2012-01-01
Background Grass pollen allergens are a major cause of allergic respiratory disease but traditionally prescribing practice for grass pollen allergen-specific immunotherapy has favoured pollen extracts of temperate grasses. Here we aim to compare allergy to subtropical and temperate grass pollens in patients with allergic rhinitis from a subtropical region of Australia. Methods Sensitization to pollen extracts of the subtropical Bahia grass (Paspalum notatum), Johnson grass (Sorghum halepense) and Bermuda grass (Cynodon dactylon) as well as the temperate Ryegrass (Lolium perenne) were measured by skin prick in 233 subjects from Brisbane. Grass pollen-specific IgE reactivity was tested by ELISA and cross-inhibition ELISA. Results Patients with grass pollen allergy from a subtropical region showed higher skin prick diameters with subtropical Bahia grass and Bermuda grass pollens than with Johnson grass and Ryegrass pollens. IgE reactivity was higher with pollen of Bahia grass than Bermuda grass, Johnson grass and Ryegrass. Patients showed asymmetric cross-inhibition of IgE reactivity with subtropical grass pollens that was not blocked by temperate grass pollen allergens indicating the presence of species-specific IgE binding sites of subtropical grass pollen allergens that are not represented in temperate grass pollens. Conclusions Subtropical grass pollens are more important allergen sources than temperate grass pollens for patients from a subtropical region. Targeting allergen-specific immunotherapy to subtropical grass pollen allergens in patients with allergic rhinitis in subtropical regions could improve treatment efficacy thereby reducing the burden of allergic rhinitis and asthma. PMID:22409901
Davies, J M
2014-06-01
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.
Fronts and Thermohaline Structure of the Brazil Current Confluence System
NASA Astrophysics Data System (ADS)
Severov, Dimitri
and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant/NIRO), Kaliningrad, Russia
Fuel management in the Subtropical and Savanna divisions
Kenneth W. Outcalt
2012-01-01
The Subtropical Division (230) and Savanna Division (410), both based on Baileyâs (1996) ecoregions, are found in the Southern United States (http://www.na.fs.fed.us/fire/cwedocs/map%20new_divisions.pdf). The Subtropical Division occupies the southern Atlantic and Gulf coastal areas. It is characterized by a humid subtropical climate with hot humid summers (chapter 3...
THE TROPICAL AND SUBTROPICAL GERMPLASM COLLECTIONS AT THE NATIONAL GERMPLASM REPOSITORY IN MIAMI, FL
USDA-ARS?s Scientific Manuscript database
The Subtropical and Tropical USDA, ARS, National Germplasm Repositories (NGR) in Miami, FL; Mayaguez, PR; and Hilo, HI are responsible for the collections of subtropical and tropical fruits, nuts, grasses, and ornamentals for the USDA, ARS, National Plant Germplasm System (NPGS). The NPGS is respons...
NASA Astrophysics Data System (ADS)
Zhang, Jinbo; Yu, Yongjie; Zhu, Tongbin; Cai, Zucong
2014-08-01
Previous studies have demonstrated that denitrification rates are low in subtropical forest soils. However, the mechanisms governing this process are not well known. This study seeks to identify the mechanisms responsible for the low denitrification capacity and high nitrogen oxide gas ratio in subtropical forest soils in China. The denitrification capacity and nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2) emission rates were measured using the acetylene inhibition method under conditions of added nitrate and anoxia. The abundance of nitrate reductase (narG), nitrite reductase (nirK), nitric oxide reductase (cnorB), and nitrous oxide reductase (nosZ) was measured using real-time, quantitative polymerase chain reaction, and sequencing of the nirK and norB products was performed to analyze the population structure of denitrifying bacteria. These results showed that the denitrification capacity in subtropical forest soils was lower than in temperate forest soils (p < 0.05). Multiple regression analysis showed that redox potential at the start of incubation (Ehi), rather than soil pH or soil organic C, was the key soil variable influencing denitrification, and Ehi alone could explain 68% of the variations in denitrification capacity. The high Ehi in subtropical soils led to a low abundance of nirK and significant differences in the population structure of denitrifying bacteria between subtropical and temperate soils. Therefore, Ehi was responsible for the low denitrification capacity in subtropical forest soils. The ratio of NO to total denitrification gas products (p < 0.01) and the ratio of NO and N2O to total denitrification gas products (p < 0.05) were significantly higher in subtropical forest soils than in temperate forest soils, while the reverse trend was observed for the ratio of N2 to total denitrification gas products (p < 0.05). A high Ehi reduced the specific reduction activity of each nosZ copy and, in turn, resulted in a large ratio of NO and N2O to total denitrification gas products in subtropical soils. Thus, NO and N2O, but not N2, were the dominant denitrification gas products, accounting for 80%, even under the highly anaerobic conditions in subtropical forest soils and despite low denitrification capacity. These results were significant for understanding the "Hole in the Pipe" model and NO and N2O gases emission in subtropical forest soils. Despite the fact that the nitrogen flowing through the pipe (denitrification capacity) was low, the large holes in the pipe resulted in a large quantity of NO and N2O gases leaking out. This leakage may be a potential mechanism for the high levels of NO and N2O gas emission in subtropical forest soils and could partly explain why NO and N2O emissions are generally high in subtropical and tropical soils.
USDA-ARS?s Scientific Manuscript database
The first International Symposium on Wild Relatives of Subtropical and Temperate Fruit and Nut Crops offered a platform for the scientists and others concerned with conservation, management, and sustainable utilization of wild relatives of subtropical and temperate fruit and nut crops. Wild relative...
Christina L. Staudhammer; Francisco J. Escobedo; Nathan Holt; Linda J. Young; Thomas J. Brandeis; Wayne Zipperer; Other
2015-01-01
We examined the spatial distribution, occurrence, and socioecological predictors of woody invasive plants (WIP) in two subtropical, coastal urban ecosystems: San Juan, Puerto Rico and Miami-Dade, United States. These two cities have similar climates and ecosystems typical of subtropical regions but differ in socioeconomics, topography, and urbanization processes. Using...
The effect of latitudinal gradient on the species diversity of Chinese litter-dwelling thrips
Wang, Jun; Tong, Xiaoli; Wu, Donghui
2014-01-01
Abstract To understand the global distribution patterns of litter-dwelling thrips, a total 150 leaf litter samples were collected from 6 natural reserves located in three climatic regions, temperate, subtropical and tropical. The results showed the relative abundance of Thysanoptera was over 3.0% in 4 natural reserves from subtropical and tropical zone, and reached 5.9% in one tropical reserve, only less than Acarina and Collembola. In contrast it was only 0.3% in the warm temperate natural reserves, and no thrips were collected in a mid temperate reserve. The order on the average species numbers per plot of litter thrips was tropic > subtropics > temperate (n=25, p<0.05). Mean density of litter thrips per plots in the tropics and subtropics was significantly higher than that in the temperate region (n=25, p<0.05), but the average density was not significantly different between tropical and subtropical zones (n=25, p>0.05). The diversity of litter thrips in the tropics and subtropics was much higher than that in the temperate area based on comparsions of Shannon-Wiener diversity index (H’), Pielou eveness index (J), and Simpson dominance index (D). All of these results indicated that litter-dwelling thrips lived mainly in tropical and subtropical regions; meanwhile, species number and relative abundance increased with decreasing latitude. PMID:25061351
THOMAS J. BRANDEIS; MARIA DEL ROCIO SUAREZ ROZO
2005-01-01
Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...
Thomas J. Brandeis; Maria Del Rocio; Suarez Rozo
2005-01-01
Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing...
Okinawan Subtropical Plants as a Promising Resource for Novel Chemical Treasury.
Matsunami, Katsuyoshi; Otsuka, Hideaki
2018-01-01
The Okinawa Islands are a crescent-shaped archipelago and their natural forests hold a huge variety of unique subtropical plants with relatively high endemism. We have performed phytochemical study on Okinawan subtropical plants for many years. In this review, we describe our recent research progress on the isolation of new compounds and their various bioactivities.
Interannual variability of trace gases in the subtropical winter stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.J.; Russell, J.M. III
1999-04-01
Measurements of water vapor and methane from the Halogen Occultation Experiment instrument on board the Upper Atmosphere Research Satellite are used to study the interannual variability of trace gas distributions in the atmosphere. Particular attention is paid to the mechanisms influencing trace gas distributions in the subtropics. The study highlights the quasi-biennial oscillation (QBO) dependence of subtropical tracer distributions more clearly than in previous studies. There is a strong correlation between the equatorial wind QBO and the slope of the tracer isolines in the Northern Hemisphere subtropics, with steeper subtropical isoline slopes in the easterly phase compared with the westerlymore » phase. This is particularly so in the lower stratosphere. Two possible mechanisms for the QBO signal in subtropical isoline slopes are identified: advection by the mean circulation and isentropic mixing. A comparison between the QBO signal in the slope of the tracer isolines and the isentropic tracer gradients is proposed as a method of determining which process is dominant. The authors suggest that the behavior of these two data diagnostics provides a stringent constraint on computer models of the atmosphere. On the basis of these diagnostics three height regions of the subtropical atmosphere are identified. (1) Below 450--500 K isentropic mixing associated with tropospheric disturbances penetrating the lower stratosphere is dominant. (2) In the region 500--750 K the data suggest that advection by the mean meridional circulation is important and that the role of isentropic mixing by eddies is relatively small. (3) Above 750 K isentropic mixing becomes increasingly important with height, and both advection and mixing are influential in determining the subtropical tracer distributions.« less
NASA Astrophysics Data System (ADS)
Jeong, Yerim; Ham, Yoo-Geun
2016-04-01
The convection activity and variability are active in Tropic-subtropic area because of equatorial warm pool. The variability's impacts on not only subtropic also mid-latitude. The impact effects on through teleconnection between equatorial and mid-latitude like Pacific-Japan(PJ) pattern. In this paper, two groups are divided based on PJ pattern and JJA Korean precipitation for the analysis that Korean precipitation is affected by PJ pattern. 'PJ+NegKorpr' is indicated when PJ pattern occur that JJA(Jun-July_August) Korean precipitation has negative value. In this case, positive precipitation in subtropic is expanded to central Pacific. And the positive precipitation's pattern is increasing toward north. Because, the subtropical south-eastly wind is forming subtropical precipitation's pattern through cold Kelvin wave is expanding eastward. Cold Kelvin wave is because of Indian negative SST. Also, Korea has negative moisture advection and north-eastly is the role that is moving high-latitude's cold and dry air to Korea. So strong high pressure is formed in Korea. The strong high pressure involves that short wave energy is increasing on surface. As a result, The surface temperature is increased on Korea. But the other case, that 'PJ_Only' case, is indicated when PJ pattern occur and JJA Korean precipitation doesn't have negative value over significant level. The subtropic precipitation's pattern in 'PJ_Only' shows precipitation is confined in western Pacific and expended northward to 25°N near 130°E. And tail of precipitation is toward equatorial(south-eastward). Also, Korean a little positive moisture advection and south-westly is the role that is moving low-latitude's warm and wet air to Korea. So weak high pressure is formed in Korea. The weak high pressure influence amount of short wave energy, so Korean surface temperature is lower. In addition, the case of 'PJ_Only' and Pacific Decal Oscillation(PDO) are occur at the same time has negative impact in Korea temperature through subtropical cyclone and positive PDO. The positive PDO is the role that negative temperature in Korea. So, Korean temperature confined lower by subtropical cyclone and positive PDO. In summary, the relation between PJ pattern and JJA Korean temperature and precipitation depends on subtropical precipitation's pattern. And The subtropical precipitation is effected by Indian SST and PDO's teleconnection.
Dufois, François; Hardman-Mountford, Nick J; Greenwood, Jim; Richardson, Anthony J; Feng, Ming; Matear, Richard J
2016-05-01
Mesoscale eddies are ubiquitous features of ocean circulation that modulate the supply of nutrients to the upper sunlit ocean, influencing the rates of carbon fixation and export. The popular eddy-pumping paradigm implies that nutrient fluxes are enhanced in cyclonic eddies because of upwelling inside the eddy, leading to higher phytoplankton production. We show that this view does not hold for a substantial portion of eddies within oceanic subtropical gyres, the largest ecosystems in the ocean. Using space-based measurements and a global biogeochemical model, we demonstrate that during winter when subtropical eddies are most productive, there is increased chlorophyll in anticyclones compared with cyclones in all subtropical gyres (by 3.6 to 16.7% for the five basins). The model suggests that this is a consequence of the modulation of winter mixing by eddies. These results establish a new paradigm for anticyclonic eddies in subtropical gyres and could have important implications for the biological carbon pump and the global carbon cycle.
[Nutrition value of tropical and subtropical fruits].
Dubtsov, G G; Bessonov, V V; Baĭkov, V G; Makhova, N N; Sheviakova, L V; Bogachuk, M N; Baĭgarin, E K; Iao Bru, Lazar
2013-01-01
The article is devoted to the study of the chemical composition of tropical and subtropical fruit (avocado, papaya and mango), which are now in great numbers are on the appeared on the Russian market. Due to use technology tropical and subtropical fruits can be implemented in almost all areas and regions of the country. Relatively low cost makes these products quite popular among the people. In domestic scientific literature there are no systematic data describing the chemical composition of these tropical and subtropical fruits sold in the domestic market, while the information needed to calculate food and energy value of diets and culinary products derived from tropical and subtropical fruit. Avocado fruits are sources of insoluble dietary fiber content of which was equal to 12.2%, as well as minerals. The study of the fatty acid composition of lipids avocados showed high content of oleic acid fruit, which accounts for 53.2% of total fatty acids in these fruits. Which makes them a valuable source of unsaturated fatty acids.
Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.
Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong
2016-07-28
Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated 'peat deposit-lake sediment' alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles.
Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation
Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong
2016-01-01
Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated ‘peat deposit-lake sediment’ alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles. PMID:27465566
Holocene evolution of the North Atlantic subsurface transport
NASA Astrophysics Data System (ADS)
Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph
2017-04-01
Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.
High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region
Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin
2014-01-01
Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529
NASA Astrophysics Data System (ADS)
Yu, Lonfei; Zhu, Jing; Mulder, Jan; Dörsch, Peter
2016-04-01
Forests in China receive variable but increasing amounts of nitrogen from the atmosphere causing N saturation and nitrate runoff. Surprisingly high N-retention has been reported from subtropical forests, suggesting active mechanisms of N removal. Here we report a multi-site study of 15N and 18O abundances in soil nitrate (NO3-) across seven forested catchments spanning from temperate to subtropical China. In each catchment, samples were taken on one date during one or two summer along the hydrological continuum comprising hillslope positions and riparian zones. We had found previously in an intensive multi-year study at one of the sites, that the spatial pattern of summertime 15N and 18O in soil nitrate was remarkably stable across climatically distinct years, suggesting persistent N removal by denitrification at the foot of hill slopes and in groundwater discharge zones (Yu et al., submitted). In the present study, we extended the scope to five subtropical Chinese catchments and compared them with two temperate forests. Our data confirm the general pattern of efficient nitrification on hillslopes and strong denitrification in riparian zones in the subtropical catchments but not in the temperate ones. This is likely because high summer rainfalls at the monsoonal sites connect N mineralization and oxidation in upland positions with NO3- reduction in ground water discharge zones via NO3- runoff, rendering subtropical forests an efficient sink for reactive N with implications for regional N budgets. The impact of N deposition level, hydrology and edaphic factors on the predictive power of nitrate isotope signatures for N removal processes will be discussed. Yu L, Zhu J, Mulder J, Dörsch P: Spatiotemporal patterns in dual nitrate isotopes reveal efficient N transformation and denitrification along a hydrological continuum in N-saturated, subtropical forest. Submitted
NASA Astrophysics Data System (ADS)
Reynolds, Sarah; Mahaffey, Claire; Roussenov, Vassil; Williams, Richard G.
2014-08-01
The concentration of phosphate and dissolved organic phosphorus (DOP) is chronically low and limits phytoplankton growth in the subtropical North Atlantic relative to other ocean basins. Transport of phosphate and DOP from the productive flanks of the gyre to its interior has been hypothesized as an important phosphorus supply pathway. During a cruise in the eastern Atlantic in spring 2011, the rates of phosphate uptake, alkaline phosphatase activity (APA), and DOP production were measured in the northwest African shelf region, subtropics, and tropics. Rates of DOP production were sixfold higher in the shelf region (43 ± 41 nM d-1) relative to the subtropics (6.9 ± 4.4 nM d-1). In contrast, APA was threefold higher in the subtropics (8.0 ± 7.3 nM d-1), indicative of enhanced DOP utilization, relative to the shelf region (2.6 ± 2.1 nM d-1). Hence, observations suggest net production of DOP in the shelf region and either net consumption of DOP or a near balance in DOP production and consumption in the gyre interior. Eddy-permitting model experiments demonstrate that (i) DOP accounts for over half the total phosphorus in surface waters, (ii) DOP is transported westward from the shelf region by a combination of gyre and eddy circulations, and (iii) advected DOP supports up to 70% of the particle export over much of the subtropical gyre. Our combined observational and modeling study supports the view that the horizontal transport of DOP from the shelf region is an important mechanism supplying phosphorus to the surface subtropical North Atlantic.
Dynamics of ecosystem services provided by subtropical ...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtropical forest and a 23-year history of growth on 3 subtropical forest plantations in Southeastern China. The ‘People's Republic of China Forestry Standard: Forest Ecosystem Service Valuation Norms’ was revised and applied to quantify the receiver values of ecosystem services, which were then compared with the emergy-based, donor values of the services. The results revealed that the efficiencies of subtropical forests and plantations in providing ecosystem services were 2 orders of magnitude higher than similar services provided by the current China economic system, and these efficiencieskept increasing over the course of succession. As a result, we conclude that afforestation is an efficient way to accelerate both the ability and efficiency of subtropical forests to provide ecosystem services. This paper is significant because it examines the dynamics of the provision of ecosystem services by forests over a succession series that spans 400 years. The paper also examines the rate of increase of services during forest restoration over a period of 23 years. The emergy used in ecosystem services provision is compared to the provision of similar services by economic means in the Chinese e
Thermodynamic Environments Supporting Extreme Convection in Subtropical South America
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Trier, S. B.
2015-12-01
Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems (MCSs) similar to those seen over the U.S. Great Plains and produces damaging tornadoes, hail, and floods across a wide agricultural region. In recent years, studies on the nature of convection in subtropical South America using spaceborne radar data have elucidated key processes responsible for their extreme characteristics, including a strong relationship between the Andes topography and convective initiation. Building on previous work, an investigation of the thermodynamic environment supporting some of the deepest convection in the world will be presented. In particular, an analysis of the thermodynamic destabilization in subtropical South America, which considers the parcel buoyancy minimum for conditionally unstable air parcels, will be presented. Additional comparisons between the nocturnal nature and related diurnal cycle of MCSs in subtropical South America the U.S. Great Plains will provide insights into the processes controlling MCS initiation and upscale growth.
Subduction in the Subtropical Gyre: Seasoar Cruises Data Report
1995-09-01
Julie Pallant , Frank Bahr, Terrence Joyce, Jerome Dean, James R. Luyten & Performing Organization Rept No. WHOI-95- 13 IL Performing Organization Name...AD-A28 6 861 WHOI-95-13 Woods Hole x Oceanc grapbic Ifliotitutionf de Subduction in the Subtropical Gyre: Seasoar Cruises Data Report by Julie S. •P...unlimiled. =Tfl QUALuTr =S) ij Ai Si 4 ;•IIII.. " - II •r * 9 9 * 11S 0 WIHOI-95-13 Subduction in the Subtropical Gyre: Seasoar Cruises Data Report by 0 Julie
Interannual and Decadal Changes in Salinity in the Oceanic Subtropical Gyres
NASA Astrophysics Data System (ADS)
Bulusu, Subrahmanyam
2017-04-01
There is evidence that the global water cycle has been undergoing an intensification over several decades as a response to increasing atmospheric temperatures, particularly in regions with skewed evaporation - precipitation (E-P) patterns such as the oceanic subtropical gyres. Moreover, observational data (rain gauges, etc.) are quite sparse over such areas due to the inaccessibility of open ocean regions. In this work, a comparison of observational and model simulations are conducted to highlight the potential applications of satellite derived salinity from NASA Aquarius Salinity mission, NASA Soil Moisture and Ocean Salinity (SMOS), and ESA's Soil Moisture Active Passive (SMAP). We explored spatial and temporal salinity changes (and trends) in surface and subsurface in the oceanic subtropical gyres using Argo floats salinity data, Simple Ocean Data Assimilation (SODA) reanalysis, Estimating the Circulations & Climate of the Ocean GECCO (German ECCO) model simulations, and Hybrid Coordinate Ocean Model (HYCOM). Our results based on SODA reanalysis reveals that a positive rising trend in sea surface salinity in the subtropical gyres emphasizing evidence for decadal intensification in the surface forcing in these regions. Zonal drift in the location of the salinity maximum of the south Pacific, north Atlantic, and south Indian regions implies a change in the mean near-surface currents responsible for advecting high salinity waters into the region. Also we found out that an overall salinity increase within the mixed layer, and a subsurface salinity decrease at depths greater than 200m in the global subtropical gyres over 61 years. We determine that freshwater fluxes at the air-sea interface are the primary drivers of the sea surface salinity (SSS) signature over these open ocean regions by quantifying the advective contribution within the surface layer. This was demonstrated through a mixed layer salinity budget in each subtropical gyre based on the vertically integrated advection and entrainment of salt. Our analysis of decadal variability of fluxes into and out of the gyres reveals little change in the strength of the mean currents through this region despite an increase in the annual export of salt in all subtropical gyres, with the meridional component dominating the zonal. This study reveals that the salt content of E-P maximum waters advected into the subtropical gyres is increasing over time. A combination of increasing direct evaporation over the regions with increasing remote evaporation over nearby E-P maxima is believed to be the main driver in increasing salinity of the subtropical oceans, suggesting an intensification of the global water cycle over decadal timescales.
Tao, Yuqiang; Yu, Jing; Xue, Bin; Yao, Shuchun; Wang, Sumin
2017-04-01
Hydrophobic organic contaminants (HOCs) are toxic and ubiquitous in aquatic environments and pose great risks to aquatic organisms. Bioaccumulation by plankton is the first step for HOCs to enter aquatic food webs. Trophic status is considered to dominate variations in bioaccumulation of HOCs in plankton in temperate and frigid deep oligotrophic waters. However, long-term driving factors for bioaccumulation of HOCs in planktonic food webs of subtropical shallow eutrophic waters have not been well investigated. China has the largest subtropical lake density in the Northern Hemisphere. Due to limited field data, long-term variations in the bioaccumulation of HOCs in these lakes are almost unknown. Here we take Lake Xuanwu as an example to investigate long-term variations in the bioaccumulation, and biomagnification of polycyclic aromatic hydrocarbon (PAHs) in planktonic food webs of subtropical shallow eutrophic lakes in China, and elucidate the driving factors. Our results indicate that temperature rather than nutrients dominates long-term dynamics of planktonic biomass in this lake. Precipitation significantly enhances the concentrations of the PAHs, and total suspended particles, and consequently affects the distribution of the PAHs in the water column. Biomass dilution induced by temperature dominates bioaccumulation of the PAHs by both phytoplankton and zooplankton (copepods and cladocerans). Biomagnification of the PAHs from phytoplankton to zooplankton is positively correlated with temperature. Our study suggests that temperature and precipitation drive long-term variations in the bioaccumulation of the PAHs in the planktonic food webs of this subtropical shallow eutrophic lake. Lake Xuanwu has a similar mean annual temperature, annual precipitation, sunshine duration, and nutrient levels as other subtropical shallow eutrophic lakes in China. This study may also help to understand the bioaccumulation of HOCs in planktonic food webs of other subtropical shallow eutrophic lakes. Copyright © 2017 Elsevier B.V. All rights reserved.
Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes
NASA Astrophysics Data System (ADS)
Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne
2017-09-01
The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.
Thermohaline circulation at three key sections in the North Atlantic over 1985-2002
NASA Astrophysics Data System (ADS)
Marsh, Robert; de Cuevas, Beverly A.; Coward, Andrew C.; Bryden, Harry L.; Álvarez, Marta
2005-05-01
Efforts are presently underway to monitor the Thermohaline Circulation (THC) in the North Atlantic. A measuring strategy has been designed to monitor both the Meridional Overturning Circulation (MOC) in the subtropics and dense outflows at higher latitudes. To provide a historical context for these new observations, we diagnose an eddy-permitting ocean model simulation of the period 1985-2002. We present time series of the THC, MOC and heat transport, at key hydrographic sections in the subtropics, the northeast Atlantic and the Labrador Sea. The simulated THC compares well with observations. We find considerable variability in the THC on each section, most strikingly in the Labrador Sea during the early 1990's, consistent with observed changes. Overturning in the northeast Atlantic declines by ~20% over the 1990's, coincident with an increase in the subtropics. We speculate that MOC weakening may soon be detected in the subtropics, if the decline continues in mid-latitudes.
Special issue on the advances in understanding of the North Pacific subtropical front ecosystem
NASA Astrophysics Data System (ADS)
McKinnell, Skip; Seki, Michael P.; Ichii, Taro
2017-01-01
Subtropical, oligotrophic oceanic gyres are the largest marine ecosystems in the world. They provide important habitat for many higher trophic level species of fish, squid, seabirds, and marine mammals, with some taxa undergoing extensive seasonal migrations between the subtropical frontal region and summer feeding grounds in the subarctic. Knowledge of the structure, variability, and trends of these regions has developed slowly because of their immense size, remote location, and cost of sampling. The first consolidation of the general understanding of the physical nature of the subtropical North Pacific Ocean (and subarctic transition) was published 25 years ago (Roden, 1991) with important information on its relationship to biota added by the now defunct International North Pacific Fisheries Commission (INPFC, 1992; Ito et al., 1993). At that time, a research imperative had arisen from a need by governments to understand the effects of large-scale pelagic driftnet fishing on marine ecosystems (Wetherall, 1991).
Serological Survey of Hantavirus in Inhabitants from Tropical and Subtropical Areas of Brazil.
Alves Morais, Felipe; Pereira, Alexandre; Santo Pietro Pereira, Aparecida; Lazaro Moreli, Marcos; Marcelo Aranha Camargo, Luís; Schiavo Nardi, Marcello; Farah Tófoli, Cristina; Araujo, Jansen; Mara Dutra, Lilia; Lopes Ometto, Tatiana; Hurtado, Renata; Carmona de Jesus Maués, Fábio; Zingano Hinke, Tiene; Jaber Mahmud, Sati; Correia Lima, Monica; Tadeu Moraes Figueiredo, Luiz; Luiz Durigon, Edison
2016-01-01
Brazil has reported more than 1,600 cases of hantavirus cardiopulmonary syndrome (HPS) since 1993, with a 39% rate of reported fatalities. Using a recombinant nucleocapsid protein of Araraquara virus, we performed ELISA to detect IgG antibodies against hantavirus in human sera. The aim of this study was to analyze hantavirus antibody levels in inhabitants from a tropical area (Amazon region) in Rondônia state and a subtropical (Atlantic Rain Forest) region in São Paulo state, Brazil. A total of 1,310 serum samples were obtained between 2003 and 2008 and tested by IgG-ELISA, and 82 samples (6.2%), of which 62 were from the tropical area (5.8%) and 20 from the subtropical area (8.3%), tested positive. Higher levels of hantavirus antibody were observed in inhabitants of the populous subtropical areas compared with those from the tropical areas in Brazil.
NASA Astrophysics Data System (ADS)
Jia, Junjie; Gao, Yang
2017-12-01
Atmospheric acidic deposition in subtropical watersheds poses an environmental risk of causing acidification of aquatic ecosystems. In this study, we evaluated the frequency of acid deposition in a subtropical forest ecosystem and the associated critical loads of acidity for a sensitive aquatic ecosystem. We found that out of 132 rainfall events, 33(25%) were acidic rainfall occurrences. Estimated wet acid deposition (2282.78 eq·ha-1·yr-1), consistent with SO42- and NH4+ deposition, was high in spring and summer and low in autumn and winter. Waterbodies surrounded by mixed wood and citrus orchard experience severe acidification, mostly from S deposition because acidic deposition exceeds the corresponding critical loads of acidity. Modifications that take acid rain deposition into consideration are needed for land-use and agricultural management strategies to improve the environmental health of waterbodies in subtropical watersheds.
Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.
2011-01-01
Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.
BACTERIOPLANKTON DYNAMICS IN A SUBTROPICAL ESTUARY: EVIDENCE FOR SUBSTRATE LIMITATION
Bacterioplankton abundance and metabolic characteristics were measured along a transect in Pensacola Bay, Florida, USA, to examine the factors that control microbial water column processes in this subtropical estuary. The microbial measures included 3 H-L-leucine incorporation, e...
How ocean color can steer Pacific tropical cyclones
NASA Astrophysics Data System (ADS)
Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert
2010-09-01
Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.
NASA Technical Reports Server (NTRS)
Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.
2005-01-01
The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.
Watermelon, cantaloupe, and honeydew
USDA-ARS?s Scientific Manuscript database
Tropical and sub-tropical fruits have gained significant importance in global commerce. During the period 2000–2004, global production of tropical and subtropical fruits increased by 19.2%, this trend is expected to continue as per FAO projections. Some of the major challenges confronting tropical a...
NASA Astrophysics Data System (ADS)
Duncan, Bella; Carter, Lionel; Dunbar, Gavin; Bostock, Helen; Neil, Helen; Scott, George; Hayward, Bruce W.; Sabaa, Ashwaq
2016-09-01
Satellite observations of middle to high latitudes show that modern ocean warming is accompanied by increased frequency and poleward expansion of coccolithophore blooms. However, the outcomes of such events and their causal processes are unclear. In this study, marine sediment cores are used to investigate past coccolithophore production north and south of the Subtropical Front. Calcareous pelagites from subtropical waters off northernmost New Zealand (site P71) and from subantarctic waters on Campbell Plateau (Ocean Drilling Program [ODP] site 1120C) record marked changes in pelagite deposition. At both locations, foraminiferal-rich sediments dominate glacial periods whereas coccolith-rich sediments characterise specific interglacial periods. Sediment grain size has been used to determine relative abundances of coccoliths and foraminifers. Results show coccoliths prevailed around certain Marine Isotope Stage (MIS) transitions, at MIS 7b/a and MIS 2/1 at P71, and at MIS 6/5e at ODP 1120C. Palaeo-environmental proxies suggest that coccolithophore production and deposition at P71 reflect enhanced nutrient availability associated with intense winter mixing in the subtropical Tasman Sea. An increased inflow of that warm, micronutrient-bearing subtropical water in concert with upper ocean thermal stratification in late spring/summer, led to peak phytoplankton production. At ODP 1120C during MIS 6/5e, an increased inflow of subtropical water, warm sea surface temperatures and a thermally stratified upper ocean also favoured coccolithophore production. These palaeo-environmental reconstructions together with model simulations suggest that (i) future subtropical coccolithophore production at P71 is unlikely to reach abundances recorded during MIS 7b/a but (ii) future subantarctic production is likely to dominate sedimentation over Campbell Plateau as modern conditions trend towards those prevalent during MIS 5e.
[Climatic suitability of citrus in subtropical China].
Duan, Hai-Lai; Qian, Huai-Sui; Li, Ming-Xia; Du, Yao-Dong
2010-08-01
By applying the theories of ecological suitability and the methods of fuzzy mathematics, this paper established a climatic suitability model for citrus, calculated and evaluated the climatic suitability and its spatiotemporal differences for citrus production in subtropical China, and analyzed the climatic suitability of citrus at its different growth stages and the mean climatic suitability of citrus in different regions of subtropical China. The results showed that the citrus in subtropical China had a lower climatic suitability and a higher risk at its flower bud differentiation stage, budding stage, and fruit maturity stage, but a higher climatic suitability and a lower risk at other growth stages. Cold damage and summer drought were the key issues affecting the citrus production in subtropical China. The citrus temperature suitability represented a latitudinal zonal pattern, i. e., decreased with increasing latitude; its precipitation suitability was high in the line of "Sheyang-Napo", medium in the southeast of the line, low in the northwest of the line, and non in high mountainous area; while the sunlight suitability was in line with the actual duration of sunshine, namely, higher in high-latitude areas than in low-latitude areas, and higher in high-altitude areas than in plain areas. Limited by temperature factor, the climatic suitability was in accordance with temperature suitability, i. e., south parts had a higher suitability than north parts, basically representing latitudinal zonal pattern. From the analysis of the inter-annual changes of citrus climatic suitability, it could be seen that the citrus climatic suitability in subtropical China was decreasing, and had obvious regional differences, suggesting that climate change could bring about the changes in the regions suitable for citrus production and in the key stages of citrus growth.
Tian, Shuang; Lei, Shu-Qing; Hu, Wan; Deng, Ling-Li; Li, Bo; Meng, Qing-Lin; Soltis, Douglas E; Soltis, Pamela S; Fan, Deng-Mei; Zhang, Zhi-Yong
2015-04-01
Most plant phylogeographic studies in subtropical China have stressed the importance of multiple refugia and limited admixture among refugia. Little attention has been paid to range expansion and recolonization routes in this region. In this study, we implemented a phylogeographic survey on Sargentodoxa cuneata, a widespread woody deciduous climber in subtropical China to determine if it conforms to the expansion-contraction (EC) model during the Pleistocene. Sequence variation of two chloroplast intergenic spacers (IGSs) in 369 individuals from 54 populations of S. cuneata was examined. Twenty-six chloroplast haplotypes were recovered. One of these (H5) occurred across the range of S. cuneata and was absent from only 13 populations. Sixteen of the 26 haplotypes were connected to H5 by one mutation and displayed a star-like pattern in the haplotype network. All chloroplast haplotypes clustered into two lineages (A and B) in a Bayesian tree, and most haplotypes (18 out of 26) originated during the mid-Pleistocene (0.63-1.07Ma). Demographic analyses detected a recent range expansion that occurred at 95.98ka (CI: 61.7-112.53ka) for Lineage A. The genetic signature of an ancient range expansion after the Middle Pleistocene Transition (MPT) was also evident. Three recolonization routes were identified in subtropical China. The results suggest that temperate plants in subtropical China may conform to the EC model to some extent. However, the genetic signature from multiple historical processes may complicate the phylogeographic patterns of organisms in the region due to the mild Pleistocene climate. This study provides a new perspective for understanding the evolutionary history of temperate plants in subtropical China. Copyright © 2015 Elsevier Inc. All rights reserved.
Influence of transient flooding on methane fluxes from subtropical pastures
USDA-ARS?s Scientific Manuscript database
Seasonally flooded subtropical pastures are major methane (CH4) sources, where transient flooding drives episodic and high-magnitude emissions from the underlying landscape. Understanding the mechanisms that drive these patterns is needed to better understand pasture CH4 emissions and their response...
Fan, Cheng-Wei; Kao, Shuh-Ji
2008-04-15
The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.
NASA Technical Reports Server (NTRS)
Velez-Rodriguez, Linda L. (Principal Investigator)
1996-01-01
Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.
NASA Astrophysics Data System (ADS)
Krüger, K.; Langematz, U.; Grenfell, J. L.; Labitzke, K.
2005-01-01
The purpose of this study is to investigate horizontal transport processes in the winter stratosphere using data with a resolution relevant for chemistry and climate modeling. For this reason the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) with its model top at 83 km altitude, increased horizontal resolution T42 and the semi-Lagrangian transport scheme for advecting passive tracers is used.
A new approach of this paper is the classification of specific transport phenomena within the stratosphere into tropical-subtropical streamers (e.g. Offermann et al., 1999) and polar vortex extrusions hereafter called polar vortex streamers. To investigate the role played by these large-scale structures on the inter-annual and seasonal variability of transport processes in northern mid-latitudes, the global occurrence of such streamers was calculated based on a 10-year model climatology, concentrating on the existence of the Arctic polar vortex. For the identification and counting of streamers, the new method of zonal anomaly was chosen. The analysis of the months October-May yielded a maximum occurrence of tropical-subtropical streamers during Arctic winter and spring in the middle and upper stratosphere. Synoptic maps revealed highest intensities in the subtropics over East Asia with a secondary maximum over the Atlantic in the northern hemisphere. Furthermore, tropical-subtropical streamers exhibited a higher occurrence than polar vortex streamers, indicating that the subtropical barrier is more permeable than the polar vortex barrier (edge) in the model, which is in good correspondence with observations (e.g. Plumb, 2002; Neu et al., 2003). Interesting for the total ozone decrease in mid-latitudes is the consideration of the lower stratosphere for tropical-subtropical streamers and the stratosphere above ~20 km altitude for polar vortex streamers, where strongest ozone depletion is observed at polar latitudes (WMO, 2003). In the lower stratosphere the FUB-CMAM simulated a climatological maximum of 10% occurrence of tropical-subtropical streamers over East-Asia/West Pacific and the Atlantic during early- and mid-winter.
The results of this paper demonstrate that stratospheric streamers e.g. large-scale, tongue-like structures transporting tropical-subtropical and polar vortex air masses into mid-latitudes occur frequently during Arctic winter. They can therefore play a significant role on the strength and variability of the observed total ozone decrease at mid-latitudes and should not be neglected in future climate change studies.
NASA Astrophysics Data System (ADS)
Bowden, J.; Terando, A. J.; Misra, V.; Wootten, A.
2017-12-01
Small island nations are vulnerable to changes in the hydrologic cycle because of their limited water resources. This risk to water security is likely even higher in sub-tropical regions where anthropogenic forcing of the climate system is expected to lead to a drier future (the so-called `dry-get-drier' pattern). However, high-resolution numerical modeling experiments have also shown an enhancement of existing orographically-influenced precipitation patterns on islands with steep topography, potentially mitigating subtropical drying on windward mountain sides. Here we explore the robustness of the near-term (25-45 years) subtropical precipitation decline (SPD) across two island groupings in the Caribbean, Puerto Rico and the U.S. Virgin Islands. These islands, forming the boundary between the Greater and Lesser Antilles, significantly differ in size, topographic relief, and orientation to prevailing winds. Two 2-km horizontal resolution regional climate model simulations are used to downscale a total of three different GCMs under the RCP8.5 emissions scenario. Results indicate some possibility for modest increases in precipitation at the leading edge of the Luquillo Mountains in Puerto Rico, but consistent declines elsewhere. We conclude with a discussion of potential explanations for these patterns and the attendant risks to water security that subtropical small island nations could face as the climate warms.
NASA Astrophysics Data System (ADS)
Gottschalk, Matthias; Lauermann, Felix; Ehrlich, André; Siebert, Holger; Wendisch, Manfred
2017-04-01
Stratocumulus covers approximately 20 % (annually averaged) of the Earth's surface and thus strongly influences the atmospheric and surface radiative energy budget resulting in radiative cooling and heating effects. Globally, the solar cooling effect of the widespread sub-tropical stratocumulus dominates. However, in the Arctic the solar cloud albedo effect (cooling) is often smaller than the thermal-infrared greenhouse effect (warming), which is a result of the lower incoming solar radiation and the low cloud base height. Therefore, Arctic stratocumulus mostly warms the atmosphere and surface below the cloud. Additionally, different environmental conditions lead to differences between sub-tropical and Arctic stratocumulus. Broadband pyranometers and pyrgeometers will be used to measure heating and cooling rate profiles in and above stratocumulus. For this purpose two slowly moving platforms are used (helicopter and tethered balloon) in order to consider for the long response times of both broadband radiation sensors. Two new instrument packages are developed for the applied tethered balloon and helicopter platforms, which will be operated within Arctic and sub-tropical stratocumulus, respectively. In June 2017, the balloon will be launched from a sea ice floe north of 80 °N during the Arctic Balloon-borne profiling Experiment (ABEX) as part of (AC)3 (Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms) Transregional Collaborative Research Center. The helicopter will sample sub-tropical stratocumulus over the Azores in July 2017.
Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqiang; Gong, Hainan
2017-09-20
Upper tropospheric equatorial westerly ducts over the Pacific Ocean are the preferred location for Rossby wave breaking events during boreal winter and spring. These subtropical wave breaking events lead to the intrusion of high PV (potential vorticity) air along the extra-tropical tropopause and transport ozone rich dry stratospheric air into the tropics. The intrusion frequency has strong interannual variability due to ENSO (El-Niño/Southern Oscillation), with more events under La-Niña and less under El-Niño conditions. This may result from stronger equatorial westerly ducts and subtropical jets during La-Niña and weaker during El-Niño. It was previously suggested that the interannual variability of the tropospheric ozone distribution over the central-eastern Pacific Ocean is mainly driven by convective activity related to ENSO and that the barotropic nature of the subtropical intrusions restricts the tracers within the UT. However, our analysis shows that tropospheric ozone concentration and subtropical intrusions account ~65% of the co- variability (below 5 km) in the outer tropical (10-25°N) central Pacific Ocean, particularly during La-Niña conditions. Additionally, we find a two-fold increase and westward shift in the intrusion frequency over the Pacific Ocean, due to the climate regime shift in SST pattern during 1997/98.
EMERGY SYNTHESIS OF AN AGRO-FOREST RESTORATION SYSTEM IN LOWER SUBTROPICAL CHINA
The low subtropical zone is the most populated and seriously degraded area in China; therefore, highly efficient restoration of degraded lands is the key to sustainable development of this region. An agro-forest restoration mode consisting of an Acacia mangium forest, a Citrus re...
USDA-ARS?s Scientific Manuscript database
Reports of Staphylococcus aureus detected in marine environments have occurred since the early 1990’s. This investigation sought to isolate and characterize S. aureus from marine waters and sand at a subtropical recreational beach, with and without bathers present, in order to investigate possible s...
Subtropical Biotic Fringing Reefs as Ecological Laboratories.
ERIC Educational Resources Information Center
Hunt, Jeffrey W.
1980-01-01
Describes a 16-week course in marine biology involving a class-coordinated investigation of a subtropical biotic fringing reef of Hawaii. Describes in detail the development of preliminary hypotheses regarding general cause-effect relationships on the reef, and the exploration of specific areas, such as chemical or physical factors. (CS)
USDA-ARS?s Scientific Manuscript database
Fruit of five canistel cultivars, 'Fairchild','E11', 'Keisau', 'TREC#3' and 'TREC 3680' were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clonal accessions during July and August, ...
Our understanding of seagrass physiology is based on crude estimates of production and biomass. To better understand the complex physiological relationships between the plants and the environment we developed a model of carbon and nitrogen allocation in the sub-tropical seagrass ...
Murrell, Michael C. and Emile M. Lores. 2004. Phytoplankton and Zooplankton Seasonal Dynamics in a Subtropical Estuary: Importance of Cyanobacteria. J. Plankton Res. 26(3):371-382. (ERL,GB 1190).
A seasonal study of phytoplankton and zooplankton was conducted from 1999-20...
INFLUENCE OF LIGHT ON BACTERIOPLANKTON PRODUCTION AND RESPIRATION IN A SUBTROPICAL CORAL REEF
The influence of sunlight on bacterioplankton production (14C-leucine (Leu) and 3H-thymidine (TdR) incorporation; changes in cell abundances) and O2 consumption was investigated in a shallow subtropical coral reef located near Key Largo, Florida. Quartz (light) and opaque (dark) ...
Nile tilapia and blue tilapia fry production in a subtropical climate
USDA-ARS?s Scientific Manuscript database
The relationship between production in earthen ponds located in a subtropical climate of fry suitable for hormonal sex inversion and degree-days was quantified for Nile tilapia (Oreochromis niloticus; Egypt strain) and blue tilapia (O. aureus). Degree-days were calculated for each trial as the sum o...
USDA-ARS?s Scientific Manuscript database
Japanese cornmint (Mentha canadensis L.) is a subtropical essential oil crop grown in Asia and South America. The essential oil of Japanese cornmint is the only commercial source for production of natural crystalline menthol, an important aromatic agent used in various industrial applications. The ...
Simulation of high frequency nitrous oxide emissions from irrigated sub-tropical soils using DAYCENT
USDA-ARS?s Scientific Manuscript database
A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intens...
FIRST INTERNATIONAL SYMPOSIUM ON WILD RELATIVES OF SUBTROPICAL AND TEMPERATE FRUIT AND NUT CROPS
USDA-ARS?s Scientific Manuscript database
Over 50 participants from 15 different countries would spend five days, March 19-23 2011, in open discussion on the status of conservation, management, and sustainable utilization of wild relatives of subtropical and temperate fruit and nut crops. This was the first such meeting, co-convened by Dr. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
... the Gu[aacute]nica Commonwealth Forest remaining in public ownership. The native vegetation is classified as subtropical dry forest under the Holdridge classification of world life zones. At least 245... restore and maintain existing sub-tropical dryland forests, salt lagoons, and grassland habitats. Active...
Evaluation of two sources of Angus cattle under South Florida subtropical conditions
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare performance and aspects of adaptability attributes of cattle from a Florida Angus bloodline (local source from a mostly closed herd for over 50 yr) to cattle that are representative of modern Angus bloodlines (outside source) in U.S. subtropical conditions....
Diameter growth of subtropical trees in Puerto Rico
Thomas J. Brandeis
2009-01-01
Puerto Ricoâs forests consist of young, secondary stands still recovering from a long history of island-wide deforestation that largely abated in the mid-20th century. Limited knowledge about growth rates of subtropical tree species in these forests makes it difficult to accurately predict forest yield, biomass accumulation, and carbon...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Patrick; Kravitz, Ben; Lu, Jian
In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523
Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies
NASA Astrophysics Data System (ADS)
Dufois, François; Hardman-Mountford, Nick J.; Fernandes, Michelle; Wojtasiewicz, Bozena; Shenoy, Damodar; Slawinski, Dirk; Gauns, Mangesh; Greenwood, Jim; Toresen, Reidar
2017-04-01
The South Indian Ocean subtropical gyre has been described as a unique environment where anticyclonic ocean eddies highlight enhanced surface chlorophyll in winter. The processes responsible for this chlorophyll increase in anticyclones have remained elusive, primarily because previous studies investigating this unusual behavior were mostly based on satellite data, which only views the ocean surface. Here we present in situ data from an oceanographic voyage focusing on the mesoscale variability of biogeochemical variables across the subtropical gyre. During this voyage an autonomous biogeochemical profiling float transected an anticyclonic eddy, recording its physical and biological state over a period of 6 weeks. We show that several processes might be responsible for the eddy/chlorophyll relationship, including horizontal advection of productive waters and deeper convective mixing in anticyclonic eddies. While a deep chlorophyll maximum is present in the subtropical Indian Ocean outside anticyclonic eddies, mixing reaches deeper in anticyclonic eddy cores, resulting in increased surface chlorophyll due to the stirring of the deep chlorophyll maximum and possibly resulting in new production from nitrate injection below the deep chlorophyll maximum.
Kelly, Patrick; Kravitz, Ben; Lu, Jian; ...
2018-04-16
In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
Santos, Vanessa Santana Vieira; Campos, Carlos Fernando; de Campos Júnior, Edimar Olegário; Pereira, Boscolli Barbosa
2018-05-23
In International guidelines for standard ecotoxicological bioassays, Daphnia magna is the most applied microcrustacea for assessing toxicity of different pollutants. However, in research realized in tropical and subtropical areas, autochthonous species must be prioritized because they are adapted to the specificities of ecosystems. In this sense, the present study aimed to assess and compare (with D. magna) the sensitivity of the tropical species Dendrocephalus brasiliensis as alternative test species for monitoring of contaminants in tropical and subtropical freshwaters, by carrying out acute toxicity tests with different pollutants. According results, D. brasiliensis presented EC50-48 h values lower than D. magna for all substances tested, indicating higher sensitivity of the tropical organism in relation to the temperate organism. Furthermore, comparing the results obtained with data from other studies, D. brasiliensis is more sensitive to the chemicals tested than D. magna and has similar sensitivity to Pseudosida ramosa and Ceriodaphnia dubia, common species in tropical areas. In view of this, we suggest that D. brasiliensis can be used as alternative test species for monitoring of contaminants in tropical and subtropical freshwaters.
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.
Strong hydrological control on nutrient cycling of subtropical rainforests
NASA Astrophysics Data System (ADS)
Lin, T. C.; Chang, C. T.; Huang, J. C.; Wang, L.; Lin, N. H.
2016-12-01
Forest nutrient cycling is strongly controlled by both biological and hydrological factors. However, based on a close examination of earlier reports, we highlight the role of hydrological control on nutrient cycling at a global scale and is more important at humid tropical and subtropical forests. we analyzed the nutrient budget of precipitation input and stream water output from 1994 to 2013 in a subtropical forest in Taiwan and conducted a data synthesis using results from 32 forests across the globe. The results revealed that monthly input and output of ions were positively correlated with water quantity, indicating hydrological control on nutrient cycling. Hydrological control is also evident from the greater ions export via stream water during the warm and wet growing season. The synthesis also illustrates that strong hydrological control leads to lower nitrogen retention and greater net loss of base cations in humid regions, particularly in the humid tropical and subtropical forests. Our result is of great significance in an era of global climate change because climate change could directly affect ecosystem nutrient cycling particularly in the tropics through changes in patterns of precipitation regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sihang; Zhang, Yuguang; Cong, Jing
Global warming has shifted climate zones poleward or upward. Furthermore, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic α-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRImore » (Net Relatedness Index) values increased from 0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomybased association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional α-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional β-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-fortime substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic α-diversities in broadleaved forest.« less
NASA Technical Reports Server (NTRS)
2007-01-01
The circling clouds of an intense low-pressure system sat off the southeast coast of the United States on May 8, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. By the following morning, the storm developed enough to be classified as a subtropical storm, a storm that forms outside of the tropics, but has many of the characteristics--hurricane-force winds, driving rains, low pressure, and sometimes an eye--of a tropical storm. Although it arrived several weeks shy of the official start of the hurricane season (June 1), Subtropical Storm Andrea became the first named storm of the 2007 Atlantic hurricane season. The storm has the circular shape of a tropical cyclone in this image, but lacks the tight organization seen in more powerful storms. By May 9, the storm's winds reached 75 kilometers per hour (45 miles per hour), and the storm was not predicted to get any stronger, said the National Hurricane Center. Though Subtropical Storm Andrea was expected to remain offshore, its strong winds and high waves pummeled coastal states, prompting a tropical storm watch. The winds fueled wild fires (marked with red boxes) in Georgia and Florida. The wind-driven flames generated thick plumes of smoke that concentrated in a gray-brown mass over Tampa Bay, Florida. Unfortunately for Georgia and Florida, which are experiencing moderate to severe drought, Subtropical Storm Andrea was not predicted to bring significant rain to the region right away, according to reports on the Washington Post Website.
Yang, Sihang; Zhang, Yuguang; Cong, Jing; ...
2017-02-10
Global warming has shifted climate zones poleward or upward. Furthermore, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic α-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRImore » (Net Relatedness Index) values increased from 0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomybased association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional α-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional β-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-fortime substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic α-diversities in broadleaved forest.« less
Absolute geostrophic currents over the SR02 section south of Africa in December 2009
NASA Astrophysics Data System (ADS)
Tarakanov, Roman
2017-04-01
The structure of the absolute geostrophic currents is investigated on the basis of CTD-, SADCP- and LADCP-data over the hydrographic section occupied south of Africa from the Good Hope Cape to 57° S along the Prime Meridian, and on the basis of satellite data on absolute dynamic topography (ADT) produced by Ssalto/Duacs and distributed by Aviso, with a support from Cnes (http://www.aviso.altimetry.fr/duacs/). Thus the section crossed the subtropical zone (at the junction of the subtropical gyres of the Indian and Atlantic oceans), the Antarctic Circumpolar Current (ACC) and terminated at the northern periphery of the Weddell Gyre. A total of 87 stations were occupied here with CTD-, and LADCP-profiling in the entire water column. The distance between stations was 20 nautical miles. Absolute geostrophic currents were calculated between each pair of CTD-stations with barotropic correction based on two methods: by SADCP data and by ADT at these stations. The subtropical part of the section crossed a large segment of the Agulhas meander, already separated from the current and disintegrating into individual eddies. In addition, smaller formed cyclones and anticyclones of the Agulhas Current were also observed in this zone. These structural elements of the upper layer of the ocean currents do not penetrate deeper than 1000-1500 m. Oppositely directed barotropic currents with velocities up to 30 cm/s were observed below these depths extending to the ocean bottom. Such large velocities agree well with the data of the bottom tracking of Lowered ADCP. Only these data were the reliable results of LADCP measurements because of the high transparency of the deep waters of the subtropical zone. The total transport of absolute geostrophic currents in the section is estimated as 144 and 179 Sv to the east, based on the SADCP and ADT barotropic correction, respectively. A transport of 4 (2) Sv to the east was observed on the northern periphery of the Weddell Gyre, 187 (182) Sv to the east was in the ACC zone (up to Subtropical front), 47 (5) Sv to the west was in the subtropical zone. The total transport of abyssal barotropic currents in the subtropical zone was 18 to the west (7 to the east).
Ariel E. Lugo F.N. Scatena
1995-01-01
Relationships between landforms, soil nutrients, forest structure, and the relative importance of different disturbances were quantified in two subtropical wet steepland watersheds in Puerto Rico. Ridges had fewer landslides and treefall gaps, more above-ground biomass, older aged stands, and greater species richness than other landscape positions. Ridge soils had...
BENTHIC AND WATER COLUMN PROCESSES IN A SUBTROPICAL ESTUARY: EFFECTS OF LIGHT ON OXYGEN FLUXES
Murrell, M.C., J.D. Hagy, J.G. Campbell and J.M. Caffrey. In press. Benthic and Water Column Processes in a Subtropical Estuary: Effects of Light on Oxygen Fluxes (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 ...
The trends in the provision of ecosystem services during restoration and succession of subtropical forests and plantations were quantified, in terms of both receiver and donor values, based on a case study of a 3-step secondary succession series that included a 400-year-old subtr...
April Mason; Y. Jun Xu; Johnny M. Grace
2007-01-01
Nutrients such as nitrogen, phosphorus and organic carbon are essential to the health and diversity of stream ecosystems. However, excess nutrients can cause eutrophication, resulting in overgrowth of aquatic plants and decline of the ecosystem diversity. A paired-watershed study was initiated in a subtropical forested watershed within the Ouachita River Basin in...
USDA-ARS?s Scientific Manuscript database
The DAYCENT biogeochemical model was used to investigate how the use of fertilisers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-f...
Jennifer A Holm; Skip J Van Bloem; Guy R Larocque; Herman H Shugart
2017-01-01
Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical...
USDA-ARS?s Scientific Manuscript database
In the Rio Grande Plains of southern Texas, subtropical savanna vegetation is characterized by a two-phase pattern consisting of discrete woody patches embedded within a C4 grassland matrix. Prior trench transect studies have suggested that, on upland portions of the landscape, large woody patches (...
USDA-ARS?s Scientific Manuscript database
USDA-ARS SHRS is part of the USDA National Germplasm Repository system and houses collections of tropical and subtropical fruit trees such as mango, lychee, and avocado. In addition to maintaining the germplasm collections, our mission is to also identify genetic diversity in the collections, to ev...
Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume
Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer
2006-01-01
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...
Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume.
Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer
2006-01-01
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...
J. M. Trappe; M. A. Castellano; R. E. Halling; T. W. Osmundson; M. Binder; N. Fechner; N. Malajczuk
2013-01-01
Solioccasus polychromus gen. & sp. nov., the most brightly colored hypogeous fungus known, is described from Papua New Guinea and tropical northern Australia south into subtropical forests along the Queensland coast and coastal mountains to near Brisbane. Phylogenetic analysis of molecular data places it as a sister genus to Bothia...
Liujing Huang; Hongfeng Chen; Hai Ren; Jun Wang; Qinfeng Guo
2013-01-01
We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of...
Diameter growth of subtropical trees in Puerto Rico
Thomas J. Brandeis
2009-01-01
Puerto Ricoâs forests consist of young, secondary stands still recovering from a long history of island-wide deforestation that largely abated in the mid-20th century. Limited knowledge about growth rates of subtropical tree species in these forests makes it difficult to accurately predict forest yield, biomass accumulation, and carbon sequestration. This study...
NASA Astrophysics Data System (ADS)
Bahr, A.; Kaboth, S.; Hodell, D.; Zeeden, C.; Fiebig, J.; Friedrich, O.
2018-01-01
The mid-Pleistocene Transition (MPT; approx. 1.2-0.7 Ma), is characterized by growing Northern Hemisphere ice sheets and the shift from a 41 kyr to a 100 kyr glacial-interglacial cyclicity. Concomitant to the growth of large ice sheets, atmospheric and oceanic circulation pattern have changed. One key feature of the North Atlantic is the wind-driven Subtropical Gyre, a major provider of heat and moisture for continental Europe. Here, we investigate changes in the strength and spatial configuration of the Subtropical Gyre during the MPT and its impact on the continental moisture balance. To reconstruct Subtropical Gyre dynamics, we conducted paired δ18O and Mg/Ca analyses on the deep-dwelling foraminifera Globorotalia inflata from Iberian Margin Site U1385 yielding thermocline temperature (Ttherm) variability between 1400 and 500 ka at the eastern boundary of the Subtropical Gyre. Long-term trends of Ttherm at Site U1385 oppose the North Atlantic climatic evolution of progressively intensified glacials during the MPT. Particularly, glacials MIS 20 and 18 were marked by warm thermocline waters off Iberia. We infer that a southward shift of the (sub)polar front displaced the source region of thermocline waters within the Subtropical Gyre from high to mid-latitudes. In addition, a strong Mediterranean Outflow Water production during the MPT caused the advection of warm waters to Iberia. Humid conditions during MIS 20 and 18 in SE Europe indicate that atmospheric moisture derived from this warm water might have been advected deep into continental Europe and contributed to enhanced growth of Alpine glaciers.
NASA Astrophysics Data System (ADS)
Gorman, Andrew R.; Smillie, Matthew W.; Cooper, Joanna K.; Bowman, M. Hamish; Vennell, Ross; Holbrook, W. Steven; Frew, Russell
2018-02-01
The Subtropical and Subantarctic Fronts, which separate Subtropical, Subantarctic, and Antarctic Intermediate Waters, are diverted to the south of New Zealand by the submerged continental landmass of Zealandia. In the upper ocean of this region, large volumes of dissolved or suspended material are intermittently transported across the Subtropical Front; however, the mechanisms of such transport processes are enigmatic. Understanding these oceanic boundaries in three dimensions generally depends on measurements collected from stationary vessels and moorings. The details of these data sets, which are critical for understanding how water masses interact and mix at the fine-scale (<10 m) to mesoscale (10-100 km), are inadequately constrained due to resolution considerations. Southeast of New Zealand, high-resolution seismic reflection images of oceanic water masses have been produced using petroleum industry data. These seismic sections clearly show three main water masses, the boundary zones (fronts) between them, and associated thermohaline fine structure that may be related to the mixing of water masses in this region. Interpretations of the data suggest that the Subtropical Front in this region is a landward-dipping zone, with a width that can vary between 20 and 40 km. The boundary zone between Subantarctic Waters and the underlying Antarctic Intermediate Waters is also observed to dip landward. Several isolated lenses have been identified on the three data sets, ranging in size from 9 to 30 km in diameter. These lenses are interpreted to be mesoscale eddies that form at relatively shallow depths along the south side of the Subtropical Front.
The response of the southwest Western Australian wave climate to Indian Ocean climate variability
NASA Astrophysics Data System (ADS)
Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.
2018-03-01
Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.
Liu, Nan; Wang, Jiaxin; Guo, Qinfeng; Wu, Shuhua; Rao, Xingquan; Cai, Xi'an; Lin, Zhifang
2018-09-30
Globally, nitrogen deposition increment has caused forest structural changes due to imbalanced plant nitrogen metabolism and subsequent carbon assimilation. Here, a 2 consecutive-year experiment was conducted to reveal the effects of canopy addition of nitrogen (CAN) on nitrogen absorption, assimilation, and allocation in leaves of three subtropical forest woody species (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that CAN altered leaf nitrogen absorption, assimilation and partitioning of different plants in different ways in subtropical forest. It shows that CAN increased maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), and metabolic protein content of the two understory species A. quinquegona and B. cochinchinensis. By contrary, for the overstory species, C. henryi, A max , PNUE, and metabolic protein content were significantly reduced in response to CAN. We found that changes in leaf nitrogen metabolism were mainly due to the differences in enzyme (e.g. Ribulose-1,5-bisphosphate carboxylase, nitrate reductase, nitrite reductase and glutamine synthetase) activities under CAN treatment. Our results indicated that C. henryi may be more susceptible to CAN treatment, and both A. quinquegona and B. cochinchinensis could better adapt to CAN treatment but in different ways. Our findings may partially explain the ongoing degradation of subtropical forest into a community dominated by small trees and shrubs in recent decades. It is possible that persistent high levels of atmospheric nitrogen deposition will lead to the steady replacement of dominant woody species in this subtropical forest. Copyright © 2018 Elsevier Inc. All rights reserved.
Massive subtropical icebergs and freshwater forcing of climate
NASA Astrophysics Data System (ADS)
Condron, Alan; Hill, Jenna
2014-05-01
High resolution seafloor mapping shows incredible evidence that massive (>300m thick) icebergs drifted more than 5,000 km along the United States continental margin to southern Florida during the last deglaciation. Here we discuss how the discovery of icebergs in this location highlights a previously unknown ocean circulation pathway capable of transporting icebergs and meltwater from the Northern Hemisphere ice sheets directly to the subtropical North Atlantic. This pathway questions the classical idea that freshwater forcing from meltwater floods and icebergs occurred primarily over the subpolar North Atlantic (50N - 70N), with little penetration to subtropical latitudes, south of 40N. Using a sophisticated, high-resolution (1/6 deg.) ocean model, capable of resolving the circulation of the coastal ocean in detail, we show that icebergs off the coast of Florida likely calved from ice streams in the Gulf of St Lawrence and Hudson Bay. We find that icebergs can only drift south of Cape Hatteras, and overcome the northward flow of the Gulf Stream, when they are entrained in a narrow, southward-flowing, coastal meltwater flood originating from the Laurentide Ice Sheet. This cold meltwater increases iceberg survival in the warm subtropics and flows in the opposite direction to the Gulf Stream along the coast, allowing icebergs to drift to southern Florida in less than 4 months. We conclude that during the last deglaciation, icebergs drifted south in massive meltwater floods that delivered freshwater to the subtropical North Atlantic. Our findings have important implications for understanding how changes in freshwater forcing triggered past abrupt climate change.
Haakonsson, Signe; Rodríguez-Gallego, Lorena; Somma, Andrea; Bonilla, Sylvia
2017-12-31
Cyanobacterial blooms are expected to become more frequent in freshwaters globally due to eutrophication and climate change effects. However, our knowledge about cyanobacterial biogeography in the subtropics, particularly in lotic ecosystems, is still very limited and the relationship of blooms to temperature and precipitation remains unclear. We took advantage of a comprehensive database of field data compiled over several years (1997 to 2015) to compare cyanobacteria biomass and distribution between lentic and lotic subtropical freshwaters (36 ecosystems, 30°-35°S) and to investigate the role of water temperature and precipitation as significant predictors in eutrophic ecosystems. A filamentous Nostocales, Dolichospermum (Anabaena), was the most widely distributed and frequent genus in the region of the study, followed by the colonial Microcystis, supporting observations of a global latitudinal pattern. Similar total cyanobacteria biovolumes (TCB) were found in lentic and lotic ecosystems, but the proportion of Dolichospermum was higher in lotic ecosystems. Using generalized linear models (GLMs), we found that temperature and rainfall explained 27% of the variation in TCB in lotic ecosystems, while temperature explained 19 and 28% of Dolichospermum and Microcystis biovolume, respectively. In lentic ecosystems, accumulated rainfall explained 34% of the variation of Microcystis biovolume while temperature explained 64%. Our results imply that the increase in extreme meteorological events and temperature predicted by climate models will promote increasingly severe cyanobacterial blooms in eutrophic subtropical freshwaters. Our analysis provides new information about the occurrence of bloom-forming cyanobacteria for southeastern South America and thus fills an important knowledge gap for subtropical freshwaters. Copyright © 2017 Elsevier B.V. All rights reserved.
Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone
NASA Astrophysics Data System (ADS)
Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.
2018-03-01
Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).
Sparkle L. Malone; Jordan Barr; Jose D. Fuentes; Steven F. Oberbauer; Christina L. Staudhammer; Evelyn E. Gaiser; Gregory Starr
2016-01-01
We analyzed the ecosystem effects of low-temperature events (<5 °C) over 4 years (2009-2012) in subtropical short and long hydroperiod freshwater marsh and mangrove forests within Everglades National Park. To evaluate changes in ecosystem productivity, we measured temporal patterns of CO2 and the normalized difference vegetation index over the study period. Both...
An Old-Growth Definition for Tropical and Subtropical Forests in Florida
Kenneth W. Outcalt
1997-01-01
In the United States, tropical and subtropical forests are found only in south Florida, covering the southern part of the Floridian Coastal Plain and the Florida Keys. The climate is typically hot and humid with abundant rainfall, although droughts do occur. Soils range widely depending on landform and parent material, and can be organic, fine-textured silts, or coarse...
Novelty and its ecological implications to dry forest functioning and conservation
Ariel Lugo; Heather Erickson
2017-01-01
Tropical and subtropical dry forest life zones support forests with lower stature and species richness than do tropical and subtropical life zones with greater water availability. The number of naturalized species that can thrive and mix with native species to form novel forests in dry forest conditions in Puerto Rico and the US Virgin Islands is lower than in other...
The status of Puerto Rico's forests, 2003
Thomas J. Brandeis; Eileen H. Helmer; Sonja N. Oswalt
2007-01-01
Puerto Ricoâs forest cover continues to increase and is now 57 percent for mainland Puerto Rico, 85 percent for Vieques, and 88 percent for Culebra. Subtropical dry forest occupies 50 346 ha, 6832 ha, 2591 ha, and 6217 ha on the islands of Puerto Rico, Vieques, Culebra, and Mona, respectively. Subtropical moist forest, the most prevalent forested life zone on...
USDA-ARS?s Scientific Manuscript database
Comparison of spinach (Spinacia oleracea L.) cultivars Lazio and Samish grown during the summer solstice in the sub-arctic versus the winter solstice in the sub-tropics provided insight into interactions between plant environment (day length, light intensity, ambient temperatures), cultivar and leaf...
USDA-ARS?s Scientific Manuscript database
Fruit of five Jaboticaba (Myrciaria caulifloria) cultivars ‘MC-05-06’, ‘MC-05-14’, ‘MC-05-12’, ‘MC-06-15,’ and ‘MC-06-14’ were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clona...
Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001-2010
J. M. Tucker Lima; C. L. Staudhammer; T. J. Brandeis; F. J. Escobedo; W. Zipperer
2013-01-01
Several studies report urban tree growth and mortality rates as well as species composition, structural dynamics, and other characteristics of urban forests in mostly temperate, inland urban areas. Temporal dynamics of urban forests in subtropical and tropical forest regions are, until now, little explored and represent a new and important direction for study and...
Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities
Francisco Escobedo; Sebastian Varela; Min Zhao; John E. Wagner; Wayne Zipperer
2010-01-01
Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and...
Joseph J. O’Brien; Kathryn A. Mordecai; Leslie Wolcott
2010-01-01
This publication is a field guide to tactics and techniques for dealing with hazardous fuels in subtropical pine flatwoods and tropical pine rocklands. The guide covers prescribed fire, mechanical, chemical, and other means for reducing and managing wildland fuels in these systems. Also, a list of exotic plants that contribute to hazardous fuel problems is included...
Jennifer A. Holm; H.H. Shugart; Skip J. Van Bloem; G.R. Larocque
2012-01-01
Because of human pressures, the need to understand and predict the long-term dynamics and development of subtropical dry forests is urgent. Through modifications to the ZELIG simulation model, including the development of species- and site-specific parameters and internal modifications, the capability to model and predict forest change within the 4500-ha Guanica State...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to identify single nucleotide polymorphisms (SNP) associated to fertility in female cows raised under a subtropical environment. Re-sequencing of 9 genes associated to GH-IGF endocrine pathway located in bovine chromosome 5, identified 75 SNP useful for associative ge...
NASA Astrophysics Data System (ADS)
Vaicberg, H.; Palmeira, A. C. P. A.; Nunes, A.
2017-12-01
Studies on South Atlantic cyclones are mainly compromised by scarcity of observations. Therefore, remote sensing and global (re) analysis products are usually employed in investigations of their evolution. However, the frequent use of global reanalysis might difficult the assessment of the characteristics of the cyclones found in South Atlantic. In that regard, studies on "subtropical" cyclones have been performed using the 25-km resolution, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), a product developed at the Federal University of Rio de Janeiro in Brazil. In SRDAS, the Regional Spectral Model assimilates precipitation estimates from environmental satellites, while dynamically downscaling a global reanalysis using the spectral nudging technique to maintain the large-scale features in agreement with the regional model solution. The use of regional models in the downscaling of general circulation models provides more detailed information on weather and climate. As a way of illustrating the usefulness of SRDAS in the study of the subtropical South Atlantic cyclones, the subtropical cyclone Anita was selected because of its intensity. Anita developed near Brazilian south/southeast coast, with damages to local communities. Comparisons with available observations demonstrated the skill of SRDAS in simulating such an extreme event.
Linking The Atlantic Gyres: Warm, Saline Intrusions From Subtropical Atlantic to the Nordic Seas
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa M.; Rhines, P. B.
2010-01-01
Ocean state estimates from SODA assimilation are analyzed to understand how major shifts in the North Atlantic Current path relate to AMOC, and how these shifts are related to large scale ocean circulation and surface forcing. These complement surface-drifter and altimetry data showing the same events. SODA data indicate that the warm water limb of AMOC, reaching to at least 600m depth, expanded in density/salinity space greatly after 1995, and that Similar events occurred in the late 1960s and around 1980. While there were large changes in the upper limb, there was no immediate response in the dense return flow, at least not in SODA, however one would expect a delayed response of increasing AMOC due to the positive feedback from increased salt transport. These upper limb changes are winddriven, involving changes in the eastern subpolar gyre, visible in the subduction of low potential vorticity waters. The subtropical gyre has been weak during the times of the northward intrusions of the highly saline subtropical waters, while the NAO index has been neutral or in a negative phase. The image of subtropical/subpolar gyre exchange through teleconnections within the AMOC overturning cell will be described.
On the Issue of Excess Lower Stratospheric Subtropical Transport in GEOS-DAS
NASA Technical Reports Server (NTRS)
Tan, Wei-Wu; Geller, Marvin; Pawson, Steven
2002-01-01
In recent years, data assimilation has become an indispensable tool for our understanding of the global features of meteorological variables. However, assessments of transport characteristics using trajectory related methods as well as chemical transport models (CTMs) show that results derived from assimilated (or analyzed) winds exhibit significantly larger mixing and entrainment rates compared to results derived from GCM winds, which are closer to results derived from observations (e.g., Douglass et al., 2002; Schoeberl et al., 2002). This discrepancy presents a serious challenge to our ability to understand and model global trace gas transport and distribution. We use the GEOS-DAS to explore this issue by examining how the process of data assimilation alters the dynamics of the underlying GCM and how this leads to the excess of lower stratospheric mixing and transport in the subtropics. In particular, we show that significant model biases in tropical winds necessitate large analysis increments. These increments directly force large subtropical regions of instability with negative PV gradient on the one hand, and generate excessive noise in the tropical wind fields on the other. The result is an excess of transport in the lower stratospheric subtropics.
Early recovery of subtropical dry forest in southwestern Puerto Rico
Peter L. Weaver
2011-01-01
Tree cover and species composition were surveyed in 1998, 2003, and 2010 after the elimination of grazing and fire on the lower 32 hectares of the Tinaja tract at Laguna Cartagena National Wildlife Refuge in south-western Puerto Rico. Surveys of the secondary subtropical dry forest showed that stems increased 3.9 times, trees 6.7 times, basal area 3.3 times, and...
NASA Technical Reports Server (NTRS)
Helmken, Henry; Henning, Rudolf
1994-01-01
One of the key goals of the Florida Center is to obtain a maximum of useful information on propagation behavior unique to its subtropical weather and subtropical climate. Such weather data is of particular interest when it is (or has the potential to become) useful for developing and implementing techniques to compensate for adverse weather effects. Also discussed are data observations, current challenges, CDF's, sun movement, and diversity experiments.
G. M. Fleming; J. M. Wunderle; D. N. Ewert; J. J. O' Brien; E. H. Helmer
2015-01-01
Aims The fruits of Erithalis fruticosa L. and Lantana involucrata L. are important in the diet of US federally endangered Kirtlandâs Warblers (Setophaga kirtlandii) wintering in the Bahamas archipelago. These two shrubs occur in tropical and subtropical dry forests, including forests that have been subjected to recent disturbance. Despite their importance to the...
Diet preferences of goats in a subtropical dry forest and implications for habitat management
Genie M. Fleming; Joseph Wunderle Jr.; David N. Ewert
2016-01-01
As part of an experimental study of using controlled goat grazing to manage winter habitat of the Kirtlandâs warbler (Setophaga kirtlandii), an endangered Nearctic neotropical migratory bird, we evaluated diet preferences of domesticated goats within early successional subtropical dry forest in The Bahamas. We expected goats would show a low preference for two plants (...
Zhongyu Sun; Hai Ren; Val Schaefer; Qinfeng Guo; Jun Wang
2014-01-01
A large area of plantations has been established worldwide and especially in China. Evaluating the restoration status of these plantations is essential for their longterm management. Based on our previous work, we used an ecological memory (EM) approach to evaluate four 26-year-old plantations that represent four common kinds of plantations in subtropical China, i.e.,...
CLIMODE Bobber Data Report: July 2005 - May 2009
2010-03-01
all subtropical western boundary current systems. EDW is associated with a shallow overturning circulation that carries heat northward and is an...subduction and dispersal within the subtropical gyre of the North Atlantic Ocean. Forty acoustically- tracked bobbing, profiling floats (“bobbers”) were...deployed to study the formation and dispersal of EDW in the western North Atlantic . The unique bobber dataset described herein provides insight into
USDA-ARS?s Scientific Manuscript database
Sugarcane is a crop which is primarily grown between 30oN and 30oS latitude in tropical environments. Small areas of production in sub-tropical regions exist, and there is an increasing desire to produce the crop in colder environments. Cold-tolerant sugarcane is important both to the sub-tropical s...
Tamara Heartsill Scalley; F.N. Scatena; C. Estrada Ruiz; W.H. McDowell; Ariel Lugo
2007-01-01
Nutrient fluxes in rainfall and throughfall were measured weekly in a mature subtropical wet forest in NE Puerto Rico over a 15-year period that included the effects of 10 named tropical storms, several prolonged dry periods, and volcanic activity in the region. Mean annual rainfall and throughfall were 3482 and 2131 mm yr
FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO
Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire
2012-01-01
Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...
Phytoplankton and nutrient dynamics of six South West Indian Ocean seamounts
NASA Astrophysics Data System (ADS)
Sonnekus, Martinus J.; Bornman, Thomas G.; Campbell, Eileen E.
2017-02-01
A survey of six seamounts and two transects through the subtropical convergence zone (SCZ) in the South Indian Ocean in November and December 2009 showed a strong latitudinal gradient from the subtropics to the Sub-Antarctic Front. Concentrations of oxygen, nitrate, nitrite, soluble reactive phosphorous as well as phytoplankton biomass (measured as chlorophyll a) increased while salinity and temperature decreased with an increase in latitude. These differences resulted in significant differences between seamounts. The chlorophyll a maximum became shallower at higher latitudes, changing from a depth of 85 m in the subtropics to 35 m over the seamounts and in the SCZ. The mixed layer depth also increased from 50 m in the subtropics to 100 m at higher latitude stations. The N:P and N:Si ratio indicated that NO3- was limiting at all the seamounts except one, at which SiO4 was the limiting nutrient. The phytoplankton community also showed a latitudinal gradient with decreasing diversity and a change in dominance from dinoflagellates in the tropics to diatoms towards the SCZ. The dominant diatom genus of the survey (>50% of the cell counts) was Pseudo-nitzschia. Nutrients exhibited an inverse linear relationship with temperature and salinity. The oligotrophic subtropical areas differed from the mesotrophic seamounts in temperature while waters over seamounts north and south of the Agulhas Return Current (ARC) differed in salinity. The phytoplankton (148 taxa) responded to these differences, showing three communities: subtropical seamount phytoplankton (Atlantis Seamount, Walters Seamount and off-mount samples), phytoplankton of the waters north of the ARC (Melville Bank, Sapmer Bank, Middle of What Seamount) and phytoplankton south of the ARC (Coral Seamount, SCZ1) characterised by a bloom of Phaeocystis antarctica. The environmental drivers most strongly linked to these observed differences were nitrate, temperature and oxygen. These environmental drivers displayed a clear latitudinal gradient unaffected by mesoscale variability of the ARC eddy field and allowing the three phytoplankton communities to persist. Phytoplankton biomass was enhanced in the shallow (< 200 m) seamount waters, although the speed of the currents indicates an allochthonous origin.
NASA Astrophysics Data System (ADS)
Kawasaki, K.; Tachibana, Y.; Nakamura, T.; Yamazaki, K.; Kodera, K.
2016-12-01
It is commonly known that the formation of a stationery precipitation zone in association with the Baiu front is influenced by the existence of the warm Tibetan Plateau. Some GCM studies in which the Tibetan Plateau is removed pointed out that without the Tibetan Plateau, the Baiu front wound not appear. The cold Okhotsk Sea, which is located to the north of Japan, is also important in forming cold air for the Bai front. This study focused on the role of the Okhotsk Sea in the formation of the Baiu front by using an atmospheric GCM. One GCM is executed without the Okhotsk Sea, in which was changed to an eastern part of the Eurasian continent as if the Okhotsk Sea was totally landfilled (land run). The other (sea run) is a control run under the boundary condition of climatic seasonal changes of the SST over the globe. The comparison of the land run with the sea run showed that precipitation over Japan would weaken in the Baiu season without the Okhotsk Sea, indicating that the existence of the Okhotsk Sea has an impact on the increase in precipitation. The precipitation increase in the sea run is directly accounted by the strengthening of southeast wind in association with the strengthening of the subtropical high located over the Pacific Ocean (Fig. 1). The westerly jet, which is located at the northern part of the subtropical high, was also accelerated in the sea run. The subtropical high in association with the accelerated jet was strengthened by meridional atmospheric thermal gradient caused by underlying cold Okhotsk Sea and the warm Pacific Ocean. The strengthened thermal gradient also activated the storm track that extends zonally over the Okhotsk Sea, and the activated storm track further strengthened the jet and subtropical high by wave-mean flow feedback. This feedback loop could further strengthen the Baiu precipitation. In consequence, the Okhotsk plays a significant role in the strengthening the subtropical high and its associated Baiu precipitation.
NASA Astrophysics Data System (ADS)
Guryanov, V. V.; Eliseev, A. V.; Mokhov, I. I.; Perevedentsev, Yu. P.
2018-03-01
An analysis of spectra of wave disturbances with zonal wave numbers 1 ≤ k ≤ 10 is carried out using winter (November to March) ERA-Interim reanalysis geopotential data in the troposphere and stratosphere for 1979-2016. Contributions of eastward-traveling ( E), westward-traveling ( W), and stationary ( S) waves are estimated. The intensification of wave activity is observed in the tropical troposphere and stratosphere and in the upper stratosphere of the entire Northern Hemisphere. The intensification of wave activity in the tropics and subtropics is noted for waves of all types ( E, W, and S), while in the middle and higher latitudes it is related mainly to stationary and eastward waves. Near the subtropical tropopause, the energy of stationary waves has increased in recent decades. In addition, in the tropical and subtropical troposphere and in the subtropical lower stratosphere, the energy of the eastward-traveling waves in El Niño years may be one and a half times or twice the energy in La Niña years. The spectrally weighted zonal wave numbers for waves of all types ( E, W, and S) are the largest in the upper subtropical troposphere. The spectrally weighted zonal wave number for W and S waves is correlated with the Atlantic Multidecadal Oscillation index and varies by 15% in 1979-2016 (on an interdecadal time scale). The spectrally weighted wave period is larger in the stratosphere than in the troposphere. It is maximal in the middle extratropical stratosphere. The spectrally weighted wave periods correlate with the activity of sudden stratospheric warmings. The sign of this correlation depends on the latitude, atmospheric layer, and zonal wave number.
Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model
Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.
2017-05-08
A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less
Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.
A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less
Kuo, Li-Yaung; Chen, Cheng-Wei; Shinohara, Wataru; Ebihara, Atsushi; Kudoh, Hiroshi; Sato, Hirotoshi; Huang, Yao-Moan; Chiou, Wen-Liang
2017-03-01
Independent gametophyte ferns are unique among vascular plants because they are sporophyteless and reproduce asexually to maintain their populations in the gametophyte generation. Such ferns had been primarily discovered in temperate zone, and usually hypothesized with (sub)tropical origins and subsequent extinction of sporophyte due to climate change during glaciations. Presumably, independent fern gametophytes are unlikely to be distributed in tropics and subtropics because of relatively stable climates which are less affected by glaciations. Nonetheless, the current study presents cases of two independent gametophyte fern species in subtropic East Asia. In this study, we applied plastid DNA sequences (trnL-L-F and matK + ndhF + chlL datasets) and comprehensive sampling (~80%) of congeneric species for molecular identification and divergence time estimation of these independent fern gametophytes. The two independent gametophyte ferns were found belonging to genus Haplopteris (vittarioids, Pteridaceae) and no genetic identical sporophyte species in East Asia. For one species, divergence times between its populations imply recent oversea dispersal(s) by spores occurred during Pleistocene. By examining their ex situ and in situ fertility, prezygotic sterility was found in these two Haplopteris, in which gametangia were not or very seldom observed, and this prezygotic sterility might attribute to their lacks of functional sporophytes. Our field observation and survey on their habitats suggest microhabitat conditions might attribute to this prezygotic sterility. These findings point to consideration of whether recent climate change during the Pleistocene glaciation resulted in ecophysiological maladaptation of non-temperate independent gametophyte ferns. In addition, we provided a new definition to classify fern gametophyte independences at the population level. We expect that continued investigations into tropical and subtropical fern gametophyte floras will further illustrate the biogeographic significance of non-temperate fern gametophyte independence.
Grazing alters net ecosystem C fluxes and the global warming potential of a subtropical pasture.
Gomez-Casanovas, Nuria; DeLucia, Nicholas J; Bernacchi, Carl J; Boughton, Elizabeth H; Sparks, Jed P; Chamberlain, Samuel D; DeLucia, Evan H
2018-03-01
The impact of grazing on C fluxes from pastures in subtropical and tropical regions and on the environment is uncertain, although these systems account for a substantial portion of global C storage. We investigated how cattle grazing influences net ecosystem CO 2 and CH 4 exchange in subtropical pastures using the eddy covariance technique. Measurements were made over several wet-dry seasonal cycles in a grazed pasture, and in an adjacent pasture during the first three years of grazer exclusion. Grazing increased soil wetness but did not affect soil temperature. By removing aboveground biomass, grazing decreased ecosystem respiration (R eco ) and gross primary productivity (GPP). As the decrease in R eco was larger than the reduction in GPP, grazing consistently increased the net CO 2 sink strength of subtropical pastures (55, 219 and 187 more C/m 2 in 2013, 2014, and 2015). Enteric ruminant fermentation and increased soil wetness due to grazers, increased total net ecosystem CH 4 emissions in grazed relative to ungrazed pasture (27-80%). Unlike temperate, arid, and semiarid pastures, where differences in CH 4 emissions between grazed and ungrazed pastures are mainly driven by enteric ruminant fermentation, our results showed that the effect of grazing on soil CH 4 emissions can be greater than CH 4 produced by cattle. Thus, our results suggest that the interactions between grazers and soil hydrology affecting soil CH 4 emissions play an important role in determining the environmental impacts of this management practice in a subtropical pasture. Although grazing increased total net ecosystem CH 4 emissions and removed aboveground biomass, it increased the net storage of C and decreased the global warming potential associated with C fluxes of pasture by increasing its net CO 2 sink strength. © 2017 by the Ecological Society of America.
Phytoplankton community structure and dynamics in the North Atlantic subtropical gyre
NASA Astrophysics Data System (ADS)
Cáceres, Carlos; Rivera, Antonella; González, Sonia; Anadón, Ricardo
2017-02-01
Phytoplankton fuel epipelagic ecosystems and affect global biogeochemical cycles. Nevertheless, there is still a lack of quantitative information about the factors that determine both phytoplankton community structure and dynamics, particularly in subtropical gyres. Here, we estimated size fractionated phytoplankton growth (μ) and microzooplankton grazing rates (m) along a transect in the subtropical North Atlantic, from the island of Hispaniola to the Iberian Peninsula, by conducting dilution experiments and fitting mixed models. We also examined the relationship between nutrient availability and the differences in both phytoplankton community structure and size fractionated phytoplankton growth rates at two spatial scales (i.e. subtropical gyre and within-province spatial scale). Our results revealed high values for both phytoplankton growth and microzooplankton grazing rates. Phytoplankton growth (0.00-1.19 d-1) displayed higher variability among stations, biogeochemical provinces and size fractions than the microzooplankton grazing rate (0.32-0.74 d-1). Differences in phytoplankton community structure were associated with dissolved inorganic nitrogen (0.72-5.85 μM; R2 = 0.19) and squared Brunt-Väisälä frequency (R2 = 0.21) at the whole gyre scale. Conversely, the differences in phytoplankton growth rate showed a weak relationship with those properties (R2 ⩽ 0.05) at that scale, but a stronger relationship at the within province scale (R2 ⩾ 0.07). These results support the idea that phytoplankton grow at high rates in oligotrophic subtropical gyres, this is likely due to the selection of phytoplankton groups with functional traits suited to exploit low nutrient availability. Thus, shedding new, multi-scale knowledge on the commonly misunderstood "ocean deserts".
NASA Astrophysics Data System (ADS)
Garcia-Comas, C.; Chiba, S.; Sugisaki, H.; Hashioka, T.; Smith, S. L.
2016-02-01
Understanding how species coexist in rich communities and the role of biodiversity on ecosystem-functioning is a long-standing challenge in ecology. Comparing functional diversity to species diversity may shed light on these questions. Here, we analyze copepod species data from the ODATE collection: 3142 samples collected over a period of 40 years, which includes a 10 o x 10o area of the Oyashio-Kuroshio Transition System, east of Japan (western North Pacific). The area hosts species characteristic of subarctic and subtropical communities. 163 copepod species were classified into five categorical functional traits (i.e., size, food, reproduction, thermal affinity and coastal-offshore habitat), following online databases and local taxonomic keys. We observe a general opposite hump-shaped relationship of species evenness (lower at mid-point) and functional diversity (Rao's Q) (higher at mid-point) with species richness. Subtropical Kuroshio communities tend to be richer with higher species evenness, and yet subarctic and transition waters tend to host communities of higher functional diversity. The distribution of trait values within each functional trait was further examined in relation to the Species Abundances Distribution (SAD). In subtropical communities, the distribution of trait values in the species ranking is homogenous, mirroring the frequency of those trait values in the entire community. In contrast, in subarctic communities the distribution of trait values differs along the species rank, with dominant species having favorable trait values more often than expected by chance (i.e., based on the overall frequency of that trait value in the entire community). Our results suggest that subtropical communities may be niche-saturated towards the most adapted trait values, so that merely having the most adapted trait value confers no strong competitive advantage to a species.
NASA Astrophysics Data System (ADS)
Jongeward, A.; Li, Z.
2017-12-01
Aerosols from natural and anthropogenic sources can influence atmospheric variability and alter Earth's radiative balance through direct and indirect processes. Recently, policies targeting anthropogenic species (e.g. the Clean Air Act) have seen success in improving air quality. The anthropogenic contributions to the total aerosol loading and its spatiotemporal pattern/trend are anticipated to be altered. In this work the aerosol loading and trend over the North Atlantic Ocean since 2002 are examined, a period of significant change due to anthropogenic emissions control measures within the U.S. Monthly mean data from satellite (MODIS), ground (AERONET, IMPROVE), and model (GOCART, MERRA) sources are employed. Two annual trends in aerosol optical depth (AOD) observed by MODIS are present: a -0.020 decade-1 trend in the mid-latitudes and a 0.015 decade-1 trend in the sub-tropics. Trends in GOCART species AOD reveal anthropogenic (natural) species as the likely driver of the mid-latitude (sub-tropical) trend. AERONET AOD trends confirm negative AOD trends at three upwind sites in the Eastern U.S. and IMPROVE particulate matter (PM) observations identifies the role of decreasing ammonium sulfate in the overall PM decrease. Meanwhile, an increasing AOD trend seen during summertime in the eastern sub-tropics is associated with dust aerosol from North Africa. A dust parameterization from Kaufman et al. (2005) allows for changes in the flux transport across the sub-tropics to be calculated and analyzed. Using MERRA reanalysis fields, it is hypothesized that amplified warming and increases in baroclinic instability over the Saharan desert may lead to increased dust mobilization and export from North Africa to the sub-tropical Atlantic. This study provides updated analysis through 2016.
Christina M. Murphy; Grizelle Gonzalez; Juliana Belén
2008-01-01
Millipedes, among other soil fauna, are important components of ecosystems because of their role in nutrient cycling. In this study, we quantified the density, biomass, and richness (in terms of order) of millipedes along a toposequence (ridges, slopes, and valleys) and different ground layers (litter, humus, 0-5 cm soil depth, and 5-10 cm soil depth) in a subtropical...
2013-12-01
depression, tropical storm , hurricane, extratropical cyclone, subtropical depression, subtropical storm , a low of no category, tropical wave, disturbance or...surface-based ducts, and elevated ducts. We further separate the duct occurrence based on the location relative to their respective storms . Based...on the number of soundings in different types of tropical disturbances, we chose to further analyze duct conditions in hurricanes and tropical storms
Recovery of a Subtropical Dry Forest After Abandonment of Different Land Uses
Sandra Molina Colon; Ariel E. Lugo
2006-01-01
We studied the ecological characteristics of 45.50-yr-old subtropical dry forest stands in Puerto Rico that were growing on sites that had been deforested and used intensively for up to 128 yr. The study took place in the Guánica Commonwealth Forest. Our objective was to assess the long-term effects of previous land use on this forest.i.e., its species...
Piccinni, Florencia; Murua, Yanina; Ghio, Silvina; Talia, Paola; Rivarola, Máximo
2016-01-01
Cellulomonas sp. strain B6 was isolated from a subtropical forest soil sample and presented (hemi)cellulose-degrading activity. We report here its draft genome sequence, with an estimated genome size of 4 Mb, a G+C content of 75.1%, and 3,443 predicted protein-coding sequences, 92 of which are glycosyl hydrolases involved in polysaccharide degradation. PMID:27563050
Brett T. Wolfe; S.J. Van Bloem
2012-01-01
Throughout the tropics, non-native grasses invade, dominate, and persist in areas where subtropical and tropical dry forests have been highly degraded. In Central America and the Caribbean Islands, forests that regenerate in grass-invaded areas are generally composed of one to a few tree species, usually of the Fabaceae family and often non-native. We investigated the...
Coupling suitable prey field to in situ fish larval condition and abundance in a subtropical estuary
NASA Astrophysics Data System (ADS)
Machado, Irene; Calliari, Danilo; Denicola, Ana; Rodríguez-Graña, Laura
2017-03-01
Survival of fish larvae is influenced by the suitability of the prey field and its variability in time and space. Relationships among food quality, quantity and recruitment have been explored in temperate ecosystems where spawning and secondary production are strongly seasonal, but for subtropical estuaries the mechanisms responsible for larval survival remain poorly identified. This study evaluated the nutritional condition (feeding incidence and AARS activity) and abundance of a multi-specific assemblage of fish larvae from a subtropical estuary in South America (Solís Grande, Uruguay) during the fish reproductive season; and related both variables to prey abundance, composition, size and fatty acids content. The larval assemblage was composed of 13 species belonging to different functional groups and composition varied seasonally. Contrary to expectations larval condition did not match an increase in prey quality. Food availability was high throughout the study period, although significant changes existed in the size and taxonomic structure of the prey assemblage. The temporal succession of complementary factors - temperature, prey composition, abundance and quality - promoted a wide window of opportunity for larvae, where quality seemed to have compensated quantity. Such combination of factors could allow an extended larval survival along the spawning season. These findings underline the importance of a better understanding of subtropical estuaries as nursery areas.
North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer
NASA Astrophysics Data System (ADS)
Reagan, J. R.; Seidov, D.; Boyer, T.
2017-12-01
The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (<35) subpolar area. Multiple studies have shown that preserving this salinity contrast is important for maintaining the Atlantic Meridional Overturning Circulation (AMOC), and that changes to this salinity balance may reduce the strength of the AMOC. High subtropical salinity is primarily due to evaporation (E) dominating precipitation (P), whereas low subpolar salinity is at least partly due to precipitation dominating evaporation. Present-day understanding of the fate of water vapor in the atmosphere over the extratropical North Atlantic is that the precipitation which falls in the subpolar region primarily originates from the water vapor produced through evaporation in the subtropical North Atlantic. With this knowledge and in conjunction with a basic understanding of North Atlantic storm tracks—the main meridional transport conduits in mid and high latitudes— a preliminary time and spatial correlation analysis was completed to relate the North Atlantic decadal climatological salinity between 1985 and 2012 to the evaporation and precipitation climatologies for the same period. Preliminary results indicate that there is a clear connection between subtropical E-P and subpolar NSS. Additional results and potential implications will be presented and discussed.
Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles
NASA Astrophysics Data System (ADS)
Burls, Natalie J.; Fedorov, Alexey V.
2017-12-01
During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).
A Pilot Study of Microbial Contamination of Subtropical Recreational Waters
Fleming, Lora E; Solo, Gabriele H.; Elmir, Samir; Shibata, Tomoyuki; Squicciarini, Dominick; Quirino, Wendy; Arguello, Margia; Van de Bogart, Gayl
2009-01-01
Microbial water quality indicators are used to determine whether a water body is safe for recreational purposes. There have been concerns raised about the appropriate use of microbial indicators to regulate recreational uses of water bodies, in particular those located in tropical and sub-tropical environments. This prospective cohort pilot study evaluated the relationship between microbial water quality indicators and public health within two public beaches without known sewage discharge, but with historically high microbial levels for one beach, in subtropical Miami-Dade County (Florida). Monitoring was conducted in three phases: daily water monitoring, beach sand sampling, and spatially intense water sampling. An epidemiological questionnaire from a Los Angeles recreational beach-goer study was used to assess the self-reported swimming-related symptoms and exposures. There was no significant association between the number nor the type of reported symptoms and the different sampling months or beach sites, although persons who returned repeatedly to the beach were more likely to report symptoms. The number of indicator organisms correlated negatively with the frequency of symptoms reported by recreational beach goers. Results of the daily monitoring indicated that different indicators provided conflicting results concerning beach water quality. Larger epidemiologic studies with individual exposure monitoring are recommended to further evaluate these potentially important associations in subtropical recreational waters. PMID:20151031
Piccinni, Florencia; Murua, Yanina; Ghio, Silvina; Talia, Paola; Rivarola, Máximo; Campos, Eleonora
2016-08-25
Cellulomonas sp. strain B6 was isolated from a subtropical forest soil sample and presented (hemi)cellulose-degrading activity. We report here its draft genome sequence, with an estimated genome size of 4 Mb, a G+C content of 75.1%, and 3,443 predicted protein-coding sequences, 92 of which are glycosyl hydrolases involved in polysaccharide degradation. Copyright © 2016 Piccinni et al.
A.P. Drew; J.D. Boley; Y. Zhao; F.H. Wadsworth
2009-01-01
A plot established in 1943 in a subtropical wet forest at the Luquillo Experimental Forest of Puerto Rico has been assessed periodically for changes in species and size of all trees >4cm diameter. Forest dynamics on a 0.72ha plot (EV-3) at 400masl at El Verde show recovery principally from hurricanes of 1928 and 1932, timber stand improvement in 1958, and from...
Jorge E. Morfin-Rios; Ernesto Alvarado-Celestino; Enrique J. Jardel-Pelaez; Robert E. Vihnanek; David K. Wright; Jose M. Michel-Fuentes; Clinton S. Wright; Roger D. Ottmar; David V. Sandberg; Andres Najera-Diaz
2008-01-01
Single wide-angle and stereo photographs display a range of forest ecosystems conditions and fuel loadings in montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental of Mexico. Each group of photographs includes inventory information summarizing overstory vegetation composition and...
Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre.
Brach, Laurent; Deixonne, Patrick; Bernard, Marie-France; Durand, Edmée; Desjean, Marie-Christine; Perez, Emile; van Sebille, Erik; Ter Halle, Alexandra
2018-01-01
There are fundamental gaps in our understanding of the fates of microplastics in the ocean, which must be overcome if the severity of this pollution is to be fully assessed. The predominant pattern is high accumulation of microplastic in subtropical gyres. Using in situ measurements from the 7th Continent expedition in the North Atlantic subtropical gyre, data from satellite observations and models, we show how microplastic concentrations were up to 9.4 times higher in an anticyclonic eddy explored, compared to the cyclonic eddy. Although our sample size is small, this is the first suggestive evidence that mesoscale eddies might trap, concentrate and potentially transport microplastics. As eddies are known to congregate nutrients and organisms, this phenomenon should be considered with regards to the potential impact of plastic pollution on the ecosystem in the open ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean
Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard
2013-01-01
[1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales. PMID:26074634
Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.
Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard
2013-12-16
[1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.
Bonfleur, Eloana J; Kookana, Rai S; Tornisielo, Valdemar L; Regitano, Jussara B
2016-05-25
We evaluated the effects of the soil organic matter (SOM) composition, distribution between soil aggregates size, and their interactions with the mineral phase on herbicide sorption (alachlor, bentazon, and imazethapyr) in tropical and subtropical Oxisols under no-till systems (NT). Using soil physical fractionation approach, sorption experiments were performed on whole soils and their aggregates. SOM chemistry was assessed by CP/MAS (13)C NMR. The lower sorption observed in tropical soils was attributed to the greater blockage of SOM sorption sites than in subtropical soils. When these sites were exposed upon physical fractionation, sorption of the three herbicides in tropical soils increased, especially for imazethapyr. High amounts of poorly crystallized sesquioxides in these soils may have contributed to masking of sorption sites, indicating that organomineral interactions may lead to blockage of sorption sites on SOM in tropical soils.
Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents
NASA Astrophysics Data System (ADS)
Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico
2018-04-01
Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.
The subtropical mesospheric jet observed by the Nimbus 7 Limb Infrared Monitor of the Stratosphere
NASA Technical Reports Server (NTRS)
Dunkerton, T. J.; Delisi, D. P.
1985-01-01
Nimbus 7 Limb Infrared Monitor of the Stratosphere observations of wave-mean flow interactions in the winter 1978-1979 middle atmosphere are surveyed, extending up to 0.05 mbar. These observations describe the evolution of the subtropical mesospheric jet and its polar mixed layer. Quasi-steady mean wind patterns are disrupted by three transitions in this winter: one primarily affecting the mesosphere (December 15, 1978), a minor warming affecting both regions (January 26-February 8, 1979), and a major warming largely confined to the stratosphere (February 22, 1979). The zonally averaged flow is barotropically unstable in the wings of the subtropical mesospheric jet. All the major decelerations of the mean flow are correlated with D(F), the body force per unit mass directly attributable to planetary Rossby waves, indicating that these waves make a significant contribution to the momentum budget in the lower half of the mesosphere.
NASA Astrophysics Data System (ADS)
Nagano, Akira; Hasegawa, Takuya; Ueki, Iwao; Ando, Kentaro
2017-07-01
We examined the covariation of sea surface salinity (SSS) and freshwater flux in the western tropical and northern subtropical Pacific on the El Niño-Southern Oscillation time scale, using a canonical correlation analysis of monthly data between 2001 and 2013. The dominant covariation, i.e., the first canonical mode, has large positive and negative amplitudes in regions east of the Philippines and New Guinea, respectively, and reaches peaks in autumn to winter of El Niño years. The positive SSS anomaly east of the Philippines is advected to the Kuroshio Extension region. We found that the second canonical mode is another coupled variation with localized amplitudes of SSS under the atmospheric convergence zones in winter to spring of La Niña years. However, the negative SSS anomaly is annihilated possibly by the evaporation in the subtropical region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorhaug, A.; Schroeder, P.
1978-01-01
The major efforts have been to examine the effects of energy-related problems on nearshore environments in the subtropics and tropics of the Atlantic and Gulf of Mexico regions of the United States and the Caribbean. Two fossil fuel and two nuclear plants were examined as the their effects on a nearshore seagrass community at Turkey Point in south Biscayne Bay, Dade County, Florida. The effects of heat toxicity, trace (heavy) metals and high salinities, the community processes and dynamics of nearshore subtropical and tropical seagrass ecosystems, and primary productivity and physiology of the dominant food chain organisms in these ecosystemsmore » have been studied in detail in both field and laboratory studies. A model for future prediction of pollutants emanating from energy-related resources and their effect on seagrass ecosystems has been included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.
The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explainedmore » by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.« less
NASA Technical Reports Server (NTRS)
Eckermann, S. D.; Wu, D. L.
2012-01-01
Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.
Climate change reduces extent of temperate drylands and intensifies drought in deep soils
Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar
2017-01-01
Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.
Climate change reduces extent of temperate drylands and intensifies drought in deep soils
Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar
2017-01-01
Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas. PMID:28139649
Turbulent vertical diffusivity in the sub-tropical stratosphere
NASA Astrophysics Data System (ADS)
Pisso, I.; Legras, B.
2008-02-01
Vertical (cross-isentropic) mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS). We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s-1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.
NASA Astrophysics Data System (ADS)
Paul, V. J.
2016-02-01
Herbivory is an important process determining the structure and function of marine ecosystems, and this is especially true on coral reefs and in associated tropical and subtropical habitats where grazing by fishes can be intense. As reef degradation is occurring on a global scale, and overfishing can contribute to this problem, rates of herbivory can be an important indicator of reef function and resilience. Our goal was to develop a standardized herbivory assay that can be deployed globally to measure the impact of herbivorous fishes across multiple habitat types. Many tropical and subtropical seaweeds contain chemical and structural defenses that can protect them from herbivores, and this information was key to selecting a range of marine plants that are differentially palatable to herbivorous fishes for these assays. We present method development and experimental results from extensive deployment of these herbivory assays at Carrie Bow Cay, Belize.
The University of Miami Center for Oceans and Human Health
NASA Astrophysics Data System (ADS)
Fleming, L. E.; Smith, S. L.; Minnett, P. J.
2007-05-01
Two recent major reports on the health of the oceans in the United States have warned that coastal development and population pressures are responsible for the dramatic degradation of U.S. ocean and coastal environments. The significant consequences of this increased population density, particularly in sub/tropical coastal regions, can be seen in recent weather events: Hurricanes Andrew, Ivan, and Katrina in the US Gulf of Mexico states, and the Tsunami in Southeast Asia in December 2004, all causing significant deaths and destruction. Microbial contamination, man-made chemicals, and a variety of harmful algal blooms and their toxins are increasingly affecting the health of coastal human populations via the seafood supply, as well as the commercial and recreational use of coastal marine waters. At the same time, there has been the realization that the oceans are a source of unexplored biological diversity able to provide medicinal, as well as nutritional, benefits. Therefore, the exploration and preservation of the earth's oceans have significant worldwide public health implications for current and future generations. The NSF/NIEHS Center for Oceans and Human Health Center (COHH) at the University of Miami Rosenstiel School and its collaborators builds on several decades of collaborative and interdisciplinary research, education, and training to address the NIEHS-NSF research initiative in Oceans and Human Health. The COHH focuses on issues relevant to the Southeastern US and Caribbean, as well as global Sub/Tropical areas worldwide, to integrate interdisciplinary research between biomedical and oceanographic scientists. The Center includes three Research Projects: (1) research into the application of toxic algal culture, toxin analysis, remote sensing, oceanography, and genomics to subtropical/tropical Harmful Algal Bloom (HAB) organism and toxin distribution; (2) exploring the interaction between functional genomics and oceanography of the subtropical/tropical HAB organism, Karenia brevis, and its environmental interactions; and (3) exploring the relationship between microbial indicators and human health effects in sub/tropical recreational marine waters. There are three Facilities Cores supporting this research in Genomics, Remote Sensing, and Toxic Algal Culture. To accomplish this research program in subtropical/tropical oceans and human health, the University of Miami Oceans & Human Health Center collaborates with interdisciplinary scientists at Florida International University (FIU), the Centers for Disease Control and Prevention (CDC), the Miami Dade County Dept of Health, the University of Florida, and other institutions, as well as other Oceans and Human Health Centers and researchers.
Larenas-Linnemann, Désirée; Michels, Alexandra; Dinger, Hanna; Shah-Hosseini, Kijawasch; Mösges, Ralph; Arias-Cruz, Alfredo; Ambriz-Moreno, Marichuy; Barajas, Martín Bedolla; Javier, Ruth Cerino; de la Luz Cid Del Prado, María; Moreno, Manuel Alejandro Cruz; Almaráz, Roberto García; García-Cobas, Cecilia Y; Garcia Imperial, Daniel A; Muñoz, Rosa Garcia; Hernández-Colín, Dante; Linares-Zapien, Francisco J; Luna-Pech, Jorge A; Matta-Campos, Juan J; Jiménez, Norma Martinez; Medina-Ávalos, Miguel A; Hernández, Alejandra Medina; Maldonado, Alberto Monteverde; López, Doris N; Pizano Nazara, Luis J; Sanchez, Emmanuel Ramirez; Ramos-López, José D; Rodríguez-Pérez, Noel; Rodríguez-Ortiz, Pablo G
2014-01-01
Allergen exposure leads to allergen sensitization in susceptible individuals and this might influence allergic rhinitis (AR) phenotype expression. We investigated whether sensitization patterns vary in a country with subtropical and tropical regions and if sensitization patterns relate to AR phenotypes or age. In a national, cross-sectional study AR patients (2-70 y) seen by allergists underwent blinded skin prick testing with a panel of 18 allergens and completed a validated questionnaire on AR phenotypes. 628 patients were recruited. The major sensitizing allergen was house dust mite (HDM) (56%), followed by Bermuda grass (26%), ash (24%), oak (23%) and mesquite (21%) pollen, cat (22%) and cockroach (21%). Patients living in the tropical region were almost exclusively sensitized to HDM (87%). In the central agricultural zones sensitization is primarily to grass and tree pollen. Nationwide, most study subjects had perennial (82.2%), intermittent (56.5%) and moderate-severe (84.7%) AR. Sensitization was not related to the intermittent-persistent AR classification or to AR severity; seasonal AR was associated with tree (p < 0.05) and grass pollen sensitization (p < 0.01). HDM sensitization was more frequent in children (0-11 y) and adolescents (12-17 y) (subtropical region: p < 0.0005; tropical region p < 0.05), but pollen sensitization becomes more important in the adult patients visiting allergists (Adults vs children + adolescents for tree pollen: p < 0.0001, weeds: p < 0.0005). In a country with (sub)tropical climate zones SPT sensitization patterns varied according to climatological zones; they were different from those found in Europe, HDM sensitization far outweighing pollen allergies and Bermuda grass and Ash pollen being the main grass and tree allergens, respectively. Pollen sensitization was related to SAR, but no relation between sensitization and intermittent-persistent AR or AR severity could be detected. Sensitization patterns vary with age (child HDM, adult pollen). Clinical implications of our findings are dual: only a few allergens -some region specific- cover the majority of sensitizations in (sub)tropical climate zones. This is of major importance for allergen manufacturers and immunotherapy planning. Secondly, patient selection in clinical trials should be based on the intermittent-persistent and severity classifications, rather than on the seasonal-perennial AR subtypes, especially when conducted in (sub)tropical countries.
2014-01-01
Background Allergen exposure leads to allergen sensitization in susceptible individuals and this might influence allergic rhinitis (AR) phenotype expression. We investigated whether sensitization patterns vary in a country with subtropical and tropical regions and if sensitization patterns relate to AR phenotypes or age. Methods In a national, cross-sectional study AR patients (2-70 y) seen by allergists underwent blinded skin prick testing with a panel of 18 allergens and completed a validated questionnaire on AR phenotypes. Results 628 patients were recruited. The major sensitizing allergen was house dust mite (HDM) (56%), followed by Bermuda grass (26%), ash (24%), oak (23%) and mesquite (21%) pollen, cat (22%) and cockroach (21%). Patients living in the tropical region were almost exclusively sensitized to HDM (87%). In the central agricultural zones sensitization is primarily to grass and tree pollen. Nationwide, most study subjects had perennial (82.2%), intermittent (56.5%) and moderate-severe (84.7%) AR. Sensitization was not related to the intermittent-persistent AR classification or to AR severity; seasonal AR was associated with tree (p < 0.05) and grass pollen sensitization (p < 0.01). HDM sensitization was more frequent in children (0-11 y) and adolescents (12-17 y) (subtropical region: p < 0.0005; tropical region p < 0.05), but pollen sensitization becomes more important in the adult patients visiting allergists (Adults vs children + adolescents for tree pollen: p < 0.0001, weeds: p < 0.0005). Conclusions In a country with (sub)tropical climate zones SPT sensitization patterns varied according to climatological zones; they were different from those found in Europe, HDM sensitization far outweighing pollen allergies and Bermuda grass and Ash pollen being the main grass and tree allergens, respectively. Pollen sensitization was related to SAR, but no relation between sensitization and intermittent-persistent AR or AR severity could be detected. Sensitization patterns vary with age (child HDM, adult pollen). Clinical implications of our findings are dual: only a few allergens –some region specific- cover the majority of sensitizations in (sub)tropical climate zones. This is of major importance for allergen manufacturers and immunotherapy planning. Secondly, patient selection in clinical trials should be based on the intermittent-persistent and severity classifications, rather than on the seasonal-perennial AR subtypes, especially when conducted in (sub)tropical countries. PMID:24976949
Yuko Ota; Mee-Sook Kim; Hitoshi Neda; Ned B. Klopfenstein; Eri Hasegawa
2011-01-01
An undetermined Armillaria species was collected on Amami-Oshima, a subtropical island of Japan. The phylogenetic position of the Armillaria sp. was determined using sequences of the elongation factor-1a (EF-1a) gene and the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of ribosomal DNA (rDNA). The phylogenetic analyses based on EF-1a and ITS sequences...
Schistosoma mansoni c-AMP-dependent Protein Kinase (PKA): A Potential New Drug Target
2009-12-07
million people in tropical and subtropical regions of the world and is responsible for approximately 280,000 deaths in Sub-Saharan Africa alone annually...schistosomiasis has played a role in shaping world history. It has been implicated in the deaths of Napoleon Bonaparte, in his exile on Elba, and of King...populations living in extreme poverty [10]. Schistosomiasis is endemic in 74 countries in tropical and sub-tropical regions of the world (Fig. 1
Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers
2015-01-01
Urbanization can alter nutrient cycling. This research evaluated how urbanization affected nutrient dynamics in the subtropics. We established 17â0.04 ha plots in five different land cover typesâslash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n= 3), rural natural oak forests (n=4), urban pine forests (n=3) and urban oak forests (n=4) in the...
Lydia P. Olander; F.N Scatena; Whendee L. Silver
1998-01-01
The impacts of road construction and the spread of exotic vegetation, which are common threats to upper elevation tropical forests, were evaluated in the subtropical cloud forests of Puerto Rico. The vegetation, soil and microclimate of 6-month-old road®lls, 35-year-old road®lls and mature forest with and without grass understories were compared. Recent road®lls had...
Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM
NASA Astrophysics Data System (ADS)
Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei
2018-02-01
To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.
Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles.
Schmidt, Matthew W; Vautravers, Maryline J; Spero, Howard J
2006-10-05
Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.
North Atlantic salinity as a predictor of Sahel rainfall.
Li, Laifang; Schmitt, Raymond W; Ummenhofer, Caroline C; Karnauskas, Kristopher B
2016-05-01
Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel.
Wang, Bin; Xiang, Baoqiang; Lee, June-Yi
2013-02-19
Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = -0.92), the total TS days over the subtropical western North Pacific (r = -0.81), and the total number of TSs impacting East Asian coasts (r = -0.76) during 1979-2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH-ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability.
North Atlantic salinity as a predictor of Sahel rainfall
Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.; Karnauskas, Kristopher B.
2016-01-01
Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel. PMID:27386525
NASA Astrophysics Data System (ADS)
Tan, Zhihong; Schneider, Tapio; Teixeira, João.; Pressel, Kyle G.
2016-12-01
Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change.
Li, Pin; Feng, Zhaozhong; Catalayud, Vicent; Yuan, Xiangyang; Xu, Yansen; Paoletti, Elena
2017-10-01
The carbon-sink strength of temperate and boreal forests at midlatitudes of the northern hemisphere is decreased by ozone pollution, but knowledge on subtropical evergreen broadleaved forests is missing. Taking the dataset from Chinese studies covering temperate and subtropical regions, effects of elevated ozone concentration ([O 3 ]) on growth, biomass, and functional leaf traits of different types of woody plants were quantitatively evaluated by meta-analysis. Elevated mean [O 3 ] of 116 ppb reduced total biomass of woody plants by 14% compared with control (mean [O 3 ] of 21 ppb). Temperate species from China were more sensitive to O 3 than those from Europe and North America in terms of photosynthesis and transpiration. Significant reductions in chlorophyll content, chlorophyll fluorescence parameters, and ascorbate peroxidase induced significant injury to photosynthesis and growth (height and diameter). Importantly, subtropical species were significantly less sensitive to O 3 than temperate ones, whereas deciduous broadleaf species were significantly more sensitive than evergreen broadleaf and needle-leaf species. These findings suggest that carbon-sink strength of Chinese forests is reduced by present and future [O 3 ] relative to control (20-40 ppb). Given that (sub)-tropical evergreen broadleaved species dominate in Chinese forests, estimation of the global carbon-sink constraints due to [O 3 ] should be re-evaluated. © 2017 John Wiley & Sons Ltd.
Wang, Bin; Xiang, Baoqiang; Lee, June-Yi
2013-01-01
Monsoon rainfall and tropical storms (TSs) impose great impacts on society, yet their seasonal predictions are far from successful. The western Pacific Subtropical High (WPSH) is a prime circulation system affecting East Asian summer monsoon (EASM) and western North Pacific TS activities, but the sources of its variability and predictability have not been established. Here we show that the WPSH variation faithfully represents fluctuations of EASM strength (r = –0.92), the total TS days over the subtropical western North Pacific (r = –0.81), and the total number of TSs impacting East Asian coasts (r = –0.76) during 1979–2009. Our numerical experiment results establish that the WPSH variation is primarily controlled by central Pacific cooling/warming and a positive atmosphere-ocean feedback between the WPSH and the Indo-Pacific warm pool oceans. With a physically based empirical model and the state-of-the-art dynamical models, we demonstrate that the WPSH is highly predictable; this predictability creates a promising way for prediction of monsoon and TS. The predictions using the WPSH predictability not only yields substantially improved skills in prediction of the EASM rainfall, but also enables skillful prediction of the TS activities that the current dynamical models fail. Our findings reveal that positive WPSH–ocean interaction can provide a source of climate predictability and highlight the importance of subtropical dynamics in understanding monsoon and TS predictability. PMID:23341624
Aedes aegypti from temperate regions of South America are highly competent to transmit dengue virus
2013-01-01
Background Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. Methods We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28°C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15°C and 20°C. Results Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28°C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15°C and 20°C. Conclusions There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods. PMID:24373423
Distribution of functional traits in subtropical trees across environmental and forest use gradients
NASA Astrophysics Data System (ADS)
Blundo, Cecilia; Malizia, Lucio R.; González-Espinosa, Mario
2015-11-01
The relationship between functional traits and environmental factors contribute to understanding community structure and predicting which species will be able to elude environmental filters in different habitats. We selected 10 functional traits related to morphology, demography and regeneration niche in 54 subtropical premontane tree species to describe their main axes of functional differentiation. We derived species traits, environmental variables and species abundance data from 20 1-ha permanent plots established in a seasonal subtropical premontane forest in northwestern Argentina. We analyzed the relationship between species functional traits and environmental factors through RLQ and fourth-corner analyzes. We found an axis of structural differentiation that segregates understory from canopy species, and an axis of functional differentiation that segregates species that maximize resource acquisition from those that promote resource conservation. Environmental and forest use gradients operate hierarchically over subtropical premontane tree species influencing the distribution of demographic and morphological traits. The interaction between climatic and topographic factors influences the distribution of species functional traits at the regional scale. In addition, the history of forest use seems to operate at the landscape scale and explains the distribution of species traits reflecting a trade-off between resource acquisition and resource conservation strategies in secondary forests across different successional stages. Our results support the idea that functional traits may be used to analyze community structure and dynamics through niche differentiation and environmental filtering processes.
Wei, Xiaohua; Blanco, Juan A.
2014-01-01
Subtropical planted forests are rapidly expanding. They are traditionally managed for intensive, short-term goals that often lead to long-term yield decline and reduced carbon sequestration capacity. Here we show how it is possible to increase and sustain carbon stored in subtropical forest plantations if management is switched towards more sustainable forestry. We first conducted a literature review to explore possible management factors that contribute to the potentials in ecosystem C in tropical and subtropical plantations. We found that broadleaves plantations have significantly higher ecosystem C than conifer plantations. In addition, ecosystem C increases with plantation age, and reaches a peak with intermediate stand densities of 1500–2500 trees ha−1. We then used the FORECAST model to simulate the regional implications of switching from traditional to sustainable management regimes, using Chinese fir (Cunninghamia lanceolata) plantations in subtropical China as a study case. We randomly simulated 200 traditional short-rotation pure stands and 200 sustainably-managed mixed Chinese fir – Phoebe bournei plantations, for 120 years. Our results showed that mixed, sustainably-managed plantations have on average 67.5% more ecosystem C than traditional pure conifer plantations. If all pure plantations were gradually transformed into mixed plantations during the next 10 years, carbon stocks could rise in 2050 by 260.22 TgC in east-central China. Assuming similar differences for temperate and boreal plantations, if sustainable forestry practices were applied to all new forest plantation types in China, stored carbon could increase by 1,482.80 TgC in 2050. Such an increase would be equivalent to a yearly sequestration rate of 40.08 TgC yr−1, offsetting 1.9% of China’s annual emissions in 2010. More importantly, this C increase can be sustained in the long term through the maintenance of higher amounts of soil organic carbon and the production of timber products with longer life spans. PMID:24586964
NASA Astrophysics Data System (ADS)
Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.
2017-12-01
Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability recorded in our record suggests complex responses to major and abrupt shifts during these periods, likely due to Florida's subtropical location and the influence of multiple climate forcing mechanisms in the region.
Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina
2015-01-01
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests. PMID:25719204
NASA Astrophysics Data System (ADS)
Mahaffey, C.; Reynolds, S.; Davis, C. E.; Lohan, M. C.
2016-02-01
Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low in the surface ocean and limit biological activity. In response to phosphate limitation, organisms produce phosphohydrolytic enzymes, such as alkaline phosphatases (AP), that enable them to utilize the more replete dissolved organic phosphorus (DOP) pool to meet their cellular phosphorus demands. Synthesis of data from the surface ocean from 14 open ocean studies reveals an inverse hyperbolic relationship between phosphate and AP, where AP is significantly induced at phosphate concentrations below 50 nM and DOP concentrations decrease as AP increases. AP activity was significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM). While the phosphate concentration may have a first order control on the rates of AP, we demonstrate that other factors influence AP activity. AP are metalloenzymes and zinc and iron are co-factors of the AP proteins PhoA and PhoX, respectively. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increases the rate of AP. To our knowledge, our results are the first direct field-based evidence that AP activity is limited by zinc in the subtropical ocean. In colonies of nitrogen fixer, Trichodesmium, we found enhanced expression of the phoA gene in a region of elevated zinc concentrations and enhanced expression of the phoX gene in a region of elevated iron concentrations around the intertropical convergence zone. Our study highlights the potential link between the phosphorus cycle and trace metals, specifically zinc and iron, and implies that there is potential for zinc-phosphorus and iron-phosphorus co-limitation in the ocean via AP.
Yang, Ping; Zhang, Yifei; Lai, Derrick Y F; Tan, Lishan; Jin, Baoshi; Tong, Chuan
2018-04-20
While aquaculture pond is a dominant land use/cover type and a distinct aquatic ecosystem in the coastal zones of China and southeast Asia, their contributions to the fluxes of greenhouse gases (GHGs) have only been poorly quantified. Fluxes of CO 2 and CH 4 in the shrimp ponds with different salinities were simultaneously measured in situ using the floating chamber technique in two different subtropical estuaries, namely, the Min River Estuary (MRE) and Jiulong River Estuary (JRE). The average CO 2 and CH 4 fluxes in the shrimp ponds over the observation periods varied from -2.09 to 3.37mmol CO 2 m -2 h -1 and from 0.28 to 16.28mmol CH 4 m -2 h -1 , respectively, with higher fluxes being detected during the middle stage of aquaculture. The temporal variation of CO 2 and CH 4 fluxes in both estuaries ponds closely followed the seasonal cycle of temperature. Higher CH 4 emissions were observed in MRE ponds than in JRE ponds because of the lower water salinity and N-NO 3 - concentrations as well as a greater supply of carbon substrates. Our findings suggested that shrimp ponds were CH 4 emission "hotspots" in the subtropical estuaries of China. Based on a new global warming potential model, we conservatively estimated an anuual GHG emission rate of approximately 63.68Tg CO 2 -eq during the culture period from aquaculture ponds across the subtropical estuaries of China. Our results demonstrate the importance of aquaculture ponds as a major GHG source and a contributor to climate warming in the subtropical estuarine regions of China, and call for effective regulation of GHG emissions from these ponds for climate mitigation in future. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, M.; Shu, L.
2017-12-01
Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during August 7-12, 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause more serious air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. On August 10-11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.
Convective initiation in the vicinity of the subtropical Andes
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Houze, R.
2014-12-01
Extreme convection tends to form in the vicinity of mountain ranges, and the Andes in subtropical South America help spawn some of the most intense convection in the world. An investigation of the most intense storms for 11 years of TRMM Precipitation Radar (PR) data shows a tendency for squall lines to initiate and develop in this region with the canonical leading convective line/trailing stratiform structure. The synoptic environment and structures of the extreme convection and MCSs in subtropical South America are similar to those found in other regions of the world, especially the United States. In subtropical South America, however, the topographical influence on the convective initiation and maintenance of the MCSs is unique. A capping inversion in the lee of the Andes is important in preventing premature triggering. The Andes and other mountainous terrain of Argentina focus deep convective initiation in a narrow region. Subsequent to initiation, the convection often evolves into propagating mesoscale convective systems similar to those seen over the Great Plains of the U. S. and produces damaging tornadoes, hail, and floods across a wide agricultural region. Numerical simulations conducted with the NCAR Weather Research and Forecasting (WRF) Model extend the observational analysis and provide an objective evaluation of storm initiation, terrain effects, and development mechanisms. The simulated mesoscale systems closely resemble the storm structures seen by the TRMM Precipitation Radar as well as the overall shape and character of the storms shown in GOES satellite data. A sensitivity experiment with different configurations of topography, including both decreasing and increasing the height of the Andes Mountains, provides insight into the significant influence of orography in focusing convective initiation in this region. Lee cyclogenesis and a strong low-level jet are modulated by the height of the Andes Mountains and directly affect the character, intensity, and spatial distribution of the convective systems. A new conceptual model for convective initiation in subtropical South America that integrates the results of the topographic sensitivity experiments will be presented.
Yan, Junhua; Zhang, Deqiang; Liu, Juxiu; Zhou, Guoyi
2014-07-01
Carbon dioxide (CO2 ) enhancement (eCO2 ) and N addition (aN) have been shown to increase net primary production (NPP) and to affect water-use efficiency (WUE) for many temperate ecosystems, but few studies have been made on subtropical tree species. This study compared the responses of NPP and WUE from a mesocosm composing five subtropical tree species to eCO2 (700 ppm), aN (10 g N m(-2) yr(-1) ) and eCO2 × aN using open-top chambers. Our results showed that mean annual ecosystem NPP did not changed significantly under eCO2 , increased by 56% under aN and 64% under eCO2 × aN. Ecosystem WUE increased by 14%, 55%, and 61% under eCO2 , aN and eCO2 × aN, respectively. We found that the observed responses of ecosystem WUE were largely driven by the responses of ecosystem NPP. Statistical analysis showed that there was no significant interactions between eCO2 and aN on ecosystem NPP (P = 0.731) or WUE (P = 0.442). Our results showed that increasing N deposition was likely to have much stronger effects on ecosystem NPP and WUE than increasing CO2 concentration for the subtropical forests. However, different tree species responded quite differently. aN significantly increased annual NPP of the fast-growing species (Schima superba). Nitrogen-fixing species (Ormosia pinnata) grew significantly faster only under eCO2 × aN. eCO2 had no effects on annual NPP of those two species but significantly increased annual NPP of other two species (Castanopsis hystrix and Acmena acuminatissima). Differential responses of the NPP among different tree species to eCO2 and aN will likely have significant implications on the species composition of subtropical forests under future global change. © 2013 John Wiley & Sons Ltd.
SEASONAL VARIATIONS IN HUMAN PAROTID FLUID FLOW RATE IN A SUBTROPICAL CLIMATE.
Parotid fluid was collected under conditions of very minimal stimulation from 3,868 systemically healthy young adult males over a period of two...calendar years. The study was carried out in a subtropical climate in which the only thermal discomfort resulted from the summer heat. Parotid flow rate...fall. During the summer months the mean rate of parotid flow was 0.031 ml./minute; during the winter the flow rate mean increased by 35% to 0.042 ml
NASA Technical Reports Server (NTRS)
Babayev, A.
1979-01-01
The period of active acclimatization was determined for construction workers coming into a subtropical climate. Changes were observed in metabolic processes, oxygen needs, pulse rate, arterial pressure, body and skin temperature, body weight, water consumption and loss, and the comfort zone of heat sensitivity. It was concluded that acclimatization is facilitated if introduction to the hot climate occurs in the mild cool season, rather than the summer. This also prevents heat prostration and improves the development of adaptive mechanisms.
NASA Astrophysics Data System (ADS)
Lin, Hsin-mu; Wang, Pao K.; Schlesinger, Robert E.
2005-11-01
This article presents a detailed comparison of cloud microphysical evolution among six warm-season thunderstorm simulations using a time-dependent three-dimensional model WISCDYMM. The six thunderstorms chosen for this study consist of three apiece from two contrasting climate zones, the US High Plains (one supercell and two multicells) and the humid subtropics (two in Florida, US and one in Taipei, Taiwan, all multicells). The primary goal of this study is to investigate the differences among thunderstorms in different climate regimes in terms of their microphysical structures and how differently these structures evolve in time. A subtropical case is used as an example to illustrate the general contents of a simulated storm, and two examples of the simulated storms, one humid subtropical and one northern High Plains case, are used to describe in detail the microphysical histories. The simulation results are compared with the available observational data, and the agreement between the two is shown to be at least fairly close overall. The analysis, synthesis and implications of the simulation results are then presented. The microphysical histories of the six simulated storms in terms of the domain-integrated masses of all five hydrometeor classes (cloud water, cloud ice, rain, snow, graupel/hail), along with the individual sources (and sinks) of the three precipitating hydrometeor classes (rain, snow, graupel/hail) are analyzed in detail. These analyses encompass both the absolute magnitudes and their percentage contributions to the totals, for the condensate mass and their precipitation production (and depletion) rates, respectively. Comparisons between the hydrometeor mass partitionings for the High Plains versus subtropical thunderstorms show that, in a time-averaged sense, ice hydrometeors (cloud ice, snow, graupel/hail) account for ˜ 70-80% of the total hydrometeor mass for the High Plains storms but only ˜ 50% for the subtropical storms, after the systems have reached quasi-steady mature states. This demonstrates that ice processes are highly important even in thunderstorms occurring in warm climatic regimes. The dominant rain sources are two of the graupel/hail sinks, shedding and melting, in both High Plains and subtropical storms, while the main rain sinks are accretion by hail and evaporation. The dominant graupel/hail sources are accretion of rain, snow and cloud water, while its main sinks are shedding and melting. The dominant snow sources are the Bergeron-Findeisen process and accretion of cloud water, while the main sinks are accretion by graupel/hail and sublimation. However, the rankings of the leading production and depletion mechanisms differ somewhat in different storm cases, especially for graupel/hail. The model results indicate that the same hydrometeor types in the different climates have their favored microphysical sources and sinks. These findings not only prove that thunderstorm structure depends on local dynamic and thermodynamic atmospheric conditions that are generally climate-dependent, but also provide information about the partitioning of hydrometeors in the storms. Such information is potentially useful for convective parameterization in large-scale models.
NASA Astrophysics Data System (ADS)
Montes, Enrique; Muller-Karger, Frank E.; Cianca, Andrés.; Lomas, Michael W.; Lorenzoni, Laura; Habtes, Sennai
2016-03-01
Historical observations of potential temperature (θ), salinity (S), and dissolved oxygen concentrations (O2) in the tropical and subtropical North Atlantic (0-500 m; 0-40°N, 10-90°W) were examined to understand decadal-scale changes in O2 in subtropical underwater (STUW). STUW is observed at four of the longest, sustained ocean biogeochemical and ecological time series stations, namely, the CArbon Retention In A Colored Ocean (CARIACO) Ocean Time Series Program (10.5°N, 64.7°W), the Bermuda Atlantic Time-series Study (BATS; 31.7°N, 64.2°W), Hydrostation "S" (32.1°N, 64.4°W), and the European Station for Time-series in the Ocean, Canary Islands (ESTOC; 29.2°N, 15.5°W). Observations over similar time periods at CARIACO (1996-2013), BATS (1988-2011), and Hydrostation S (1980-2013) show that STUW O2 has decreased approximately 0.71, 0.28, and 0.37 µmol kg-1 yr-1, respectively. No apparent change in STUW O2 was observed at ESTOC over the course of the time series (1994-2013). Ship observation data for the tropical and subtropical North Atlantic archived at NOAA National Oceanographic Data Center show that between 1980 and 2013, STUW O2 (upper ~300 m) declined 0.58 µmol kg-1 yr-1 in the southeastern Caribbean Sea (10-15°N, 60-70°W) and 0.68 µmol kg-1 yr-1 in the western subtropical North Atlantic (30-35°N, 60-65°W). A declining O2 trend was not observed in the eastern subtropical North Atlantic (25-30°N, 15-20°W) over the same period. Most of the observed O2 loss seems to result from shifts in ventilation associated with decreased wind-driven mixing and a slowing down of STUW formation rates, rather than changes in diffusive air-sea O2 gas exchange or changes in the biological oceanography of the North Atlantic. Variability of STUW O2 showed a significant relationship with the wintertime (January-March) Atlantic Multidecadal Oscillation index (AMO, R2 = 0.32). During negative wintertime AMO years trade winds are typically stronger between 10°N and 30°N. These conditions stimulate the formation and ventilation of STUW. The decreasing trend in STUW O2 in the three decades spanning 1980 through 2013 reflects the shift from a strongly negative wintertime AMO between the mid-1980s and mid-1990s to a positive wintertime AMO observed between the mid-1990s and 2013. These changes in STUW O2 were captured by the CARIACO, BATS, and Hydrostation S time series stations. Sustained positive AMO conditions could lead to further deoxygenation in tropical and subtropical North Atlantic upper waters.
Phytoplankton Growth and Microzooplankton Grazing in the Subtropical Northeast Atlantic
Cáceres, Carlos; Taboada, Fernando González; Höfer, Juan; Anadón, Ricardo
2013-01-01
Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2–5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11–1.60 d−1), especially in the case of the large fraction. Grazing rates were also high (0.15–1.29 d−1), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres. PMID:23935946
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
NASA Astrophysics Data System (ADS)
Kucharski, F.; Sun, C.; Li, J.; Jin, F. F.; Kang, I. S.; Ding, R.
2017-12-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.
Vegetation Response to Upper Pliocene Glacial/Interglacial Cyclicity in the Central Mediterranean
NASA Astrophysics Data System (ADS)
Combourieu-Nebout, Nathalie
1993-09-01
New detailed pollen analysis of the lower part of the Upper Pliocene Semaforo section (Crotone, Italy) documents cyclic behavior of vegetation at the beginning of the Northern Hemisphere glaciations. The competition between four vegetation units (subtropical humid forest, deciduous temperate forest, altitudinal coniferous forest, and open xeric assemblage) probably reflects modifications of vegetation belts at this montane site. Several increases in herbaceous open vegetation regularly alternate with subtropical humid forest, which expresses rapid climatic oscillations. The complete temporal succession—deciduous forest (rich in Quercus), followed by subtropical humid forest (Taxodiaceae and Cathaya), then altitudinal coniferous forest ( Tsuga, Cedrus, Abies, and Picea), and finally herbaceous open vegetation (Graminae, Compositae, and Artemisia )—displays the climatic evolution from warm and humid interglaciation to cold and dry glaciation. It also suggests an independent variation of temperature and humidity, the two main climatic parameters. The vegetation history of southern Calabria recorded in the Semaforo section have been correlated with the ∂ 18O signal established in the Atlantic Ocean.
Rocke, Emma; Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin
2016-07-01
Tolo Harbor, a subtropical semi-enclosed coastal water body, is surrounded by an expanding urban community, which contributes to large concentrations of nutrient runoff, leading to algal blooms and localized hypoxic episodes. Present knowledge of protist distributions in subtropical waters during hypoxic conditions is very limited. In this study, therefore, we combined parallel 454 pyrosequencing technology and denaturing gradient gel electrophoresis (DGGE) fingerprint analyses to reveal the protist community shifts before, during, and after a 2-week hypoxic episode during the summer of 2011. Hierarchical clustering for DGGE demonstrated similar grouping of hypoxic samples separately from oxic samples. Dissolved oxygen (DO) concentration and dissolved inorganic nitrogen:phosphate (DIN:PO4) concentrations significantly affected OTU distribution in 454 sequenced samples, and a shift toward a ciliate and marine alveolate clade II (MALV II) species composition occurred as waters shifted from oxic to hypoxic. These results suggest that protist community shifts toward heterotrophic and parasitic tendencies as well as decreased diversity and richness in response to hypoxic outbreaks.
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang
2017-01-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO–WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind–evaporation–SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST–sea level pressure–cloud–longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability. PMID:28685765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Patrick; Kravitz, Ben; Lu, Jian
Here we demonstrate that changes of the North Atlantic subtropical high (NASH) and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO2 increase can both be understood as a remote response to changes in the African and Indian monsoon systems. Despite different sources and patterns of radiative forcing (increase in CO2 concentration vs. changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are very similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing. Anmore » increase in energy input over land drives a westward displacement of the coupled NASH-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. Ultimately, this study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less
Low densities of drifting litter in the African sector of the Southern Ocean.
Ryan, Peter G; Musker, Seth; Rink, Ariella
2014-12-15
Only 52 litter items (>1cm diameter) were observed in 10,467 km of at-sea transects in the African sector of the Southern Ocean. Litter density north of the Subtropical Front (0.58 items km(-2)) was less than in the adjacent South Atlantic Ocean (1-6 items km(-2)), but has increased compared to the mid-1980s. Litter density south of the Subtropical Front was an order of magnitude less than in temperate waters (0.032 items km(-2)). There was no difference in litter density between sub-Antarctic and Antarctic waters either side of the Antarctic Polar Front. Most litter was made of plastic (96%). Fishery-related debris comprised a greater proportion of litter south of the Subtropical Front (33%) than in temperate waters (13%), where packaging dominated litter items (68%). The results confirm that the Southern Ocean is the least polluted ocean in terms of drifting debris and suggest that most debris comes from local sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Decadal fluctuations in the western Pacific recorded by long precipitation records in Taiwan
NASA Astrophysics Data System (ADS)
Huang, Wan-Ru; Wang, S.-Y. Simon; Guan, Biing T.
2018-03-01
A 110-year precipitation record in Taiwan, located at the western edge of the subtropical North Pacific, depicts a pronounced quasi-decadal oscillation (QDO). The QDO in Taiwan exhibits a fluctuating relationship with the similar decadal variations of sea surface temperature (SST) anomalies in the central equatorial Pacific, known as the Pacific QDO. A regime change was observed around 1960, such that the decadal variation of Taiwan's precipitation became more synchronized with the Pacific QDO's coupled evolutions of SST and atmospheric circulation than before, while the underlying pattern of the Pacific QOD did not change. Using long-term reanalysis data and CMIP5 single-forcing experiments, the presented analysis suggests that increased SST in the subtropical western Pacific and the strengthened western extension of the North Pacific subtropical anticyclone may have collectively enhanced the relationship between the Taiwan precipitation and the Pacific QDO. This finding provides possible clues to similar regime changes in quasi-decadal variability observed around the western Pacific rim.
Decade-long deep-ocean warming detected in the subtropical South Pacific
Volkov, Denis L.; Lee, Sang-Ki; Landerer, Felix W.; Lumpkin, Rick
2017-01-01
The persistent energy imbalance at the top of the atmosphere, inferred from satellite measurements, indicates that the Earth’s climate system continues to accumulate excess heat. As only sparse and irregular measurements of ocean heat below 2000 m depth exist, one of the most challenging questions in global climate change studies is whether the excess heat has already penetrated into the deep ocean. Here we perform a comprehensive analysis of satellite and in situ measurements to report that a significant deep-ocean warming occurred in the subtropical South Pacific Ocean over the past decade (2005–2014). The local accumulation of heat accounted for up to a quarter of the global ocean heat increase, with directly and indirectly inferred deep ocean (below 2000 m) contribution of 2.4 ± 1.4 and 6.1–10.1 ± 4.4%, respectively. We further demonstrate that this heat accumulation is consistent with a decade-long intensification of the subtropical convergence, possibly linked to the persistent La Niña-like state. PMID:29200536
Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre
Dodge, Kara L.; Galuardi, Benjamin; Lutcavage, Molly E.
2015-01-01
Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714
Denton, Mathew J.; Hart, Kristen M.; Demopoulos, Amanda W.J.; Oleinik, Anton; Baldwin, John N.
2016-01-01
Unique among turtles as the only exclusively estuarine species, the diamondback terrapin’s (Malaclemys terrapin) life history predisposes it to impacts from humans both on land and in the near-shore environment. Terrapins are found in salt marshes and mangroves along the Atlantic and Gulf coasts from Massachusetts to Texas. Whereas previous dietary studies have elucidated terrapins’ role in temperate salt marsh food webs, food resources for terrapins inhabiting subtropical mangrove habitats have not been studied. We examined dietary resource use for diamondback terrapins in subtropical mangrove creek and island habitats within Everglades National Park, Florida, to determine foraging strategies of terrapins inhabiting south Florida (SF) mangrove systems. Fecal analysis revealed 6 categories of food items, with gastropods, crabs, and bivalves being the dominant food items. Multivariate analysis revealed differences in food sources based on habitat more so than by terrapin size class. Our results revealed that like their counterparts in temperate salt marshes, SF terrapins consume similar prey categories but with different species and abundances comprising each category.
Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation
NASA Astrophysics Data System (ADS)
Sun, Cheng; Kucharski, Fred; Li, Jianping; Jin, Fei-Fei; Kang, In-Sik; Ding, Ruiqiang
2017-07-01
Observational analysis suggests that the western tropical Pacific (WTP) sea surface temperature (SST) shows predominant variability over multidecadal time scales, which is unlikely to be explained by the Interdecadal Pacific Oscillation. Here we show that this variability is largely explained by the remote Atlantic multidecadal oscillation (AMO). A suite of Atlantic Pacemaker experiments successfully reproduces the WTP multidecadal variability and the AMO-WTP SST connection. The AMO warm SST anomaly generates an atmospheric teleconnection to the North Pacific, which weakens the Aleutian low and subtropical North Pacific westerlies. The wind changes induce a subtropical North Pacific SST warming through wind-evaporation-SST effect, and in response to this warming, the surface winds converge towards the subtropical North Pacific from the tropics, leading to anomalous cyclonic circulation and low pressure over the WTP region. The warm SST anomaly further develops due to the SST-sea level pressure-cloud-longwave radiation positive feedback. Our findings suggest that the Atlantic Ocean acts as a key pacemaker for the western Pacific decadal climate variability.
Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent
2009-09-01
Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.
Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China
Fan, Houbao; Duan, Honglang; Li, Qiang; Yuan, Yinghong; Zhang, Hao
2017-01-01
Eucalyptus species are widely planted for reforestation in subtropical China. However, the effects of Eucalyptus plantations on the regional water use remain poorly understood. In an age sequence of 2-, 4- and 6-year-old Eucalyptus plantations, the tree water use and soil evaporation were examined by linking model estimations and field observations. Results showed that annual evapotranspiration of each age sequence Eucalyptus plantations was 876.7, 944.1 and 1000.7 mm, respectively, accounting for 49.81%, 53.64% and 56.86% of the annual rainfall. In addition, annual soil evaporations of 2-, 4- and 6-year-old were 318.6, 336.1, and 248.7 mm of the respective Eucalyptus plantations. Our results demonstrated that Eucalyptus plantations would potentially reduce water availability due to high evapotranspiration in subtropical regions. Sustainable management strategies should be implemented to reduce water consumption in Eucalyptus plantations in the context of future climate change scenarios such as drought and warming. PMID:28399174
Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China.
Liu, Wenfei; Wu, Jianping; Fan, Houbao; Duan, Honglang; Li, Qiang; Yuan, Yinghong; Zhang, Hao
2017-01-01
Eucalyptus species are widely planted for reforestation in subtropical China. However, the effects of Eucalyptus plantations on the regional water use remain poorly understood. In an age sequence of 2-, 4- and 6-year-old Eucalyptus plantations, the tree water use and soil evaporation were examined by linking model estimations and field observations. Results showed that annual evapotranspiration of each age sequence Eucalyptus plantations was 876.7, 944.1 and 1000.7 mm, respectively, accounting for 49.81%, 53.64% and 56.86% of the annual rainfall. In addition, annual soil evaporations of 2-, 4- and 6-year-old were 318.6, 336.1, and 248.7 mm of the respective Eucalyptus plantations. Our results demonstrated that Eucalyptus plantations would potentially reduce water availability due to high evapotranspiration in subtropical regions. Sustainable management strategies should be implemented to reduce water consumption in Eucalyptus plantations in the context of future climate change scenarios such as drought and warming.
Chen, Liang; Zheng, Yong; Gao, Cheng; Mi, Xiang-Cheng; Ma, Ke-Ping; Wubet, Tesfaye; Guo, Liang-Dong
2017-05-01
Elucidating symbiotic relationships between arbuscular mycorrhizal fungi (AMF) and plants contributes to a better understanding of their reciprocally dependent coexistence and community assembly. However, the main drivers of plant and AMF community assembly remain unclear. In this study, we examined AMF communities from 166 root samples of 17 woody plant species from 10 quadrats in a Chinese subtropical forest using 454 pyrosequencing of 18S rRNA gene to describe symbiotic AMF-plant association. Our results show the woody plant-AMF networks to be highly interconnected and nested, but in antimodular and antispecialized manners. The nonrandom pattern in the woody plant-AMF network was explained by plant and AMF phylogenies, with a tendency for a stronger phylogenetic signal by plant than AMF phylogeny. This study suggests that the phylogenetic niche conservatism in woody plants and their AMF symbionts could contribute to interdependent AMF and plant community assembly in this subtropical forest ecosystem. © 2017 John Wiley & Sons Ltd.
Liu, Xubing; Burslem, David F R P; Taylor, Joe D; Taylor, Andy F S; Khoo, Eyen; Majalap-Lee, Noreen; Helgason, Thorunn; Johnson, David
2018-05-01
Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests. © 2018 John Wiley & Sons Ltd/CNRS.
Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms
NASA Astrophysics Data System (ADS)
Alory, Gaël; Wijffels, Susan; Meyers, Gary
2007-01-01
The linear trends in oceanic temperature from 1960 to 1999 are estimated using the new Indian Ocean Thermal Archive (IOTA), a compilation of historical temperature profiles. Widespread surface warming is found, as in other data sets, and reproduced in IPCC climate model simulations for the 20th century. This warming is particularly large in the subtropics, and extends down to 800 m around 40-50°S. Models suggest the deep-reaching subtropical warming is related to a 0.5° southward shift of the subtropical gyre driven by a strengthening of the westerly winds, and associated with an upward trend in the Southern Annular Mode index. In the tropics, IOTA shows a subsurface cooling corresponding to a shoaling of the thermocline and increasing vertical stratification. Most models suggest this trend in the tropical Indian thermocline is likely associated with the observed weakening of the Pacific trade winds and transmitted to the Indian Ocean by the Indonesian throughflow.
Liu, Xiao; Levine, Naomi M
2016-02-28
Subtropical gyres contribute significantly to global ocean productivity. As the climate warms, the strength of these gyres as a biological carbon pump is predicted to diminish due to increased stratification and depleted surface nutrients. We present results suggesting that the impact of submesoscale physics on phytoplankton in the oligotrophic ocean is substantial and may either compensate or exacerbate future changes in carbon cycling. A new statistical tool was developed to quantify surface patchiness from sea surface temperatures. Chlorophyll concentrations in the North Pacific Subtropical Gyre were shown to be enhanced by submesoscale frontal dynamics with an average increase of 38% (maximum of 83%) during late winter. The magnitude of this enhancement is comparable to the observed decline in chlorophyll due to a warming of ~1.1°C. These results highlight the need for an improved understanding of fine-scale physical variability in order to predict the response of marine ecosystems to projected climate changes.
NASA Astrophysics Data System (ADS)
Liu, Xiao; Levine, Naomi M.
2016-02-01
Subtropical gyres contribute significantly to global ocean productivity. As the climate warms, the strength of these gyres as a biological carbon pump is predicted to diminish due to increased stratification and depleted surface nutrients. We present results suggesting that the impact of submesoscale physics on phytoplankton in the oligotrophic ocean is substantial and may either compensate or exacerbate future changes in carbon cycling. A new statistical tool was developed to quantify surface patchiness from sea surface temperatures. Chlorophyll concentrations in the North Pacific Subtropical Gyre were shown to be enhanced by submesoscale frontal dynamics with an average increase of 38% (maximum of 83%) during late winter. The magnitude of this enhancement is comparable to the observed decline in chlorophyll due to a warming of ~1.1°C. These results highlight the need for an improved understanding of fine-scale physical variability in order to predict the response of marine ecosystems to projected climate changes.
Decade-long deep-ocean warming detected in the subtropical South Pacific.
Volkov, Denis L; Lee, Sang-Ki; Landerer, Felix W; Lumpkin, Rick
2017-01-28
The persistent energy imbalance at the top of the atmosphere, inferred from satellite measurements, indicates that the Earth's climate system continues to accumulate excess heat. As only sparse and irregular measurements of ocean heat below 2000 m depth exist, one of the most challenging questions in global climate change studies is whether the excess heat has already penetrated into the deep ocean. Here we perform a comprehensive analysis of satellite and in situ measurements to report that a significant deep-ocean warming occurred in the subtropical South Pacific Ocean over the past decade (2005-2014). The local accumulation of heat accounted for up to a quarter of the global ocean heat increase, with directly and indirectly inferred deep ocean (below 2000 m) contribution of 2.4 ± 1.4 and 6.1-10.1 ± 4.4%, respectively. We further demonstrate that this heat accumulation is consistent with a decade-long intensification of the subtropical convergence, possibly linked to the persistent La Niña-like state.
NASA Astrophysics Data System (ADS)
Seo, J.; Choi, W.; Youn, D.; Park, D. R.; Kim, J.
2013-12-01
The effects of the equatorial quasi-biennial oscillation (QBO) on the springtime rainfall variability in the western North Pacific (WNP) region are examined using the monthly data of GPCP precipitation, NOAA OLR, and ERA-interim reanalysis for the period of 1979-2011. The QBO phases during the spring are based on the Singapore zonal wind at 70 hPa and strong ENSO years are excluded from the analyses to investigate the sole influence of the QBO. The composite analyses of the precipitation, OLR, and related meteorological fields show that the WNP subtropical high (WNPSH) moves equatorward during the westerly QBO (WQBO) compared to the easterly QBO (EQBO) and the convergence region of moisture flux along the northwestern boundary of the WNPSH is displaced southward. In addition, the subtropical jet associated with the midlatitude frontal zone also shifts slightly southward during the WQBO compared to the EQBO. These QBO-related changes in large-scale meteorological fields induce the southward displacement of the midlatitude spring rainband extending from southeastern China to the east of the Japanese Islands and thus significant rainfall decrease in the Northeast Asia during the WQBO compared to the EQBO. The possible role of the QBO in modulating the WNPSH and subtropical jet is also discussed with regard to the strength of the Hadley circulation and the activity of subtropical planetary waves. The results of this study may improve the seasonal predictability of the spring rainfall in the Northeast Asia and the WNP region.
NASA Astrophysics Data System (ADS)
Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.
2014-06-01
Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26-50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan), but were significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.
Li, Dawen; Fang, Keyan; Li, Yingjun; Chen, Deliang; Liu, Xiaohong; Dong, Zhipeng; Zhou, Feifei; Guo, Guoyang; Shi, Feng; Xu, Chenxi; Li, Yanping
2017-01-01
Influence of long-term changes in climate and CO2 concentration on intrinsic water-use efficiency (iWUE), defined as the ratio between net photosynthesis (A) and leaf conductance (g), and tree growth remain not fully revealed in humid subtropical China, which is distinct from other arid subtropical areas with dense coverage of broadleaf forests. This study presented the first tree-ring stable carbon isotope (δ13C) and iWUE series of Pinus massoniana from 1865 to 2013 in Fujian province, humid subtropical China, and the first tree-ring width standard chronology during the period of 1836–2013 for the Niumulin Nature Reserve (NML). Tree-ring width growth was limited by precipitation in July-August (r = 0.40, p < 0.01). The tree-ring carbon isotope discrimination (Δ13C) was mainly controlled by the sunshine hours (r = -0.66, p < 0.001) and relative humidity (r = 0.58, p < 0.001) in September-October, a season with rapid latewood formation in this area. The iWUE increased by 42.6% and the atmospheric CO2 concentration (ca) explained 92.6% of the iWUE variance over the last 150 years. The steady increase in iWUE suggests an active response with a proportional increase in intercellular CO2 concentration (ci) in response to increase in ca. The contribution of iWUE to tree growth in the study region is not conspicuous, which points to influences of other factors such as climate. PMID:28182751
Physical supply of nitrogen to phytoplankton in the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Mahaffey, Claire; Williams, Richard G.; Wolff, George A.; Anderson, William T.
2004-03-01
Mechanisms supplying nitrogen (N) to phytoplankton, and thus constraining the levels of export production, over the oligotrophic subtropical Atlantic are assessed along a meridional transect. Stable nitrogen isotope signals reveal a localized region of N2 fixation over the northern subtropical gyre. Elsewhere, particulate organic nitrogen was isotopically enriched and there was no widespread evidence of a trophic bias. Thus phytoplankton are utilizing an enriched source of N along the transect through much of the oligotrophic Atlantic, which may reflect utilization of nitrate from the deep ocean or, possibly, a supply of dissolved organic nitrogen (DON) from a non-N2 fixing source. While there is a significant supply of DON over the subtropical gyres, reaching 0.15 mol Nm-2 yr-1, less than 10% of the DON is semilabile and thus only implies a relatively small contribution to the nitrogen supply required for export production. Over the central part of the subtropical gyres, the supply of N to phytoplankton is probably from nitrate in the underlying thermocline, possibly from convection and diapycnic transfer, or more likely, from finescale upwelling by mesoscale eddies and frontal circulations. The lateral supply of dissolved organic phosphorus (DOP) appears to be a factor of 2-3 times more important than the lateral supply of semilabile DON, and thus might play a role in contributing to the phosphorus (P) supply for phytoplankton. The lateral supply of DON and DOP might also be important in closing the N and P budgets over the North Atlantic.
Fang, Xiang-Min; Zhang, Xiu-Lan; Zong, Ying-Ying; Zhang, Yang; Wan, Song-Ze; Bu, Wen-Sheng
2017-01-01
Stand density regulation is an important measure of plantation forest management, and phosphorus (P) is often the limiting factor of tree productivity, especially in the subtropics and tropics. However, the stand density influence on ecosystem P cycling is unclear in Chinese fir (Cunninghamia lanceolata) plantations of subtropical China. We collected rhizosphere and bulk soils, leaves and twigs with different ages and roots with different orders to measure P and nitrogen (N) variables in Chinese fir plantations with low density (LDCF) and high density (HDCF) at Fujian and Hunan provinces of subtropical China. Rhizosphere soil labile P, slow P, occluded P and extractable P were higher in LDCF than HDCF at two sites. Meanwhile, P and N concentrations of 1-year-old leaves and twigs were higher in LDCF than HDCF and leaf N/P ratio generally increased with increasing leaf age at two sites. Rhizosphere vs. bulk soil labile P and occluded P were greater in LDCF than HDCF at Fujian. Nitrogen resorption efficiencies (NRE) of leaves and twigs were higher in LDCF than HDCF at Fujian, while their P resorption efficiencies (PRE) were not different between two densities at two sites. The average NRE of leaves (41.7%) and twigs (65.6%) were lower than the corresponding PRE (67.8% and 78.0%, respectively). Our results suggest that reducing stem density in Chinese fir plantations might be helpful to increase soil active P supplies and meet tree nutrient requirements. PMID:29073278
Intermediate water circulation in the North Pacific subarctic and northern subtropical regions
NASA Astrophysics Data System (ADS)
Ueno, Hiromichi; Yasuda, Ichiro
2003-11-01
The intermediate water circulation in the North Pacific subarctic and northern subtropical regions is investigated through inverse analysis, focusing on the volume and heat transports from the subtropical to the subarctic regions. The inverse method we adopted is a hybrid method of β-spiral and box inverse methods which permits diapycnal flux. The isopycnal velocities estimated through the inverse analysis are mostly consistent with the oxygen distribution and support the hypothesis that warm and saline intermediate water is transported from the transition domain east of Japan to the northern Gulf of Alaska. The northward volume transport across 46°N between 158°E and 130°W is estimated to be -0.2 to 5.3 Sv in the density range of 26.7-27.2σθ. The upward diapycnal transports in the open subarctic North Pacific (region N) across 26.7 and 27.2σθ isopycnal surfaces are estimated to be 0.2 to 1.5 Sv and -0.2 to 0.9 Sv, respectively. Part of the water transported upward across 26.7σθ might outcrop and be carried to the subtropical region by the southward Ekman drift. Through the examination of heat balance of the intermediate layer in the subarctic region, it is suggested quantitatively that the intermediate heat transport from the south plays an essential role in maintaining the heat of the mesothermal waters in the subarctic region.
Wangchuk, Phurpa; Yeshi, Karma; Jamphel, Kinga
2017-12-01
The Bhutanese Sowa Rigpa medicine (BSM) uses medicinal plants as the bulk ingredients. Our study was to botanically identify subtropical medicinal plants from the Lower Kheng region in Bhutan, transcribe ethnopharmacological uses, and highlight reported pharmacological activities of each plant. We freely listed the medicinal plants used in the BSM literature, current formulations, and the medicinal plants inventory documents. This was followed by a survey and the identification of medicinal plants in the Lower Kheng region. The botanical identification of each medicinal plant was confirmed using The Plant List , eFloras , and TROPICOS . Data mining for reported pharmacological activities was performed using Google Scholar, Scopus, PubMed, and SciFinder Scholar. We identified 61 subtropical plants as the medicinal plants used in BSM. Of these, 17 plants were cultivated as edible plant species, 30 species grow abundantly, 24 species grow in moderate numbers, and only seven species were scarce to find. All these species grow within the altitude range of 100-1800 m above sea level. A total of 19 species were trees, and 13 of them were shrubs. Seeds ranked first in the parts usage category. Goshing Gewog (Block) hosted maximum number of medicinal plants. About 52 species have been pharmacologically studied and only nine species remain unstudied. Lower Kheng region is rich in subtropical medicinal plants and 30 species present immediate economic potential that could benefit BSM, Lower Kheng communities and other Sowa Rigpa practicing organizations.
Bacterial diversity of Taxus rhizosphere: culture-independent and culture-dependent approaches.
Hao, Da Cheng; Ge, Guang Bo; Yang, Ling
2008-07-01
The regional variability of Taxus rhizosphere bacterial community composition and diversity was studied by comparative analysis of three large 16S rRNA gene clone libraries from the Taxus rhizosphere in different regions of China (subtropical and temperate regions). One hundred and forty-six clones were screened for three libraries. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the abundance of sequences affiliated with Gammaproteobacteria, Betaproteobacteria, and Actinobacteria was higher in the library from the T. xmedia rhizosphere of the temperate region compared with the subtropical Taxus mairei rhizosphere. On the other hand, Acidobacteria was more abundant in libraries from the subtropical Taxus mairei rhizosphere. Richness estimates and diversity indices of three libraries revealed major differences, indicating a higher richness in the Taxus rhizosphere bacterial communities of the subtropical region and considerable variability in the bacterial community composition within this region. By enrichment culture, a novel Actinobacteria strain DICP16 was isolated from the T. xmedia rhizosphere of the temperate region and was identified as Leifsonia shinshuensis sp. via 16S rRNA gene and gyrase B sequence analyses. DICP16 was able to remove the xylosyl group from 7-xylosyl-10-deacetylbaccatin III and 7-xylosyl-10-deacetylpaclitaxel, thereby making the xylosyltaxanes available as sources of 10-deacetylbaccatin III and the anticancer drug paclitaxel. Taken together, the present studies provide, for the first time, the knowledge of the biodiversity of microorganisms populating Taxus rhizospheres.
NASA Technical Reports Server (NTRS)
Hartley, Dana
1998-01-01
The main findings of this research project have been the following: (1) there is a significant feedback from the stratosphere on tropospheric dynamics, and (2) a detailed analysis of the interaction between tropical and polar wave breaking in controlling stratospheric mixing. Two papers are were written and are included. The first paper is titled, "A New Perspective on the Dynamical Link Between the Stratosphere and Troposphere." Atmospheric processes of tropospheric origin can perturb the stratosphere, but direct feedback in the opposite direction is usually assumed to be negligible, despite the troposphere's sensitivity to changes in the release of wave activity into the stratosphere. Here, however, we present evidence that such a feedback exists and can be significant. We find that if the wintertime Arctic polar stratospheric vortex is distorted, either by waves propagating upward from the troposphere or by eastward-travelling stratospheric waves, then there is a concomitant redistribution of stratospheric potential vorticity that induces perturbations in key meteorological fields in the upper troposphere. The feedback is large despite the much greater mass of the troposphere: it can account for up to half of the geopotential height anomaly at the tropopause. Although the relative strength of the feedback is partly due to a cancellation between contributions to these anomalies from lower altitudes, our results imply that stratospheric dynamics and its feedback on the troposphere are more significant for climate modelling and data assimilation than was previously assumed. The second article is titled "Diagnosing the Polar Excitation of Subtropical Waves in the Stratosphere". The poleward migration of planetary scale tongues of subtropical air has often been associated with intense polar vortex disturbances in the stratosphere. This question of vortex influence is reexamined from a potential vorticity (PV) perspective. Anomalous geopotential height and wind fields associated solely with vortex PV anomalies are derived and their impact on the stratospheric subtropical circulation is evaluated. Combined PV inversion and Contour Advection (CA) calculations indicate that transient large scale disturbances of the polar vortex do have a far reaching impact that extends beyond the midlatitude surf zone all the way to the subtropics. This vortex influence is clearly non-local so that even simple wave 2 distortions that leave the vortex well confined within the midlatitudes are observed to excite subtropical waves. Treating subtropical PV as active tracers also showed that upon entrainment, these large scale tongues of low PV air also influenced the dynamics of their own poleward migration.
NASA Astrophysics Data System (ADS)
Bradford-Grieve, Janet; Murdoch, Rob; James, Mark; Oliver, Megan; McLeod, Jeff
1998-10-01
The biomass, composition, and grazing rates of three size fractions of mesozooplankton (200-500, 500-1000, and some >1000 μm) were estimated in shelf waters and the water masses associated with Subtropical Convergence east of New Zealand, in the austral winter and spring of 1993, as part of a larger New Zealand study of ocean carbon flux that contributes to the Joint Global Ocean Flux Study (JGOFS). The total biomass was largest in spring in all water types. It was similar to the biomass measurements made previously in subantarctic and subtropical water masses in the Southwest Pacific and those from the North Atlantic, except for the spring biomass in subtropical water which was unusually large (86.5 and 101.3 mg m -3 dry weight). Biomass was concentrated in the upper 100 m, especially within the 0-25 or 25-50 m layers, both day and night. Night/day biomass ratios in the surface 100 m were often >2, and are presumed to be the result of sampling patchy populations as well as vertical migration. Biomass was greatest for the >1000 μm fraction of the mesozooplankton population, followed by the 500-1000, and 200-500 μm fractions, respectively. The unusually small fraction of biomass residing in the 200-500 μm fraction is assumed to be the result of predation by larger mesozooplankton. The mesozooplankton community had maximum gut fluorescence at night only at stations where chlorophyll a was >2 mg m -3 and at many of the stations gut fluorescence was persistently low. This was probably the result of the poor feeding environment, since a large proportion of the primary production resided in the <2 μm fraction. The total meaningestion of phytoplankton was calculated to be 1-40 mgC m -2 d -1, based mainly on ingestion by the 200-500 and 500-1000 μm fractions, which were dominated by herbivores or herbivores and omnivores. The heaviest grazing pressure was in subtropical and Subtropical Convergence waters, in spring. Total grazing represented <1-4% of daily total integrated primary production. Phytoplankton carbon ingested usually met only a small fraction of the basic metabolic requirements of the mesozooplankton. These data, and the fact that spring populations were apparently actively growing, since they contained a large proportion of developmental stages, imply that mesozooplankton diets were mainly microzooplankton.
Productivity of pure- and crossbred cattle in a subtropical environment
NASA Astrophysics Data System (ADS)
van Zyl, J. G. E.; Schoeman, S. J.; Coertze, R. J.; Groeneveld, H. T.
1991-06-01
The influence of different breeds of sire and dam types on cow productivity in an arid, subtropical environment was studied. Cows with calves sired by Simmentaler, Hereford and Bonsmara bulls were more ( P<0.05) productive than those with calves sired by Afrikaner bulls. Simmentaler sires were superior ( P<0.05) to Bonsmara sires. Crossbred cows of predominant (>50%) Bos taurus breeding were generally superior to crossbreds of predominant B. indicus breeding and purebreds. Crossbreeding systems to utilize breed effects to optimise cow productivity within environmental constraints are discussed.
NASA Astrophysics Data System (ADS)
Behling, H.
2013-05-01
Detailed palynological studies from different ecosystems in tropical and subtropical South America reflect interesting vegetation and climate dynamics, in particular during glacial and late glacial times. Records from ecosystems such as the Amazon rainforest, savanna, Caatinga, Atlantic rainforest, Araucaria forest and grasslands provide interesting insight of past climate variability. The influence of events such as Dansgaard-Oeschger, Heinnrich stadials, changes in the thermohaline circulation (THC) will be discussed. In particular the Younger Dryas (YD) period shows at different places distinct vegetational changes, revealing unexpected past climatic conditions.
NASA Astrophysics Data System (ADS)
Wang, Yongbo; Bekeschus, Benjamin; Handorf, Dörthe; Liu, Xingqi; Dallmeyer, Anne; Herzschuh, Ulrike
2017-08-01
The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with ;Xie-Beni; index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or even descending airflows in the adjacent subtropical regions, resulting in a precipitation deficit compared to the late Holocene. Our conceptual model therefore integrates regionally contrasting moisture changes into the Global Monsoon hypothesis.
NASA Astrophysics Data System (ADS)
McDonald, N.; Barnes, R.; Nelson, N. B.
2016-02-01
The optically active or chromophoric fraction of dissolved organic matter (CDOM) is a topic of much interest to researchers due to its role in many biogeochemical processes in the global oceans. As CDOM effectively regulates the underwater light field, its influences on photosynthesis and primary productivity are significant. Despite recognition of its importance in biogeochemical cycles in natural waters, its chemical composition remains nebulous, due to photochemical processes, as well as spatial and temporal variations in composition. Understanding of CDOM composition and links to ocean processes is especially complex in pelagic, oligotrophic waters such as the North Atlantic Subtropical Gyre. In this region, minimum CDOM concentrations have been observed and it is decoupled from both dissolved organic carbon (DOC) and from net primary production (NPP). As CDOM absorbance has been shown to influence estimates of NPP from remote sensing models in the subtropical gyres, and as it has the potential to serve as an invaluable tracer of ocean DOM cycling, a better understanding of links between the optical properties of CDOM and biogeochemical processes in the subtropical gyres is crucial. In this study, monthly depth profiles of CDOM absorbance (between 1m and 3000m) were measured for a period of five years at the Bermuda Atlantic Timeseries Site (BATS) in the North Atlantic Subtropical Gyre to investigate seasonal variations and periodicity in CDOM optical properties. From this data, the spectral slope ratio (Sr) was calculated according to Helms et. al, 2008. Sr can be a useful tool in eliciting information about molecular weight, diagenetic state and microbial processes affecting CDOM composition, especially when coupled with other diagnostic parameters. In this study multivariate analysis techniques were utilized to examine links between Sr and ancillary parameters including apparent oxygen utilization (AOU) and excess nitrogen (DINxs) both of which can be a useful indicator of specific biogeochemical processes in the ocean. Results showed distinct seasonality in CDOM optical properties in conjunction with biological parameters and provide preliminary evidence that CDOM could be used as a proxy for organic carbon removal through the microbial loop.
Purahong, Witoon; Pietsch, Katherina A; Lentendu, Guillaume; Schöps, Ricardo; Bruelheide, Helge; Wirth, Christian; Buscot, François; Wubet, Tesfaye
2017-01-01
The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics ( Schima superba and Pinus massoniana ) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima . The two deadwood species differed significantly in WIF OTU richness ( Pinus > Schima ) and community composition ( P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the pattern of WIF OTU richness and community composition are controlled by multiple interacting biotic and abiotic factors. Overall, our study provides an in-depth picture of the deadwood mycobiome in this subtropical forest. Furthermore, by comparing our results to results from temperate and boreal forests we contribute to a better understanding of patterns of WIF communities across different biomes and geographic locations.
Antecedent Synoptic Environments Conducive to North American Polar/Subtropical Jet Superpositions
NASA Astrophysics Data System (ADS)
Winters, A. C.; Keyser, D.; Bosart, L. F.
2017-12-01
The atmosphere often exhibits a three-step pole-to-equator tropopause structure, with each break in the tropopause associated with a jet stream. The polar jet stream (PJ) typically resides in the break between the polar and subtropical tropopause and is positioned atop the strongly baroclinic, tropospheric-deep polar front around 50°N. The subtropical jet stream (STJ) resides in the break between the subtropical and the tropical tropopause and is situated on the poleward edge of the Hadley cell around 30°N. On occasion, the latitudinal separation between the PJ and the STJ can vanish, resulting in a vertical jet superposition. Prior case study work indicates that jet superpositions are often attended by a vigorous transverse vertical circulation that can directly impact the production of extreme weather over North America. Furthermore, this work suggests that there is considerable variability among antecedent environments conducive to the production of jet superpositions. These considerations motivate a comprehensive study to examine the synoptic-dynamic mechanisms that operate within the double-jet environment to produce North American jet superpositions. This study focuses on the identification of North American jet superposition events in the CFSR dataset during November-March 1979-2010. Superposition events will be classified into three characteristic types: "Polar Dominant" events will consist of events during which only the PJ is characterized by a substantial excursion from its climatological latitude band; "Subtropical Dominant" events will consist of events during which only the STJ is characterized by a substantial excursion from its climatological latitude band; and "Hybrid" events will consist of those events characterized by an excursion of both the PJ and STJ from their climatological latitude bands. Following their classification, frequency distributions of jet superpositions will be constructed to highlight the geographical locations most often associated with jet superpositions for each event type. PV inversion and composite analysis will also be performed on each event type in an effort to illustrate the antecedent environments and the dominant synoptic-dynamic mechanisms that favor the production of North American jet superpositions for each event type.
Purahong, Witoon; Pietsch, Katherina A.; Lentendu, Guillaume; Schöps, Ricardo; Bruelheide, Helge; Wirth, Christian; Buscot, François; Wubet, Tesfaye
2017-01-01
The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics (Schima superba and Pinus massoniana) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima. The two deadwood species differed significantly in WIF OTU richness (Pinus > Schima) and community composition (P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the pattern of WIF OTU richness and community composition are controlled by multiple interacting biotic and abiotic factors. Overall, our study provides an in-depth picture of the deadwood mycobiome in this subtropical forest. Furthermore, by comparing our results to results from temperate and boreal forests we contribute to a better understanding of patterns of WIF communities across different biomes and geographic locations. PMID:28469600
NASA Astrophysics Data System (ADS)
Matthias, Vivien; Ern, Manfred
2018-04-01
The midwinter 2015/2016 was characterized by an unusually strong polar night jet (PNJ) and extraordinarily large stationary planetary wave (SPW) amplitudes in the subtropical mesosphere. The aim of this study is, therefore, to find the origin of these mesospheric SPWs in the midwinter 2015/2016 study period. The study duration is split into two periods: the first period runs from late December 2015 until early January 2016 (Period I), and the second period from early January until mid-January 2016 (Period II). While the SPW 1 dominates in the subtropical mesosphere in Period I, it is the SPW 2 that dominates in Period II. There are three possibilities explaining how SPWs can occur in the mesosphere: (1) they propagate upward from the stratosphere, (2) they are generated in situ by longitudinally variable gravity wave (GW) drag, or (3) they are generated in situ by barotropic and/or baroclinic instabilities. Using global satellite observations from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) the origin of the mesospheric SPWs is investigated for both time periods. We find that due to the strong PNJ the SPWs were not able to propagate upward into the mesosphere northward of 50° N but were deflected upward and equatorward into the subtropical mesosphere. We show that the SPWs observed in the subtropical mesosphere are the same SPWs as in the mid-latitudinal stratosphere. Simultaneously, we find evidence that the mesospheric SPWs in polar latitudes were generated in situ by longitudinally variable GW drag and that there is a mixture of in situ generation by longitudinally variable GW drag and by instabilities at mid-latitudes. Our results, based on observations, show that the abovementioned three mechanisms can act at the same time which confirms earlier model studies. Additionally, the possible contribution from, or impact of, unusually strong SPWs in the subtropical mesosphere to the disruption of the quasi-biennial oscillation (QBO) in the same winter is discussed.
NASA Astrophysics Data System (ADS)
Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun
2017-07-01
Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest ecosystem might be aggravated by the enhanced N availability, potentially resulting in an adverse effect on the development of natural subtropical forest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilbourne, K H; Quinn, T M; Guilderson, T P
Water that forms the Florida Current, and eventually the Gulf Stream, coalesces in the Caribbean from both subtropical and equatorial sources. The equatorial sources are made up of, in part, South Atlantic water moving northward and compensating for southward flow at depth related to meridional overturning circulation. Subtropical surface water contains relatively high amounts of radiocarbon ({sup 14}C), whereas equatorial waters are influenced by the upwelling of low {sup 14}C water and have relatively low concentrations of {sup 14}C. We use a 250-year record of {Delta}{sup 14}C in a coral from southwestern Puerto Rico along with previously published coral {Delta}{supmore » 14}C records as tracers of subtropical and equatorial water mixing in the northern Caribbean. Data generated in this study and from other studies indicate that the influence of either of the two water masses can change considerably on interannual to interdecadal time scales. Variability due to ocean dynamics in this region is large relative to variability caused by atmospheric {sup 14}C changes, thus masking the Suess effect at this site. A mixing model produced using coral {Delta}{sup 14}C illustrates the time varying proportion of equatorial versus subtropical waters in the northern Caribbean between 1963 and 1983. The results of the model are consistent with linkages between multidecadal thermal variability in the North Atlantic and meridional overturning circulation. Ekman transport changes related to tradewind variability are proposed as a possible mechanism to explain the observed switches between relatively low and relatively high {Delta}{sup 14}C values in the coral radiocarbon records.« less
NASA Astrophysics Data System (ADS)
Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.
2014-10-01
Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.
Variability in the Composition of Floating Microplastics by Region and in Time
NASA Astrophysics Data System (ADS)
Donohue, J. L.; Pavlekovsky, K.; Collins, T.; Andrady, A. L.; Proskurowski, G. K.; Lavender Law, K. L.
2016-02-01
Floating microplastics have been documented in all the subtropical oceans and in many regional seas, yet their origin and weathering history are largely unknown. To identify potential indicators of sources of microplastic debris and changes in input over time, we analyzed nearly 3,000 plastic particles collected using a surface-towing plankton net between 1991 and 2014, collected in the North Pacific subtropical gyre, in the Mediterranean Sea, and across the western North Atlantic basin including the subtropical gyre and coastal locations near urban areas. For each particle we analyzed particle form, size (longest dimension and 2-D surface area), mass, color characteristics and polymer type. We hypothesize that regional differences in average or median particle mass and size are a relative indicator of age (time of exposure), where accumulation zones that retain particles for long periods of time have statistically smaller fragments compared to regions closer to presumed sources. Differences in particle form (i.e., fragment, pellet, foam, line/fiber, film) might also reflect proximity to sources as well as form-dependent removal mechanisms such as density increase and sinking (Ryan 2015). Finally, changes in particle composition over time in subtropical gyre reservoirs could provide clues about changes in input as well as mechanisms and time scale of removal. Understanding the inputs, reservoirs, and sinks of open ocean microplastics is a necessary first step to evaluating their risks and impacts to marine life. Ryan, P., 2015. Does size and buoyancy affect the long-distance transport of floating debris? Environ. Res. Lett. 10 084019.
Liu, Nan; Wu, Shuhua; Guo, Qinfeng; Wang, Jiaxin; Cao, Ce; Wang, Jun
2018-05-12
Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (A max ), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased A max , PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, S. K.; Thompson, A. M.; Witte, J. C.; Balashov, N. V.; Kollonige, D. E.
2012-12-01
The more than 5000 sets of ozone and P-T-U profiles provided for the tropics and subtropics by the Southern Hemisphere Additional Ozonesondes (SHADOZ) since 1998 have provided a wealth of insights into convective and mixing processes, especially in the upper troposphere through lower stratosphere. The observations have been used in evaluations of satellite ozone and chemical-transport and climate-chemistry models. Recently, we analyzed a climatology of ozone profiles based on the 2005-2009 SHADOZ data when 4 new stations joined the network (15 stations total), giving latitudinal coverage from 25S to 21N. We answer the following questions: How do ozone distributions at two new subtropical stations, Hanoi and Hilo in the northern hemisphere, compare to those at the southern subtropical stations, Irene and La Réunion? Are there better-defined regional classifications of tropospheric and tropopause transition layer (TTL) SHADOZ ozone profiles in the tropics, defined as within + 18 degrees latitude, than the Atlantic-Pacific differentiation identified in published studies with 1998-2004 SHADOZ data? Three distinct regions of the tropics are identified based on the criteria: ozone structure in the TTL; convective influence inferred from laminar identification (LID) of ozone and potential temperature; degree of pollution in the free troposphere (FT). These are: (1) western Pacific/eastern Indian Ocean; (2) equatorial Americas (San Cristóbal, Alajuela, Paramaribo); (3) Atlantic Ocean and Africa. In addition, we have re-examined potential trends in FT and TTL ozone at several SHADOZ stations for which data extend back to the early 1990s.
Martinez, Eloy; Hendricks, Eric; Menze, Michael A; Torres, Joseph J
2016-01-01
Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial energy transduction in liver mitochondria from the striped mojarra (Eugerres plumieri), the whitemouth croaker (Micropogonias furnieri) and the palometa (Trachinotus goodei), to those of the subtropical pinfish (Lagodon rhomboides) and the blue runner (Caranx crysos). Mitochondrial function was assayed at temperatures ranging from 10 to 40°C and results obtained for both tropical and subtropical species showed a reduction in the energy transduction efficiency of the oxidative phosphorylation (OXPHOS) system in most species studied at temperatures below whole-organism critical temperature thresholds. Our results show a loss of coupling between O2 consumption and ATP production before the onset of the critical thermal maxima, indicating that elevated temperature may severely impact the yield of ATP production per carbon unit oxidized. As warming trends are projected for tropical regions, increasing water temperatures in tropical estuaries and coral reefs could impact long-term growth and reproductive performance in tropical organisms, which are already close to their upper thermal limit. Copyright © 2015 Elsevier Inc. All rights reserved.
A new look for the Southern Hemisphere jet stream
NASA Astrophysics Data System (ADS)
Gallego, David; Ribera, Pedro; Garcia-Herrera, Ricardo; Hernandez, Emiliano; Gimeno, Luis
2005-05-01
A new jet stream description, defined as the geostrophic streamline of maximum average velocity is proposed. An objective algorithm for detecting and tracking the jet has been developed, tested and applied to the NCEP/NCAR 200-hPa geopotential height in the Southern Hemisphere for the period 1958 2002. The results show the variability of the double character of the Southern Hemisphere jet, with a marked seasonality. During the warm season, a single jet can be found around 40°S, while autumn and winter are characterized by a clear double jet structure, with a strong and dominant subtropical jet located around 30°S and a polar front jet, progressively displaced toward southern latitudes and reaching 60°S by the end of the cold season. In general, a trend toward slower subtropical jets and stronger polar front jets has been detected during the study period. The Southern Annular Mode appears as a main modulator of the latitude and strength of the polar front jet, influencing to a minor extent its subtropical counterpart. The ENSO cycle strongly modifies the latitude and specially the strength of the subtropical jet, affecting its preferred wavenumber as well. Nevertheless, the effect of this oscillation seems fairly restricted in the Pacific, thus limiting the ability of this jet to drive the El Niño teleconnections along the Southern Hemisphere. The consistency of the results, when compared with previous jet climatologies, suggests that the new approach is a reliable jet-tracking method, thus providing a new tool to analyze climatic variability at hemispheric scales.
Parrish, Judith T.; Peterson, F.
1988-01-01
Wind directions for Middle Pennsylvanian through Jurassic time are predicted from global circulation models for the western United States. These predictions are compared with paleowind directions interpreted from eolian sandstones of Middle Pennsylvanian through Jurassic age. Predicted regional wind directions correspond with at least three-quarters of the paleowind data from the sandstones; the rest of the data may indicate problems with correlation, local effects of paleogeography on winds, and lack of resolution of the circulation models. The data and predictions suggest the following paleoclimatic developments through the time interval studied: predominance of winter subtropical high-pressure circulation in the Late Pennsylvanian; predominance of summer subtropical high-pressure circulation in the Permian; predominance of summer monsoonal circulation in the Triassic and earliest Jurassic; and, during the remainder of the Jurassic, influence of both summer subtropical and summer monsoonal circulation, with the boundary between the two systems over the western United States. This sequence of climatic changes is largely owing to paleogeographic changes, which influenced the buildup and breakdown of the monsoonal circulation, and possibly owing partly to a decrease in the global temperature gradient, which might have lessened the influence of the subtropical high-pressure circulation. The atypical humidity of Triassic time probably resulted from the monsoonal circulation created by the geography of Pangaea. This circulation is predicted to have been at a maximum in the Triassic and was likely to have been powerful enough to draw moisture along the equator from the ocean to the west. ?? 1988.
Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data
NASA Astrophysics Data System (ADS)
Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui
2016-07-01
The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.
A teleconnection between subtropical convection and higher latitude wave activity in the Atlantic
NASA Astrophysics Data System (ADS)
Cruz, Antonio DeJesus
Rossby waves are waves in potential vorticity that propagate along the extratropical tropopause and can be impacted by the advection of low-PV air originating from the subtropics. In this study, the subtropical precipitation influence on the extratropical Rossby wave activity during the Atlantic winter season is investigated for a ten year period. Using both TRMM and TIGGE 12-Hr forecasted precipitation data, heavy precipitation events were identified near the footprints regions of warm conveyor belts in the northern Atlantic, specifically in the Gulf of Mexico and Bermuda region. The extratropical Rossby waves were then analyzed using PV on a 320K surface. By use of wavelet transforms, the amplitude of the Rossby waves were analyzed as a function of wavelength and longitude. The interaction between a single heavy precipitation event and the extratropical Rossby waves was examined for the days preceding and the week following the event. A climatological analysis of heavy precipitation events was conducted on the winter seasons from 2006 - 2015. Case study and climatological analysis identified the following: A ridge in the Northern Atlantic undergoes amplification downstream of the heavy precipitation event in the days following the event. A southerly flow, likely associated with a warm conveyor belt, connects the region of the heavy precipitation event and the extratropical tropopause. The interaction was most prominent during the late winter season and during the heaviest of precipitation events. The teleconnection identified in this study highlights a mechanism by which cloud-scale subtropical precipitation is connected to synoptic scale extratropical dynamics in the Atlantic.
NASA Astrophysics Data System (ADS)
Carlo Espinoza, Jhan; Marengo, José Antonio; Ronchail, Josyane; Molina Carpio, Jorge; Noriega Flores, Luís; Loup Guyot, Jean
2014-12-01
Unprecedented wet conditions are reported in the 2014 summer (December-March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m3 s-1) at Porto Velho and 380% (25 000 m3 s-1) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western Amazon, and this became exceptionally intense during summer of 2014.
Gupta, B B; Mahanta, A
1997-03-01
Effects of norepinephrine (NE), epinephrine (EP), corticosterone and cortisol were studied both in vivo and in vitro on the rate of oxygen consumption of tissues (liver, skeletal muscle and kidney) of sub-tropical Indian frogs Rana limnocharis (a hibernating species) and Rana cyanophlyctis (a non-hibernating species) exposed to natural climatic conditions during winter and summer/rainy seasons. Further, the effects of NE and EP were also studied in vitro in the presence of specific beta- and alpha-adrenergic antagonists (propranolol and prazosin). NE, EP and corticosterone, when administered in vivo or in vitro, significantly stimulated the respiratory rate of the tissues of both the species irrespective of the seasons/temperature. Results suggest that NE, EP and corticosterone are directly involved in regulation of the energy metabolism of both hibernating and non-hibernating species of sub-tropical frogs. The calorigenic action of NE and EP seems to be mediated by both beta- and alpha-adrenergic receptors. However, the temporal involvement of beta- and alpha-adrenergic receptors seems to be tissue-dependent.
Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China
NASA Astrophysics Data System (ADS)
Ding, Feng; Li, Chun
2017-07-01
Using observed daily precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis data, what induced winter large spatial persistent heavy rainfall (PHR) events in south China was examined, based on composite analyses of 30 large spatial PHR events during 1951-2015. The results showed that wave trains within North Africa-Asia (NAA) westerly jet existed in upper troposphere during these PHR processes. The wave trains shared the characteristic of a Rossby wave. The Rossby wave originated from northwest Europe, entered into the NAA jet through strong cold air advection to form convergence over the Mediterranean, and then propagated eastward along subtropical NAA jet. The Rossby wave propagated toward Southeast Asia and caused strong divergence in the upper troposphere. The strong divergence in the upper troposphere induced vertical convection and favored large spatial PHR events in south China. In addition, the enhanced India-Burma trough and subtropical high in the northwestern Pacific supplied enough water vapor transportation. This mechanism would be useful to the medium-range forecast of such winter rainfall processes over south China.
Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre.
Dodge, Kara L; Galuardi, Benjamin; Lutcavage, Molly E
2015-04-07
Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Coates-Marnane, J; Olley, J; Burton, J; Grinham, A
2016-11-01
Drought-breaking floods pose a risk to coastal water quality as sediments, nutrients, and pollutants stored within catchments during periods of low flow are mobilized and delivered to coastal waters within a short period of time. Here we use subtidal surface sediment surveys and sediment cores to explore the effects of the 2011 Brisbane River flood on trace metals zinc (Zn), lead (Pb), copper (Cu), nickel (Ni), chromium (Cr), manganese (Mn), and phosphorus (P) deposition in Moreton Bay, a shallow subtropical bay in eastern Australia. Concentrations of Zn, Cu, and Pb in sediments in central Moreton Bay derived from the 2011 flood were the highest yet observed in the Bay. We suggest flushing of metal rich sediments which had accumulated on the Brisbane River floodplain and in its estuary during the preceding 10 to 40years of low flows to be the primary source of this increase. This highlights the importance of intermittent high magnitude floods in tidally influenced rivers in controlling metal transport to coastal waters in subtropical regions. Copyright © 2016. Published by Elsevier B.V.
Potential role of resurfacing Subtropical Underwater in ENSO evolution
NASA Astrophysics Data System (ADS)
Qu, T.; Chi, J.
2017-12-01
Results from a model of the Estimating the Circulation and Climate of the Ocean (ECCO) have shown that the resurfacing of high salinity Subtropical Underwater contributes to the sea surface salinity variability in the equatorial Pacific. On interannual time scale, this contribution can account for as much as 25% of the surface freshwater flux anomalies and is believed to play a role in ENSO evolution. Having these results in mind, this study investigates the surface salinity budget and its primary controls in the equatorial Pacific using ECCO output for the period 1993-2016. Particular attention is paid to 2014/2015 and 2015/2016. Preliminary analyses of the model results suggest that enhanced subsurface processes and in particular enhanced entrainment of Subtropical Underwater are primarily responsible for the positive sea surface salinity anomalies in the central equatorial Pacific during 2014/2015, which represents an opposite phase of El Niño. These subsurface processes weakened during 2015/2016, diretly contributing to the development of the 2015/2016 El Niño. The mechanisms controlling these subsurface processes are discussed.
More Intense Mega Heat Waves in the Warmer World
NASA Astrophysics Data System (ADS)
Choi, G.; Robinson, D. A.
2017-12-01
In this study, changes in the occurrences of heat waves on the globe since the mid- 20th century and the synoptic characteristics of mega heat waves at regional scales in the warmer climate are examined. The NCEP-NCAR reanalysis surface data show that there have been no obvious linear changes in the heat wave frequencies at the continental scales since the mid-20th century, but amplified interdecadal variations led to unprecedented intense heat waves in the recent decades at the regional scales. Such mega heat waves have been more frequently observed in the poleward subtropical climate belts as well as in the interior region of continents. According to the analyses of upper tropospheric data, the occurrences of more intense mega heat waves since the late 20th century may be associated with the expansion of subtropical high pressures. These results suggest that populous cities near the subtropical climate zones should provide proactive mega heat wave warning systems for residents due to their vulnerability to the sudden attack of human lives harvest by mega heat waves in the warmer 21st century.
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Pratt, L. J.; Lozier, M.
2011-12-01
Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.
Furtado, Ricardo; Menezes, Dilia; Santos, Carolina Jardim; Catry, Paulo
2016-11-15
Marine plastic pollution is rapidly growing and is a source of major concern. Seabirds often ingest plastic debris and are increasingly used as biological monitors of plastic pollution. However, virtually no studies have assessed plastics in seabirds in the deep subtropical North Atlantic. We investigated whether remains of white-faced storm-petrels (WFSP) present in gull pellets could be used for biomonitoring. We analysed 263 pellets and 79.0% of these contained plastic debris originating in the digestive tract of WFSP. Pellets with no bird prey did not contain plastics. Most debris were fragments (83.6%) with fewer plastic pellets (8.2%). Light-coloured plastics predominated (71.0%) and the most frequent polymer was HDPE (73.0%). Stable isotopes in toe-nails of WFSP containing many versus no plastics did not differ, indicating no individual specialisation leading to differential plastic ingestion. We suggest WFSP in pellets are highly suitable to monitor the little known pelagic subtropical Northeast Atlantic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India
2011-01-01
Background The northern part of India harbours a great diversity of medicinal plants due to its distinct geography and ecological marginal conditions. The traditional medical systems of northern India are part of a time tested culture and honored still by people today. These traditional systems have been curing complex disease for more than 3,000 years. With rapidly growing demand for these medicinal plants, most of the plant populations have been depleted, indicating a lack of ecological knowledge among communities using the plants. Thus, an attempt was made in this study to focus on the ecological status of ethnomedicinal plants, to determine their availability in the growing sites, and to inform the communities about the sustainable exploitation of medicinal plants in the wild. Methods The ecological information regarding ethnomedicinal plants was collected in three different climatic regions (tropical, sub-tropical and temperate) for species composition in different forest layers. The ecological information was assessed using the quadrate sampling method. A total of 25 quadrats, 10 × 10 m were laid out at random in order to sample trees and shrubs, and 40 quadrats of 1 × 1 m for herbaceous plants. In each climatic region, three vegetation sites were selected for ecological information; the mean values of density, basal cover, and the importance value index from all sites of each region were used to interpret the final data. Ethnomedicinal uses were collected from informants of adjacent villages. About 10% of inhabitants (older, experienced men and women) were interviewed about their use of medicinal plants. A consensus analysis of medicinal plant use between the different populations was conducted. Results Across the different climatic regions a total of 57 species of plants were reported: 14 tree species, 10 shrub species, and 33 herb species. In the tropical and sub-tropical regions, Acacia catechu was the dominant tree while Ougeinia oojeinensis in the tropical region and Terminalia belerica in the sub-tropical region were least dominant reported. In the temperate region, Quercus leucotrichophora was the dominant tree and Pyrus pashia the least dominant tree. A total of 10 shrubs were recorded in all three regions: Adhatoda vasica was common species in the tropical and sub-tropical regions however, Rhus parviflora was common species in the sub-tropical and temperate regions. Among the 33 herbs, Sida cordifolia was dominant in the tropical and sub-tropical regions, while Barleria prionitis the least dominant in tropical and Phyllanthus amarus in the sub-tropical region. In temperate region, Vernonia anthelmintica was dominant and Imperata cylindrica least dominant. The consensus survey indicated that the inhabitants have a high level of agreement regarding the usages of single plant. The index value was high (1.0) for warts, vomiting, carminative, pain, boils and antiseptic uses, and lowest index value (0.33) was found for bronchitis. Conclusion The medicinal plants treated various ailments. These included diarrhea, dysentery, bronchitis, menstrual disorders, gonorrhea, pulmonary affections, migraines, leprosy. The ecological studies showed that the tree density and total basal cover increased from the tropical region to sub-tropical and temperate regions. The species composition changed with climatic conditions. Among the localities used for data collection in each climatic region, many had very poor vegetation cover. The herbaceous layer decreased with increasing altitude, which might be an indication that communities at higher elevations were harvesting more herbaceous medicinal plants, due to the lack of basic health care facilities. Therefore, special attention needs to be given to the conservation of medicinal plants in order to ensure their long-term availability to the local inhabitants. Data on the use of individual species of medicinal plants is needed to provide an in-depth assessment of the plants availability in order to design conservation strategies to protect individual species. PMID:22011477
The Study of Biogenetic Organic Compound Emissions and Ozone in a Subtropical Bamboo Forest
NASA Astrophysics Data System (ADS)
Bai, Jianhui; Guenther, Alex; Turnipseed, Andrew; Duhl, Tiffany; Duhl, Nanhao; van der A, Ronald; Yu, Shuquan; Wang, Bin
2016-08-01
Emissions of Biogenic Volatile Organic compounds (BVOCs), Photosynthetically Active Radiation (PAR), and meteorological parameters were measured in some ecosystems in China. A Relaxed Eddy Accumulation system and an enclosure technique were used to measure BVOC emissions. Obvious diurnal and seasonal variations of BVOC emissions were found. Empirical models of BVOC emissions were developed, the estimated BVOC emissions were in agreement with observations. BVOC emissions in growing seasons in the Inner Mongolia grassland, Chnagbai Mountain temperate forest, LinAn subtropical bamboo forest were estimated. The emission factors of these ecosystems were calculated.
Multi-scale forcing and the formation of subtropical desert and monsoon
NASA Astrophysics Data System (ADS)
Wu, G. X.; Liu, Y.; Zhu, X.; Li, W.; Ren, R.; Duan, A.; Liang, X.
2009-09-01
This study investigates three types of atmospheric forcing across the summertime subtropics that are shown to contribute in various ways to the occurrence of dry and wet climates in the subtropics. To explain the formation of desert over the western parts of continents and monsoon over the eastern parts, we propose a new mechanism of positive feedback between diabatic heating and vorticity generation that occurs via meridional advection of planetary vorticity and temperature. Monsoon and desert are demonstrated to coexist as twin features of multi-scale forcing, as follows. First, continent-scale heating over land and cooling over ocean induce the ascent of air over the eastern parts of continents and western parts of oceans, and descent over eastern parts of oceans and western parts of continents. Second, local-scale sea-breeze forcing along coastal regions enhances air descent over eastern parts of oceans and ascent over eastern parts of continents. This leads to the formation of the well-defined summertime subtropical LOSECOD quadruplet-heating pattern across each continent and adjacent oceans, with long-wave radiative cooling (LO) over eastern parts of oceans, sensible heating (SE) over western parts of continents, condensation heating (CO) over eastern parts of continents, and double dominant heating (D: LO+CO) over western parts of oceans. Such a quadruplet heating pattern corresponds to a dry climate over the western parts of continents and a wet climate over eastern parts. Third, regional-scale orographic-uplift-heating generates poleward ascending flow to the east of orography and equatorward descending flow to the west. The Tibetan Plateau (TP) is located over the eastern Eurasian continent. The TP-forced circulation pattern is in phase with that produced by continental-scale forcing, and the strongest monsoon and largest deserts are formed over the Afro-Eurasian Continent. In contrast, the Rockies and the Andes are located over the western parts of their respective continents, and orography-induced ascent is separated from ascent due to continental-scale forcing. Accordingly, the deserts and monsoon climate over these continents are not as strongly developed as those over the Eurasian Continent. A new mechanism of positive feedback between diabatic heating and vorticity generation, which occurs via meridional transfer of heat and planetary vorticity, is proposed as a means of explaining the formation of subtropical desert and monsoon. Strong low-level longwave radiative cooling over eastern parts of oceans and strong surface sensible heating on western parts of continents generate negative vorticity that is balanced by positive planetary vorticity advection from high latitudes. The equatorward flow generated over eastern parts of oceans produces cold sea-surface temperature and stable stratification, leading in turn to the formation of low stratus clouds and the maintenance of strong in situ longwave radiative cooling. The equatorward flow over western parts of continents carries cold, dry air, thereby enhancing local sensible heating as well as moisture release from the underlying soil. These factors result in a dry desert climate. Over the eastern parts of continents, condensation heating generates positive vorticity in the lower troposphere, which is balanced by negative planetary vorticity advection of the meridional flow from low latitudes. The flow brings warm and moist air, thereby enhancing local convective instability and condensation heating associated with rainfall. These factors produce a wet monsoonal climate. Overall, our results demonstrate that subtropical desert and monsoon coexist as a consequence of multi-scale forcing along the subtropics.
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.
Rasmussen, Kristen L.; Zuluaga, Manuel D.; Brodzik, Stella R.
2015-01-01
Abstract For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three‐dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi‐uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation. PMID:27668295
Ming, Angang; Jia, Hongyan; Zhao, Jinlong; Tao, Yi; Li, Yuanfa
2014-01-01
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.
Variation in maternal effects and embryonic development rates among passerine species
Martin, T.E.; Schwabl, H.
2008-01-01
Embryonic development rates are reflected by the length of incubation period in birds, and these vary substantially among species within and among geographical regions. The incubation periods are consistently shorter in North America (Arizona study site) than in tropical (Venezuela) and subtropical (Argentina) South America based on the study of 83 passerine species in 17 clades. Parents, mothers in particular, may influence incubation periods and resulting offspring quality through proximate pathways, while variation in maternal strategies among species can result from selection by adult and offspring mortality. Parents of long-lived species, as is common in the tropics and subtropics, may be under selection to minimize costs to themselves during incubation. Indeed, time spent incubating is often lower in the tropical and subtropical species than the related north temperate species, causing cooler average egg temperatures in the southern regions. Decreased egg temperatures result in longer incubation periods and reflect a cost imposed on offspring by parents because energy cost to the embryo and risk of offspring predation are both increased. Mothers may adjust egg size and constituents as a means to partially offset such costs. For example, reduced androgen concentrations in egg yolks may slow development rates, but may enhance offspring quality through physiological trade-offs that may be particularly beneficial in longer-lived species, as in the tropics and subtropics. We provide initial data to show that yolks of tropical birds contain substantially lower concentrations of growth-promoting androgens than north temperate relatives. Thus, maternal (and parental) effects on embryonic development rates may include contrasting and complementary proximate influences on offspring quality and deserve further field study among species. ?? 2007 The Royal Society.
Anthropogenic impacts on carbon uptake variability in the subtropical North Atlantic: 1992-2010
NASA Astrophysics Data System (ADS)
Tudino, Tobia; Messias, Marie-Jose; Mills, Benjamin J. W.; Watson, Andrew J.; Halloran, Paul R.; Bernardello, Raffaele; Torres-Valdés, Sinhue; Schuster, Ute; Williams, Richard G.; Wanninkhof, Rik
2017-04-01
Since 1860, anthropogenic emissions have increased atmospheric CO2 by more than 120ppm. The global ocean has lessened the accompanying climate impacts, taking up 33% of the emitted CO2, with the highest storage per unit area occurring in the North Atlantic. To investigate carbon uptake and storage in the subtropical North Atlantic, we compare three estimates of anthropogenic CO2 (Cant) with dissolved inorganic carbon (DIC) observations. We use data from a repeat (1992-2010) subtropical transect, where we find an average DIC increase of 1.06 μmol/(kg yr). We separate the observed DIC into five components: preindustrial, dissolved hard-tissue, regenerated soft-tissue, Cant, and surface air-sea disequilibrium. Among them, Cant increases approximately linearly over time (0.39-0.62 μmol/(kg yr), depending on the method adopted), contributing to the total DIC rise. Simultaneously, we observe a biologically driven increase (0.38 μmol/(kg yr)) in carbon from regenerated soft-tissue. We link this variation to the possible ongoing Atlantic meridional overturning circulation slow-down (2009-2010) and the associated strengthening of the biological pump. We expand our analysis by assessing outputs from an Earth system model between 1860 and 2100. In the preindustrial control (i.e. with no influence of anthropogenic CO2), we found a predominance of the biological pump in overall carbon uptake, while the industrial simulation leads to a comparable influence of the biological and physical pumps. We conclude that anthropogenic perturbation of the natural long-term variability in oceanic ventilation could affect the remineralized pool of carbon in the subtropical North Atlantic, potentially making it a higher sink for carbon than previously thought.
Microgeographic factors and patterns of aeroallergen sensitisation.
Kam, Andrew W; Tong, Winnie Wy; Christensen, Jenna M; Katelaris, Constance H; Rimmer, Janet; Harvey, Richard J
2016-10-03
To examine patterns of airborne allergen (aeroallergen) sensitisation in the Greater Sydney area (Sydney), and their relationships with climate, coastal proximity and environment (urban v regional). Retrospective cross-sectional study of patients who underwent aeroallergen skin prick testing at three Sydney allergy clinics, January 2001 - October 2014. Proportions of patients sensitised to specific aeroallergen types; relationships between sensitisation patterns and climate and geography. Of 1421 patients who met the selection criteria (mean age, 28.3 years [SD, 21.3]; 53.3% were female), 1092 (76.8%) were sensitised to at least one aeroallergen. Those living less than 15 km from the coast were less commonly sensitised to cockroach (< 15 km, 15.1%; 15-30 km, 40.0%; > 30 km, 39.7%; P < 0.001) and grass aeroallergens (< 15 km, 36.5%; 15-30 km, 52.2%; > 30 km, 58.1%; P < 0.001) than patients further inland; the same applied to mould, weed and tree aeroallergens. Subtropical grass sensitisation was more common in temperate/warm summer climates (about 50%) than in temperate/hot summer (27.1%) or subtropical climates (15%) (P < 0.001), and less common in urban (36.7%) than in regional areas (54%; P = 0.014). 72.4% of grass-sensitised patients were co-sensitised to both temperate and subtropical grasses. A selected ten-aeroallergen skin prick test panel identified 98.5% of atopic patients in this Sydney sample. Environmental and geographic factors are associated with different patterns of allergic sensitisation in Sydney. Extensive co-sensitisation to subtropical and temperate grasses has implications for immunotherapy in Australia, where most currently available therapies are based on formulations directed at temperate grasses only.
Understanding Rossby wave trains forced by the Indian Ocean Dipole
NASA Astrophysics Data System (ADS)
McIntosh, Peter C.; Hendon, Harry H.
2018-04-01
Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.
Tian, Shuang; Kou, Yixuan; Zhang, Zhirong; Yuan, Lin; Li, Derong; López-Pujol, Jordi; Fan, Dengmei; Zhang, Zhiyong
2018-02-09
Mountains have not only provided refuge for species, but also offered dispersal corridors during the Neogene and Quaternary global climate changes. Compared with a plethora of studies on the refuge role of China's mountain ranges, their dispersal corridor role has received little attention in plant phylogeographic studies. Using phylogeographic data of Eomecon chionantha Hance (Papaveraceae), this study explicitly tested whether the Nanling Mountains, which spans from west to east for more than 1000 km in subtropical China, could have functioned as a dispersal corridor during the late Quaternary in addition to a glacial refugium. Our analyses revealed a range-wide lack of phylogeographic structure in E. chionantha across three kinds of molecular markers [two chloroplast intergenic spacers, nuclear ribosomal internal transcribed spacer (nrITS), and six nuclear microsatellite loci]. Demographic inferences based on chloroplast and nrITS sequences indicated that E. chionantha could have experienced a strong postglacial range expansion between 6000 and 1000 years ago. Species distribution modelling showed that the Nanling Mountains and the eastern Yungui Plateau were the glacial refugia of E. chionantha. Reconstruction of dispersal corridors indicated that the Nanling Mountains also have acted as a corridor of population connectivity for E. chionantha during the late Quaternary. Our results suggest that the Nanling Mountains may acted dual roles as a dispersal corridor in east-west direction and as a glacial refugium in subtropical China during the late Quaternary. The population connectivity mediated by the mountain range and a strong postglacial range expansion are the most likely reasons for the lack of phylogeographic structure in E. chionantha. The hypothesis of dual roles of the mountain range presented here sheds new insights into the phylogeographic patterns of organisms in subtropical China.
NASA Astrophysics Data System (ADS)
Heo, J.
2015-12-01
This study investigates an interconnected system of climate change - land cover - water resources for a watershed in humid subtropical climate from 1970 to 2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed in our study area where temperature had no obvious increase trend and precipitation showed definite increasing trend compared to previous studies. The main trend of land-cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Precipitation contribution to the other hydrologic parameters for a humid subtropical basin is estimated to be 51.9% of evapotranspiration, 16.3% of surface runoff, 0.9% of groundwater discharge, 19.3% of soil water content, and 11.6% of water storage. It shows little higher evapotranspiration and considerably lower surface runoff compare to other humid climate area due to vegetation dominance of land cover. Hydrologic responses to climate and land cover changes are increases of surface runoff, soil water content, evapotranspiration by 15.0%, 2.7%, and 20.1%, respectively, and decrease of groundwater discharge decreased by 9.2%. Surface runoff is relatively stable with precipitation while groundwater discharge and soil water content are sensitive to land cover changes especially human intervention. If temperature is relatively stable, it is considered to be land cover plays important role in evapotranspiration. Citation: Heo, J., J. Yu, J. R. Giardino, and H. Cho (2015), Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: a case study from East Texas, USA, Water Environ. J., 29, doi:10.1111/wej.12096
The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events
NASA Astrophysics Data System (ADS)
Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.
2018-02-01
The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.
The role of tropical cyclones in precipitation over the tropical and subtropical North America
NASA Astrophysics Data System (ADS)
Dominguez, Christian; Magaña, Victor
2018-03-01
Tropical cyclones (TCs) are essential elements of the hydrological cycle in tropical and subtropical regions. In the present study, the contribution of TCs to seasonal precipitation around the tropical and subtropical North America is examined. When TC activity over the tropical eastern Pacific (TEP) or the Intra Americas Seas (IAS) is below (above-normal), regional precipitation may be below (above-normal). However, it is not only the number of TCs what may change seasonal precipitation, but the trajectory of the systems. TCs induce intense precipitation over continental regions if they are close enough to shorelines, for instance, if the TC center is located, on average, less than 500 km-distant from the coast. However, if TCs are more remote than this threshold distance, the chances of rain over continental regions decrease, particularly in arid and semi-arid regions. In addition, a distant TC may induce subsidence or produce moisture divergence that inhibits, at least for a few days, convective activity farther away than the threshold distance. An analysis of interannual variability in the TCs that produce precipitation over the tropical and subtropical North America shows that some regions in northern Mexico, which mostly depend on this effect to undergo wet years, may experience seasonal negative anomalies in precipitation if TCs trajectories are remote. Therefore, TCs (activity and trajectories) are important modulators of climate variability on various time scales, either by producing intense rainfall or by inhibiting convection at distant regions from their trajectory. The impact of such variations on water availability in northern Mexico may be relevant, since water availability in dams recovers under the effects of TC rainfall. Seasonal precipitation forecasts or climate change scenarios for these regions should take into account the effect of TCs, if regional adaptation strategies are implemented.
Downscaling Alkaline Phosphatase Activity in a Subtropical Reservoir
NASA Astrophysics Data System (ADS)
Tseng, Y.
2011-12-01
This research was conducted by downscaling study to understand phosphorus (P)-deficient status of different plankton and the role of alkaline phosphatase activity (APA) in subtropical Feitsui Reservoir. Results from field survey showed that bulk APA (1.6~95.2 nM h-1) was widely observed in the epilimnion (0~20 m) with an apparent seasonal variations, suggesting that plankton in the system were subjected to P-deficient seasonally. Mixed layer depth (an index of phosphate availability) is the major factor influencing the variation of bulk APA and specific APA (124~1,253 nmol mg C-1 h-1), based on multiple linear regression analysis. Size-fractionated APA assays showed that picoplankton (size 0.2~3 um) contributed most of the bulk APA in the system. In addition, single-cell APA detected by enzyme-labeled fluorescence (ELF) assay indicated that heterotrophic bacteria are the major contributors of APA. Thus, we can infer that bacteria play an important role in accelerating P-cycle within P-deficient systems. Light/nutrient manipulation bioassays showed that bacterial growth was directly controlled by phosphate, while picocyanobacterial growth is controlled by light and can out-compete bacteria under P-limited condition with the aid of light. Further analysis revealed that the strength of summer typhoon is a factor responsible for the inter-annual variability of bulk and specific APA. APA study demonstrated the episodic events (e.g. strong typhoon and extreme precipitation) had significant influence on APA variability in sub-tropical to tropical aquatic ecosystems. Hence, the results herein will allow future studies on monitoring typhoon disturbance (intensity and frequency) as well as the APA of plankton during summer-to-autumn in subtropical systems.
NASA Astrophysics Data System (ADS)
Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui
2016-07-01
Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.
Vesco, Umberto; Knap, Nataša; Labruna, Marcelo B; Avšič-Županc, Tatjana; Estrada-Peña, Agustín; Guglielmone, Alberto A; Bechara, Gervasio H; Gueye, Arona; Lakos, Andras; Grindatto, Anna; Conte, Valeria; De Meneghi, Daniele
2011-05-01
Tick-borne zoonoses (TBZ) are emerging diseases worldwide. A large amount of information (e.g. case reports, results of epidemiological surveillance, etc.) is dispersed through various reference sources (ISI and non-ISI journals, conference proceedings, technical reports, etc.). An integrated database-derived from the ICTTD-3 project ( http://www.icttd.nl )-was developed in order to gather TBZ records in the (sub-)tropics, collected both by the authors and collaborators worldwide. A dedicated website ( http://www.tickbornezoonoses.org ) was created to promote collaboration and circulate information. Data collected are made freely available to researchers for analysis by spatial methods, integrating mapped ecological factors for predicting TBZ risk. The authors present the assembly process of the TBZ database: the compilation of an updated list of TBZ relevant for (sub-)tropics, the database design and its structure, the method of bibliographic search, the assessment of spatial precision of geo-referenced records. At the time of writing, 725 records extracted from 337 publications related to 59 countries in the (sub-)tropics, have been entered in the database. TBZ distribution maps were also produced. Imported cases have been also accounted for. The most important datasets with geo-referenced records were those on Spotted Fever Group rickettsiosis in Latin-America and Crimean-Congo Haemorrhagic Fever in Africa. The authors stress the need for international collaboration in data collection to update and improve the database. Supervision of data entered remains always necessary. Means to foster collaboration are discussed. The paper is also intended to describe the challenges encountered to assemble spatial data from various sources and to help develop similar data collections.
Bacterioplankton carbon cycling along the Subtropical Frontal Zone off New Zealand
NASA Astrophysics Data System (ADS)
Baltar, Federico; Stuck, Esther; Morales, Sergio; Currie, Kim
2015-06-01
Marine heterotrophic bacterioplankton (Bacteria and Archaea) play a central role in ocean carbon cycling. As such, identifying the factors controlling these microbial populations is crucial to fully understanding carbon fluxes. We studied bacterioplankton activities along a transect crossing three water masses (i.e., Subtropical waters [STW], Sub-Antarctic waters [SAW] and neritic waters [NW]) with contrasting nutrient regimes across the Subtropical Frontal Zone. In contrast to bacterioplankton production and community respiration, bacterioplankton respiration increased in the offshore SAW, causing a seaward increase in the contribution of bacteria to community respiration (from 7% to 100%). Cell-specific bacterioplankton respiration also increased in SAW, but cell-specific production did not, suggesting that prokaryotic cells in SAW were investing more energy towards respiration than growth. This was reflected in a 5-fold decline in bacterioplankton growth efficiency (BGE) towards SAW. One way to explain this decrease in BGE could be due to the observed reduction in phytoplankton biomass (and presumably organic matter concentration) towards SAW. However, this would not explain why bacterioplankton respiration was highest in SAW, where phytoplankton biomass was lowest. Another factor affecting BGE could be the iron limitation characteristic of high-nutrient low-chlorophyll (HNLC) regions like SAW. Our field-study based evidences would agree with previous laboratory experiments in which iron stress provoked a decrease in BGE of marine bacterial isolates. Our results suggest that there is a strong gradient in bacterioplankton carbon cycling rates along the Subtropical Frontal Zone, mainly due to the HNLC conditions of SAW. We suggest that Fe-induced reduction of BGE in HNLC regions like SAW could be relevant in marine carbon cycling, inducing bacterioplankton to act as a link or a sink of organic carbon by impacting on the quantity of organic carbon they incorporate into biomass or respire as CO2.
Yu, Hao; Chen, Zhan; Shang, He; Cao, Jixin
2017-07-01
Considerable researches have documented the negative effects of ozone on woody species in North America and Europe; however, little is known about how woody tree species respond to elevated O 3 in subtropical China, and most of the previous studies were conducted using pot experiment. In the present study, Machilus ichangensis Rehd. et Wils (M. ichangensis) and Taxus chinensis (Pilger) Rehd. (T. chinensis), evergreen tree species in subtropical China, were exposed to non-filtered air (NF), 100 nmol mol -1 O 3 (E1) and 150 nmol mol -1 O 3 (E2), in open-top chambers under field conditions from 21st March to 2nd November 2015. In this study, O 3 fumigation significantly reduced net photosynthesis rate (Pn) in M. ichangensis in the three measurements and in T. chinensis in the last measurement. Also, non-stomatal factors should be primarily responsible for the decreased Pn. O 3 fumigation-induced increase in malondialdehyde, superoxide dismutase, and reduced ascorbic acid levels indicated that antioxidant defense mechanism had been stimulated to prevent O 3 stress and repair the oxidative damage. Yet, the increase of antioxidant ability was not enough to counteract the harm of O 3 fumigation. Because of the decrease in CO 2 assimilation, the growth of the two tree species was restrained ultimately. The sensitivity of the two tree species to O 3 can be determined: M. ichangensis > T. chinensis. It suggests a close link between the rising O 3 concentrations and the health risk of some tree species in subtropics in the near future.
Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana
2016-01-01
Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects’ value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs. PMID:27706182
Jin, Yi; Qian, Hong; Yu, Mingjian
2015-01-01
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate. PMID:26098916
2014-01-01
Background Many studies have investigated heat wave related mortality, but less attention has been given to the health effects of cold spells in the context of global warming. The 2008 cold spell in China provided a unique opportunity to estimate the effects of the 2008 cold spell on mortality in subtropical regions, spatial heterogeneity of the effects, stratification effect and added effects caused by sustained cold days. Methods Thirty-six study communities were selected from 15 provinces in subtropical China. Daily mortality and meteorological data were collected for each community from 2006 to 2010. A distributed lag linear non-linear model (DLNM) with a lag structure of up to 27 days was used to analyze the association between the 2008 cold spell and mortality. Multivariate meta-analyses were used to combine the cold effects across each community. Results The 2008 cold spell increased mortality by 43.8% (95% CI: 34.8% ~ 53.4%) compared to non-cold spell days with the highest effects in southern and central China. The effects were more pronounced for respiratory mortality (RESP) than for cardiovascular (CVD) or cerebrovascular mortality (CBD), for females more than for males, and for the elderly aged ≥75 years old more than for younger people. Overall, 148,279 excess deaths were attributable to the 2008 cold spell. The cold effect was mainly from extreme low temperatures rather than sustained cold days during this 2008 cold spell. Conclusions The 2008 cold spell increased mortality in subtropical China, which was mainly attributable to the low temperature rather than the sustained duration of the cold spell. The cold effects were spatially heterogeneous and modified by individual-specific characteristics such as gender and age. PMID:25060645
Roelfsema, Chris; Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana
2016-01-01
Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.
Tracer transport in the tropical lower stratosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trepte, C.R.
1993-12-31
Distributions of aerosol extinction ratio ({beta}{sub r}) and ozone, derived from the Stratospheric Aerosol and Gas Experiment (SAGE I/II) satellite experiments (1979-1981 and 1984-1992), are used in conjunction with conventional meteorological analyses to deduce patterns of stratospheric tracer transport. Following volcanic eruptions at low latitudes, the aerosol observations suggest that two transport regimes exist in the tropical lower stratosphere. Aerosols disperse rapidly poleward and downward within a layer several kilometers above the tropopause. More pronounced transport is biased toward the winter hemisphere. At higher altitudes, however, volcanic aerosols tend to remain over the equator in a reservoir bounded by strongmore » meridional gradients near 20{degrees}N and S. Over the equator, enhanced lofting of aerosols occurs during QBO easterly shear, while subsidence relative to the mean meridional flow takes place during QBO westerly shear. While particle growth and evaporation effects are important, many interesting features of the aerosol distribution can only be explained by air motions. It is also shown that QBO induced ozone anomalies over the equator are also consistent with QBO aerosol variations. In the upper transport regime, the subtropical gradients of {beta}{sub r} coincide with the location of a meridional gradient in potential vorticity. Since isentropic transport is inhibited across potential vorticity gradients, the tropics are temporarily isolated from eddy mixing taking place in the winter extratropics. Zonal mean distributions of ozone; however, do not have similar meridional gradients in the subtropics. Detrainment of aerosol from the equatorial reservoir depends upon the phase of the QBO and the strength of winter eddy disturbances in the subtropics. Anticyclonic circulation systems form occasionally in the subtropics and can shear-off enhanced {beta}{sub r} air from the periphery of the aerosol reservoir.« less
Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years.
Jo, Kyoung-nam; Woo, Kyung Sik; Yi, Sangheon; Yang, Dong Yoon; Lim, Hyoun Soo; Wang, Yongjin; Cheng, Hai; Edwards, R Lawrence
2014-04-17
An interhemispheric hydrologic seesaw--in which latitudinal migrations of the Intertropical Convergence Zone (ITCZ) produce simultaneous wetting (increased precipitation) in one hemisphere and drying in the other--has been discovered in some tropical and subtropical regions. For instance, Chinese and Brazilian subtropical speleothem (cave formations such as stalactites and stalagmites) records show opposite trends in time series of oxygen isotopes (a proxy for precipitation variability) at millennial to orbital timescales, suggesting that hydrologic cycles were antiphased in the northerly versus southerly subtropics. This tropical to subtropical hydrologic phenomenon is likely to be an initial and important climatic response to orbital forcing. The impacts of such an interhemispheric hydrologic seesaw on higher-latitude regions and the global climate system, however, are unknown. Here we show that the antiphasing seen in the tropical records is also present in both hemispheres of the mid-latitude western Pacific Ocean. Our results are based on a new 550,000-year record of the growth frequency of speleothems from the Korean peninsula, which we compare to Southern Hemisphere equivalents. The Korean data are discontinuous and derived from 24 separate speleothems, but still allow the identification of periods of peak speleothem growth and, thus, precipitation. The clear hemispheric antiphasing indicates that the sphere of influence of the interhemispheric hydrologic seesaw over the past 550,000 years extended at least to the mid-latitudes, such as northeast Asia, and that orbital-timescale ITCZ shifts can have serious effects on temperate climate systems. Furthermore, our result implies that insolation-driven ITCZ dynamics may provoke water vapour and vegetation feedbacks in northern mid-latitude regions and could have regulated global climate conditions throughout the late Quaternary ice age cycles.
Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years
NASA Astrophysics Data System (ADS)
Jo, Kyoung-Nam; Woo, Kyung Sik; Yi, Sangheon; Yang, Dong Yoon; Lim, Hyoun Soo; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence
2014-04-01
An interhemispheric hydrologic seesaw--in which latitudinal migrations of the Intertropical Convergence Zone (ITCZ) produce simultaneous wetting (increased precipitation) in one hemisphere and drying in the other--has been discovered in some tropical and subtropical regions. For instance, Chinese and Brazilian subtropical speleothem (cave formations such as stalactites and stalagmites) records show opposite trends in time series of oxygen isotopes (a proxy for precipitation variability) at millennial to orbital timescales, suggesting that hydrologic cycles were antiphased in the northerly versus southerly subtropics. This tropical to subtropical hydrologic phenomenon is likely to be an initial and important climatic response to orbital forcing. The impacts of such an interhemispheric hydrologic seesaw on higher-latitude regions and the global climate system, however, are unknown. Here we show that the antiphasing seen in the tropical records is also present in both hemispheres of the mid-latitude western Pacific Ocean. Our results are based on a new 550,000-year record of the growth frequency of speleothems from the Korean peninsula, which we compare to Southern Hemisphere equivalents. The Korean data are discontinuous and derived from 24 separate speleothems, but still allow the identification of periods of peak speleothem growth and, thus, precipitation. The clear hemispheric antiphasing indicates that the sphere of influence of the interhemispheric hydrologic seesaw over the past 550,000 years extended at least to the mid-latitudes, such as northeast Asia, and that orbital-timescale ITCZ shifts can have serious effects on temperate climate systems. Furthermore, our result implies that insolation-driven ITCZ dynamics may provoke water vapour and vegetation feedbacks in northern mid-latitude regions and could have regulated global climate conditions throughout the late Quaternary ice age cycles.
Farfan, Ivan D. Barrero; De La Fuente, Gerald N.; Murray, Seth C.; Isakeit, Thomas; Huang, Pei-Cheng; Warburton, Marilyn; Williams, Paul; Windham, Gary L.; Kolomiets, Mike
2015-01-01
The primary maize (Zea mays L.) production areas are in temperate regions throughout the world and this is where most maize breeding is focused. Important but lower yielding maize growing regions such as the sub-tropics experience unique challenges, the greatest of which are drought stress and aflatoxin contamination. Here we used a diversity panel consisting of 346 maize inbred lines originating in temperate, sub-tropical and tropical areas testcrossed to stiff-stalk line Tx714 to investigate these traits. Testcross hybrids were evaluated under irrigated and non-irrigated trials for yield, plant height, ear height, days to anthesis, days to silking and other agronomic traits. Irrigated trials were also inoculated with Aspergillus flavus and evaluated for aflatoxin content. Diverse maize testcrosses out-yielded commercial checks in most trials, which indicated the potential for genetic diversity to improve sub-tropical breeding programs. To identify genomic regions associated with yield, aflatoxin resistance and other important agronomic traits, a genome wide association analysis was performed. Using 60,000 SNPs, this study found 10 quantitative trait variants for grain yield, plant and ear height, and flowering time after stringent multiple test corrections, and after fitting different models. Three of these variants explained 5–10% of the variation in grain yield under both water conditions. Multiple identified SNPs co-localized with previously reported QTL, which narrows the possible location of causal polymorphisms. Novel significant SNPs were also identified. This study demonstrated the potential to use genome wide association studies to identify major variants of quantitative and complex traits such as yield under drought that are still segregating between elite inbred lines. PMID:25714370
Variation in maternal effects and embryonic development rates among passerine species.
Martin, Thomas E; Schwabl, Hubert
2008-05-12
Embryonic development rates are reflected by the length of incubation period in birds, and these vary substantially among species within and among geographical regions. The incubation periods are consistently shorter in North America (Arizona study site) than in tropical (Venezuela) and subtropical (Argentina) South America based on the study of 83 passerine species in 17 clades. Parents, mothers in particular, may influence incubation periods and resulting offspring quality through proximate pathways, while variation in maternal strategies among species can result from selection by adult and offspring mortality. Parents of long-lived species, as is common in the tropics and subtropics, may be under selection to minimize costs to themselves during incubation. Indeed, time spent incubating is often lower in the tropical and subtropical species than the related north temperate species, causing cooler average egg temperatures in the southern regions. Decreased egg temperatures result in longer incubation periods and reflect a cost imposed on offspring by parents because energy cost to the embryo and risk of offspring predation are both increased. Mothers may adjust egg size and constituents as a means to partially offset such costs. For example, reduced androgen concentrations in egg yolks may slow development rates, but may enhance offspring quality through physiological trade-offs that may be particularly beneficial in longer-lived species, as in the tropics and subtropics. We provide initial data to show that yolks of tropical birds contain substantially lower concentrations of growth-promoting androgens than north temperate relatives. Thus, maternal (and parental) effects on embryonic development rates may include contrasting and complementary proximate influences on offspring quality and deserve further field study among species.
Zhao, Jinlong; Tao, Yi
2014-01-01
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account. PMID:25343446
Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Wen, Xuefa; Yu, Guirui
2017-07-01
Atmospheric phosphorus (P) deposition is not only an important external macronutrient source for aquatic ecosystems but also a major cause of high export coefficient (EC) values. However, there are limited numbers of studies in the literature that focus on estimating the deposition flux of reactive P (P r ). The aim of this study is to estimate the P r deposition on the Xiangxi River watershed, and therefore, provide a comprehensive understanding about the P r deposition on subtropical watersheds in China. Results have shown that maximal P r deposition fluxes reached 12 kg km -2 in our selected subtropical watershed. Furthermore, we found out the particulate phosphorus (PP) were dominating the total P r deposition in the Xiangxi River watershed. According to our experiments, certain forms of P r deposition were associated with high correlation coefficients with respect to the variation of rainfall intensity. Results also demonstrated that the dissolved organic phosphorus (DOP) and soluble reactive phosphorus (SRP) via wet deposition had large influences on the DOP and SRP concentrations in runoff, while the PO 4 -P and PP via wet deposition only affected PO 4 -P and PP loads through runoff discharge. Our experiments also shown that most parts of the P r in runoff water was derived from rainfall and its magnitudes varied with land types. Results suggested that during the dry season, the P r wet deposition not only was an important source for the P r transport driven by runoff, but also was one of the most important influencing factors that dominated the P r transport in subtropical watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental drivers of mesozooplankton biomass variability in the North Pacific Subtropical Gyre
NASA Astrophysics Data System (ADS)
Valencia, Bellineth; Landry, Michael R.; Décima, Moira; Hannides, Cecelia C. S.
2016-12-01
The environmental drivers of zooplankton variability are poorly explored for the central subtropical Pacific, where a direct bottom-up food-web connection is suggested by increasing trends in primary production and mesozooplankton biomass at station ALOHA (A Long-term Oligotrophic Habitat Assessment) over the past 20 years (1994-2013). Here we use generalized additive models (GAMs) to investigate how these trends relate to the major modes of North Pacific climate variability. A GAM based on monthly mean data explains 43% of the temporal variability in mesozooplankton biomass with significant influences from primary productivity (PP), sea surface temperature (SST), North Pacific Gyre Oscillation (NPGO), and El Niño. This result mainly reflects the seasonal plankton cycle at station ALOHA, in which increasing light and SST lead to enhanced nitrogen fixation, productivity, and zooplankton biomass during summertime. Based on annual mean data, GAMs for two variables suggest that PP and 3-4 year lagged NPGO individually account for 40% of zooplankton variability. The full annual mean GAM explains 70% of variability of zooplankton biomass with significant influences from PP, 4 year lagged NPGO, and 4 year lagged Pacific Decadal Oscillation (PDO). The NPGO affects wind stress, sea surface height, and subtropical gyre circulation and has been linked to mideuphotic zone anomalies in salinity and PP at station ALOHA. Our study broadens the known impact of this climate mode on plankton dynamics in the North Pacific. While lagged transport effects are also evident for subtropical waters, our study highlights a strong coupling between zooplankton fluctuations and PP, which differs from the transport-dominated climate influences that have been found for North Pacific boundary currents.
Gan, Xian-Hua; Zhang, Fang-Qiu; Gu, Ji-Dong; Guo, Yue-Dong; Li, Zhao-Qing; Zhang, Wei-Qiang; Xu, Xiu-Yu; Zhou, Yi; Wen, Xiao-Ying; Xie, Guo-Guang; Wang, Yong-Feng
2016-02-01
In addition to ammonia-oxidizing bacteria (AOB) the more recently discovered ammonia-oxidizing archaea (AOA) can also oxidize ammonia, but little is known about AOA community structure and abundance in subtropical forest soils. In this study, both AOA and AOB were investigated with molecular techniques in eight types of forests at surface soils (0-2 cm) and deep layers (18-20 cm) in Nanling National Nature Reserve in subtropical China. The results showed that the forest soils, all acidic (pH 4.24-5.10), harbored a wide range of AOA phylotypes, including the genera Nitrosotalea, Nitrososphaera, and another 6 clusters, one of which was reported for the first time. For AOB, only members of Nitrosospira were retrieved. Moreover, the abundance of the ammonia monooxygenase gene (amoA) from AOA dominated over AOB in most soil samples (13/16). Soil depth, rather than forest type, was an important factor shaping the community structure of AOA and AOB. The distribution patterns of AOA and AOB in soil layers were reversed: AOA diversity and abundances in the deep layers were higher than those in the surface layers; on the contrary, AOB diversity and abundances in the deep layers were lower than those in the surface layers. Interestingly, the diversity of AOA was positively correlated with pH, but negatively correlated with organic carbon, total nitrogen and total phosphorus, and the abundance of AOA was negatively correlated with available phosphorus. Our results demonstrated that AOA and AOB were differentially distributed in acidic soils in subtropical forests and affected differently by soil characteristics.
NASA Astrophysics Data System (ADS)
Ojo, J. S.; Owolawi, P. A.
2018-01-01
In this paper, the dynamics of the structure of the rain profile as related to the zero-degree isotherm height and the implications for attenuation prediction along the Earth-space propagation links at locations in Nigeria, a tropical region, and South Africa, a subtropical region, are presented. Five-year (January 2010-December 2014) precipitation data on board the Tropical Rainfall Measuring Mission (TRMM) satellite have been analyzed over some selected locations in the two regions. The influences of the zero-degree isotherm height on some observed weather parameters are also discussed. The result on the influence of air temperature on rain height h r shows a significant increase in the tropical environment as compared with those in the subtropics. However, when h r results are compared with those obtained using rain height as recommended by the International Telecommunication Union (ITU), there is a significant difference at the 0.01% unavailability of the signal in a year particularly at higher frequencies. Further comparison with the slant path attenuation at 0.01% unavailability of the signal in a year shows a slight deviation (between 1.04 and 2.13 dB) in rain height than those acquired using the measured rain height in the tropical locations. Nevertheless, the result is slightly less than those obtained using the measured rain height in the subtropical locations with the differences in dB between - 0.49 and - 1.18. The overall results will be useful for estimating the link budgeting for digital radio satellite broadcasting. It will also be applicable for radar propagation systems at higher-frequency bands in Nigeria and South Africa.
Foieri, Alvaro; Lenicov, Ana M Marino De Remes; Virla, Eduardo G
2016-04-11
Notozulia entreriana (Berg) (Hemiptera: Cercopidae) is one of the most common spittlebugs inhabiting the subtropical region of the America, inflicting important economic damage to grass crops. The immature stages are described and illustrated; the main characteristics that distinguish instars are the body size, color, number of flagellomeres, and number of tibial and metatarsomere spines. A key for identification of nymphs is provided as a tool to develop field studies. Nine host plants, all belonging to Poaceae, are recorded as breeding and feeding host plants from different localities in northern Argentina.
Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander
2018-04-20
Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.
Bajpai, Vikas; Pandey, Renu; Negi, Mahendra Pal Singh; Bindu, K Hima; Kumar, Nikhil; Kumar, Brijesh
2012-12-01
Piper betle is a dioecious pan-Asiatic plant having cultural and medicinal uses. It belongs to the family Piperaceae and is a native of the tropics although it is also cultivated in subtropical areas. Flowering in P. betle occurs only in tropical regions. Due to lack of inductive floral cycles the plant remains in its vegetative state in the subtropics. Therefore, due to lack of flowering, gender distinction cannot be made the in the subtropics. Gender distinction in P. betle in vegetative state can be made using Direct Analysis in Real Time Mass Spectroscopy (DARTMS), a robust highthroughput method. DARTMS analysis of leaf samples of two male and six female plants showed characteristic differences in the spectra between male and female plants. Semi-quantitative differences in some of the identified peaks in male and female landraces showed gender-based differences in metabolites. Cluster analysis using the peaks at m/z 151, 193, 235 and 252 showed two distinct clusters of male and female landraces. It appears that male and female plants besides having flowers of different sexes also have characteristic differences in the metabolites representing two metabolic types.
Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V
2011-11-01
The smallest phototrophic protists (<3 μm) are important primary producers in oligotrophic subtropical gyres - the Earth's largest ecosystems. In order to elucidate how these protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (<2 and 2-3 μm). Both groups of plastidic protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (P<0.001) higher than those of bacterioplankton, the biomass-specific phosphate uptake rates of protists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Is the Oceanography of the New Zealand Subantarctic Region Responding to the Tropics?
NASA Astrophysics Data System (ADS)
Forcen-Vazquez, A. N.
2016-02-01
The Campbell Plateau, south of New Zealand plays an important role in New Zealand's regional climate and its oceanography may have a significant impact on fluctuations in fish stocks and marine mammal populations. It is located between the Subtropical and Subantarctic Fronts and exhibits marked variability over long time scales. It has been previously assumed, because of its location, that the Campbell Plateau oceanography is driven by Subantarctic and polar processes. Recent analysis, presented here, suggests this in not the case, and instead forcing comes from the tropics and subtropics. This is supported by positive correlations of Sea Level Anomalies (SLA) and Sea Surface Temperature (SST) with the Southern Oscillation Index (SOI) with SOI leading changes on the Campbell Plateau by two months for SLA and seven months for SST. Here we will present evidence of the similarity between the Campbell Plateau and the Tasman Sea SLA trends which suggests a closer relationship with the subtropical region. Satellite collected SLA data and SST from the last two decades are investigated to understand trends and long-term variability over the Campbell Plateau and its relationship with the surrounding open ocean, and other potential remote drivers of variability.
Shift in tuna catches due to ocean warming.
Monllor-Hurtado, Alberto; Pennino, Maria Grazia; Sanchez-Lizaso, José Luis
2017-01-01
Ocean warming is already affecting global fisheries with an increasing dominance of catches of warmer water species at higher latitudes and lower catches of tropical and subtropical species in the tropics. Tuna distributions are highly conditioned by sea temperature, for this reason and their worldwide distribution, their populations may be a good indicator of the effect of climate change on global fisheries. This study shows the shift of tuna catches in subtropical latitudes on a global scale. From 1965 to 2011, the percentage of tropical tuna in longliner catches exhibited a significantly increasing trend in a study area that included subtropical regions of the Atlantic and western Pacific Oceans and partially the Indian Ocean. This may indicate a movement of tropical tuna populations toward the poles in response to ocean warming. Such an increase in the proportion of tropical tuna in the catches does not seem to be due to a shift of the target species, since the trends in Atlantic and Indian Oceans of tropical tuna catches are decreasing. Our results indicate that as populations shift towards higher latitudes the catches of these tropical species did not increase. Thus, at least in the Atlantic and Indian Oceans, tropical tuna catches have reduced in tropical areas.
Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer
2018-05-01
The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.
Structural diagnostics of the tropopause inversion layer and its evolution
NASA Astrophysics Data System (ADS)
Gettelman, A.; Wang, T.
2015-01-01
The Tropopause Inversion Layer (TIL) is marked by a peak in static stability directly above the tropopause. The TIL is quantitatively defined with new diagnostics using Global Positioning System Radio Occultation temperature soundings and reanalysis data. A climatology of the TIL is developed from reanalysis data (1980-2011) using diagnostics for the position, depth, and strength of the TIL based on the TIL peak in static stability. TIL diagnostics have defined relationships to the synoptic situation in the Upper Troposphere and Lower Stratosphere. The TIL is present nearly all the time. The TIL becomes hard to define in the subtropics where tropical air overlies midlatitude air, in a region of complex static stability profiles. The mean position of the subtropical TIL gradient is sharp and is co-located with the subtropical tropopause break. Over the period 1980-2011 the TIL depth below the tropopause has decreased by 5% per decade and increased above the tropical tropopause by a similar percentage. Furthermore, the latitude of the abrupt change in the TIL from tropical to extratropical in the lower stratosphere appears to have shifted poleward in each hemisphere by ˜1° latitude per decade, depending on the diagnostic examined. Reanalysis trends should be treated with caution.
Sago-Type Palms Were an Important Plant Food Prior to Rice in Southern Subtropical China
Yang, Xiaoyan; Barton, Huw J.; Wan, Zhiwei; Li, Quan; Ma, Zhikun; Li, Mingqi; Zhang, Dan; Wei, Jun
2013-01-01
Poor preservation of plant macroremains in the acid soils of southern subtropical China has hampered understanding of prehistoric diets in the region and of the spread of domesticated rice southwards from the Yangtze River region. According to records in ancient books and archaeological discoveries from historical sites, it is presumed that roots and tubers were the staple plant foods in this region before rice agriculture was widely practiced. But no direct evidences provided to test the hypothesis. Here we present evidence from starch and phytolith analyses of samples obtained during systematic excavations at the site of Xincun on the southern coast of China, demonstrating that during 3,350–2,470 aBC humans exploited sago palms, bananas, freshwater roots and tubers, fern roots, acorns, Job's-tears as well as wild rice. A dominance of starches and phytoliths from palms suggest that the sago-type palms were an important plant food prior to the rice in south subtropical China. We also believe that because of their reliance on a wide range of starch-rich plant foods, the transition towards labour intensive rice agriculture was a slow process. PMID:23667584
Isolation and Evaluation of Oil-Producing Microalgae from Subtropical Coastal and Brackish Waters
Lim, David K. Y.; Garg, Sourabh; Timmins, Matthew; Zhang, Eugene S. B.; Thomas-Hall, Skye R.; Schuhmann, Holger; Li, Yan; Schenk, Peer M.
2012-01-01
Microalgae have been widely reported as a promising source of biofuels, mainly based on their high areal productivity of biomass and lipids as triacylglycerides and the possibility for cultivation on non-arable land. The isolation and selection of suitable strains that are robust and display high growth and lipid accumulation rates is an important prerequisite for their successful cultivation as a bioenergy source, a process that can be compared to the initial selection and domestication of agricultural crops. We developed standard protocols for the isolation and cultivation for a range of marine and brackish microalgae. By comparing growth rates and lipid productivity, we assessed the potential of subtropical coastal and brackish microalgae for the production of biodiesel and other oil-based bioproducts. This study identified Nannochloropsis sp., Dunaniella salina and new isolates of Chlorella sp. and Tetraselmis sp. as suitable candidates for a multiple-product algae crop. We conclude that subtropical coastal microalgae display a variety of fatty acid profiles that offer a wide scope for several oil-based bioproducts, including biodiesel and omega-3 fatty acids. A biorefinery approach for microalgae would make economical production more feasible but challenges remain for efficient harvesting and extraction processes for some species. PMID:22792403
[Relationship between simulated acid rain stress and leaf reflectance].
Song, Xiao-dong; Jiang, Hong; Yu, Shu-quan; Zhou, Guo-mo; Jiang, Zi-shan
2010-01-01
Acid rain is a worldwide environmental problem. Serious acid rain pollution in subtropical China has constituted a potential threat to the health of the local forest. In the present paper, the changing properties of the chlorophyll concentration and spectral reflectance at the visible wavelengths for the six subtropical broad-leaved tree species leaves under simulated acid rain (SAR) treatment with different pH levels were studied. With the increasing strength of the SAR, the chlorophyll concentrations of the experimental species under pH 2.5 and pH 4.0 treatment were higher than that under pH 5.6; the spectral reflectance at the visible wavelengths for pH 2.5 and pH 4.0 were lower than that for pH 5.6 in general; while there weren't significant differences between pH 2.5 and pH 4.0. After the treatment with different levels of SAR, the differences in spectral reflectance at the visible wavelengths mainly focused around the green peak and red edge on the reflectance curve. The subtropical broad-leaved tree species studied were relatively not sensitive to acid rain stresses; some stronger acid rain may accelerate the growth of the tree species used here to some extent.
Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan W.; Lin W.; Yu, R.
2012-05-01
Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morningmore » peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.« less
Xu, Guolian; Mo, Jiangming; Zhou, Guoyi
2005-07-01
In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P < 0. 05), and the soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P < 0.05) under medium N deposition, but not under low N deposition. In pine forest, the positive effect was significant (P < 0.05) under high N deposition, especially for the number of soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.
NASA Astrophysics Data System (ADS)
Cardoso, Ricardo S.; Defeo, Omar
2004-11-01
Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.
Gunasekera, Sarath P.; Gerwick, William H.
2013-01-01
Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria. PMID:23315747
Subduction in an Eddy-Resolving State Estimate of the Northeast Atlantic Ocean
NASA Technical Reports Server (NTRS)
Gebbie, Geoffrey
2004-01-01
Are eddies an important contributor to subduction in the eastern subtropical gyre? Here, an adjoint model is used to combine a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in- situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MTI General Circulation Model. The adjoint method is successful because the Northeast Atlantic Ocean is only weakly nonlinear. The state estimate provides a physically-interpretable, eddy-resolving information source to diagnose subduction. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. Eddies contribute as much as 1 Sverdrup to water-mass transformation, and hence subduction, in the North Equatorial Current and the Azores Current. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the relatively-quiescent eastern subtropical gyre.
Reproductive Performance of Arabian and Thoroughbred Mares under Subtropical Conditions of Pakistan.
Warriach, H M; Memon, M A; Ahmad, N; Norman, S T; Ghafar, A; Arif, M
2014-07-01
Breeding records of 57 Arabian and 66 Thoroughbred mares were analysed to assess their reproductive performance under the subtropical conditions of Pakistan. The Arabian mares showed significantly higher conception rates (p<0.05) in second mated oestrus and foal heat mated oestrus compared to Thoroughbred mares. However, conception rates for first lifetime mated oestrus were similar in both breeds of mares. Age at first mating (1,301±40 vs 1,500±32 days) was significantly (p<0.05) less in Arabian compared to Thoroughbred mares. Both breeds of mares showed significantly (p<0.05) higher frequencies of oestrous cycles and conception rates during the winter (October to March) compared to summer (June to August) months. Age of mares affected the conception rates, as mares at ages 3 to 7 and 8 to 12 years of ages had significantly higher conception rates (p<0.05) than those ≥18 years old in both breeds. This study demonstrates that i) reproductive performance in Arabians is better than Thoroughbred mares under the subtropical conditions of Pakistan, ii) mares remain cyclic throughout the year and iii) conception rates were higher in mares bred during winter compared to summer months.
Murase, Atsunobu; Miki, Ryohei; Motomura, Hiroyuki
2017-01-01
Abstract Understanding the distributional patterns of individual animal groups with respect to coastal topology and the local physical environment provides essential foundational frameworks for marine zoogeography. In the northwestern Pacific waters of Japan, the distributional pattern of some cool-temperate species of marine fishes suggests the existence of a biogeographic boundary corresponding to a long sandy shore on the eastern coast of Kyushu, southern Japan. The existence of this hypothetical biogeographic boundary was tested by mapping the southern distributional limit of two species of cool-temperate intertidal gobies, Chaenogobius annularis and C. gulosus, which are endemic to East Asia and common in rock pools within their range in the Japanese Archipelago. Distribution and abundance were assessed by survey of museum collections from south-east Kyushu (i.e., the entire coasts of Kagoshima and Miyazaki prefectures); and a quantitative survey of the abundance of these gobies in rock pools at various sites around the hypothesized boundary on the eastern coast of Kyushu, including the subtropical Tanega-shima Island. The museum collection survey showed different distribution patterns between the two species: C. annularis was distributed along the entire coasts of south-east Kyushu including subtropical islands, whereas C. gulosus was distributed along these coasts, including one site on a subtropical island, except for an area south of the hypothesized boundary on the eastern coast of Kyushu. The density and occurrence rates of C. annularis in rock pools decreased with latitude, it being absent from a subtropical island, and C. gulosus was not detected from sites south of the hypothesized boundary. The qualitative survey showed that the southernmost records of C. annularis and C. gulosus were the adjacent subtropical islands (Yaku-shima and Tanega-shima islands respectively), although the quantitative survey suggested that their normal range of distribution was limited to the southern part of the Kyushu mainland. A combination of qualitative and quantitative survey methods in the present study highlighted that the southernmost record of a certain species may not necessarily indicate the true limit of its distribution. The distribution of C. gulosus supports the existence of the hypothetical biogeographic boundary, and the different distribution patterns of the two species may be caused by differences in their early life histories. PMID:29362541
Latent heat loss of dairy cows in an equatorial semi-arid environment
NASA Astrophysics Data System (ADS)
da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A. Fernandes
2012-09-01
The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous ( E S) and respiratory ( E R) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature ( T R), hair coat surface temperature ( T S) and respiratory rate ( F R) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature ( T G), air temperature ( T A), wind speed ( U), and partial air vapour pressure ( P V). Data were analysed by mixed models, using the least squares method. Results showed that average E S and E R were higher in the semi-arid region (117.2 W m-2 and 44.0 W m-2, respectively) than in the subtropical region (85.2 W m-2 and 30.2 W m-2, respectively). Herds and individual cows were significant effects ( P < 0.01) for all traits in the semi-arid region. Body parts did not affect T S and E S in the subtropical region, but was a significant effect ( P < 0.01) in the semi-arid region. The average flank T S (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E S was higher in the neck (133.3 W m-2) than in the flank (116.2 W m-2) and hindquarters (98.6 W m-2). Coat colour affected significantly both T S and E S ( P < 0.01). Black coats had higher T S and E S in the semi-arid region (41.7°C and 117.2 W m-2, respectively) than white coats (37.2°C and 106.7 W m-2, respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific for semi-arid regions.
Modeling the drift of massive icebergs to the subtropical North Atlantic
NASA Astrophysics Data System (ADS)
Condron, A.; Hill, J. C.
2013-12-01
New evidence from high-resolution seafloor bathymetry data indicates that massive (>300m thick) icebergs from the Laurentide Ice Sheet (LIS) drifted south to the tip of Florida during the last deglaciation. This finding is particularly exciting as it contradicts evidence from marine sediments that icebergs were mainly confined to the subpolar North Atlantic (50 - 70N) at this time. Indeed, the freshwater released from icebergs melting in the subpolar gyre is repeatedly cited as a main trigger for a slow-down of the Atlantic MOC in the past, and the possible cause of any climate cooling related to the melting of the Greenland Ice Sheet in the future. Using a sophisticated iceberg model (MITberg), coupled to a high (18-km; 1/6 deg.) resolution ocean model (MITgcm), we investigate the ocean circulation dynamics required to allow icebergs to drift to the southern tip of Florida. We find that icebergs only reach this location if they turn right at the Grand Banks of Newfoundland, and stay inshore of the Gulf Stream all the way to Florida. Modern-day circulation dynamics do not readily allow this to happen as cold, southward flowing, Labrador Current Water (important for iceberg survival) has little penetration south of Cape Hatteras. However, when a liquid meltwater flood is released from Hudson Bay at the same time, icebergs are rapidly transported (inshore of the Gulf Stream) in a narrow, buoyant, coastal current all the way to southern Florida. The meltwater and icebergs result in a significant freshening of the subtropical North Atlantic and weaken the strength of the Gulf Stream, suggesting such an event would have a large cooling effect on climate. We are only able to simulate the flow of meltwater and icebergs to the subtropics by modeling ocean circulation at a resolution that is 5 - 10 times higher than the majority of existing paleoclimate models; at lower resolutions the narrow, coastal boundary currents important for iceberg transport to the subtropics are no longer resolved. Our results show convincing evidence that a large component of iceberg laden freshwater from the LIS had more of a subtropical impact than previously believed, suggesting the ';subpolar-freshening' hypothesis repeatedly cited in the literature as a trigger for abrupt climate change needs rethinking.
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO 2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO 2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km 2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr -1 during the last half of the 21 st century. An NPP increase of about 24 Mt C by the end of the 21 st century was estimated with the combined effects of increasing CO 2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr -1. NEP will increase to about 5 Mt C yr -1 by the end of the 21 st century with the increasing atmospheric CO 2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO 2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
NASA Astrophysics Data System (ADS)
Miyamoto, Hiroomi; Itoh, Hiroshi; Okazaki, Yuji
2017-10-01
The long-term change (1974-1998) of the pelagic copepod community in the Kuroshio region, western Pacific was examined in archival samples collected both day and night in April/May in a time period of profound changes in the pelagic fish populations. A total of 162 adult copepod species was found. The community analysis based on species composition and abundance of adult copepods identified five assemblages (A-E) by cluster analysis. These assemblages were distributed in the north-frontal area of the Kuroshio Current within the slope area (A), the Kuroshio axis area (B), the subtropical area (C, D), and the coastal area within the slope area (E), indicating that such diverse communities were formed to correspond with the gradual change in the oceanic environment across the Kuroshio Current. The abundance of copepods in the north-frontal area of the Kuroshio Current (A) was 1.6 times greater than that of the other assemblages. Kuroshio/subtropical species were abundant in the assemblage, suggesting that these species that were transported from the Kuroshio and/or subtropical regions increased in the slope region. Abundance and species richness of two assemblages (C, D), which were found in the subtropical areas were higher at night (C) than during the day (D), suggesting that diel vertical migration of copepods is one of the most important factors affecting changes in the community. Furthermore, a generalized additive model revealed that the most dominant subtropical/Kuroshio species increased in years in which the Kuroshio Current flowed further south, with the Kuroshio axis located far from the Japanese coast. In contrast, the model showed that the lower latitude of the Kuroshio axis positioned negatively affected coastal-dominant species, such as Paracalanus parvus sensu lato (s.l.). These results indicate that onshore-offshore shifts of the Kuroshio axis caused by Kuroshio meandering was an important factor involved in the inter-annual change in the copepod community during April-May in the Kuroshio region, suggesting that the inter-annual change of copepod communities might affect survival and growth rates of larvae in pelagic migratory fish which utilize the Kuroshio region as spawning and nursery grounds.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce A.; Parker, Lindsay
2006-01-01
Three boundary-layer cloud object types, stratus, stratocumulus and cumulus, that occurred over the Pacific Ocean during January-August 1998, are identified from the CERES (Clouds and the Earth s Radiant Energy System) single scanner footprint (SSF) data from the TRMM (Tropical Rainfall Measuring Mission) satellite. This study emphasizes the differences and similarities in the characteristics of each cloud-object type between the tropical and subtropical regions and among different size categories and among small geographic areas. Both the frequencies of occurrence and statistical distributions of cloud physical properties are analyzed. In terms of frequencies of occurrence, stratocumulus clouds dominate the entire boundary layer cloud population in all regions and among all size categories. Stratus clouds are more prevalent in the subtropics and near the coastal regions, while cumulus clouds are relatively prevalent over open ocean and the equatorial regions, particularly, within the small size categories. The largest size category of stratus cloud objects occurs more frequently in the subtropics than in the tropics and has much larger average size than its cumulus and stratocumulus counterparts. Each of the three cloud object types exhibits small differences in statistical distributions of cloud optical depth, liquid water path, TOA albedo and perhaps cloud-top height, but large differences in those of cloud-top temperature and OLR between the tropics and subtropics. Differences in the sea surface temperature (SST) distributions between the tropics and subtropics influence some of the cloud macrophysical properties, but cloud microphysical properties and albedo for each cloud object type are likely determined by (local) boundary-layer dynamics and structures. Systematic variations of cloud optical depth, TOA albedo, cloud-top height, OLR and SST with cloud object sizes are pronounced for the stratocumulus and stratus types, which are related to systematic variations of the strength of inversion with cloud object sizes, produced by large-scale subsidence. The differences in cloud macrophysical properties over small regions are significantly larger than those of cloud microphysical properties and TOA albedo, suggesting a greater control of (local) large-scale dynamics and other factors on cloud object properties. When the three cloud object types are combined, the relative population among the three types is the most important factor for determining the cloud object properties in a Pacific transect where the transition of boundary-layer cloud types takes place.
Assessment of the biological activity of soils in the subtropical zone of Azerbaijan
NASA Astrophysics Data System (ADS)
Babaev, M. P.; Orujova, N. I.
2009-10-01
The enzymatic activity; the microbial population; and the intensities of the nitrification, ammonification, CO2emission, and cellulose decomposition were studied in gray-brown, meadow-sierozemic, meadow-forest alluvial, and yellow (zheltozem) gley soils in the subtropical zone of Azerbaijan under natural vegetation, crop rotation systems with vegetables, and permanent vegetable crops. On this basis, the biological diagnostics of these soils were suggested and the soil ecological health was evaluated. It was shown that properly chosen crop rotation systems on irrigated lands make it possible to preserve the fertility of the meadow-forest alluvial and zheltozem-gley soils and to improve the fertility of the gray-brown and meadow-sierozemic soils.
Plastic Accumulation in the North Atlantic Subtropical Gyre
NASA Astrophysics Data System (ADS)
Law, Kara Lavender; Morét-Ferguson, Skye; Maximenko, Nikolai A.; Proskurowski, Giora; Peacock, Emily E.; Hafner, Jan; Reddy, Christopher M.
2010-09-01
Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.
NASA Astrophysics Data System (ADS)
Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.
2016-09-01
Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.
Distribution of isoflavones and coumestrol in neglected tropical and subtropical legumes.
Leuner, Olga; Havlik, Jaroslav; Hummelova, Jana; Prokudina, Elena; Novy, Pavel; Kokoska, Ladislav
2013-02-01
Isoflavones and coumestrol from dietary legumes are plant constituents showing multiple beneficial effects on humans. Owing to their ability to bind with mammalian estrogenic receptors and thereby intervention in several kinds of hormone-related cancers, they have received much attention. Soybean (Glycine max) is currently the major source of isoflavonoids in human diet. However, dozens of tropical and subtropical leguminous species remain unexplored for their isoflavonoids content. We have analyzed 55 extracts from 41 tropical and subtropical legume species used either in human or animal diet by high-performance liquid chromatography for the content of soy isoflavones, biochanin A, daidzein, daidzin, formononetin, genistein, genistin, sissotrin, ononin and the coumestan coumestrol. Genistein and biochanin A were the most abundant compounds. The highest content of genistein was found in aerial parts of Andira macrothyrsa, seeds of Pachyrhizus tuberosus and aerial parts of Calopogonium mucunoides (598, 250 and 184 µg g(-1), respectively) and biochanin A in aerial parts of Cratylia argentea, C. mucunoides and flowers of A. macrothyrsa (76, 53 and 40 µg g(-1), respectively). None of the samples tested was richer overall source of soy isoflavones and coumestrol than soybean; nevertheless several species (C. mucunoides or A. macrothyrsa) may serve as a promising source of individual compounds. Copyright © 2012 Society of Chemical Industry.
[Effects of warming and precipitation exclusion on soil N2O fluxes in subtropical forests.
Tang, Cai di; Zhang, Zheng; Cai, Xiao Zhen; Guo, Jian Fen; Yang, Yu Sheng
2017-10-01
In order to explore how soil warming and precipitation exclusion influence soil N2O fluxes, we used related functional genes as markers, and four treatments were set up, i.e. , control (CT), soil warming (W, 5 ℃ above the ambient temperature of the control), 50% precipitation reduction (P), soil warming plus 50% precipitation reduction (WP). The results showed that precipitation exclusion reduced soil ammonium nitrogen concentration significantly. Soil warming decreased soil N2O flux and soil denitrification potential significantly. Soil microbial biomass nitrogen (MBN) in warming treatment (W) and precipitation exclusion treatment (P) was significantly lower than that in the control. The amoA gene abundance of AOA was negatively correlated with MBN and ammonium nitrogen contents, but neither soil nitrification potential nor soil N2O flux was correlated with the amoA gene abundance of AOA. Path analysis showed that the denitrification potential affected soil N2O flux directly, while microbial biomass phosphorus (MBP) and warming affected soil N2O flux indirectly through their direct effects on denitrification potential. Temperature might be the main driver of N2O flux in subtropical forest soils. Global warming would reduce N2O emissions from subtropical forest soils.
Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong
2015-01-01
As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664
Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre.
Goldstein, Miriam C; Goodwin, Deborah S
2013-01-01
Substantial quantities of small plastic particles, termed "microplastic," have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the "rafting assemblage," are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem.
Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre
Goodwin, Deborah S.
2013-01-01
Substantial quantities of small plastic particles, termed “microplastic,” have been found in many areas of the world ocean, and have accumulated in particularly high densities on the surface of the subtropical gyres. While plastic debris has been documented on the surface of the North Pacific Subtropical Gyre (NPSG) since the early 1970s, the ecological implications remain poorly understood. Organisms associated with floating objects, termed the “rafting assemblage,” are an important component of the NPSG ecosystem. These objects are often dominated by abundant and fast-growing gooseneck barnacles (Lepas spp.), which predate on plankton and larval fishes at the sea surface. To assess the potential effects of microplastic on the rafting community, we examined the gastrointestinal tracts of 385 barnacles collected from the NPSG for evidence of plastic ingestion. We found that 33.5% of the barnacles had plastic particles present in their gastrointestinal tract, ranging from one plastic particle to a maximum of 30 particles. Particle ingestion was positively correlated to capitulum length, and no blockage of the stomach or intestines was observed. The majority of ingested plastic was polyethylene, with polypropylene and polystyrene also present. Our results suggest that barnacle ingestion of microplastic is relatively common, with unknown trophic impacts on the rafting community and the NPSG ecosystem. PMID:24167779
Wei, Hui; Chen, Xiaomei; Xiao, Guoliang; Guenet, Bertrand; Vicca, Sara; Shen, Weijun
2015-12-16
Soil temperature and moisture are widely-recognized controlling factors on heterotrophic soil respiration (Rh), although they often explain only a portion of Rh variability. How other soil physicochemical and microbial properties may contribute to Rh variability has been less studied. We conducted field measurements on Rh half-monthly and associated soil properties monthly for two years in four subtropical forests of southern China to assess influences of carbon availability and microbial properties on Rh. Rh in coniferous forest was significantly lower than that in the other three broadleaf species-dominated forests and exhibited obvious seasonal variations in the four forests (P < 0.05). Temperature was the primary factor influencing the seasonal variability of Rh while moisture was not in these humid subtropical forests. The quantity and decomposability of dissolved organic carbon (DOC) were significantly important to Rh variations, but the effect of DOC content on Rh was confounded with temperature, as revealed by partial mantel test. Microbial biomass carbon (MBC) was significantly related to Rh variations across forests during the warm season (P = 0.043). Our results suggest that DOC and MBC may be important when predicting Rh under some conditions, and highlight the complexity by mutual effects of them with environmental factors on Rh variations.
Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming
2017-02-24
Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Salonen, Heidi; Duchaine, Caroline; Mazaheri, Mandana; Clifford, Sam; Morawska, Lidia
2015-04-01
There is currently a lack of reference values for indoor air fungal concentrations to allow for the interpretation of measurement results in subtropical school settings. Analysis of the results of this work established that, in the majority of properly maintained subtropical school buildings, without any major affecting events such as floods or visible mould or moisture contamination, indoor culturable fungi levels were driven by outdoor concentration. The results also allowed us to benchmark the "baseline range" concentrations for total culturable fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings. The measured concentration of total culturable fungi and three individual fungal genera were estimated using Bayesian hierarchical modelling. Pooling of these estimates provided a predictive distribution for concentrations at an unobserved school. The results indicated that "baseline" indoor concentration levels for indoor total fungi, Penicillium spp., Cladosporium spp. and Aspergillus spp. in such school settings were generally ≤1450, ≤680, ≤480 and ≤90 cfu/m3, respectively, and elevated levels would indicate mould damage in building structures. The indoor/outdoor ratio for most classrooms had 95% credible intervals containing 1, indicating that fungi concentrations are generally the same indoors and outdoors at each school. Bayesian fixed effects regression modelling showed that increasing both temperature and humidity resulted in higher levels of fungi concentration.
Mi, Xiangcheng; Swenson, Nathan G; Jia, Qi; Rao, Mide; Feng, Gang; Ren, Haibao; Bebber, Daniel P; Ma, Keping
2016-09-07
Deterministic and stochastic processes jointly determine the community dynamics of forest succession. However, it has been widely held in previous studies that deterministic processes dominate forest succession. Furthermore, inference of mechanisms for community assembly may be misleading if based on a single axis of diversity alone. In this study, we evaluated the relative roles of deterministic and stochastic processes along a disturbance gradient by integrating species, functional, and phylogenetic beta diversity in a subtropical forest chronosequence in Southeastern China. We found a general pattern of increasing species turnover, but little-to-no change in phylogenetic and functional turnover over succession at two spatial scales. Meanwhile, the phylogenetic and functional beta diversity were not significantly different from random expectation. This result suggested a dominance of stochastic assembly, contrary to the general expectation that deterministic processes dominate forest succession. On the other hand, we found significant interactions of environment and disturbance and limited evidence for significant deviations of phylogenetic or functional turnover from random expectations for different size classes. This result provided weak evidence of deterministic processes over succession. Stochastic assembly of forest succession suggests that post-disturbance restoration may be largely unpredictable and difficult to control in subtropical forests.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.
2004-01-01
We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.
Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Tian, Jing; Wen, Xuefa
2016-10-01
In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.
Salas-Reyes, Isela Guadalupe; Arriaga-Jordán, Carlos Manuel; Rebollar-Rebollar, Samuel; García-Martínez, Anastacio; Albarrán-Portillo, Benito
2015-08-01
The objective of this study was to assess the sustainability of 10 dual-purpose cattle farms in a subtropical area of central Mexico. The IDEA method (Indicateurs de Durabilité des Exploitations Agricoles) was applied, which includes the agroecological, socio-territorial and economic scales (scores from 0 to 100 points per scale). A sample of 47 farms from a total of 91 registered in the local livestock growers association was analysed with principal component analysis and cluster analysis. From results, 10 farms were selected for the in-depth study herein reported, being the selection criterion continuous milk production throughout the year. Farms had a score of 88 and 86 points for the agroecological scale in the rainy and dry seasons. In the socio-territorial scale, scores were 73 points for both seasons, being the component of employment and services the strongest. Scores for the economic scale were 64 and 56 points for the rainy and dry seasons, respectively, when no economic cost for family labour is charged, which decreases to 59 and 45 points when an opportunity cost for family labour is considered. Dual-purpose farms in the subtropical area of central Mexico have a medium sustainability, with the economic scale being the limiting factor, and an area of opportunity.
Wang, Xianyun; Wang, Liqing
2013-01-01
Changes in the density and species composition of planktonic rotifers as well as their relationship to several environmental variables were studied at Dadian Lake, a shallow subtropical lake, which was completely dredged and reconstructed. Samples were taken monthly (2006–2009) at five stations. The total rotifer abundance exponentially declined and reached a relatively stable stage in 2009. Polyarthra dolichoptera and Trichocerca pusilla dominated the rotifer community in most seasons. TN, TP, and CODMn went down at the beginning of the monitoring period, rebounded in the second winter, and then decreased and reached a stable state in 2009. CCA showed that the most significant variations were caused by fluctuations in temperature, CODMn, SRP, and NO2-N. The rotifer community experienced a two-stage succession and the difference of species between the stages was exhibited during warm seasons. GAMs indicated that the selected factors were responsible for 64.8% of the total rotifer abundance variance and 16.5~64.3% of the variances of individual species abundance. Most of the environmental parameters had effects on rotifer abundance that could only be described by complicated curves, characterised by unimodality and bimodality instead of linearity. Our study highlighted the temperature influence on rotifer species composition and total abundance in subtropical lakes. PMID:23864829
NASA Astrophysics Data System (ADS)
Sirianni, M.; Comas, X.; Shoemaker, B.; Job, M. J.; Cooper, H.
2016-12-01
Globally, wetland soils play an important role in regulating climate change by functioning as a source or sink for atmospheric carbon, particularly in terms of methane and carbon dioxide. While many historic studies defined the function of wetland soils in the global carbon budget, the gas-flux dynamics of subtropical wetlands is largely unknown. Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. The U.S. Geological Survey employs eddy covariance methods at several locations within the Preserve to quantify carbon and methane exchanges at ecosystem scales. While eddy covariance towers are a convenient tool for measuring gas fluxes, their footprint is spatially extensive (hundreds of meters); and thus spatial variability at smaller scales is masked by averaging or even overlooked. We intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a combination of geophysical, hydrologic and ecologic techniques. Preliminary results suggest that gas releases from flooded calcitic soils are much greater than organic soils. These results - and others - will help build a better understanding of the role of subtropical wetlands in the global carbon budget.
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-10-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.
NASA Astrophysics Data System (ADS)
Wu, Yi-Hua; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Chao, H. Jasmine
This study was conducted to investigate the temporal and spatial distributions, compositions, and determinants of ambient aeroallergens in Taipei, Taiwan, a subtropical metropolis. We monitored ambient culturable fungi in Shin-Jhuang City, an urban area, and Shi-Men Township, a rural area, in Taipei metropolis from 2003 to 2004. We collected ambient fungi in the last week of every month during the study period, using duplicate Burkard portable samplers and Malt Extract Agar. The median concentration of total fungi was 1339 colony-forming units m -3 of air over the study period. The most prevalent fungi were non-sporulating fungi, Cladosporium, Penicillium, Curvularia and Aspergillus at both sites. Airborne fungal concentrations and diversity of fungal species were generally higher in urban than in rural areas. Most fungal taxa had significant seasonal variations, with higher levels in summer. Multivariate analyses showed that the levels of ambient fungi were associated positively with temperature, but negatively with ozone and several other air pollutants. Relative humidity also had a significant non-linear relationship with ambient fungal levels. We concluded that the concentrations and the compositions of ambient fungi are diverse in urban and rural areas in the subtropical region. High ambient fungal levels were related to an urban environment and environmental conditions of high temperature and low ozone levels.
Expansion of the North Pacific subpolar gyre during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Gray, W. R.; Rae, J. W. B.; Wills, R. C.; Burke, A.; Taylor, B.
2017-12-01
Due to the opposite sign of the wind-stress forcing in the Pacific subpolar and subtropical gyres, the two gyres are characterised by vastly different nutrient and temperature regimes; the subpolar gyre is cold and nutrient-rich, whereas the subtropical gyre is warm and nutrient poor. The relative extent of the gyres therefore exerts a first order control on biogeochemistry and meridional ocean heat transport in the North Pacific Ocean. Here, by compiling all previously published planktic foraminferal d18O and sea-surface temperature data from across the North Pacific, we show a striking and hitherto unknown feature of the Glacial North Pacific; the southward expansion of the subpolar gyre by 5 degrees. We show, in the PMIP3 ensemble of state-of-the-art climate models, that this expansion is associated with a strengthening of the westerly winds. The southward expansion of the subpolar gyre would have brought nutrient-rich waters further south, providing a solution to the long-standing question of why, while productivity decreased throughout the subpolar gyre during Last Glacial Maximum, it increased in the transition zone between the gyres. The expansion and contraction of the subpolar/subtropical gyres over glacial-interglacial cycles could provide a mechanism to modulate meridional ocean heat transport.
Barbour, Elie K; Itani, Houssam H; Sleiman, Fawwak T; Saade, Maya F; Harakeh, Steve; Nour, Afif M Abdel; Shaib, Houssam A
2012-01-01
Three objectives were included in this research work. The first objective compared different immune components in healthy mature males, mature females, and female kids of local and imported Saanen goats, reared under a sub-tropical environment. The significantly differing immune components were the blood monocyte percent, blood CD8 count, and the total white blood cell count. The second objective compared the performance of Saanen versus local does. The means of the milk yield and prolificacy of the imported Saanen does were significantly higher than those of the local does (p<0.05). The third objective compared the immune responses (hemagglutination-HA titers) and complement fixation (CF) titers in mature does of the two breeds to chicken red blood cells (c-RBC). The HA titers showed a significant seroconversion only in imported Saanen (p<0.05) but not in local does; however, the CF titers increased significantly at 4 weeks following priming with c-RBC in local (p<0.05) but not in the imported Saanen does. The impact of the differences in blood immune components and responses to antigens in the compared goats on protection potential against prevalent diseases in the sub-tropical zone of the eastern Mediterranean countries is discussed.
Impacts of winter NPO on subsequent winter ENSO: sensitivity to the definition of NPO index
NASA Astrophysics Data System (ADS)
Chen, Shangfeng; Wu, Renguang
2018-01-01
This study investigates the linkage between boreal winter North Pacific Oscillation (NPO) and subsequent winter El Niño-Southern Oscillation (ENSO) based on seven different NPO indices. Results show that the influence of winter NPO on the subsequent winter El Niño is sensitive to how the NPO is defined. A significant NPO-El Niño connection is obtained when the NPO-related anomalous cyclone over the subtropical North Pacific extends to near-equatorial regions. The anomalous cyclone induces warm sea surface temperature (SST) anomalies through modulating surface heat fluxes. These warm SST anomalies are able to maintain into the following spring and summer through an air-sea coupled process and in turn induce significant westerly wind anomalies over the tropical western Pacific. In contrast, the NPO-El Niño relationship is unclear when the NPO-related anomalous cyclone over the subtropical North Pacific is confined to off-equatorial regions and cannot induce significant warm SST anomalies over the subtropical North Pacific. The present study suggests that definitions of NPO should be taken into account when using NPO to predict ENSO. In particular, we recommend defining the NPO index based on the empirical orthogonal function technique over appropriate region that does not extend too far north.
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-01-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021
Air-sea interaction at the subtropical convergence south of Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van
1994-12-31
The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBTmore » and CTD) were jointly made with radiosonde observations and air-sea interaction measurements. The air-sea interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.« less
Wainer, Ilana; Prado, Luciana Figueiredo; Khodri, Myriam; Otto-Bliesner, Bette
2014-01-01
Climate indices based on sea surface temperature (SST) can synthesize information related to physical processes that describe change and variability in continental precipitation from floods to droughts. The South Atlantic Subtropical Dipole index (SASD) is based on the distribution of SST in the South Atlantic and fits these criteria. It represents the dominant mode of variability of SST in the South Atlantic, which is modulated by changes in the position and intensity of the South Atlantic Subtropical High. Here we reconstructed an index of the South Atlantic Ocean SST (SASD-like) for the past twelve thousand years (the Holocene period) based on proxy-data. This has great scientific implications and important socio-economic ramifications because of its ability to infer variability of precipitation and moisture over South America where past climate data is limited. For the first time a reconstructed index based on proxy data on opposite sides of the SASD-like mode is able to capture, in the South Atlantic, the significant cold events in the Northern Hemisphere at 12.9−11.6 kyr BP and 8.6−8.0 ky BP. These events are related, using a transient model simulation, to precipitation changes over South America. PMID:24924600
Wainer, Ilana; Prado, Luciana Figueiredo; Khodri, Myriam; Otto-Bliesner, Bette
2014-06-13
Climate indices based on sea surface temperature (SST) can synthesize information related to physical processes that describe change and variability in continental precipitation from floods to droughts. The South Atlantic Subtropical Dipole index (SASD) is based on the distribution of SST in the South Atlantic and fits these criteria. It represents the dominant mode of variability of SST in the South Atlantic, which is modulated by changes in the position and intensity of the South Atlantic Subtropical High. Here we reconstructed an index of the South Atlantic Ocean SST (SASD-like) for the past twelve thousand years (the Holocene period) based on proxy-data. This has great scientific implications and important socio-economic ramifications because of its ability to infer variability of precipitation and moisture over South America where past climate data is limited. For the first time a reconstructed index based on proxy data on opposite sides of the SASD-like mode is able to capture, in the South Atlantic, the significant cold events in the Northern Hemisphere at 12.9-11.6 kyr BP and 8.6-8.0 ky BP. These events are related, using a transient model simulation, to precipitation changes over South America.
NASA Astrophysics Data System (ADS)
Zaizen, Yuji; Ikegami, Miwako; Tsutsumi, Yukitomo; Makino, Yukio; Okada, Kikuo; Jensen, Jørgen; Gras, John L.
Number concentration and size distribution of aerosol particles were measured on board aircraft during the PACE (Pacific Atmospheric Chemistry Experiment) campaign from Australia to Japan in January 1994. The spatial distribution of condensation nuclei (CN) ( r ⩾ 4 nm) at 5-6 km altitude showed large variabilities in concentrations from 10 2 to 10 3 mg -1 that is, the concentrations were low (70-500 mg -1) in the intertropical convergence zone, high (400-1500 mg -1) in the subtropical highpressure area, and low again in the higher latitudes. An apparent opposite tendency was present between CN and large particle ( r ⩾ 0.15 μm) concentrations. The size distributions in the subtropical region exhibited high number concentrations of very fine particles ( r < 0.02 μm). Together with the horizontal observation, vertical observations of aerosols were carried out over some areas. In the subtropical area (Saipan), CN concentration increased with altitude in contrast to the large particle concentration. Also most of the particles collected at 6 km altitude over Saipan contained sulfuric acid. These results are consistent with the results of Clarke (1993, J. geophys. Res.98, 20,633-20,647) that new particle formation is favored in the upper troposphere.
Variability of Extreme Precipitation Events in Tijuana, Mexico During ENSO Years
NASA Astrophysics Data System (ADS)
Cavazos, T.; Rivas, D.
2007-05-01
We present the variability of daily precipitation extremes (top 10 percecnt) in Tijuana, Mexico during 1950-2000. Interannual rainfall variability is significantly modulated by El Nino/Southern Oscillation. The interannual precipitation variability exhibits a large change with a relatively wet period and more variability during 1976- 2000. The wettest years and the largest frequency of daily extremes occurred after 1976-1977, with 6 out of 8 wet years characterized by El Nino episodes and 2 by neutral conditions. However, more than half of the daily extremes during 1950-2000 occurred in non-ENSO years, evidencing that neutral conditions also contribute significantly to extreme climatic variability in the region. Extreme events that occur in neutral (strong El Nino) conditions are associated with a pineapple express and a neutral PNA (negative TNH) teleconnection pattern that links an anomalous tropical convective forcing west (east) of the date line with a strong subtropical jet over the study area. At regional scale, both types of extremes are characterized by a trough in the subtropical jet over California/Baja California, which is further intensified by thermal interaction with an anomalous warm California Current off Baja California, low-level moisture advection from the subtropical warm sea-surface region, intense convective activity over the study area and extreme rainfall from southern California to Baja California.
NASA Astrophysics Data System (ADS)
Xie, Shucheng; Yi, Yi; Huang, Junhua; Hu, Chaoyong; Cai, Yanjun; Collins, Matthew; Baker, Andy
2003-11-01
Lipid extracts from a 61.7-cm-long subtropical stalagmite in southern China, spanning the period of ca. 10,000-21,000 yr ago as constrained by U-Th dating, were analyzed using gas chromatography-mass spectrometry. The higher plants and microorganisms in the overlying soils contribute a proportion of n-alkanes identified in the stalagmite. The occurrence of LMW (lower molecular weight) n-alkanols and n-alkan-2-ones in the stalagmite was mainly related to the soil microorganisms. We suggest that HMW (higher molecular weight) n-alkanols and n-alkan-2-ones identified in the stalagmite originate from soil organics and reflect input from contemporary vegetation. Shifts in the ratio of LMW to HMW n-alkanols or n-alkan-2-ones indicative of the variation of soil ecosystems (e.g., microbial degradation of organic matter and/or the relative abundance of soil microorganisms to higher plants) are comparable with the subtropical alkenone-SST (sea surface temperature) record of the same period. The similar trends seen in the δ 13C data and the lipid parameters in this stalagmite imply that the overlying soil ecosystem response to climate might be responsible for the variation of δ 13C values.
Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.
Wang, Xianyu; Thai, Phong K; Mallet, Marc; Desservettaz, Maximilien; Hawker, Darryl W; Keywood, Melita; Miljevic, Branka; Paton-Walsh, Clare; Gallen, Michael; Mueller, Jochen F
2017-02-07
The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P < 0.01) EFs (μg kg -1 dry fuel, gas + particle-associated) for polycyclic aromatic hydrocarbons (∑ 13 PAHs) were determined from the subtropical forest fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.
NASA Astrophysics Data System (ADS)
Yin, Kai; Zhang, Lei; Chen, Dima; Tian, Yichen; Zhang, Feifei; Wen, Meiping; Yuan, Chao
2016-05-01
The patterns and drivers of soil microbial communities in forest plantations remain inadequate although they have been extensively studied in natural forest and grassland ecosystems. In this study, using data from 12 subtropical plantation sites, we found that the overstory tree biomass and tree cover increased with increasing plantation age. However, there was a decline in the aboveground biomass and species richness of the understory herbs as plantation age increased. Biomass of all microbial community groups (i.e. fungi, bacteria, arbuscular mycorrhizal fungi, and actinomycete) decreased with increasing plantation age; however, the biomass ratio of fungi to bacteria did not change with increasing plantation age. Variation in most microbial community groups was mainly explained by the understory herb (i.e. herb biomass and herb species richness) and overstory trees (i.e. tree biomass and tree cover), while soils (i.e. soil moisture, soil organic carbon, and soil pH) explained a relative low percentage of the variation. Our results demonstrate that the understory herb layer exerts strong controls on soil microbial community in subtropical plantations. These findings suggest that maintenance of plantation health may need to consider the management of understory herb in order to increase the potential of plantation ecosystems as fast-response carbon sinks.
Yin, Kai; Zhang, Lei; Chen, Dima; Tian, Yichen; Zhang, Feifei; Wen, Meiping; Yuan, Chao
2016-01-01
The patterns and drivers of soil microbial communities in forest plantations remain inadequate although they have been extensively studied in natural forest and grassland ecosystems. In this study, using data from 12 subtropical plantation sites, we found that the overstory tree biomass and tree cover increased with increasing plantation age. However, there was a decline in the aboveground biomass and species richness of the understory herbs as plantation age increased. Biomass of all microbial community groups (i.e. fungi, bacteria, arbuscular mycorrhizal fungi, and actinomycete) decreased with increasing plantation age; however, the biomass ratio of fungi to bacteria did not change with increasing plantation age. Variation in most microbial community groups was mainly explained by the understory herb (i.e. herb biomass and herb species richness) and overstory trees (i.e. tree biomass and tree cover), while soils (i.e. soil moisture, soil organic carbon, and soil pH) explained a relative low percentage of the variation. Our results demonstrate that the understory herb layer exerts strong controls on soil microbial community in subtropical plantations. These findings suggest that maintenance of plantation health may need to consider the management of understory herb in order to increase the potential of plantation ecosystems as fast-response carbon sinks. PMID:27243577
Yin, Kai; Zhang, Lei; Chen, Dima; Tian, Yichen; Zhang, Feifei; Wen, Meiping; Yuan, Chao
2016-05-31
The patterns and drivers of soil microbial communities in forest plantations remain inadequate although they have been extensively studied in natural forest and grassland ecosystems. In this study, using data from 12 subtropical plantation sites, we found that the overstory tree biomass and tree cover increased with increasing plantation age. However, there was a decline in the aboveground biomass and species richness of the understory herbs as plantation age increased. Biomass of all microbial community groups (i.e. fungi, bacteria, arbuscular mycorrhizal fungi, and actinomycete) decreased with increasing plantation age; however, the biomass ratio of fungi to bacteria did not change with increasing plantation age. Variation in most microbial community groups was mainly explained by the understory herb (i.e. herb biomass and herb species richness) and overstory trees (i.e. tree biomass and tree cover), while soils (i.e. soil moisture, soil organic carbon, and soil pH) explained a relative low percentage of the variation. Our results demonstrate that the understory herb layer exerts strong controls on soil microbial community in subtropical plantations. These findings suggest that maintenance of plantation health may need to consider the management of understory herb in order to increase the potential of plantation ecosystems as fast-response carbon sinks.
Zhu, Shi-Dan; Song, Juan-Juan; Li, Rong-Hua; Ye, Qing
2013-04-01
It is important to understand the ecophysiological characters of plants when exploring mechanisms underlying species substitution in the process of plant succession. In the present study, we selected 34 woody species from different stages of secondary succession in subtropical forests of southern China, and measured their hydraulic conductivity, gas exchange rates, leaf nutrients and drought-tolerance traits such as xylem resistance to cavitation, turgor loss point and carbon isotope ratio. Principal component analysis revealed that early-, mid- and late-successional species were significantly separated along axis 1, which was strongly associated with hydraulic-photosynthetic coordination. In contrast to species distributed in late-successional forest, early-successional species had the highest hydraulic conductivity, net photosynthetic rates, photosynthetic nitrogen and phosphorus use efficiencies, but had the lowest photosynthetic water-use efficiency. However, changes of the measured drought-tolerance traits of the 34 species along the succession did not demonstrate a clear trend - no significant correlations between these traits and plant successional stages were found. Moreover, the trade-off between hydraulic efficiency and safety was not identified. Taken together, our results suggested that hydraulic efficiency and photosynthetic function, rather than drought tolerance, play an important role in species distributions along plant succession in subtropical forests. © 2012 Blackwell Publishing Ltd.
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
Mercury in tropical and subtropical coastal environments
Costa, Monica F.; Landing, William M.; Kehrig, Helena A.; Barletta, Mário; Holmes, Christopher D.; Barrocas, Paulo R. G.; Evers, David C.; Buck, David G.; Vasconcellos, Ana Claudia; Hacon, Sandra S.; Moreira, Josino C.; Malm, Olaf
2012-01-01
Anthropogenic activities influence the biogeochemical cycles of mercury, both qualitatively and quantitatively, on a global scale from sources to sinks. Anthropogenic processes that alter the temporal and spatial patterns of sources and cycling processes are changing the impacts of mercury contamination on aquatic biota and humans. Human exposure to mercury is dominated by the consumption of fish and products from aquaculture operations. The risk to society and to ecosystems from mercury contamination is growing, and it is important to monitor these expanding risks. However, the extent and manner to which anthropogenic activities will alter mercury sources and biogeochemical cycling in tropical and sub-tropical coastal environments is poorly understood. Factors as (1) lack of reliable local/regional data; (2) rapidly changing environmental conditions; (3) governmental priorities and; (4) technical actions from supra-national institutions, are some of the obstacles to overcome in mercury cycling research and policy formulation. In the tropics and sub-tropics, research on mercury in the environment is moving from an exploratory “inventory” phase towards more process-oriented studies. Addressing biodiversity conservation and human health issues related to mercury contamination of river basins and tropical coastal environments are an integral part of paragraph 221 paragraph of the United Nations document “The Future We Want” issued in Rio de Janeiro in June 2012. PMID:22901765
Pankiw, Tanya; Sagili, Ramesh R; Metz, Bradley N
2008-12-01
Fatty acid esters extractable from the surface of honey bee, Apis mellifera L. (Hymenoptera: Apidae), larvae, called brood pheromone, significantly increase rate of colony growth in the spring and summer when flowering plant pollen is available in the foraging environment. Increased colony growth rate occurs as a consequence of increased pollen intake through mechanisms such as increasing number of pollen foragers and pollen load weights returned. Here, we tested the hypothesis that addition of brood pheromone during the winter pollen dearth period of a humid subtropical climate increases rate of colony growth in colonies provisioned with a protein supplement. Experiments were conducted in late winter (9 February-9 March 2004) and mid-winter (19 January-8 February 2005). In both years, increased brood area, number of bees, and amount of protein supplement consumption were significantly greater in colonies receiving daily treatments of brood pheromone versus control colonies. Amount of extractable protein from hypopharyngeal glands measured in 2005 was significantly greater in bees from pheromone-treated colonies. These results suggest that brood pheromone may be used as a tool to stimulate colony growth in the southern subtropical areas of the United States where the package bee industry is centered and a large proportion of migratory colonies are overwintered.
Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.
2014-01-01
Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may “invade” the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale. PMID:24489745
NASA Astrophysics Data System (ADS)
Li, Xuejian; Mao, Fangjie; Du, Huaqiang; Zhou, Guomo; Xu, Xiaojun; Han, Ning; Sun, Shaobo; Gao, Guolong; Chen, Liang
2017-04-01
Subtropical forest ecosystems play essential roles in the global carbon cycle and in carbon sequestration functions, which challenge the traditional understanding of the main functional areas of carbon sequestration in the temperate forests of Europe and America. The leaf area index (LAI) is an important biological parameter in the spatiotemporal simulation of the carbon cycle, and it has considerable significance in carbon cycle research. Dynamic retrieval based on remote sensing data is an important method with which to obtain large-scale high-accuracy assessments of LAI. This study developed an algorithm for assimilating LAI dynamics based on an integrated ensemble Kalman filter using MODIS LAI data, MODIS reflectance data, and canopy reflectance data modeled by PROSAIL, for three typical types of subtropical forest (Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest) in China during 2014-2015. There were some errors of assimilation in winter, because of the bad data quality of the MODIS product. Overall, the assimilated LAI well matched the observed LAI, with R2 of 0.82, 0.93, and 0.87, RMSE of 0.73, 0.49, and 0.42, and aBIAS of 0.50, 0.23, and 0.03 for Moso bamboo forest, Lei bamboo forest, and evergreen and deciduous broadleaf forest, respectively. The algorithm greatly decreased the uncertainty of the MODIS LAI in the growing season and it improved the accuracy of the MODIS LAI. The advantage of the algorithm is its use of biophysical parameters (e.g., measured LAI) in the LAI assimilation, which makes it possible to assimilate long-term MODIS LAI time series data, and to provide high-accuracy LAI data for the study of carbon cycle characteristics in subtropical forest ecosystems.
Cao, Jing; Hou, Zeying; Li, Zekun; Chu, Zhaosheng; Yang, Pingping; Zheng, Binghui
2018-08-01
The present study was carried out in a mesotrophic subtropical plateau lake, Erhai, located in southwest of China. The succession of phytoplankton functional groups and the environmental variables in the lake were investigated from January 2013 to December 2015. The lake had strong radiation levels and a low-temperature amplitude because of its high elevation and strongly mixed water. It was highly affected by the subtropical monsoon precipitation, and its pollution sources were from diffuse pollution caused by rainfall runoff. Altogether 112 genera, 16 functional groups and 4 predominant functional groups, L M (Microcystis), P (Melosira, Fragilaria, Closterium), T (Mougeotia), T (Psephonema aenigmaticum) and Y (Cryptomonas), were identified, and the predominant functional groups demonstrated strong seasonal variations. Group T (Mougeotia) dominated from the winter to early spring, with strong lake water mixing. Group P replaced group T (Mougeotia) as the dominate group of the phytoplankton community in the spring (March to May), with clear water and increased temperature. With the arrival of the monsoon rainy season in the summer, large amounts of external pollutants were brought into the lake via rainfall runoff, allowing group L M (Microcystis) to become dominant. Meanwhile, the intensive nutrient inputs after the rainstorm in the summer, combined with high temperatures and decreased radiation, led to the sustained growth of group L M in the autumn and even ultimately triggered Microcystis blooming. Group T (P. aenigmaticum) was a particular phytoplankton genus predominant in the autumn, which displayed a seasonal variation similar to that of group L M . This study underscores the usefulness of phytoplankton functional groups in studying phytoplankton succession in subtropical plateau lakes impacted by diffuse pollution, in which the succession of phytoplankton functional groups can be significantly affected by rainfall runoff, which altered variables such as nutrients, high temperatures and radiation. Copyright © 2018 Elsevier B.V. All rights reserved.
Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S
2014-01-01
Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may "invade" the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.
Holocene temperature variability revealed by brGDGTs in subtropical southwestern China
NASA Astrophysics Data System (ADS)
Feng, X.; Zhao, C.
2017-12-01
Subtropical areas are important source region of moisture and heat in global climate system. Paleoclimate reconstructions from these regions, especially quantitative records, would not only help to better understand the nature of climate system through time, but also provide important constraining dataset for long-term ecosystem variations in these ecological important areas. To date, quantitative climate records with reliable chronological controls are still limited from terrestrial archives in subtropical areas. Here we present a 50-year-resolution quantitative temperature record throughout the Holocene based on branched GDGTs at a small alpine lake, Tiancai Lake (26°38'E, 99°43'N, 3898 m.a.s.l) in southwestern China. The record is based on a temporal calibration between instrumental mean annual air temperature (MAAT) and brGDGT compounds (GDGT-IIIa, GDGT-IIa', GDGT-IIb, GDGT-Ia and GDGT-Ic). The MAAT was relatively low -0.6 ° between 11 and 7.5 ka, then abruptly increased 1 ° to 4 °until 7 ka. The MAAT was relatively warm 2° between 7 and 1 ka, then decreased to 1° over the last 1 ka. The Middle to Late Holocene was 3 ° warmer than the Early Holocene. The MAAT variation at Lake Tiancai is supported by changes in evergreen oaks and Tsuga from the same sediment core, suggesting that the growth of cold-tolerant forest in place of subtropical evergreen broadleaved forest has been driven by the decrease in MAAT. The early Holocene cold interval revealed by our record and pollen data is different with the chironomid-based summer temperature reconstruction from the same lake, the latter has been driven by summer insolation. This difference suggests that a pronounced winter contribution to the mean annual temperature during the early Holocene, which was probably caused by a low winter insolation, and strengthened by a sparse vegetation cover and influences of winter ice/snow cover in tropical high latitude regions.
NASA Astrophysics Data System (ADS)
Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; Jeanthon, C.; Mahdi Bendif, E.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.
2011-09-01
Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub)tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have significantly risen over the last 25 years (0.50 ± 0.11 °C in average per decade, P < 0.01). In this paper, the genetic diversity of the two most abundant members of the phytoplankton community, the picocyanobacteria Prochlorococcus and Synechococcus, was examined during two cruises through both eastern and western Mediterranean Sea basins held in September 1999 (PROSOPE cruise) and in June-July 2008 (BOUM cruise). Diversity was studied using dot blot hybridization with clade-specific 16S rRNA oligonucleotide probes and/or clone libraries of the 16S-23S ribosomal DNA Internal Transcribed Spacer (ITS) region, with a focus on the abundance of clades that may constitute bioindicators of warm waters. During both cruises, the dominant Prochlorococcus clade in the upper mixed layer at all stations was HLI, a clade typical of temperate waters, whereas the HLII clade, the dominant group in (sub)tropical waters, was only present at very low concentrations. The Synechococcus community was dominated by clades I, III and IV in the northwestern waters of the Gulf of Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (sub)tropical counterparts.
NASA Astrophysics Data System (ADS)
Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; Jeanthon, C.; Bendif, E. M.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.
2011-05-01
Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub)tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have risen in recent years. In this paper, the genetic diversity of the two most abundant members of the phytoplankton community, the picocyanobacteria Prochlorococcus and Synechococcus, was examined on a transect from the South coast of France to Cyprus in the summer of 2008 (BOUM cruise). Diversity was studied using dot blot hybridization with clade-specific 16S rRNA oligonucleotide probes and clone libraries of the 16S-23S ribosomal DNA Internal Transcribed Spacer (ITS) region. Data were compared with those obtained during the PROSOPE cruise held almost a decade earlier, with a focus on the abundance of clades that may constitute bioindicators of warm waters. During both cruises, the dominant Prochlorococcus clade in the upper mixed layer at all stations was HLI, a clade typical of temperate waters, whereas the HLII clade, the dominant group in (sub)tropical waters, was only present at very low concentrations. The Synechococcus community was dominated by clades I, III and IV in the northwestern waters of the Gulf of Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (sub)tropical counterparts. This is discussed in the context of the low phosphorus concentrations found in surface waters in the eastern Mediterranean basin, as this may constitute a barrier to the colonization of these waters by alien picocyanobacterial groups.
NASA Astrophysics Data System (ADS)
O'Mara, N. A.; Kelly, C. S.; Herbert, T.
2017-12-01
Laminated sediment cores taken from the San Lazaro Basin (SLB) (25.18N, 112.66W) located off the coast of Baja California in the subtropical eastern Pacific were geochemically analyzed for alkenone and sterol biomarkers to reconstruct sea surface temperature (SST) and marine productivity from 850-1980 CE. High sedimentation rates, low bottom water dissolved oxygen, and high marine productivity in combination with the San Lazaro Basin's location within the dynamic transition zone between the tropical and subtropical eastern Pacific, make it a prime location to study variability of tropical and subtropical modes of climate variability. This study focuses on the impacts and variability of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the subtropical eastern Pacific. SST and coccolithophore productivity (n=730) for 2 mm sections of sediment corresponding to 1 measurement every 1.8 years were reconstructed using the Uk'37 unsaturation index and C37 alkenone concentration. The high resolution of this record allowed for the analysis of variability of SST and productivity on decadal timescales. Brassicasterol concentrations were calculated for a limited number of samples (n=44) to assess diatom productivity. High spectral power was found at periods of 20-30 years in SST and productivity records indicating a strong influence of the PDO on the SLB, making this the first marine based record directly relevant to PDO reconstructions that continuously spans the last millennium. Cool and productive (warm and less productive) waters were observed in the southern California Current in the Medieval Climate Anomaly 900-1200 CE (Little Ice Age 1400-1800 CE) supporting previous reconstructions that warmer (cooler) SST are linked to both reduced (enhanced) phytoplankton productivity. Additionally, cool (warm) SST were also associated with dry (wet) conditions in the American Southwest indicating that changes in the PDO has had a significant impact on drought in this region over the past millennium.
Tree diversity promotes insect herbivory in subtropical forests of south-east China.
Schuldt, Andreas; Baruffol, Martin; Böhnke, Martin; Bruelheide, Helge; Härdtle, Werner; Lang, Anne C; Nadrowski, Karin; von Oheimb, Goddert; Voigt, Winfried; Zhou, Hongzhang; Assmann, Thorsten; Fridley, Jason
2010-07-01
1.Insect herbivory can strongly affect ecosystem processes, and its relationship with plant diversity is a central topic in biodiversity-functioning research. However, very little is known about this relationship from complex ecosystems dominated by long-lived individuals, such as forests, especially over gradients of high plant diversity.2.We analysed insect herbivory on saplings of 10 tree and shrub species across 27 forest stands differing in age and tree species richness in an extraordinarily diverse subtropical forest ecosystem in China. We tested whether plant species richness significantly influences folivory in these highly diverse forests or whether other factors play a more important role at such high levels of phytodiversity.3.Leaf damage was assessed on 58 297 leaves of 1284 saplings at the end of the rainy season in 2008, together with structural and abiotic stand characteristics.4.Species-specific mean damage of leaf area ranged from 3% to 16%. Herbivory increased with plant species richness even after accounting for potentially confounding effects of stand characteristics, of which stand age-related aspects most clearly covaried with herbivory. Intraspecific density dependence or other abiotic factors did not significantly influence overall herbivory across forest stands.5.Synthesis.The positive herbivory-plant diversity relationship indicates that effects related to hypotheses of resource concentration, according to which a reduction in damage by specialized herbivores might be expected as host plant concentration decreases with increasing plant diversity, do not seem to be major determinants for overall herbivory levels in our phytodiverse subtropical forest ecosystem. We discuss the potential role of host specificity of dominant herbivores, which are often expected to show a high degree of specialization in many (sub)tropical forests. In the forest system we studied, a much higher impact of polyphagous species than traditionally assumed might explain the observed patterns, as these species can profit from a broad dietary mix provided by high plant diversity. Further testing is needed to experimentally verify this assumption.
Garzon-Garcia, Alexandra; Laceby, J Patrick; Olley, Jon M; Bunn, Stuart E
2017-01-01
Understanding the sources of sediment, organic matter and nitrogen (N) transferred from terrestrial to aquatic environments is important for managing the deleterious off-site impacts of soil erosion. In particular, investigating the sources of organic matter associated with fine sediment may also provide insight into carbon (C) and N budgets. Accordingly, the main sources of fine sediment, organic matter (indicated by total organic carbon), and N are determined for three nested catchments (2.5km 2 , 75km 2 , and 3076km 2 ) in subtropical Australia. Source samples included subsoil and surface soil, along with C 3 and C 4 vegetation. All samples were analysed for stable isotopes (δ 13 C, δ 15 N) and elemental composition (TOC, TN). A stable isotope mixing model (SIAR) was used to determine relative source contributions for different spatial scales (nested catchments), climatic conditions and flow stages. Subsoil was the main source of fine sediment for all catchments (82%, SD=1.15) and the main N source at smaller scales (55-76%, SD=4.6-10.5), with an exception for the wet year and at the larger catchment, where surface soil was the dominant N source (55-61%, SD=3.6-9.9), though contributions were dependent on flow (59-680m 3 /s). C 3 litter was the main source of organic C export for the two larger catchments (53%, SD=3.8) even though C 4 grasses dominate the vegetation cover in these catchments. The sources of fine sediment, organic matter and N differ in subtropical catchments impacted by erosion, with the majority of C derived from C 3 leaf litter and the majority of N derived from either subsoil or surface soil. Understanding these differences will assist management in reducing sediment, organic matter and N transfers in similar subtropical catchments while providing a quantitative foundation for testing C and N budgets. Copyright © 2016 Elsevier B.V. All rights reserved.
Extreme weather events in Iran under a changing climate
NASA Astrophysics Data System (ADS)
Alizadeh-Choobari, Omid; Najafi, M. S.
2018-01-01
Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3 °C during the period 1951-2013 (+0.2 °C per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.
Larenas-Linnemann, Désirée; Michels, Alexandra; Dinger, Hanna; Arias-Cruz, Alfredo; Ambriz Moreno, Marichuy; Bedolla Barajas, Martin; Javier, Ruth Cerino; Cid Del Prado, Maria de la Luz; Cruz Moreno, Manuel Alejandro; Vergara, Laura Diego; García Almaráz, Roberto; García-Cobas, Cecilia Y; Garcia Imperial, Daniel Alberto; Muñoz, Rosa Garcia; Hernandez Colín, Dante; Linares Zapien, Francisco Javier; Luna Pech, Jorge Agustín; Matta Campos, Juan Jose; Martinez Jimenez, Norma; Avalos, Miguel Medina; Medina Hernandez, Alejandra; Maldonado, Albero Monteverde; López, Doris Nereida; Pizano Nazara, Luis Julian; Sanchez, Emanuel Ramirez; Ramos López, José Domingo; Rodriguez-Pérez, Noel; Rodriguez Ortiz, Pablo G; Shah-Hosseini, Kijawasch; Mösges, Ralph
2014-01-01
Two different allergic rhinitis (AR) symptom phenotype classifications exist. Treatment recommendations are based on intermittent-persistent (INT-PER) cataloging, but clinical trials still use the former seasonal AR-perennial AR (SAR-PAR) classification. This study was designed to describe how INT-PER, mild-moderate/severe and SAR-PAR of patients seen by allergists are distributed over the different climate zones in a (sub)tropical country and how these phenotypes relate to allergen sensitization patterns. Six climate zones throughout Mexico were determined, based on National Geographic Institute (Instituto Nacional de Estadística y Geografía) data. Subsequent AR patients (2-68 years old) underwent a blinded, standardized skin-prick test and filled out a validated questionnaire phenotyping AR. Five hundred twenty-nine subjects participated in this study. In the tropical zone with 87% house-dust mite sensitization, INT (80.9%; p < 0.001) and PAR (91%; p = 0.04) were more frequent than in the subtropics. In the central high-pollen areas, there was less moderate/severe AR (65.5%; p < 0.005). Frequency of comorbid asthma showed a clear north-south gradient, from 25% in the dry north to 59% in the tropics (p < 0.005). No differences exist in AR cataloging among patients with different sensitization patterns, with two minor exceptions (more PER in tree sensitized and more PAR in mold positives; p < 0.05). In a (sub)tropical country the SAR-PAR classification seems of limited value and bears poor relation with the INT-PER classification. INT is more frequent in the tropical zone. Because PER has been shown to relate to AR severity, clinical trials should select patients based on INT-PER combined with the severity cataloging because these make for a better treatment guide than SAR-PAR.
Threshold and multiple indicators for nitrogen saturation in subtropical forests.
Yu, Qian; Duan, Lei; Yu, Longfei; Chen, Xiao; Si, Gaoyue; Ke, Piaopiao; Ye, Zhixiang; Mulder, Jan
2018-06-11
The influence of nitrogen (N) deposition on forest ecosystems largely depend on the N status. Developing threshold and practical indicators for N saturation in subtropical forests, with extremely high N deposition, would both enhance forest management and the assessments of global N balance and carbon (C) sequestration. Here, we quantified the N mass balance and assessed current N status at a number of subtropical forest sites in South China, using both N content, C/N ratio, and 15 N natural abundance (δ 15 N) as potential indicators of N saturation. Among the studied sites, N deposition ranged from 13.8 to 113 kg N ha -1 yr -1 in throughfall, and was dominated by ammonium (NH 4 + ). The threshold for N leaching in subtropical forest was first found to be 26-36 kg N ha -1 yr -1 , which was 160% higher than in temperate forest (based on prescribed minimum). This indicates that critical parameter inputs in global models of the impact of N deposition are in need of revision, based on specific ecosystem characteristics. We found a critical C/N ratio of 20 for the O/A horizon as indicator of N saturation. Foliar N content and δ 15 N were positively correlated with N deposition and were well suited to indicate regional N status. The δ 15 N enrichment factor (Ɛ foli/So2 , δ 15 N foliage - δ 15 N Soil2 ) was between -10‰ and -1‰, and had similar trend to those obtained from other regions with increasing N deposition. These suggest that the enrichment factor could be used to investigate the influence of N deposition in forest ecosystems, regardless of spatial heterogeneity in δ 15 N of N input, soil N availability and geomorphology. Copyright © 2018 Elsevier Ltd. All rights reserved.
The study of azaarene behavior over atmosphere of subtropical city(Keelung)
NASA Astrophysics Data System (ADS)
Liu, Chih Yun
2017-04-01
In this study, we collected the Total Suspended Particulates (TSP) from July 2014 to February 2016 in the subtropical city (Keelung), and researched azaarene behavior over atmosphere. Polycyclic Aromatic Compounds (PAHs) are ubiquitous pollutants in the environment; they have known carcinogens and/or mutagens, mainly produce from incomplete combustion. Azaarenes are polycyclic aromatic hydrocarbon derivative compounds in which a carbon atom in one of the aromatic rings is substituted by a nitrogen atom. Organism exposure to azaarenes occurs through inhalation of polluted air and by ingestion of food and/or water containing combustion products and accumulate in the body. Total azaarene concentration (16 individual compound concentration of the aggregate) is between 0.92 to 3.76 μg/m3, results showed that the concentration of azaarenes have significant seasonal variation, they have higher concentration in the cold month. In molecular weight, the highest proportion is the molecular weight equal to 143(ΣMQ) and then the molecular weight equal to 179(BAP), ΣMQ would rise from 30% 40% to 40% 50% during the cold month and warm months. Compared to ring number, 2-rings are biggest part, the smallest is 4-rings, its ratio has slight variation, but primary species is 2-rings. Emissions from transportation, local housing heating, factories burning fossil fuels and dust from Mainland south air mass are pollutant, their sources and climate conditions can affect concentration and composition of compound. There are highly significant correlation between 3-rings and 4-rings, which suggests that there are similar source strengths and transport mechanisms for these compounds. Correlation between concentration of azaarenes and ambient temperature is negative moderation, with concentration of atmospheric suspended particles is positive moderate correlation. Finally, we establish the relationship between the three parameters to predict concentration of azaarenes over atmosphere of subtropical regions. Key words: azaarenes, atmospheric suspended particles, subtropical city, multiple regression analysis.
NASA Astrophysics Data System (ADS)
Lira, Alex; Angelini, Ronaldo; Le Loc'h, François; Ménard, Frédéric; Lacerda, Carlos; Frédou, Thierry; Lucena Frédou, Flávia
2018-06-01
We developed an Ecopath model for the Estuary of Sirinhaém River (SIR), a small-sized system surrounded by mangroves, subject to high impact, mainly by the sugar cane and other farming industries in order to describe the food web structure and trophic interactions. In addition, we compared our findings with those of 20 available Ecopath estuarine models for tropical, subtropical and temperate regions, aiming to synthesize the knowledge on trophic dynamics and provide a comprehensive analysis of the structures and functioning of estuaries. Our model consisted of 25 compartments and its indicators were within the expected range for estuarine areas around the world. The average trophic transfer efficiency for the entire system was 11.8%, similar to the theoretical value of 10%. The Keystone Index and MTI (Mixed Trophic Impact) analysis indicated that the snook (Centropomus undecimalis and Centropomus parallelus) and jack (Caranx latus and Caranx hippos) are considered as key resources in the system, revealing their high impact in the food web. Both groups have a high ecological and commercial relevance, despite the unregulated fisheries. As result of the comparison of ecosystem model indicators in estuaries, differences in the ecosystem structure from the low latitude zones (tropical estuaries) to the high latitude zones (temperate system) were noticed. The structure of temperate and sub-tropical estuaries is based on high flows of detritus and export, while tropical systems have high biomass, respiration and consumption rates. Higher values of System Omnivory Index (SOI) and Overhead (SO) were observed in the tropical and subtropical estuaries, denoting a more complex food chain. Globally, none of the estuarine models were classified as fully mature ecosystems, although the tropical ecosystems were considered more mature than the subtropical and temperate ecosystems. This study is an important contribution to the trophic modeling of estuaries, which may also help the knowledge of the role of key ecosystem processes in SIR.
Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu
2017-01-01
Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong
2017-02-01
The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ettler, Vojtech; Kribek, Bohdan; Mihaljevic, Martin; Vanek, Ales; Penizek, Vit; Sracek, Ondra; Mapani, Ben; Kamona, Fred; Nyambe, Imasiku
2017-04-01
Soils in the vicinity of non-ferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions, which undergo weathering processes and release contaminants when deposited in soils. We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area in the Zambian Copperbelt and a hot semi-arid area in the northern Namibia. High concentrations of metal(loid)s were detected in the studied soils: up to 1450 ppm As, 8980 ppm Cu, 4640 ppm Pb, 2620 ppm Zn. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles either have geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [CuFeO2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). This study was supported by the Czech Science Foundation projects (GACR 13-17501S and 16-13142S).
Projections of Rapidly Rising Temperatures over Africa Under Low Mitigation
NASA Technical Reports Server (NTRS)
Engelbrecht, Francois; Adegoke, Jimmy; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Thatcher, Marcus; McGregor, John; Katzfe, Jack; Werner, Micha; Ichoku, Charles;
2015-01-01
An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4-6 C over the subtropics and 3-5 C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional downscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of African climate change and climate change adaptation in Africa.
NASA Astrophysics Data System (ADS)
Chen, Jie; Xiao, Guoliang; Kuzyakov, Yakov; Jenerette, G. Darrel; Ma, Ying; Liu, Wei; Wang, Zhengfeng; Shen, Weijun
2017-05-01
The frequency of dry-season droughts and wet-season storms has been predicted to increase in subtropical areas in the coming decades. Since subtropical forest soils are significant sources of N2O and NO3-, it is important to understand the features and determinants of N transformation responses to the predicted precipitation changes. A precipitation manipulation field experiment was conducted in a subtropical forest to reduce dry-season precipitation and increase wet-season precipitation, with annual precipitation unchanged. Net N mineralization, net nitrification, N2O emission, nitrifying (bacterial and archaeal amoA) and denitrifying (nirK, nirS and nosZ) gene abundance, microbial biomass carbon (MBC), extractable organic carbon (EOC), NO3-, NH4+ and soil water content (SWC) were monitored to characterize and explain soil N transformation responses. Dry-season precipitation reduction decreased net nitrification and N mineralization rates by 13-20 %, while wet-season precipitation addition increased both rates by 50 %. More than 20 % of the total variation of net nitrification and N mineralization could be explained by microbial abundance and SWC. Notably, archaeal amoA abundance showed the strongest correlation with net N transformation rates (r ≥ 0.35), suggesting the critical role of archaeal amoA abundance in determining N transformations. Increased net nitrification in the wet season, together with large precipitation events, caused substantial NO3- losses via leaching. However, N2O emission decreased moderately in both dry and wet seasons due to changes in nosZ gene abundance, MBC, net nitrification and SWC (decreased by 10-21 %). We conclude that reducing dry-season precipitation and increasing wet-season precipitation affect soil N transformations through altering functional microbial abundance and MBC, which are further affected by changes in EOC and NH4+ availabilities.
Summer diatom blooms in the North Pacific subtropical gyre: 2008-2009.
Villareal, Tracy A; Brown, Colbi G; Brzezinski, Mark A; Krause, Jeffrey W; Wilson, Cara
2012-01-01
The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (∼30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 10(2)-10(3) fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22-34°N occur within a broader temperature range (21-26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 10(2)-10(3) over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 µm chl a fraction (∼40-90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 µm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 µm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the subtropical front.
Perfluoroalkylated substances in the global tropical and subtropical surface oceans.
González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña
2014-11-18
In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability. This suggests that a number of physical and biogeochemical processes collectively drive the oceanic occurrence and fate of PFASs in a complex manner.
Importance of adaptation and genotype × environment interactions in tropical beef breeding systems.
Burrow, H M
2012-05-01
This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate environment for use in the (sub)tropics. However, G × E interactions are unlikely to be of major importance in tropically adapted beef cattle grazed in either temperate or (sub)tropical environments, although sex × environment interactions may provide new opportunities for differentially selecting to simultaneously improve steer performance in benign environments and female performance in harsher environments. Early evidence suggests that re-ranking of SNPs occurs across temperate and tropical environments, although their magnitude is still to be confirmed in well-designed experiments. The major limitation to genetic improvement of beef cattle over the next decade is likely to be a deficiency of large numbers of accurately recorded phenotypes for most productive and adaptive traits and, in particular, for difficult-to-measure adaptive traits such as resistance to disease and environmental stressors.
Management practices and controls on methane emissions from sub-tropical wetlands
NASA Astrophysics Data System (ADS)
DeLucia, Nicholas; Casa-Nova Gomez, Nuri; Bernacchi, Carl
2015-04-01
It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on any combination of climate conditions, natural and anthropogenic disturbances, or ecosystem perturbations. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are the main source for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. CH4 is one of the most damaging green house gases with current emission estimates ranging from 55 to 231 Tg CH4 yr-1. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04"N, 81o21'8.56"W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. Grazing alone, does not appear to alter net ecosystem CH4 emissions from subtropical semi-native and improved wetlands. Pasture type is a stronger indicator of wetland methane potential. Wetlands embedded in improved pastures exhibited periods of increased methane emission that was particularly noticeable during the wet season (July- Nov). These results help quantify GHG emissions from subtropical wetlands under different management practices while demonstrating the differences in these fluxes based on the surrounding ecosystem.
NASA Astrophysics Data System (ADS)
Montes, E.; Muller-Karger, F. E.; Cianca, A.; Lomas, M. W.; Lorenzoni, L.; Habtes, S. Y.
2016-02-01
Historical observations of potential temperature (θ), salinity (S), and dissolved oxygen concentrations (O2) in the subtropical North Atlantic (0-500 m; 0-40°N, 10-80°W) were examined to understand decadal-scale changes in O2 in Subtropical Underwater (STUW). STUW is observed at four of the longest, sustained ocean biogeochemical and ecological time-series stations, namely the CARIACO Ocean Time-Series Program (10.5°N, 64.7°W), the Bermuda Atlantic Time-series Study (BATS; 31.7°N, 64.2°W), Hydrostation "S" (32.1°N, 64.4°W), and the European Station for Time-series in the Ocean, Canary Islands (ESTOC; 29.2°N, 15.5°W). Data archived by NOAA NODC show that, between 1980 and 2013, STUW O2 (upper 300 m) has declined 0.58 μmol kg-1 yr-1 in the southeastern Caribbean Sea (10-15°N, 60-70°W), and 0.68 μmol kg-1 yr-1 in the western subtropical North Atlantic, respectively (30-35°N, 60-65°W). Observations at CARIACO (1995-2013) and BATS (1988-2012), specifically, show that STUW O2 has decreased approximately 0.61 and 0.21 μmol kg-1 yr-1, respectively. No apparent change in STUW O2 was observed at ESTOC over the course of the time series (1994-2013). Most of the observed O2 loss seems to result from shifts in ventilation associated with wind-driven mixing and slow down of STUW formation rates, rather than changes in diffusive air-sea O2 gas exchange. Variability of STUW O2 showed a strong relationship with the Atlantic Multidecadal Oscillation (AMO; R2=0.32, p < 0.001) index phase. During negative AMO years trade winds are stronger between 10°N and 30°N. These conditions stimulate the formation and ventilation of STUW. The decreasing trend in STUW O2 in the three decades spanning 1980 through 2013 thus reflects a shift from a strongly negative AMO between mid-1980's and mid-1990's to a positive AMO observed between the mid-1990's and 2013. These changes in STUW O2 were captured by the CARIACO, BATS, and Hydrostation "S" time series stations. Sustained positive AMO conditions could lead to further de-oxygenation in tropical and sub-tropical North Atlantic upper waters.
Mangrove swamps are coastal wetlands found in tropical and subtropical regions. They are characterized by halophytic (salt loving) trees, shrubs and other plants growing in brackish to saline tidal waters.
Pérez, Alejandro Escánez; Elena, Rodrigo Riera; González, Ángel Francisco González; Sierra, Ángel Guerra
2012-01-01
Abstract Data on opportunistic sightings of diamond-shaped squid Thysanoteuthis rhombus egg masses in the Canary Islands (Atlantic Ocean) are presented. A total of 16 egg masses of this species were recorded and photographed from 2000 to 2010 around the western islands of the archipelago (El Hierro, Tenerife and La Gomera). These data reveal the existence of an important spawning area for diamond-shaped squid around the Canary Islands, in subtropical east Atlantic waters. We provide preliminary data for the potential development of an artisanal fishery focused on this species, and a discussion on its potential impacts on the marine ecosystem. PMID:23129987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, G.L.; MacCracken, M.C.; Ellsaesser, H.W.
1975-08-01
Recent interest in the cause of the sub-Sahara drought has initiated several investigations implying possible anthropogenic origin through increased surface albedo due to reduced plant cover from overgrazing. Results of two integrations of the Zonal Atmospheric Model (ZAM2) are presented, differing only in the prescribed surface albedo for the subtropical land masses of the northern hemisphere. These studies were initiated to determine whether an albedo change alone can bring about such dramatic impacts on local precipitation rates as have been implied. Preliminary results indicate that an albedo change can affect the climate, not just at the latitude of change butmore » also at other latitudes due to various atmospheric feedback mechanisms. (auth)« less
Florião, Mônica Mateus; Lopes, Bruno do Bomfim; Berto, Bruno Pereira; Lopes, Carlos Wilson Gomes
2016-03-01
Bovine eimeriosis or coccidiosis is an intestinal disease caused by Eimeria spp. which is related to gastrointestinal disorders and, in some cases, death. The current work aimed to identify and provide detailed morphological characteristic features of the different Eimeria spp. parasites of crossbred cows of a subtropical organic dairy farm in Brazil, offering tools for the diagnosis of bovine eimeriosis. Eimeria auburnensis, Eimeria bovis, Eimeria bukidnonensis, Eimeria canadensis, Eimeria cylindrica, Eimeria ildefonsoi, and Eimeria zuernii were identified. The application of line regressions and ANOVA provided a means for the identification of these species. Finally, the current work proposes a dichotomous key to assist in the morphologic identification of bovine Eimeria spp. oocysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, P.
1986-01-01
Current information on the use of ionizing radiation for improving the storage of subtropical fruits like citrus, grapes, and avocados is reviewed. The feasibility of applying radiation either alone or in combination with other physical or chemical treatments for the control of postharvest fungal diseases is considered. Irradiation effects on the physiology of the fruits as related to respiration, ethylene evolution, changes in major chemical constituents, and quality are discussed. The recent trends in the possible use of irradiation as an alternative treatment to chemical fumigants for disinfestation of citrus and avocados and the prospects for the future application ofmore » irradiation for preservation of some of these fruits are outlined. 128 references.« less
Clouds, surface temperature, and the tropical and subtropical radiation budget
NASA Technical Reports Server (NTRS)
Dhuria, Harbans L.; Kyle, H. Lee
1980-01-01
Solar energy drives both the Earth's climate and biosphere, but the absorbed energy is unevenly distributed over the Earth. The tropical regions receive excess energy which is then transported by atmospheric and ocean currents to the higher latitudes. All regions at a given latitude receive the same top of the atmosphere solar irradiance (insolation). However, the net radiation received from the Sun in the tropics and subtropics varies greatly from one region to another depending on local conditions. Over land, variations in surface albedo are important. Over both land and ocean, surface temperature, cloud amount, and cloud type are also important. The Nimbus-7 cloud and Earth radiation budget (ERB) data sets are used to examine the affect of these parameters.
Interannual variability in stratiform cloudiness and sea surface temperature
NASA Technical Reports Server (NTRS)
Norris, Joel R.; Leovy, Conway B.
1994-01-01
Marine stratiform cloudiness (MSC)(stratus, stratocumulus, and fog) is widespread over subtropical oceans west of the continents and over midlatitude oceans during summer, the season when MSC has maximum influence on surface downward radiation and is most influenced by boundary-layer processes. Long-term datasets of cloudiness and sea surface teperature (SST) from surface observations from 1952 to 1981 are used to examine interannual variations in MSC and SST. Linear correlations of anomalies in seasonal MSC amount with seasonal SST anomalies are negative and significant in midlatitude and eastern subtropical oceans, especially during summer. Significant negative correlations between SST and nimbostratus and nonprecipitating midlevel cloudiness are also observed at midlatitudes during summer, suggesting that summer storm tracks shift from year to year following year-to-year meridional shifts in the SST gradient. Over the 30-yr period, there are significant upward trends in MSC amount over the northern midlatitude oceans and a significant downward trend off the coast of California. The highest correlations and trends occur where gradients in MSC and SST are strongest. During summer, correlations between SST and MSC anomalies peak at zero lag in midlatitudes where warm advection prevails, but SST lags MSC in subtropical regions where cold advection predominates. This difference is attributed to a tendency for anomalies in latent heat flux to compensate anomalies in surface downward radiation in warm advection regions but not in cold advection regions.
Warming of the Global Ocean: Spatial Structure and Water-Mass Trends
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.
2016-01-01
This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.
Prevalence and predictors of hypovitaminosis D among the elderly in subtropical region.
Huang, Chi-Hsien; Huang, Yu-Tung Anton; Lai, Yu-Cheng; Sun, Cheuk-Kwan
2017-01-01
The prevalence of low vitamin D status in the elderly population of subtropical area and the potential risk/protective factors have not been addressed. This cross-sectional questionnaire-based study, which collected demographic/anthropometric data and information on diet habit and sun exposure, recruited 170 subjects with mean age 70.9±5.6 in rural areas of southern Taiwan. Serum 25-OH vitamin D, calcium, and intact parathyroid hormone were also measured. Using cut-off level of 30 ng/mL, subjects were divided into low (n = 95) and normal (n = 75) serum vitamin D groups. The results demonstrated a low vitamin D status in 30.6% of men and 57.7% of women. Dietary vitamin D intake was another factor associated with vitamin D status (p = 0.02). Logistic regression identified inadequate intake of vitamin D-rich food as the only risk factor for low vitamin D status in men (OR = 4.55, p = 0.01), whereas inadequate sun exposure was the only predictable risk with dose-response relationship in women (low vs. high sun exposure, OR = 6.84, p = 0.018; moderate vs. high sun exposure, OR = 6.67, p = 0.005). In conclusion, low vitamin D status was common in the elderly of subtropical rural areas. Low sun exposure and inadequate dietary vitamin D consumption were associated with a low vitamin D status in females and males, respectively.
Geißler, Christian; Nadrowski, Karin; Kühn, Peter; Baruffol, Martin; Bruelheide, Helge; Schmid, Bernhard; Scholten, Thomas
2013-01-01
Throughfall kinetic energy (TKE) plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR) in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI). Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE) of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests. PMID:23457440
Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation.
Biastoch, A; Böning, C W; Lutjeharms, J R E
2008-11-27
Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC). Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic (RAPID, at latitude 26.5 degrees N, and MOVE, at latitude 16 degrees N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of +/-1.5-3 Sv (1 Sv = 10(6) m(3) s(-1)) on decadal timescales in the subtropics. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.
Interannual variability of Indian Ocean subtropical mode water subduction rate
NASA Astrophysics Data System (ADS)
Ma, Jie; Lan, Jian
2017-06-01
The interannual variation of Indian Ocean subtropical mode water (IOSTMW) subduction rate in the Southwest Indian Ocean from 1980 to 2007 is investigated in this paper based on Simple Ocean Data Assimilation (SODA) outputs. Climatology of subduction rate exceeds 75 m/year in the IOSTMW formation area. The renewal time of permanent pycnocline water mass based on the subduction rate is calculated for each density class: 3-6 years for IOSTMW (25.8 < σ θ < 26.2 kg m-3). Subduction rate in the Southwest Indian Ocean subtropical gyre exhibits a great year-to-year variability. This interannual variations of the IOSTMW subduction rate is primarily dominated by the lateral induction term, associated with the interannual variations of strong meridional gradient of winter mixed layer depth (MLD). The slope of the mixed layer depth in the mode water is closely linked to the large variations of deep late winter MLD in the mid-latitudes and negligible variations of shallow winter MLD in lower latitudes. It is further identified that the interannual variation of late winter MLD in this area is largely controlled by the latent and sensible heat flux components. The water volume of the permanent pycnocline in the IOSTMW distribution area is also found to show a significant interannual variability, and it is well correlated with the interannual variation of subduction rate.
Co-existence of freshwater and marine T4-like myoviruses in a typical subtropical estuary.
Liu, Lu; Cai, Lanlan; Zhang, Rui
2017-11-01
Viruses are the most abundant biological entities on Earth and play an important role in microbial community dynamics and biogeochemical cycling, yet their ecological characteristics in estuarine ecosystems are unclear. Here, virioplankton communities in a typical subtropical estuary, the Jiulong River estuary (JRE) in China, were investigated. The abundance of virioplankton ranged from 1.01 ± 0.05 × 107 to 1.62 ± 0.09 × 107 particles mL-1 in JRE, and the population size of viruses was correlated with temperature and nutrient levels. Three tailed viral morphotypes (myovirus, siphovirus and podovirus) were observed. Phylogenetic analysis showed that most of the g23 sequences in the JRE fell into three previously established groups (Marine, Paddy and Lake Groups) and two potential Estuary Groups. This demonstrates the co-existence of typical freshwater and marine T4-like myoviruses in the estuarine ecosystem, suggesting the movement of viruses and their hosts among biomes. Additionally, the spatial variation of g23 sequences suggests a geographic distribution pattern of T4-like myoviruses in the JRE, which might be shaped by the environmental gradient and/or their host distribution. These results provide valuable insights into the abundance, diversity and distribution patterns of virioplankton, as well as the factors influencing them, in subtropical estuarine ecosystems. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Koyama, Renata; Roberto, Sergio R.; de Souza, Reginaldo T.; Borges, Wellington F. S.; Anderson, Mauri; Waterhouse, Andrew L.; Cantu, Dario; Fidelibus, Matthew W.; Blanco-Ulate, Barbara
2018-01-01
Hybrid (Vitis vinifera ×Vitis labrusca) table grape cultivars grown in the subtropics often fail to accumulate sufficient anthocyanins to achieve good uniform berry color. Growers of V. vinifera table grapes in temperate regions generally use ethephon and, more recently, (S)-cis-abscisic acid (S-ABA) to overcome this problem. The objective of this study was to determine if S-ABA applications at different timings and concentrations have an effect on anthocyanin regulatory and biosynthetic genes, pigment accumulation, and berry color of the Selection 21 cultivar, a new V. vinifera ×V. labrusca hybrid seedless grape that presents lack of red color when grown in subtropical areas. Applications of S-ABA 400 mg/L resulted in a higher accumulation of total anthocyanins and of the individual anthocyaninsanthocyanins: delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, and malvidin-3-glucoside in the berry skin and improved the color attributes of the berries. Treatment with two applications at 7 days after véraison (DAV) and 21 DAV of S-ABA 400 mg/L resulted in a higher accumulation of total anthocyanins in the skin of berries and increased the gene expression of CHI, F3H, DFR, and UFGT and of the VvMYBA1 and VvMYBA2 transcription factors in the seedless grape cultivar. PMID:29632542
Intraseasonal variability in subtropical South America as depicted by precipitation data
NASA Astrophysics Data System (ADS)
González, P. L. M.; Vera, C. S.; Liebmann, B.; Kiladis, G.
2008-06-01
Daily precipitation data from three stations in subtropical Argentina are used to describe intraseasonal variability (20 90 days) during the austral summer. This variability is compared locally and regionally with that present in outgoing longwave radiation (OLR) data, in order to evaluate the performance of this variable as a proxy for convection in the region. The influence of the intraseasonal activity of the South American Seesaw (SASS) leading convection pattern on precipitation is also explored. Results show that intraseasonal variability explains a significant portion of summer precipitation variance, with a clear maximum in the vicinity of the SASS subtropical center. Correlation analysis reveals that OLR can explain only a small portion of daily precipitation variability, implying that it does not constitute a proper proxy for precipitation on daily timescales. On intraseasonal timescales, though, OLR is able to reproduce the main features of precipitation variability. The dynamical conditions that promote the development of intraseasonal variability in the region are further analyzed for selected summers. Seasons associated with a strong intraseasonal signal in precipitation variability show distinctive wet/dry intraseasonal periods in daily raw data, and are associated with a well defined SASS-like spatial pattern of convection. During these summers, strong large-scale forcing (such as warm El Niño/Southern Oscillation (ENSO) events and/or tropical intraseasonal convective activity), and Rossby-wave-like circulation anomalies extending across the Pacific Ocean, are also observed.
He, Jinhong; Tedersoo, Leho; Hu, Ang; Han, Conghai; He, Dan; Wei, Hui; Jiao, Min; Anslan, Sten; Nie, Yanxia; Jia, Yongxia; Zhang, Gengxin; Yu, Guirui; Liu, Shirong; Shen, Weijun
2017-07-01
Whether and how seasonality of environmental variables impacts the spatial variability of soil fungal communities remain poorly understood. We assessed soil fungal diversity and community composition of five Chinese zonal forests along a latitudinal gradient spanning 23°N to 42°N in three seasons to address these questions. We found that soil fungal diversity increased linearly or parabolically with latitude. The seasonal variations in fungal diversity were more distinguishable in three temperate deciduous forests than in two subtropical evergreen forests. Soil fungal diversity was mainly correlated with edaphic factors such as pH and nutrient contents. Both latitude and its interactions with season also imposed significant impacts on soil fungal community composition (FCC), but the effects of latitude were stronger than those of season. Vegetational properties such as plant diversity and forest age were the dominant factors affecting FCC in the subtropical evergreen forests while edaphic properties were the dominant ones in the temperate deciduous forests. Our results indicate that latitudinal variation patterns of soil fungal diversity and FCC may differ among seasons. The stronger effect of latitude relative to that of season suggests a more important influence by the spatial than temporal heterogeneity in shaping soil fungal communities across zonal forests. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Climatic variability leads to later seasonal flowering of Floridian plants.
Von Holle, Betsy; Wei, Yun; Nickerson, David
2010-07-21
Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.
Biosphere-atmosphere Exchange of CO2 in a Subtropical Mangrove Wetland in Hong Kong
NASA Astrophysics Data System (ADS)
Liu, J.; Neogi, S.; Lai, D. Y. F.
2017-12-01
Mangrove ecosystems play an important role in the global carbon cycle due to their high primary productivity, carbon-rich sediment, and sensitivity to climate change. Yet, there is currently a paucity of studies that quantify the biosphere-atmosphere exchange of GHGs in mangrove wetlands continuously at the ecosystem level. In this study, the temporal variability of net ecosystem CO2 exchange (NEE) between the Kandelia obovata mangrove and the atmosphere was determined in the Mai Po Marshes Nature Reserve of subtropical Hong Kong using an eddy covariance system between February 2016 and January 2017. The daytime half-hourly NEE ranged between -5.0 and +3.3 µmol m-2 s-1, while the maximum nighttime NEE could reach +5.0 µmol m-2 s-1 during the wet, warm season. Temperature, photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), and surface water salinity were some key physical and hydrological controls of NEE. Tidal activity could also exert profound influence on CO2 fluxes in this mangrove ecosystem by exporting dissolved carbon to adjacent estuary and inhibiting soil respiration during the inundation period. Overall, this coastal mangrove was a net sink of atmospheric CO2. Our results suggest that the ability of subtropical mangrove ecosystems in sequestering CO2 could be highly dependent on future changes in temperature, precipitation, and salinity.
Prevalence and predictors of hypovitaminosis D among the elderly in subtropical region
Huang, Chi-Hsien; Huang, Yu-Tung Anton; Lai, Yu-Cheng; Sun, Cheuk-Kwan
2017-01-01
The prevalence of low vitamin D status in the elderly population of subtropical area and the potential risk/protective factors have not been addressed. This cross-sectional questionnaire-based study, which collected demographic/anthropometric data and information on diet habit and sun exposure, recruited 170 subjects with mean age 70.9±5.6 in rural areas of southern Taiwan. Serum 25-OH vitamin D, calcium, and intact parathyroid hormone were also measured. Using cut-off level of 30 ng/mL, subjects were divided into low (n = 95) and normal (n = 75) serum vitamin D groups. The results demonstrated a low vitamin D status in 30.6% of men and 57.7% of women. Dietary vitamin D intake was another factor associated with vitamin D status (p = 0.02). Logistic regression identified inadequate intake of vitamin D-rich food as the only risk factor for low vitamin D status in men (OR = 4.55, p = 0.01), whereas inadequate sun exposure was the only predictable risk with dose-response relationship in women (low vs. high sun exposure, OR = 6.84, p = 0.018; moderate vs. high sun exposure, OR = 6.67, p = 0.005). In conclusion, low vitamin D status was common in the elderly of subtropical rural areas. Low sun exposure and inadequate dietary vitamin D consumption were associated with a low vitamin D status in females and males, respectively. PMID:28759618
NASA Astrophysics Data System (ADS)
Huang, Yanyan; Wang, Bin; Li, Xiaofan; Wang, Huijun
2017-10-01
The Year-to-year variability of the western Pacific subtropical high (WPSH) is primarily controlled by atmosphere-ocean interaction (AOI) between the WPSH and the Indo-Pacific warm pool dipole SST anomalies (AOI mode) and the anomalous SST forcing from the equatorial central Pacific (the CP forcing mode). In this study, we show that the impacts of the WPSH variability on Asian summer monsoon rainfall have changed after the late 1990s. Before the late 1990s (the PRE epoch), the WPSH primarily affects East Asian summer monsoon (EASM) and had little influence on Indian summer monsoon (ISM), whereas after the late 1990s (the POST epoch), the WPSH has strengthened its linkage to the ISM while weakened its relationship with the EASM. This epochal change is associated with a change in the leading circulation mode in the Asia-WP region. During the PRE (POST) epoch the WPSH variation is mainly controlled by the AOI (CP forcing) that mainly affects EASM (ISM). The epochal change of the leading mode may be attributed to the change of the ENSO properties in late 1990s: the CP types of El Nino become a leading ENSO mode in the POST epoch. This work provides a new perspective for understanding decadal changes of the ENSO-monsoon relationship through subtropical dynamics.
Kim, Yong Soo; Fukumoto, Glen Kazumi; Kim, Sunae
2012-10-01
The objective of this study was to compare the carcass quality and meat tenderness of Hawaii cattle finished on subtropical pasture with those of mainland US feedlot-finished cattle that were shipped from Hawaii after weaning. Rib-eye steak samples were collected from 30 feedlot-finished cattle harvested at a slaughter house in Washington State, USA and from 13 subtropical pasture-finished cattle harvested at a local slaughter house in Hawaii, then shipped to meat science laboratory at the University of Hawaii, Manoa. Samples were aged for 2 weeks at 4°C and frozen for later proximate analysis and meat tenderness measurement. Feedlot-finished cattle had significantly heavier carcass weight (353 vs 290 kg) and thicker backfat (13.5 vs 6.6 mm), but no significant difference was observed in rib-eye area between the two groups. Marbling score (Small) and United States Department of Agriculture quality grade (Choice) of the pasture-finished beef were not significantly (P < 0.05) different from those of feedlot-finished beef. The shear force value of pasture-finished beef (5.18 kg) was not statistically different (P < 0.05) from that of feedlot-finished beef (4.40 kg). In conclusion, results of this study suggest that Hawaii cattle finished on subtropical pasture produced as tender beef as mainland feedlot-finished cattle with less intramuscular fat.
Leland, Jesse C.; Bucher, Daniel J.; Coughran, Jason
2015-01-01
Recent studies have reported that crustacean age determination is possible. We applied a direct ageing method (i.e. transverse cross sectioning of gastric ossicles) to a subtropical freshwater crayfish (Cherax quadricarinatus) sourced from an aquaculture population. Growth mark periodicity and the potential for chronological depositions were investigated by staining C. quadricarinatus with calcein and examining their ossicles a year later. Pterocardiac ossicles were superior to other ageing structures (i.e. other ossicles and eyestalks) and produced repeatable between-reader counts (87% were corroborated and 13% varied by ±1). C. quadricarinatus size-at-age data (for an aquaculture population) was described by a von Bertalanffy growth equation (L ∞ = 32 mm occipital carapace length; K = 0.64; t 0 = –0.18; R2 = 0.81). Ossicular growth marks did not correspond to moult history. The calcein stain was retained over an annual cycle comprising multiple moults, demonstrating that pterocardiac ossicles retain chronological information. The maximum age (3+) corroborated other indirectly-obtained longevity estimates for C. quadricarinatus. Multiple lines of evidence indicate that the growth marks in C. quadricarinatus ossicles are probably deposited annually during winter. The ability to extract age information from subtropical decapods provides substantial opportunities for advancing fisheries and conservation research globally, but further research is needed to provide a definitive validation and elucidate the mechanism governing the accrual of ossicular growth marks. PMID:26309228
NASA Astrophysics Data System (ADS)
Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore
2013-03-01
This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.
Arístegui, Javier; Gasol, Josep M.; Herndl, Gerhard J.
2012-01-01
We analyzed the regional distribution of bulk heterotrophic prokaryotic activity (leucine incorporation) and selected single-cell parameters (cell viability and nucleic acid content) as parameters for microbial functioning, as well as bacterial and archaeal community structure in the epipelagic (0 to 200 m) and mesopelagic (200 to 1,000 m) subtropical Northeast Atlantic Ocean. We selectively sampled three contrasting regions covering a wide range of surface productivity and oceanographic properties within the same basin: (i) the eddy field south of the Canary Islands, (ii) the open-ocean NE Atlantic Subtropical Gyre, and (iii) the upwelling filament off Cape Blanc. In the epipelagic waters, a high regional variation in hydrographic parameters and bacterial community structure was detected, accompanied, however, by a low variability in microbial functioning. In contrast, mesopelagic microbial functioning was highly variable between the studied regions despite the homogeneous abiotic conditions found therein. More microbial functioning parameters indicated differences among the three regions within the mesopelagic (i.e., viability of cells, nucleic acid content, cell-specific heterotrophic activity, nanoflagellate abundance, prokaryote-to-nanoflagellate abundance ratio) than within the epipelagic (i.e., bulk activity, nucleic acid content, and nanoflagellate abundance) waters. Our results show that the mesopelagic realm in the Northeast Atlantic is, in terms of microbial activity, more heterogeneous than its epipelagic counterpart, probably linked to mesoscale hydrographical variations. PMID:22344670
Possible relationship between East Indian Ocean SST and tropical cyclone affecting Korea
NASA Astrophysics Data System (ADS)
Kim, J. Y.; Choi, K. S.; Kim, B. J.
2014-12-01
In this study, a strong negative correlation was found between East Indian Ocean (EIO) SST and frequency of summertime tropical cyclone (TC) affecting Korea.For the Warm EIO SST years, the TCs mostly occurred in the southwestern region of tropical and subtropical western Pacific, and migrated west toward the southern coast of China and Indochinese peninsula through the South China Sea. This is because the anomalous easterlies, induced by the development of anomalous anticyclone (weakening of monsoon trough) from the tropical central Pacific to the southern coast of China, served as the steering flows for the westward migration of TCs. In contrast, for the cold EIO SST years, the TCs mostly occurred in the northeastern region of tropical and subtropical western Pacific, and migrated toward Korea and Japan located in the mid-latitudes of East Asia through the East China Sea. This is because the northeastward retreat of subtropical western North Pacific high (SWNPH) was more distinct for the cold EIO SST years compared to the warm EIO SST years. Therefore, the TCs of warm EIO SST years weakened or dissipated shortly due to the effect of geographical features as they land on the southern coast of China and Indochinese peninsula, whereas the TCs of cold EIO SST years had stronger intensity than the TCs of warm EIO SST years as sufficient energy is supplied from the ocean while moving toward Korea and Japan.
NASA Astrophysics Data System (ADS)
Suzuki, Takashi; Otosaka, Shigeyoshi; Togawa, Orihiko
2013-01-01
To investigate the migration of anthropogenic 129I in the environment, we measured 129I concentrations at both subarctic (above 40oN) and subtropical (below 40oN) circulations in the surface seawater of the Japan Sea. The averaged concentrations of stations 193, 194, 201, 206 and 210 above 200 m were (2.1 ± 0.3) × 1010 atoms/m3, (2.0 ± 0.2) × 1010 atoms/m3, (1.6 ± 0.3) × 1010 atoms/m3, (1.4 ± 0.3) × 1010 atoms/m3 and (1.7 ± 0.3) × 1010 atoms/m3, respectively. The averaged concentration at the subarctic circulation in the Japan Sea above 200 m (1.9 × 1010 atoms/m3) was higher than that in the subtropical circulation (1.5 × 1010 atoms/m3). This latitudinal distribution pattern of 129I is not consistent with those of bomb-derived radionuclides such as 14C, 90Sr and 137Cs. Taking into account latitudinal location and the total amount of releases from reprocessing plants, this discriminating latitudinal distribution of 129I in the Japan Sea would indicate that a significant amount of 129I originating from active reprocessing plants in Europe is supplied to the surface of the Japan Sea.
... countries worldwide, and in temperate, tropical, and subtropical climates. About 100 cases per year are diagnosed in ... MD, PhD, Assistant Professor in Medicine, Harvard Medical School; Assistant in Medicine, Division of Infectious Disease, Department ...
Phytotoxicity of citrus and subtropical fruits to acetaldehyde vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, K.
1975-01-01
Several citrus and subtropical fruits (oranges, limes, lemons, mangos and papayas) were evaluated for phytotoxicity to acetaldehyde vapor. Exposure of fruits to 0.5 or 1% acetaldehyde vapor for 24 hr (low concentration-long exposure) did not produce skin injury or off-flavor in comparison with non-exposed fruits. This non-phytotoxic effect was also obtained at 5 to 20% acetaldehyde vapor for 10 to 15 min (high concentration-short exposure). However, acetaldehyde vapor concentration of 4% for 1 hr or 5% for 30 min (high concentration-long exposure) produced severe lenticel and skin injuries to the fruits. Exposure of fruits at these concentration also produced lackmore » of or off-flavor. Phytotoxicity of fruits to acetaldhyde vapor was a function of concentration and exposure.« less
Willard, D.A.; Cronin, T. M.; Ishman, S.E.; Litwin, R.J.
1993-01-01
Pollen, ostracode, and benthic foraminifer assemblages deposited during sea-level highstands in subtropical Florida record a climate change during the period 4.5-1.0 Ma. Before 3.5 Ma, open-shelf marine faunas and pollen assemblages with abundant Pinus, Quercus, Fagus, Carya, and nonarboreal pollen were present, indicating cooler conditions than today. From ~3.5 to 1.0 Ma, marine and terrestrial records indicate warmer conditions, similar to those existing in south Florida today. Combined with evidence for much warmer than modern conditions at high latitudes, these data suggest that increased poleward oceanic heat transport, possibly related to the emergence of the Central American isthmus between ~3.5 and 2.5 Ma, was a major influence on mid-Pliocene warmth. -Authors
Understanding the Temporal Variation of CO2 and CH4 Fluxes in a Subtropical Seasonal Wetland
NASA Astrophysics Data System (ADS)
Gomez-Casanovas, N.; DeLucia, N.; DeLucia, E. H.; Boughton, E.; Bernacchi, C.
2017-12-01
The magnitude of the net greenhouse gas (GHG) sink strength of wetlands and mechanisms driving C fluxes remain uncertain, particularly for subtropical and tropical wetlands that are responsible for the majority of wetland CH4 emissions globally. We determined the exchange of CO2 and CH4 fluxes between a subtropical wetland and the atmosphere, and investigated how changes in water table (WT), soil temperature (ST), and Gross Primary Productivity (GPP) alter CH4 fluxes. Measurements were made using the eddy covariance technique from June, 2013 to December, 2015. As GPP was greater than ecosystem respiration, wetland was consistently a net sink of CO2 from the atmosphere (-480 gC m-2 in 2013, -275 gC m-2 in 2014 and -258 gC m-2 in 2015). Though variable among years, wetland was a net source of CH4 to the atmosphere (24.5 gC m-2 in 2013, 26.1 gC m-2 in 2014, 32.7 gC m-2 in 2015). WT and ST were strong drivers of net CH4 fluxes. Fluxes of CH4 exponentially increased with WT near the soil surface, and they were maximal and sustained after 3 days or more of preceding flooding suggesting that flooding duration and intensity drives CH4 emissions in this system. GPP also exerted a strong control on these fluxes, particularly when water was near the soil surface. The system emitted an average of 2 g more C-CH4 m-2 during the wet seasons of 2013 and 2015 than the wet season of 2014 due to higher WT, and increases in flooding days and cumulative GPP for days with water at near-surface (GPPWT). Although WT was higher during the dry season of 2015 than the wet season of 2014, CH4 fluxes were similar likely because of increased ST and GPPWT in the wet season of 2014. The contribution of CH4 fluxes during the dry season to annual fluxes was 41% in 2014 and 48% in 2015. Wetland was a strong sink of C, and it was a net sink of GHGs in 2014 and a net source in 2015 mainly attributable to increases in net CH4 emissions. Climate models predict that subtropical and tropical regions will experience more frequent floods and droughts as well as higher temperatures, conditions that will likely alter ecosystem attributes such as GPP. Our results indicate that CH4 emissions from subtropical wetlands will likely respond to projected changes in precipitation, temperature and productivity, substantially affecting the net GHG sink strength of these systems in future climate scenarios.
NASA Astrophysics Data System (ADS)
Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Cuevas, Emilio; Ochoa, Héctor; Gil-Ojeda, Manuel
2017-01-01
Cirrus (Ci) cloud properties can change significantly from place to place over the globe as a result of weather processes, reflecting their likely different radiative and climate implications. In this work Cirrus clouds (Ci) features observed in late autumn/early winter season at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements were carried out in three stations: São Paulo (MSP, Brazil) and Tenerife (SCO, Canary Islands, Spain), as subtropical sites, and the polar Belgrano II base (BEL, Argentina) in the Antarctic continent. The backscattering ratio (BSR) profiles and the top and base heights of the Ci layers together to their Cirrus Cloud Optical Depth (CCOD) and Lidar Ratio (LR) for Ci clouds were derived. In addition, temperatures at the top and base boundaries of the Ci clouds were also obtained from local radiosoundings to verify pure ice Ci clouds occurrence using a given temperature top threshold (<- 38 °C). Ci clouds observed along the day were assembled in groups based on their predominant CCOD, and classified according to four CCOD-based categories. Ci clouds were found to be vertically-distributed in relation with the temperature, forming subvisual Ci clouds at lower temperatures and higher altitudes than other Ci categories at both latitudes. Discrepancies shown on LR values for the three stations, but mainly remarked between subtropical and polar cases, can be associated to different temperature regimes for Ci formation, influencing the internal ice habits of the Ci clouds, and hence likely affecting the LR derived for the Ci layer. In comparison with literature values, daily mean CCOD/LR for SCO (0.4 ± 0.4/21 ± 10 sr), MSP (0.5 ± 0.5/27 ± 5 sr) and BEL (0.2 ± 0.3/28 ± 9 sr) are in good agreement; however, the variability of the Ci optical features along the day present large discrepancies. In comparison with CALIOP data, Ci clouds are observed at similar altitudes (around 10-13 km height); however, differences are found mostly in CCOD values for subtropical Ci clouds, whereas LR values are in a closer agreement. These differences are carefully examined in relation with the closest CALIPSO overpass time and distance from the station (> 70 km far), inferring the irregular extension and inhomogeneity of the Ci clouds over each study area. These considerations can be useful for assimilation of the Ci features into climate models and evaluation of future space-borne lidar observations of Ci clouds, especially for the future ESA/Copernicus-Sentinel and ESA/EarthCARE missions.
NASA Astrophysics Data System (ADS)
Poulton, Alex J.; Holligan, Patrick M.; Charalampopoulou, Anastasia; Adey, Tim R.
2017-11-01
Coccolithophore species composition was determined in 199 samples collected from the upper 300 m of the Atlantic Ocean, spanning temperate, tropical and subtropical waters in both hemispheres during four Atlantic Meridional Transect (AMT) cruises over the period 2003-2005. Of the 171 taxa observed, 140 consistently represented <5% of total cell numbers, and were classed as rare. Multivariate statistical techniques were used on the common taxa to assess variability in community composition vertically in the water column, horizontally across hydrographic provinces (subtropical gyres, equatorial waters, temperate waters), and temporally between cruises. Sharper gradients of statistical dissimilarity in species composition occurred vertically over a few tens of metres than horizontally over hundreds of kilometres. Three floral groups were identified from analysis of the depth of normalised abundance maxima in the subtropical gyres and equatorial waters: the upper euphotic zone (UEZ, >10% surface irradiance); the lower euphotic zone (LEZ, 10-1% surface irradiance); and the sub-euphotic zone (SEZ, <1% surface irradiance). The LEZ includes the deep chlorophyll maximum (DCM) and nutricline, and was characterised by species such as Emiliania huxleyi and Gephyrocapsa ericsonii which were also abundant at higher latitudes. It is suggested that this pattern reflects similarities in the light (and inorganic nutrient) conditions between the LEZ and temperate waters. The SEZ is below the depth where light is thought to be sufficient to support photosynthesis, suggesting that deep-dwelling species such as Florisphaera profunda and Gladiolithus spp. may be mixotrophic or phagotrophic, although conclusive proof will need to be gained experimentally. Mixotrophy could also be an important nutritional strategy for species abundant (Umbellosphaera spp., holococcolithophores) in the UEZ where inorganic nutrient concentrations are depleted and limiting to growth, although other nutritional strategies, such as the use of organic nutrients, are also possible. Statistical differences were also found in the species composition between the different cruises, with high levels of similarity for similar timed cruises (May or September-October). Few individual taxa showed significant variability in abundance over the time-span of sampling, except species such as E. huxleyi and G. ericsonii at higher latitudes. In subtropical and equatorial waters, high levels of species richness and low levels of species dominance remained throughout the sampling period indicating that seasonal fluctuations reflected differences in the whole coccolithophore community rather than in just one or a few species. Multivariate analyses of the taxa classified as rare also indicated some level of temporal, as well as vertical, zonation. Such insights into coccolithophore ecology and community composition provide important new perspectives that require innovative research to fully understand their impact on ocean biogeochemistry.
NASA Astrophysics Data System (ADS)
Gouget, Hervé; Cammas, Jean-Pierre; Marenco, Alain; Rosset, Robert; JonquièRes, Isabelle
1996-11-01
Aircraft measurements of ozone, methane, carbon monoxide, relative humidity, and equivalent potential temperature were performed during the TROPOZ II campaign. During the aircraft descent down to Pointe-à-Pitre (16.3°N, 61.5°W), at 2100 UTC on January 12, 1991, two ozone peaks (75 ppb) are observed, one at an altitude of 7.5 km and the other at 3.0 km. A physicochemical interpretation for each ozone peak is proposed in connection with the meteorological context, using radiosounding data, total ozone content from TOMS/NIMBUS 7 and diagnoses issued from analyses by the European Centre for Medium-Range Weather Forecasts, Reading, England. The stratospheric origin of the 7.5-km ozone peak is inferred from negative correlations between ozone and its precursors and from diagnoses based on potential vorticity and ageostrophic circulations depicting the structure of the tropopause fold embedded in the subtropical jet front system. Using an appropriate method to isolate cross- and along-front ageostrophic circulations, we show that much of the observed structure of the tropopause fold can be ascribed to transverse and vertical circulations associated with the irrotational part of the flow. Though the downward extent of the subtropical tropopause fold (400 hPa) is restricted in comparison with typical extratropical tropopause ones (700 hPa), the present results suggest that subtropical tropopause folds may significantly contribute to the global stratosphere-troposphere ozone exchange. The origin of the 3.0-km ozone peak trapped just below the trade wind inversion cannot be ascribed precisely. Analogies with other measurements of dust and aerosols transported over the Atlantic or Pacific in the summer season are discussed. Various possibilities are examined: (1) an earlier stratospheric intrusion event, (2) long-range transport by the trade winds of biomass burning species emitted over West Africa, and (3) fast photochemical ozone formation occurring just below the trade wind inversion within already polluted air parcels originating from remote regions (United States and Gulf of Mexico) after eastward and southward transport around the western Atlantic anticyclone.
The Subtropical Grasslands LTAR: balancing agricultural production and conservation goals
NASA Astrophysics Data System (ADS)
Gomez-Casanovas, N.; Boughton, E.; Bernacchi, C.; DeLucia, E. H.; Sparks, J. P.; Silveira, M.; Boughton, R. K.; Swain, H.
2015-12-01
Subtropical grazing lands of peninsular Florida have been shaped by a long evolutionary history of lightning ignited fire followed by flooding resulting in a vast treeless prairie region in south-central Florida. In these grassland ecosystems fire return intervals are between 1-3 years. Beginning in the 1500's, Andalusian cattle began grazing in this region and the cattle industry began in earnest in the late 1800s/early 1900s. Today, Florida's prairie region is largely occupied by cow/calf ranch operations and also occupies the Northern Everglades watershed where water quality/quantity issues are at the forefront of environmental concerns. Florida ranches are characterized by a gradient of management intensities, ranging from sown pastures (most intensively managed) to semi-native pastures with a mix of introduced and native grasses, and rangeland (least managed ecosystem). Located at Archbold Biological Station, MacArthur Agro-ecology Research Center, and University of Florida Range Cattle Research Center (www.maerc.org; www.rcrec-ona.ifas.ufl.edu), a primary goal of the Subtropical Grasslands US Department of Agriculture Long-term Agro-Ecosystem Research LTAR is to balance intensification of sown pastures while enhancing management of native systems in a way that maximizes other ecosystem services (regulating, supporting, cultural, biodiversity). Here, we describe our proposed experimental design to compare ecosystem delivery from conventional and aspirational management regimes in sown pastures and native systems. Aspirational management goals are to (i) maximize productivity in sown pastures with a neutral effect on other ecosystem services, and (ii) manage native systems in a way that maximizes regulating, supporting, and biodiversity ecosystem services by utilizing patch burn grazing. Ultimately, we will determine if enhanced production in sown pasture under the aspirational management system can offset any reduction in productivity in semi-native/native systems managed for services other than production. Cross-site analyses with other LTAR sites are planned to assess energy balance and gas exchange in croplands of the southeastern U.S. and to compare controlling factors and processes across humid, subtropical and sub-humid continental beef-grazing systems.
Phosphorus dynamics in biogeochemically distinct regions of the southeast subtropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Duhamel, Solange; Björkman, Karin M.; Repeta, Daniel J.; Karl, David M.
2017-02-01
The southeast subtropical Pacific Ocean was sampled along a zonal transect between the coasts of Chile and Easter Island. This remote area of the world's ocean presents strong gradients in physical (e.g., temperature, density and light), chemical (e.g., salinity and nutrient concentrations) and microbiological (e.g., cell abundances, biomass and specific growth rates) properties. The goal of this study was to describe the phosphorus (P) dynamics in three main ecosystems along this transect: the upwelling regime off the northern Chilean coast, the oligotrophic area associated with the southeast subtropical Pacific gyre and the transitional area in between these two biomes. We found that inorganic phosphate (Pi) concentrations were high and turnover times were long (>210 nmol l-1 and >31 d, respectively) in the upper water column, along the entire transect. Pi uptake rates in the gyre were low (euphotic layer integrated rates were 0.26 mmol m-2 d-1 in the gyre and 1.28 mmol m-2 d-1 in the upwelling region), yet not only driven by decreases in particle mass or cell abundance (particulate P- and cell- normalized Pi uptake rates in the euphotic layer were ∼1-4 times and ∼3-15 times lower in the gyre than in the upwelling, respectively). However these Pi uptake rates were at or near the maximum Pi uptake velocity (i.e., uptake rates in Pi amended samples were not significantly different from those at ambient concentration: 1.5 and 23.7 nmol l-1 d-1 at 50% PAR in the gyre and upwelling, respectively). Despite the apparent Pi replete conditions, selected dissolved organic P (DOP) compounds were readily hydrolyzed. Nucleotides were the most bioavailable of the DOP substrates tested. Microbes actively assimilated adenosine-5‧-triphosphate (ATP) leading to Pi and adenosine incorporation as well as Pi release to the environment. The southeast subtropical Pacific Ocean is a Pi-sufficient environment, yet DOP hydrolytic processes are maintained and contribute to P-cycling across the wide range of environmental conditions present in this ecosystem.
Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H
2013-12-01
The conservation implications of large-scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow-growing mature-phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest-area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical. © 2013 Society for Conservation Biology.
Modeling forest disturbance and recovery in secondary subtropical dry forests of Puerto Rico
NASA Astrophysics Data System (ADS)
Holm, J. A.; Shugart, H. H., Jr.; Van Bloem, S. J.
2015-12-01
Because of human pressures, the need to understand and predict the long-term dynamics of subtropical dry forests is urgent. Through modifications to the ZELIG vegetation demographic model, including the development of species- and site-specific parameters and internal modifications, the capability to predict forest change within the Guanica State Forest in Puerto Rico can now be accomplished. One objective was to test the capability of this new model (i.e. ZELIG-TROP) to predict successional patterns of secondary forests across a gradient of abandoned fields currently being reclaimed as forests. Model simulations found that abandoned fields that are on degraded lands have a delayed response to fully recover and reach a mature forest status during the simulated time period; 200 years. The forest recovery trends matched predictions published in other studies, such that attributes involving early resource acquisition (i.e. canopy height, canopy coverage, density) were the fastest to recover, but attributes used for structural development (i.e. biomass, basal area) were relatively slow in recovery. Biomass and basal area, two attributes that tend to increase during later successional stages, are significantly lower during the first 80-100 years of recovery compared to a mature forest, suggesting that the time scale of resilience in subtropical dry forests needs to be partially redefined. A second objective was to investigate the long and short-term effects of increasing hurricane disturbances on vegetation structure and dynamics, due to hurricanes playing an important role in maintaining dry forest structure in Puerto Rico. Hurricane disturbance simulations within ZELIG-TROP predicted that increasing hurricane intensity (i.e. up to 100% increase) did not lead to a large shift in long-term AGB or NPP. However, increased hurricane frequency did lead to a 5-40% decrease in AGB, and 32-50% increase in NPP, depending on the treatment. In addition, the modeling approach used here was able to track changes in litterfall, coarse woody debris, and other forest carbon components under various hurricane regimes, a critical step for understanding the future state of subtropical dry forests.
NASA Astrophysics Data System (ADS)
Kelly, C. S.; Herbert, T.; O'Mara, N. A.; Abella-Gutiérrez, J. L.; Herguera, J. C.
2016-12-01
The ocean dynamical thermostat hypothesis predicts that stronger [weaker] equatorial radiation forces warmer [cooler] western Pacific sea surface temperatures (SSTs) and a cooler [warmer] Eastern Equatorial Pacific (EEP) through air-sea coupling of the Walker circulation. Although proxy data offers some support for this prediction, recent SST reconstructions from the EEP suggest complex relationships between Northern Hemisphere (NH) and EEP temperature during the last millennium (Rustic et al. 2015), with EEP SSTs positively covarying with NH temperature during the Medieval Warm Period but negatively covarying during the Little Ice Age (LIA). Whereas most proxy reconstructions have focused on the EEP upwelling zone, few high-resolution studies exist from the California Current (CC)—a region whose oceanography displays exceptional fidelity to the El Niño Southern Oscillation and the Pacific Decadal Oscillation. In particular, southern CC oceanography reflects a balance between tropically-sourced and more northerly, temperate waters. Teasing these signals apart across past centuries can provide insight as to how a more complex dynamical thermostat affects the subtropics. Does the subtropical eastern Pacific track EEP SST across multiple centuries and climatic transitions? We present a record from the San Lazaro Basin (25N, 112.5W) in the subtropical eastern Pacific off Baja, Mexico of SST and marine paleoproductivity based upon alkenone saturation and concentrations (C37tot) over the last millennium. By combining these analyses on laminated sediment cores with newly published productivity records from the same site, we provide the first sub decadal paleoceanographic record from the southern California upwelling zone. We observe quasi-periodic short-lived cold excursions, centennial modulation of multidecadal periodicities, and an inverse relationship between C37tot and SST at lower frequencies. Our SST record displays a warm Little Ice Age, similar to but 100 years earlier than EEP warmth observed at 1500 CE (Rustic et al. 2015). In spite of this mismatch, the similarity between these records and the correlation of LIA warmth with NH cooling offers support for the dynamical thermostat's application in subtropical settings, provided they are plumbed to the equatorial climatology.
Methane Fluxes from Subtropical Wetlands
NASA Astrophysics Data System (ADS)
DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.
2013-12-01
It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify GHG emissions from subtropical wetlands while demonstrating the differences in these fluxes based on the surrounding ecosystem.
NASA Astrophysics Data System (ADS)
Resovsky, A.; Yang, Z. L.
2015-12-01
Methane (CH4) is an important greenhouse gas, and the predominant source of natural atmospheric CH4 globally is its production in wetland soils. Wetlands and marshes in the southeastern U.S. comprise over 40 million acres of land and thus represent a significant component of the global climate system. CH4 contributions from these and other subtropical systems remain difficult to quantify, however. Existing field measurements are lacking in both spatial and temporal coverage, inhibiting efforts to produce regional estimates through upscaling. Top-down constraints on emissions have been generated using satellite remote sensing retrievals of column CH4 (e.g., Frankenberg et al., 2005, 2008, Bergamaschi et al., 2007, 2013, Bloom et al., 2010, Wecht et al., 2014), but such approaches typically require preexisting emissions estimates to discern individual source contributions. Land Surface Models (LSMs) have the potential to produce realistic results, but such predictions rely on accurate representations of sub-grid scale processes responsible for emissions. Since net fluxes are governed by complex interactions between local environmental and biogeochemical factors including water table position, soil temperature, soil substrate availability and vegetation type, reliable flux simulations depend not only upon how such processes are resolved but how skillfully the land surface state itself is predicted by a given model. Here, we examine simulations using CLM4Me, a CH4 biogeochemistry model run within CESM, and compare results to recently compiled flux estimations from satellite remote sensing data. We then examine how seasonal CH4 flux simulations in CLM4Me are affected by alternative parameterizations of inundated land fraction. A global inundation dataset is calculated using DYPTOP, a newly-developed TOPMODEL implementation specifically designed to simulate the dynamics of wetland spatial distribution. We find evidence that DYPTOP may improve wetland CH4 flux predictions over subtropical regions in CLM4.5, and propose a computationally efficient framework for fine-scale tuning of this scheme to more accurately represent the role of subtropical and temperate wetlands in global climate projections.
Subtropical air masses over eastern Canada: Their links to extreme precipitation
NASA Astrophysics Data System (ADS)
Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad
2017-04-01
We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this expression for precipitation rate to study the extreme precipitation events in Montreal that are associated with these same cases of extreme warm, moist air masses, and their physical impacts on the precipitation rate. Implications of this air mass modulation on precipitation rate are discussed in the context of longer-term global climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.J.; Ruth, S.
1993-04-15
A simulation of precise years of the quasi-biennial oscillation (QBO) is achieved in a two-dimensional model by relaxing the modeled equatorial winds in the lower stratosphere toward radiosonde observations. The model has been run for the period 1971-90. A QBO signal in column ozone is produced in the model that agrees reasonably well with observational data from the BUV, TOMS, and SAGE II satellite datasets. The model results confirm previous indications of the importance of the interaction of the QBO with the annual cycle in the determination of the subtropical ozone anomaly. The low-frequency modulation of the subtropical ozone anomalymore » is now particularly clear. The low-frequency modulation of the subtropical ozone anomaly in the model arises as a result of the interaction of the QBO with the annual cycle in the vertical advection by the Hadley circulation. The possibility of a further, similar modulation arising from the interaction of the equatorial wind QBO and the annual cycle in midlatitude eddy activity is discussed, with particular emphasis on the implications for the eddy transfer of ozone to high latitudes and on the ability to predict the severity of the Antarctic ozone hole. A link is proposed between the QBO signal in the severity of the Antarctic ozone hole and the amount of ozone observed in the subtropical/midlatitude springtime maximum in the Southern Hemisphere. On the basis of this relationship, the reliability of the model as a predictor of the severity of the ozone hole is explored. A conclusion of the study is that a reliable predictor of the severity of the ozone hole must take into account the timing of the descent of the equatorial wind QBO at the equator with respect to the annual cycle and that the use, as in previous studies, of a single parameter, such as the sign of the 50-mb equatorial wind, will not be entirely reliable because it cannot do this. 31 refs., 11 figs.« less
Huang, Jihong; Ma, Keping; Huang, Jianhua
2017-01-01
Based on a great number of literatures, we established the database about the Chinese endemic seed plants and analyzed the compositions, growth form, distribution and angiosperm original families of them within three big natural areas and seven natural regions. The results indicate that the above characters of Chinese endemic plants take on relative rule at the different geographical scales. Among the three big natural areas, Eastern Monsoon area has the highest endemic plants richness, whereas Northwest Dryness area is the lowest. For life forms, herbs dominate. In contrast, the proportion of herbs of Eastern Monsoon area is remarkable under other two areas. Correspondingly the proportions of trees and shrubs are substantially higher than other two. For angiosperm original families, the number is the highest in Eastern Monsoon area, and lowest in Northwest Dryness area. On the other hand, among the seven natural regions, the humid and subtropical zone in Central and Southern China has the highest endemic plants richness, whereas the humid, hemi-humid region and temperate zone in Northeast China has the lowest. For life forms, the proportion of herbs tends to decrease from humid, hemi-humid region and temperate zone in Northeast China to humid and tropical zone in Southern China. Comparably, trees, shrubs and vines or lianas increase with the same directions. This fully represents these characters of Chinese endemic plants vary with latitudinal gradients. Furthermore, as to the number of endemic plants belonging to angiosperm original families, the number is the most in humid and subtropical zone in Center and Southern China, and tropical zone in Southern China in the next place. In contrast, the endemic plant of these two regions relatively is richer than that of The Qinghai-Tibet alpine and cold region. All above results sufficiently reflect that the Chinese endemic plants mainly distribute in Eastern Monsoon area, especially humid and subtropical zone in Center and Southern China and tropical zone in Southern China. Furthermore, the flora of Eastern Monsoon area, in particular humid and subtropical zone in Center and Southern China and tropical zone in Southern China, is more ancient and original than that of Northwest Dryness area and Qinghai-Tibet alpine and cold area.
Estimating the Velocity and Transport of the East Australian Current using Argo, XBT, and Altimetry
NASA Astrophysics Data System (ADS)
Zilberman, N. V.; Roemmich, D. H.; Gille, S. T.
2016-02-01
Western Boundary Currents (WBCs) are the strongest ocean currents in the subtropics, and constitute the main pathway through which warm water-masses transit from low to mid-latitudes in the subtropical gyres of the Atlantic, Pacific, and Indian Oceans. Heat advection by WBCs has a significant impact on heat storage in subtropical mode waters formation regions and at high latitudes. The possibility that the magnitude of WBCs might change under greenhouse gas forcing has raised significant concerns. Improving our knowledge of WBC circulation is essential to accurately monitor the oceanic heat budget. Because of the narrowness and strong mesoscale variability of WBCs, estimation of WBC velocity and transport places heavy demands on any potential sampling scheme. One strategy for studying WBCs is to combine complementary data sources. High-resolution bathythermograph (HRX) profiles to 800-m have been collected along transects crossing the East Australian Current (EAC) system at 3-month nominal sampling intervals since 1991. EAC transects, with spatial sampling as fine as 10-15 km, are obtained off Brisbane (27°S) and Sydney (34°S), and crossing the related East Auckland Current north of Auckland. Here, HRX profiles collected since 2004 off Brisbane are merged with Argo float profiles and 1000 m trajectory-based velocities to expand HRX shear estimates to 2000-m and to estimate absolute geostrophic velocity and transport. A method for combining altimetric data with HRX and Argo profiles to mitigate temporal aliasing by the HRX transects and to reduce sampling errors in the HRX/Argo datasets is described. The HRX/Argo/altimetry-based estimate of the time-mean poleward alongshore transport of the EAC off Brisbane is 18.3 Sv, with a width of about 180 km, and of which 3.7 Sv recirculates equatorward on a similar spatial scale farther offshore. Geostrophic transport anomalies in the EAC at 27°S show variability of ± 1.3 Sv at interannual time scale related to ENSO. The present calculation is a case study that will be extended to other subtropical WBCs.
NASA Astrophysics Data System (ADS)
Suffrian, K.; Posman, K.; Matrai, P.; Countway, P. D.; Archer, S. D.
2016-02-01
Marine dimethyl sulfide (DMS), a ubiquitous atmospheric trace gas, comprises the largest source of sulphur to the atmosphere. So far, temperate and high-latitude ocean acidification (OA) mesocosm experiments point to a decrease of this precursor for cloud condensation nuclei, leading to fewer clouds, and resulting in an increased radiative force. To our knowledge no experiments have yet been carried out which address multiple forcings (temperature and pCO2) in the subtropics. We thus joined the 55-day KOSMOS large mesocosm experiment on Gran Canaria to investigate if the observed decrease could be global. As subtropical and tropical oceans comprise a large proportion of the world's oceans, we were i.a. interested if 1) increasing ocean acidification in a subtropical environment would also decrease [DMS], and if 2) bacterial DMS production could explain a large part of potential decreases. Here we focus on the first phase (day 1-23), showing the impact of OA on [DMS] and [DMSP] (dimethylsulfoniopropionate). Bacteria are thought to be the main DMS producers, so we used 35S-DMSP as a tracer to investigate the impact of bacterial DMS production on observed [DMS] decreases correlated with increasing OA. [DMS] showed a strong inverse correlation with [H+] (-50% vs. ambient control). [DMSPp] (-37%) and [DMSPd] (-20%) also decreased with increasing [H+]. Our results support findings from higher latitude mesocosm experiments, thus suggesting the effect might be global. Bacterial DMS production rates, their rate constants, and yields during the peak in [DMS] were negatively correlated with [H+] on single days, while gross DMS-production was high enough to support observed [DMS] increases. Bacterial DMSP uptake rates and DMS production rates were not correlated with [H+] on any other day. Bacterial effects alone are thus not enough to explain observed changes in standing stocks. We will further explore the results by normalizing to bacterial protein production, cell abundance, and potential changes in gene expression, and finally link DMS/P metabolism to diversity (in progress).
40 CFR Appendix A to Part 161 - Data Requirements for Registration: Use Pattern Index
Code of Federal Regulations, 2013 CFR
2013-07-01
... crops Tropical/subtropical woody crops Drug and medicinal crops Terrestrial nonfood crop Annual...) Janitorial equipment Barber and beauty shop instruments and equipment Morgues, mortuaries, and funeral homes...
40 CFR Appendix A to Part 161 - Data Requirements for Registration: Use Pattern Index
Code of Federal Regulations, 2012 CFR
2012-07-01
... crops Tropical/subtropical woody crops Drug and medicinal crops Terrestrial nonfood crop Annual...) Janitorial equipment Barber and beauty shop instruments and equipment Morgues, mortuaries, and funeral homes...
Bradford's Law and the Literature of Agriculture
ERIC Educational Resources Information Center
Lawani, S. M.
1973-01-01
This paper presents analyses of separate data on the literature of tropical and subtropical agriculture, and the world literature of agricultural economics and rural socilogy, in relation to Bradford's law. (8 references) (Author/SJ)
Campos, Raúl E.
2013-01-01
In order to determine if phytotelmata in sympatric bamboos of the genus Guadua might be colonized by different types of arthropods and contain communities of different complexities, the following objectives were formulated: (1) to analyze the structure and species richness of the aquatic macroinvertebrate communities, (2) to comparatively analyze co-occurrences; and (3) to identify the main predators. Field studies were conducted in a subtropical forest in Argentina, where 80 water-filled bamboo internodes of Guadua chacoensis (Rojas Acosta) Londoño and Peterson (Poales: Poaceae) and G. trinii (Nees) Nees and Rupr. were sampled. Morphological measurements indicated that G. chacoensis held more fluid than G. trinii. The communities differed between Guadua species, but many macroinvertebrate species used both bamboo species. The phytotelmata were mainly colonized by Diptera of the families Culicidae and Ceratopogonidae. PMID:24224775
The effect of atmospheric diabatic heating on low-frequency oscillations
NASA Astrophysics Data System (ADS)
Yen, Ming-Cheng
A diagnostic scheme is devised to illustrate a chain relationship between diabatic heating and planetary-scale divergent and rotational circulations. The scheme consists of the velocity-potential maintenance equation, which relates diabatic heating and velocity potential, and the streamfunction budget equation, which depicts the streamfunction tendency caused by the imbalance between streamfunction tendencies induced by vorticity advection and source. The proposed scheme is employed to examine the effect of tropical diabatic heating on the annual variation of subtropical jet streams. It was found that annual variations of both tropical diabatic heating and planetary-scale divergent circulation exhibit an annual in-phase seesaw oscillation between the winter and summer hemispheres. The annual variation of subtropical jet streams is caused by the adjustment of atmospheric rotational flow through planetary-scale divergent circulation in response to the annual cycle of tropical diabatic heating.
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Douglass, Anne R.; Newman, Paul A.; Gille, John C.; Nardi, Bruno; Yudin, Valery A.; Kinnison, Douglas E.; Khosravi, Rashid
2008-01-01
On 26 January 2006, the High Resolution Dynamic Limb Sounder (HIRDLS) observed low mixing ratios of ozone and nitric acid in an approximately 2 km vertical layer near 100 hPa extending from the subtropics to 55 degrees N over North America. The subsequent evolution of the layer is simulated with the Global Modeling Initiative (GMI) model and substantiated with HIRDLS observations. Air with low mixing ratios of ozone is transported poleward to 80 degrees N. Although there is evidence of mixing with extratropical air and diabatic descent, much of the tropical intrusion returns to the subtropics. This study demonstrates that HIRDLS and the GMI model are capable of resolving thin intrusion events. The observations combined with simulation are a first step towards development of a quantitative understanding of the lower stratospheric ozone budget.
Carbonate sedimentology of Seribu Islands patch reef complex: a literature review
NASA Astrophysics Data System (ADS)
Utami, D. A.; Hakim, A. R.
2018-02-01
Many oil and gas reservoirs in the world are reserved in fossil carbonate sediment. Knowledge of modern carbonate sedimentology is important for a better understanding of ancient carbonate sedimentation. Equatorial coral reefs comprise almost half of the world coral reef production, and yet their dynamics, distributions, and cycles are still not well understood. Contrary to their subtropical counterpart, South East Asian carbonate system is known to be strongly influenced by the combination of oceanographic and climatic conditions. Hence carbonate sediments in the tropics have a distinct depositional system, and ought to be treated differently since common distribution models were developed from the (sub-tropical) Atlantic and Pacific regions. This paper systematically summarizes carbonate sediment studies in Seribu Islands and its dominant oceanographic configuration to provide insights and a sense of research direction in the future.
Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand.
Davis, Robert E; Dougherty, Erin; McArthur, Colin; Huang, Qiu Sue; Baker, Michael G
2016-07-01
The relationship between weather and influenza and pneumonia mortality was examined retrospectively using daily data from 1980 to 2009 in Auckland, New Zealand, a humid, subtropical location. Mortality events, defined when mortality exceeded 0·95 standard deviation above the mean, followed periods of anomalously cold air (ta.m. = -4·1, P < 0·01; tp.m. = -4·2, P < 0·01) and/or anomalously dry air (ta.m. = -4·1, P < 0·01; tp.m. = -3·8, P < 0·01) by up to 19 days. These results suggest that respiratory infection is enhanced during unusually cold conditions and during conditions with unusually low humidity, even in a subtropical location where humidity is typically high. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.;
2010-01-01
We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation
Campos, Raúl E.; Fernández, Liliana A.
2011-01-01
A list of the most common plants that form phytotelmata and their associated coleopterans (aquatic, semi-aquatic and terrestrial) from the northeastern subtropical and temperate area of Argentina, South America with biological and behavioral observations is presented in this study. Species of Poaceae (n = 3), Bromeliaceae (5), Apiaceae (6), Araceae (2), Urticaceae (1), Marantaceae (1), Arecaceae (1), Dipsacaceae (1) and Cyperaceae (1) were identified as phytotelmata. Aquatic species of Scirtidae (2), Dytiscidae (2), and Hydrophilidae (4), semi-aquatic Chelonariidae (2), and terrestrial species of Carabidae (3), Staphylinidae (5), Histeridae (1), Elateridae (1), Cantharidae (1), Cleridae (1), Tenebrionidae (1), Meloidae (1), Anthicidae (1), Chrysomelidae (3), Curculionidae (7) and Apionidae (1) were identified from six species of Eryngium L. (Apiales: Apiaceae), two species of Guadua Kunth (Poales: Poaceae), Aechmea distichantha Lemaire (Poales: Bromeliaceae), and from fallen leaves of Euterpe edulis Martius (Arecales: Arecaceae) from the temperate and subtropical area. The highest species richness was recorded in Eryngium phytotelmata. Fifteen species of beetles inhabit Eryngium cabrerae Pontiroli, 11 in E. horridum Malme, 7 in E. stenophyllum Urban, 4 in E. aff. serra Chamisso and Schlechtendal., 3 in E. elegans Chamisso and Schlechtendal, 2 in E. eburneum Decne and E. pandanifolium Chamisso and Schlechtendal. From bamboo, 6 species of coleopterans were collected from Guadua trinii (Nees) Nees ex Ruprecht and 4 from G. chacoensis (Rojas) Londoño and Peterson. Three species of aquatic coleopterans were recorded from A. distichantha and only one from E. edulis. PMID:22236084
Yin, Qiulong; Wang, Lei; Lei, Maolin; Dang, Han; Quan, Jiaxin; Tian, Tingting; Chai, Yongfu; Yue, Ming
2018-04-15
Leaf economics and hydraulic traits are simultaneously involved in the process of trading water for CO 2 , but the relationships between these two suites of traits remain ambiguous. Recently, Li et al. (2015) reported that leaf economics and hydraulic traits were decoupled in five tropical-subtropical forests in China. We tested the hypothesis that the relationships between economics and hydraulic traits may depend on water availability. We analysed five leaf economics traits, four hydraulic traits and anatomical structures of 47 woody species on the Loess Plateau with poor water availability and compared those data with Li et al. (2015) obtained in tropical-subtropical regions with adequate water. The results showed that plants on the Loess Plateau tend to have higher leaf tissue density (TD), leaf nitrogen concentrations and venation density (VD) and lower stomatal guard cell length (SL) and maximum stomatal conductance to water vapour (g wmax ). VD showed positive correlations with leaf nitrogen concentrations, palisade tissue thickness (PT) and ratio of palisade tissue thickness to spongy tissue thickness (PT/ST). Principal component analysis (PCA) showed a result opposite from those of tropical-subtropical regions: leaf economics and hydraulic traits were coupled on the Loess Plateau. A stable correlation between these two suites of traits may be more cost-effective on the Loess Plateau, where water availability is poor. The correlation of leaf economics and hydraulic traits may be a type of adaptation mechanism in arid conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Campos, Raúl E; Fernández, Liliana A
2011-01-01
A list of the most common plants that form phytotelmata and their associated coleopterans (aquatic, semi-aquatic and terrestrial) from the northeastern subtropical and temperate area of Argentina, South America with biological and behavioral observations is presented in this study. Species of Poaceae (n = 3), Bromeliaceae (5), Apiaceae (6), Araceae (2), Urticaceae (1), Marantaceae (1), Arecaceae (1), Dipsacaceae (1) and Cyperaceae (1) were identified as phytotelmata. Aquatic species of Scirtidae (2), Dytiscidae (2), and Hydrophilidae (4), semi-aquatic Chelonariidae (2), and terrestrial species of Carabidae (3), Staphylinidae (5), Histeridae (1), Elateridae (1), Cantharidae (1), Cleridae (1), Tenebrionidae (1), Meloidae (1), Anthicidae (1), Chrysomelidae (3), Curculionidae (7) and Apionidae (1) were identified from six species of Eryngium L. (Apiales: Apiaceae), two species of Guadua Kunth (Poales: Poaceae), Aechmea distichantha Lemaire (Poales: Bromeliaceae), and from fallen leaves of Euterpe edulis Martius (Arecales: Arecaceae) from the temperate and subtropical area. The highest species richness was recorded in Eryngium phytotelmata. Fifteen species of beetles inhabit Eryngium cabrerae Pontiroli, 11 in E. horridum Malme, 7 in E. stenophyllum Urban, 4 in E. aff. serra Chamisso and Schlechtendal., 3 in E. elegans Chamisso and Schlechtendal, 2 in E. eburneum Decne and E. pandanifolium Chamisso and Schlechtendal. From bamboo, 6 species of coleopterans were collected from Guadua trinii (Nees) Nees ex Ruprecht and 4 from G. chacoensis (Rojas) Londoño and Peterson. Three species of aquatic coleopterans were recorded from A. distichantha and only one from E. edulis.
Chan, Emily Y Y; Lam, Holly C Y; So, Suzanne H W; Goggins, William B; Ho, Janice Y; Liu, Sida; Chung, Phoebe P W
2018-04-14
Background : Mental disorders have been found to be positively associated with temperature in cool to cold climatic regions but the association in warmer regions is unclear. This study presented the short-term association between temperatures and mental disorder hospitalizations in a subtropical city with a mean annual temperature over 21 °C. Methods : Using Poisson-generalized additive models and distributed-lagged nonlinear models, daily mental disorder hospitalizations between 2002 and 2011 in Hong Kong were regressed on daily mean temperature, relative humidity, and air pollutants, adjusted for seasonal trend, long-term trend, day-of-week, and holiday. Analyses were stratified by disease class, gender and age-group. Results : 44,600 admissions were included in the analysis. Temperature was positively associated with overall mental-disorder hospitalizations (cumulative relative risk at 28 °C vs. 19.4 °C (interquartile range, lag 0-2 days) = 1.09 (95% confidence interval 1.03, 1.15)), with the strongest effect among the elderly (≥75 years old). Transient mental disorders due to conditions classified elsewhere and episodic mood disorders also showed strong positive associations with temperature. Conclusion : This study found a positive temperature-mental-disorder admissions association in a warm subtropical region and the association was most prominent among older people. With the dual effect of global warming and an aging population, targeted strategies should be designed to lower the disease burden.
NASA Astrophysics Data System (ADS)
Quitián-Hernández, L.; Martín, M. L.; González-Alemán, J. J.; Santos-Muñoz, D.; Valero, F.
2016-09-01
Subtropical cyclones (STC) are low-pressure systems that share tropical and extratropical characteristics. Because of the great economic and social damage, the study of these systems has recently grown. This paper analyzes the cyclone formed in October 2014 near the Canary Islands and diagnoses such a cyclone in order to identify its correspondence to an STC category, examining its dynamical and thermal evolution. Diverse fields have been obtained from three different numerical models, and several diagnostic tools and cyclone phase space diagrams have been used. An extratropical cyclone, in its early stage, experimented a process of cut-off and isolation from the midlatitude flow. The incursion of a trough in conjunction with a low-level baroclinic zone favored the formation of the STC northwestern of the Canary Islands. Streamers of high potential vorticity linked to the cyclone favored strong winds and precipitation in the study domain. Cyclone phase space diagrams are used to complement the synoptic analysis and the satellite images of the cyclone to categorize such system. The diagrams reveal the transition from extratropical cyclone to STC remaining for several days with a subtropical structure with a quite broad action radius. The study of the mesoscale environment parameters showed an enhanced conditional instability through a deep troposphere layer. It is shown that moderate to strong vertical wind shear together with relatively warm sea surface temperature determine conditions enabling the development of long-lived convective structures.
Analysis of sensitivity to different parameterization schemes for a subtropical cyclone
NASA Astrophysics Data System (ADS)
Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.
2018-05-01
A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.
Xu, Yongbo; Xu, Zhihong
2015-07-01
Land use change affects soil gross nitrogen (N) transformations, but such information is particularly lacking under subtropical conditions. A study was carried out to investigate the potential gross N transformation rates in forest and agricultural (converted from the forest) soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a (15)N tracing study under aerobic conditions. The results showed that change of land use types substantially altered most gross N transformation rates. The gross ammonification and nitrification rates were significantly higher in the agricultural soils than in the forest soils, while the reverse was true for the gross N immobilization rates. The higher total carbon (C) concentrations and C / N ratio in the forest soils relative to the agricultural soils were related to the greater gross N immobilization rates in the forest soils. The lower gross ammonification combined with negligible gross nitrification rates, but much higher gross N immobilization rates in the forest soils than in the agricultural soils suggest that this may be a mechanism to effectively conserve available mineral N in the forest soils through increasing microbial biomass N, the relatively labile organic N. The greater gross nitrification rates and lower gross N immobilization rates in the agricultural soils suggest that conversion of forests to agricultural soils may exert more negative effects on the environment by N loss through NO3 (-) leaching or denitrification (when conditions for denitrification exist).
Van Mooy, Benjamin A. S.; Rocap, Gabrielle; Fredricks, Helen F.; Evans, Colleen T.; Devol, Allan H.
2006-01-01
There is growing evidence that dissolved phosphorus can regulate planktonic production in the oceans’ subtropical gyres, yet there is little quantitative information about the biochemical fate of phosphorus in planktonic communities. We observed in the North Pacific Subtropical Gyre (NPSG) that the synthesis of membrane lipids accounted for 18–28% of the phosphate (PO43−) taken up by the total planktonic community. Paradoxically, Prochlorococcus, the cyanobacterium that dominates NPSG phytoplankton, primarily synthesizes sulfoquinovosyldiacylglycerol (SQDG), a lipid that contains sulfur and sugar instead of phosphate. In axenic cultures of Prochlorococcus, it was observed that <1% of the total PO43− uptake was incorporated into membrane lipids. Liquid chromatography/mass spectrometry of planktonic lipids in the NPSG confirmed that SQDG was the dominant membrane lipid. Furthermore, the analyses of SQDG synthesis genes from the Sargasso Sea environmental genome showed that the use of sulfolipids in subtropical gyres was confined primarily to picocyanobacteria; no sequences related to known heterotrophic bacterial SQDG lineages were found. This biochemical adaptation by Prochlorococcus must be a significant benefit to these organisms, which compete against phospholipid-rich heterotrophic bacteria for PO43−. Thus, evolution of this “sulfur-for-phosphorus” strategy set the stage for the success of picocyanobacteria in oligotrophic environments and may have been a major event in Earth’s early history when the relative availability of sulfate and PO43− were significantly different from today’s ocean. PMID:16731626
A vorticity budget for the Gulf Stream
NASA Astrophysics Data System (ADS)
Le Bras, Isabela; Toole, John
2017-04-01
We develop a depth-averaged vorticity budget framework to diagnose the dynamical balance of the Gulf Stream, and apply this framework to observations and the ECCO state estimate (Wunsch and Heimbach 2013) above the thermocline in the subtropical North Atlantic. Using the hydrographic and ADCP data along the WOCE/CLIVAR section A22 and a variety of wind stress data products, we find that the advective vorticity flux out of the western region is on the same order as the wind stress forcing over the eastern portion of the gyre. This is consistent with a large-scale balance between a negative source of vorticity from wind stress forcing and a positive source of vorticity in the western region. Additionally, the form of the vorticity flux indicates that the Gulf Stream has a significant inertial component. In the ECCO state estimate, we diagnose a seasonal cycle in advective vorticity flux across a meridional section associated with seasonal fluctuations in Gulf Stream transport. This vorticity flux is forced by wind stress over the eastern subtropical North Atlantic and balanced by lateral friction with the western boundary. The lateral friction in ECCO is a necessary parameterization of smaller scale processes that occur in the real ocean, and quantifying these remains an open and interesting question. This simplified framework provides a means to interpret large scale ocean dynamics. In our application, it points to wind stress forcing over the subtropical North Altantic as an important regulator of the Gulf Stream and hence the climate system.
Sun, Tao; Ma, Ming; Wang, Ding-yong; Huang, Li-xin
2014-12-01
In order to investigate the dynamics of nitrogen and sulfur wet deposition in subtropical forest ecosystem, one typical forest stand, evergreen broad-leaved forest, at Simian Mountain located in Chongqing was selected in this research. Based on field monitoring, effects of precipitation, throughfall, litterfall, and groundwater runoff of the typical forest stand on the quality of water of Simian Mountain were investigated from September 2012 to August 2013. Results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.89 and maximum pH of 5.14. The soil, canopies and trunks could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy had the function of adsorption and purification of NO3-, NO2- and SO4(2-), and the average entrapment rate was 56.68%, 45.84% and 35.51%, respectively. Moreover, the degradation of litter was probably the main reason for the increase of ion concentrations in the surface litter water. Forest soils could absorb and neutralize NO3-, SO2- and NH4+, and release NO2-. The evergreen broad-leaf forest of mid-subtropical region had the function of interception on NO3-, NO2-, NH4+ and SO4(2-), and the total entrapment rate was 92.86%, 57.86%, 87.24% and 87.25%, respectively, and it had a certain buffering function for the acid rain.
Prediction of early summer rainfall over South China by a physical-empirical model
NASA Astrophysics Data System (ADS)
Yim, So-Young; Wang, Bin; Xing, Wen
2014-10-01
In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.
Albanito, Fabrizio; Lebender, Ulrike; Cornulier, Thomas; Sapkota, Tek B; Brentrup, Frank; Stirling, Clare; Hillier, Jon
2017-03-10
There has been much debate about the uncertainties associated with the estimation of direct and indirect agricultural nitrous oxide (N 2 O) emissions in developing countries and in particular from tropical regions. In this study, we report an up-to-date review of the information published in peer-review journals on direct N 2 O emissions from agricultural systems in tropical and sub-tropical regions. We statistically analyze net-N 2 O-N emissions to estimate tropic-specific annual N 2 O emission factors (N 2 O-EFs) using a Generalized Additive Mixed Model (GAMM) which allowed the effects of multiple covariates to be modelled as linear or smooth non-linear continuous functions. Overall the mean N 2 O-EF was 1.2% for the tropics and sub-tropics, thus within the uncertainty range of IPCC-EF. On a regional basis, mean N 2 O-EFs were 1.4% for Africa, 1.1%, for Asia, 0.9% for Australia and 1.3% for Central &South America. Our annual N 2 O-EFs, estimated for a range of fertiliser rates using the available data, do not support recent studies hypothesising non-linear increase N 2 O-EFs as a function of applied N. Our findings highlight that in reporting annual N 2 O emissions and estimating N 2 O-EFs, particular attention should be paid in modelling the effect of study length on response of N 2 O.
Albanito, Fabrizio; Lebender, Ulrike; Cornulier, Thomas; Sapkota, Tek B.; Brentrup, Frank; Stirling, Clare; Hillier, Jon
2017-01-01
There has been much debate about the uncertainties associated with the estimation of direct and indirect agricultural nitrous oxide (N2O) emissions in developing countries and in particular from tropical regions. In this study, we report an up-to-date review of the information published in peer-review journals on direct N2O emissions from agricultural systems in tropical and sub-tropical regions. We statistically analyze net-N2O-N emissions to estimate tropic-specific annual N2O emission factors (N2O-EFs) using a Generalized Additive Mixed Model (GAMM) which allowed the effects of multiple covariates to be modelled as linear or smooth non-linear continuous functions. Overall the mean N2O-EF was 1.2% for the tropics and sub-tropics, thus within the uncertainty range of IPCC-EF. On a regional basis, mean N2O-EFs were 1.4% for Africa, 1.1%, for Asia, 0.9% for Australia and 1.3% for Central & South America. Our annual N2O-EFs, estimated for a range of fertiliser rates using the available data, do not support recent studies hypothesising non-linear increase N2O-EFs as a function of applied N. Our findings highlight that in reporting annual N2O emissions and estimating N2O-EFs, particular attention should be paid in modelling the effect of study length on response of N2O. PMID:28281637
NASA Astrophysics Data System (ADS)
Albanito, Fabrizio; Lebender, Ulrike; Cornulier, Thomas; Sapkota, Tek B.; Brentrup, Frank; Stirling, Clare; Hillier, Jon
2017-03-01
There has been much debate about the uncertainties associated with the estimation of direct and indirect agricultural nitrous oxide (N2O) emissions in developing countries and in particular from tropical regions. In this study, we report an up-to-date review of the information published in peer-review journals on direct N2O emissions from agricultural systems in tropical and sub-tropical regions. We statistically analyze net-N2O-N emissions to estimate tropic-specific annual N2O emission factors (N2O-EFs) using a Generalized Additive Mixed Model (GAMM) which allowed the effects of multiple covariates to be modelled as linear or smooth non-linear continuous functions. Overall the mean N2O-EF was 1.2% for the tropics and sub-tropics, thus within the uncertainty range of IPCC-EF. On a regional basis, mean N2O-EFs were 1.4% for Africa, 1.1%, for Asia, 0.9% for Australia and 1.3% for Central & South America. Our annual N2O-EFs, estimated for a range of fertiliser rates using the available data, do not support recent studies hypothesising non-linear increase N2O-EFs as a function of applied N. Our findings highlight that in reporting annual N2O emissions and estimating N2O-EFs, particular attention should be paid in modelling the effect of study length on response of N2O.
Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang
2015-04-01
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.
Polovina, Jeffrey J; Woodworth-Jefcoats, Phoebe A
2013-01-01
We analyzed a 16-year (1996-2011) time series of catch and effort data for 23 species with mean weights ranging from 0.8 kg to 224 kg, recorded by observers in the Hawaii-based deep-set longline fishery. Over this time period, domestic fishing effort, as numbers of hooks set in the core Hawaii-based fishing ground, has increased fourfold. The standardized aggregated annual catch rate for 9 small (<15 kg) species increased about 25% while for 14 large species (>15 kg) it decreased about 50% over the 16-year period. A size-based ecosystem model for the subtropical Pacific captures this pattern well as a response to increased fishing effort. Further, the model projects a decline in the abundance of fishes larger than 15 kg results in an increase in abundance of animals from 0.1 to 15 kg but with minimal subsequent cascade to sizes smaller than 0.1 kg. These results suggest that size-based predation plays a key role in structuring the subtropical ecosystem. These changes in ecosystem size structure show up in the fishery in various ways. The non-commercial species lancetfish (mean weight 7 kg) has now surpassed the target species, bigeye tuna, as the species with the highest annual catch rate. Based on the increase in snake mackerel (mean weight 0.8 kg) and lancetfish catches, the discards in the fishery are estimated to have increased from 30 to 40% of the total catch.
NASA Astrophysics Data System (ADS)
Zeng, Lei; He, Feng; Zhang, Yi; Liu, Biyun; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin
2018-03-01
To explore the size-dependent responses of zooplankton to submerged macrophyte restoration, we collected macrophyte, zooplankton and water quality samples seasonally from a subtropical shallow lake from 2010 to 2012. Special attention was given to changes in rotifers and crustaceans (cladocerans and copepods). The rotifers were grouped into three size classes (<200 μm, 200 μm-400 μm, >400 μm) to explore their size-related responses to macrophyte restoration. The results showed that during the restoration, the annual mean biomass and macrophyte coverage increased significantly from 0 to 637 g/m2 and 0 to 27%, respectively. In response, the density and biomass of crustaceans and the crustacean-to-rotifer ratio increased significantly, while the rotifer density decreased significantly. Moreover, rotifers showed significant sizedependent responses to macrophyte restoration. Specially, rotifers <400 μm were significantly suppressed, while those ≥400 μm were significantly encouraged. Overall, the population of large-sized zooplankton tended to boom, while that of small rotifers was inhibited during macrophyte restoration. Redundancy analysis (RDA) revealed positive correlations between macrophytes and crustaceans, rotifers and COD or Chl- a, but negative correlations between macrophytes and COD or Chl- a, and between crustaceans and Chl- a. Moreover, the results indicate that increased predation on phytoplankton by large-sized zooplankton might be an important mechanism for macrophyte restoration during development of aquatic ecosystems, and that this mechanism played a very important role in promoting the formation of a clear-water state in subtropical shallow lakes.
East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River
NASA Technical Reports Server (NTRS)
Weng, H.-Y.; Lau, K.-M.
1999-01-01
One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.
Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants
Von Holle, Betsy; Wei, Yun; Nickerson, David
2010-01-01
Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses. PMID:20657765
Zhang, Zhi-Yong; Wu, Rong; Wang, Qun; Zhang, Zhi-Rong; López-Pujol, Jordi; Fan, Deng-Mei; Li, De-Zhu
2013-01-01
In subtropical China, large-scale phylogeographic comparisons among multiple sympatric plants with similar ecological preferences are scarce, making generalizations about common response to historical events necessarily tentative. A phylogeographic comparison of two sympatric Chinese beeches (Fagus lucida and F. longipetiolata, 21 and 28 populations, respectively) was conducted to test whether they have responded to historical events in a concerted fashion and to determine whether their phylogeographic structure is exclusively due to Quaternary events or it is also associated with pre-Quaternary events. Twenty-three haplotypes were recovered for F. lucida and F. longipetiolata (14 each one and five shared). Both species exhibited a species-specific mosaic distribution of haplotypes, with many of them being range-restricted and even private to populations. The two beeches had comparable total haplotype diversity but F. lucida had much higher within-population diversity than F. longipetiolata. Molecular dating showed that the time to most recent common ancestor of all haplotypes was 6.36 Ma, with most haplotypes differentiating during the Quaternary. [Correction added on 14 October 2013, after first online publication: the timeunit has been corrected to ‘6.36’.] Our results support a late Miocene origin and southwards colonization of Chinese beeches when the aridity in Central Asia intensified and the monsoon climate began to dominate the East Asia. During the Quaternary, long-term isolation in subtropical mountains of China coupled with limited gene flow would have lead to the current species-specific mosaic distribution of lineages. PMID:24340187
The water footprint of wood for lumber, pulp, paper, fuel and firewood
NASA Astrophysics Data System (ADS)
Schyns, Joep F.; Booij, Martijn J.; Hoekstra, Arjen Y.
2017-09-01
This paper presents the first estimate of global water use in the forestry sector related to roundwood production for lumber, pulp, paper, fuel and firewood. For the period 1961-2010, we estimate forest evaporation at a high spatial resolution level and attribute total water consumption to various forest products, including ecosystem services. Global water consumption for roundwood production increased by 25% over 50 years to 961 × 109 m3/y (96% green; 4% blue) in 2001-2010. The water footprint per m3 of wood is significantly smaller in (sub)tropical forests compared to temperate/boreal forests, because (sub)tropical forests host relatively more value next to wood production in the form of other ecosystem services. In terms of economic water productivity and energy yield from bio-ethanol per unit of water, roundwood is rather comparable with major food, feed and energy crops. Recycling of wood products could effectively reduce the water footprint of the forestry sector, thereby leaving more water available for the generation of other ecosystem services. Intensification of wood production can only reduce the water footprint per unit of wood if the additional wood value per ha outweighs the loss of value of other ecosystem services, which is often not the case in (sub)tropical forests. The results of this study contribute to a more complete picture of the human appropriation of water, thus feeding the debate on water for food or feed versus energy and wood.
Increasing potential for intense tropical and subtropical thunderstorms under global warming.
Singh, Martin S; Kuang, Zhiming; Maloney, Eric D; Hannah, Walter M; Wolding, Brandon O
2017-10-31
Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere. Published under the PNAS license.
Increasing potential for intense tropical and subtropical thunderstorms under global warming
Kuang, Zhiming; Maloney, Eric D.; Hannah, Walter M.; Wolding, Brandon O.
2017-01-01
Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth’s atmosphere. PMID:29078312
Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang
2015-01-01
Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387
Jerszurki, Daniela; Souza, Jorge L. M.; Silva, Lucas C. R.
2017-01-01
The development of new reference evapotranspiration (ETo) methods hold significant promise for improving our quantitative understanding of climatic impacts on water loss from the land to the atmosphere. To address the challenge of estimating ETo in tropical and subtropical regions where direct measurements are scarce we tested a new method based on geographical patterns of extraterrestrial radiation (Ra) and atmospheric water potential (Ψair). Our approach consisted of generating daily estimates of ETo across several climate zones in Brazil–as a model system–which we compared with standard EToPM (Penman-Monteith) estimates. In contrast with EToPM, the simplified method (EToMJS) relies solely on Ψair calculated from widely available air temperature (oC) and relative humidity (%) data, which combined with Ra data resulted in reliable estimates of equivalent evaporation (Ee) and ETo. We used regression analyses of Ψair vs EToPM and Ee vs EToPM to calibrate the EToMJS(Ψair) and EToMJS estimates from 2004 to 2014 and between seasons and climatic zone. Finally, we evaluated the performance of the new method based on the coefficient of determination (R2) and correlation (R), index of agreement “d”, mean absolute error (MAE) and mean reason (MR). This evaluation confirmed the suitability of the EToMJS method for application in tropical and subtropical regions, where the climatic information needed for the standard EToPM calculation is absent. PMID:28658324
Jerszurki, Daniela; Souza, Jorge L M; Silva, Lucas C R
2017-01-01
The development of new reference evapotranspiration (ETo) methods hold significant promise for improving our quantitative understanding of climatic impacts on water loss from the land to the atmosphere. To address the challenge of estimating ETo in tropical and subtropical regions where direct measurements are scarce we tested a new method based on geographical patterns of extraterrestrial radiation (Ra) and atmospheric water potential (Ψair). Our approach consisted of generating daily estimates of ETo across several climate zones in Brazil-as a model system-which we compared with standard EToPM (Penman-Monteith) estimates. In contrast with EToPM, the simplified method (EToMJS) relies solely on Ψair calculated from widely available air temperature (oC) and relative humidity (%) data, which combined with Ra data resulted in reliable estimates of equivalent evaporation (Ee) and ETo. We used regression analyses of Ψair vs EToPM and Ee vs EToPM to calibrate the EToMJS(Ψair) and EToMJS estimates from 2004 to 2014 and between seasons and climatic zone. Finally, we evaluated the performance of the new method based on the coefficient of determination (R2) and correlation (R), index of agreement "d", mean absolute error (MAE) and mean reason (MR). This evaluation confirmed the suitability of the EToMJS method for application in tropical and subtropical regions, where the climatic information needed for the standard EToPM calculation is absent.
Lee, Yung-I; Yang, Chih-Kai; Gebauer, Gerhard
2015-01-01
Background and Aims Most fully mycoheterotrophic (MH) orchids investigated to date are mycorrhizal with fungi that simultaneously form ectomycorrhizas with forest trees. Only a few MH orchids are currently known to be mycorrhizal with saprotrophic, mostly wood-decomposing, fungi instead of ectomycorrhizal fungi. This study provides evidence that the importance of associations between MH orchids and saprotrophic non-Rhizoctonia fungi is currently under-estimated. Methods Using microscopic techniques and molecular approaches, mycorrhizal fungi were localized and identified for seven MH orchid species from four genera and two subfamilies, Vanilloideae and Epidendroideae, growing in four humid and warm sub-tropical forests in Taiwan. Carbon and nitrogen stable isotope natural abundances of MH orchids and autotrophic reference plants were used in order to elucidate the nutritional resources utilized by the orchids. Key Results Six out of the seven MH orchid species were mycorrhizal with either wood- or litter-decaying saprotrophic fungi. Only one orchid species was associated with ectomycorrhizal fungi. Stable isotope abundance patterns showed significant distinctions between orchids mycorrhizal with the three groups of fungal hosts. Conclusions Mycoheterotrophic orchids utilizing saprotrophic non-Rhizoctonia fungi as a carbon and nutrient source are clearly more frequent than hitherto assumed. On the basis of this kind of nutrition, orchids can thrive in deeply shaded, light-limiting forest understoreys even without support from ectomycorrhizal fungi. Sub-tropical East Asia appears to be a hotspot for orchids mycorrhizal with saprotrophic non-Rhizoctonia fungi. PMID:26113634
Breeding biology of passerines in a subtropical montane forest in northwestern Argentina
Auer, S.K.; Bassar, R.D.; Fontaine, J.J.; Martin, T.E.
2007-01-01
The breeding ecology of south temperate bird species is less widely known than that of north temperate species, yet because they comprise a large portion of the world's avian diversity, knowledge of their breeding ecology can contribute to a more comprehensive understanding of the geographic diversity of avian reproductive traits and life history strategies. We provide the first detailed examination of the reproductive strategies of 18 forest passerines of subtropical, northwestern Argentina. Mean clutch sizes were smaller and egg mass was greater than for north temperate birds, but differed among species and nest types, with cavity-nesters having larger clutches than species with open-cup and enclosed nests. Across all species, the average breeding season duration was 50 days; thus, the common perception that southern species have smaller clutch sizes because of longer breeding seasons is not supported in this community. Daily nest predation rates were influenced by nest type, cavity nests suffering the least from predation, as found in north temperate systems. Only females incubated eggs in all but one species, whereas both parents fed and cared for nestlings in all species. Mean nest attentiveness was low compared to north temperate passerines. Mean hourly nestling feeding rates differed among species and were negatively related to nest predation risk. In short, coexisting species in this subtropical forest varied in their life history strategies, in part correlated with variation in nest predation risk, but also differing from north temperate species. ?? The Cooper Ornithological Society 2007.
Yan, En-Rong; Yang, Xiao-Dong; Chang, Scott X; Wang, Xi-Hua
2013-01-01
Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.
Wen, Zhixin; Wu, Yi; Ge, Deyan; Cheng, Jilong; Chang, Yongbin; Yang, Zhisong; Xia, Lin; Yang, Qisen
2017-04-20
Understanding whether species' elevational range is shifting in response to directional changes in climate and whether there is a predictable pattern in that response is one of the major challenges in ecology. However, so far very little is known about the distributional responses of subtropical species to climate change, especially for small mammals. In this study, we examined the elevational range shifts at three range points (upper and lower range limits and abundance-weighted range centre) of rodents over a 30-year period (1986 to 2014-2015), in a subtropical forest of Southwest China. We also examined the influences of four ecological traits (body mass, habitat breadth, diet and daily activity pattern) on the upslope shifts in species' abundance-weighted range centres. Despite the warming trend between 1986 and 2015, the 11 rodent species in analysis displayed heterogeneous dynamics at each of the three range points. Species which have larger body sizes and narrower habitat breadths, show both diurnal and nocturnal activities and more specialized dietary requirements, are more likely to exhibit upslope shifts in abundance-weighted range centres. Species' distributional responses can be heterogeneous even though there are directional changes in climate. Our study indicates that climate-induced alleviation of competition and lag in response may potentially drive species' range shift, which may not conform to the expectation from climate change. Difference in traits can lead to different range dynamics. Our study also illustrates the merit of multi-faceted assessment in studying elevational range shifts.
Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms.
Sumon, Kizar Ahmed; Ritika, Afifat Khanam; Peeters, Edwin T H M; Rashid, Harunur; Bosma, Roel H; Rahman, Md Shahidur; Fatema, Mst Kaniz; Van den Brink, Paul J
2018-05-01
The neonicotinoid insecticide imidacloprid is used in Bangladesh for a variety of crop protection purposes. Imidacloprid may contaminate aquatic ecosystems via spray drift, surface runoff and ground water leaching. The present study aimed at assessing the fate and effects of imidacloprid on structural (phytoplankton, zooplankton, macroinvertebrates and periphyton) and functional (organic matter decomposition) endpoints of freshwater, sub-tropical ecosystems in Bangladesh. Imidacloprid was applied weekly to 16 freshwater microcosms (PVC tanks containing 400 L de-chlorinated tap water) at nominal concentrations of 0, 30, 300, 3000 ng/L over a period of 4 weeks. Results indicated that imidacloprid concentrations from the microcosm water column declined rapidly. Univariate and multivariate analysis showed significant effects of imidacloprid on the zooplankton and macroinvertebrate community, some individual phytoplankton taxa, and water quality variables (i.e. DO, alkalinity, ammonia and nitrate), with Cloeon sp., Diaptomus sp. and Keratella sp. being the most affected species, i.e. showing lower abundance values in all treatments compared to the control. The observed high sensitivity of Cloeon sp. and Diaptomus sp. was confirmed by the results of single species tests. No significant effects were observed on the species composition of the phytoplankton, periphyton biomass and organic matter decomposition for any of the sampling days. Our study indicates that (sub-)tropical aquatic ecosystems can be much more sensitive to imidacloprid compared to temperate ones. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa
2016-01-01
Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315
NASA Astrophysics Data System (ADS)
Cui, J. J.; Lai, D. Y. F.
2016-12-01
Forest soil has a great potential in affecting future climate change through biogeochemical cycling and exchanging greenhouse gases (GHGs) with the atmosphere. As a proxy of changing atmospheric CO2 concentration, enhanced litter production arising from CO2 fertilization can affect soil GHG fluxes and induce feedbacks to the climate system. However, these litter-soil- atmosphere interactions remain unclear, especially in subtropical forests. In this study, we carried out static chamber measurements and field manipulations in a subtropical secondary forest in Hong Kong over one year to investigate the temporal variations and controls, as well as the effects of changing litter amounts on soil-atmosphere GHG fluxes. Our results show distinct seasonal pattern of GHG fluxes and soil parameters over the study period. While CO2 flux did not respond significantly to litter manipulation, regression analysis indicates that CO2 flux was regulated by soil temperature and soil moisture. Litter reduction stimulated mean N2O emissions by 105%, and the positive effect was most pronounced during the hot-humid season from May to October. On the other hand, litter addition was found to reduce CH4 uptake by 32%. Our findings suggest that the presence of litter might serve a physical barrier for gas diffusion. It is suggested that the biogeochemical feedback arising from litterfall should be taken into account in simulating the response of forest GHG fluxes to future global change.
Li, Yong-Chun; Liu, Bu-Rong; Guo, Shuai; Wu, Qi-Feng; Qin, Hua; Wu, Jia-Sen; Xu, Qiu-Fang
2014-01-01
To investigate the effects of different forest stands in subtropical China on the communities of soil ammonia-oxidizing microorganisms, we characterized the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and the community structure of AOA in soils under stands of broad-leaved (BF) , Chinese fir (CF) , Pinus massoniana (PF) and moso bamboo (MB) forests using real-time quantitative PCR and denaturing gradient gel electrophoresis (DGGE). The results showed that the AOA gene copy numbers (1.62 x 10(6)-1.88 x 10(7) per gram of dry soil) were significantly higher than those of AOB genes (2.41 x 10(5)-4.36 x 10(5) per gram of dry soil). Significantly higher soil AOA abundance was detected in the MB than that in the CF (P < 0.05), and the latter was significantly higher than that in the BF and PF soils (P < 0.05). There were no significant differences in the soil AOB abundance among the four forest stands. As indicated by DGGE pattern, soil AOA species varied among the four forest stands. There was a difference in the soil AOA communities between the CF and MB stands. The AOA demonstrated a competitive advantage over the AOB in the soils under these major subtropical forests. Soil pH, concentrations of soil available potassium and organic carbon as well as the forest type were the main factors that influence the variation of AOA community structure and diversity.
Zhang, Li; Qiu, Yunpeng; Cheng, Lei; Wang, Yi; Liu, Lingli; Tu, Cong; Bowman, Dan C; Burkey, Kent O; Bian, Xinmin; Zhang, Weijian; Hu, Shuijin
2018-05-17
Reactive N inputs (Nr) may alleviate N-limitation of plant growth and are assumed to help sustain plant responses to the rising atmospheric CO2 (eCO2). However, Nr and eCO2 may elicit a cascade reaction that alters soil chemistry and nutrient availability, shifting the limiting factors of plant growth, particularly in acidic tropical and subtropical croplands with low organic matter and low nutrient cations. Yet, few have so far examined the interactive effects of Nr and eCO2 on the dynamics of soil cation nutrients and soil acidity. We investigated the cation dynamics in the plant-soil system with exposure to eCO2 and different N sources in a subtropical, acidic agricultural soil. eCO2 and Nr, alone and interactively, increased Ca2+ and Mg2+ in soil solutions or leachates in aerobic agroecosystems. eCO2 significantly reduced soil pH, and NH4+-N inputs amplified this effect, suggesting that eCO2-induced plant preference of NH4+-N and plant growth may facilitate soil acidification. This is, to our knowledge, the first direct demonstration of eCO2 enhancement of soil acidity, although other studies have previously shown that eCO2 can increase cation release into soil solutions. Together, these findings provide new insights into the dynamics of cation nutrients and soil acidity under future climatic scenarios, highlighting the urgency for more studies on plant-soil responses to climate change in acidic tropical and subtropical ecosystems.
NASA Astrophysics Data System (ADS)
Hu, Xue-Feng; Du, Yan; Liu, Xiang-Jun; Zhang, Gan-Lin; Jiang, Ying; Xue, Yong
2015-03-01
To study the paleoclimatic implications of the loess-like Yellow-brown Earth (YBE) overlying red clay (RC) along the Yangtze River, mid-subtropical Southeast China, four YBE-RC profiles in southern Anhui Province were investigated. Grain-size and geochemical characteristics indicated that the YBE is homologous to the aeolian Xiashu Loess; and the underlying RC, sub-divided into uniform RC (URC) and reticulate RC (RRC), is more intensively weathered but also exhibits aeolian dust characteristics. Optically stimulated luminescence (OSL) dating indicated that the YBE was formed during the Last Glacial, the RRC mainly during the Last Interglacial, and the URC during the transitional period between the YBE and RC. The YBE-RC transition reflects a significant paleoclimatic change in mid-subtropical China during the Last Glacial-Interglacial cycle. Sub-events of the Last Glacial, correlated with the marine isotopic stages (MIS) 2 and 3, can be identified within the YBE; however, those of the Last Interglacial, potential correlated with MIS 5a-5e, cannot be identified within the RRC possibly due to paleoclimatic overprinting. The rubification had been replaced by loess deposition along the Yangtze River since the early Last Glacial. With both highly weathered and aeolian-dust characteristics, the underlying RRC may indicate paleoclimatic instability given the multiple alternations between loess deposition and rubification of the Last Interglacial. The climatic change during the Last Glacial-Interglacial cycle significantly influenced the pedogenesis and made soil diversified in the study areas.
Factors Influencing the Lime Reactivity of Tropically and Subtropically Weathered Soils.
determined that organic carbon, soil pH, CEC, base saturation, Silica Sesquioxide and Silica-Alumina Ratios, pedologic order, and air-drying influence development of lime-pozzolanic reactions in Ultisols and Oxisols . (Author)
USDA-ARS?s Scientific Manuscript database
The impacts of agroforestry systems (AFS) on soil management in temperate, subtropical, and tropical biomes support the beneficial, holistic role of tree components in agricultural land-use systems. Compared to annual monocultures, AFS can enhance several soil physical properties improving soil resi...
Chayote (Sechium edule) causing hypokalemia in pregnancy.
Jensen, L P; Lai, A R
1986-11-01
A case of severe hypokalemia in pregnancy is presented. Chayote, a subtropical vegetable with potent diuretic action, is implicated, as the potassium level returned to normal, without recurrence of hypokalemia, once the ingestion was stopped.
Predation of schistosomiasis vector snails by ostracoda (crustacea)
Sohn, I.G.; Kornicker, L.S.
1972-01-01
An ostracod species of Cypretta is an effective predator in laboratory experiments on 1- to 3-day-old Biomphalaria glabrata, a vector snail of the blood fluke that causes the tropical and subtropical disease schistosomiasis.
BIOINDICATORS OF SUSTAINABLE DEVELOPMENT STRATEGIES IN SUBTROPICAL CLIMATES
Anthropogenic sediment and nutrients inputs to aquatic systems associated with urbanization are commonly cited as threatening water quality and ultimately overall ecosystem stability and productivity. Although anthropogenic nutrient sources are rarely detected as elevated diss...
USDA-ARS?s Scientific Manuscript database
Cucurbits are an important crop of temperate, subtropical and tropical regions of the world. Cucumber vein yellowing virus (CVYV) is a major viral pathogen of cucurbits. This chapter provides an overview of the biology of CVYV and the disease it causes....
[Study of dermatomycosis and survey of pathogens in troops of Hainan area].
Suo, J; Li, H; Liang, J; Chen, S; Yu, R
1997-08-01
Subtropical area is the prevalent area of dermatomycosis with natural conditions suptable for the growth and proliferation of fungi causing suterficial dermatomycosis. Dermatomycosis not only brings about certain sufferings to the military personnel in peacetime, but also causes nonbattle loss in manpower in war time. In the present work, a survey of dermatomycosis in Hainan subtropical area of China and isolation of the pathogens were carried out. The results were as follows: The morbidity of superficial dermatomycosis was 34.1% and it was manifested clinically as tinea pedis, tinea versicolor, tinea corporis, tinea axillaris, tinea cruris, etc.; The main pathogen causing dermatomycosis in this area was Trichophyton rubrum which accounted for 50.4% of the pathogens isolated and the next was Trichophyton gypseum which accounted for 20.3%; Trichophyton rubrum could cause dermatomycosis of many sites of the body in this area, but the main lesious were tinea corporis and tinea cruris.
Oxidation of mercury by bromine in the subtropical Pacific free troposphere
NASA Astrophysics Data System (ADS)
Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.
2015-12-01
Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.
On North Pacific circulation and associated marine debris concentration.
Howell, Evan A; Bograd, Steven J; Morishige, Carey; Seki, Michael P; Polovina, Jeffrey J
2012-01-01
Marine debris in the oceanic realm is an ecological concern, and many forms of marine debris negatively affect marine life. Previous observations and modeling results suggest that marine debris occurs in greater concentrations within specific regions in the North Pacific Ocean, such as the Subtropical Convergence Zone and eastern and western "Garbage Patches". Here we review the major circulation patterns and oceanographic convergence zones in the North Pacific, and discuss logical mechanisms for regional marine debris concentration, transport, and retention. We also present examples of meso- and large-scale spatial variability in the North Pacific, and discuss their relationship to marine debris concentration. These include mesoscale features such as eddy fields in the Subtropical Frontal Zone and the Kuroshio Extension Recirculation Gyre, and interannual to decadal climate events such as El Niño and the Pacific Decadal Oscillation/North Pacific Gyre Oscillation. Published by Elsevier Ltd.
Mid-Piacenzian sea surface temperature record from ODP Site 1115 in the western equatorial Pacific
Stoll, Danielle
2010-01-01
Planktic foraminifer assemblages and alkenone unsaturation ratios have been analyzed for the mid-Piacen-zian (3.3 to 2.9 Ma) section of Ocean Drilling Program (ODP) Site 1115B, located in the western equatorial Pacific off the coast of New Guinea. Cold and warm season sea surface temperature (SST) estimates were determined using a modern analog technique. ODP Site 1115 is located just south of the transition between the planktic foraminifer tropical and subtropical faunal provinces and approximates the southern boundary of the western equatorial Pacific (WEP) warm pool. Comparison of the faunal and alkenone SST estimates (presented here) with an existing nannofossil climate proxy shows similar trends. Results of this analysis show increased seasonal variability during the middle of the sampled section (3.22 to 3.10 Ma), suggesting a possible northward migration of both the subtropical faunal province and the southern boundary of the WEP warm pool.
NASA Astrophysics Data System (ADS)
Calleja, María Ll.; Duarte, Carlos M.; Navarro, Nuria; Agustí, Susana
2005-04-01
The air-sea CO2 gradient at the subtropical NE Atlantic was strongly dependent on the metabolism of the planktonic community within the top cms, but independent of that of the communities deeper in the water column. Gross primary production (GPP) and community respiration (R) of the planktonic community within the top cms exceeded those of the communities deeper in the water column by >10-fold and >7 fold, respectively. Net autotrophic metabolism (GPP > R) at the top cms of the water column in some stations drove CO2 uptake by creating a CO2 deficit at the ocean surface, while net heterotrophic metabolism (GPP < R) at the top cms of the water column in other stations resulted in strong CO2 supersaturation, driving CO2 emissions. These results suggest a strong control of the air-sea pCO2 anomaly by intense biological processes.
Slesak, Günther; Douangdala, Phouvieng; Inthalad, Saythong; Silisouk, Joy; Vongsouvath, Manivanh; Sengduangphachanh, Amphonesavanh; Moore, Catrin E; Mayxay, Mayfong; Matsuoka, Hiroyuki; Newton, Paul N
2009-07-29
Chromobacterium violaceum is a Gram negative facultative anaerobic bacillus, found in soil and stagnant water, that usually has a violet pigmented appearance on agar culture. It is rarely described as a human pathogen, mostly from tropical and subtropical areas. A 53 year-old farmer died with Chromobacterium violaceum septicemia in Laos. A modified oxidase method was used to demonstrate that this violacious organism was oxidase positive. Forensic analysis of the glucose-6-phosphate dehydrogenase genotypes of his family suggest that the deceased patient did not have this possible predisposing condition. C. violaceum infection should be included in the differential diagnosis in patients presenting with community-acquired septicaemia in tropical and subtropical areas. The apparently neglected but simple modified oxidase test may be useful in the oxidase assessment of other violet-pigmented organisms or of those growing on violet coloured agar.
NASA Astrophysics Data System (ADS)
Maes, C.; Grima, N.; Blanke, B.; Martinez, E.; Paviet-Salomon, T.; Huck, T.
2018-02-01
We study the dispersion and convergence of marine floating material by surface currents from a model reanalysis that represents explicitly mesoscale eddy variability. Lagrangian experiments about the long-term evolution (29 years) of an initially homogeneous concentration of particles are performed at global scale with horizontal current at one fourth degree resolution and refreshed daily over the 1985-2013 period. Results not only confirm and document the five known sites of surface convergence at the scale of individual oceanic basins but also reveal a convergent pathway connecting the South Indian subtropical region with the convergence zone of the South Pacific through the Great Australian Bight, the Tasman Sea, and the southwest Pacific Ocean. This "superconvergent" pathway at the ocean surface is robust and permanent over a distance longer than 8,000 km. The current variability is crucial to sustain this pathway.
Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone.
Pereira, Camilo D Seabra; Maranho, Luciane A; Cortez, Fernando S; Pusceddu, Fabio H; Santos, Aldo R; Ribeiro, Daniel A; Cesar, Augusto; Guimarães, Luciana L
2016-04-01
The present study determined environmental concentrations of pharmaceuticals, cocaine, and the main human metabolite of cocaine in seawater sampled from a subtropical coastal zone (Santos, Brazil). The Santos Bay is located in a metropolitan region and receives over 7367m(3) of wastewater per day. Five sample points under strong influence of the submarine sewage outfall were chosen. Through quantitative analysis by LC-MS/MS, 33 compounds were investigated. Seven pharmaceuticals (atenolol, acetaminophen, caffeine, losartan, valsartan, diclofenac, and ibuprofen), an illicit drug (cocaine), and its main human metabolite (benzoylecgonine) were detected at least once in seawater sampled from Santos Bay at concentrations that ranged from ng·L(-1) to μg·L(-1). In light of the possibility of bioaccumulation and harmful effects, the high concentrations of pharmaceuticals and cocaine found in this marine subtropical ecosystem are of environmental concern. Copyright © 2016 Elsevier B.V. All rights reserved.
Poleward Shift in Ventilation of the North Atlantic Subtropical Underwater
NASA Astrophysics Data System (ADS)
Yu, Lisan; Jin, Xiangze; Liu, Hao
2018-01-01
We report the findings that the sea surface salinity maximum (SSS-max) in the North Atlantic has poleward expanded in recent decades and that the expansion is a main driver of the decadal changes in subtropical underwater (STUW). We present observational evidence that the STUW ventilation zone (marked by the location of the 36.7 isohaline) has been displaced northward by1.2 ± 0.36° latitude for the 34 year (1979-2012) period. As a result of the redistribution of the SSS-max water, the ventilation zone has shifted northward and expanded westward into the Sargasso Sea. The ventilation rate of STUW has increased, which is attributed to the increased lateral induction of the sloping mixed layer. STUW has become broader, deeper, and saltier, and the changes are most pronounced on the northern and western edges of the high-saline core.
ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology
NASA Technical Reports Server (NTRS)
Clark, Austin; Cecil, Daniel J.
2018-01-01
It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.
Solar and anthropogenic forcing of tropical hydrology
NASA Astrophysics Data System (ADS)
Shindell, Drew T.; Faluvegi, Greg; Miller, Ron L.; Schmidt, Gavin A.; Hansen, James E.; Sun, Shan
2006-12-01
Holocene climate proxies suggest substantial correlations between tropical meteorology and solar variations, but these have thus far not been explained. Using a coupled ocean-atmosphere-composition model forced by sustained multi-decadal irradiance increases, we show that greater tropical temperatures alter the hydrologic cycle, enhancing the climatological precipitation maxima in the tropics while drying the subtropical subsidence regions. The shift is enhanced by tropopause region ozone increases, and the model captures the pattern inferred from paleoclimate records. The physical process we describe likely affected past civilizations, including the Maya, Moche, and Ancestral Puebloans who experienced drought coincident with increased irradiance during the late medieval (~900-1250). Similarly, decreased irradiance may have affected cultures via a weakened monsoon during the Little Ice Age (~1400-1750). Projections of 21st-century climate change yield hydrologic cycle changes via similar processes, suggesting a strong likelihood of increased subtropical drought as climate warms.
NASA Astrophysics Data System (ADS)
Kazeev, K. Sh.; Kutrovskii, M. A.; Dadenko, E. V.; Vezdeneeva, L. S.; Kolesnikov, S. I.; Val'kov, V. F.
2012-03-01
The biological activity of different subtypes of soddy-calcareous soils (rendzinas) of the Northwest Caucasus region was studied. In the Novorossiisk-Abrau-Dyurso region (dry subtropics), typical soddy-calcareous soils with the high content of carbonates predominate; in the more humid conditions of the Lagonaki Plateau (Republic of Adygeya), leached soddy-calcareous soils carbonate-free down to the parent rock are spread. The number of microarthropods, the populations of fungi and bacteria, and the enzyme activity (catalase, dehydrogenase, and invertase) testify that the biological activity of these soils significantly differs. In the typical soddy-calcareous soils of the dry subtropics, the content of carbonates does not affect the characteristics mentioned; in the more humid conditions of the West Caucasus region, the presence of carbonates in the parent rocks intensifies the biological activity of the soddy-calcareous soils.
Large-scale climatic anomalies affect marine predator foraging behaviour and demography.
Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri
2015-10-27
Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.
Biogeography of azooxanthellate corals in the Caribbean and surrounding areas
NASA Astrophysics Data System (ADS)
Dawson, J.
2002-04-01
Biogeographic patterns for azooxanthellate corals are not as well known as those of zooxanthellate (primarily reef-building) corals. I analyzed occurrences of 129 species of azooxanthellate corals in 19 geopolitical regions in the Caribbean and surrounding areas. I performed an unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis using Bray-Curtis' similarity measure on the complete data set and shallow- and deep-water subsets of the data. The results indicate two provinces, each with a widespread (tropical and subtropical distributions) component to its fauna. One province has a tropical and primarily insular component to it, while the other has a subtropical and primarily continental component. By contrast, zooxanthellate corals have a uniform faunal composition throughout the Caribbean. Moreover, zooxanthellate corals have half as many species in the Caribbean as the azooxanthellate corals even though their global diversities are equal. These differences in diversity and geographic distribution patterns should be considered when developing conservation strategies.
Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.
2014-01-01
Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.
Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-01-01
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios. PMID:28000677
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-12-21
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jian; Vecchi, Gabriel A.
The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded polewardmore » in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.« less
Large-scale climatic anomalies affect marine predator foraging behaviour and demography
NASA Astrophysics Data System (ADS)
Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri
2015-10-01
Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.
NASA Astrophysics Data System (ADS)
Lossow, Stefan; Garny, Hella; Jöckel, Patrick
2017-09-01
The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (˜ 40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer-Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.
Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-12-01
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
Mixotrophic basis of Atlantic oligotrophic ecosystems.
Hartmann, Manuela; Grob, Carolina; Tarran, Glen A; Martin, Adrian P; Burkill, Peter H; Scanlan, David J; Zubkov, Mikhail V
2012-04-10
Oligotrophic subtropical gyres are the largest oceanic ecosystems, covering >40% of the Earth's surface. Unicellular cyanobacteria and the smallest algae (plastidic protists) dominate CO(2) fixation in these ecosystems, competing for dissolved inorganic nutrients. Here we present direct evidence from the surface mixed layer of the subtropical gyres and adjacent equatorial and temperate regions of the Atlantic Ocean, collected on three Atlantic Meridional Transect cruises on consecutive years, that bacterioplankton are fed on by plastidic and aplastidic protists at comparable rates. Rates of bacterivory were similar in the light and dark. Furthermore, because of their higher abundance, it is the plastidic protists, rather than the aplastidic forms, that control bacterivory in these waters. These findings change our basic understanding of food web function in the open ocean, because plastidic protists should now be considered as the main bacterivores as well as the main CO(2) fixers in the oligotrophic gyres.
Chow, Chun Hoe; Cheah, Wee; Tai, Jen-Hua
2017-07-24
The North Pacific Subtropical Gyre (NPSG) is the largest ecosystem on Earth, and it plays a critical role in global ocean productivity and carbon cycling. Here, we report a rare and striking ~2000-km-long phytoplankton bloom that lasted over one month in the western part of the NPSG in summer 2003. The bloom resulted from the co-occurrence of a northward-shifted North Equatorial Current (NEC) supplying additional phosphate, and strong eddy activity that fueled productivity and spread chlorophyll mainly through horizontal stirring. The extensive one-month bloom had a maximum Chl concentration of six times the summer mean value and collectively fixed an additional five teragrams (5 × 10 12 g) of carbon above the summer average. An increase in the pCO 2 during the bloom suggests that most of the additionally fixed carbon was rapidly consumed.
Real time outdoor exposure testing of solar cell modules and component materials
NASA Technical Reports Server (NTRS)
Anagnostou, E.; Forestieri, A. F.
1977-01-01
Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.
Subtropical Gyre Variability Observed by Ocean Color Satellites
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Signorini, Sergio R.; Christian, James R.
2002-01-01
The subtropical gyres of the world are extensive, coherent regions that occupy about 40% of the surface of the earth. Once thought to be homogeneous and static habitats, there is increasing evidence that mid-latitude gyres exhibit substantial physical and biological variability on a variety of time scales. While biological productivity within these oligotrophic regions may be relatively small, their immense size makes their total contribution significant. Global distributions of dynamic height derived from satellite altimeter data, and chlorophyll concentration derived from satellite ocean color data, show that the dynamic center of the gyres, the region of maximum dynamic height where the thermocline is deepest, does not coincide with the region of minimum chlorophyll concentration. The physical and biological processes by which this distribution of ocean properties is maintained, and the spatial and temporal scales of variability associated with these processes, are analyzed using global surface chlorophyll-a concentrations, sea surface height, sea surface temperature and surface winds from operational satellite and meteorological sources, and hydrographic data from climatologies and individual surveys. Seasonal and interannual variability in the areal extent of the subtropical gyres are examined using 8 months (November 1996 - June 1997) of OCTS and nearly 5 years (September 1997 - June 02) of SeaWiFS ocean color data and are interpreted in the context of climate variability and measured changes in other ocean properties (i.e., wind forcing, surface currents, Ekman pumping, and vertical mixing). The North Pacific and North Atlantic gyres are observed to be shrinking over this period, while the South Pacific, South Atlantic, and South Indian Ocean gyres appear to be expanding.
NASA Astrophysics Data System (ADS)
Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.
2016-01-01
Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.
Hoch, Matthew P; Dillon, Kevin S; Coffin, Richard B; Cifuentes, Luis A
2008-05-01
Expression of intracellular ammonium assimilation enzymes were used to assess the response of nitrogen (N) metabolism in bacterioplankton to N-loading of sub-tropical coastal waters of Key West, Florida. Specific activities of glutamine synthetase (GS) and total glutamate dehydrogenase (GDHT) were measured on the bacterial size fraction (<0.8 microm) to assess N-deplete versus N-replete metabolic states, respectively. Enzyme results were compared to concentrations of dissolved organic matter and nutrients and to the biomass and production of phytoplankton and bacteria. Concentrations of dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved organic carbon (DOC) positively correlated with specific activities of GDHT and negatively correlated with that of GS. Total dissolved N (TDN) concentration explained 81% of variance in bacterioplankton GDHT:GS activity ratio. The GDHT:GS ratio, TDN, DOC, and bacterial parameters decreased in magnitude along a tidally dynamic trophic gradient from north of Key West to south at the reef tract, which is consistent with the combined effects of localized coastal eutrophication and tidal exchange of seawater from the Southwest Florida Shelf and Florida Strait. The N-replete bacterioplankton north of Key West can regenerate ammonium which sustains primary production transported south to the reef. The range in GDHT:GS ratios was 5-30 times greater than that for commonly used indicators of planktonic eutrophication, which emphasizes the sensitivity of bacterioplankton N-metabolism to changes in N-bioavailability caused by nutrient pollution in sub-tropical coastal waters and utility of GDHT:GS ratio as an bioindicator of N-replete conditions.
NASA Astrophysics Data System (ADS)
Brown, P.; McDonagh, E.; Sanders, R.; King, B.; Watson, A. J.; Schuster, U.; Henson, S.
2016-02-01
The North Atlantic plays a critical role in the global carbon cycle both as a region of substantial air-sea carbon dioxide uptake and as a location for the transfer of CO2 to depth on climatically-important timescales. While the magnitude of surface fluxes is relatively well constrained, our understanding of the processes that drive variability in ocean-atmosphere exchange and subsequent subsurface carbon accumulation is not as well defined. Here we present observation-derived high-resolution estimates of short-term 10-day meridional ocean carbon transport variability across the subtropical North Atlantic for 2004-2012. Substantial seasonal, sub-annual and interannual transport variability is observed that is highly sensitive to the strength of the Atlantic Meridional Overturning Circulation. While the recently identified multi-year decrease in AMOC strength similarly impacts carbon transports, its full effect is masked by the northwards transport of increasing surface CO2 levels. A 30% slowdown in the meridional circulation in 2009-2010 and the anomalous effects it had on the transport, storage and divergence of heat and freshwater in the subtropical and subpolar gyres and local wind regimes are investigated for their impact on local air-sea CO2 fluxes. Temperature and salt content anomalies identified in each gyre are found to drive (subtropics) or hinder (subpolar) additional carbon uptake from the atmosphere by affecting the physical solubility pump for CO2. Additionally their simultaneous effect on mixed layer depth and the vertical supply of nutrients to the surface is shown to magnify the CO2 flux observed by driving anomalous primary production rates.
Mitigation of pedestrian heat stress using parasols in a humid subtropical region
NASA Astrophysics Data System (ADS)
Watanabe, Shinichi; Ishii, Jin
2017-11-01
Concerns over heat illness have been an increasing social problem in humid subtropical regions. One measure for avoiding excessive heat stress in hot outdoor environments is the use of parasols or umbrellas. The advantage of parasols is that they are a mobile and inexpensive way to provide personal shade outdoors. The objectives of this study were to compare the wet-bulb globe temperature (WBGT) under parasols and at an unshaded point as a reference, and to quantify the reduction in WBGT from the use of parasols in a humid subtropical region. Measurements using three parasols of different colors and materials were conducted at the athletics field at Daido University, Nagoya, Japan, between 9:00 and 15:00 Japan Standard Time in August 2015. The WBGT was obtained at heights of 0.1 m (ankles), 1.1 m (abdomen), and 1.7 m (head) above ground, according to the measurement procedure described in ISO 7243. On a sunny and partly cloudy day, the use of a parasol lowered the average globe temperature by up to 6.2 °C, through blocking direct solar radiation. The average reduction in WBGT by the parasol was found to be 1.8 °C at head level in sunny conditions with solar radiation of over 800 W/m2. The reduction in WBGT at head level by the use of parasols in sunny conditions was greater than that in cloudy conditions. However, although parasols can reduce WBGT at the head level of the user regardless of solar radiation, they cannot reduce it at the level of the abdomen or ankles.
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Gutowski, William J., Jr.
1991-01-01
Atmospheric transient eddies contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient eddy behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient eddies are isolated from the feedbacks and are focused on the response of the eddies to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient eddies is examined. Transient eddy behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in eddy kinetic energy, especially in the subtropics. The decrease in subtropical eddy energy is related to a substantial reduction in equatorward flux of eddy activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. Eddy meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in eddy energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in eddy water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments.
NASA Astrophysics Data System (ADS)
Zhu, Chunmao; Kawamura, Kimitaka; Kunwar, Bhagawati
2015-06-01
Primary biological aerosol particles (PBAPs) play an important role in affecting atmospheric physical and chemical properties. Aerosol samples were collected at Cape Hedo, Okinawa Island, Japan, from October 2009 to February 2012 and analyzed for five primary saccharides and four sugar alcohols as PBAP tracers. We detected high levels of sucrose in spring when blossoming of plants happens and prolifically emits pollen to the air. Concentrations of glucose, fructose, and trehalose showed levels higher than the other saccharides in spring in 2010. In comparison, primary saccharide levels were mutually comparable in spring, summer, and autumn in 2011, indicating the interannual variability of their local production in subtropical forests, which is driven by local temperature and radiation. High trehalose events were found to be associated with Asian dust outflows, indicating that Asian dust also contributes to PBAPs at Okinawa. Sugar alcohols peaked in summer and correlated with local precipitation and temperature, indicating high microbial activities. Positive matrix factorization analysis confirmed that the PBAPs are mainly derived from local vegetation, pollen, and fungal spores. A higher contribution of PBAP tracers to water-soluble organic carbon (WSOC) was found in summer (14.9%). The annual mean ambient loadings of fungal spores and PBAPs were estimated as 0.49 µg m-3 and 4.12 µg m-3, respectively, using the tracer method. We report, for the first time, year-round biomarkers of PBAP and soil dust and their contributions to WSOC in the subtropical outflow region of the Asian continent.
Assessment of methane generation, oxidation, and emission in a subtropical landfill test cell.
Moreira, João M L; Candiani, Giovano
2016-08-01
This paper presents results of a methane balance assessment in a test cell built in a region with a subtropical climate near São Paulo, Brazil. Measurements and calculations were carried out to obtain the total methane emission to the atmosphere, the methane oxidation rate in the cover, and the total methane generation rate in the test cell. The oxidation rate was obtained through a calculation scheme based on a vertical one-dimensional methane transport in the cover region. The measured maximum and mean methane fluxes to the atmosphere were 124.4 and 15.87 g m(-2) d(-1), respectively. The total methane generation rate obtained for the test cell was 0.0380 ± 0.0075 mol s(-1). The results yielded that 69 % of the emitted methane occurred through the central well and 31 % through the cover interface with the atmosphere. The evaluations of the methane oxidation fraction for localized conditions in the lateral embankment of the test cell yielded 0.36 ± 0.11, while for the whole test cell yielded 0.15 ± 0.10. These results conciliate localized and overall evaluations reported in the literature. The specific methane generation rate obtained for the municipal solid waste with an age of 410 days was 317 ± 62 mol year(-1) ton(-1). This result from the subtropical São Paulo region is lower than reported figures for tropical climates and higher than reported figures for temperate climates.
NASA Astrophysics Data System (ADS)
Belmadani, Ali; Concha, Emilio; Donoso, David; Chaigneau, Alexis; Colas, François; Maximenko, Nikolai; Di Lorenzo, Emanuele
2017-04-01
In recent years, persistent quasi-zonal jets or striations have been ubiquitously detected in the world ocean using satellite and in situ data as well as numerical models. This study aims at determining the role of mesoscale eddies in the generation and persistence of striations off Chile in the eastern South Pacific. A 50 year climatological integration of an eddy-resolving numerical ocean model is used to assess the long-term persistence of striations. Automated eddy tracking algorithms are applied to the model outputs and altimetry data. Results reveal that striations coincide with both polarized eddy tracks and the offshore formation of new eddies in the subtropical front and coastal transition zone, without any significant decay over time that discards random eddies as a primary driver of the striations. Localized patches of vortex stretching and relative vorticity advection, alternating meridionally near the eastern edge of the subtropical front, are associated with topographic steering of the background flow in the presence of steep topography, and with baroclinically and barotropically unstable meridional flow. These sinks and sources of vorticity are suggested to generate the banded structure further west, consistently with a β-plume mechanism. On the other hand, zonal/meridional eddy advection of relative vorticity and the associated Reynolds stress covariance are consistent with eddy deformation over rough topography and participate to sustain the striations in the far field. Shear instability of mean striations is proposed to feedback onto the eddy field, acting to maintain the subtropical front eddy streets and thus the striations.
NASA Technical Reports Server (NTRS)
Wong, S.; Colarco, P. R.; Dessler, A.
2006-01-01
The onset and evolution of Saharan Air Layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase of the second PC corresponds to the southwestward extension of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward extension into the subtropical to mid-latitude North Atlantic Ocean and the southwest Europe. A dust transport model (CARMA) and the MODIS retrievals are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10deg - 20degN, causing more (less) dust being transported along the tropical to subtropical North Atlantic Ocean. The variation of the offshore flow indicates that the subseasonal variation of African Easterly Jet is associated with the evolution of the SAL. Significant correlation is found between the second PC time series and the daily West African monsoon index, implying a dynamical linkage between West African monsoon and the evolution of the SAL and Saharan dust transport.
Staudhammer, Christina L; Escobedo, Francisco J; Holt, Nathan; Young, Linda J; Brandeis, Thomas J; Zipperer, Wayne
2015-05-15
We examined the spatial distribution, occurrence, and socioecological predictors of woody invasive plants (WIP) in two subtropical, coastal urban ecosystems: San Juan, Puerto Rico and Miami-Dade, United States. These two cities have similar climates and ecosystems typical of subtropical regions but differ in socioeconomics, topography, and urbanization processes. Using permanent plot data, available forest inventory protocols and statistical analyses of geographic and socioeconomic spatial predictors, we found that landscape level distribution and occurrence of WIPs was not clustered. We also characterized WIP composition and occurrence using logistic models, and found they were strongly related to the proportional area of residential land uses. However, the magnitude and trend of increase depended on median household income and grass cover. In San Juan, WIP occurrence was higher in areas of high residential cover when incomes were low or grass cover was low, whereas the opposite was true in Miami-Dade. Although Miami-Dade had greater invasive shrub cover and numbers of WIP species, San Juan had far greater invasive tree density, basal area and crown cover. This study provides an approach for incorporating field and available census data in geospatial distribution models of WIPs in cities throughout the globe. Findings indicate that identifying spatial predictors of WIPs depends on site-specific factors and the ecological scale of the predictor. Thus, mapping protocols and policies to eradicate urban WIPs should target indicators of a relevant scale specific to the area of interest for their improved and proactive management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessment of volatile organic compound emissions from ecosystems of China
NASA Astrophysics Data System (ADS)
Klinger, L. F.; Li, Q.-J.; Guenther, A. B.; Greenberg, J. P.; Baker, B.; Bai, J.-H.
2002-11-01
Isoprene, monoterpene, and other volatile organic compound (VOC) emissions from grasslands, shrublands, forests, and peatlands in China were characterized to estimate their regional magnitudes and to compare these emissions with those from landscapes of North America, Europe, and Africa. Ecological and VOC emission sampling was conducted at 52 sites centered in and around major research stations located in seven different regions of China: Inner Mongolia (temperate), Changbai Mountain (boreal-temperate), Beijing Mountain (temperate), Dinghu Mountain (subtropical), Ailao Mountain (subtropical), Kunming (subtropical), and Xishuangbanna (tropical). Transects were used to sample plant species and growth form composition, leafy (green) biomass, and leaf area in forests representing nearly all the major forest types of China. Leafy biomass was determined using generic algorithms based on tree diameter, canopy structure, and absolute cover. Measurements of VOC emissions were made on 386 of the 541 recorded species using a portable photo-ionization detector method. For 105 species, VOC emissions were also measured using a flow-through leaf cuvette sampling/gas chromatography analysis method. Results indicate that isoprene and monoterpene emissions, as well as leafy biomass, vary systematically along gradients of ecological succession in the same manner found in previous studies in the United States, Canada, and Africa. Applying these results to a regional VOC emissions model, we arrive at a value of 21 Tg C for total annual biogenic VOC emissions from China, compared to 5 Tg C of VOCs released annually from anthropogenic sources there. The isoprene and monoterpene emissions are nearly the same as those reported for Europe, which is comparable in size to China.
NASA Astrophysics Data System (ADS)
Menezes, V. V.; Phillips, H. E.
2016-02-01
Subtropical salinity maximum regions are particularly important because the salty subtropical underwater (STW) is formed by subduction of surface waters in these areas. In all oceans, the STW is transported equatorward from the formation region and are tightly related to the Subtropical-Tropical Cell. In the South Indian Ocean (SIO), the salinity maximum pool is further poleward (25S-38S) and eastward (60E-120E). It significantly impacts the circulation of the eastern basin, because the STW forms a strong haline front with the fresh Indonesian Throughflow waters. This haline front overwhelms the temperature contribution establishing the eastward Eastern Gyral Current, an important upstream source for the Leeuwin Current. In the present work, we analyze the variability of the SSS maximum pool using Aquarius and SMOS satellites, an Argo gridded product and the RAMA mooring located at 25S-100E. OAFLUX, 3B42 TRMM, Ascat/Quikscat winds and OSCAR products complement this study. The salinity maximum pool has a strong seasonal cycle of contraction (min in Oct) and expansion (max in April), and most of this variation occurs in the pool poleward side. Advection and entrainment control the contraction, while expansion is due to atmospheric forcing (E-P). From 2004 to 2014, a clear reduction in the pool area is identified, which might be related to a decadal variability. In this case, the variation is in the equatorward side of the pool. Processes controlling this long-term variability are being investigated.
NASA Astrophysics Data System (ADS)
Yokoi, Naoya; Abe, Yoshiyuki; Kitamura, Minoru; Honda, Makio C.; Yamaguchi, Atsushi
2018-03-01
Seasonal changes in zooplankton swimmer (ZS) abundance, biomass and community structure were evaluated based on samples collected by moored sediment traps at a depth of 200 m in the subarctic (SA) and subtropical (ST) western North Pacific. Based on these samples, we made comparisons on two topics: 1) latitudinal (subarctic vs. subtropical) changes in ZS abundance, biomass and community and 2) quantitative differences between the ZS and particle organic carbon (POC) fluxes based on data from moored or drifting sediment traps. The results showed that the ZS flux was greater in the SA (annual mean: 311 ind. m-2 day-1 or 258 mg C m-2 day-1) than in the ST (135 ind. m-2 day-1 or 38 mg C m-2 day-1). The peak ZS flux was observed from July-August in the SA and from April-May in the ST. The dominant taxa were Copepoda and Chaetognatha in the SA and Ostracoda and Mollusca in the ST. These latitudinal differences are likely related to the dominance of large-sized Copepoda in the SA, regional differences in the timing of the spring phytoplankton bloom, and the magnitude and size structure of primary producers. The percent composition of ZS to the total C flux (= ZS+POC flux) varied by region: 85-95% in the SA and 47-75% in the ST. These differences between the ZS composition and the total C flux are most likely caused by the dominance of large-sized Copepoda (Neocalanus spp. and Eucalanus bungii) in the SA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeFlorio, Mike; Ghan, Steven J.; Singh, Balwinder
This study uses a century length pre-industrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds and atmospheric circulation, and to suggest a dynamical, rather than microphysical, mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of dust emissions and transport downstream of North Africa in the model. CESM’s mean climatology and probability distribution of aerosol optical depth in this region agrees well with available AERONET observations. In addition, CESM shows strong seasonal cycles ofmore » dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists downstream of North Africa over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North Africa dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and lower tropospheric clouds over the open ocean, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using sub-monthly data over regions with different underlying dynamics.« less
Phytoplankton community structure is influenced by seabird guano enrichment in the Southern Ocean
NASA Astrophysics Data System (ADS)
Shatova, O. A.; Wing, S. R.; Hoffmann, L. J.; Wing, L. C.; Gault-Ringold, M.
2017-05-01
Phytoplankton biomass, productivity and community structure are strongly influenced by differences in nutrient concentrations among oceanographic water masses. Changes in community composition, particularly in the distribution of cell sizes, can result in dramatic changes in the energetics of pelagic food webs and ecosystem function in terms of biogeochemical cycling and carbon sequestration. Here we examine responses of natural phytoplankton communities from four major water masses in the Southern Ocean to enrichment from seabird guano, a concentrated source of bioactive metals (Mn, Fe, Co, Ni, Cu, Zn) and macronutrients (N, P), in a series of incubation experiments. Phytoplankton communities from sub-tropical water, modified sub-tropical water from the Snares Island wake, sub-Antarctic water and Antarctic water from the Ross Sea, each showed dramatic changes in community structure following additions of seabird guano. We observed particularly high growth of prymnesiophytes in response to the guano-derived nutrients within sub-Antarctic and sub-tropical frontal zones, resulting in communities dominated by larger cell sizes than in control incubations. Community changes within treatments enriched with guano were distinct, and in most cases more extensive, than those observed for treatments with additions of macronutrients (N, P) or iron (Fe) alone. These results provide the first empirical evidence that seabird guano enrichment can drive significant changes in the structure and composition of natural phytoplankton communities. Our findings have important implications for understanding the consequences of accumulation of bioactive metals and macronutrients within food webs and the role of seabirds as nutrient vectors within the Southern Ocean ecosystem.
Zalocar, Yolanda; Frutos, Santa Margarita; Casco, Sylvina Lorena; Forastier, Marina Elizabet; Vallejos, Silvina Vanesa
2011-09-01
Colacium vesiculosum (Euglenophyceae) is an epibiont common on planktonic microcrustaceans of continental waters. The interaction between epibionts and substrate organisms is not very well known, particularly in subtropical environments of South America. In the present work, we analyzed the prevalence, density, biomass and attachment sites of C. vesiculosum on planktonic microcrustaceans from Paiva Lake, a subtropical lake of Argentina. With the aim to evaluate whether epibionts affect the filtering rates of Notodiaptomus spiniger, the dominant planktonic crustacean, we carried out bioassays using phytoplankton < 53 microm. Crustaceans were sampled using a PVC tube (1.2m long and 10cm in diameter), filtering 50L of water through a 53 microm-mesh. Microcrustaceans were counted in Bogorov chambers under a stereoscopic microscope. The infested organisms were separated and observed with a photonic microscope to determine density and biovolume of epibionts, by analyzing their distribution on the exoskeleton. The prevalence of C. vesiculosum was higher in adult crustaceans than in their larvae and juveniles. The most infested group was that of calanoid copepods, related to their high density. The attachment sites on the exoskeleton were found to be the portions of the body which have a higher probability of encounter with epibionts during locomotion and feeding, i.e., antennae and thoracic legs in copepods, and thoracic legs and postabdomen in cladocerans. The similar values found in the filtering rate of infested and uninfested individuals of N. spiniger and the constant prevalence (< 40%) of epibiont algae, suggest that C. vesiculosum does not condition the life of planktonic crustaceans of Paiva Lake.
Chang, Lian-Ben; Chou, Chih-Jen; Shiu, Jia-Shian; Tu, Po-An; Gao, Shi-Xuan; Peng, Shao-Yu; Wu, Shinn-Chih
2017-08-01
Our aim was to investigate insemination techniques in order to improve pregnancy rates of artificial insemination (AI) using sex-sorted semen (sexed AI) in cattle in tropical and subtropical (T/ST) regions. In T/ST regions, the pregnancy rates by sexed AI are reportedly the lowest in the hottest months of the year, with less than 15% in cows and 35-40% in heifers (PMID 24048822). We compared sexed AI by depositing the semen into the uterine body (UB-AI, n = 12) versus the unilateral uterine horn (UUH-AI, n = 14) of pre-ovulation heifers. The ovary and follicle were assessed by rectal ultrasound before AI. After insemination, pregnancy was determined by ultrasound at approximately 40 days and approximately 70 days. In the present study, we demonstrated that high pregnancy rates (>70%) by sexed AI in the hottest season in a subtropical region such as Taiwan can be achieved when heifers with pre-ovulation follicles are used. The overall pregnancy rates were 54% higher in the UUH-AI (71%) group than in the UB-AI (42%) group (P = 0.06), examined on approximately 40 days post-sexed AI. Surprisingly, however, the pregnancy outcome appeared to be higher in the hot season (62%) than in the cool season (46%) although this difference was not statistically significant. Based on the present study, we recommend that cattle breeders perform UUH-AI using sex-sorted semen for heifers with pre-ovulation follicles in order to achieve satisfactory pregnancy outcome in the hot seasons in T/ST regions.
Taniguchi, Akito; Hamasaki, Koji
2008-01-01
Bacterial community structures and their activities in the ocean are tightly coupled with organic matter fluxes and thus control ocean biogeochemical cycles. Bromodeoxyuridine (BrdU), halogenated nucleoside and thymidine analogue, has been recently used to monitor actively growing bacteria (AGB) in natural environments. We labelled DNA of proliferating cells in seawater bacterial assemblages with BrdU and determined community structures of the bacteria that were possible key species in mediating biochemical reactions in the ocean. Surface seawater samples were collected along a north-south transect in the North Pacific in October 2003 and subjected to BrdU magnetic beads immunocapture and PCR-DGGE (BUMP-DGGE) analysis. Change of BrdU-incorporated community structures reflected the change of water masses along a north-south transect from subarctic to subtropical gyres in the North Pacific. We identified 25 bands referred to AGB as BrdU-incorporated phylotypes, belonging to Alphaproteobacteria (5 bands), Betaproteobacteria (1 band), Gammaproteobacteria (4 bands), Cytophaga-Flavobacterium-Bacteroides (CFB) group bacteria (5 bands), Gram-positive bacteria (6 bands), and Cyanobacteria (4 bands). BrdU-incorporated phylotypes belonging to Vibrionales, Alteromonadales and Gram-positive bacteria appeared only at sampling stations in a subtropical gyre, while those belonging to Roseobacter-related bacteria and CFB group bacteria appeared at the stations in both subarctic and subtropical gyres. Our result revealed phylogenetic affiliation of AGB and their dynamic change along with north-south environmental gradients in open oceans. Different species of AGB utilize different amount and kinds of substrates, which can affect the change of organic matter fluxes along transect. PMID:18177366
Zhou, Guoyi; Peng, Changhui; Li, Yuelin; Liu, Shizhong; Zhang, Qianmei; Tang, Xuli; Liu, Juxiu; Yan, Junhua; Zhang, Deqiang; Chu, Guowei
2013-04-01
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change. © 2012 Blackwell Publishing Ltd.