 psu. Meanwhile, surface salinity decreased about 0.10 psu from 1987 to 2012 with a freshening trend of -0.0042 psu yr-1. These surface salinity anomalies were subducted into the subsurface layer mainly in the ventilated zone along the Kuroshio Extension, and advected over the NPSG. The QDO of the subsurface salinity maximum (Smax) lagged that of the surface salinity by about 1˜2 years. Both the peak-to-tough range of the Smax oscillation (0.15 psu) and its freshening trend (-0.0036 psu yr-1) are smaller than those of the surface salinity. Salinity changes in the NPSG likely began in the mid-1970s associated with the North Pacific regime shift during 1976/1977. Analyses of mixed layer salinity budget indicated that air-sea freshwater flux change in the NPSG is the leading factor controlling the surface salinity anomalies, while change of large-scale ocean circulation (Geostrophic advection) also plays a minor role. Salinity and air-sea freshwater flux changes in the NPSG are all closely related to the Pacific Decadal Oscillation, indicating the large-scale ocean-atmosphere interaction.

  7. Nitrogen isotope ratios of nitrate and N* anomalies in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Chisato; Makabe, Akiko; Shiozaki, Takuhei; Toyoda, Sakae; Yoshida, Osamu; Furuya, Ken; Yoshida, Naohiro

    2015-05-01

    Nitrogen isotopic ratios of nitrate (δ15N-NO3-) were analyzed above 1000 m water depth along 17°S in the subtropical South Pacific during the revisit WOCE P21 cruise in 2009. The δ15N-NO3- and N* values were as high as 17‰ and as low as -18 μmol N L-1, respectively, at depths around 250 m east of 115°W, but were as low as 5‰ and as high as +1 μmol N L-1, respectively, in subsurface waters west of 170°W. The relationships among NO3- concentrations, N* values, δ15N-NO3- values, and oxygen and nitrite concentrations suggest that a few samples east of 90°W were from suboxic and nitrite-accumulated conditions and were possibly affected by in situ water column denitrification. Most of the high-δ15N-NO3- and negative-N* waters were probably generated by mixing between Subantarctic Mode Water from the Southern Ocean and Oxygen Deficit Zone Water from the eastern tropical South Pacific, with remineralization of organic matter occurring during transportation. Moreover, the relationship between δ15N-NO3- and N* values, as well as Trichodesmium abundances and size-specific nitrogen fixation rates at the surface, suggest that the low-δ15N-NO3- and positive-N* subsurface waters between 160°E and 170°W were generated by the input of remineralized particles created by in situ nitrogen fixation, mainly by Trichodesmium spp. Therefore, the δ15N values of sediments in this region are expected to reveal past changes in nitrogen fixation or denitrification rates in the subtropical South Pacific. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  8. Glacial Ventilation of the North Pacific

    NASA Astrophysics Data System (ADS)

    Keigwin, L. D.; Marchal, O.

    2004-12-01

    Previous work on sediment cores from the North Pacific showed that above ~2 km d13C on the benthic foram Cibicidoides was higher during glacial time than it is today, after correcting for secular change of ~0.3 permil. This led to the suggestion that the ocean was better ventilated either through greater transport of a paleo North Pacific Intermediate Water, or transport was the same as today and preformed d13C was higher ([O2] was higher). Below ~2km, d13C was about the same as today, after correction. A new synthesis of apparent ventilation ages based on the paired benthic (BF) and planktonic foram (PF) 14C method provides general support for the scenario based on d13C. Although many 14C data are available for this synthesis, we exercised some reasonable quality control by selecting data that met the following criteria: (1) analyses based on high deposition rate cores, or laminated intervals of cores, (2) analyses conducted at peaks in BF abundance, and (3) analyses from a narrow window of glacial maximum time (~18-20 ka). The result shows that above ~2.5 km apparent ventilation ages are less than today (better ventilation), and the one sample from >3km is the same as today (~1700 yrs). When d13C and BF-PF 14C data are compared between the North Atlantic and North Pacific Oceans, it seems likely the same water filled these basins deeper than ~3.5 km. d13C of each basin was about 0 permil, and although the average apparent ventilation age was ~1200 yrs for the North Atlantic during the LGM, the two oldest determinations are 1550 and 1450 yrs. The fly in the ointment is still the very low d13C observed in the South Atlantic sector of the Southern Ocean. Although the available data are reproducible and may not reflect low d13C in the fluff layer at the seafloor, results from a zonally averaged circulation-biogeochemistry model showed that d13C may become unlinked from nutrient content during a change of the ocean general circulation.

  9. Superoxide production and decay in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Roe, K.; Voelker, B. M.; Hansel, C. M.

    2012-12-01

    Reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, can be generated through photochemical reactions or biological activity in seawater. The generation of ROS, especially superoxide, by photochemical or biological processes can influence trace metal speciation and cycling in the ocean since superoxide can react quickly with metals (Cu and Fe) and is capable of both oxidation and reduction of trace metals. In this study superoxide was detected and measured in the oligotrophic waters at station ALOHA by a MCLA chemiluminescence flow injection method. The superoxide concentrations ranged between 0.037-0.099 nM, had observed decay rates of 0.004-0.014 s-1, and production rates of 0.88-4.81 nM hr-1 during a 16 day period during July 2012. The influence of biological activity vs photochemical production on superoxide concentration, decay and production rates are discussed.

  10. Phosphorus dynamics in biogeochemically distinct regions of the southeast subtropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Duhamel, Solange; Björkman, Karin M.; Repeta, Daniel J.; Karl, David M.

    2017-02-01

    The southeast subtropical Pacific Ocean was sampled along a zonal transect between the coasts of Chile and Easter Island. This remote area of the world's ocean presents strong gradients in physical (e.g., temperature, density and light), chemical (e.g., salinity and nutrient concentrations) and microbiological (e.g., cell abundances, biomass and specific growth rates) properties. The goal of this study was to describe the phosphorus (P) dynamics in three main ecosystems along this transect: the upwelling regime off the northern Chilean coast, the oligotrophic area associated with the southeast subtropical Pacific gyre and the transitional area in between these two biomes. We found that inorganic phosphate (Pi) concentrations were high and turnover times were long (>210 nmol l-1 and >31 d, respectively) in the upper water column, along the entire transect. Pi uptake rates in the gyre were low (euphotic layer integrated rates were 0.26 mmol m-2 d-1 in the gyre and 1.28 mmol m-2 d-1 in the upwelling region), yet not only driven by decreases in particle mass or cell abundance (particulate P- and cell- normalized Pi uptake rates in the euphotic layer were ∼1-4 times and ∼3-15 times lower in the gyre than in the upwelling, respectively). However these Pi uptake rates were at or near the maximum Pi uptake velocity (i.e., uptake rates in Pi amended samples were not significantly different from those at ambient concentration: 1.5 and 23.7 nmol l-1 d-1 at 50% PAR in the gyre and upwelling, respectively). Despite the apparent Pi replete conditions, selected dissolved organic P (DOP) compounds were readily hydrolyzed. Nucleotides were the most bioavailable of the DOP substrates tested. Microbes actively assimilated adenosine-5‧-triphosphate (ATP) leading to Pi and adenosine incorporation as well as Pi release to the environment. The southeast subtropical Pacific Ocean is a Pi-sufficient environment, yet DOP hydrolytic processes are maintained and contribute to P

  11. From the subtropics to the equator in the Southwest Pacific: Continental material fluxes quantified using neodymium data along modeled thermocline water pathways

    NASA Astrophysics Data System (ADS)

    Grenier, Mélanie; Jeandel, Catherine; Cravatte, Sophie

    2014-06-01

    The southwestern tropical Pacific, part of a major pathway for waters feeding the Equatorial Undercurrent, is a region of important geochemical enrichment through land-ocean boundary exchange. Here we develop an original method based on the coupling between dynamical modeling and geochemical tracer data to identify regions of enrichment along the water pathways from the subtropics to the equator, and to allow a refined quantification of continental material fluxes. Neodymium data are interpreted with the help of modeled Lagrangian trajectories of an Ocean General Circulation Model. We reveal that upper and lower thermocline waters have different pathways together with different geochemical evolutions. The upper thermocline waters entering the Solomon Sea mainly originate from the central subtropical gyre, enter the Coral Sea in the North Vanuatu Jet and likely receive radiogenic neodymium from the basaltic island margins encountered along their route. The lower thermocline waters entering the Solomon Sea mainly originate from northeast of New Zealand and enter the Coral Sea in the North Caledonian Jet. Depletion of their neodymium content likely occurs when flowing along the Australian and Papua coasts. Downstream from the Solomon Sea, waters flowing along the Papua New Guinea margins near the Sepik river mouth become surprisingly depleted in their neodymium content in the upper thermocline while enriched in the lower thermocline. This coupled approach is proposed as strong support to interpret the origin of the equatorial Pacific natural fertilization through a better understanding of the circulation, important objectives of the international GEOTRACES and SPICE programs, respectively.

  12. Enhanced Late Holocene ENSO/PDO expression along the margins of the eastern North Pacific

    USGS Publications Warehouse

    Barron, J.A.; Anderson, L.

    2011-01-01

    Pacific climate is known to have varied during the Holocene, but spatial patterns remain poorly defined. This paper compiles terrestrial and marine proxy data from sites along the northeastern Pacific margins and proposes that they indicate 1) suppressed ENSO conditions during the middle Holocene between ~8000 and 4000 cal BP with a North Pacific that generally resembled a La Ni??a-like or more negative PDO phase and 2) a climate transition between ~4200 and 3000 cal BP that appears to be the teleconnected expression to a more modern-like ENSO Pacific. Compared to modern day conditions, the compiled data suggest that during the middle Holocene, the Aleutian Low was generally weaker during the winter and/or located more to the west, while the North Pacific High was stronger during the summer and located more to the north. Coastal upwelling off California was more enhanced during the summer and fall but suppressed during the spring. Oregon and California sea surface temperatures (SSTs) were cooler. The Santa Barbara Basin had an anomalous record, suggesting warmer SSTs.Late Holocene records indicate a more variable, El Ni??o-like, and more positive PDO Pacific. The Aleutian Low became more intensified during the winter and/or located more to the east. The North Pacific High became weaker and/or displaced more to the south. Coastal upwelling off California intensified during the spring but decreased during the fall. Oregon and California SSTs became warmer, recording the shoreward migration of sub-tropical gyre waters during the fall, while spring upwelling (cooler SST) increased in the Santa Barbara Basin. The high-resolution proxy records indicate enhanced ENSO and PDO variability after ~4000 cal BP off southern California, ~3400 cal BP off northern California, and by ~2000 cal BP in southwestern Yukon. A progressively northward migration of the ENSO teleconnection during the late Holocene is proposed. ?? 2010.

  13. Decadal sea level variability in the East China Sea linked to the North Pacific Gyre Oscillation

    NASA Astrophysics Data System (ADS)

    Moon, Jae-Hong; Song, Y. Tony

    2017-07-01

    In view of coastal community's need for adapting to sea level rise (SLR), understanding and predicting regional variability on decadal to longer time scales still remain a challenging issue in SLR research. Here, we have examined the low-frequency sea level signals in the East China Sea (ECS) from the 50-year hindcast of a non-Boussinesq ocean model in comparison with data sets from altimeters, tide-gauges, and steric sea level produced by in-situ profiles. It is shown that the mean sea levels in the ECS represent significant decadal fluctuations over the past 50 years, with a multi-decadal trend shift since the mid-1980s compared to the preceding 30 years. The decadal fluctuations in sea level are more closely linked to the North Pacific Gyre Oscillation (NPGO) rather than the Pacific Decadal Oscillation, which reflects the multi-decadal trend shift. A composite analysis indicates that wind patterns associated with the NPGO is shown to control the decadal variability of the western subtropical North Pacific. A positive NPGO corresponds to cyclonic wind stress curl anomaly in the western subtropical regions that results in a higher sea level in the ECS, particularly along the continental shelf, and lower sea levels off the ECS. The reverse occurs in years of negative NPGO.

  14. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  15. Is seasonal net community production in the South Pacific Subtropical Gyre anomalously low?

    NASA Astrophysics Data System (ADS)

    Bender, Michael L.; Jönsson, Bror

    2016-09-01

    The region of the South Pacific Subtropical Gyre (SPSG) at 20°-30°S, 140°-110°W is the oceanic area with the lowest chlorophyll concentration and the deepest nutricline, O2 saturation horizon, and euphotic zone. We analyze the limited available data from this region to determine if rates of net community production (NCP) are systematically lower than elsewhere. We present limited mixed layer O2/Ar data constraining mixed layer NCP, examine hydrographic data from the CLIVAR repeat hydrography P18 line to assess seasonal dissolved inorganic carbon drawdown, and review results from the literature. While it is not possible to formalize uncertainties, the evidence suggests that euphotic zone NCP is around the lower end (~1 mol m-2 yr-1) of rates observed elsewhere. However, NCP is shifted to unusually deep depths, a change enabled by the very low extinction coefficients of these waters.

  16. Decade-long deep-ocean warming detected in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Volkov, Denis L.; Lee, Sang-Ki; Landerer, Felix W.; Lumpkin, Rick

    2017-01-01

    The persistent energy imbalance at the top of the atmosphere, inferred from satellite measurements, indicates that the Earth's climate system continues to accumulate excess heat. As only sparse and irregular measurements of ocean heat below 2000 m depth exist, one of the most challenging questions in global climate change studies is whether the excess heat has already penetrated into the deep ocean. Here we perform a comprehensive analysis of satellite and in situ measurements to report that a significant deep-ocean warming occurred in the subtropical South Pacific Ocean over the past decade (2005-2014). The local accumulation of heat accounted for up to a quarter of the global ocean heat increase, with directly and indirectly inferred deep ocean (below 2000 m) contribution of 2.4 ± 1.4 and 6.1-10.1 ± 4.4%, respectively. We further demonstrate that this heat accumulation is consistent with a decade-long intensification of the subtropical convergence, possibly linked to the persistent La Niña-like state.

  17. Fishery-induced changes in the subtropical Pacific pelagic ecosystem size structure: observations and theory.

    PubMed

    Polovina, Jeffrey J; Woodworth-Jefcoats, Phoebe A

    2013-01-01

    We analyzed a 16-year (1996-2011) time series of catch and effort data for 23 species with mean weights ranging from 0.8 kg to 224 kg, recorded by observers in the Hawaii-based deep-set longline fishery. Over this time period, domestic fishing effort, as numbers of hooks set in the core Hawaii-based fishing ground, has increased fourfold. The standardized aggregated annual catch rate for 9 small (<15 kg) species increased about 25% while for 14 large species (>15 kg) it decreased about 50% over the 16-year period. A size-based ecosystem model for the subtropical Pacific captures this pattern well as a response to increased fishing effort. Further, the model projects a decline in the abundance of fishes larger than 15 kg results in an increase in abundance of animals from 0.1 to 15 kg but with minimal subsequent cascade to sizes smaller than 0.1 kg. These results suggest that size-based predation plays a key role in structuring the subtropical ecosystem. These changes in ecosystem size structure show up in the fishery in various ways. The non-commercial species lancetfish (mean weight 7 kg) has now surpassed the target species, bigeye tuna, as the species with the highest annual catch rate. Based on the increase in snake mackerel (mean weight 0.8 kg) and lancetfish catches, the discards in the fishery are estimated to have increased from 30 to 40% of the total catch.

  18. Fishery-Induced Changes in the Subtropical Pacific Pelagic Ecosystem Size Structure: Observations and Theory

    PubMed Central

    Polovina, Jeffrey J.; Woodworth-Jefcoats, Phoebe A.

    2013-01-01

    We analyzed a 16-year (1996–2011) time series of catch and effort data for 23 species with mean weights ranging from 0.8 kg to 224 kg, recorded by observers in the Hawaii-based deep-set longline fishery. Over this time period, domestic fishing effort, as numbers of hooks set in the core Hawaii-based fishing ground, has increased fourfold. The standardized aggregated annual catch rate for 9 small (<15 kg) species increased about 25% while for 14 large species (>15 kg) it decreased about 50% over the 16-year period. A size-based ecosystem model for the subtropical Pacific captures this pattern well as a response to increased fishing effort. Further, the model projects a decline in the abundance of fishes larger than 15 kg results in an increase in abundance of animals from 0.1 to 15 kg but with minimal subsequent cascade to sizes smaller than 0.1 kg. These results suggest that size-based predation plays a key role in structuring the subtropical ecosystem. These changes in ecosystem size structure show up in the fishery in various ways. The non-commercial species lancetfish (mean weight 7 kg) has now surpassed the target species, bigeye tuna, as the species with the highest annual catch rate. Based on the increase in snake mackerel (mean weight 0.8 kg) and lancetfish catches, the discards in the fishery are estimated to have increased from 30 to 40% of the total catch. PMID:23620824

  19. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  20. Latitudinal variation in the recruitment dynamics of small pelagic fishes in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshiro

    2007-07-01

    The subarctic Oyashio Current flows south-westward and the subtropical Kuroshio Current flows north-eastward in the western North Pacific, converging in the waters off northern Japan to form the Kuroshio-Oyashio transition region. Some small pelagic fishes inhabit the subarctic or subtropical waters, and others seasonally migrate north and south across the major ocean fronts. Environmental conditions in the subarctic and transition waters are variable, whereas in the subtropical Kuroshio waters conditions are relatively stable. Latitudinally different environmental conditions may affect vital parameters and recruitment variability of small pelagic fishes inhabiting the various waters. Pacific saury Cololabis saira migrate seasonally from the Kuroshio to Oyashio waters and spawn in the transition waters in autumn and spring and in the Kuroshio waters in winter. During 1990-1999, the coefficients of variation (CVs) of daily growth rates (G) and instantaneous mortality coefficients (M) were large for larvae and juveniles spawned in the northern transition waters, but relatively small for those from the southern Kuroshio waters. The Pacific stock of chub mackerel Scomber japonicus spawns in the Kuroshio waters in spring and early summer and migrates to the subarctic Oyashio waters in summer for feeding, whereas the Tsushima Warm Current stock spawns in the East China Sea in spring and fish remain in the subtropical warm waters throughout their lifetime. The Pacific stock had CVs > 100% for the fish aged 0-5 during 1970-2002. In contrast, the Tsushima Warm Current stock had CVs of 34-40% during 1973-2002. Pacific herring Clupea pallasii, which inhabits subarctic waters, had CVs of 118-178% for the fish aged 3-8 y during 1910-1954. Japanese sardine Sardinops melanostictus, which spawn in the subtropical Kuroshio waters and migrate to the subarctic Oyashio waters in summer for feeding, had CVs > 120% for the fish aged 0-4 during 1976-2003. Contrasting with these subarctic

  1. Ventilation time scales of the North Atlantic subtropical cell revealed by coral radiocarbon from the Cape Verde Islands

    NASA Astrophysics Data System (ADS)

    Fernandez, Alvaro; Lapen, Thomas J.; Andreasen, Rasmus; Swart, Peter K.; White, Christopher D.; Rosenheim, Brad E.

    2015-07-01

    We present coral- and sclerosponge-based reconstructions of the 14C content in North Atlantic dissolved inorganic carbon (DIC) during the last ~100 years from the subtropical cells (STCs). These waters are sensitive to the dynamics of the shallow overturning meridional circulation that transports heat and water masses from the subtropics to the tropics. We use these records to investigate the circulation patterns of the off-equatorial upwelling regions of the STCs, which are not well understood. Coral and sclerosponge skeletons provide long time series of ocean DIC 14C content, a tracer of oceanic circulation, effectively extending the observational record back in time. Sclerosponge data from the Bahamas were used to extend the existing subtropical 14C time series to the 21st century. Coral 14C data from the Cape Verde Islands (1890-2002) captured the 14C signature of water brought to the surface in the off-equatorial regions of the STC present near the West African coast. We observe a unique postbomb trend at Cape Verde that is similar to the upwelling regions in the Pacific, and we interpret this trend as the result of the slow penetration of bomb 14C into the interior ocean as part of the STC circulation. Using a multibox mixing model we constrain the time history of bomb 14C in the eastern tropical Atlantic, and we estimate a 20 year time scale for ventilation of the thermocline in this area of the ocean. The similarity between the Atlantic and Pacific 14C-based records of upwelling suggests that both are caused by bomb 14C penetration rather than more complex explanations that invoke changes in thermocline depth (e.g., related to El Niño-Southern Oscillation variability) or changes in the strength of the subtropical cells. Our results offer constraints for models of tropical ocean circulation and anthropogenic CO2 uptake that attempt to reproduce the characteristics of the shallow wind-driven circulation in the Atlantic.

  2. Possible influence of western North Pacific monsoon on TC activity in mid-latitudes of East Asia

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-01-01

    This study analyzed the correlation between tropical cyclone (TC) frequency and the Western North Pacific monsoon index (WNPMI), which have both been influential in East Asia's mid-latitude regions during the summer season over the past 37 years (1977-2013). A high positive correlation existed between these two variables, which was not reduced even if El Niño-Southern Oscillation (ENSO) years were excluded. To determine the cause of this positive correlation, the highest (positive WNPMI phase) and lowest WNPMIs (negative WNPMI phase) during a nine-year period were selected to analyze the mean difference between them, excluding ENSO years. In the positive WNPMI phase, TCs were mainly generated in the eastern seas of the tropical and subtropical western North Pacific, passing through the East China Sea and moving northward toward Korea and Japan. In the negative phase, TCs were mainly generated in the western seas of the tropical and subtropical western North Pacific, passing through the South China Sea and moving westward toward China's southern regions. Therefore, TC intensity in the positive phase was stronger due to the acquisition of sufficient energy from the sea while moving a long distance up to East Asia's mid-latitude. Additionally, TCs occurred more in the positive phase. Regarding the difference of the two phases between the 850 and 500-hPa streamlines, anomalous cyclones were strengthened in the tropical and subtropical western North Pacific, whereas anomalous anticyclones were strengthened in East Asia's mid-latitude regions. Due to these two anomalous pressure systems, anomalous southeasterlies developed in East Asia's mid-latitude regions, which played a role in the anomalous steering flows that moved TCs into these regions. Furthermore, due to the anomalous cyclones that developed in the tropical and subtropical western North Pacific, more TCs could be generated in the positive phase. Both the lower and upper tropospheric layers had warm anomalies

  3. On the decade-long deep-ocean warming in the subtropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Volkov, Denis; Lee, Sang-Ki; Landerer, Felix; Lumpkin, Rick

    2017-04-01

    The persistent energy imbalance at the top of the atmosphere, inferred from satellite measurements, indicates that the Earth climate system continues to accumulate excess heat. As only sparse and irregular measurements of ocean heat below 2000-m depth exist, one of the most challenging questions in global climate change studies is whether the excess heat has already penetrated into the deep-ocean. The deep-ocean warming can initiate and advance in the regions where the air-sea interactions and ocean internal dynamics favor transfer of heat from the surface to the deeper waters. It is important to identify such regions, preferably using as many independent observing systems as possible, and to understand the associated dynamics. Combination of the present-day satellite and in situ observing systems has a potential to provide a more complete view on the horizontal and vertical distribution of heat in the ocean. While the uncertainties associated with the observing systems are decreasing, the combined use of satellite altimetry, GRACE, and Argo measurements may theoretically become an ideal method to indirectly infer deep-ocean temperature changes below 2000-m depth. The difference between the total sea level (observed by altimetry) and the mass-related sea level (observed by GRACE) gives the steric (due to changes in seawater density) sea level variability, which is mostly a function of the full-depth heat content. The deep-ocean (below 2000-m) contribution can be inferred indirectly, as the difference between the satellite-based (altimetry minus GRACE) and Argo-based steric sea level. Carrying out a comprehensive analysis of satellite and in situ measurements, and atmospheric re-analyses, here we report on deep-ocean warming signatures observed in the subtropical South Pacific during the past decade of 2005-2014. We show that the local accumulation of heat accounted for up to a quarter of the global ocean heat increase, with directly and indirectly inferred deep

  4. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Reynolds, Sarah; Mahaffey, Claire; Roussenov, Vassil; Williams, Richard G.

    2014-08-01

    The concentration of phosphate and dissolved organic phosphorus (DOP) is chronically low and limits phytoplankton growth in the subtropical North Atlantic relative to other ocean basins. Transport of phosphate and DOP from the productive flanks of the gyre to its interior has been hypothesized as an important phosphorus supply pathway. During a cruise in the eastern Atlantic in spring 2011, the rates of phosphate uptake, alkaline phosphatase activity (APA), and DOP production were measured in the northwest African shelf region, subtropics, and tropics. Rates of DOP production were sixfold higher in the shelf region (43 ± 41 nM d-1) relative to the subtropics (6.9 ± 4.4 nM d-1). In contrast, APA was threefold higher in the subtropics (8.0 ± 7.3 nM d-1), indicative of enhanced DOP utilization, relative to the shelf region (2.6 ± 2.1 nM d-1). Hence, observations suggest net production of DOP in the shelf region and either net consumption of DOP or a near balance in DOP production and consumption in the gyre interior. Eddy-permitting model experiments demonstrate that (i) DOP accounts for over half the total phosphorus in surface waters, (ii) DOP is transported westward from the shelf region by a combination of gyre and eddy circulations, and (iii) advected DOP supports up to 70% of the particle export over much of the subtropical gyre. Our combined observational and modeling study supports the view that the horizontal transport of DOP from the shelf region is an important mechanism supplying phosphorus to the surface subtropical North Atlantic.

  5. A decadal precession of atmospheric pressures over the North Pacific

    NASA Astrophysics Data System (ADS)

    Anderson, Bruce T.; Gianotti, Daniel J. S.; Furtado, Jason C.; Di Lorenzo, Emanuele

    2016-04-01

    Sustained droughts over the Northwestern U.S. can alter water availability to the region's agricultural, hydroelectric, and ecosystem service sectors. Here we analyze decadal variations in precipitation across this region and reveal their relation to the slow (~10 year) progression of an atmospheric pressure pattern around the North Pacific, which we term the Pacific Decadal Precession (PDP). Observations corroborate that leading patterns of atmospheric pressure variability over the North Pacific evolve in a manner consistent with the PDP and manifest as different phases in its evolution. Further analysis of the data indicates that low-frequency fluctuations of the tropical Pacific Ocean state energize one phase of the PDP and possibly the other through coupling with the polar stratosphere. Evidence that many recent climate variations influencing the North Pacific/North American sector over the last few years are consistent with the current phase of the PDP confirms the need to enhance our predictive understanding of its behavior.

  6. Iodine monoxide in the north subtropical free troposphere

    NASA Astrophysics Data System (ADS)

    Puentedura, O.; Gil, M.; Saiz-Lopez, A.; Hay, T.; Navarro-Comas, M.; Gómez-Pelaez, A.; Cuevas, E.; Iglesias, J.

    2011-10-01

    Iodine monoxide (IO) was retrieved using a new multi-axis DOAS instrument deployed at the Izaña subtropical observatory as part of the Network for the Detection of Atmospheric Composition Change (NDACC) programme. The station is located at 2370 m a.s.l., well above the trade wind inversion that limits the top of the marine boundary layer, and is hence representative of the free troposphere. We report daily observations from May to August 2010 at different viewing angles. During this period, the spectral signature of IO was unequivocally detected on every day of measurement. A mean IO differential slant column density (DSCD) of 1.2 × 1013 molecules cm-2 was observed at 5° instrument elevation angle (IEA) on clear days using a single zenith reference for the reported period, with a day-to-day variability of 12% at 1 standard deviation. At an IEA of 0°, the mean DSCD value for clear days is 2.0 × 1013 molecules cm-2, with a day-to-day variability of 14%. Based on simultaneous O4 measurements, the IO mixing ratio is estimated to be 0.18 pptv in the free troposphere at an IEA of 5°. Episodes of Saharan dust outbreaks were also observed, with large increases in the DSCDs at higher elevation angles, suggesting an enhancement of IO inside the dust cloud.

  7. Iodine monoxide in the north subtropical free troposphere

    NASA Astrophysics Data System (ADS)

    Puentedura, O.; Gil, M.; Saiz-Lopez, A.; Hay, T.; Navarro-Comas, M.; Gómez-Pelaez, A.; Cuevas, E.; Iglesias, J.; Gomez, L.

    2012-06-01

    Iodine monoxide (IO) differential slant column densities (DSCD) have been retrieved from a new multi-axis differential optical absorption spectroscopy (MAX-DOAS) instrument deployed at the Izaña subtropical observatory as part of the Network for the Detection of Atmospheric Composition Change (NDACC) programme. The station is located at 2370 m a.s.l., well above the trade wind inversion that limits the top of the marine boundary layer, and hence is representative of the free troposphere. We report daily observations from May to August 2010 at different viewing angles. During this period, the spectral signature of IO was unequivocally detected on every day of measurement. A mean IO DSCD of 1.52×1013 molecules cm-2 was observed at the 5° instrument elevation angle (IEA) on clear days using a single zenith reference for the reported period, with a day-to-day variability of 33% at one standard deviation. Based on the simulation of the DSCDs using radiative transfer calculations with five different hypothesized IO profiles, the IO mixing ratio is estimated to range between 0.2 and 0.4 pptv in the free troposphere. Episodes of Saharan dust outbreaks were also observed, with large increases in the DSCDs at higher IEA, suggesting an enhancement of IO inside the dust cloud.

  8. Future change of North Pacific blocking in CMIP5 models - frequency and intensity

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Lee, Doo Young

    2017-04-01

    Future change in frequency and intensity of wintertime North pacific blocking are investigated with phase 5 of the Coupled Model Intercomparison Project (CMIP5) participating models. The current status and future changes in climatological blocking activity over the North Pacific region are investigated using historical and two Representative Concentration Pathway (RCP4.5 and 8.5) simulations for boreal winters (December-February) over a 30-year period. The future change in the Pacific blocking frequency and intensity are examined in terms of the projected meridional thickness gradient, Hadley circulation changes, and changes in the probability distribution of categorized blocking strength. With historical simulations, five CMIP5 models show better performance in reproducing climatological blocking events over the Pacific region. These models are selected for the analyses of the projected blocking activities. Projected blocking activity shows that the climatological winter Pacific blocking frequencies and mean values have tendency to decrease under global warming conditions. This trend is closely linked with the strong upper level westerly wind, resulting in less meandering air flow, consistent with the enhanced meridional temperature gradients at mid-latitude in the future climate. The decreased frequency in climatological atmospheric blocking over the Pacific under warming may also be influenced by the strengthening of the north-south temperature gradients due to the poleward extension of Hadley circulation in the subtropics. The climatology of the Pacific blocking intensity in boreal winter also tends to decrease slightly due to a future reduction in the number of strong blocking events. Acknowledgement : This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015-2081

  9. Will the western Pacific subtropical high constantly intensify in the future?

    NASA Astrophysics Data System (ADS)

    Huang, Yanyan; Li, Xiaofan; Wang, Huijun

    2016-07-01

    The western Pacific subtropical high (WPSH) features lower-level southerlies or southwesterlies at its western and southern edges that transport amount of water vapor into East Asia, and it exerts a large influence on the East Asian summer climate. This paper evaluates the historical (1950-2005) spatial distribution and variability in the summer WPSH at 850 hPa using 28 general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) relative to the NCEP-NCAR reanalysis data. To avoid the artificial influence caused by global warming, this study primarily investigates the 850-hPa eddy geopotential height and the horizontal winds. The results show that most of the CMIP5 models reliably reproduce the geographical distribution and spatial variability in the WPSH. Four models (bcc-csm1-1, CESM1-CAM5, GFDL-ESM2G and inmcm4) generally perform well in simulating the eastward-recessed interdecadal variation in the WPSH during 1979-2005 relative to 1950-1978, with a significant cyclone anomaly appearing over the western Pacific and a decreasing trend in the WPSH index. Based on these four models, a multi-model ensemble projects a weaker WPSH during 2026-2070 relative to 2010-2025 and 2071-2100 under the representative concentration pathway 8.5 scenario.

  10. Hunting poisons of the North Pacific Region.

    PubMed

    Bisset, N G

    1976-01-01

    The hunting poisons of the North Pacific region are discussed. The most important one used by the Ainu was based on Aconitum species (surku or suruku): on Hokkaido, to some extent A. japonicum Thumb. but probably mainly A. yezoense Nakai and A. sachalinense Fr. Schm.; on southern Sakhalin, perhaps A. fischeri Reichb., A. maximum Pall. ex DC., and/or A. sachalinense Fr. Schm.; and on the Kuril Islands, A. maximum Pall. ex DC. Poison from the Japanese stingray Dasyatis akajei (Müller et Henle) (aikor chiep) was also much used, alone or mixed with aconite, and was believed by some Ainu to be better than aconite. Adjuvants to these poisons were numerous and varied in each locality. Daphne kamtschatica Maxim. var. yezoensis (Maxim.) Ohwi (ketuhas) was used in hunting walrus. The use of Cynanchum caudatum (Miq.) Maxim. (penup) enabled birds to be caught. Juglans ailanthifolia Carr (nesko) was a fish poison. A critical evaluation of the accounts by Krasheninnikov, Steller, Harms, and others, indicates that the inhibitants of the Kamchatka Peninsula, the Kamchadal (Itelmen), hunted with a poison derived from Aconitum maximum Pall. ex DC. This same species was almost certainly used in the Aleutian Islands and the Kodiak Island region, principally for hunting whales. There is some evidence that the inhabitants of the far north-eastern part of Siberia and of the Alaskan coasts opposite may also have used poison in hunting. The chemistry and toxicology of the poisons are briefly considered.

  11. NO2 seasonal evolution in the north subtropical free troposphere

    NASA Astrophysics Data System (ADS)

    Gil-Ojeda, M.; Navarro-Comas, M.; Gómez-Martín, L.; Adame, J. A.; Saiz-Lopez, A.; Cuevas, C. A.; González, Y.; Puentedura, O.; Cuevas, E.; Lamarque, J.-F.; Kinninson, D.; Tilmes, S.

    2015-09-01

    Three years of multi-axis differential optical absorption spectroscopy (MAXDOAS) measurements (2011-2013) have been used for estimating the NO2 mixing ratio along a horizontal line of sight from the high mountain subtropical observatory of Izaña, at 2370 m a.s.l. (NDACC station, 28.3° N, 16.5° W). The method is based on horizontal path calculation from the O2-O2 collisional complex at the 477 nm absorption band which is measured simultaneously to the NO2 column density, and is applicable under low aerosol-loading conditions. The MAXDOAS technique, applied in horizontal mode in the free troposphere, minimizes the impact of the NO2 contamination resulting from the arrival of marine boundary layer (MBL) air masses from thermally forced upwelling breeze during middle hours of the day. Comparisons with in situ observations show that during most of the measuring period, the MAXDOAS is insensitive or very slightly sensitive to the upwelling breeze. Exceptions are found for pollution events during southern wind conditions. On these occasions, evidence of fast, efficient and irreversible transport from the surface to the free troposphere is found. Background NO2 volume mixing ratio (vmr), representative of the remote free troposphere, is in the range of 20-45 pptv. The observed seasonal evolution shows an annual wave where the peak is in phase with the solar radiation. Model simulations with the chemistry-climate CAM-Chem model are in good agreement with the NO2 measurements, and are used to further investigate the possible drivers of the NO2 seasonality observed at Izaña.

  12. The response of winter Pacific North American pattern to strong volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Yoshimura, Kei; Buenning, Nikolaus H.; Jian, Zhimin; Zhao, Liang

    2017-06-01

    The impact of volcanic eruptions on large-scale atmospheric circulation patterns has been well studied, but very little effort has been made on relating the response of Pacific North American (PNA) pattern to strong volcanic eruptions. Here we investigate the response of winter PNA to the largest volcanic eruptions using three different reanalysis datasets. We demonstrate a significant positive PNA circulation response to strong volcanic forcing in the first winter following the eruptions. This circulation pattern is associated with enhanced southwesterly winds advecting warm air from the tropical/subtropical Pacific into northwestern North America and leads to a significant warming in the region. However, no significant PNA signal is found for the second post-eruption winter. The PNA responses to volcanic forcing depend partly upon the modulation of the El Niño Southern Oscillation (ENSO) events. When the ENSO influence is linearly removed, this positive PNA signal is still robust during the first post-eruption winter, albeit with slightly decreased magnitude and significance. Our findings provide new evidence for volcanic forcing of the Pacific and North American climates. The results presented here may contribute to deconvolving modern and past continental-scale climate changes over North America.

  13. The response of winter Pacific North American pattern to strong volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Yoshimura, Kei; Buenning, Nikolaus H.; Jian, Zhimin; Zhao, Liang

    2016-07-01

    The impact of volcanic eruptions on large-scale atmospheric circulation patterns has been well studied, but very little effort has been made on relating the response of Pacific North American (PNA) pattern to strong volcanic eruptions. Here we investigate the response of winter PNA to the largest volcanic eruptions using three different reanalysis datasets. We demonstrate a significant positive PNA circulation response to strong volcanic forcing in the first winter following the eruptions. This circulation pattern is associated with enhanced southwesterly winds advecting warm air from the tropical/subtropical Pacific into northwestern North America and leads to a significant warming in the region. However, no significant PNA signal is found for the second post-eruption winter. The PNA responses to volcanic forcing depend partly upon the modulation of the El Niño Southern Oscillation (ENSO) events. When the ENSO influence is linearly removed, this positive PNA signal is still robust during the first post-eruption winter, albeit with slightly decreased magnitude and significance. Our findings provide new evidence for volcanic forcing of the Pacific and North American climates. The results presented here may contribute to deconvolving modern and past continental-scale climate changes over North America.

  14. Marine proxy evidence linking decadal North Pacific and Atlantic climate

    NASA Astrophysics Data System (ADS)

    Mecking, J.; Hetzinger, S.; Halfar, J.; Keenlyside, N. S.; Kronz, A.; Steneck, R. S.; Adey, W. H.; Lebednik, P. A.

    2011-12-01

    Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818-1967) of Mg/Ca variations from a North Pacific/ Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure (SLP) in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature (SST) and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability (AMV), as suggested by earlier studies using climate models and limited instrumental data.

  15. Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.

    2012-12-01

    The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more

  16. Sea-air of CO2 in the North Pacific using shipboard and satellite data

    NASA Technical Reports Server (NTRS)

    Stephens, Mark P.; Samuels, Geoffrey; Olson, Donald B.; Fine, Rana A.; Takahashi, Taro

    1995-01-01

    A method has been developed to produce high-resolution maps of pCO2 in surface water for the North Pacific using satellite sea surface temperature (SST) data and statistical relationships between measured pCO2 and temperature. In the subtropical North Pacific the pCO in seawater is controlled primarily by temperature. Accordingly, pCO2 values that are calculated from the satellite SST data have good agreement with the measured values (rms deviation of +/- microatm). In the northwestern subpolar region the pCO2 is controlled not only by temperature, but also by significant seasonal changes in the total CO2 concentration, which are caused by seasonal changes in primary production, mixing with subsurface waters and sea-air exchange. Consequently, the parameterization of oceanic p CO2 based on SST data alone is not totally successful in the northwestern region (rms deviation of +/- 40 microatm). The use of additional satellite products, such as wind and ocean color data, as planned for a future study, is considered necessary to account for the pCO2 variability caused by seasonal changes in the total CO2 concentration. The net CO2 flux for the area of the North Pacific included in this study (north of 10 deg N) has been calculated using the monthly pCO2 distributions computed, and monthly wind speeds from the European Centre for Medium-Range Weather Forecasts. The region is found to be a net source to the atmosphere of 1.9 x 10(exp 12) to 5.8 x 10(exp 12) moles of CO2 per year (or 0.02-0.07 Gt C/yr), most of the outflux occurring in the subtropics.

  17. Enhanced Late Holocene ENSO/PDO expression along the margins of the eastern North Pacific

    USGS Publications Warehouse

    Barron, John A.; Anderson, Lesleigh

    2011-01-01

    Late Holocene records indicate a more variable, El Niño-like, and more positive PDO Pacific. The Aleutian Low became more intensified during the winter and/or located more to the east. The North Pacific High became weaker and/or displaced more to the south. Coastal upwelling off California intensified during the spring but decreased during the fall. Oregon and California SSTs became warmer, recording the shoreward migration of sub-tropical gyre waters during the fall, while spring upwelling (cooler SST) increased in the Santa Barbara Basin. The high-resolution proxy records indicate enhanced ENSO and PDO variability after ∼4000 cal BP off southern California, ∼3400 cal BP off northern California, and by ∼2000 cal BP in southwestern Yukon. A progressively northward migration of the ENSO teleconnection during the late Holocene is proposed.

  18. Multi-decadal uptake of carbon dioxide into subtropical mode water of the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bates, N. R.

    2012-07-01

    Natural climate variability impacts the multi-decadal uptake of anthropogenic carbon dioxide (Cant) into the North Atlantic Ocean subpolar and subtropical gyres. Previous studies have shown that there is significant uptake of CO2 into subtropical mode water (STMW) of the North Atlantic. STMW forms south of the Gulf Stream in winter and constitutes the dominant upper-ocean water mass in the subtropical gyre of the North Atlantic Ocean. Observations at the Bermuda Atlantic Time-series Study (BATS) site near Bermuda show an increase in dissolved inorganic carbon (DIC) of +1.51 ± 0.08 μmol kg-1 yr-1 between 1988 and 2011, but also an increase in ocean acidification indicators such as pH at rates (-0.0022 ± 0.0002 yr-1) higher than the surface ocean (Bates et al., 2012). It is estimated that the sink of CO2 into STMW was 0.985 ± 0.018 Pg C (Pg = 1015 g C) between 1988 and 2011 (70 ± 1.8% of which is due to uptake of Cant). The sink of CO2 into the STMW is 20% of the CO2 uptake in the North Atlantic Ocean between 14°-50° N (Takahashi et al., 2009). However, the STMW sink of CO2 was strongly coupled to the North Atlantic Oscillation (NAO), with large uptake of CO2 into STMW during the 1990s during a predominantly NAO positive phase. In contrast, uptake of CO2 into STMW was much reduced in the 2000s during the NAO neutral/negative phase. Thus, NAO induced variability of the STMW CO2 sink is important when evaluating multi-decadal changes in North Atlantic Ocean CO2 sinks.

  19. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.

    2017-04-01

    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  20. 76 FR 22677 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Science Center (AFSC), Traynor Room, 7600 Sand Point Way NE., Seattle, WA. Council address: North Pacific..., which are due April 22. Proposals should be submitted to Grant Thompson, AFSC, 7600 Sand Point Way NE...

  1. 76 FR 71321 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... Anchorage Hilton Hotel. DATES: The Council will begin its plenary session at 8 a.m. on Wednesday, December 7... Hilton Hotel, 500 West Third Avenue, Anchorage, AK. Council address: North Pacific Fishery Management...

  2. 77 FR 59901 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC259 North Pacific Fishery Management Council... Management Council (Council) Charter Management Implementation Committee will convene via a conference...

  3. 75 FR 53951 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... Council;s Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BS/AI) Groundfish Plan Teams will meet in... (GOA Plan Team) and Traynor Room (BS/AI Plan Team), Seattle, WA. Council address: North Pacific...

  4. 77 FR 51521 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... Council's (Council) Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BS/AI) groundfish plan teams...) and Traynor Room 2076 (BS/AI Plan Team), Seattle, WA. Council address: North Pacific Fishery...

  5. Prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon

    NASA Astrophysics Data System (ADS)

    Oh, Hyoeun; Ha, Kyung-Ja

    2016-10-01

    Intraseasonal monsoon prediction is the most imperative task, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): pre-Meiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. Here, we use stepwise regression to determine the predictors for the four modes in the EA-WNPSM. The selected predictors are based on the persistent and tendency signals of the sea surface temperature (SST)/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the El Niño Southern Oscillation (ENSO) and the ocean and land surface anomalous conditions. For the pre-Meiyu&Baiu mode, the SST cooling tendency over the western North Pacific (WNP), which persists into summer, is the distinguishing contributor that results in strong baroclinic instability. A major precursor for the Changma&Meiyu mode is related to the WNP subtropical high, induced by the persistent SST difference between the Indian Ocean and the western Pacific. The WNPSM mode is mostly affected by the Pacific-Japan pattern, and monsoon gyre mode is primarily associated with a persistent SST cooling over the tropical Indian Ocean by the preceding ENSO signal. This study carries important implications for prediction by establishing valuable precursors of the four modes including nonlinear characteristics.

  6. Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific.

    PubMed

    Kaeriyama, Hideki; Shimizu, Yugo; Setou, Takashi; Kumamoto, Yuichiro; Okazaki, Makoto; Ambe, Daisuke; Ono, Tsuneo

    2016-02-26

    The Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 released radiocaesium ((137)Cs and (134)Cs) into the North Pacific Ocean. Meridional transects of the vertical distribution of radiocaesium in seawater were measured along 147 °E and 155 °E in October-November 2012, 19 months after the accident. These measurements revealed subsurface peaks in radiocaesium concentrations at locations corresponding to two mode waters, Subtropical Mode Water and Central Mode Water. Mode water is a layer of almost vertically homogeneous water found over a large geographical area. Here we show that repeated formation of mode water during the two winter seasons after the Fukushima accident and subsequent outcropping into surface water transported radiocaesium downward and southward to subtropical regions of the North Pacific. The total amount of Fukushima-derived (134)Cs within Subtropical Mode Water, decay-corrected to April 2011, was estimated to be 4.2 ± 1.1 PBq in October-November 2012. This amount of (134)Cs corresponds to 22-28% of the total amount of (134)Cs released to the Pacific Ocean.

  7. Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific

    PubMed Central

    Kaeriyama, Hideki; Shimizu, Yugo; Setou, Takashi; Kumamoto, Yuichiro; Okazaki, Makoto; Ambe, Daisuke; Ono, Tsuneo

    2016-01-01

    The Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 released radiocaesium (137Cs and 134Cs) into the North Pacific Ocean. Meridional transects of the vertical distribution of radiocaesium in seawater were measured along 147 °E and 155 °E in October–November 2012, 19 months after the accident. These measurements revealed subsurface peaks in radiocaesium concentrations at locations corresponding to two mode waters, Subtropical Mode Water and Central Mode Water. Mode water is a layer of almost vertically homogeneous water found over a large geographical area. Here we show that repeated formation of mode water during the two winter seasons after the Fukushima accident and subsequent outcropping into surface water transported radiocaesium downward and southward to subtropical regions of the North Pacific. The total amount of Fukushima-derived 134Cs within Subtropical Mode Water, decay-corrected to April 2011, was estimated to be 4.2 ± 1.1 PBq in October–November 2012. This amount of 134Cs corresponds to 22–28% of the total amount of 134Cs released to the Pacific Ocean. PMID:26915424

  8. Intrusion of Fukushima-derived radiocaesium into subsurface water due to formation of mode waters in the North Pacific

    NASA Astrophysics Data System (ADS)

    Kaeriyama, Hideki; Shimizu, Yugo; Setou, Takashi; Kumamoto, Yuichiro; Okazaki, Makoto; Ambe, Daisuke; Ono, Tsuneo

    2016-02-01

    The Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 released radiocaesium (137Cs and 134Cs) into the North Pacific Ocean. Meridional transects of the vertical distribution of radiocaesium in seawater were measured along 147 °E and 155 °E in October-November 2012, 19 months after the accident. These measurements revealed subsurface peaks in radiocaesium concentrations at locations corresponding to two mode waters, Subtropical Mode Water and Central Mode Water. Mode water is a layer of almost vertically homogeneous water found over a large geographical area. Here we show that repeated formation of mode water during the two winter seasons after the Fukushima accident and subsequent outcropping into surface water transported radiocaesium downward and southward to subtropical regions of the North Pacific. The total amount of Fukushima-derived 134Cs within Subtropical Mode Water, decay-corrected to April 2011, was estimated to be 4.2 ± 1.1 PBq in October-November 2012. This amount of 134Cs corresponds to 22-28% of the total amount of 134Cs released to the Pacific Ocean.

  9. 75 FR 20344 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... National Oceanic and Atmospheric Administration RIN 0648-XV88 North Pacific Fishery Management Council... Management Council's Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BSAI) groundfish plan teams will... models to be considered for inclusion in the GOA and BSAI Pacific cod assessments. DATES: The...

  10. Communicating Volcanic Hazards in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  11. Fukushima-derived radiocesium in western North Pacific sediment traps

    NASA Astrophysics Data System (ADS)

    Honda, M. C.; Kawakami, H.; Watanabe, S.; Saino, T.

    2013-02-01

    At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the Fukushima Daiichi Nuclear Power Plant (FNPP1) accident occurred on 11 March 2011. Radiocesium (134Cs and 137Cs) derived from FNPP1 accident was detected in sinking particles collected at 500 m by late March 2011 and at 4810 m by early April 2011 at both stations. The sinking velocity of 134Cs and 137Cs was estimated to be 8 to 36 m day-1 between the surface and 500 m and > 180 m day-1 between 500 m and 4810 m. 137Cs specific activity varied from 0.14 to 0.25 Bq g-1 dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. Although the radiocesium may have been adsorbed onto or incorporated into clay minerals, correlations between 134Cs and lithogenic material were not always significant; therefore, the form of the cesium associated with the sinking particles is still an open question. The total 137Cs flux by late June at K2 and by late July at S1 was 0.5 to 1.7 Bq m-2 at both depths. Compared with 137Cs input to both stations by April 2011, estimated from the surface 137Cs activity and mixed layer depth and by assuming that the observed 137Cs flux was constant throughout the year, the estimated removal rate of 137Cs from the upper layer (residence time in the upper layer) was 0.3 to 1.5% (68 to 312 yr). The estimated removal rates and residence times are comparable to previously reported values.

  12. Along-isopycnal variability of spice in the North Pacific

    NASA Astrophysics Data System (ADS)

    Klymak, Jody M.; Crawford, William; Alford, Matthew H.; MacKinnon, Jennifer A.; Pinkel, Robert

    2015-03-01

    Two hydrographic surveys in the Gulf of Alaska and the North Pacific subtropical gyre are presented. Both surveys are roughly perpendicular to lateral temperature gradients, and were collected in the summer when there was a shallow mixed layer and a seasonal thermocline. Isopycnal displacements and horizontal velocities are dominated by internal waves. Spice anomalies along isopycnals are examined to diagnose lateral stirring mechanisms. The spectra of spice anomaly gradients along near-surface isopycnals roughly follow power laws of ˜kx0.6±0.2 (variance spectra power laws of ˜kx-1.4±0.2), and in most cases, the spectra become redder at depth. The near-surface spectra are possibly consistent with the predictions of quasi-geostrophic turbulence theory (when surface buoyancy effects are accounted for), but the spectra at depth are inconsistent with any quasi-geostrophic theory. Probability distributions of spice gradients exhibit a large peak at low gradients and long tails for large gradients, symptomatic of fronts. Vertical coherence of the spice signal falls off with a decorrelation depth scale that has a maximum of about 80 m at 100 km wavelengths and depends on horizontal wavelength with a power law of approximately kx-1/2. Lateral decorrelation length scales are 20-40 km, close to the baroclinic Rossby radius. Lateral stirring occurs over large scales, with average lateral displacements of about 200 km in the upper 75 m, decreasing to 100 km at greater depths. The depth variation of the statistics indicates that time history of tracer stirring on each isopycnal is important, or that there are unconsidered depth-dependent stirring mechanisms.

  13. Peat Formation on Minjerribah (North Stradbroke Island), subtropical eastern Australia

    NASA Astrophysics Data System (ADS)

    Moss, Patrick; Tibby, John; Barr, Cameron; Weerensena, Chagi; Gontz, Allen; Petherick, Lynda

    2016-04-01

    Minjerribah (North Stradbroke Island) is the second largest sand island in the world and contains extensive peat dominated wetlands, comprising ~20% of the total area of the island. These wetland systems include large areas of estuarine swamps [mainly mangrove forest (~16% of the island's wetland area)], freshwater swamps [both herb (~58% of the island's wetland area) and tree dominated (~20% of the island's wetland area)] and numerous lake systems [both perched and window lakes (~2% of the island's wetland area)]. This presentation will examine peat formation processes at four wetland sites: a late Holocene prograding beach system (Flinders Beach); a 150,000 year lacustrine system (Welsby Lagoon 1), as well as a late Holocene lacustrine/palustrine system (Welsby Lagoon 2); and a late Quaternary lacustrine/palustrine system (Tortoise Lagoon), as well as discussing broader environmental characteristics of Minjerribah's nationally and internationally important wetland systems.

  14. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact.

    PubMed

    Povinec, Pavel P; Hirose, Katsumi; Aoyama, Michio

    2012-09-18

    The impact of the Fukushima-derived radiostrontium ((90)Sr and (89)Sr) on the western North Pacific Ocean has not been well established, although (90)Sr concentrations recorded in surface seawater offshore of the damaged Fukushima Dai-ichi nuclear power plant were in some areas comparable to or even higher than (as those in December 2011 with 400 kBq m(-3)(90)Sr) the (137)Cs levels. The total amount of (90)Sr released to the marine environment in the form of highly radioactive wastewater could reach about 1 PBq. Long-term series (1960-2010) of (90)Sr concentration measurements in subtropical surface waters of the western North Pacific indicated that its concentration has been decreasing gradually with a half-life of 14 y. The pre-Fukushima (90)Sr levels in surface waters, including coastal waters near Fukushima, were estimated to be 1 Bq m(-3). To better assess the impact of about 4-5 orders of magnitude increased radiostrontium levels on the marine environment, more detail measurements in seawater and biota of the western North Pacific are required.

  15. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre.

    PubMed

    Ribalet, Francois; Swalwell, Jarred; Clayton, Sophie; Jiménez, Valeria; Sudek, Sebastian; Lin, Yajuan; Johnson, Zackary I; Worden, Alexandra Z; Armbrust, E Virginia

    2015-06-30

    Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean.

  16. Circum-North Pacific tectonostratigraphic terrane map

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Baranov, Boris B.; Byalobzhesky, Stanislav G.; Bundtzen, Thomas K.; Feeney, Tracey D.; Fujita, Kazuya; Gordey, Steven P.; Grantz, Arthur; Khanchuk, Alexander I.; Natal'in, Boris A.; Natapov, Lev M.; Norton, Ian O.; Patton, William W.; Plafker, George; Scholl, David W.; Sokolov, Sergei D.; Sosunov, Gleb M.; Stone, David B.; Tabor, Rowland W.; Tsukanov, Nickolai V.; Vallier, Tracy L.; Wakita, Koji

    1994-01-01

    after accretion of most terranes in the region; (2) Cenozoic and Mesozoic basinal deposits that occur within a terrane or on the craton; (3) plutonic rocks. The postaccretion igneous units are identified by age-lithologic abbreviations and by name. These overlap assemblages and basinal deposits formed mainly during sedimentation and magmatism that occurred after accretion of terranes to each other or to a continental margin. Overlap assemblages provide minimum ages on the timing of accretion of terranes. Some Cenozoic and Mesozoic overlap assemblages and basinal deposits, as well as fragments of terranes, are extensively offset by movement along postaccretion faults. In addition, in onshore areas, the map depicts major preaccretion plutonic rocks that are limited to individual terranes. and in offshore areas. the map depicts major oceanic plates,-ocean floor magnetic lineations. oceanic spreading ridges, and seamounts. The map consists of five sheets. Sheets I and 2 depict, at a scale of I :5.000.000. the tectonostratigraphic terranes. preaccretion plutonic rocks, and postaccretion Cenozoic and Mesozoic overlap sedimentary, volcanic. and plutonic assemblages, and basinal deposits for the Circum- orth Pacific including the Russian Far East, northern Hokkaido Island of Japan, Alaska. the Canadian Cordillera, part of the U.S.A. Pacific Northwest. and adjacent offshore areas. Sheet 3 provides the list of map units for Sheets I and 2. Sheet 4 is a index map showing generalized onshore terranes and overlap assemblages for onshore parts of the Circum-North Pacific at a scale of I: I 0,000,000. Sheet 4 is a guide to the more complicated onshore features depicted on Sheets I and 2. Sheet 5 is an index map showing the major geographic regions for the Circum-North Pacific. Significant differences exist between the representation of onshore and offshore geology on Sheets I and 2. These are: (I) compared to the onshore part of the map, the offshore part is depicted in a more

  17. Can solar cycle modulate the ENSO effect on the Pacific/North American pattern?

    NASA Astrophysics Data System (ADS)

    Li, Delin; Xiao, Ziniu

    2017-04-01

    The ENSO effect on the Pacific/North American pattern (PNA) is well-known robust. Recent studies from observations and model simulations have reported that some important atmospheric circulation systems of extratropics are markedly modulated by the 11-year solar cycle. But less effort has been devoted to revealing the solar influence on the PNA. We thus hypothesize that the instability and uncertainty in the relationship between solar activity and PNA could be due to the ENSO impacts. In this study, the solar cycle modulation of the ENSO effect on the PNA has been statistically examined by the observations from NOAA and NCEP/NCAR for the period 1950-2014. The results indicate that during high solar activity (HS) years, the PNA has stronger relevance to the ENSO, and the response of tropospheric geopotential height to ENSO viability is broadly similar to the typical positive PNA pattern. However, in the case of low solar activity (LS) years, the correlation between ENSO and PNA relatively decreases and the response has some resemblance to the negative phase of Arctic Oscillation (AO). Also, we find the impacts of solar activity on the middle troposphere are asymmetric during the different solar cycle phases, and the weak PNA-like response to solar activity only presents in HS years. Closer inspection suggests that the higher solar activity have a much more remarkable modulation on the PNA-like response to the warm ENSO (WE) than that to the cold ENSO (CE), particularly over the Northeast Pacific region. The possible cause of the different responses might be the solar influence on the subtropical westerlies of upper troposphere. When the sea surface temperature (SST) of east-central tropical Pacific is anomalous warm, the upper tropospheric westerlies are significantly modulated by the higher solar activity, resulting in the acceleration and eastward shift of the North Pacific subtropical jet, which favors the propagation of WE signal from the tropical Pacific to the

  18. North Pacific climate variability and Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Linkin, Megan E.

    Boreal winter North Pacific climate variability strongly influences North American hydroclimate and Arctic sea ice distribution in the marginal Arctic seas. Two modes of atmospheric variability explaining 53% of the variance in the Pacific Ocean sea level pressure (SLP) field are extracted and identified: the Pacific-North American (PNA) teleconnection and the North Pacific Oscillation/West Pacific (NPO/WP) teleconnection. The NPO/WP, a dipole in North Pacific SLP and geopotential heights, is affiliated with latitudinal displacements of the Asian Pacific jet and an intensification of the Pacific stormtrack. The North American hydroclimate impacts of the NPO/WP are substantial; its impact on Alaska, Pacific Northwest and Great Plains precipitation is more influential than both the PNA and the El Nino-Southern Oscillation (ENSO). The NPO/WP is also strongly associated with a contemporaneous extension of the marginal ice zone (MIZ) in the western Bering Sea and Sea of Okhotsk and MIZ retreat in the eastern Bering Sea. Wintertime climate variability also significantly impacts the distribution of Arctic sea ice during the subsequent summer months, due to the hysteretic nature of the ice cap. The North Atlantic Oscillation (NAO) is known for its effects on summer sea ice distribution; this study extends into the Pacific and finds that circulation anomalies related to Pacific sea surface temperature (SST) variability also strongly impact summer Arctic sea ice. The NAO and ENSO are related to sea ice decline in the Eastern Siberian Sea, where the linear trend since 1979 is 25% per decade. PDV affects sea ice in the eastern Arctic, a region which displays no linear trend since 1979. The low frequency of PDV variability and the persistent positive NAO during the 1980s and 1990s results in natural variability being aliased into the total linear trend in summer sea ice calculated from satellite-based sea ice concentration. Since 1979, natural variability accounts for 30% of

  19. Response of the North Pacific Tropical Cyclone Climatology to Global Warming: Application of Dynamical Downscaling to CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Karnauskas, K. B.; Donnelly, J. P.; Emanuel, K.

    2016-12-01

    We apply a downscaling approach to future projection simulations from four CMIP5 climate models to investigate the response of the tropical cyclone (TC) climatology over the North Pacific basin to global warming. Under the influence of the anthropogenic rise in greenhouse gases, TC track density, power dissipation and TC genesis exhibit robust increasing trends over the North Pacific, especially over the central subtropical Pacific region. The increase in North Pacific TCs is primarily manifest as increases in the intense and relatively weak TCs. Examination of storm duration also reveals that TCs over the North Pacific have longer lifetimes under global warming. By employing a genesis potential index, we explore the mechanistic contributions of various physical climate factors to the simulated change in TC genesis. We find that more frequent TC genesis under global warming is mostly attributable to the smaller vertical wind shear and greater potential intensity (primarily due to higher sea surface temperature). In contrast, the effect of the saturation deficit of the free troposphere tends to suppress TC genesis, and the change in large-scale vorticity plays a negligible role.

  20. Surface heat storage in the subtropical North Atlantic during the LGM

    NASA Astrophysics Data System (ADS)

    Repschlaeger, Janne; Weinelt, Mara; Garbe-Schönberg, Dieter; Andersen, Nils; Schneider, Ralph

    2016-04-01

    The transport of warm saline waters from the subtropical into the subpolar North Atlantic plays a major role in the stabilization of AMOC. During the Late Pleistocene this system experienced millennial scale variability with weak AMOC phases that are associated with heat and salt storage within the subtropics. The subsequent onset of AMOC is supposed to be fueled by the release and transport of the warm saline water into the northern hemisphere deepwater convection sites. Despite this conceptual model, contradicting reconstructions for such warm water storage exist for the Deglaciation to early Holocene and full glacial periods, either asserting a southward movement of the Subtropical gyre (STG) and subsurface heat storage or northward extension of the STG with warming of the surface waters. Here we investigate the heat and salt storage patterns and extension of the warm subtropical gyre (STG) during MIS 2 well into MIS 3 (16- 30 ka BP) at centennial scale resolution using sediment core MD08-3181 (38°N; 31.13°W, 3060 m w.d.) retrieved immediately east of the Mid Atlantic Ridge south of the Azores Islands with sedimentation rates up to 100 cm/ ka. At present, this site is located at the northern rim of the Azores Current, which delineates the STG, recirculating warm waters of the North Atlantic Current. Due to its position at the boundary between temperate Northeast Atlantic waters and warm STG waters, the coring site is ideal to trace past changes in the influence of both water masses. Parallel stable-oxygen isotope and Mg/Ca temperature records of surface-water dwelling foraminifera Globigerina bulloides (habitat depth 0-200 m) and subsurface dweller Globorotalia inflata (habitat depth 100-300 m) and foraminiferal transfer functions are used to reconstruct the temperature and salinity structure of the mixed layer. Additionally, the AF position is reconstructed using the abundance of the tropical to subtropical species Globigerinoides ruber white. Preliminary

  1. Interannual-decadal variability of wintertime mixed layer depths in the North Pacific detected by an ensemble of ocean syntheses

    NASA Astrophysics Data System (ADS)

    Toyoda, Takahiro; Fujii, Yosuke; Kuragano, Tsurane; Kosugi, Naohiro; Sasano, Daisuke; Kamachi, Masafumi; Ishikawa, Yoichi; Masuda, Shuhei; Sato, Kanako; Awaji, Toshiyuki; Hernandez, Fabrice; Ferry, Nicolas; Guinehut, Stéphanie; Martin, Matthew; Andrew Peterson, K.; Good, Simon A.; Valdivieso, Maria; Haines, Keith; Storto, Andrea; Masina, Simona; Köhl, Armin; Yin, Yonghong; Shi, Li; Alves, Oscar; Smith, Gregory; Chang, You-Soon; Vernieres, Guillaume; Wang, Xiaochun; Forget, Gael; Heimbach, Patrick; Wang, Ou; Fukumori, Ichiro; Lee, Tong; Zuo, Hao; Balmaseda, Magdalena

    2017-08-01

    The interannual-decadal variability of the wintertime mixed layer depths (MLDs) over the North Pacific is investigated from an empirical orthogonal function (EOF) analysis of an ensemble of global ocean reanalyses. The first leading EOF mode represents the interannual MLD anomalies centered in the eastern part of the central mode water formation region in phase opposition with those in the eastern subtropics and the central Alaskan Gyre. This first EOF mode is highly correlated with the Pacific decadal oscillation index on both the interannual and decadal time scales. The second leading EOF mode represents the MLD variability in the subtropical mode water (STMW) formation region and has a good correlation with the wintertime West Pacific (WP) index with time lag of 3 years, suggesting the importance of the oceanic dynamical response to the change in the surface wind field associated with the meridional shifts of the Aleutian Low. The above MLD variabilities are in basic agreement with previous observational and modeling findings. Moreover the reanalysis ensemble provides uncertainty estimates. The interannual MLD anomalies in the first and second EOF modes are consistently represented by the individual reanalyses and the amplitudes of the variabilities generally exceed the ensemble spread of the reanalyses. Besides, the resulting MLD variability indices, spanning the 1948-2012 period, should be helpful for characterizing the North Pacific climate variability. In particular, a 6-year oscillation including the WP teleconnection pattern in the atmosphere and the oceanic MLD variability in the STMW formation region is first detected.

  2. The change features of the west boundary bifurcation line of the North Equatorial Current in the Pacific

    NASA Astrophysics Data System (ADS)

    Guo, Junru; Liu, Yulong; Song, Jun; Bao, Xianwen; Li, Yan; Chen, Shaoyang; Yang, Jinkun

    2015-12-01

    The equatorial Current in the North Pacific (NEC) is an upper layer westward ocean current, which flows to the west boundary of the ocean, east of the Philippines, and bifurcates into the northerly Kuroshio and the main body of the southerly Mindanao current. Thus, NEC is both the south branch of the Subtropical Circulation and the north branch of the Tropical Circulation. The junction of the two branches extends to the west boundary to connect the bifurcation points forming the bifurcation line. The position of the North Pacific Equatorial Current bifurcation line of the surface determines the exchange between and the distribution of subtropical and tropical circulations, thus affecting the local or global climate. A new identification method to track the line and the bifurcation channel was used in this study, focusing on the climatological characteristics of the western boundary of the North Equatorial Current bifurcation line. The long-term average NEC west boundary bifurcation line shifts northwards with depth. In terms of seasonal variation, the average position of the western boundary of the bifurcation line is southernmost in June and northernmost in December, while in terms of interannual variation, from spring to winter in the years when ENSO is developing, the position of the west boundary bifurcation line of NEC is relatively to the north (south) in EI Niño (La Niña) years as compared to normal years.

  3. The influence of north Pacific atmospheric circulation on streamflow in the west

    USGS Publications Warehouse

    Cayan, Daniel R.; Peterson, David H.

    1989-01-01

    Pacific). This index, beginning in 1899, is taken to be the average of the SLP anomaly south of the Aleutians and the western Gulf of Alaska. Correlations between PNA or CNP and regional anomalies reflect streamflow the alternations in strength and position of the mean North Pacific storm track entering North America as well as shifts in the trade winds over the subtropical North Pacific. Regions whose streamflow is best tuned to the PNA or CNP include coastal Alaska, the northwestern United States, and Hawaii; the latter two regions have the opposite sign anomaly as the former. The pattern of streamflow variations associated with El Niño is similar, but the El Niño signal also includes a tendency for greater than normal streamflow in the southwestern United States. These indices are significantly correlated with streamflow at one to two seasons in advance of the December–August period, which may allow modestly skillful forecasts. It is important to note that streamflow variability in some areas, such as British Columbia and California, does not respond consistently to these broad scale Pacific atmospheric circulation indices, but is related to regional atmospheric anomaly features over the eastern North Pacific. Spatially, streamflow anomalies are fairly well correlated over scales of several hundred kilometers. Inspection of the spatial anomalies of stream-flow in this study suggest an asymmetry in the spatial pattern of positive versus negative streamflow anomalies in the western United States: dry patterns have tended to be larger and more spatially coherent than wet patterns.

  4. A reassessment of the integrated impact of tropical cyclones on surface chlorophyll in the western subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, L. Ruby

    2015-02-01

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998-2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally averaged (June-November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  5. A Reassessment of the Integrated Impact of Tropical Cyclones on Surface Chlorophyll in the Western Subtropical North Atlantic

    SciTech Connect

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    2015-02-28

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  6. Estimate of radiocaesium derived FNPP1 accident in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Inomata, Yayoi; Aoyama, Michio; Tsubono, Takaki; Tsumune, Daisuke; Yamada, Masatoshi

    2017-04-01

    134Cs and 137Cs (radiocaesium) were released to the North Pacific Ocean by direct discharge and atmospheric deposition released from the TEPCO Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident in 2011. After the FNPP1 accident, measurements of 134Cs and 137Cs were conducted by many researches. However, those results are only snapshots in order to interpret the distribution and transport of the released radiocaesium on a basin scale. It is recognized that estimation of the total amount of released 134Cs and 137Cs is necessary to assess the radioecological impacts of their release on the environment. It was reported that the inventory of 134Cs or 137Cs on the North Pacific Ocean after the FNPP1 accident was 15.2-18.3 PBq based on the observations (Aoyama et al., 2016a), 15.3±1.6 PBq by OI analysis (Inomata et al., 2016), 16.1±1.64 PBq by global ocean model (Tsubono et al., 2016). These suggest that more than 75 % of the atmospheric-released radiocaesium (15.2-20.4 PBq; Aoyama et al., 2016a) were deposited on the North Pacific Ocean. The radiocaesium from the atmospheric fallout and direct discharge were expected to mixing as well as diluting near the coastal region and transported eastward across the North Pacific Ocean in the surface layer. Furthermore, radicaesium were rapidly mixed and penetrated into the subsurface water in the North Pacific Ocean in winter. It was revealed that these radiocaesium existed in the Subtropical Mode Water (STMW, Aoyama et al., 2016b; Kaeriyama et al., 2016) and Central Mode Water (CMW, Aoyama et al., 2016b), suggesting that mode water formation and subduction are efficient pathway for the transport of FNPP1 derived radiocaesium into the ocean interior within 1-year timescale. Kaeriyama et al. (2016) estimated the total amount of FNPP1 derived radiocaesium in the STMW was 4.2 ± 1.1 PBq in October-November 2012. However, there is no estimation of the amount of radiocaesium in the CMW. Therefore, it is impossible to discuss

  7. Mean structure of the North Atlantic subtropical pycnocline from in-situ observations

    NASA Astrophysics Data System (ADS)

    Feucher, C.; Maze, G.; Mercier, H.

    2016-02-01

    In the north Atlantic subtropical gyre, the oceanic vertical structure of density is characterized by a region of rapid increase with depth. This layer is called the permanent pycnocline. The permanent pycnocline is found below a surface mode water, which is ventilated every winter when penetrated locally by the mixed layer.Assessing the structure and variability of the permanent pycnocline is of a major interest in the understanding of the climate system because the pycnocline layer delimits important heat and anthropogenic reservoir. Moreover, the heat content structure translates into changes in the large scale stratification feature, such as the permanent pycnocline.We developed a new Objective Algorithm for the Characterization of the large scale structure of the permanent Pycnocline (OAC-P). Argo data have been used with OAC-P to provide a detailed description of the mean structure of the North-Atlantic subtropical pycnocline (e.g.: depth, thickness, temperature, salinity, density, potential vorticity). Results reveal a surprisingly complex structure with inhomogeneous properties. While the classical bowl shape of the pycnocline depth is captured, much more complex pycnocline structure emerges at the regional scale. In the southern recirculation gyre of the Gulf Stream Extension, the pycnocline is deep, thick, the maximum of stratification is found in the middle on the layer and follow an isopycnal surface. But local processes influence and modify this textbook description and the pycnocline is characterized by a vertically asymmetric structure and gradients in thermohaline properties. T/S distribution along the permanent pycnocline depth is complex and reveals a diversity of water masses resulting from mixing of different source waters.We will present the observed mean structure of the North-Atlantic subtropical permanent pycnocline and relate it to physical processes that constraint it.

  8. Physical drivers of interannual chlorophyll variability in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Pastor, M. V.; Palter, J. B.; Pelegrí, J. L.; Dunne, J. P.

    2013-08-01

    Interannual chlorophyll variability and its driving mechanisms are evaluated in the eastern subtropical North Atlantic, where elevated surface chlorophyll concentrations regularly extend more than 1500 km into the central subtropical North Atlantic and modulate the areal extent of the North Atlantic's lowest chlorophyll waters. We first characterize the considerable interannual variability in the size of the high chlorophyll region using SeaWiFS satellite data. We then evaluate the relationship between satellite chlorophyll and sea surface height (SSH), which are anticorrelated in the study region, most likely as a result of the inverse relationship between SSH and nutricline depth. To put these results in a longer temporal context, we study a hindcast simulation of a global ocean model with biogeochemistry (GFDL's MOM4.1 with TOPAZ biogeochemistry), after evaluating the model's skill at simulating chlorophyll and SSH relative to observations. In the simulation, the variability seen during the satellite era appears to be imbedded in a much larger multidecadal modulation. The drivers of such variability are assessed by evaluating all the terms in the nutrient budget of the euphotic zone. Because diffusive processes are not a dominant control on nutrient supply, stratification is not a good indicator of nutrient supply. Rather, vertical advection of nutrients, strongly tied to Ekman pumping, is the leading driver of variability in the size of the high chlorophyll region and the productivity within the study area.

  9. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific.

    PubMed

    Tan, Sai-Chun; Yao, Xiaohong; Gao, Hui-Wang; Shi, Guang-Yu; Yue, Xu

    2013-01-01

    A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54-0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.

  10. Variability in the Correlation between Asian Dust Storms and Chlorophyll a Concentration from the North to Equatorial Pacific

    PubMed Central

    Tan, Sai-Chun; Yao, Xiaohong; Gao, Hui-Wang; Shi, Guang-Yu; Yue, Xu

    2013-01-01

    A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997–2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the <50 m China seas because atmospheric deposition is commonly believed to exert less impact on coastal seas. Significant correlations existed between dust sources and many sea areas, suggesting a link between dust and chlorophyll a concentration in those seas. However, the correlation coefficients were highly variable. In general, the correlation coefficients (0.54–0.63) for the Sea of Japan were highest, except for that between the subarctic Pacific and the Taklimakan Desert, where it was as high as 0.7. For the >50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32–0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36). These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas. PMID:23460892

  11. Changes in atmospheric rivers and moisture transport over the Northeast Pacific and western North America in response to ENSO diversity

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Mi; Zhou, Yang; Alexander, Michael A.

    2017-03-01

    The year-to-year changes in atmospheric rivers (ARs) and moisture transport over the northeast Pacific and western North America are investigated during December to February (DJF) from 1979/80 to 2015/16. Changes in AR frequency, intensity, and landfall characteristics are compared between three ENSO phases: central Pacific El Niño (CPEN), eastern Pacific El Niño (EPEN), and La Niña (NINA). During EPEN events, the subtropical jet extends to the south and east with an anomalous cyclonic flow around a deeper Aleutian Low. More moisture is transported towards North America and AR frequency is increased over western North America. In CPEN events, the Aleutian low shifts further southward relative to its position in EPEN, resulting in an increase in the frequency and intensity of landfalling ARs over the southwestern US. In NINA events, the landfalling AR frequency is reduced associated with anomalous anticyclonic circulation over the eastern North Pacific. We diagnose the contribution of multiple factors to the seasonal mean moisture transport using moisture budgets. During the three ENSO phases, the change in low-frequency circulation (dynamical process) is the leading contributor to the seasonal mean moisture flux divergence, while the contributions of the synoptic anomalies and the change in moisture anomaly (thermodynamic process) are not significant along the west coast of North America.

  12. Upper-tropospheric precursors associated with subtropical cyclone formation in the North Atlantic basin

    NASA Astrophysics Data System (ADS)

    Bentley, Alicia M.

    Oceanic cyclones exhibiting properties of both tropical and extratropical systems have been categorized as subtropical cyclones (STCs) since the early 1950s. The opportunity to investigate the roles of baroclinic and diabatic processes during the evolution of STCs from a potential vorticity (PV) perspective motivates this study. This study investigates the roles of baroclinic and diabatic processes during the evolution of STCs by calculating three PV metrics from the National Centers for Environmental Prediction Climate Forecast System Reanalysis 0.5° gridded dataset. The three PV metrics quantify the relative contributions of lower-tropospheric baroclinic processes, midtropospheric diabatic heating, and upper-tropospheric dynamical processes during the evolution of individual cyclones. Quantification of these three contributions reveals the changing PV structure of an individual cyclone, indicates fluctuations in the dominant energy source of the cyclone, and aids in categorizing the cyclone. A cyclone-relative composite analysis performed on subjectively constructed clusters of North Atlantic STCs identified from a 1979--2010 climatology is presented to document the structure, motion, and evolution of upper-tropospheric features linked to STC formation. The STCs included in the climatology are separated into five clusters representing the most common upper-tropospheric features linked to STC formation: PV Streamers, Cutoffs, Midlatitude Troughs, Subtropical Disturbances, and PV Debris. STCs forming in association with PV streamers and cutoffs have a well-defined midlatitude connection, developing near a region of upper-tropospheric PV injected into the subtropics during an upstream anticyclonic wave breaking (AWB) event. STCs forming in association with midlatitude troughs also have a well-defined midlatitude connection, but are not associated with an upstream AWB event. In contrast, STCs forming in association with subtropical disturbances do not have a well

  13. Albatross species demonstrate regional differences in North Pacific marine contamination.

    PubMed

    Finkelstein, Myra; Keitt, Bradford S; Croll, Donald A; Tershy, Bernie; Jarman, Walter M; Rodriguez-Pastor, Sue; Anderson, David J; Sievert, Paul R; Smith, Donald R

    2006-04-01

    Recent concern about negative effects on human health from elevated organochlorine and mercury concentrations in marine foods has highlighted the need to understand temporal and spatial patterns of marine pollution. Seabirds, long-lived pelagic predators with wide foraging ranges, can be used as indicators of regional contaminant patterns across large temporal and spatial scales. Here we evaluate contaminant levels, carbon and nitrogen stable isotope ratios, and satellite telemetry data from two sympatrically breeding North Pacific albatross species to demonstrate that (1) organochlorine and mercury contaminant levels are significantly higher in the California Current compared to levels in the high-latitude North Pacific and (2) levels of organochlorine contaminants in the North Pacific are increasing over time. Black-footed Albatrosses (Phoebastria nigripes) had 370-460% higher organochlorine (polychlorinated biphenyls [PCBs], dichlorodiphenyltrichloroethanes [DDTs]) and mercury body burdens than a closely related species, the Laysan Albatross (P. immutabilis), primarily due to regional segregation of their North Pacific foraging areas. PCBs (the sum of the individual PCB congeners analyzed) and DDE concentrations in both albatross species were 130-360% higher than concentrations measured a decade ago. Our results demonstrate dramatically high and increasing contaminant concentrations in the eastern North Pacific Ocean, a finding relevant to other marine predators, including humans.

  14. Tropical Cyclogenesis in the Western North Pacific.

    NASA Astrophysics Data System (ADS)

    Zehr, Raymond Milton

    Tropical cyclogenesis in the western North Pacific is characterized by an early convective maximum which precedes the initial appearance of a tropical depression. The convection is quantified from cloud areas specified by cold infrared temperature thresholds with 3-hourly GMS satellite data. It is hypothesized that this convective maximum represents an important process associated with tropical cyclogenesis and is a response to large-scale (synoptic-scale) forcing. A conceptual model is described in which the early convective maximum is viewed as a necessary but not sufficient condition for tropical cyclone formation. An important change in the wind field takes place in response to the convective maximum. A weak mesoscale vortex is initiated and is located within the larger broad-scale cyclonic circulation of the pre-existing tropical disturbance. However, the first substantial decrease in central sea-level pressure and resultant increase in surface wind speed occur at a later stage of tropical cyclogenesis. Typically, the early convective maximum and associated mesoscale vortex formation precede first designation as a tropical storm by 2-3 days. The 850 mb and 200 mb objective analyses of conventional data are used to classify different synoptic-scale patterns associated with the formation of fifty individual tropical storms and typhoons during 1983-1984. Animated satellite imagery and aircraft reconnaissance data provide observations of deep convection and low-level winds for more detailed analysis. Twenty-four non-developing tropical disturbances which persisted for at least two days in the climatologically favorable genesis region are also investigated. Quantitative IR satellite analysis and 850 mb and 200 mb objective analyses of relative vorticity, divergence, and vertical wind shear allow comparisons among individual non-developing and developing disturbances. Small vertical wind shear, sufficient low -level convergence, and sufficient low-level relative

  15. What Maintains the Central North Pacific Genetic Discontinuity in Pacific Herring?

    PubMed Central

    Liu, Ming; Lin, Longshan; Gao, Tianxiang; Yanagimoto, Takashi; Sakurai, Yasunori; Grant, W. Stewart

    2012-01-01

    Pacific herring show an abrupt genetic discontinuity in the central North Pacific that represents secondary contact between refuge populations previously isolated during Pleistocene glaciations. Paradoxically, high levels of gene flow produce genetic homogeneity among ocean-type populations within each group. Here, we surveyed variability in mtDNA control-region sequences (463 bp) and nine microsatellite loci in Pacific herring from sites across the North Pacific to further explore the nature of the genetic discontinuity around the Alaska Peninsula. Consistent with previous studies, little divergence (ΦST  = 0.011) was detected between ocean-type populations of Pacific herring in the North West Pacific, except for a population in the Yellow Sea (ΦST  = 0.065). A moderate reduction in genetic diversity for both mtDNA and microsatellites in the Yellow Sea likely reflects founder effects during the last colonization of this sea. Reciprocal monophyly between divergent mtDNA lineages (ΦST  = 0.391) across the Alaska Peninsula defines the discontinuity across the North Pacific. However, microsatellites did not show a strong break, as eastern Bering Sea (EBS) herring were more closely related to NE Pacific than to NW Pacific herring. This discordance between mtDNA and microsatellites may be due to microsatellite allelic convergence or to sex-biased dispersal across the secondary contact zone. The sharp discontinuity between Pacific herring populations may be maintained by high-density blocking, competitive exclusion or hybrid inferiority. PMID:23300525

  16. Phytoplankton community structure and dynamics in the North Atlantic subtropical gyre

    NASA Astrophysics Data System (ADS)

    Cáceres, Carlos; Rivera, Antonella; González, Sonia; Anadón, Ricardo

    2017-02-01

    Phytoplankton fuel epipelagic ecosystems and affect global biogeochemical cycles. Nevertheless, there is still a lack of quantitative information about the factors that determine both phytoplankton community structure and dynamics, particularly in subtropical gyres. Here, we estimated size fractionated phytoplankton growth (μ) and microzooplankton grazing rates (m) along a transect in the subtropical North Atlantic, from the island of Hispaniola to the Iberian Peninsula, by conducting dilution experiments and fitting mixed models. We also examined the relationship between nutrient availability and the differences in both phytoplankton community structure and size fractionated phytoplankton growth rates at two spatial scales (i.e. subtropical gyre and within-province spatial scale). Our results revealed high values for both phytoplankton growth and microzooplankton grazing rates. Phytoplankton growth (0.00-1.19 d-1) displayed higher variability among stations, biogeochemical provinces and size fractions than the microzooplankton grazing rate (0.32-0.74 d-1). Differences in phytoplankton community structure were associated with dissolved inorganic nitrogen (0.72-5.85 μM; R2 = 0.19) and squared Brunt-Väisälä frequency (R2 = 0.21) at the whole gyre scale. Conversely, the differences in phytoplankton growth rate showed a weak relationship with those properties (R2 ⩽ 0.05) at that scale, but a stronger relationship at the within province scale (R2 ⩾ 0.07). These results support the idea that phytoplankton grow at high rates in oligotrophic subtropical gyres, this is likely due to the selection of phytoplankton groups with functional traits suited to exploit low nutrient availability. Thus, shedding new, multi-scale knowledge on the commonly misunderstood "ocean deserts".

  17. High-resolution migration history of the Subtropical High/Trade Wind system of the northeastern Pacific during the last 55 years: Implications for glacial atmospheric reorganization

    NASA Astrophysics Data System (ADS)

    Cheshire, Heather; Thurow, Juergen

    2013-06-01

    Guaymas Basin, Gulf of California, is a restricted basin located under the present-day wet/dry subtropical divide ( 27°N) and is ideally circumstanced for detecting variations in the North Pacific Subtropical High (NPSH)/Trade Wind system. Controlled by climate cell boundary displacement, NPSH midwinter location was the primary influence on timing and intensity of upwelling seasons in Guaymas Basin. Analysis of high-resolution X-ray fluoresence data and sediment fabric log from 75% laminated Core MD02-2517/2515, western Guaymas Basin, reveals systematic changes in NPSH behavior over the last 55 kyr BP. Southward displacement of the wet/dry subtropical divide controlled upwelling-related diatom productivity, while sea level and regional rainfall controlled terrigenous supply. The basin was oxic during the glacial, and preservation was ensured by high burial rate due to the increased deposition of terrigenous sediment. Sediment fabric style (number and/or thickness of laminae, plus color banding and homogeneous intervals) changes systematically through the core and gives insights into the number of seasons occurring in Guaymas Basin, and the occurrence and intensity of the upwelling season. Five millennial-scale low flux events with close timing to Heinrich events and ten decadal/centennial-scale low biogenic silica events occurring in the interval 33-16.5000 years Before Present (kyr BP) are interpreted as times of extreme aridity. At 16.5 kyr BP, a regime shift from terrigenous-dominated oxic to evenly balanced biogenic-terrigenous dysoxic conditions occurred. Although there was a further extreme arid event at 11.5 kyr BP, 16.5 kyr BP was essentially the beginning of the interglacial.

  18. Late Tectonic history of Beaufort Sea - North Pacific area

    SciTech Connect

    McWhae, J.R.H.

    1985-02-01

    The Kaltag fault (and its northern associated splay, the Rapid fault array) is the sheared suture between the Eurasian-Alaskan plate and the North American plate in the area between the Mackenzie Delta and the Alaskan Border. This condition has been maintained throughout considerable additional phases of faulting and folding from mid-Cretaceous to the present. Previously, the Alaskan plate had been the northwestern nose of the North America plate. The interplate suture was deflected to the north as the Canadian Shield was approached. The Kaltag fault continued northeastward 2000 km seaward of the Sverdrup rim, northwest of the Canadian Arctic Island, and north of Greenland. The driving force was directed from the southwest by the Eurasian plate after its collision in Early Cretaceous (Hauterivian) with the North American plate and the docking of north-moving exotic terranes from the Pacific. During the early Tertiary, perhaps in concert with the accretion of the Okhotsk block to the Asian plate north of Japan, the northern Pacific subduction zone jumped southward to the Aleutian Arc where it has persisted until today. A distance of 800 km separates the stable shelf of the Canadian craton, at the Alberta Foothills thrust belt, from the subduction zone off Vancouver Island. The foreland thrust belt and the accretion of exotic terranes in Mesozoic and Tertiary times extended the continental crust of the North American plate westward to the present active transform margin with the Pacific plate along the Queen Charlotte fault zone.

  19. Legacy and contemporary persistent organic pollutants in North Pacific albatross.

    PubMed

    Harwani, Suhash; Henry, Robert W; Rhee, Alexandra; Kappes, Michelle A; Croll, Donald A; Petreas, Myrto; Park, June-Soo

    2011-11-01

    Here we report the first measurements of polybrominated diphenyl ethers (PBDE 47, 99, and 153) alongside 11 organochlorine pesticides (OCPs) and 28 polychlorinated biphenyls (PCBs) in the plasma of albatross from breeding colonies distributed across a large spatial east-west gradient in the North Pacific Ocean. North Pacific albatross are wide-ranging, top-level consumers that forage in pelagic regions of the North Pacific Ocean, making them an ideal sentinel species for detection and distribution of marine contaminants. Our work on contaminant burdens in albatross tissue provides information on transport of persistent organic pollutants (POPs) to the remote North Pacific and serves as a proxy for regional environmental quality. We sampled black-footed (Phoebastria nigripes; n = 20) and Laysan albatross (P. immutabilis; n = 19) nesting on Tern Island, Hawaii, USA, and Laysan albatross (n = 16) nesting on Guadalupe Island, Mexico. Our results indicate that North Pacific albatross are highly exposed to both PCBs and OCPs, with levels ranging from 8.8 to 86.9 ng/ml wet weight and 7.4 to 162.3 ng/ml wet weight, respectively. A strong significant gradient exists between Laysan albatross breeding in the Eastern Pacific, having approximately 1.5-fold and 2.5-fold higher levels for PCBs and OCPs, respectively, compared to those from the Central Pacific. Interspecies levels of contaminants within the same breeding site also showed high variation, with Tern black-footed albatross having approximately threefold higher levels of both PCBs and OCPs than Tern Laysan albatross. Surprisingly, while PBDEs are known to travel long distances and bioaccumulate in wildlife of high trophic status, we detected these three PBDE congeners only at trace levels ranging from not detectable (ND) to 0.74 ng/ml wet weight in these albatross. Copyright © 2011 SETAC.

  20. Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño

    NASA Astrophysics Data System (ADS)

    Ding, Ruiqiang; Li, Jianping; Tseng, Yu-heng; Sun, Cheng; Zheng, Fei

    2017-08-01

    This study demonstrates the close connection between the north-south dipole pattern of sea level pressure anomalies over northeastern North America to the western tropical North Atlantic, referred to as the North American dipole (NAD), and the central Pacific (CP)-type El Niño a year later. In contrast to other ENSO precursors, such as the North Pacific Oscillation (NPO) and Pacific-North America (PNA) pattern, the NAD appears more closely related to the CP-type El Niño than to the eastern Pacific (EP)-type El Niño, indicating that the NAD may serve as a unique precursor for the CP El Niño. The wintertime NAD induces sea surface temperature anomalies in the northern tropical Atlantic (NTA), which subsequently play an important role in developing the CP El Niño-like pattern in the tropical Pacific over the course of the following year. It appears that the NAD influence on CP El Niño involves air-sea interaction over several major basins, including the subtropical/tropical Pacific and the NTA. Additional analysis indicates that the correlation of either the NAD index or the NPO index with the CP El Niño state a year later depends on the status of the other index. When the wintertime NAD index is of the opposite sign to the simultaneous NPO index, the correlation of the NAD or NPO index with the Niño4 index becomes much weaker.

  1. Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño

    NASA Astrophysics Data System (ADS)

    Ding, Ruiqiang; Li, Jianping; Tseng, Yu-heng; Sun, Cheng; Zheng, Fei

    2016-10-01

    This study demonstrates the close connection between the north-south dipole pattern of sea level pressure anomalies over northeastern North America to the western tropical North Atlantic, referred to as the North American dipole (NAD), and the central Pacific (CP)-type El Niño a year later. In contrast to other ENSO precursors, such as the North Pacific Oscillation (NPO) and Pacific-North America (PNA) pattern, the NAD appears more closely related to the CP-type El Niño than to the eastern Pacific (EP)-type El Niño, indicating that the NAD may serve as a unique precursor for the CP El Niño. The wintertime NAD induces sea surface temperature anomalies in the northern tropical Atlantic (NTA), which subsequently play an important role in developing the CP El Niño-like pattern in the tropical Pacific over the course of the following year. It appears that the NAD influence on CP El Niño involves air-sea interaction over several major basins, including the subtropical/tropical Pacific and the NTA. Additional analysis indicates that the correlation of either the NAD index or the NPO index with the CP El Niño state a year later depends on the status of the other index. When the wintertime NAD index is of the opposite sign to the simultaneous NPO index, the correlation of the NAD or NPO index with the Niño4 index becomes much weaker.

  2. Conservation of native Pacific trout diversity in western North America

    USGS Publications Warehouse

    Penaluna, Brooke E.; Abadía-Cardoso, Alicia; Dunham, Jason; García de León, Francisco J; Gresswell, Robert E.; Luna, Arturo Ruiz; Taylor, Eric B.; Shepard, Bradley B.; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Bestgen, Kevin R.; Rogers, Kevin H.; Escalante, Marco A; Keeley, Ernest R; Temple, Gabriel; Williams, Jack E.; Matthews, Kathleen; Pierce, Ron; Mayden, Richard L.; Kovach, Ryan; Garza, John Carlos; Fausch, Kurt D.

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review the state of knowledge on these important issues, focusing on Pacific trout in the genus Oncorhynchus. Although most research on salmonid fishes emphasizes Pacific salmon, we focus on Pacific trout because they share a common evolutionary history, and many taxa in western North America have not been formally described, particularly in the southern extent of their ranges. Research in recent decades has led to the revision of many hypotheses concerning the origin and diversification of Pacific trout throughout their range. Although there has been significant success at addressing past threats to Pacific trout, contemporary and future threats represented by nonnative species, land and water use activities, and climate change pose challenges and uncertainties. Ultimately, conservation of Pacific trout depends on how well these issues are understood and addressed, and on solutions that allow these species to coexist with a growing scope of human influences.

  3. Episodic Dust Passage and Phytoplankton Blooms in North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Chameides, W. L.; Nenes, A.

    2003-12-01

    Bioavailability of iron (Fe) has been hypothesized to play a key role in limiting phytoplankton productivity in much of the world's ocean, particularly in high-nitrate low-chlorophyll (HNLC) regions such as the subarctic North Pacific. The transport and deposition of mineral dust from arid and semi-arid continental regions is believed to be a major mechanism by which Fe is delivered to the surface waters of the remote ocean. This source of oceanic Fe is particularly vital for HNLC waters of subarctic North Pacific; therefore, it is an appropriate region for examining the effects of episodic dust deposition from the Asian continent on phytoplankton blooms. In this work, satellite imagery is used to identify specific mineral dust events from East Asia, track their trajectories across the Pacific Ocean and determine if the passage of these dust plumes across the North Pacific Ocean can be correlated with the occurrence of a chlorophyll a pulse. Lagrangian box model calculations are also used to estimate the likely input of bioavailable Fe to the surface waters of the North Pacific Ocean during these dust events.

  4. Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Li, Wenhong; Kushnir, Yochanan

    2012-09-01

    Variations of the North Atlantic subtropical high (NASH) western ridge and their implication to the Southeastern United States (SE US) summer precipitation were analyzed for the years 1948-2007. The results show that the movement of the NASH western ridge regulates both moisture transport and vertical motion over the SE US, especially in the last three decades, during which the ridge moved westward towards the American continent. When the NASH western ridge is located southwest (SW) of its mean climate position, excessive summer precipitation is observed due to an enhanced moisture transport. In contrast, when the western ridge is located in the northwest (NW), a precipitation deficit prevails as downward motion dominates the region. Composite analysis indicates that SW ridging results mainly from the NASH center's intensification; whereas NW ridging is likely caused by stationary wave propagation from the eastern Pacific/US western coast. In recent decades, both the SW and NW ridge positions have been observed to increase in frequency. Our results suggest that the increase in the SW ridging consistently follows the NASH's intensification associated with anthropogenic forcing as projected by coupled climate models. However, the increased frequency of NW ridging tends to follow the positive Pacific decadal oscillation (PDO) index. Thus, the enhanced variability in the SE US summer precipitation in recent decades might be a combined result of anthropogenic forcing and internal variability of the climate system. Results suggest that, as anthropogenic forcing continues to increase, the SE US will experience more frequent wet summers and an increase in the frequency of dry summers during positive PDO phases.

  5. Impact of the North Atlantic Subtropical High Variation on the Southeastern U.S. Summer Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, W.; Kushnir, Y.

    2011-12-01

    In recent decades, droughts/floods over the Southeast United States (SE US) are observed to intensify significantly. Our results suggested that the enhanced summer rainfall variability in the SE US was directly linked to the variations of the location and intensity of the North Atlantic Subtropical High (NASH). Specifically, the NASH has intensified and moved westward, and its western ridge has shown enhanced meridional movement on interannual timescales. In this study, variations of the NASH western ridge and its implication to SE U.S. summer precipitation were analyzed. The results show that the movement of the NASH western ridge regulates both moisture transport and vertical motion over the SE U.S., especially in the last three decades, during which the ridge moved westward towards the American continent. When the NASH western ridge is located southwest (SW) of its mean climate position, excessive summer precipitation is observed because of enhanced moisture transport. In contrast, when the western ridge is located northwest (NW), a precipitation deficit prevails as downward motion dominates the region. Composite analysis indicates that the SW ridging results mainly from the NASH center's intensification; whereas the NW ridging is likely caused by stationary wave propagation from the eastern Pacific/U.S. western coast. In recent decades, both the SW and NW ridges have been observed to increase in frequency. Our results suggest that the increase in the SW ridging consistently follows the NASH's intensification associated with global warming. In contrast, the increased frequency of NW ridging tends to follow the positive Pacific Decadal Oscillation (PDO) index. Thus, the enhanced variability of the SE U.S. summer precipitation in recent decades might be a combined result of global warming and the positive PDO. Results suggest that, as global warming continues, the SE U.S. will experience more frequent wet summers and an increase in the frequency of dry summers

  6. On the South Pacific subtropical overturning cell in October/November 1999 and comparison with a climatology.

    NASA Astrophysics Data System (ADS)

    Ioualalen, M.; Lukas, R.; Gouriou, Y.; Eldin, G.

    2003-12-01

    Two sections, 165° E and 180° , and along the equator in between, were sampled during WESPALIS 1 cruise in Oct./Nov. 1999. The high salinity tongue of the South Pacific subtropical overturning cell (STC) is described. In particular the pathways of the circulation are exhibited. Then a comparison with a 10-year climatology is performed and the deviations from the climatology are described in terms of heat content exchange between the upper ocean surface layers. It is shown that the heat exchange between the STC and the equatorial mixed layer is more intense during Warm events of ENSO.

  7. Low-Frequency Ocean Bottom Pressure Variations in the North Pacific in Response to Time-Variable Surface Winds

    NASA Astrophysics Data System (ADS)

    Dobslaw, H.; Petrick, C.; Bergmann-Wolf, I.; Matthes, K. B.; Thomas, M.

    2014-12-01

    One decade of time-variable gravity field observations from the GRACE satellite mission reveals low-frequency ocean bottom pressure (OBP) variability of up to 2.5 hPa centered at the northern flank of the subtropical gyre in the North Pacific. From a 145 year-long simulation with a coupled chemistry climate model, OBP variability is found to be related to the prevailing atmospheric sea-level pressure and surface wind conditions in the larger North Pacific area. The dominating atmospheric pressure patterns obtained from the climate model run allow in combination with ERA-Interim sea-level pressure and surface winds a reconstruction of the OBP variability in the North Pacific from atmospheric model data only, which correlates favourably (r=0.7) with GRACE ocean bottom pressure observations. The regression results indicate that GRACE-based OBP observations are indeed sensitive to changes in the prevailing sea-level pressure and thus surface wind conditions in the North Pacific, thereby opening opportunities to constrain atmospheric models from satellite gravity observations over the oceans.

  8. Insight into the Pacific Sea Surface Temperature- North American Hydroclimate Connection from an Eastern Tropical North Pacific Coral Record

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Charles, C. D.; Carriquiry, J. D.

    2015-12-01

    The last few years of record-breaking climate anomalies across North America--a resilient atmospheric ridge and extreme drought over the West Coast, and severe winters across the Midwest and East Coast regions--have been linked to anomalous Pacific sea surface temperatures (Seager et al. 2014, Wang et al. 2014, Hartmann 2015). The synoptic associations prompt important questions on the relation between these unusual phenomena and extreme expressions of known Pacific decadal modes, such as the North Pacific Gyre Oscillation (NPGO). These questions motivate our pursuit to document multiple realizations of decadal variability in the Pacific-North American region through periods of varied radiative forcing. Here we introduce a 178 year, seasonally resolved Porites coral record from Clarion Island (18N, 115W), the westernmost island of the Revillagigedo Archipelago, a region both highly influenced by NPGO SST and SSS variability and critical for NPGO tropical-extratropical communication via the Seasonal Footprinting Mechanism (Vimont et al. 2003). When coupled with tree ring records from the western United States (Griffin and Anchukaitis 2014, MacDonald and Case 2005) and coral records from the central tropical Pacific (Cobb et al. 2001), the δ18O signal from the Clarion coral offers an extended framework of coherent continental hydroclimate and oceanic variability across the Pacific basin beyond the instrumental record. Over the last 200 years, we find clear commonality in the timing, magnitude and spatial expression of variability (illustrated through the NADA Atlas, Cook et al. 2004) amongst the proxy records. The strong relationship between Northeastern Pacific Clarion and the Central Pacific Palmyra record with the North American hydroclimate records can be viewed within the mechanistic framework of the NPGO; this framework is then explored over the last millennium across intervals of varied radiative forcing.

  9. Insight into the Pacific Sea Surface Temperature- North American Hydroclimate Connection from an Eastern Tropical North Pacific Coral Record

    NASA Astrophysics Data System (ADS)

    Svendsen, J. I.; Briner, J. P.; Mangerud, J.; Hughes, A. L. C.; Young, N. E.; Vasskog, K.

    2014-12-01

    The last few years of record-breaking climate anomalies across North America--a resilient atmospheric ridge and extreme drought over the West Coast, and severe winters across the Midwest and East Coast regions--have been linked to anomalous Pacific sea surface temperatures (Seager et al. 2014, Wang et al. 2014, Hartmann 2015). The synoptic associations prompt important questions on the relation between these unusual phenomena and extreme expressions of known Pacific decadal modes, such as the North Pacific Gyre Oscillation (NPGO). These questions motivate our pursuit to document multiple realizations of decadal variability in the Pacific-North American region through periods of varied radiative forcing. Here we introduce a 178 year, seasonally resolved Porites coral record from Clarion Island (18N, 115W), the westernmost island of the Revillagigedo Archipelago, a region both highly influenced by NPGO SST and SSS variability and critical for NPGO tropical-extratropical communication via the Seasonal Footprinting Mechanism (Vimont et al. 2003). When coupled with tree ring records from the western United States (Griffin and Anchukaitis 2014, MacDonald and Case 2005) and coral records from the central tropical Pacific (Cobb et al. 2001), the δ18O signal from the Clarion coral offers an extended framework of coherent continental hydroclimate and oceanic variability across the Pacific basin beyond the instrumental record. Over the last 200 years, we find clear commonality in the timing, magnitude and spatial expression of variability (illustrated through the NADA Atlas, Cook et al. 2004) amongst the proxy records. The strong relationship between Northeastern Pacific Clarion and the Central Pacific Palmyra record with the North American hydroclimate records can be viewed within the mechanistic framework of the NPGO; this framework is then explored over the last millennium across intervals of varied radiative forcing.

  10. Albatross species demonstrate regional differences in North Pacific marine contamination

    USGS Publications Warehouse

    Finkelstein, M.; Keitt, B.S.; Croll, D.A.; Tershy, B.; Jarman, Walter M.; Rodriguez-Pastor, S.; Anderson, D.J.; Sievert, P.R.; Smith, D.R.

    2006-01-01

    Recent concern about negative effects on human health from elevated organochlorine and mercury concentrations in marine foods has highlighted the need to understand temporal and spatial patterns of marine pollution. Seabirds, long-lived pelagic predators with wide foraging ranges, can be used as indicators of regional contaminant patterns across large temporal and spatial scales. Here we evaluate contaminant levels, carbon and nitrogen stable isotope ratios, and satellite telemetry data from two sympatrically breeding North Pacific albatross species to demonstrate that (1) organochlorine and mercury contaminant levels are significantly higher in the California Current compared to levels in the high-latitude North Pacific and (2) levels of organochlorine contaminants in the North Paci.c are increasing over time. Black-footed Albatrosses (Phoebastria nigripes) had 370-460% higher organochlorine (polychlorinated biphenyls [PCBs], dichlorodiphenyltrichloroethanes [DDTs]) and mercury body burdens than a closely related species, the Laysan Albatross (P. immutabilis), primarily due to regional segregation of their North Pacific foraging areas. PCBs (the sum of the individual PCB congeners analyzed) and DDE concentrations in both albatross species were 130-360% higher than concentrations measured a decade ago. Our results demonstrate dramatically high and increasing contaminant concentrations in the eastern North Pacific Ocean, a finding relevant to other marine predators, including humans. ?? 2006 by the Ecological Society of America.

  11. Improved estimates of the dynamical state of the North Pacific Ocean from a 4 dimensional variational data assimilation

    NASA Astrophysics Data System (ADS)

    Masuda, Shuhei; Awaji, Toshiyuki; Sugiura, Nozomi; Ishikawa, Yoichi; Baba, Kinji; Horiuchi, Kazutoshi; Komori, Nobumasa

    2003-08-01

    A 4-dimensional variational data assimilation system has been used to better define the mean seasonal state of the North Pacific. The synthesis of available observational records and a sophisticated general circulation model produces a dynamically consistent time-varying dataset which exhibits realistic features of the global ocean circulation and requires no artificial sources or sinks for the temperature and salinity fields. The dataset enables us to clarify the water mass formation and movement processes. A sensitivity experiment using our system reveals that the origin of the North Pacific Intermediate Water can be traced back to the Okhotsk and Bering Seas in the subarctic region and to the subtropical Kuroshio region further south, consistent with recent observational findings. This result illustrates that the ocean state derived from our data assimilation has greater information and forecast potential than that obtained from earlier methods.

  12. Composite and case study analyses of the large-scale environments associated with West Pacific Polar and subtropical vertical jet superposition events

    NASA Astrophysics Data System (ADS)

    Handlos, Zachary J.

    Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific

  13. Processes Controlling Air-Sea Exchange of CO2 in a Subtropical Pacific Estuary

    NASA Astrophysics Data System (ADS)

    Fagan, K. E.; MacKenzie, F. T.; Andersson, A. J.

    2004-12-01

    In contrast to the open ocean, shallow-water coastal ocean air-sea CO2 exchange has been given relatively little attention. Available data suggest that continental shelves may act as sinks for atmospheric CO2 while estuaries, coral reefs, and upwelling regions, in general may act as sources. However, all data do not comply with these general trends and the data available are geographically relatively scarce and short in duration. Consequently, at the time, it is not possible to unequivocally conclude whether the global shallow-water ocean acts as a source or a sink of atmospheric CO2. The present study represents the first evaluation of air-sea CO2 exchange for a subtropical high island of the Pacific. Kaneohe Bay, located on the eastern side of Oahu, Hawaii, is a complex estuarine system with a large barrier coral reef, numerous patch reefs, and several riverine inputs. Since Sep 2003 surface water has been collected bimonthly throughout the bay for total alkalinity (TA) and dissolved inorganic carbon (DIC) analysis. The partial pressure of carbon dioxide (PCO2) is calculated using TA, DIC, and constants from Mehrbach et al. (1973), refit by Dickson and Millero (1987). For all data collected before Dec 2003, PCO2s were above the atmospheric level (375 uatm) for all sites throughout the bay (400 to 1300 uatm). The highest values occurred at sites within Kaneohe Stream. The lowest values, still above atmospheric concentration, occurred at sites outside the barrier reef, indicating that high surface water PCO2s extend beyond the boundaries of the bay. Two large storms occurred at the end of Nov 2003 and the end of Feb 2004 that dramatically reduced PCO2s to at or below the atmospheric partial pressure throughout the entire bay. This appears to be the result of increased river runoff adding excess nutrients to the bay that enhanced photosynthesis throughout the bay thereby drawing down surface water CO2. Despite the significant effects of the storms, average PCO2s for

  14. How the "best" CMIP5 models project relations of Asian-Pacific Oscillation to circulation backgrounds favorable for tropical cyclone genesis over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Zhou, Botao; Xu, Ying

    2017-02-01

    Based on the simulations of 32 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), the present study assesses their capacity to simulate the relationship of the summer Asian-Pacific Oscillation (APO) with the vertical zonal wind shear, low-level atmospheric vorticity, mid-level humidity, atmospheric divergence in the lower and upper troposphere, and western Pacific subtropical high (WPSH) that are closely associated with the genesis of tropical cyclones over the western North Pacific. The results indicate that five models can simultaneously reproduce the observed pattern with the positive APO phase accompanied by weak vertical zonal wind shear, strengthened vorticity in the lower troposphere, increased mid-level humidity, intensified low-level convergence and high-level divergence, and a northward-located WPSH over the western North Pacific. These five models are further used to project their potential relationship under the RCP8.5 scenario during 2050-2099. Compared to 1950-1999, the relationship between the APO and the vertical zonal wind shear is projected to weaken by both the multi-model ensemble and the individual models. Its linkage to the low-level vorticity, mid-level humidity, atmospheric divergence in the lower and upper troposphere, and the northward-southward movement of the WPSH would also reduce slightly but still be significant. However, the individual models show relatively large differences in projecting the linkage between the APO and the mid-level humidity and low-level divergence.

  15. Vertical and horizontal eddy diffusivities and oxygen dissipation rate in the subtropical Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Kawabe, Masaki

    2008-03-01

    A method to estimate vertical and horizontal eddy diffusivities KV and KH was devised with the steady conservation equations of potential temperature and salinity on an isopycnal surface, which approximates a neutral surface. Using this method, which presents the advantage of not having to estimate vertical velocity, the diffusivities at A0 (33°N), B0 (29°N), C0 (25°N), and D0 (21°N) along 165°E in the subtropical Northwest Pacific were estimated with conductivity-temperature-depth profiler (CTD) data. The values of KV at A0 and B0 are characterized by marked vertical changes with the maximum at a depth of 2000-2500 m; they are approximately 0.3 cm 2 s -1 at depths of several hundred meters, increase to 1.1-1.2 at 2000 and 2500 m, and decrease to 0.03 and less than approximately 0.1 at depths greater than 4000 m. The decrease of KV with increasing depth was noted in the deep layer at C0. On the other hand, KV is relatively constant at 0.97-1.1 cm 2 s -1 in the intermediate layer at C0 and is approximately 1.1 at full depth at D0. The large KV at D0 is probably due to the generation and reflection of internal gravity waves at the Mid-Pacific Seamounts. The vertical changes indicate that KV depends on the Brunt-Väisälä frequency N, and this dependence on N shows the characteristics of wave field that causes turbulence. The value of KV in the intermediate layer (typically 500-2000 m) is proportional to N-1.0 at A0 and B0 because of internal gravity waves that are in a narrow band with nearly a single frequency. The intermediate-layer KV at C0 and the full-depth KV at D0 are little dependent on N because of internal gravity waves that are in a multi-wave field described by the Garrett-Munk spectrum. The value of KV in the deep layer (2250-4000 m) at A0, B0, and C0 is proportional to nearly N4.1 because of internal Rossby waves. The difference in waves causing turbulence between the intermediate and deep layers may produce the difference in the N-dependence of

  16. Distribution and sources of dissolved black carbon in surface waters of the Chukchi Sea, Bering Sea, and the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nakane, Motohiro; Ajioka, Taku; Yamashita, Youhei

    2017-05-01

    Pyrogenic carbon, also called black carbon (BC), is an important component in the global carbon cycle. BC produced by biomass burning or fossil fuel combustion is transported to oceans by the atmosphere or rivers. However, environmental dynamics (i.e., major sources and sinks) of BC in marine environments have not been well documented. In this study, dissolved BC (DBC) collected from surface waters of the Chukchi Sea, the Bering Sea, and the subarctic and subtropical North Pacific were analyzed using the benzene polycarboxylic acid (BPCA) method. The DBC concentration and the ratio of B5CA and B6CA to all BPCAs (an index of the DBC condensation degree) ranged from 4.8 to 15.5 µg-C L-1 and from 0.20 to 0.43, respectively, in surface waters of the Chukchi/Bering Seas and the North Pacific Ocean. The concentration and condensation degree of DBC in the Chukchi/Bering Seas were higher and more variable than those in the subarctic and subtropical North Pacific, which implies that the major factors controlling DBC distribution were different in these marine provinces. In the Chukchi/Bering Seas, the DBC concentration was negatively correlated to salinity but positively correlated to chromophoric dissolved organic matter (CDOM) quantity and total dissolved lignin phenol concentration estimated by CDOM parameters. These correlations indicated that the possible major source of DBC in the Chukchi/Bering Seas was Arctic rivers. However, in the North Pacific, where riverine inputs are negligible for most sampling sites, DBC was possibly derived from the atmosphere. Although spectral slopes of CDOM at 275-295 nm (an index of the photodegradation degree of CDOM) differed widely between the subarctic and subtropical North Pacific, the concentration and condensation degrees of DBC were similar between the subarctic and subtropical North Pacific, which suggests that photodegradation was not the only major factor controlling DBC distribution. Therefore, DBC distributions of the

  17. Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific

    NASA Astrophysics Data System (ADS)

    Cronin, M. F.; Pelland, N.; Emerson, S. R.; Crawford, W. R.

    2015-12-01

    Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20-m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1×10-4 m2/s during summer, increasing to ~3×10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivity are found based upon the mixed layer heat budget: ~ 3×10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.

  18. Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific

    NASA Astrophysics Data System (ADS)

    Cronin, Meghan F.; Pelland, Noel A.; Emerson, Steven R.; Crawford, William R.

    2015-11-01

    Data from two National Oceanographic and Atmospheric Administration (NOAA) surface moorings in the North Pacific, in combination with data from satellite, Argo floats and glider (when available), are used to evaluate the residual diffusive flux of heat across the base of the mixed layer from the surface mixed layer heat budget. The diffusion coefficient (i.e., diffusivity) is then computed by dividing the diffusive flux by the temperature gradient in the 20 m transition layer just below the base of the mixed layer. At Station Papa in the NE Pacific subpolar gyre, this diffusivity is 1 × 10-4 m2/s during summer, increasing to ˜3 × 10-4 m2/s during fall. During late winter and early spring, diffusivity has large errors. At other times, diffusivity computed from the mixed layer salt budget at Papa correlate with those from the heat budget, giving confidence that the results are robust for all seasons except late winter-early spring and can be used for other tracers. In comparison, at the Kuroshio Extension Observatory (KEO) in the NW Pacific subtropical recirculation gyre, somewhat larger diffusivities are found based upon the mixed layer heat budget: ˜ 3 × 10-4 m2/s during the warm season and more than an order of magnitude larger during the winter, although again, wintertime errors are large. These larger values at KEO appear to be due to the increased turbulence associated with the summertime typhoons, and weaker wintertime stratification.

  19. Direct observations of formation and propagation of subpolar eddies into the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Hendry, Ross M.; Amrhein, Daniel E.; Lilly, Jonathan M.

    2013-01-01

    Subsurface float and moored observations are presented to show for the first time the formation and propagation of anticyclonic submesoscale coherent vortices that transport relatively cold, fresh subpolar water to the interior subtropical North Atlantic. Acoustically tracked RAFOS floats released in the southward-flowing Western Boundary Current at the exit of the Labrador Sea reveal the formation of three of these eddies at the southern tip of the Grand Banks (42°N, 50°W). Using a recently developed method to detect eddies in float trajectories and estimate their kinematic properties, it was found that the eddies had average rotation periods of 5-7 day at radii of 10-25 km, with mean rotation speeds of up to 0.3 m s-1. One especially long-lived (5.1 months) eddy crossed under the Gulf Stream path and translated southwestward in the subtropical recirculation to at least 35°N, where it hit one of the Corner Rise Seamounts. Velocity, temperature and salinity measurements from a nine-month deployment of two moorings south of the Gulf Stream at 38°N, 50°W reveal the passage of at least two eddies with similar hydrographic and kinematic properties. The core temperature and salinity properties of the eddies imply their formation at intermediate levels of the Labrador Current south of the Tail of the Grand Banks. These observations confirm earlier speculation that eddies form in this region and transport anomalously cold, low-salinity water directly into the subtropical interior. Possible formation mechanisms and potential importance of these eddies to interior ventilation and the equatorward spreading of Labrador Sea Water are discussed.

  20. 77 FR 35359 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... (Council) Golden King Crab Price Formula Committee is holding a meeting at the North Pacific Fishery... meeting concerning the arbitration system that is part of the Bering Sea and Aleutian Islands crab... golden king crab under the arbitration system. Additional information is posted on the Council Web site...

  1. Conservation of native Pacific trout diversity in Western North America

    Treesearch

    Brooke E. Penaluna; Alicia Abadía-Cardoso; Jason B. Dunham; Francisco J. García-Dé León; Robert E. Gresswell; Arturo Ruiz Luna; Eric B. Taylor; Bradley B. Shepard; Robert Al-Chokhachy; Clint C. Muhlfeld; Kevin R. Bestgen; Kevin Rogers; Marco A. Escalante; Ernest R. Keeley; Gabriel M. Temple; Jack E. Williams; Kathleen R. Matthews; Ron Pierce; Richard L. Mayden; Ryan P. Kovach; John Carlos Garza; Kurt D. Fausch

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review...

  2. 76 FR 10008 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE... Administration (NOAA), Commerce. ACTION: Notice of a public meeting. SUMMARY: The North Pacific Fishery..., as well as discuss development of a potential electronic monitoring system design for less than 60...

  3. 78 FR 27366 - North Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Hall, 101 Egan Drive, Juneau, AK. DATES: The Council will begin its plenary session at 8 a.m. on..., June 4, from 1 p.m. to 5 p.m. at the Goldbelt Hotel, 51 Egan Drive, Chilkat Room, Juneau, AK. All... Centennial Hall, 101 Egan Drive, Juneau, AK. Council address: North Pacific Fishery Management Council, 605...

  4. 78 FR 16660 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Administration (NOAA), Commerce. ACTION: Notice of public meetings. SUMMARY: The North Pacific Fishery Management...; receive an update on national electronic monitoring (EM) initiatives; and review an outline of the...

  5. 75 FR 20566 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... National Oceanic and Atmospheric Administration RIN 0648-XV88 North Pacific Fishery Management Council... Management Council's Gulf of Alaska (GOA) and Bering Sea/Aleutian Islands (BSAI) groundfish plan teams will meet via teleconference May 6, 2010, 12:30 p.m. Alaska Standard Time (AST) to review proposals for...

  6. 75 FR 1752 - North Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Council Ecosystem Committee. SUMMARY: The North Pacific Fishery Management Council (Council) Aleutian Islands Fishery Ecosystem Plan Team (AI Ecosystem Team) will meet in Seattle, WA, in the NMML conference room (room 2039), from 9 a.m. to 5 p.m., January 27-28, 2010. The Council's Ecosystem Committee will...

  7. Regional variations of heavy metal concentrations in tissues of barnacles from the subtropical Pacific Coast of Mexico

    SciTech Connect

    Paez-Osuna, F.; Bojorquez-Leyva, H.; Ruelas-Inzunza, J.

    1999-07-01

    Concentrations of Cd, Cu, Cr, Fe, Mn, Ni, Ag, Pb, and Zn in soft and hard tissues of barnacles from eight sampling sites in six harbors on the subtropical Pacific Coast of Mexico were determined by atomic absorption spectrophotometry. Some inter-regional differences in metal concentrations, especially concerning Zn, Mn, Fe, Cd, and Pb, were identified. The lowest concentrations of Cu, Cr, Fe, and Ag were observed in the barnacle populations from Ceuta Lagoon, an uncontaminated site with rural agriculture and semi-intensive shrimp farms in the surroundings. Conversely, the highest concentrations of: (1) Zn, Cu, and Ag were found in the soft tissues of Balanus eburneus from Mazatlan piers; (2) Pb, Ni, and Cd in the soft tissue of Megabalanus coccopoma from Puerto Vallarta; (3) Fe in the hard tissue of Balanus sp. from Guaymas Harbour; and (4) Mn in the hard tissue of M. coccopoma from Mazatlan Harbour. Inter-comparison of the present data indicates that the soft (mainly Cd, Cu, Pb, and Zn) and the hard (mainly for Fe and Mn) tissues are useful in detecting areas of selected metallic contaminants. Barnacles such as B. eburneus, M. coccopoma, and Fistulobalanus dentivarians appear to be convenient biomonitors for identification of coastal waters exposed to Cd, Pb, Cu, Zn, Ni, Mn, Fe, and Ag in the American region of the subtropical Pacific.

  8. Approach for estimating the dynamic physical thresholds of phytoplankton production and biomass in the tropical-subtropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Gómez-Ocampo, E.; Gaxiola-Castro, G.; Durazo, Reginaldo

    2017-06-01

    Threshold is defined as the point where small changes in an environmental driver produce large responses in the ecosystem. Generalized additive models (GAMs) were used to estimate the thresholds and contribution of key dynamic physical variables in terms of phytoplankton production and variations in biomass in the tropical-subtropical Pacific Ocean off Mexico. The statistical approach used here showed that thresholds were shallower for primary production than for phytoplankton biomass (pycnocline < 68 m and mixed layer < 30 m versus pycnocline < 45 m and mixed layer < 80 m) but were similar for absolute dynamic topography and Ekman pumping (ADT < 59 cm and EkP > 0 cm d-1 versus ADT < 60 cm and EkP > 4 cm d-1). The relatively high productivity on seasonal (spring) and interannual (La Niña 2008) scales was linked to low ADT (45-60 cm) and shallow pycnocline depth (9-68 m) and mixed layer (8-40 m). Statistical estimations from satellite data indicated that the contributions of ocean circulation to phytoplankton variability were 18% (for phytoplankton biomass) and 46% (for phytoplankton production). Although the statistical contribution of models constructed with in situ integrated chlorophyll a and primary production data was lower than the one obtained with satellite data (11%), the fits were better for the former, based on the residual distribution. The results reported here suggest that estimated thresholds may reliably explain the spatial-temporal variations of phytoplankton in the tropical-subtropical Pacific Ocean off the coast of Mexico.

  9. Eolian dust input to the Subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Serno, Sascha; Winckler, Gisela; Anderson, Robert F.; Hayes, Christopher T.; McGee, David; Machalett, Björn; Ren, Haojia; Straub, Susanne M.; Gersonde, Rainer; Haug, Gerald H.

    2014-02-01

    Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ∼4 μm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of

  10. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow: ER08AP08...

  11. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 57°03′ N/153°00′ W. (d) Maps of critical habitat for the North Pacific right whale follow: ER08AP08...

  12. 75 FR 68756 - Eastern North Pacific Gray Whale; Notice of Petition Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... 0648-XA018 Eastern North Pacific Gray Whale; Notice of Petition Availability AGENCY: National Marine... received a petition to designate the Eastern North Pacific population of gray whales (Eschrichtius robustus... Eastern North Pacific gray whales is available on the Internet at the following address:...

  13. Nimbus-7 total ozone observations of western North Pacific tropical cyclones

    NASA Technical Reports Server (NTRS)

    Stout, John; Rodgers, Edward B.

    1992-01-01

    The Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) was used to map the distribution of total ozone around western North Pacific tropical cyclones from 1979 to 1982. The strong correlation between total ozone distribution and tropopause height found in the subtropical and midlatitudes made it possible for TOMS to monitor the propagation of upper-tropospheric waves and the mutual adjustment between these waves and tropical cyclones during their interaction. Changes in these total ozone patterns reflect the 3D upper-tropospheric transport processes that are involved in tropical cyclone intensity and intensity and motion changes. The total ozone distributions indicate that: (1) the mean upper-tropospheric circulations associated with western North Pacific and Atlantic tropical cyclones are similar; (2) more intense tropical cyclones have higher tropopauses around their centers; (3) more intense tropical cyclones have higher tropopauses on the anticyclonic-shear side of their outflow jets, which indicate that the more intense tropical cyclones have stronger outflow channels than less intense systems; (4) tropical cyclones that intensify (do not intensify) are within 10 deg (15 deg) latitude of weak (strong) upper-tropospheric troughs that are moderately rich (very rich) in total ozone; and (5) tropical cyclones turn to the left (right) when they move within approximately 15 deg latitude downstream of an ozone-poor (ozone-rich) upper-tropospheric ridge (trough).

  14. Mesoscale eddy effects on the subduction of North Pacific mode waters

    NASA Astrophysics Data System (ADS)

    Xu, L.

    2016-02-01

    Eddy effects on the subduction of North Pacific mode waters are investigated by comparing observations and ocean general circulation models where eddies are either parameterized or resolved. The eddy resolving models produce results closer to observations than the non-eddy resolving model. There are large discrepancies in subduction patterns between eddy resolving and non-eddy resolving models. In the non-eddy resolving model, subduction on a given isopycnal is limited to the cross point between the mixed layer depth (MLD) front and the outcrop line whereas in eddy resolving models and observations, subduction takes place in a broader, zonally elongated band within the deep mixed layer region. Mesoscale eddies significantly enhance the total subduction rate, helping create remarkable peaks in the volume histogram that correspond to North Pacific subtropical mode water (STMW) and central mode water (CMW). Eddy-enhanced subduction preferentially occurs south of the winter mean outcrop. With an anticyclonic eddy to the west and a cyclonic eddy to the east, the outcrop line meanders south, and the thermocline/MLD shoals eastward. As eddies propagate westward, the MLD shoals, shielding the water of low potential vorticity from the atmosphere. The southward eddy flow then carries the subducted water mass into the thermocline. The eddy subduction processes revealed here have important implications for designing field observations and improving models.

  15. Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes

    NASA Astrophysics Data System (ADS)

    Hayes, Christopher T.; Anderson, Robert F.; Fleisher, Martin Q.; Serno, Sascha; Winckler, Gisela; Gersonde, Rainer

    2013-12-01

    Dissolved 232Th is added to the ocean though the partial dissolution of lithogenic materials such as aerosol dust in the same way as other lithogenically sourced and more biologically important trace metals such as Fe. Oceanic 230Th, on the other hand, is sourced primarily from the highly predictable decay of dissolved 234U. The rate at which dissolved 232Th is released by mineral dissolution can be constrained by a Th removal rate derived from 230Th:234U disequilibria, assuming steady-state. Calculated fluxes of dissolved 232Th can in turn be used to estimate fluxes of other lithogenically sourced dissolved metals as well as the original lithogenic supplies, such as aerosol dust deposition, given the concentration and fractional solubility of Th (or other metals) in the lithogenic material. This method is applied to 7 water column profiles from the Innovative North Pacific Experiment (INOPEX) cruise of 2009 and 2 sites from the subtropical North Pacific. The structure of shallow depth profiles suggests rapid scavenging at the surface and at least partial regeneration of dissolved 232Th at 100-200 m depth. This rapid cycling could involve colloidal Th generated during mineral dissolution, which may not be subject to the same removal rates as the more truly dissolved 230Th. An additional deep source of 232Th was revealed in deep waters, most likely dissolution of seafloor sediments, and offers a constraint on dissolved trace element supply due to boundary exchange.

  16. Broad-scale trophic shift in the pelagic North Pacific revealed by an oceanic seabird.

    PubMed

    Ostrom, Peggy H; Wiley, Anne E; James, Helen F; Rossman, Sam; Walker, William A; Zipkin, Elise F; Chikaraishi, Yoshito

    2017-03-29

    Human-induced ecological change in the open oceans appears to be accelerating. Fisheries, climate change and elevated nutrient inputs are variously blamed, at least in part, for altering oceanic ecosystems. Yet it is challenging to assess the extent of anthropogenic change in the open oceans, where historical records of ecological conditions are sparse, and the geographical scale is immense. We developed millennial-scale amino acid nitrogen isotope records preserved in ancient animal remains to understand changes in food web structure and nutrient regimes in the oceanic realm of the North Pacific Ocean (NPO). Our millennial-scale isotope records of amino acids in bone collagen in a wide-ranging oceanic seabird, the Hawaiian petrel (Pterodroma sandwichensis), showed that trophic level declined over time. The amino acid records do not support a broad-scale increase in nitrogen fixation in the North Pacific subtropical gyre, rejecting an earlier interpretation based on bulk and amino acid specific δ(15)N chronologies for Hawaiian deep-sea corals and bulk δ(15)N chronologies for the Hawaiian petrel. Rather, our work suggests that the food web structure in the NPO has shifted at a broad geographical scale, a phenomenon potentially related to industrial fishing.

  17. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre.

    PubMed

    Dodge, Kara L; Galuardi, Benjamin; Lutcavage, Molly E

    2015-04-07

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre

    PubMed Central

    Dodge, Kara L.; Galuardi, Benjamin; Lutcavage, Molly E.

    2015-01-01

    Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714

  19. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-Qun

    2016-09-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean

  20. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-qun

    2017-04-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean

  1. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean.

    PubMed

    Bates, Nicholas R; Pequignet, A Christine; Johnson, Rodney J; Gruber, Nicolas

    2002-12-05

    Large-scale features of ocean circulation, such as deep water formation in the northern North Atlantic Ocean, are known to regulate the long-term physical uptake of CO2 from the atmosphere by moving CO2-laden surface waters into the deep ocean. But the importance of CO2 uptake into water masses that ventilate shallower ocean depths, such as subtropical mode waters of the subtropical gyres, are poorly quantified. Here we report that, between 1988 and 2001, dissolved CO2 concentrations in subtropical mode waters of the North Atlantic have increased at a rate twice that expected from these waters keeping in equilibrium with increasing atmospheric CO2. This accounts for an extra 0.4-2.8 Pg C (1 Pg = 10(15) g) over this period (that is, about 0.03-0.24 Pg C yr(-1)), equivalent to 3-10% of the current net annual ocean uptake of CO2 (ref. 3). We suggest that the lack of strong winter mixing events, to greater than 300 m in depth, in recent decades is responsible for this accumulation, which would otherwise disturb the mode water layer and liberate accumulated CO2 back to the atmosphere. However, future climate variability (which influences subtropical mode water formation) and changes in the North Atlantic Oscillation (leading to a return of deep winter mixing events) may reduce CO2 accumulation in subtropical mode waters. We therefore conclude that, although CO2 uptake by subtropical mode waters in the North Atlantic--and possibly elsewhere--does not always represent a long-term CO2 sink, the phenomenon is likely to contribute substantially to interannual variability in oceanic CO2 uptake.

  2. Eolian inputs of lead to the North Pacific

    SciTech Connect

    Jones, C.E.; Halliday, A.N.; Rea, D.K.; Owen, R.M.

    2000-04-01

    The authors evaluate the importance of natural eolian Pb to the dissolved oceanic Pb budget by measuring the isotopic composition of Pb in 35 Holocene and late Quaternary sediment samples from the North Pacific and in 10 samples of Chinese loess. When the Pacific is divided into sediments provinces based on published {var_epsilon}{sub Nd} and sedimentological data, Pb from the central North Pacific tends to be the most radiogenic and homogeneous due to the dominance of eolian Chinese loess. Lead from the marginal North Pacific and the sparsely sampled regions south of 5{degree}N are less radiogenic and more variable owing to hemipelagic inputs from various volcanic arcs and older continental crust located around the Pacific Rim. {sup 208}Pb/{sup 204}Pb ratios provide the most distinctive provenance information due to the relatively high ratios in Chinese loess. The Chinese loess samples come from 3 localities and span up to 2 Myr of time. Acetic-acid leachate, bulk loess, and loess silicate fractions were analyzed separately. Leachate Pb is considerably less radiogenic than silicate Pb. The isotopic composition of the silicate component closely matches the sediment data from the central North Pacific, confirming the dominance of eolian loess in this region. The authors divided up a suite of published hydrogenous Pb-isotope data from the Pacific Ocean according to their locations within the three independently defined sediment provinces. These data define three distinct fields differentiated primarily by their {sup 206}Pb/{sup 204}Pb ratios, which increase going form the Central to Southern to Marginal provinces. This relationship with sediment province strongly suggests that natural eolian and probably hemipelagic inputs significantly impact the seawater Pb budget. Direct support for the dominance of eolian Chinese loess in the central North Pacific dissolved Pb budget comes from the close match between loess leachate Pb and the Central Province hydrogenous Pb data

  3. On the dominant intra-seasonal modes over the East Asia-western North Pacific summer monsoon region

    NASA Astrophysics Data System (ADS)

    Ha, Kyung-Ja; Oh, Hyoeun

    2017-04-01

    Intra-seasonal monsoon prediction is the most imperative task due to high impact on 2/3 of world populations' daily life, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intra-seasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): preMeiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. The major modes tend to be dominated by the moisture convergence of the moisture budget equation along the rain-band. The preMeiyu-Baiu mode is strongly linked to both the anomalous low-level convergence and vertical wind shear through baroclinic instability, and the Changma&Meiyu mode has a strengthened tropic-subtropics connection along the western north Pacific subtropical high, which induces vertical destabilization and strong convective instability. The WNPSM and monsoon gyre modes are characterized by anomalous southeasterly flow of warm and moist air from western north Pacific monsoon, and low-level easterly flow, respectively. Prominent difference in response to the ENSO leads to different effects of the Indian Ocean and western Pacific thermal state, and consequently, the distinct moisture supply and instability variations for the EASM intra-seasonal modes. We discuss the major driving forces of sub-seasonal variability over EA-WNPSM regions. Lastly we attempted to determine the predictability sources for the four modes in the EA-WNPSM. The selected predictors are based on the persistent and tendency signals of the SST/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the ENSO and the ocean and land surface anomalous conditions. For the preMeiyu&Baiu mode, the SST cooling tendency over the WNP, which persists into summer, is the distinguishing contributor that results in strong baroclinic instability. A major precursor for the Changma&Meiyu mode

  4. Characteristics of Oceanic Eddies in the North Pacific

    NASA Astrophysics Data System (ADS)

    Ho, C.; Cheng, Y.; Kuo, N.; Lo, Y.; Tsao, C.

    2012-12-01

    In this study, oceanic eddies in the north Pacific derived from satellite altimetry are statistically analyzed. An integration filtering algorithm based on connected component labeling and the Okubo-Weiss parameter is developed. The originated area, translation speed, and propagation pathway of all identified eddies are all determined by the integration filtering algorithm. Only eddies that have longer life span more than 12 weeks are considered. The results indicate that there are quantities of eddies with tens to hundreds of kilometers in spatial scales, and tens to hundreds of days in temporal scales. The 83% of eddies are generated between 15 degree North and 40 degree North and average translation speed is 4.5±1.9 km/day. The average life span is 20±11weeks, but warm eddies have longer life span than cold eddies. There are about 300 eddies generated in this ocean per year, but numbers of eddy keeps gaining more and more with a trend of 1.7±0.4 numbers per year. More interesting thing is that cold eddies with a trend of 1.1±0.5 numbers per year are growing more than warm eddies with a trend of 0.6±0.4 numbers per year. Referring to the pathway, most eddies propagate westward with slightly equatorward and poleward deflection of cold and warm eddies, respectively in the western North Pacific but not in the eastern North Pacific.

  5. Deglacial shift in subsurface watermass source in the subtropcal South Pacific North of New Zealand

    NASA Astrophysics Data System (ADS)

    Schiraldi, B.; Sikes, E. L.; Elmore, A. C.; Cook, M. S.

    2012-12-01

    Glacial-interglacial changes in global temperature are linked with shifts in atmospheric winds and oceanic fronts. Climatic shifts associated with last glacial conditions include a northward shift of the southern hemisphere westerlies, a southward shift of the inter-tropical convergence zone (ITCZ), and a northward shift of the subtropical front (STF) from their modern day locations. These shifts would compress the transition zone in the subtropical south Pacific affecting the source of surface waters. Here we present a δ18Oseawater and δ13C reconstruction from surface dwelling Globogerina bulloides from Bay of Plenty core 87JPC from North of New Zealand to illustrate changes in subtropical South Pacific surface water mass structure over the past 30 ka. Age control is based on tephra stratigraphy benthic foraminiferal δ18O and 14C dates. Sea level reconstruction and surface temperature (SST) reconstructions based on Mg/Ca were used to remove the temperature effect and the ice volume effect was removed from δ18O yielding an estimate of δ18Oseawater of surface-mixed layer water in the Bay of Plenty for the deglaciation. Early in the last glacial period (27-24 ka), reconstructed δ18Oseawater averaged -0.2‰ increasing at 24-21 ka to reach 0.5‰ for 1.2 kyr at the height of the LGM (21-19ka). At 19ka there is a rapid depletion of δ18Oseawater to -0.2‰ after which values average 0.2‰ into the Holocene. More depleted δ18Oseawater values during the LGM suggest surface waters were sourced at high latitudes and were fresher relative to modern. The enrichment through the height of the LGM suggests gradual shift in source waters to more saline and/or lower latitudes. Glacial δ13C holds steady at ~-0.5‰ with a late glacial enrichment maximum of -0.3‰ at 21-20 ka. A subsequent depletion of 0.6‰ at 19.8 ka marks a step change after which δ13C is level through the deglaciation at an average value of -0.8‰ and through the Holocene at -1.0‰. The δ13C

  6. Atmospheric peroxides over the North Pacific during IOC 2002 shipboard experiment.

    PubMed

    Kim, Young-Mi; Lee, Meehye; Chang, Wonil; Lee, Gangwoong; Kim, Kyung-Ryul; Kato, Shungo

    2007-11-01

    Atmospheric hydrogen peroxide and methyl hydroperoxide were determined onboard the Melville over the North Pacific from Osaka to Honolulu during May-June 2002. The concentrations of H(2)O(2) and CH(3)OOH increased from 0.64+/-0.57 ppbv and 0.27+/-0.59 ppbv in subpolar region (30-50 degrees N) to 1.96+/-0.95 ppbv and 1.56+/-1.3 ppbv in subtropical region (24-30 degrees N). The increase in concentrations towards the Equator was more pronounced for CH(3)OOH than H(2)O(2). In contrast, the levels of O(3) and CO were decreased at lower latitudes as air mass was more aged, denoted by the ratios of C(2)H(2)/CO and C(3)H(8)/C(2)H(6). CH(3)OOH concentrations showed a clear diurnal variation with a maximum around noon and minimum before sunrise. Frequently, the concentrations of peroxides remained over 1 ppbv in the dark and even gradually increased after sunset. In addition, the ratios of C(2)H(4)/C(2)H(6) and C(3)H(6)/C(3)H(8) were increased in aged subtropical air, which implies that these alkenes were emitted from the ocean surface. As a result, the reaction of these biogenic alkenes with O(3) was suggested to be a potential source for peroxides in aged marine air at lower latitudes.

  7. Enhanced Particulate Organic Carbon Export at Eddy Edges in the Oligotrophic Western North Pacific Ocean.

    PubMed

    Shih, Yung-Yen; Hung, Chin-Chang; Gong, Gwo-Ching; Chung, Wan-Chen; Wang, Yu-Huai; Lee, I-Huan; Chen, Kuo-Shu; Ho, Chuang-Yi

    2015-01-01

    Mesoscale eddies in the subtropical oligotrophic ocean are ubiquitous and play an important role in nutrient supply and oceanic primary production. However, it is still unclear whether these mesoscale eddies can efficiently transfer CO2 from the atmosphere to deep waters via biological pump because of the sampling difficulty due to their transient nature. In 2007, particulate organic carbon (POC) fluxes, measured below the euphotic zone at the edge of warm eddy were 136-194 mg-C m-2 d-1 which was greatly elevated over that (POC flux = 26-35 mg-C m-2 d-1) determined in the nutrient-depleted oligotrophic waters in the Western North Pacific (WNP). In 2010, higher POC fluxes (83-115 mg-C m-2 d-1) were also observed at the boundary of mesoscale eddies in the WNP. The enhanced POC flux at the edge of eddies was mainly attributed to both large denuded diatom frustules and zooplankton fecal pellets based on scanning electron microscopy (SEM) examination. The result suggests that mesoscale eddies in the oligotrophic waters in the subtropical WNP can efficiently increase the oceanic carbon export flux and the eddy edge is a crucial conduit in carbon sequestration to deep waters.

  8. Enhanced Particulate Organic Carbon Export at Eddy Edges in the Oligotrophic Western North Pacific Ocean

    PubMed Central

    Shih, Yung-Yen; Hung, Chin-Chang; Gong, Gwo-Ching; Chung, Wan-Chen; Wang, Yu-Huai; Lee, I-Huan; Chen, Kuo-Shu; Ho, Chuang-Yi

    2015-01-01

    Mesoscale eddies in the subtropical oligotrophic ocean are ubiquitous and play an important role in nutrient supply and oceanic primary production. However, it is still unclear whether these mesoscale eddies can efficiently transfer CO2 from the atmosphere to deep waters via biological pump because of the sampling difficulty due to their transient nature. In 2007, particulate organic carbon (POC) fluxes, measured below the euphotic zone at the edge of warm eddy were 136–194 mg-C m−2 d−1 which was greatly elevated over that (POC flux = 26–35 mg-C m−2 d−1) determined in the nutrient-depleted oligotrophic waters in the Western North Pacific (WNP). In 2010, higher POC fluxes (83–115 mg-C m−2 d−1) were also observed at the boundary of mesoscale eddies in the WNP. The enhanced POC flux at the edge of eddies was mainly attributed to both large denuded diatom frustules and zooplankton fecal pellets based on scanning electron microscopy (SEM) examination. The result suggests that mesoscale eddies in the oligotrophic waters in the subtropical WNP can efficiently increase the oceanic carbon export flux and the eddy edge is a crucial conduit in carbon sequestration to deep waters. PMID:26171611

  9. A Margin Source of Cd in the Western North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Morton, P. L.; Zurbrick, C.; Landing, W. M.; Buck, C. S.; Gallon, C.; Donat, J. R.; Shiller, A. M.; Flegal, A. R., Jr.

    2016-02-01

    To explore the influence of atmospheric deposition on the biogeochemistry of Cd in the western and central North Pacific Ocean, dissolved, total dissolved, marine particulate and soluble aerosol Cd were measured in samples collected during the 2002 Intergovernmental Oceanographic Commission (IOC-4) Global Investigation of Pollution in the Marine Environment (GIPME) cruise. Aerosols and surface waters of the Kuroshio Current and oligotrophic subtropical gyre were depleted in Cd, even during dust events, indicating that aerosol inputs of Cd are relatively inconsequential for these surface waters. Rather, vertical upward fluxes and lateral transport from the Aleutian margin produce high dissolved Cd concentrations in the surface waters of the Western Subarctic Gyre. Waters near the Aleutian Margin were subsequently enriched in Cd and produced dissolved Cd/PO4 ratios above those in deep water. This excess Cd, combined with the high nutrient/low Fe conditions of the Western Subarctic Gyre, induced high particulate Cd/P ratios in the surface waters, consistent with increased biological uptake of Cd via survival mechanisms designed to sequester Fe. Ultimately, the Cd-enriched waters of the Western Subarctic Gyre are exported laterally to the central subtropical gyre.

  10. Subtropical iceberg scours: Tracking the path of meltwater in the deglacial North Atlantic

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Condron, A.

    2015-12-01

    Over 700 individual iceberg scours have been identified in seafloor bathymetry spanning the southern U.S. Atlantic margin, from Cape Hatteras, North Carolina to the Florida Keys, in water depths from 170-380m. These iceberg scours represent the plowing path of iceberg keels transported southward along the margin in a cold, coastal boundary current derived from the Laurentide Ice Sheet. Despite limited regional multibeam bathymetry data, the scours are traceable along the seafloor for >30 km and exhibit characteristic morphology of iceberg keel marks documented along glaciated continental margins. Many of the scours are flanked by lateral berms that are several meters high and often terminate in semi-circular pits ringed by several meter high ridges (i.e. grounding pits or iceberg plow ridges). The scours decrease in size and abundance moving southward, in accordance with increased iceberg melting farther from the ice calving margin. For example, the scours offshore of South Carolina (~32.5°N) are ~10-100m wide and incised 10-20m into the sediment, whereas scours off the Florida margin (31°N- 24.5°N) are narrower (10-50m wide) and incised 2-5m into the sea floor. Icebergs at these subtropical latitudes would likely have been comparable in size (up 300 m thick) to those calving from the modern-day Greenland Ice Sheet margin. Results from numerical simulations using MITgcm, a high-resolution, eddy-permitting, coupled ice-ocean model configured for the LGM suggest that cold, freshwater and small (≤90m thick) icebergs could have seasonally drifted to South Carolina, but iceberg transport to southern Florida requires much larger (5Sv) meltwater floods to overcome the northward flowing Gulf Stream. These meltwater flood events would most likely have been short-lived (<1 yr), but may have diverted a significant volume of freshwater away from the subpolar regions into the subtropical North Atlantic.

  11. Detecting the progression of ocean acidification from the saturation state of CaCO3 in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Murata, Akihiko; Hayashi, Kazuhiko; Kumamoto, Yuichiro; Sasaki, Ken-ichi

    2015-04-01

    Progression of ocean acidification in the subtropical South Pacific was investigated by using high-quality data from trans-Pacific zonal section at 17°S (World Ocean Circulation Experiment section P21) collected in 1994 and 2009. During this 15 year period, the CaCO3 saturation state of seawater with respect to calcite (Ωcal) and aragonite (Ωarg) in the upper water column (<400 dbar) decreased at rates of 0.037 a-1 and 0.025 a-1, respectively, east of 145°W longitude; these rates are among the fastest in the world's oceans. In contrast, at longitudes 170°E-145°W, Ωcal and Ωarg decreased relatively slowly, at 0.008 a-1 and 0.005 a-1, respectively. The Ωarg saturation horizon occurred at a depth of about 1200 dbar at the westernmost end of the section and shoaled eastward to about 20 dbar. From 1994 to 2009, it migrated upward at a rate of 5.2 dbar a-1 west of 145°W. Decomposition of the temporal changes of Ω (ΔΩ) showed that the accumulation of anthropogenic CO2 in the ocean accounted for more than half of ΔΩ. The more rapid rate of decline of Ω in the eastern section was attributable to a relatively large contribution of organic matter remineralization, whereas the slower rate in the central section was attributed to a decrease of anthropogenic CO2 uptake caused by rising water temperatures. An important finding of this study was that acidification of the upper water column was enhanced by processes related to the oxygen minimum zone in the eastern subtropical South Pacific Ocean.

  12. Possible relationship between NAO and tropical cyclone genesis frequency in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Won; Cha, Yumi

    2017-03-01

    This study examined a strong positive correlation between the North Atlantic Oscillation (NAO) index during June and the total tropical cyclone (TC) genesis frequency in the western North Pacific during July and August. To investigate a possible cause for this relation, the mean difference between highest positive NAO years and lowest negative NAO years was analyzed by dividing into when the El Niño and La Niña years were included and when the El Niño and La Niña years were not included. When the El Niño and La Niña years were included, for positive NAO years, the TCs mostly occurred in the northwestern region of tropical and subtropical western Pacific, and showed a pattern that migrate from the sea northeast of the Philippines, pass the East China Sea, and move toward the mid-latitudes of East Asia. In contrast, for negative NAO years, the TCs mostly occurred in the southeastern region of tropical and subtropical western Pacific, and showed a pattern that migrate westward from the sea southeast of the Philippines, pass the South China Sea, and move toward the southern coast of China and Indochinese peninsula. These two different TC migration patterns affect the recurving location of TC, and for positive NAO years, the recurving of TC was averagely found to take place in the further northeast. In addition, the migration patterns also affect the TC intensity, and the TCs of positive NAO years had stronger intensity than the TCs of negative NAO years as sufficient energy can be absorbed from the ocean while moving north in the mid-latitudes of East Asia. The TCs of negative NAO years showed weak intensity as they weaken or disappear shortly while landing on the southern coast of China and Indochinese peninsula. On the other hand, the above result of analysis is also similarly observed when the El Niño and La Niña years were not included.

  13. Variability of Tropical Cyclone Rapid Intensification in the North Atlantic and Western North Pacific

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2016-02-01

    The paper uses long-term observations to investigate rapid intensification (RI) variability of tropical cyclones (TCs) in the North Atlantic and the western North Pacific, and the relationships with large-scale climate variations. RI is defined as a TC intensity increase of at least 15.4 m/s in 24 hours. In the North Atlantic, RI displays both interannual and multidecadal variability. The top three climate indices showing high correlations with RI are the June-November ENSO and Atlantic warm pool indices, and the January-March North Atlantic oscillation index. It is found that variability of vertical wind shear and TC heat potential is important for TC RI in the Atlantic hurricane main development region, whereas relative humidity at 500-hPa is a factor responsible for TC RI in the eastern tropical North Atlantic. In the western North Pacific, RI events have exhibited strikingly multidecadal variability. During the warm (cold) phase of the Pacific decadal oscillation, the RI number is generally lower (higher) and the average location of RI occurrence tends to shift southeastward (northwestward). Such multidecadal variations of RI are associated with the variations of large-scale ocean and atmosphere variables such as sea surface temperature, TC heat potential, relative humidity and vertical wind shear in the western North Pacific.

  14. Observations in the Kuroshio Extension Region in the North Pacific

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohui; Lin, Xiaopei; Wu, Lixin; Zhou, Chun; Li, Rui

    2017-04-01

    The Kuroshio extension region has been identified as a key location in the extratropics in the North Pacific. Until recently, there have been quite limited high-resolution observations in the Kuroshio extension region. Here we report the recent observational work and future plan in the Kuroshio extension region. These observations are under the Intergovernmental Oceanographic Commission (IOC) Sub-Commission for the Western Pacific (WESTPAC), Air-Sea Interaction in the Kuroshio Extension and its Climate Impact (AIKEC) led by the Ocean University of China (OUC) and the Texas A&M University (TAMU), which aims to setup to maintain continuous and sustainable observations in this region.

  15. Mapping the Origins of Chromophoric Dissolved Organic Matter in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    McDonald, N.; Logendran, V.; Evans, D. G.; Peters, A.; Nelson, N. B.

    2010-12-01

    The chromophoric or "light-absorbing" fraction of dissolved organic matter plays a significant role in the regulation of the underwater light field. In the North Atlantic subtropical gyre, it's origins vary, and include contributions from both terrestrial and marine sources. Furthermore, within the fraction of marine-origin CDOM, there are distinctions between that of local origin and that coming from other regions via transport through water masses or through atmospheric deposition. As the optical and chemical properties of CDOM depend largely on its source, an analysis of its origins could lead to a better understanding of processes in the North Atlantic subtropical gyre. For this analysis, we have used absorption data from CDOM measurements collected repeatedly for a number of years at the BATS site in the Sargasso Sea. Samples have been collected at the same series of depths ranging from surface waters to 4200 meters. The samples were analyzed using a dual beam spectrophotometer to obtain absorption spectra. The slope parameter, S, provides more in depth information about the source of CDOM than does the absorption spectra alone, and thus we have used it as well as the slope ratio, Sr, for differentiating between different types of CDOM. Slope ratios were obtained by selecting portions of the spectral slope at wavelength ranges, which have been found to be indicative of CDOM originating from a particular source. For example, it can be used to distinguish marine CDOM formed locally in the Sargasso Sea from that which has been formed further north in the Atlantic and then subducted and transported to the Sargasso. There are various other methods for ascertaining the sources of CDOM, and the most comprehensive model for CDOM in the North Atlantic is likely obtained using a combination of all of them. Excitation-emission matrix spectra (EEMS) have been performed on samples from the same site in the Sargasso Sea to corroborate findings from the S and Sr analyses

  16. Variable North Pacific influence on drought in southwestern North America since AD 854

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, Staryl; Johnson, Kathleen R.; Strong, Courtenay; Berkelhammer, Max; Sinha, Ashish; Cheng, Hai; Edwards, R. Lawrence

    2013-08-01

    Precipitation in southwestern North America has exhibited significant natural variability over the past few thousand years. This variability has been attributed to sea surface temperature regimes in the Pacific and Atlantic oceans, and to the attendant shifts in atmospheric circulation patterns. In particular, decadal variability in the North Pacific has influenced precipitation in this region during the twentieth century, but links to earlier droughts and pluvials are unclear. Here we assess these links using δ18O data from a speleothem from southern California that spans AD 854-2007. We show that variations in the oxygen isotopes of the speleothem correlate to sea surface temperatures in the Kuroshio Extension region of the North Pacific, which affect the atmospheric trajectory and isotopic composition of moisture reaching the study site. Interpreting our speleothem data as a record of sea surface temperatures in the Kuroshio Extension, we find a strong 22-year periodicity, suggesting a persistent solar influence on North Pacific decadal variability. A comparison with tree-ring records of precipitation during the past millennium shows that some droughts occurred during periods of warmth in the Kuroshio Extension, similar to the instrumental record. However, other droughts did not and instead must have been influenced by other factors. Finally, we find a significant increase in sea surface temperature variability over the past 150 years, which may reflect an influence of greenhouse gas concentrations on variability in the North Pacific.

  17. North Pacific Tropical Cyclones and Teleconnections

    DTIC Science & Technology

    2005-03-01

    teleconnection patterns resulting from using the P115 base point, active (top panel) and inactive years, with TCI index (typhoons only) in the P region...years, with TCI index ix (typhoons only) in the T region for June - August (JJA) . Bold blue box marks the location of P115. North America can be...Time series showing TC Index (TC3) calculated in the P region for the 51-year period. Black line indicates decadal trend of index ....... 30 Figure 8

  18. Storm surge along the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Flick, Reinhard E.; Miller, Arthur J.

    2017-01-01

    Storm surge is an important factor that contributes to coastal flooding and erosion. Storm surge magnitude along eastern North Pacific coasts results primarily from low sea level pressure (SLP). Thus, coastal regions where high surge occurs identify the dominant locations where intense storms make landfall, controlled by storm track across the North Pacific. Here storm surge variability along the Pacific coast of North America is characterized by positive nontide residuals at a network of tide gauge stations from southern California to Alaska. The magnitudes of mean and extreme storm surge generally increase from south to north, with typically high amplitude surge north of Cape Mendocino and lower surge to the south. Correlation of mode 1 nontide principal component (PC1) during winter months (December-February) with anomalous SLP over the northeast Pacific indicates that the dominant storm landfall region is along the Cascadia/British Columbia coast. Although empirical orthogonal function spatial patterns show substantial interannual variability, similar correlation patterns of nontide PC1 over the 1948-1975 and 1983-2014 epochs with anomalous SLP suggest that, when considering decadal-scale time periods, storm surge and associated tracks have generally not changed appreciably since 1948. Nontide PC1 is well correlated with PC1 of both anomalous SLP and modeled wave height near the tide gauge stations, reflecting the interrelationship between storms, surge, and waves. Weaker surge south of Cape Mendocino during the 2015-2016 El Niño compared with 1982-1983 may result from changes in Hadley circulation. Importantly from a coastal impacts perspective, extreme storm surge events are often accompanied by high waves.

  19. Contrasting subtropical PV intrusion frequency and their impact on tropospheric Ozone distribution over Pacific Ocean in El-Niño and La-Niña conditions.

    PubMed

    Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqiang; Gong, Hainan

    2017-09-20

    Upper tropospheric equatorial westerly ducts over the Pacific Ocean are the preferred location for Rossby wave breaking events during boreal winter and spring. These subtropical wave breaking events lead to the intrusion of high PV (potential vorticity) air along the extra-tropical tropopause and transport ozone rich dry stratospheric air into the tropics. The intrusion frequency has strong interannual variability due to ENSO (El-Niño/Southern Oscillation), with more events under La-Niña and less under El-Niño conditions. This may result from stronger equatorial westerly ducts and subtropical jets during La-Niña and weaker during El-Niño. It was previously suggested that the interannual variability of the tropospheric ozone distribution over the central-eastern Pacific Ocean is mainly driven by convective activity related to ENSO and that the barotropic nature of the subtropical intrusions restricts the tracers within the UT. However, our analysis shows that tropospheric ozone concentration and subtropical intrusions account ~65% of the co- variability (below 5 km) in the outer tropical (10-25°N) central Pacific Ocean, particularly during La-Niña conditions. Additionally, we find a two-fold increase and westward shift in the intrusion frequency over the Pacific Ocean, due to the climate regime shift in SST pattern during 1997/98.

  20. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections.

    PubMed

    Park, Doo-Sun R; Ho, Chang-Hoi; Chan, Johnny C L; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-30

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  1. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections

    PubMed Central

    Park, Doo-Sun R.; Ho, Chang-Hoi; Chan, Johnny C. L.; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-01

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate. PMID:28134343

  2. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections

    NASA Astrophysics Data System (ADS)

    Park, Doo-Sun R.; Ho, Chang-Hoi; Chan, Johnny C. L.; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-01

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  3. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    USGS Publications Warehouse

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  4. Range Reference Atmosphere Wake Island, North Pacific

    DTIC Science & Technology

    1991-08-01

    limits, which were used to quality control the data base for the final version of the RRA. 15) Oc(asional ly, the third PRA did not satisfy all the...C, and D. Appendix G gives range-specific information s,-ch as location and data base description. 1.7 CONVERSION UNITS Numerical jalues in the PRA ...statistics with respect to ortho - gonal axes other than west to east and south to north. For example, a user may need wind statistics with respect to a flight

  5. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes

  6. Modeling Investigation of Atmospheric Moisture Transport over the North Pacific: Role of Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Borries, C.; Zhang, X.

    2012-12-01

    Increasing atmospheric temperatures cause changes in the hydrological cycle by giving the atmosphere a greater moisture-holding capacity. Along with the greenhouse-gas-emissions forced long-term trends, the atmospheric temperature and water content over the North Pacific can also fluctuate under the driving force by the Pacific Decadal Oscillation (PDO). In order to better understand the role which the PDO plays in the North Pacific water budgets and pathways, we employed the NCAR Community Atmosphere Model 5.0 (CAM) and conducted sensitivity experiments to examine how atmospheric moisture transport responds to sea surface temperature (SST) anomalies associated with the PDO phase transitions. We have found that changes in the storm tracks over the North Pacific due to changes in the sea surface temperatures increase or decrease the amount of moisture transport into Alaska and Hawaii. The moisture transport into Hawaii is consistently lower in the warm phase of the PDO compared to the cool phase. The moisture transport into Alaska has a seasonal dependence and increases during the winter but decreases during the spring, summer, and fall as the PDO phase changes. These differences in moisture transport are reflected in the local precipitation rates. During the warm phase, the distribution of precipitation rates typically has a higher peak and a more narrow distribution than in the cool phase. This study has important implications for improving understanding of precipitation events.

  7. Mt. Logan Ice Core Record of North Pacific Holocene Climate Variability

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Mayewski, P. A.; Fisher, D. A.; Kreutz, K. J.; Handley, M. J.; Sneed, S. B.

    2006-12-01

    A >12,000 year-long, continuous, high-resolution (sub-annual to multi-decadal) ice core record from the summit plateau (5300 m asl) of Mt. Logan, Yukon, Canada, reveals large, abrupt fluctuations in North Pacific climate throughout the Holocene with a 1-2 ky periodicity. Co-registered major ion, trace element and stable isotope time series reveal a strong inverse relationship between precipitation δ18O and atmospheric seasalt and dust concentrations over multi-decadal to millennial periods (r<-0.6, p<0.0001). Intervals with depleted stable isotope ratios are associated with elevated concentrations of dust and seasalt aerosol at ca. 2.5, 4, 6.2, 7.5, 8.2, 9, and 10 k.y. B.P. Contrary to the traditional paleothermometric model of stable isotopes in ice cores, instrumental data and computer models suggest that stable isotopes on the summit of Mt. Logan represent changes in moisture source region between dominantly cold North Pacific waters (more zonal circulation; enriched stable isotope values) and warmer subtropical waters (more meridional circulation; depleted stable isotope values). Consequently, Holocene millennial-scale stable isotope fluctuations in the Mt. Logan core have a larger amplitude (6-9‰ for δ18O) than those found in Greenland and Canadian Arctic ice core records (e.g. 2-3‰ for GISP2 δ18O). Over the instrumental period (1948-1998), higher Mt. Logan dust concentrations are strongly associated with enhanced springtime cyclonic activity over East Asian desert source regions (r<-0.6, p<0.0001), which is characteristic of the La Niña atmospheric pressure pattern in the North Pacific. Mt. Logan seasalt aerosol concentrations are related to the wintertime strength of the Aleutian Low pressure center (r<-0.45, p<0.001). We use these calibrated proxy relationships to propose a conceptual model of North Pacific atmospheric circulation during the Holocene.

  8. The biogeography of the North Pacific right whale ( Eubalaena japonica)

    NASA Astrophysics Data System (ADS)

    Gregr, Edward J.; Coyle, Kenneth O.

    2009-03-01

    The eastern North Pacific population of right whales ( Eubalaena japonica) is among the most endangered whale populations, with an estimated size of only 10s of individuals. The effectiveness of measures (e.g., protected areas, abundance surveys) intended to promote recovery of this population will be enhanced by understanding its distribution, habitat use, and habitat characteristics. In order to facilitate such understanding, we summarized relevant right whale biology, reviewed the life history of their zooplankton prey species, and related North Pacific oceanography to the production, distribution, and concentration of these prey at three scales of variability. We discuss how ocean processes may drive zooplankton distribution and concentration, and present hypotheses about how prey patches suitable for right whale foraging might be formed. Such hypotheses, combined with available distributional data and descriptions of the ocean environment, would be suitable for predicting potential right whale foraging habitat.

  9. Decadal Drought and Wetness Reconstructed for Subtropical North America in the Mexican Drought Atlas

    NASA Astrophysics Data System (ADS)

    Burnette, D. J.; Stahle, D. W.; Cook, E. R.; Villanueva Diaz, J.; Griffin, D.; Cook, B.

    2014-12-01

    A new drought atlas has been developed for subtropical North America, including the entire Republic of Mexico. This Mexican Drought Atlas (MXDA) is based on 251 tree-ring chronologies, including 82 from Mexico and another 169 from the southern U.S. and western Guatemala. Point-by-point principal components regression was used to reconstruct the self-calibrating Palmer Drought Severity Index (PDSI) for June-August. Calibration and verification statistics were improved over what was previously possible with the North American Drought Atlas, which was based on fewer chronologies only in Mexico. The MXDA will be served on the web with analytical tools for composite, correlation, and congruence analyses. The new PDSI reconstructions provide a more detailed estimation of decadal moisture regimes over the past 2000 years, but are most robust after 1400 AD, when several chronologies are available across Mexico. Droughts previously identified in a subset of chronologies are confirmed and their spatial impact quantified in the new reconstructions. This includes the intense drought of the mid-15th Century described in Aztec legend, the 16th Century megadrought, and "El Año del Hambre", one of the worst famines in Mexican history. We also use the best replicated portion of the MXDA in the 18th and 19th Centuries to reconstruct moisture anomalies during key time periods of Mexican turmoil (e.g., the Mexican War of Independence).

  10. Planktic Foraminiferal Turnover and Stable Isotope Stratigraphy Across OAE1B in the Subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Huber, B. T.; Price, N. A.; MacLeod, K. G.

    2003-12-01

    Stable isotope data generated from glassy (diagenetically unaltered) foraminifera from the subtropical North Atlantic (ODP Site 1049) reveal abrupt paleoceanographic and faunal changes that coincide with the Aptian/Albian boundary and the onset of Oceanic Anoxic Event (OAE) 1b. At least three planktic and one benthic species per sample, selected at closely spaced intervals from the Globigerinelloides algerianus Zone (mid-Aptian) through uppermost Ticinella bejaouaensis Zone (uppermost Aptian), reveal a consistently low (<1.1‰ ) vertical δ 18O gradient, suggesting that the thermocline was weakly developed throughout this time. Benthic δ 18O values show a slight positive increase from +0.5 ‰ during the mid-Aptian to +1.1% during the latest Aptian, then decrease to -0.2‰ during peak Corg deposition in OAE 1b (Hedbergella rischi Zone, lowermost Albian). Assuming that the δ 18O composition of Cretaceous seawater averaged -1.2‰ and polar ice sheets were absent or very small, we estimate that middle bathyal waters at this site ranged from 7-9° C during the mid-late Aptian and warmed to 12° C during OAE 1b peak Corg deposition. Mid-late Aptian upper surface waters ranged from 11-12° C, then warmed to 20° C during OAE 1b. The simultaneous change in planktic foraminifer assemblages and stable isotope values indicates that the onset of OAE 1b involved major changes in the North Atlantic climate and oceanography.

  11. North Pacific Gyre Oscillation links ocean climate and ecosystem change

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, E.; Schneider, N.; Cobb, K. M.; Franks, P. J. S.; Chhak, K.; Miller, A. J.; McWilliams, J. C.; Bograd, S. J.; Arango, H.; Curchitser, E.; Powell, T. M.; Rivière, P.

    2008-04-01

    Decadal fluctuations in salinity, nutrients, chlorophyll, a variety of zooplankton taxa, and fish stocks in the Northeast Pacific are often poorly correlated with the most widely-used index of large-scale climate variability in the region - the Pacific Decadal Oscillation (PDO). We define a new pattern of climate change, the North Pacific Gyre Oscillation (NPGO) and show that its variability is significantly correlated with previously unexplained fluctuations of salinity, nutrients and chlorophyll. Fluctuations in the NPGO are driven by regional and basin-scale variations in wind-driven upwelling and horizontal advection - the fundamental processes controlling salinity and nutrient concentrations. Nutrient fluctuations drive concomitant changes in phytoplankton concentrations, and may force similar variability in higher trophic levels. The NPGO thus provides a strong indicator of fluctuations in the mechanisms driving planktonic ecosystem dynamics. The NPGO pattern extends beyond the North Pacific and is part of a global-scale mode of climate variability that is evident in global sea level trends and sea surface temperature. Therefore the amplification of the NPGO variance found in observations and in global warming simulations implies that the NPGO may play an increasingly important role in forcing global-scale decadal changes in marine ecosystems.

  12. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along

  13. Free-Trade Agreements: North America and the Northwest Pacific

    DTIC Science & Technology

    1992-09-01

    and Currency Zones, The Federal Reserve Bank of Kansas City, 1991 . Bhagwati , Jagdish, The World Trading System at Risk, Princeton University Press...Mexico initiated negotiations in 1991 to establish a North American Free-Trade Agreement (NAFTA). Like the UCFTA, a NAFTA would be consistent with GATT...for a Pacific Community," Foreign Affairs, Winter 1991 /92, Vol.70, No. 5. Bello, Walden and Rosenfeld, Stephanie, Dragons in Distress, Institute for

  14. Indicators of Marine Pollution in the North Pacific Ocean.

    PubMed

    Brown, Tanya M; Takada, Hideshige

    2017-08-01

    The complex nature of ocean pollution underscores the utility in identifying and characterizing a limited number of "indicators" that enables scientists and managers to track trends over space and time. This paper introduces a special issue on indicators of marine pollution in the North Pacific Ocean and builds on a scientific session that was held at the North Pacific Marine Science Organization. The special issue highlights studies using a variety of indicators to provide insight into the identification of legacy and emerging contaminants, the ranking of priority pollutants from various sources, and the effects of contaminants on ecosystem health in the North Pacific Ocean. Examples include the use of mussels to illustrate spatial and temporal trends of a number of contaminants following the 2011 tsunami in Japan, the use of molecular marker (linear alkylbenzenes, hopanes, and polycyclic aromatic hydrocarbons) profiles to identify pollution sources, and the use of plastic resin pellets to illustrate spatial trends of petroleum pollution around the world. Stable isotopes were used to strengthen the utility of the Glaucous-winged gull (Larus glaucescens) as an indicator of marine pollution. Examples also demonstrate the development and application of biomarker approaches, including gene transcripts, oxidative stress, estradiol, hatchability, and respiration and swimming behavior abnormalities, as a function of exposure to polychlorinated biphenyls, sulfur-diesel, Pinghu crude oil, galaxolide and antifouling biocides. We provide a brief review of indicators of marine pollution, identify research gaps, and summarize key findings from the articles published within the issue. This special issue represents the first compilation of research pertaining to marine pollution indicators in the North Pacific Ocean and provides guidance to inform mitigation and monitoring efforts of contaminants in the region.

  15. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2016-10-27

    ocean noise for seven sites in the North Pacific Ocean . (authors - Andrew, Howe, and Mercer). This paper was submitted to JUA in February of 2016...limitations to the performance of long-range sonar are due to ocean sound speed perturbations and the characteristics of the ambient acoustic noise...field. Scattering and diffraction resulting from internal waves and other ocean processes limit the temporal and spatial coherence of the received

  16. Vertical distribution of (236)U in the North Pacific Ocean.

    PubMed

    Eigl, R; Steier, P; Sakata, K; Sakaguchi, A

    2017-04-01

    The first extensive study on (236)U in the North Pacific Ocean has been conducted. The vertical distribution of (236)U/(238)U isotopic ratios and the (236)U concentrations were analysed on seven depth profiles, and large variations with depth were found. The range of (236)U/(238)U isotopic ratios was from (0.09 ± 0.03) × 10(-10) to (14.1 ± 2.2) × 10(-10), which corresponds to (236)U concentrations of (0.69 ± 0.24) × 10(5) atoms/kg and (119 ± 21) × 10(5) atoms/kg, respectively. The variations in (236)U concentrations could mainly be attributed to the different water masses in the North Pacific Ocean and their formation processes. Uranium-236 inventories on the water column of each sampling station were calculated and varied between (3.89 ± 0.08) × 10(12) atoms/m(2) and (7.03 ± 0.50) × 10(12) atoms/m(2), which is lower than in former studies on comparable latitudes in the North Atlantic Ocean and the Sea of Japan. The low inventories of (236)U found for the North Pacific Ocean in this study can be explained by the lack of additional input sources of artificial radionuclides, apart from global and regional/local fallout. This study expands the use of (236)U as oceanographic circulation tracer to yet another ocean basin and shows that this isotope can be used for tracing circulation patterns of water masses in the Pacific Ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Rising climate variability and synchrony in North Pacific ecosystems

    NASA Astrophysics Data System (ADS)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  18. Venereal diseases in the islands of the North Pacific.

    PubMed Central

    Willcox, R R

    1980-01-01

    Apart from the Japanese islands, and those of Karabati (lately Gilbert Islands), which lie just north of the equator, the islands of the northern Pacific Ocean are either American owned or otherwise administered. Even the Japanese islands were controlled by the USA for varying numbers of years after the second world war. Venereal disease statistics from Guam, the Trust Territory of the Pacific Islands, and the Gilbert Islands have been collated by the South Pacific Commission and will be presented in a second paper. Those from the Hawaiian Islands (the fiftieth state of the USA) are published by the United States Public Health Service and include those from Honolulu, the capital. While the rates per 100 000 for both syphilis and gonorrhoea are lower than those for the USA as a whole, the trends since 1970 have been less satisfactory in the state of Hawaii than for the whole of the United States. While the disturbing increasing incidence of primary and secondary syphilis was checked in 1977, that of gonorrhoea has continued to rise. The number of cases of gonorrhoea also increased in Guam and the Trust Territory of the Pacific Islands but there has been a recent fall from earlier peak figures. The pattern of venereal disease in the most developed Pacific islands is thus gradually approaching what may be expected elsewhere in modern western society and it would seem logical to expect that this trend will continue. PMID:6893564

  19. Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

    SciTech Connect

    Wang, S-Y; Heureux, Michelle L.; Yoon, Jin-Ho

    2013-09-01

    Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

  20. Arctic climate sensitivity to changes in North Pacific and North Atlantic ocean heat flux

    NASA Astrophysics Data System (ADS)

    Praetorius, S. K.; Rugenstein, M.; Caldeira, K.

    2016-12-01

    Paleoclimate records indicate abrupt swings in Arctic temperature that were coeval with abrupt changes in sea surface temperature (SST) in both the North Pacific and North Atlantic oceans throughout the late Pleistocene, suggesting a strong coupling between extratropical ocean heat flux and Arctic climate. While the processes that contribute to Arctic amplification, including surface-albedo, cloud, and temperature feedbacks, are generally well-established, the relative impacts of changes in ocean heat flux sourced from different ocean basins on poleward heat transfer and Arctic climate feedbacks are not well understood. We employ simulations with the Community Earth System Model version 1.0.4 using a slab ocean configuration with modified ocean-to-atmosphere heat fluxes sourced from the North Pacific and North Atlantic (30-60°N) to determine the sensitivity of Arctic amplification processes to zonal heterogeneities in northern hemisphere SST patterns. We find that a local heat flux magnitude equivalent to a globally averaged +1 W/m2 sourced from the North Pacific results in greater Arctic surface warming/cooling and sea ice decline/advance than the equivalent heat flux perturbation originating from the North Atlantic. We attribute this response primarily to greater net moisture transfer between the North Pacific and Arctic (relative to the North Atlantic simulations) in response to changes in surface ocean heat flux, with accompanying impacts on cloud, sea ice, and temperature feedbacks that amplify the Arctic surface temperature response. In the case of a positive ocean-to-atmosphere heat flux anomaly from the North Pacific, greater moisture transport into the Arctic results in: 1) enhanced sensible and latent heat transfer to the Arctic 2) enhanced low cloud formation and attendant surface infrared radiation in the Arctic, and 3) enhanced area of sea ice decline, which is promoted by the first two processes and further amplifies surface warming through the ice

  1. TRMM-observed summer warm rain over the tropical and subtropical Pacific Ocean: Characteristics and regional differences

    NASA Astrophysics Data System (ADS)

    Qin, Fang; Fu, Yunfei

    2016-06-01

    Based on the merged measurements from the TRMM Precipitation Radar and Visible and Infrared Scanner, refined characteristics (intensity, frequency, vertical structure, and diurnal variation) and regional differences of the warm rain over the tropical and subtropical Pacific Ocean (40ffiS-40ffiN, 120ffiE-70ffiW) in boreal summer are investigated for the period 1998-2012. The results reveal that three warm rain types (phased, pure, and mixed) exist over these regions. The phased warm rain, which occurs during the developing or declining stage of precipitation weather systems, is located over the central to western Intertropical Convergence Zone, South Pacific Convergence Zone, and Northwest Pacific. Its occurrence frequency peaks at midnight and minimizes during daytime with a 5.5-km maximum echo top. The frequency of this warm rain type is about 2.2%, and it contributes to 40% of the regional total rainfall. The pure warm rain is characterized by typical stable precipitation with an echo top lower than 4 km, and mostly occurs in Southeast Pacific. Although its frequency is less than 1.3%, this type of warm rain accounts for 95% of the regional total rainfall. Its occurrence peaks before dawn and it usually disappears in the afternoon. For the mixed warm rain, some may develop into deep convective precipitation, while most are similar to those of the pure type. The mixed warm rain is mainly located over the ocean east of Hawaii. Its frequency is 1.2%, but this type of warm rain could contribute to 80% of the regional total rainfall. The results also uncover that the mixed and pure types occur over the regions where SST ranges from 295 to 299 K, accompanied by relatively strong downdrafts at 500 hPa. Both the mixed and pure warm rains happen in a more unstable atmosphere, compared with the phased warm rain.

  2. Four Years of North Pacific Mode Water Evolution: A Fukushima Tracer Perspective

    NASA Astrophysics Data System (ADS)

    Macdonald, Alison M.; Yoshida, Sachiko; Pike, Steven; Buesseler, Ken O.; Rypina, Irina I.; Jayne, Steven

    2017-04-01

    Here we presents the results of a investigation which uses the tracer information provided by the 2011 direct ocean release of radio-isotopes, (137Cs, 30-year half-life and 134Cs, 2-year half-life) from the Fukushima Daiichi nuclear power plant to better understand the pathways, mixing and transport of water in the North Pacific Ocean. The main focus is the analysis of cesium observations obtained from the spring 2015 CLIVAR/GO-SHIP occupation of the P16N line in the eastern North Pacific. Nearly four hundred 20 L radionuclide samples were obtained on this cruise between 29 April and 26 June 2015 covering the 152°W line from 3°N to the Alaskan Shelf off Kodiak (56.4°N), crossing the Alaska Gyre at 55°N and making a short (200 nm) line extending from the outer edge of U.S. EEZ coming into Seattle, just to the south of the Canadian border and Line-P. Samples include both profiles from the surface to 1000 m and surface/subsurface pairs that provide an average 1° latitude spacing along 152°W. A clear Fukushima signal is apparent from the surface down to 400 m. The core signal lies at between 0-200 m at about 40°N where Subtropical Mode Water density water outcrops. The densest waters with Fukushima isotopes lie at 440 m in the bottom density range of Dense-Central Mode Water. There is a weak, but detectable signal in the Alaska Current to the north off both Kodiak and Sitka. The deepest detectable 137Cs (weapon's testing) signals are found at and to the north of 45°N at 900-1000 m. There is detectable, background level 137Cs as far south as 3°N, but as of spring 2015 the southernmost 134C signal was found above 200 m at 30°N. This horizontal and vertical pattern of Fukushima radionuclides traces the path of mode waters from their formation regions in the western North Pacific to their outcrop in eastern basin over the four years since their release.

  3. Impact of the Interdecadal Pacific Oscillation on Tropical Cyclone Activity in the North Atlantic and Eastern North Pacific

    PubMed Central

    Li, Wenhong; Li, Laifang; Deng, Yi

    2015-01-01

    Tropical cyclones (TCs) are among the most devastating weather systems affecting the United States and Central America (USCA). Here we show that the Interdecadal Pacific Oscillation (IPO) strongly modulates TC activity over the North Atlantic (NA) and eastern North Pacific (eNP). During positive IPO phases, less (more) TCs were observed over NA (eNP), likely due to the presence of stronger (weaker) vertical wind shear and the resulting changes in genesis potential. Furthermore, TCs over NA tend to keep their tracks more eastward and recurve at lower latitudes during positive IPO phases. Such variations are largely determined by changes in steering flow instead of changes in genesis locations. Over the eNP, smaller track variations are observed at different IPO phases with stable, westward movements of TCs prevailing. These findings have substantial implications for understanding decadal to inter-decadal fluctuations in the risk of TC landfalls along USCA coasts. PMID:26205462

  4. Variation in phytoplankton composition between two North Pacific frontal zones along 158°W during winter-spring 2008-2011

    NASA Astrophysics Data System (ADS)

    Howell, Evan A.; Bograd, Steven J.; Hoover, Aimee L.; Seki, Michael P.; Polovina, Jeffrey J.

    2017-01-01

    Data from three research cruises along the 158°W meridian through the North Pacific Subtropical Frontal Zone (STF) during spring 2008, 2009, and 2011 were used to estimate phytoplankton functional types and size classes. These groups were used to describe phytoplankton composition at the North Pacific Subtropical (STF) and Transition Zone Chlorophyll (TZCF) Fronts, which represent ecologically important large-scale features in the central North Pacific. Phytoplankton class composition was consistent at each front through time, yet significantly different between fronts. The STF contained lower integrated chlorophyll-a concentrations, with surface waters dominated by picophytoplankton and a deep chlorophyll maximum equally comprised of pico- and nanophytoplankton. The TZCF contained significantly higher concentrations of nanophytoplankton through the water column, specifically the prymnesiophyte group. Integrated chlorophyll-a concentrations at the TZCF were 30-90% higher than at the STF, with the dominant increase in the signal from the nanophytoplanktonic prymnesiophyte group. The meridional position of the STF was consistently located near 32°N through these three years, with the more spatially variable TZCF ranging from 2° to 4° further north of the STF. This variability in the frontal position of the TZCF may lead to ecological impacts though the food web. Continued in-situ and remote monitoring, specifically during El Niño and ENSO neutral phases, will provide additional ecological information to help understand mechanistic causes of phytoplankton variability in this important ecological region.

  5. Changes in the North Pacific wave climate since the mid-1990s

    NASA Astrophysics Data System (ADS)

    Sasaki, Wataru

    2014-11-01

    Since the mid-1990s, ocean wave reanalysis and in situ wave observations have revealed marked downward trends in wave height, exceeding -0.1 m per decade in the midlatitude North Pacific. The wave period in the tropical Pacific is also on a downward trend, exceeding -0.4 s per decade during this period. These changes in wave climate in the Pacific are attributable to recently strengthened trade winds and La Niña-like conditions in the tropical Pacific. The downward trend in significant wave height in the midlatitude North Pacific is due to strengthening of the negative phase of the Pacific-North American teleconnection. Numerical experimentations with a wave model also showed that the downward trend in the wave period in the eastern equatorial Pacific was induced not only by increased wind waves due to strengthened trade winds but also by weakened propagating swells from the midlatitude North Pacific.

  6. A composite study of the quasi-periodic subtropical wind maxima over the South Pacific during November 1984-April 1985

    NASA Technical Reports Server (NTRS)

    Ko, Ken-Chung; Vincent, Dayton G.

    1995-01-01

    A composite of 10 cases of zonal wind maxima at 200 hPa over the subtropical region stretching from Australia to the central Pacific is examined for the six-month period, November 1984-April 1985. This region is unique in that distinct westerly jets frequently form and propagate eastward at latitudes between 20 deg and 35 deg S in the summer season. Some statistical tests were applied and suggest that the flow patterns are quasi periodic, consisting of a tendency for new jet streaks to develop over the eastern Australian region approximately every one to two weeks. These jets then take about 10 days to propagate across the western Pacific before dissipating or, perhaps, moving toward higher latitudes. Their average propagation speed is approximately 4 m/s. An examination of the case-to-case variability of the jets provides additional evidence that they are significant features. A diagnosis of the trough/ridge systems at 200 and 850 hPa, together with calculations of the vertically integrated mean and shear kinetic energies suggests that baroclinic processes dominate in the entrance and center regions of the jet, whereas barotropic processes dominate in the exit and downstream regions.

  7. Acoustic thermometry time series in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dushaw, B. D.; Howe, B. M.; Mercer, J. A.; Worcester; Npal Group*, P. F.

    2002-12-01

    Acoustic measurements of large-scale, depth-averaged temperatures are continuing in the North Pacific as a follow on to the Acoustic Thermometry of Ocean Climate (ATOC) project. An acoustic source is located just north of Kauai. It transmits to six receivers to the east at 1-4-Mm ranges and one receiver to the northwest at about 4-Mm range. The transmission schedule is six times per day at four-day intervals. The time series were obtained from 1998 through 1999 and, after a two-year interruption because of permitting issues, began again in January 2002 to continue for at least another five years. The intense mesoscale thermal variability around Hawaii is evident in all time series; this variability is much greater than that observed near the California coast. The paths to the east, particularly those paths to the California coast, show cooling this year relative to the earlier data. The path to the northwest shows a modest warming. The acoustic rays sample depths below the mixed layer near Hawaii and to the surface as they near the California coast or extend north of the sub-arctic front. The temperatures measured acoustically are compared with those inferred from TOPEX altimetry, ARGO float data, and with ECCO (Estimating the Circulation and Climate of the Ocean) model output. This on-going data collection effort, to be augmented over the next years with a more complete observing array, can be used for, e.g., separating whole-basin climate change from low-mode spatial variability such as the Pacific Decadal Oscillation (PDO). [*NPAL (North Pacific Acoustic Laboratory) Group: J. A. Colosi, B. D. Cornuelle, B. D. Dushaw, M. A. Dzieciuch, B. M. Howe, J. A. Mercer, R. C. Spindel, and P. F. Worcester. Work supported by the Office of Naval Research.

  8. Anthropogenic Influence on the Changes of the Subtropical Gyre Circulation in the South Pacific in the 20th Century

    NASA Astrophysics Data System (ADS)

    Albrecht, F.; Pizarro, O.; Montecinos, A.

    2016-12-01

    The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at

  9. Variable depth distribution of Trichodesmium clades in the North Pacific Ocean.

    PubMed

    Rouco, Mónica; Haley, Sheean T; Alexander, Harriet; Wilson, Samuel T; Karl, David M; Dyhrman, Sonya T

    2016-12-01

    Populations of nitrogen-fixing cyanobacteria in the genus Trichodesmium are critical to ocean ecosystems, yet predicting patterns of Trichodesmium distribution and their role in ocean biogeochemistry is an ongoing challenge. This may, in part, be due to differences in the physiological ecology of Trichodesmium species, which are not typically considered independently in field studies. In this study, the abundance of the two dominant Trichodesmium clades (Clade I and Clade III) was investigated during a survey at Station ALOHA in the North Pacific Subtropical Gyre (NPSG) using a clade-specific qPCR approach. While Clade I dominated the Trichodesmium community, Clade III abundance was >50% in some NPSG samples, in contrast to the western North Atlantic where Clade III abundance was always <10%. Clade I populations were distributed down to depths >80 m, while Clade III populations were only observed in the mixed layer and found to be significantly correlated with depth and temperature. These data suggest active niche partitioning of Trichodesmium species from different clades, as has been observed in other cyanobacteria. Tracking the distribution and physiology of Trichodesmium spp. would contribute to better predictions of the physiological ecology of this biogeochemically important genus in the present and future ocean. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The Diet Composition of Beaked Whales and Melon-Headed Whales from the North Pacific

    DTIC Science & Technology

    2015-09-30

    Whales from the North Pacific Kristi West College of Natural and Computational Science Hawaii Pacific University 45-045 Kamehameha Hwy...whales and melon- headed whales in the North Pacific by conducting stomach content analysis of available specimens collected from stranded animals... Pacific . 2 OBJECTIVES The first component of this overall project involves describing the diet composition of melon-headed whales from the

  11. Nitrogen fixation rates at BATS and along the North Atlantic subtropical front

    NASA Astrophysics Data System (ADS)

    Charoenpong, C.; Larkum, J.; Lee, E. M.; Moisander, P.; Altabet, M. A.

    2012-12-01

    Nitrogen fixation is one of the major inputs of new N into the oligotrophic gyre of North Atlantic. In the Bermuda Atlantic Time-series Study (BATS), Trichodesmium spp. and diatom symbiont Richelia have been regarded as a major contributor to the newly fixed N. However, studies using nitrogenase gene (nifH) sequences have indicated a more diverse diazotroph assemblages including unicellular cyanobacteria in this oligotrophic system. Here, we report N2 fixation rates from diazotrophs of the size fraction that includes unicellular cyanobacteria and other bacteria. Samples were taken from BATS and several stations along the meridional transect from BATS southward to the area of the subtropical front (~27oN). Whole water samples were enriched with 15N-labelled N2, and incubated for 12-24 hours in simulated in situ conditions. Post-incubation filtration by using 20 micron size fractionation excluded Trichodesmium and potential diatom symbionts and constrained our rates to smaller non-filamentous N2-fixers. Sampling was conducted on two cruises during July and August 2012. 13C incorporation rates are also presented to show the photosynthetic activity. In addition, the 15N-enrichment of dissolved organic N (DON) was investigated in order to demonstrate the contribution of the diazotrophy to the regenerated nutrient and the potential link to the heterotrophic bacterial production.

  12. Two centuries of limited variability in subtropical North Atlantic thermocline ventilation.

    PubMed

    Goodkin, Nathalie F; Druffel, Ellen R M; Hughen, Konrad A; Doney, Scott C

    2012-05-01

    Ventilation and mixing of oceanic gyres is important to ocean-atmosphere heat and gas transfer, and to mid-latitude nutrient supply. The rates of mode water formation are believed to impact climate and carbon exchange between the surface and mid-depth water over decadal periods. Here, a record of (14)C/(12)C (1780-1940), which is a proxy for vertical ocean mixing, from an annually banded coral from Bermuda, shows limited inter-annual variability and a substantial Suess Effect (the decrease in (14)C/(12)C since 1900). The Sargasso Sea mixing rates between the surface and thermocline varied minimally over the past two centuries, despite changes to mean-hemispheric climate, including the Little Ice Age and variability in the North Atlantic Oscillation. This result indicates that regional formation rates of sub-tropical mode water are stable over decades, and that anthropogenic carbon absorbed by the ocean does not return to the surface at a variable rate.

  13. Particulate phases are key in controlling dissolved iron concentrations in the (sub)tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Milne, Angela; Schlosser, Christian; Wake, Bronwyn D.; Achterberg, Eric P.; Chance, Rosie; Baker, Alex R.; Forryan, Alex; Lohan, Maeve C.

    2017-03-01

    The supply and bioavailability of iron (Fe) controls primary productivity and N2 fixation in large parts of the global ocean. An important, yet poorly quantified, source to the ocean is particulate Fe (pFe). Here we present the first combined dataset of particulate, labile-particulate (L-pFe), and dissolved Fe (dFe) from the (sub)tropical North Atlantic. We show a strong relationship between L-pFe and dFe, indicating a dynamic equilibrium between these two phases whereby particles "buffer" dFe and maintain the elevated concentrations observed. Moreover, L-pFe can increase the overall "available" (L-pFe + dFe) Fe pool by up to 55%. The lateral shelf flux of this available Fe was similar in magnitude to observed soluble aerosol-Fe deposition, a comparison that has not been previously considered. These findings demonstrate that L-pFe is integral to Fe cycling and hence plays a role in regulating carbon cycling, warranting its inclusion in Fe budgets and biogeochemical models.

  14. Bottom water warming in the North Pacific Ocean.

    PubMed

    Fukasawa, Masao; Freeland, Howard; Perkin, Ron; Watanabe, Tomowo; Uchida, Hiroshi; Nishina, Ayako

    2004-02-26

    Observations of changes in the properties of ocean waters have been restricted to surface or intermediate-depth waters, because the detection of change in bottom water is extremely difficult owing to the small magnitude of the expected signals. Nevertheless, temporal changes in the properties of such deep waters across an ocean basin are of particular interest, as they can be used to constrain the transport of water at the bottom of the ocean and to detect changes in the global thermohaline circulation. Here we present a comparison of a trans-Pacific survey completed in 1985 (refs 4, 5) and its repetition in 1999 (ref. 6). We find that the deepest waters of the North Pacific Ocean have warmed significantly across the entire width of the ocean basin. Our observations imply that changes in water properties are now detectable in water masses that have long been insulated from heat exchange with the atmosphere.

  15. The Role of the Subtropical North Atlantic Water Cycle in the 2015 Extreme Precipitation Events in the US

    NASA Astrophysics Data System (ADS)

    Li, L.; Schmitt, R. W.; Ummenhofer, C.

    2016-12-01

    The role of the oceanic water cycle on the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies is much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  16. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific right...

  17. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific right...

  18. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for the North Pacific... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica... 56° 45′ N/153° 00′ W 57° 03′ N/153° 00′ W. (d) Maps of critical habitat for the North Pacific right...

  19. Arctic-North Pacific Coupled Impacts on the Late Autumn Cold in North America

    NASA Technical Reports Server (NTRS)

    Sung, Mi-Kyung; Kim, Baek-Min; Baik, Eun-Hyuk; Lim, Young-Kwon; Kim, Seong-Joong

    2016-01-01

    The Pacific Decadal Oscillation (PDO) is known to bring an anomalously cold (warm) period to southeastern (northwestern) North America during the cold season of its positive phase through a Rossby wave linkage. This study provides evidence that the remote connection between the North Pacific and the downstream temperature over central North America is strengthened by the warm arctic conditions over the Chukchi and East Siberian Sea, especially in the late autumn season. The modulation effect of the Arctic manifests itself as an altered Rossby wave response to a transient vorticity forcing that results from an equatorward storm track shift, which is induced collaboratively by the PDO and the warm Arctic. This observational finding is supported by two independent modeling experiments: 1) an idealized coupled GCM experiment being nudged toward the warm arctic surface condition and 2) a simple stationary wave model (SWM) experiment forced by transient eddy forcing.

  20. Variations of the Baiu Frontal Activity in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Tomita, T.; Yamaura, T.

    2011-12-01

    In a region to the east of 125°E in the western North Pacific, the Baiu front is defined as a boundary between the two air masses, i.e., the Ogasawara maritime tropical (OMT) air mass in the subtropical Pacific high and the Okhotsk maritime polar (OMP) air mass to the north. The equivalent potential temperature (EPT), which is calculated from temperature and humidity, is suitable to express such air masses, and its meridional gradient determines the boundary, i.e., the Baiu front. This work defines the strength of the Baiu frontal activity (BFA) as the size of the meridional gradient of EPT and examines the variability during the Baiu season measured by the northward shift of the Baiu front from 30° to 40°N. The climatological change of the strength of BFA is controlled by the covariability of OMT and OMP air masses. In the early half of the Baiu season, a distance between the two air masses is small, which results in the strong BFA. In the later half, the northward shift of the northern OMP air mass is accelerated and that of the OMT one slows down, leading the weakening of BFA. The small meridional gradient of EPT is also suitable for a rapid northward shift of the Baiu front or a sudden end of the Baiu season. The interannual variability of BFA is controlled by a balance of the two air masses. The associated anomalies in EPT appear in and around Japan, indicating which air mass is predominant there. The dominant periods are 3-4 years, but the variability has no correlation with the El Nino/Southern Oscillation. The interannual variation also has insignificant correlation with that of the onset and closing dates of the Baiu season. Not only tropical but also extratropical variations, or the covariability of these two variations are significant for the interannual variability of BFA.

  1. The North Pacific as a Regulator of Summertime Climate Over North America and the Asian Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wang, H.

    2004-01-01

    The interannual variability of summertime rainfall over the U.S. may be linked to climate anomalies over Pacific and East Asia through teleconnection patterns that may be components of recurring global climate modes in boreal summer (Lau and Weng 2002). In this study, maintenance of the boreal summer teleconnection patterns is investigated. The particular focus is on the potential effects of North Pacific air-sea interaction on climate anomalies over the U.S. Observational data, reanalysis and outputs of a series of NASA NSIPP AGCM and AGCM coupled to NASA GSFC MLO model experiments are used. Statistical analysis of observations and NSIPP AMIP type simulations indicates that, the interannual variability of observed warm season precipitation over the U.S. is related to SST variation in both tropical and North Pacific, whereas the NSIPP AMIP simulated summertime US. precipitation variation mainly reflects impact of ENS0 in tropical Pacific. This implies the potential importance of air-sea interaction in North Pacific in contributing to the interannual variability of observed summer climate over the U.S. The anomalous atmospheric circulation associated with the dominant summertime teleconnection modes in both observations and NSIPP AMIP simulations are further diagnosed, using stationary wave modeling approach. In observations, for the two dominant modes, both anomalous diabatic heating and anomalous transients significantly contribute to the anomalous circulation. The distributions of the anomalous diabatic heating and transient forcing are quadrature configured over North Pacific and North America, so that both forcings act constructively to maintain the teleconnection patterns. The contrast between observations and NSIPP AMIP simulations from stationary wave modeling diagnosis confirms the previous conclusion based on statistical analysis. To better appreciate the role of extra-tropical air-sea interaction in maintaining the summertime teleconnection pattern

  2. Semidirect Dynamical and Radiative Impact of North African Dust Transport on Lower Tropospheric Clouds over the Subtropical North Atlantic in CESM 1.0

    SciTech Connect

    DeFlorio, Mike; Ghan, Steven J.; Singh, Balwinder; Miller, Arthur J.; Cayan, Dan; Russell, Lynn M.; Somerville, Richard C.

    2014-07-16

    This study uses a century length pre-industrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds and atmospheric circulation, and to suggest a dynamical, rather than microphysical, mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of dust emissions and transport downstream of North Africa in the model. CESM’s mean climatology and probability distribution of aerosol optical depth in this region agrees well with available AERONET observations. In addition, CESM shows strong seasonal cycles of dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists downstream of North Africa over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North Africa dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and lower tropospheric clouds over the open ocean, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using sub-monthly data over regions with different underlying dynamics.

  3. Trophic relationships of albatrosses associated with squid and large-mesh drift-net fisheries in the North Pacific Ocean

    USGS Publications Warehouse

    Gould, Patrick J.; Ostrom, Peggy H.; Walker, William

    1997-01-01

    The diets of Laysan (Diomedea immutabilis) and black-footed albatrosses (D. nigripes) killed in squid and large-mesh drift nets in the transitional zone of the North Pacific Ocean were investigated by examining the contents of the digestive tracts and determining δ13C and δ15N values in breast-muscle tissue. The results show that (i) the combined prey of the two species of albatross consists of over 46 species of marine organisms including coelenterates, arthropods, mollusks, fish, and marine mammals; (ii) both species supplement their traditional diets with food made available by commercial fishing operations (e.g., net-caught squid and offal); (iii) while obtained from drift nets, diets of nonbreeding Laysan and black-footed albatrosses are dominated by neon flying squid (Ommastrephes bartrami); (iv) in the absence of drift-net-related food, Laysan albatrosses feed most heavily on fish and black-footed albatrosses feed most heavily on squid; and (v) based on δ15N values, nonbreeding adult Laysan albatrosses from the transitional zone of the North Pacific Ocean and Laysan albatross nestlings fed by adults from Midway Island in the subtropical Pacific feed at one trophic level and one-third of a trophic level lower than black-footed albatrosses, respectively.

  4. Offshore spawning of Conger myriaster in the western North Pacific: evidence for convergent migration strategies of anguilliform eels in the Atlantic and Pacific

    NASA Astrophysics Data System (ADS)

    Miller, Michael J.; Yoshinaga, Tatsuki; Aoyama, Jun; Otake, Tsuguo; Mochioka, Noritaka; Kurogi, Hiroaki; Tsukamoto, Katsumi

    2011-06-01

    The spawning area of the common Japanese conger, Conger myriaster, had remained unknown because spawning adults or its newly hatched larvae were never collected. Using genetic identification, we determined that C. myriaster spawns far offshore in the western North Pacific, just west of the spawning area of the Japanese eel, Anguilla japonica. In June 2008, six newly hatched C. myriaster larvae, 5.6-6.9 mm, were collected at the eastern edge of where many small unidentified Conger leptocephali (7-20 mm) were collected previously. The offshore spawning location of C. myriaster is analogous to that of the American conger eel, Conger oceanicus, and the American eel, Anguilla rostrata, in the Sargasso Sea, suggesting that convergent evolution of large-scale reproductive migration strategies in both anguillid and conger eels has occurred in the north Atlantic and Pacific subtropical gyres. The realization that two anguillids, A. rostrata and A. japonica, and two congers, C. oceanicus and C. myriaster, have evolved almost identical migration strategies in widely separated ocean basins suggests that natural selection for larval survival and recruitment success has resulted in long offshore spawning migrations in two phylogenetically distant taxa of anguilliform eels.

  5. Offshore spawning of Conger myriaster in the western North Pacific: evidence for convergent migration strategies of anguilliform eels in the Atlantic and Pacific.

    PubMed

    Miller, Michael J; Yoshinaga, Tatsuki; Aoyama, Jun; Otake, Tsuguo; Mochioka, Noritaka; Kurogi, Hiroaki; Tsukamoto, Katsumi

    2011-06-01

    The spawning area of the common Japanese conger, Conger myriaster, had remained unknown because spawning adults or its newly hatched larvae were never collected. Using genetic identification, we determined that C. myriaster spawns far offshore in the western North Pacific, just west of the spawning area of the Japanese eel, Anguilla japonica. In June 2008, six newly hatched C. myriaster larvae, 5.6-6.9 mm, were collected at the eastern edge of where many small unidentified Conger leptocephali (7-20 mm) were collected previously. The offshore spawning location of C. myriaster is analogous to that of the American conger eel, Conger oceanicus, and the American eel, Anguilla rostrata, in the Sargasso Sea, suggesting that convergent evolution of large-scale reproductive migration strategies in both anguillid and conger eels has occurred in the north Atlantic and Pacific subtropical gyres. The realization that two anguillids, A. rostrata and A. japonica, and two congers, C. oceanicus and C. myriaster, have evolved almost identical migration strategies in widely separated ocean basins suggests that natural selection for larval survival and recruitment success has resulted in long offshore spawning migrations in two phylogenetically distant taxa of anguilliform eels.

  6. Geographic variation in Pacific herring growth in response to regime shifts in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Rose, Kenneth A.; Megrey, Bernard A.; Schweigert, Jake; Hay, Douglas; Werner, Francisco E.; Aita, Maki Noguchi

    2015-11-01

    Pacific herring populations at eight North Pacific Rim locations were simulated to compare basin-wide geographic variations in age-specific growth due to environmental influences on marine productivity and population-specific responses to regime shifts. Temperature and zooplankton abundance from a three-dimensional lower-trophic ecosystem model (NEMURO: North Pacific Ecosystem Model for Understanding Regional Oceanography) simulation from 1948 to 2002 were used as inputs to a herring bioenergetics growth model. Herring populations from California, the west coast of Vancouver Island (WCVI), Prince William Sound (PWS), Togiak Alaska, the western Bering Sea (WBS), the Sea of Okhotsk (SO), Sakhalin, and Peter the Great Bay (PGB) were examined. The half-saturation coefficients of herring feeding were calibrated to climatological conditions at each of the eight locations to reproduce averaged size-at-age data. The depth of averaging used for water temperature and zooplankton, and the maximum consumption rate parameter, were made specific to each location. Using the calibrated half-saturation coefficients, the 1948-2002 period was then simulated using daily values of water temperature and zooplankton densities interpolated from monthly model output. To detect regime shifts in simulated temperatures, zooplankton and herring growth rates, we applied sequential t-test analyses on the 54 years of hindcast simulation values. The detected shifts of herring age-5 growth showed closest match (69%) to the regime shift years (1957/58, 1970/71, 1976/77, 1988/89, 1998/99). We explored relationships among locations using cluster and principal component analyses. The first principal component of water temperature showed good correspondence to the Pacific Decadal Oscillation and all zooplankton groups showed a pan-Pacific decrease after the 1976/77 regime shift. However, the first principal component of herring growth rate showed decreased growth at the SO, PWS, WCVI and California

  7. Mid-Pliocene Sea Surface Temperature of the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Lutz, B. P.

    2010-12-01

    The mid-Pliocene (~3.5-3.0 Ma) was a warm and variable period during which mean global surface temperatures were 2-3°C warmer than today despite similar external forcing. As the magnitude of this warming is similar to that which is projected for the late 21st century, the mid-Pliocene is considered a useful (albeit imperfect) analog for future climate change. It also provides a natural test bed for proxy data-climate model integration and the calibration of general circulation models (GCMs) used to predict future climate changes. Proxy data and GCM simulations have provided clear evidence that the mid-Pliocene ocean was characterized by reduced vertical and meridional temperature gradients, leading to the hypothesis that Atlantic meridional overturn circulation (AMOC) and associated tropical heat advection were more vigorous than today. The zone of maximum oceanic-atmospheric northward mass and energy transport in the Atlantic lies between ~15°N and ~35°N latitude. A detailed understanding of sea surface conditions in the North Atlantic Subtropical Gyre (NASG; ~15°-40° N latitude) is therefore critical to our understanding of tropical-extratropical heat fluxes during the mid-Pliocene. Because Atlantic Ocean circulation patterns were similar to today, planktic foraminifer assemblages and sea surface temperature (SST) reconstructions of the NASG can be used to further elucidate and partition the causes of mid-Pliocene warmth, better describe to role of ocean circulation in climate change, and understand changes in biogeography during a geologically recent warm period. As part of the U.S. Geological Survey’s Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) project, this study provides a faunal analysis and multi-proxy (Mg/Ca-, alkenone-, and faunal assemblage-based) SST reconstruction of the NASG during the mid-Pliocene. Preliminary faunal results indicate that relative to modern conditions, gyre circulation was stronger (particularly the Gulf

  8. Denali Ice Core Record of North Pacific Sea Surface Temperatures and the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Polashenski, D.; Osterberg, E. C.; Winski, D.; Ferris, D. G.; Kreutz, K. J.; Wake, C. P.; Introne, D.

    2015-12-01

    Ice cores collected from high elevation alpine glaciers in the Alaska Range provide a unique opportunity to investigate changes in the regional climate of southern Alaska and the north Pacific over the past millennium. In this study, we seek to investigate changes in sea surface temperature (SST) in the north-central Pacific Ocean using the deuterium excess (d-excess) record from the Mt. Hunter ice cores collected in Denali National Park, Alaska. A collaborative research team from Dartmouth College and the Universities of Maine and New Hampshire collected two parallel ice cores to bedrock (208 m long) in May-June 2013 from the Mt. Hunter summit plateau (63º N, 151º W, 4,000 m above sea level). The cores were melted on a continuous melter system in the Dartmouth ice core lab and then analyzed for concentrations of major ions and trace elements, as well as stable water isotope ratios. The depth-age scale of the cores was determined using annual layer counting of δ18O and the concentrations of Mg, NH4, and Methanesulfonic acid (MSA) obtained by ion chromatography. The depth-age scale was validated using large, well-dated volcanic eruptions and the spike in 137Cs concentrations associated with nuclear weapons testing in 1963. Preliminary analyses indicate that the full record spans the past millennium. Analysis of the isotope data set extending back to 1938 using reanalysis data shows a positive correlation (p<0.05) between d-excess at the core site and the north-central Pacific SST. The north-central Pacific region of positive SST-d-excess correlation occurs at one node of the Pacific Decadal Oscillation (PDO), and thus the Denali cores are sensitive to PDO variability with low (high) d-excess associated with positive (negative) PDO index values. We also note a significant (p<0.05) declining trend in d-excess from 1938-2012, which we hypothesize to represent a rising proportion of Arctic moisture sources influencing Denali as Arctic temperatures and evaporation

  9. Spatial Characteristics of Interannual Variability in Wind Stress over the Western North Pacific.

    NASA Astrophysics Data System (ADS)

    Kutsuwada, Kunio

    1988-04-01

    About 4.5 million wind data observations reported from ships during 1961-83 are used to elucidate the spatial structure of interannual variations of the wind stress over the western North Pacific (0°-0°N, 120°E-170°W). Spatially coherent features are described in terms of time series and cross-spectral analyses of monthly data of the zonal and meridional components in 2° lat-5° long quadrangles.In a large portion of the study area, the interannual variation of the zonal stress dominates that of the meridional stress. In the region of the westerlies north of 28°N, the strength of the wintertime maximum in the eastward stress changes from year to year, and the interannual variation of the zonal stress is not coherent over the whole region. The interannual energy in the region is highest in the western North Pacific and is not concentrated in any particular period bands. In the doldrums, located in the western portion of the region between the equator and 10°N, where the stress magnitude is smaller than 0.03 N m2 in the mean, the zonal stress changes coherently over the whole region in the period band around 2 yr, in which the interannual energy is concentrated. In the trades, south of 28°N, where westward stress is dominant in the mean, the interannual energy of the zonal stress is concentrated in the period band around 3.6 yr, and the variations are not coherent over the whole region.The relationship between the zonal stress and Southern Oscillation index (SOI) is examined for periods in which the interannual energy of the SOI is concentrated. In the 3.6-yr period in which the major spectral peak is found, the SOI is coherent with the zonal stress not only in the tropical area between the equator and 20°N but also in the subtropical area between 30° and 40°N; while in the 2.1-yr period in which a secondary spectral peak is found, the SOI is coherent with the zonal stress in the doldrums region. It is suggested that the variations in these period bands

  10. North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Mitchell, Jonathan L.; Risi, Camille; Tripati, Aradhna E.

    2017-01-01

    Southwestern North America was wetter than present during the Last Glacial Maximum. The causes of increased water availability have been recently debated, and quantitative precipitation reconstructions have been underutilized in model-data comparisons. We investigate the climatological response of North Pacific atmospheric rivers to the glacial climate using model simulations and paleoclimate reconstructions. Atmospheric moisture transport due to these features shifted toward the southeast relative to modern. Enhanced southwesterly moisture delivery between Hawaii and California increased precipitation in the southwest while decreasing it in the Pacific Northwest, in agreement with reconstructions. Coupled climate models that are best able to reproduce reconstructed precipitation changes simulate decreases in sea level pressure across the eastern North Pacific and show the strongest southeastward shifts of moisture transport relative to a modern climate. Precipitation increases of ˜1 mm d-1, due largely to atmospheric rivers, are of the right magnitude to account for reconstructed pluvial conditions in parts of southwestern North America during the Last Glacial Maximum.

  11. Miocene biochronology and paleoceanography of the North Pacific

    USGS Publications Warehouse

    Keller, G.

    1981-01-01

    Biostratigraphic correlation based on microfossil datum levels, directly or indirectly tied to the paleomagnetic time scale, provides a high resolution time control for the Miocene in the equatorial and middle latitude North Pacific. Faunal changes and abundance fluctuations of planktic foraminiferal species combined with the oxygen Pacific. Faunal changes and abundance fluctuations of planktic foraminiferal species combined with the oxygen isotope record of foraminifers, reveal the paleoclimatic and paleoceanographic history. The planktic foraminiferal assemblage change in the early Miocene, extinction of Oligocene fauna and rise of a highly diverse Neogene fauna, appears to be related to increased water mass stratification in the world oceans presumably resulting from the establishment of circum-Antarctic circulation. An increase in the siliceous productivity in the eastern equatorial Pacific region between 20 and 18 Ma suggests that the vertical and horizontal circulation was intensified at that time. Climates cooled rapidly during the middle Miocene between 14 and 13 Ma suggesting the growth of a major east Antarctic ice sheet. Paleoclimatic conditions remained generally cool, although oscillating, during the late Miocene. In the late early to middle Miocene faunal provincialism developed between low and middle latitudes, and by late Miocene time a distinct provincialism similar to the present was established. ?? 1981.

  12. Increasing coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014

    NASA Astrophysics Data System (ADS)

    Krumhardt, K. M.; Lovenduski, N. S.; Freeman, N. M.; Bates, N. R.

    2015-11-01

    As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998-2014) of surface chlorophyll and particulate inorganic carbon (PIC) to show that coccolithophore populations in the North Atlantic Subtropical Gyre have been increasing significantly over the past two decades. Over 1991-2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore abundance at BATS. We further demonstrate that variability in coccolithophore abundance here is positively correlated with variability in DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by ∼ 1.4 μmol kg-1 yr-1 over 1991 to 2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.

  13. Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014

    NASA Astrophysics Data System (ADS)

    Krumhardt, Kristen M.; Lovenduski, Nicole S.; Freeman, Natalie M.; Bates, Nicholas R.

    2016-02-01

    As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore (haptophyte) pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998-2014) of surface chlorophyll and particulate inorganic carbon (PIC) as a proxy for coccolithophore abundance to show that coccolithophore populations in the North Atlantic subtropical gyre have been increasing significantly over the past 2 decades. Over 1990-2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore pigment abundance at BATS, though we note that this is sensitive to the period being analyzed. We further demonstrate that variability in coccolithophore chlorophyll a here is positively correlated with variability in nitrate and DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by ˜ 1.4 µmol kg-1 yr-1 over the period of 1991-2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.

  14. Strong North Atlantic Subtropical Gyre circulation fueling moisture advection into the Mediterranean realm during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Bahr, Andre; Kaboth, Stefanie; Hodell, David

    2017-04-01

    The wind-driven North Atlantic Subtropical Gyre is an important mediator of heat and moisture advection into central and southern Europe. Here we study the dynamics of the Subtropical Gyre during the mid-Pleistocene (approx. 1400 - 500 ka; MIS 44 - 14). This time interval is characterized by a profound increase in continental ice shield size and the switch from a 41 kyr to a ˜100 kyr glacial/interglacial cyclicity ("Mid-Pleistocene Transition", MPT). Primary goal was to investigate the response of the Subtropical Gyre to changes in the boundary conditions (e.g. ice volume) over the course of the MPT. Our interpretation is based on paired δ18O and Mg/Ca analyses on the thermocline-dwelling planktonic foraminifera Globorotalia inflata from Iberian Margin Site U1385 reflecting subsurface temperature and salinity variability at the eastern branch of the Subtropical Gyre. The results show generally cold/fresh glacials and warm/saline interglacials on thermocline level. Hence, advection of warm/saline subtropical waters is generally stronger during interglacials than during glacials. However, glacials MIS 20 and 18 stand out as they are characterized by anomalously warm and saline subsurface waters off Iberia. We infer that enhanced ice shield growth during the MPT led to a southward shift of the source region of the thermocline waters at the Iberian Margin. Combined with increased Ekman downwelling (causing a deepened thermocline) this effectively counteracted glacial subsurface cooling at Site U1385. The eccentricity minimum during MIS 20-18 further suppressed the development of strong trade winds and, hence, the advection of cold northern-sourced water masses. Relatively humid conditions in the eastern Mediterranean during MIS 20 and 18 indicate that atmospheric moisture derived from the warm water accumulated off Iberia might have been advected deep into continental Europe. It might be perceived that this moisture further fueled European glacier growth during the

  15. Past and Future Directions of North Pacific Tephrochronology

    NASA Astrophysics Data System (ADS)

    Sarna-Wojcicki, A. M.

    2004-12-01

    The north Pacific Ocean is rimmed by a complex of subduction zones that dip away from the ocean basin toward the fringing island arcs and continents. Inboard of these subduction zones is a belt of persistent volcanic activity--the Pacific "Ring of Fire"--formed by partial melting of subducted oceanic crust and overlying continental crust. Magma bodies of intermediate to silicic composition at many sites along this active volcanic belt have given rise to explosive volcanic eruptions and wide dispersal of tephra throughout the north Pacific Ocean and adjacent land areas. Moreover, along some parts of the north Pacific rim, as well as farther inboard of the subduction zones, are several persistent loci of crustal extension, translation, and hot spot activity that have also been sites of magma generation and large-volume explosive volcanism. Tephra erupted from these combined sources has been carried mostly in the direction of the prevailing winds, generally from west to east, though distributions have been complex, depending on heights of erupting columns and the prevailing weather and climate (including the seasons of eruption, positions of high- and low-pressure areas, and configurations of the jet stream). Tephra deposits formed as a consequence of this volcanic activity provide an important scientific resource for chronostratigraphy and correlation, and contribute significantly to solution of regional and topical studies in earth science. Tephra studies in Japan, the western conterminous United States, and southwestern Canada have advanced to the point that regional spatial-temporal late Noegene tephrochronological reference frameworks exist for these areas. In northwestern Canada, Alaska, Kamchatka, and eastern Siberia, the development of these stratigraphic frameworks lags, owing to lower population density, more difficult access, and shorter field seasons. Tephrochronologic studies of ocean sediment cores have been more sporadic than systematic, and lag behind

  16. Net air-sea surface heat flux during 1984-2004 over the North Pacific and North Atlantic oceans (10°N-50°N): annual mean climatology and trend

    NASA Astrophysics Data System (ADS)

    Li, Gen; Ren, Baohua; Zheng, Jianqiu; Yang, Chengyun

    2011-06-01

    Using the Objectively Analyzed air-sea Fluxes dataset (and also the National Oceanography Centre Southampton Flux Dataset v2.0), we examined both the annual mean climatology and trend of net air-sea surface heat flux ( Q net) for 1984-2004 over the North Pacific and North Atlantic oceans (10°N-50°N). The annual mean Q net climatology shows that oceans obtain the positive Q net over much of the North Pacific and North Atlantic oceans. Exceptions are the regions of western boundary currents (WBCs) including the Kuroshio and its extension off Japan and the Gulf Stream off the USA and its extension, where oceans release lots of heat into the atmosphere, mainly ascribed to the large surface turbulent heat loss. The statistically significant negative Q net trends occurred in the WBCs, while the statistically significant positive Q net trends appeared in the central basins of Northern Subtropical Oceans (CNSOs) including the central basin of Northern Subtropical Pacific and the central basin of Northern Subtropical Atlantic. These indentified Q net trends, which are independent of both El Niño-Southern Oscillation (ENSO) and ENSO Modoki but closely related to global warming forcing, are predominately due to the statistically significant surface latent heat (LH) trends. Over the WBCs, the positive LH trends are mainly induced by the sea surface temperature increasing, indicating the ocean forcing upon overlying atmosphere. In contrast, over the CNSOs, the negative LH trends are mainly caused by the near-surface air specific humidity increasing, indicative of an oceanic response to overlying atmospheric forcing.

  17. North Pacific deglacial hypoxic events linked to abrupt ocean warming.

    PubMed

    Praetorius, S K; Mix, A C; Walczak, M H; Wolhowe, M D; Addison, J A; Prahl, F G

    2015-11-19

    Marine sediments from the North Pacific document two episodes of expansion and strengthening of the subsurface oxygen minimum zone (OMZ) accompanied by seafloor hypoxia during the last deglacial transition. The mechanisms driving this hypoxia remain under debate. We present a new high-resolution alkenone palaeotemperature reconstruction from the Gulf of Alaska that reveals two abrupt warming events of 4-5 degrees Celsius at the onset of the Bølling and Holocene intervals that coincide with sudden shifts to hypoxia at intermediate depths. The presence of diatomaceous laminations and hypoxia-tolerant benthic foraminiferal species, peaks in redox-sensitive trace metals, and enhanced (15)N/(14)N ratio of organic matter, collectively suggest association with high export production. A decrease in (18)O/(16)O values of benthic foraminifera accompanying the most severe deoxygenation event indicates subsurface warming of up to about 2 degrees Celsius. We infer that abrupt warming triggered expansion of the North Pacific OMZ through reduced oxygen solubility and increased marine productivity via physiological effects; following initiation of hypoxia, remobilization of iron from hypoxic sediments could have provided a positive feedback on ocean deoxygenation through increased nutrient utilization and carbon export. Such a biogeochemical amplification process implies high sensitivity of OMZ expansion to warming.

  18. Characterising meso-marine ecosystems of the North Pacific

    NASA Astrophysics Data System (ADS)

    Batten, Sonia D.; David Hyrenbach, K.; Sydeman, William J.; Morgan, Ken H.; Henry, Michael F.; Yen, Peggy P. Y.; Welch, David W.

    2006-02-01

    To delineate mesoscale variability in marine ecosystems of the subarctic North Pacific and identify "hotspots" of biological activity, we conducted contemporaneous surveys of plankton and avifaunal communites in 2000-2003. Plankton samples were collected with a continuous plankton recorder (CPR) towed by a commercial vessel while a trained observer recorded marine bird distributions using strip-transect techniques. Near- and sub-surface physical oceanographic properties and productivity patterns were measured using a temperature data logger and satellite-derived chlorophyll a concentrations. We identified 10 distinct biological communities across the North Pacific, which we refer to as 'meso-marine ecosystems' (MME). We examined the characteristics of MME over multiple years to assess temporal persistence. MME were associated with different bathymetric domains and current systems. MME differed in the overall abundance and species composition of their fauna and, therefore, almost certainly in productivity. Regular monitoring of the spatial and temporal variability of MME will enhance our ability to detect and understand coupled climate-ecosystem responses, and, in turn, help guide ecosystem-based fisheries and wildlife management.

  19. Organic carbon budget for the eastern boundary of the North Atlantic subtropical gyre: major role of DOC in mesopelagic respiration.

    PubMed

    Santana-Falcón, Yeray; Álvarez-Salgado, Xosé Antón; Pérez-Hernández, María Dolores; Hernández-Guerra, Alonso; Mason, Evan; Arístegui, Javier

    2017-08-31

    Transports of suspended particulate (POCsusp) and dissolved (DOC) organic carbon are inferred from a box-model covering the eastern boundary of the North Atlantic subtropical gyre. Corresponding net respiration rates (R) are obtained from a net organic carbon budget that is based on the transport estimates, and includes both vertical and lateral fluxes. The overall R in the mesopelagic layer (100-1500 m) is 1.6 ± 0.4 mmol C m(-2) d(-1). DOC accounts for up to 53% of R as a result of drawdown of organic carbon within Eastern North Atlantic Central Water (ENACW) that is entrained into sinking Mediterranean Overflow Water (MOW) that leads to formation of Mediterranean water (MW) at intermediate depths (~900 m). DOC represents 90% of the respired non-sinking organic carbon. When converted into oxygen units, the computed net respiration rate represents less than half the oxygen utilization rates (OUR) reported for the mesopelagic waters of the subtropical North Atlantic. Mesoscale processes in the area, not quantified with our approach, could account in part for the OUR differences observed between our carbon budget and other published studies from the North Atlantic, although seasonal or interannual variability could also be responsible for the difference in the estimates.

  20. Environmental Forcing of Nitrogen Fixation in the Eastern Tropical and Sub-Tropical North Atlantic Ocean

    PubMed Central

    Rijkenberg, Micha J. A.; Langlois, Rebecca J.; Mills, Matthew M.; Patey, Matthew D.; Hill, Polly G.; Nielsdóttir, Maria C.; Compton, Tanya J.; LaRoche, Julie; Achterberg, Eric P.

    2011-01-01

    During the winter of 2006 we measured nifH gene abundances, dinitrogen (N2) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 106 L−1 nifH gene copies, unicellular group A cyanobacteria with up to 105 L−1 nifH gene copies and gamma A proteobacteria with up to 104 L−1 nifH gene copies. N2 fixation rates were low and ranged between 0.032–1.28 nmol N L−1 d−1 with a mean of 0.30±0.29 nmol N L−1 d−1 (1σ, n = 65). CO2-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2±3.2 in surface waters. Nevertheless, N2 fixation rates contributed only 0.55±0.87% (range 0.03–5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N2 fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N2 fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the consequences of climate

  1. Environmental forcing of nitrogen fixation in the eastern tropical and sub-tropical North Atlantic Ocean.

    PubMed

    Rijkenberg, Micha J A; Langlois, Rebecca J; Mills, Matthew M; Patey, Matthew D; Hill, Polly G; Nielsdóttir, Maria C; Compton, Tanya J; Laroche, Julie; Achterberg, Eric P

    2011-01-01

    During the winter of 2006 we measured nifH gene abundances, dinitrogen (N(2)) fixation rates and carbon fixation rates in the eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 10(6) L(-1)nifH gene copies, unicellular group A cyanobacteria with up to 10(5) L(-1)nifH gene copies and gamma A proteobacteria with up to 10(4) L(-1)nifH gene copies. N(2) fixation rates were low and ranged between 0.032-1.28 nmol N L(-1) d(-1) with a mean of 0.30 ± 0.29 nmol N L(-1) d(-1) (1σ, n = 65). CO(2)-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved inorganic nitrogen to phosphate ratios (DIN:DIP) of about 2 ± 3.2 in surface waters. Nevertheless, N(2) fixation rates contributed only 0.55 ± 0.87% (range 0.03-5.24%) of the N required for primary production. Boosted regression trees analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen (DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding ligands as well as oxygen and temperature influenced N(2) fixation rates and the distribution of the dominant diazotrophic phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate warming may increase N(2) fixation rates. However, the balance between a decreased supply of DIP and DFe from deep waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in deposition of Saharan dust may ultimately determine the

  2. Variability of the central-North Atlantic subtropical gyre induced by Rossby waves

    NASA Astrophysics Data System (ADS)

    Vélez-Belchí, P.; Kwon, Y. O.; Yang, J.; Pérez-Hernández, M. D.; Hernandez-Guerra, A.

    2014-12-01

    The Atlantic Ocean meridional overturning circulation (AMOC) contributes to moderate of climate in Europe through the northward transport of 25% of the global heat flux, which is at maximum at around 24.50ºN. Consequently, transatlantic oceanographic sections at this latitude have become a benchmark for monitoring long-term changes in the Atlantic and to study the nature and causes of climate change. This has resulted in the occupation of the North Atlantic Ocean hydrographic transect along 24.5ºN seven times since 1957, more than any other transoceanic section in the world. The east-west slope in the dynamic height at 200dbar referenced to 1800dbar along 24.5ºN has decreased in 12-cm between 1957 and 2011, suggesting a spin-down of the central-North Atlantic subtropical gyre. Over imposed on this long-term trend in the slope there is a decadal variability in the slope with amplitudes up to 5 cm, that persist for several years, as the one during 2001-2004 that preceded large compensated changes in temperature and salinity at 24.5ºN. The hydrographic dataset show that this signal is predominantly due to vertical motion of the isopycnal surfaces, extending to depths of at least 1800 dbar. Using the linearized equations for a stratified ocean separated into vertical modes and for low-frequency, large-scale wind forcing, we explore the role of westward propagating linear Rossby waves in explaining these long-term and decadal changes. The results indicate the long-term change may be explained by the differential trend of wind stress curl between the eastern and western basins. The results are compared with simulations from a two-layer primitive equation model with realistic topography. Given the recent interests in Rossby waves, as the main mechanism explaining the observed seasonal cycle of the AMOC, an analysis of the impact of the seasonal variability induced by Rossby waves at 24.5ºN is also carried out.

  3. Megafauna associated with bathyal seamounts in the central North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Raymond R.; Smith, Kenneth L.; Rosenblatt, Richard H.

    1985-10-01

    Sixteen fish species and 31 invertebrate species were identified on Horizon Guyot and five other bathyal seamounts in the central North Pacific Ocean from trawl and baited-trap collections augmented with video camera recordings. The seamount fauna shows zoogeographic affinities with fauna of the Indo-West Pacific as does the marine shore fauna of central Pacific Islands.

  4. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean.

    PubMed

    Benitez-Nelson, Claudia R; Bidigare, Robert R; Dickey, Tommy D; Landry, Michael R; Leonard, Carrie L; Brown, Susan L; Nencioli, Francesco; Rii, Yoshimi M; Maiti, Kanchan; Becker, Jamie W; Bibby, Thomas S; Black, Wil; Cai, Wei-Jun; Carlson, Craig A; Chen, Feizhou; Kuwahara, Victor S; Mahaffey, Claire; McAndrew, Patricia M; Quay, Paul D; Rappé, Michael S; Selph, Karen E; Simmons, Melinda P; Yang, Eun Jin

    2007-05-18

    Mesoscale eddies may play a critical role in ocean biogeochemistry by increasing nutrient supply, primary production, and efficiency of the biological pump, that is, the ratio of carbon export to primary production in otherwise nutrient-deficient waters. We examined a diatom bloom within a cold-core cyclonic eddy off Hawaii. Eddy primary production, community biomass, and size composition were markedly enhanced but had little effect on the carbon export ratio. Instead, the system functioned as a selective silica pump. Strong trophic coupling and inefficient organic export may be general characteristics of community perturbation responses in the warm waters of the Pacific Ocean.

  5. Satellite Detection of Precipitation over the North Pacific

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy; McMurdie, Lynn A.; Weinman, James

    2003-01-01

    Intense extratropical winter cyclones often impact the West Coast of North America with strong winds and heavy precipitation. Several times during a winter season, short-term forecasts (24 - 48 hours) of these storms are seriously deficient with central pressure errors in the 10's of hPa and surface low position errors in the 100's of km. For example, 48-hr sea level pressure errors (forecast - observation) at buoy 46005 off the Oregon coast for the 2001 - 2002 winter season is plotted. In addition, two times the standard deviation (determined from pressure errors from the last four winter seasons) are also shown. It is evident from this figure that large forecast errors (i.e. greater than 10 hPa) occurred about 10 times this past winter at buoy 46005 with three events where the errors were 20 hPa. Beside large forecast errors of sea level pressure, numerical forecasts of precipitation for land falling cyclones can also be flawed. This is due in large part to the lack of accurate precipitation information over the ocean. Therefore, remote sensing techniques are the only viable option for obtaining accurate information on the distribution and intensity of precipitation over the North Pacific. Due to the radiative characteristics of precipitation sized hydrometeors at microwave frequencies, microwave sensors are able to detect precipitation over oceanic regions. Past studies have demonstrated the utility of passive microwave rainrate data for locating intense rainfall in rapidly deepening cyclones, in detecting developing polar mesocyclones and in determining frontal bands. There are currently many sources of microwave rainrate data: the Special Sensor Microwave Imager (SSM/I) (currently flying on three platforms), the Advanced Microwave Sounding Unit (AMSU-B) (currently flying on NOAA-15, NOAA-16, and NOAA-17), and the Tropical Rainfall Measuring Mission Microwave Imager (TMI). Data will soon be available from the Advanced Microwave Radiometer-EOS (AMSR-E) on the

  6. Ducting and Boundary Layer Refractivity Bias Correction in GPS Radio Occultation Soundings with MODIS over the Subtropical Eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Xie, F.; Ao, C. O.; Adhikari, L.; Yu, X.

    2015-12-01

    Over the subtropical eastern Pacific, a large stratus cloud deck is often trapped below a strong inversion layer resulting from the combination of strong free tropospheric subsidence and the cool sea surface temperature underneath. The stable inversion leads to a sharp moisture decrease and a large negative refractivity gradient that often causes ducting right above the cloudy boundary layer (CBL). The presence of duct results in systematically negative biases in the GPS radio occultation (RO) refractivity (i.e., N-bias) inside the CBL due to a non-unique retrieval problem. An independent physical constraint is required to extract a unique and bias-free RO refractivity observation. In the overcast scenario, the inversion base temperature corresponds well to the cloud-top-temperature (CTT) of the stratus, which can be precisely measured from MODIS (Moderate Resolution Imaging Spectroradiometer) longwave infrared window channel. In this presentation, the MODIS CTT measurements are used as an independent constraint to correct the systematic biases in the near co-incident RO refractivity soundings from COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate). The sensitivity analysis on the reconstruction technique and the comparison of the reconstructed (bias-free) RO profiles with the radiosonde and ECMWF reanalysis will be presented. The synergy of GPS RO and MODIS cloud measurements provides model-independent observation of CBL thermodynamic structures that are crucial for understanding the boundary layer and low cloud processes in global weather and climate model simulations.

  7. Distribution and formation of the mesothermal structure (temperature inversions) in the North Pacific subarctic region

    NASA Astrophysics Data System (ADS)

    Ueno, Hiromichi; Yasuda, Ichiro

    2000-07-01

    The distribution and formation of mesothermal structure (temperature inversions) in the North Pacific subarctic region are investigated through analysis of climatological hydrographic data. It is suggested that the heat and salt that maintain the mesothermal water and thus the halocline in the density range of 26.7-27.2σθ are transported as a crossgyre flow from the transition domain just east of Japan, where the waters are influenced by the subtropical gyre water mass, to the eastern subarctic region. Along the transport route the isopycnal potential temperature and thus salinity are well conserved. In the western subarctic gyre, the Bering Sea, and the northern Gulf of Alaska, the temperature reaches its minimum at the surface in winter and the areal coverage agrees well with the distribution of the mesothermal structure. In the southeastern part of the zonally distributed mesothermal structure in the area of 170°E-150°W and 45°-50°N, where the winter sea surface temperature is higher than that in the deeper layer, dichothermal water is formed by subsurface intrusion of the low-temperature and low-salinity water that outcropped in the previous winter over the warm and saline water transported from the transition domain.

  8. North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.; Iacobellis, Sam F.

    2005-01-01

    This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.

  9. North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships

    NASA Technical Reports Server (NTRS)

    Norris, Joel R.; Iacobellis, Sam F.

    2005-01-01

    This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.

  10. Tempo-spatial patterns of bacterial community composition in the western North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kataoka, Takafumi; Hodoki, Yoshikuni; Suzuki, Koji; Saito, Hiroaki; Higashi, Seigo

    2009-04-01

    In the western North Pacific, where subarctic Oyashio waters encounter subtropical Kuroshio waters, phylotype composition of heterotrophic bacteria was estimated by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial 16S ribosomal DNA. Total bacterial abundance was also measured by flow cytometry. The study area was divided into four water masses: coastal, Oyashio, Kuroshio, and the Kuroshio-Oyashio transition. Abundances of heterotrophic bacteria in the Oyashio, Kuroshio, and Kuroshio-Oyashio transition regions ranged from 0.2 × 10 5 cells mL - 1 to 1.4 × 10 5 cells mL - 1 and were not significantly different, except in the Oyashio region during September. Bacterial compositions were distinct in each water mass. Furthermore, phylotype distributions differed between surface and subsurface waters in the Kuroshio-Oyashio transition region. Out of 61 DGGE bands obtained, 41 were successfully identified as 31 phylotypes: 22 Gammaproteobacteria, 4 Alphaproteobacteria, 2 unknown bacteria, 2 cyanobacteria, and 1 plastid. Although the Gammaproteobacteria OM60 clade was eurytopic in the study area, Psychrobacter glacincola and the uncultured Gammaproteobacteria SAR92 clade were often observed in the Oyashio region. Overall, our results indicated that Gammaproteobacteria were predominant in the bacterial community, which was influenced by the hydrographic properties of each water mass in the study area.

  11. Decadal change of Tropical Cyclone Activity over western North Pacific around late-1990s

    NASA Astrophysics Data System (ADS)

    He, H.; Yang, J.; Mao, R.; Wang, Y.; Gong, D.

    2014-12-01

    A pronounced decadal change of tropical cyclone (TC) activity was identified over western North Pacific (WNP) around late-1990s. After late-1990s, the WNP total TC genesis number exhibited an evident decrease, particularly over southern WNP region (S-WNP: 5oN-20oN), which was mainly caused by reduced vorticity and descending anomalies. We also detected a significant northward migration of TC genesis from 17.2°N to 18.7°N. The above TC genesis change is attributed to the weakening of monsoon trough and local Hadley cell that is associated with sea surface temperature climate shift around the late-1990s. In terms of three prevailing TC tracks changes, the northwestward-moving track (II) became the most dominant prevailing track mode while the westward-moving track (I) became weaker, and the northeastward-recurving track (III) had a westward shift. The track shifts primarily resulted from the large-scale steering flows change, which also had played a vital role in the modulation of TC regional duration. Thus, the subtropical East Asia tended to have a higher risk of encountering TC while the Southern China had a lower risk. Additionally, a visual reduction was seen in both number and proportion of typhoons reaching categories 1 and 2, and a remarkable poleward migration was also recognized in the average latitudes where TCs have achieved their lifetime-maximum intensity.

  12. [Principal stages in the Cenozoic diversification of shallow-water molluscan faunas in the North Pacific].

    PubMed

    Kafanov, A I

    2006-01-01

    Cluster analysis of bivalve species recorded in Cenozoic deposits in Sakhalin Island, western Kamchatka, Hokkaido, and California was used to determine geological age of the modem North Pacific biogeographic region and its constituent subregions (Japan-Mandchurian, Beringian, and Oregon-Sitkan). The North Pacific region developed during the Paleogene-Neogene transition due to Drake Passage opening to deep-water movement, formation of the deep-water Antarctic Circumpolar Current, and the change in climate from greenhouse to psychospheric. Differentiation of the three subregions within the North Pacific Region seems to have occurred in late Miocene-early Pliocene, about 5.6 millions years ago and was probably due to the flooding of the Bering Land Bridge and development of the present configuration of circulation in the North Pacific. In the Northwest Pacific, during Paleogene and early Neogene, the faunal diversification occurred more rapidly and was more extensive than in the Northeast Pacific.

  13. Relationship Between the Northern Hemisphere Polar Vortext ,North Pacific Storm Track and the West Wind Drift

    NASA Astrophysics Data System (ADS)

    Lian, Y.; Li, S.; Liu, Z.; Shen, B.; Yang, Q.

    2007-12-01

    ,there is a negative anomalies of geopotential height cincture zone in the subtropical area from India to north America in the Northern Hemisphere,but during the 1970s and 1980s the negative anomalies replaced by the positive anomalies in the same zone, what is more, this distribution of the anomalies is persistence from spring to summer not only throughout the 1950s and 1960s but also throughout the 1970s and 1980s. While in America the anomalies pattern show as northeast negative and southwest positive from Canada to America ,which cause the America continent climate shows different character, compared the 1950s and 1960s to the 1970s and 1980s.In the East Asian, during the 1970s and 1980s,the location of the subtropical high is more eastward and more southward ,so the summer monsoon is obviously weaker than the 1950s and 1960s.

  14. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre.

    PubMed

    Bryant, Jessica A; Clemente, Tara M; Viviani, Donn A; Fong, Allison A; Thomas, Kimberley A; Kemp, Paul; Karl, David M; White, Angelicque E; DeLong, Edward F

    2016-01-01

    , including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available.

  15. Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre

    PubMed Central

    Bryant, Jessica A.; Clemente, Tara M.; Viviani, Donn A.; Fong, Allison A.; Thomas, Kimberley A.; Kemp, Paul; Karl, David M.; White, Angelicque E.

    2016-01-01

    oceanic macrobiota, including mammals and birds, are well documented, little is known about its influence on smaller marine residents, including microbes that have key roles in ocean biogeochemistry. Our work provides a new perspective on microbial communities inhabiting microplastics that includes its effect on microbial biogeochemical activities and a description of the cross-domain communities inhabiting plastic particles. This study is among the first molecular ecology, plastic debris biota surveys in the North Pacific Subtropical Gyre. It has identified fundamental differences in the functional potential and taxonomic composition of plastic-associated microbes versus planktonic microbes found in the surrounding open-ocean habitat. Author Video: An author video summary of this article is available. PMID:27822538

  16. Track-pattern-based seasonal prediction model for intense tropical cyclone activities over the North Atlantic and the western North Pacific basins

    NASA Astrophysics Data System (ADS)

    Choi, W.; Ho, C. H.

    2015-12-01

    Intense tropical cyclones (TCs) accompanying heavy rainfall and destructive wind gusts sometimes cause incredible socio-economic damages in the regions near their landfall. This study aims to analyze intense TC activities in the North Atlantic (NA) and the western North Pacific (WNP) basins and develop their track propensity seasonal prediction model. Considering that the number of TCs in the NA basin is much smaller than that in the WNP basin, different intensity criteria are used; category 1 and above for NA and category 3 and above for WNP based on Saffir-Simpson hurricane wind scale. By using a fuzzy clustering method, intense TC tracks in the NA and the WNP basins are classified into two and three representative patterns, respectively. Each pattern shows empirical relationships with climate variabilities such as sea surface temperature distribution associated with El Niño/La Niña or Atlantic Meridional Mode, Pacific decadal oscillation, upper and low level zonal wind, and strength of subtropical high. The hybrid statistical-dynamical method has been used to develop the seasonal prediction model for each pattern based on statistical relationships between the intense TC activity and seasonal averaged key predictors. The model performance is statistically assessed by cross validation for the training period (1982-2013) and has been applied for the 2014 and 2015 prediction. This study suggests applicability of this model to real prediction work and provide bridgehead of attempt for intense TC prediction.

  17. Reconstruction of deglacial Antarctic Intermediate Water variations in the subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, R. C.; Marcantonio, F.; Schmidt, M. W.

    2012-12-01

    Understanding intermediate water circulation across the last deglaciation is critical in assessing the role of oceanic heat transport associated with Atlantic Meridional Overturning Circulation (AMOC) variability across abrupt climate events. Abrupt changes in the northward flow of Antarctic Intermediate Water (AAIW) associated with AMOC reduction during the Younger Dryas (YD) and Heinrich Event 1 (H1) have been hypothesized, suggesting a potential connection between the Southern Ocean and high-latitude North Atlantic climate change. However, controversy persists as to whether the northward flow of AAIW is stronger or weaker during these abrupt cold events. One school maintains that there is an increase in the northward penetration of AAIW associated with weaker AMOC during both the YD and H1 cold events (e.g., [1-2]). However, each of these previous studies analyzed sediment cores retrieved from depths deeper than the modern depth range of AAIW (500-1100 m in the tropical and subtropical North Atlantic). Another school comes to the opposite conclusion, namely that there is a weakening of AAIW at least during one of the deglacial events (e.g., [3-4]). Here, we reconstruct deglacial AAIW variations using authigenic Nd isotope ratios from sediment recovered from core VM12-107 (11.33°N, 66.63°W; 1079 m) in the Southern Caribbean Sea. VM12-107 lies at the boundary between modern AAIW and modern upper NADW and thus is ideal for investigating the shoaling/deepening of the competing water masses as well as the variations of AAIW across abrupt climate events during the last deglaciation. We measured authigenic Nd isotope compositions in three different fractions in core VM12-107: the Fe-Mn oxyhydroxide leachate of the bulk sediment, the uncleaned planktonic foraminifera (mixed species), and fish debris wherever possible. Preliminary authigenic Nd isotope results from the Fe-Mn leachate show little variability in the ɛNd values, ranging from -9.6 to -10.6, during the

  18. Ultrasonic whistles of killer whales (Orcinus orca) recorded in the North Pacific (L).

    PubMed

    Filatova, Olga A; Ford, John K B; Matkin, Craig O; Barrett-Lennard, Lance G; Burdin, Alexander M; Hoyt, Erich

    2012-12-01

    Ultrasonic whistles were previously found in North Atlantic killer whales and were suggested to occur in eastern North Pacific killer whales based on the data from autonomous recorders. In this study ultrasonic whistles were found in the recordings from two encounters with the eastern North Pacific offshore ecotype killer whales and one encounter with the western North Pacific killer whales of unknown ecotype. All ultrasonic whistles were highly stereotyped and all but two had downsweep contours. These results demonstrate that specific sound categories can be shared by killer whales from different ocean basins.

  19. Regional patterns of δ13C and δ15N stable isotopes of size-fractionated zooplankton in the western tropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Guilini, Katja; Wang, Xiaocheng; Wang, Yanqing

    2017-02-01

    Zooplankton play a prominent role in the biogeochemical cycles of marine ecosystems. Little is known about the trophodynamics of zooplankton in response to geographic patterns in isotopic baselines and physical processes in the western tropical North Pacific. In this study, stable isotope ratios of five size fractions of zooplankton (100 to >2000 μm) from different current regions in the western tropical North Pacific Ocean were analyzed. Both δ13C and δ15N isotopic values increased with zooplankton size class. The largest zooplankton group (>2000 μm), with a diverse composition, showed relatively higher stable isotope signatures, covering a wider range. Regional variations in the zooplankton stable isotope signatures were similar across all size classes, with generally higher values in the North Equatorial Counter Current (NECC) and the North Equatorial Current (NEC) and lower values in the Subtropical Counter Current (STCC). These regional patterns of zooplankton isotope signatures were consistent with the variation of oceanographic features (temperature, salinity, nutrients, chlorophyll a) and were also related to the isotopic baselines of particulate organic matter (POM) in the different current regions. Moreover, the nitrogen-fixing cyanobacteria Trichodesmium spp. may be the main contributor to low δ15N values in the STCC. The results of this study demonstrate the influence of physical processes on the stable isotopic signatures of zooplankton. This baseline information is crucial for future food web studies in the western tropical North Pacific Ocean.

  20. Impacts of Ocean-Atmosphere Interaction in the Pacific Asian Marginal Seas on the Variability of the North Pacific Oscillation/Victoria Mode

    NASA Astrophysics Data System (ADS)

    Tseng, Y. H.; Jin, X. L.; Chow, C. H.; Ding, R.; Di Lorenzo, E.; Small, J.; Huang, X.

    2016-02-01

    The interannual variability of North Pacific Oscillation (NPO)/Victoria Mode (VM) is found to be closely linked with the surface winds and temperature in the Pacific Asian Marginal Sea (PAMS). The coupled oceanic and atmospheric processes in the PAMS are analyzed. Composite analysis indicates an enhanced surface latent heat flux anomalies develop in response to Sea Surface Temperature (SST) in the strong NPO/VM phase. The winter SST and meridional wind anomalies in the PAMS acts as a pivotal driver to modulate the NPO/VM pattern through atmospheric teleconnection. The upper-level eastward propagation strengthens the south lobe of the NPO from the subtropical pressure low anomaly. Dynamical processes are validated using the observation and the Linear Baroclinic Model. Further analysis shows that the East Asian Winter Monsoon (EAWM) may play an important role in controlling low-level meridional wind variability in the PAMS but does not explain its completed variability. Finally, the impacts of storm-track are also evaluated.

  1. Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans.

    PubMed

    Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat

    2016-01-01

    We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal

  2. Gross and microscopic pathology of lesions in Pocillopora spp. from the subtropical eastern Pacific.

    PubMed

    Rodríguez-Villalobos, Jenny Carolina; Rocha-Olivares, Axayácatl; Work, Thierry Martin; Calderon-Aguilera, Luis Eduardo; Cáceres-Martínez, Jorge Abelardo

    2014-07-01

    Coral reefs are threatened by a variety of factors including diseases that have caused significant damage in some regions such as in the Caribbean. At present, no data are available on coral diseases in the Mexican Pacific where Pocillopora spp. is a dominant component of coral communities. Here, we describe gross and microscopic morphology of lesions found in pocilloporids at four sites in the Mexican Pacific. Corals were identified and their lesions photographed and quantified in the field. Tissue samples were collected from healthy and affected colonies for histopathology. We recorded seven species of pocilloporids at the study sites with Isla Isabel being the location with the highest coral diversity (H'=1.27). Lesions were present in 42% of the colonies and included discoloration (32%), predation-induced tissue loss (30%), unexplained tissue loss (3%) and overgrowth by sponges or algae (35%). The most affected species, P. damicornis (50%), was also one of the most common in the region. No species was more prone to a particular lesion, but there was a significant association between location and the presence of lesions. Northern Islas Marietas (61%) and Isla Isabel (41%) had the highest prevalence of lesions, followed by Manzanillo (37%) and Bahías de Huatulco (23%). Histological changes included atrophy of the surface body wall with depletion of zooxanthellae (91%) in corals with discoloration (bleaching). Ablation of tissue from mesoglea (18%) was also observed. Colonies with unexplained tissue loss showed atrophy and thinning of the epidermis (89%), characterized by cuboidal instead of pseudocolumnar cells normally found in healthy pseudocolumnar ciliated epithelium. Bacterial aggregates between the mesoglea and gastrodermis (11%) were very conspicuous in healthy and diseased corals. Lesions produced by fish bites and gastropods were associated with tissue atrophy (40%) and, in some cases, algal overgrowth near the lesion (20%). No infectious agents

  3. Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans

    PubMed Central

    Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat

    2016-01-01

    We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal

  4. Gross and microscopic pathology of lesions in Pocillopora spp. from the subtropical eastern Pacific

    USGS Publications Warehouse

    Rodríguez-Villalobos, Jenny Carolina; Rocha-Olivares, Axayácatl; Work, Thierry Martin; Calderon-Aguilera, Luis Eduardo; Cáceres-Martínez, Jorge Abelardo

    2014-01-01

    Coral reefs are threatened by a variety of factors including diseases that have caused significant damage in some regions such as in the Caribbean. At present, no data are available on coral diseases in the Mexican Pacific where Pocillopora spp. is a dominant component of coral communities. Here, we describe gross and microscopic morphology of lesions found in pocilloporids at four sites in the Mexican Pacific. Corals were identified and their lesions photographed and quantified in the field. Tissue samples were collected from healthy and affected colonies for histopathology. We recorded seven species of pocilloporids at the study sites with Isla Isabel being the location with the highest coral diversity (H′ = 1.27). Lesions were present in 42% of the colonies and included discoloration (32%), predation-induced tissue loss (30%), unexplained tissue loss (3%) and overgrowth by sponges or algae (35%). The most affected species, P. damicornis (50%), was also one of the most common in the region. No species was more prone to a particular lesion, but there was a significant association between location and the presence of lesions. Northern Islas Marietas (61%) and Isla Isabel (41%) had the highest prevalence of lesions, followed by Manzanillo (37%) and Bahías de Huatulco (23%). Histological changes included atrophy of the surface body wall with depletion of zooxanthellae (91%) in corals with discoloration (bleaching). Ablation of tissue from mesoglea (18%) was also observed. Colonies with unexplained tissue loss showed atrophy and thinning of the epidermis (89%), characterized by cuboidal instead of pseudocolumnar cells normally found in healthy pseudocolumnar ciliated epithelium. Bacterial aggregates between the mesoglea and gastrodermis (11%) were very conspicuous in healthy and diseased corals. Lesions produced by fish bites and gastropods were associated with tissue atrophy (40%) and, in some cases, algal overgrowth near the lesion (20%). No infectious agents

  5. Chemical oceanography. Increasing anthropogenic nitrogen in the North Pacific Ocean.

    PubMed

    Kim, Il-Nam; Lee, Kitack; Gruber, Nicolas; Karl, David M; Bullister, John L; Yang, Simon; Kim, Tae-Wook

    2014-11-28

    The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (~0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited. Copyright © 2014, American Association for the Advancement of Science.

  6. Biogeochemistry of arsenic and antimony in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cutter, Gregory A.; Cutter, Lynda S.

    2006-05-01

    The biogeochemical cycles of the metalloid elements arsenic and antimony were examined along a 15,000 km surface water transect and at 9 vertical profile stations in the western North Pacific Ocean as part of the 2002 IOC Contaminant Baseline Survey. Results show that the speciation of dissolved arsenic (As III, As V, and methylated As) was subtly controlled by the arsenate (AsV)/phosphate ratio. An additional fraction of presumed organic arsenic previously reported in coastal waters was also present (˜15% of the total As) in oceanic surface waters. Dissolved inorganic antimony displayed mildly scavenged behavior that was confirmed by correlations with aluminum, but atmospheric inputs that may be anthropogenic in origin also affected its concentrations. Monomethyl antimony, the predominant organic form of the element, behaved almost conservatively throughout the water column, radically changing the known biogeochemical cycle of antimony.

  7. The plastic-associated microorganisms of the North Pacific Gyre.

    PubMed

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The aluminosilicate fraction of North Pacific manganese nodules

    USGS Publications Warehouse

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  9. Annual and longitudinal variations of the Pacific North Equatorial Countercurrent

    NASA Technical Reports Server (NTRS)

    Lolk, Nina K.

    1992-01-01

    The climatological annual cycle of the Pacific North Equatorial Countercurrent (NECC) simulated by an ocean general circulation model (OGCM) was studied. The longitudinal variation of transports, degree of geostrophy, and the relationship between Ekman pumping and vertical displacement of the thermocline were emphasized. The longitudinal variation was explored using six sections along 150 deg E, 180 deg, 160 deg W, 140 deg W, 125 deg W, and 110 deg W. A primitive equation OGCM of the Pacific Ocean was run for three years and the fields used were from the third year. The fields consisted of zonal, meridional, and vertical current components and temperature and salinity averaged every three days. The model was forced with the Hellerman and Rosenstein climatological wind stress. The mean annual eastward transport (19.9 Sv) was largest at 160 deg W. The maximum-current boundaries along 160 deg W were 9.2 deg N (1.0 deg), 5.1 deg N (1.1 deg), and 187 m (90.6 m). The annual-cycle amplitude of the NECC was greatest between 160 deg W and 140 deg W. Although the NECC is geostrophic to the first order, deviations from geostrophy were found in the boreal spring and summer near the southern boundary and near the surface. Meridional local acceleration played a role between 3 deg N-5 deg N.

  10. A seabird monitoring program for the North Pacific

    USGS Publications Warehouse

    Hatcher, S.A.; Kaiser, G.W.; Kondratyev, Alexander V.; Byrd, G.V.

    1994-01-01

    Seabird monitoring is the accumulation of time series data on any aspect of seabird distribution, abundance, demography, or behavior. Typical studies include annual or less frequent measures of numbers or productivity; less commonly, the focus is on marine habitat use, phenology, food habits, or survival. The key requirement is that observations are replicated over time and made with sufficient precision and accuracy to permit the meaningful analysis of variability and trends. Along the Pacific coast of North America, seabird monitoring has consumed substantial amounts of public funding since the early 1970s. The effort has been largely uncoordinated among the many entities involved, including provincial, state, and federal agencies, some private organizations, university faculty, and students. We reaffirm the rationale for monitoring seabirds, review briefly the nature and accomplishments of the existing effort, and suggest actions needed to improve the effectiveness of seabird monitoring in the Pacific. In particular, we propose and describe a comprehensive Seabird Monitoring Database designed specifically to work with observations on seabird population parameters that are replicated over time.

  11. 75 FR 70903 - Eastern North Pacific Gray Whale; Notice of Extension of Public Comment Period on Marine Mammal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... National Oceanic and Atmospheric Administration RIN 0648-XA018 Eastern North Pacific Gray Whale; Notice of... petition to designate the Eastern North Pacific population of gray whales (Eschrichtius robustus) as a... assessment report for Eastern North Pacific gray whales is available on the Internet at the following...

  12. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions

    NASA Astrophysics Data System (ADS)

    Max, L.; Rippert, N.; Lembke-Jene, L.; Mackensen, A.; Nürnberg, D.; Tiedemann, R.

    2017-01-01

    We provide high-resolution foraminiferal stable carbon isotope (δ13C) records from the subarctic Pacific and Eastern Equatorial Pacific (EEP) to investigate circulation dynamics between the extratropical and tropical North Pacific during the past 60 kyr. We measured the δ13C composition of the epibenthic foraminiferal species Cibicides lobatulus from a shallow sediment core recovered from the western Bering Sea (SO201-2-101KL; 58°52.52'N, 170°41.45'E; 630 m water depth) to reconstruct past ventilation changes close to the source region of Glacial North Pacific Intermediate Water (GNPIW). Information regarding glacial changes in the δ13C of subthermocline water masses in the EEP is derived from the deep-dwelling planktonic foraminifera Globorotaloides hexagonus at ODP Site 1240 (00°01.31'N, 82°27.76'W; 2921 m water depth). Apparent similarities in the long-term evolution of δ13C between GNPIW, intermediate waters in the eastern tropical North Pacific and subthermocline water masses in the EEP suggest the expansion of relatively 13C-depleted, nutrient-enriched, and northern sourced intermediate waters to the equatorial Pacific under glacial conditions. Further, it appears that additional influence of GNPIW to the tropical Pacific is consistent with changes in nutrient distribution and biological productivity in surface waters of the glacial EEP. Our findings highlight potential links between North Pacific mid-depth circulation changes, nutrient cycling, and biological productivity in the equatorial Pacific under glacial boundary conditions.

  13. The Mexican Coastal Current: A subsurface seasonal bridge that connects the tropical and subtropical Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Gómez-Valdivia, F.; Parés-Sierra, A.; Flores-Morales, A. L.

    2015-11-01

    We used a three-dimensional numerical model to analyze the seasonal variability of the coastal circulation off SW Mexico. In agreement with previous research, our model reproduced a Mexican Coastal Current (MCC) that dominates the regional poleward circulation. The modeled dynamics evidenced an energetic semiannual component that governed the subsurface seasonal variability of this poleward flow. Below the thermocline the MCC was stronger during spring and fall, when it reached subsurface seasonal-averaged velocities of ∼10 cms-1 and flowed continuously from the Gulf of Tehuantepec to the entrance of the Gulf of California. There, the subsurface MCC bifurcated in one branch that continued along the coast of mainland Mexico and a second branch that crossed the gulf and joined the California Undercurrent. Instead of the local wind, the semiannual MCC variability was induced by the transit of equatorial Kelvin waves whose upwelling (downwelling) phase propagation strengthen (weakened) the subsurface poleward circulation along the Tropical Pacific off Mexico. The MCC dynamics reported in this study accounts for the, previously reported, semiannual variability of the alongshore transport and salinity content in the southern Gulf of California. Moreover, the subsurface bridge between the MCC and the California Current System represents an external source of momentum that helps to explain the intensification of the California Undercurrent during spring and fall.

  14. The fate of a southwest Pacific bloom: gauging the impact of submesoscale vs. mesoscale circulation on biological gradients in the subtropics

    NASA Astrophysics Data System (ADS)

    de Verneil, Alain; Rousselet, Louise; Doglioli, Andrea M.; Petrenko, Anne A.; Moutin, Thierry

    2017-07-01

    The temporal evolution of a surface chlorophyll a bloom sampled in the western tropical South Pacific during the 2015 Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise is examined. This region is usually characterized by largely oligotrophic conditions, i.e. low concentrations of inorganic nutrients at the surface and deep chlorophyll a maxima. Therefore, the presence of a surface bloom represents a significant perturbation from the mean ecological state. Combining in situ and remote sensing datasets, we characterize both the bloom's biogeochemical properties and the physical circulation responsible for structuring it. Biogeochemical observations of the bloom document the bloom itself, a subsequent decrease of surface chlorophyll a, significantly reduced surface phosphate concentrations relative to subtropical gyre water farther east, and a physical decoupling of chlorophyll a from a deep nitracline. All these characteristics are consistent with nitrogen fixation occurring within the bloom. The physical data suggest surface mesoscale circulation is the primary mechanism driving the bloom's advection, whereas balanced motions expected at submesoscales provide little contribution to observed flow. Together, the data provide a narrative where subtropical gyre water can produce significant chlorophyll a concentrations at the surface that is stirred, deformed, and transported great distances by the mesoscale circulation. In this case, for the time period considered, the transport is in an easterly direction, contrary to both the large-scale and mean mesoscale flow. As a result, future studies concerning surface production in the region need to take into account the role complex mesoscale structures play in redistributing subtropical gyre water.

  15. Hydrogen peroxide in the marine atmospheric boundary layer during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange experiment in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Martin, Daniel; Tsivou, Maria; Bonsang, Bernard; Abonnel, Christian; Carsey, Thomas; Springer-Young, Margie; Pszenny, Alex; Suhre, Karsten

    1997-03-01

    Gas phase H2O2 was measured in surface air on the NOAA ship Malcolm Baldrige from June 8 to 27, 1992 (Julian days 160-179), during the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange experiment in the eastern subtropical North Atlantic region. Average H2O2 mixing ratios observed were 0.63±0.28 ppbv, ranging between detection limit and 1.5 ppbv. For the entire experiment, only weak or no correlation was found between H2O2 mixing ratio and meteorological parameters (pressure, temperature, humidity, or UV radiation flux) as well as with tracers of continental air masses (CO, black carbon, radon). The average daily H2O2 cycle for the entire period exhibits a maximum of 0.8±0.3 ppbv near sunset and a minimum of 0.4±0.2 ppbv 4-5 hours after sunrise. Several clear H2O2 diurnal variations have been observed, from which a first-order removal rate of about 1×10-5 s-1 for H2O2 can be inferred from nighttime measurements. This rate compares well with those deduced from measurements taken at Cape Grim (Tasmania, 41°S) and during the Soviet-American Gas and Aerosol III experiment (equatorial Pacific Ocean).

  16. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities.

    PubMed

    Dupont, Chris L; McCrow, John P; Valas, Ruben; Moustafa, Ahmed; Walworth, Nathan; Goodenough, Ursula; Roth, Robyn; Hogle, Shane L; Bai, Jing; Johnson, Zackary I; Mann, Elizabeth; Palenik, Brian; Barbeau, Katherine A; Venter, J Craig; Allen, Andrew E

    2015-05-01

    Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.

  17. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities

    DOE PAGES

    Dupont, Chris L.; McCrow, John P.; Valas, Ruben; ...

    2014-10-21

    Here, transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enrichedmore » in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.« less

  18. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities

    SciTech Connect

    Dupont, Chris L.; McCrow, John P.; Valas, Ruben; Moustafa, Ahmed; Walworth, Nathan; Goodenough, Ursula; Roth, Robyn; Hogle, Shane L.; Bai, Jing; Johnson, Zackary I.; Mann, Elizabeth; Palenik, Brian; Barbeau, Katherine A.; Venter, J. Craig; Allen, Andrew E.

    2014-10-21

    Here, transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.

  19. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities

    PubMed Central

    Dupont, Chris L; McCrow, John P; Valas, Ruben; Moustafa, Ahmed; Walworth, Nathan; Goodenough, Ursula; Roth, Robyn; Hogle, Shane L; Bai, Jing; Johnson, Zackary I; Mann, Elizabeth; Palenik, Brian; Barbeau, Katherine A; Craig Venter, J; Allen, Andrew E

    2015-01-01

    Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM. PMID:25333462

  20. Long term behavior of TEPCO FNPP1 derived radiocaesium in the North Pacific Ocean through the end of 2016: A review

    NASA Astrophysics Data System (ADS)

    Aoyama, Michio; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro; Oka, Eitarou; Tsubono, Takaki; Tsumune, Daisuke

    2017-04-01

    FNPP1 radiocaesium, which means that subducted radiocaesium might have moved eastward from this region. The third pathway is formation of subtropical mode water (STMW). FNPP1-derived radiocaesium injected at south of Kuroshio front by atmospheric deposition transported to southward rapidly due to formation of STMW at potential densities of 25.1-25.3. In 2015 along 165 deg. E, FNPP1 radiocaesium corresponding STMW spread entire subtropical gyre and a part of them reached 2 deg. N and recirculated in the subtropical gyre and reached Japanese coast. 3, Mass balance of FNPP1 radiocaesium in the North Pacific 134Cs inventory was estimated to be 8 PBq in surface layer in summer 2012 (Inomata unpublished). Kaeriyama et al. (2016) estimated that 134Cs inventory in STWM in 2012 was about 4 PBq. We believe that FNPP1 derived 134Cs injected in the North Pacific was 15.2 - 18.3 PBq. Therefore 134Cs inventory can be estimated 3-6 PBq in CMW at this moment based on a mass balance of FNPP1 radiocaesium.

  1. Annual cycles of deep-ocean biogeochemical export fluxes in subtropical and subantarctic waters, southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nodder, Scott D.; Chiswell, Stephen M.; Northcote, Lisa C.

    2016-04-01

    The annual cycles of particle fluxes derived from moored sediment trap data collected during 2000-2012 in subtropical (STW) and subantarctic waters (SAW) east of New Zealand are presented. These observations are the most comprehensive export flux time series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near synchronous with elevated fluxes of bio-siliceous, carbonate, and organic carbon-rich materials to the deep ocean, probably facilitated by diatom and/or coccolithophorid sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW results from subsurface chlorophyll accumulation that is not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Organic carbon fluxes in STW are similar to that of other mesotrophic to oligotrophic waters (˜6-7 mg C m-2 d-1), whereas export from SAW is below the global average (˜3 mg C m-2 d-1). Regional differences in flux across the SW Pacific and Tasman region reflect variations in physical processes and ecosystem structure and function.

  2. On the influence of North Pacific sea surface temperature on the Arctic winter climate

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.; Garfinkel, C. I.

    2012-10-01

    Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High - Low differences are consistent with a strengthened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in spring, affecting the April clear-sky UV index at Northern Hemisphere midlatitudes.

  3. Similarity in microbial amino acid uptake in surface waters of the North and South Atlantic (sub-)tropical gyres

    NASA Astrophysics Data System (ADS)

    Hill, Polly G.; Mary, Isabelle; Purdie, Duncan A.; Zubkov, Mikhail V.

    2011-12-01

    The Earth’s most extensive biomes - the oceanic subtropical gyres - are considered to be expanding with current surface ocean warming. Although it is well established that microbial communities control gyre biogeochemistry, comparisons of their metabolic activities between gyres are limited. In order to estimate metabolic activities including production of microbial communities, the uptake rates of amino acids leucine, methionine and tyrosine at ambient concentrations were estimated in surface waters of the Atlantic Ocean using radioisotopically labelled tracers. Data were acquired during six research cruises covering main oceanic provinces herein termed: North and South Atlantic Gyres, Bermuda Atlantic Time-series Study site (BATS), Equatorial region, and Mauritanian Upwelling (off Cape Blanc). Data were divided between provinces, the extents of which were identified by ocean colour data, in order to achieve provincial mean uptake rates. Leucine and methionine uptake rates did not differ between sampling periods, and were comparable between the North and South subtropical gyres. Furthermore, variation in uptake rates measured throughout the two oligotrophic gyres, where sampling covered ∼4 × 10 6 km 2, was considerably lower than that measured within the Mauritanian Upwelling and Equatorial regions, and even at the BATS site. Tyrosine was generally the slowest of the amino acids to be taken up, however, it was assimilated faster than methionine within the Mauritanian Upwelling region. Thus, we propose that one value for leucine (12.6 ± 3.2 pmol L -1 h -1) and methionine (10.0 ± 3.3 pmol L -1 h -1) uptake could be applied to the oligotrophic subtropical gyres of the Atlantic Ocean. However, with the significantly lower uptake rates observed at the BATS site, we would not advise extrapolation to the Sargasso Sea.

  4. Seasonal, interannual and event scale variation in North Pacific ecosystems

    NASA Astrophysics Data System (ADS)

    Yoo, Sinjae; Batchelder, Harold P.; Peterson, William T.; Sydeman, William J.

    2008-05-01

    We synthesize information on changes in ecosystems of the North Pacific at seasonal, interannual, and event time scales. Three approaches are used to cope with inadequate temporal, spatial and trophic resolution in generating this synthesis. First, we use highly spatially and temporally resolved data on physical forcing and chlorophyll (SeaWiFS data from 1998 to 2005) to describe basin-wide spatial patterns and seasonal to interannual time scales. The second approach is to compare time series of zooplankton at selected spatial sites at which sampling resolution is sufficient to describe seasonal biomass/abundance patterns, and where multiple years of data exist to examine interannual variability. The third approach is to infer trophic relationships, and broaden the first two approaches to higher trophic levels, by examining the impacts of several event scale phenomena on many trophic levels, but only over a rather limited geographic region. The 8 years of satellite chlorophyll data clearly show that interannually persistent seasonal patterns exist in most regions in the North Pacific, even in the tropical waters. From frequency analysis (Lomb periodograms), the annual cycle was the strongest in most regions, but in the tropics and eastern boundary current regions, periods greater than 1 year were significant. In mid- to high-latitude regions, periods of less than 1 year were also significant in addition to the annual period indicating double peaks with varying intervals. Seasonal progression of the timing of annual peak chlorophyll concentration in the North Pacific showed a different pattern compared with the Atlantic or Indian Ocean, largely due to the presence of the subarctic high nutrient-low chlorophyll (HNLC) and equatorial upwelling regions, which had later phytoplankton blooms than would have been predicted based on a simple equatorial to pole progression of bloom timing. Seasonal cycles in zooplankton were more or less synchronized (concomitant with or

  5. Millennial-scale precipitation variability over Easter Island (South Pacific) during MIS 3: inter-hemispheric teleconnections with North Atlantic abrupt cold events

    NASA Astrophysics Data System (ADS)

    Margalef, O.; Cacho, I.; Pla-Rabes, S.; Cañellas-Boltà, N.; Pueyo, J. J.; Sáez, A.; Pena, L. D.; Valero-Garcés, B. L.; Rull, V.; Giralt, S.

    2015-04-01

    Marine Isotope Stage 3 (MIS 3, 59.4-27.8 kyr BP) is characterized by the occurrence of rapid millennial-scale climate oscillations known as Dansgaard-Oeschger cycles (DO) and by abrupt cooling events in the North Atlantic known as Heinrich events. Although both the timing and dynamics of these events have been broadly explored in North Atlantic records, the response of the tropical and subtropical latitudes to these rapid climatic excursions, particularly in the Southern Hemisphere, still remains unclear. The Rano Aroi peat record (Easter Island, 27° S) provides a unique opportunity to understand atmospheric and oceanic changes in the South Pacific during these DO cycles because of its singular location, which is influenced by the South Pacific Anticyclone (SPA), the Southern Westerlies (SW), and the Intertropical Convergence Zone (ITCZ) linked to the South Pacific Convergence Zone (SPCZ). The Rano Aroi sequence records 6 major events of enhanced precipitation between 38 and 65 kyr BP. These events are compared with other hydrological records from the tropical and subtropical band supporting a coherent regional picture, with the dominance of humid conditions in Southern Hemisphere tropical band during Heinrich Stadials (HS) 5, 5a and 6 and other Stadials while dry conditions prevailed in the Northern tropics. This antiphased hydrological pattern between hemispheres has been attributed to ITCZ migration, which in turn might be associated with an eastward expansion of the SPCZ storm track, leading to an increased intensity of cyclogenic storms reaching Easter Island. Low Pacific Sea Surface Temperature (SST) gradients across the Equator were coincident with the here-defined Rano Aroi humid events and consistent with a reorganization of Southern Pacific atmospheric and oceanic circulation also at higher latitudes during Heinrich and Dansgaard-Oeschger stadials.

  6. Decadal and seasonal dependence of North Pacific sea surface temperature persistence

    NASA Astrophysics Data System (ADS)

    Ding, Ruiqiang; Li, Jianping

    2009-01-01

    Decadal and seasonal dependence of the persistence characteristics of area-averaged sea surface temperature (SST) anomalies in the North Pacific (150°E˜140°W, 20°N˜60°N) are investigated using two different SST data sets for the period 1948-2005. It is found that a persistence barrier exists around July-September (especially in September). This July-September persistence barrier is accompanied by a summer decline in the wind stress. The results confirm the existence of the July-September persistence barrier in the North Pacific SST discovered by Namias and Born (1970). Besides the seasonal change, North Pacific SST persistence also exhibits a pronounced decadal change. Taking all calendar months into account, North Pacific SST persistence is relatively strong from the mid-1950s to the mid-1960s but then weak from the mid-1960s to the mid-1980s, and becomes stronger again from the mid-1980s until the mid-1990s, after which it tends to become weak again. The recurrence of SST anomalies from one winter to the next is obvious from the mid-1950s to mid-1960s, but no obvious recurrence occurs after the mid-1960s. Decadal changes of the Pacific-North America (PNA) pattern, the SST-clouds feedback, and the Southern Oscillation Index (SOI) are found to be related to those of North Pacific SST persistence. The PNA index shows a significant upward trend after the 1980s. Besides, the PNA pattern also exhibits a high persistence in winter from the mid-1980s to the mid-1990s. These changes of PNA pattern are favorable to the occurrence of strong SST persistence in winter from the mid-1980s to the mid-1990s. In summer, the positive feedback between the marine boundary clouds and SST enhances the SST persistence in the North Pacific. It is found that the positive feedback between the SST and clouds in the North Pacific during summer becomes stronger from the mid-1980s to the mid-1990s, which would contribute to the longer SST persistence in summer from the mid-1980s to the

  7. Radiocaesium derived FNPP1 accident in the ocean interior of the western North Pacific Ocean through 2016

    NASA Astrophysics Data System (ADS)

    Aoyama, Michio; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro; Oka, Eitarou; Tsubono, Takaki; Tsumune, Daisuke

    2017-04-01

    134Cs and 137Cs, hereafter radiocaesium, were released to the North Pacific Ocean by two major pathways, direct discharge and atmospheric deposition released from the TEPCO Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident in 2011. Activities of radiocaesium released from FNPP1 accident were measured as vertical profiles at 11 stations in 2011, at 14 stations in 2012, at 13 station in 2015 and at 6 stations in 2016 in the North Pacific Ocean to study transport processes in the ocean interior of the North Pacific Ocean. The major pathway from surface to ocean interior after injected in the ocean surface can be considered subduction of central mode water (CMW) and subduction of subduction of subtropical mode water (STMW) at potential densities of 26.1-26.3 for CMW and 25.1-25.3 for STMW, respectively. In June 2012 at 34°N-39°N along 165°E corresponding to the formation region of central mode water (CMW) located north of the Kuroshio Extension, 134Cs activity showed a maximum at around potential density= 26.3 kg m-3. 134Cs activity was higher in CMW than in any of the surrounding waters, including STMW. These observations also indicate that the most effective pathway by which FNPP1-derived radiocaesium is introduced into the ocean interior on a 1-year time scale is CMW formation and subduction. In June-July 2015 at 36 deg. N-44 deg. N along 165 deg. E and June 2016 at 38-40N, 165-170 deg. E, there are only very week signal of subduction of Fukushima derived radiocaesium at in the CMW formation region, which means that subducted radiocaesium might have moved eastward from this region. In June 2012, 134Cs activity reached a maximum of 6.12 ± 0.50 Bq m-3 at a 151-m depth (potential density, 25.3 kg m-3) at 29 deg. N, 165 deg. E. This subsurface maximum, which was also observed along 149°E, might reflect the southward transport of FNPP1-derived radiocaesium in association with the formation and subduction of subtropical mode water (STMW) from the region south

  8. El Niño-Southern Oscillation-time scale covariation of sea surface salinity and freshwater flux in the western tropical and northern subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Nagano, Akira; Hasegawa, Takuya; Ueki, Iwao; Ando, Kentaro

    2017-07-01

    We examined the covariation of sea surface salinity (SSS) and freshwater flux in the western tropical and northern subtropical Pacific on the El Niño-Southern Oscillation time scale, using a canonical correlation analysis of monthly data between 2001 and 2013. The dominant covariation, i.e., the first canonical mode, has large positive and negative amplitudes in regions east of the Philippines and New Guinea, respectively, and reaches peaks in autumn to winter of El Niño years. The positive SSS anomaly east of the Philippines is advected to the Kuroshio Extension region. We found that the second canonical mode is another coupled variation with localized amplitudes of SSS under the atmospheric convergence zones in winter to spring of La Niña years. However, the negative SSS anomaly is annihilated possibly by the evaporation in the subtropical region.

  9. Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song; Jiang, Jonathan H.; Huang, Lei; Liu, W. Timothy

    2017-06-01

    This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984-2009 using NCEP/DOE Reanalysis 2 dataset, various cloud data, and the Hadley Centre sea surface temperature. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and implement a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.

  10. Dynamical and thermodynamical coupling between the North Atlantic subtropical high and the marine boundary layer clouds in boreal summer

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Li, Wenhong; Deng, Yi; Yang, Song

    2017-04-01

    This study investigates dynamical and thermodynamical coupling between the North Atlantic subtropical high (NASH), marine boundary layer (MBL) clouds, and the local sea surface temperatures (SSTs) over the North Atlantic in boreal summer for 1984‒2009. On interannual timescales, the summer mean subtropical MBL clouds to the southeast of the NASH is actively coupled with the NASH and local SSTs: a stronger (weaker) NASH is often accompanied with an increase (a decrease) of MBL clouds and abnormally cooler (warmer) SSTs along the southeast flank of the NASH. To understand the physical processes between the NASH and the MBL clouds, the authors conduct a data diagnostic analysis and a numerical modeling investigation using an idealized anomalous atmospheric general circulation model (AGCM). Results suggest that significant northeasterly anomalies in the southeast flank of the NASH associated with an intensified NASH tend to induce stronger cold advection and coastal upwelling in the MBL cloud region, reducing the boundary surface temperature. Meanwhile, warm advection associated with the easterly anomalies from the African continent leads to warming over the MBL cloud region at 700 hPa. Such warming and the surface cooling increase the atmospheric static stability, favoring growth of the MBL clouds. The anomalous diabatic cooling associated with the growth of the MBL clouds dynamically excites an anomalous anticyclone to its north and contributes to strengthening of the NASH circulation in its southeast flank. The dynamical and thermodynamical couplings and their associated variations in the NASH, MBL clouds, and SSTs constitute an important aspect of the summer climate variability over the North Atlantic.

  11. Influence of the Western Pacific teleconnection pattern on Western North Pacific tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Moon, Il-Ju

    2012-09-01

    This study analyzes the characteristics of Western North Pacific (WNP) tropical cyclone (TC) activity and large-scale environments according to the Western Pacific (WP) teleconnection pattern in summer. In the positive WP phase, an anomalous cyclone and an anomalous anticyclone develop in the low and middle latitudes of the East Asia area, respectively. As a result, southeasterlies are reinforced in the northeast area of East Asia (including Korea and Japan), which facilitates the movement of TC to this area, whereas northwesterlies are reinforced in the southwest area of East Asia (including southern China and the Indochina Peninsula) which blocks the movement of TC to that area. Due to the spatial distribution of this reinforced pressure system, TCs that develop during the positive WP phase move and turn more to the northeast of the WNP than TCs which develop during the negative WP phase. The characteristics of this TC activity during the positive WP phase are associated with the upper tropospheric jet being located farther to the northeast. TCs during the negative WP phase mainly move to the west from the Philippines toward southern China and the Indochina Peninsula. Due to the terrain effect caused by the passage of TCs in mainland China, the intensity of TCs during the negative WP phase is weaker than those during the positive WP phase.

  12. The flooding of Beringia and North Pacific Intermediate Water formation

    NASA Astrophysics Data System (ADS)

    Davies, M. H.; Mix, A. C.; Stoner, J. S.; Southon, J. R.; Cheseby, M.; Xuan, C.

    2011-12-01

    We reconstruct Northeast Pacific paleoventilation over the last 17,000 ybp from radiocarbon dates in a sediment core (EW0408-85JC) 682 m deep on the Southeast Alaska margin, evaluating the implications of three standard chronologies: 1) calibrated planktonic foraminiferal 14C dates assuming a constant reservoir correction, 2) calibrated benthic foraminiferal 14C dates assuming a constant reservoir correction, and 3) correlation of δ18O in planktonic foraminifera (N. pachyderma sinistral) to δ18O in a layer-counted Greenland ice core (NGRIP). The assumption of constant benthic reservoir age implies negative reservoir ages for coexisting planktonic foraminifera during deglaciation, and is rejected. The δ18O-tuned age model reproduces two episodes of extremely old intermediate water, similar to those inferred during Termination 1 off Baja California (Marchitto et al., 2007), but predicts co-varying reservoir ages for planktonic foraminifera of >2,500 years. Such very high planktonic reservoir ages, on a predominantly downwelling margin, may imply the apparent subsurface ventilation anomalies are an artifact of the age model tuning. The age model based on calibrated planktonic dates indicates a modest increase in intermediate water reservoir age to 2,670 ± 180 during Termination 1, implying reduced ventilation prior to the Holocene. A shift to lower ventilation ages at ~10,500 cal ybp is coeval with flooding of Beringia (Elias et al., 1996), suggesting that flooded shelves and net northward export of low-salinity surface waters through Bering Strait enhanced ventilation of the North Pacific in the early Holocene.

  13. The cycling of iron, zinc and cadmium in the North East Pacific Ocean - Insights from stable isotopes

    NASA Astrophysics Data System (ADS)

    Conway, Tim M.; John, Seth G.

    2015-09-01

    Dissolved stable isotope ratios of the transition metals provide useful information, both for understanding the cycling of these bioactive trace elements through the oceans, and tracing their marine sources and sinks. Here, we present seawater dissolved Fe, Zn and Cd concentration and stable isotope ratio (δ56Fe, δ66Zn, and δ114Cd) profiles from two stations in the Pacific Ocean, the SAFe Station (30°N 140°W) in the subtropical North East Pacific from the GEOTRACES IC2 cruise, and the marginal San Pedro Basin (33.8°N 118.4°W) within the South California Bight. These data represent, to our knowledge, the first full-water column profiles for δ66Zn and δ56Fe from the open-ocean North Pacific, and the first observations of dissolved δ66Zn and δ114Cd in a low-oxygen marginal basin. At the SAFe station, δ56Fe is isotopically lighter throughout the water column (-0.6 to +0.1‰, relative to IRRM-014) compared to the North Atlantic, suggesting significant differences in Fe sources or Fe cycling between these two ocean basins. A broad minimum in δ56Fe associated with the North Pacific oxygen minimum zone (OMZ; <75 μmol kg-1 dissolved oxygen; ∼550-2000 m depth) is consistent with reductive sediments along the California margin being an important source of dissolved Fe to the North Pacific. Other processes which may influence δ56Fe at SAFe include biological cycling in the upper ocean, and input of Fe from hydrothermal vents and oxic sediments below the OMZ. Zn and Cd concentration profiles at both stations broadly match the distribution of the macronutrients silicate and phosphate, respectively. At SAFe, δ114Cd increases towards the surface, reflecting the biological preference for assimilation of lighter Cd isotopes, while negative Cd∗ (-0.12) associated with low oxygen waters supports the recently proposed hypothesis of water-column CdS precipitation. In contrast to δ114Cd, δ66Zn at SAFe decreases towards the surface ocean, perhaps due to scavenging

  14. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.

    PubMed

    Boulton, Chris A; Lenton, Timothy M

    2015-09-15

    Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.

  15. Variability in transport processes of Pacific saury Cololabis saira larvae leading to their broad dispersal: Implications for their ecological role in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Oozeki, Yoshioki; Okunishi, Takeshi; Takasuka, Akinori; Ambe, Daisuke

    2015-11-01

    Transport of Pacific saury Cololabis saira larvae from spawning to nursery grounds was examined based on datasets from larval distribution surveys during winter seasons 1990-2011. In the surveys, a neuston net was towed for 10 min over broad areas off the southern Pacific coast of Japan. Transport trajectories of saury larvae and temperature they experienced were analyzed based on a numerical particle-tracking model from 1993 to 2011 using satellite-based sea surface current and temperature data. Larval growth during the transport was estimated from the relationship of larval growth to environmental factors obtained in a previous study. Results of the particle tracking experiments indicated that a large amount of saury juveniles (knob length, KnL, 40 mm) were transported to an area south of the Kuroshio axis. Only a relatively small amount (14.6%) of the 40 mm KnL stage juveniles were transported in and around the Kuroshio extension, although it has previously been considered important that the juveniles are transported to the area north of the Kuroshio extension. Abundance of juveniles transported to the area north of the Kuroshio extension indicated a positive relationship to the abundance of medium size class saury in the autumn fishing season. Even though a very small part (3.9%) of hatched larvae were transported to this area, recruitment of the saury population depends on this amount of transported hatched larvae. On the other hand, the high juvenile transport rate to the areas south of the Kuroshio axis may suggest a broad dispersal mechanism to ensure that some larvae find a suitable habitat. Subsequently, the importance of saury in the marine ecosystem as a food item for predatory species in the sub-tropical region is discussed.

  16. Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land-air-sea interaction perspective

    NASA Astrophysics Data System (ADS)

    Duan, Anmin; Sun, Ruizao; He, Jinhai

    2017-02-01

    The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually followed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an enhanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the atmospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.

  17. Ocean-to-Ocean Dissimilarities of Salty Subtropical Surface Water

    NASA Astrophysics Data System (ADS)

    Gordon, A. L.

    2014-12-01

    Each ocean basin displays its own 'personality', reflecting its degree of isolation or connectivity to the global ocean, its place in the interocean exchange network and associated ocean overturning circulation systems, as well as regional circulation and air-sea exchange patterns. While dissimilarities are most notable in the northern hemisphere (the salty North Atlantic vs the fresher North Pacific; as well as the salty Arabian and the fresher Bay of Bengal, a miniature Atlantic/Pacific analog?) far removed from the grand equalizing interocean link of the circum-Antarctic belt, and where large continenta