2008-10-24
Veterans of the X-15 flight research program, most of them now retired, reunited at Dryden on the 40th anniversary of the last X-15 flight on Oct. 24, 1968 for a historical colloquium on the X-15 by noted aerospace historian and author Dennis Jenkins on Oct. 24, 2008. Gathered in front of the replica of X-15 #3 the were (from left) Johnny Armstrong, Betty Love, Paul Reukauf, Bob Hoey, Dave Stoddard, Dean Webb, Vince Capasso, Bill Dana (who flew the last flight), John McTigue and T.D. Barnes. Jenkins, the author of "X-15: Extending the Frontiers of Flight," maintained during his presentation that despite setbacks, the X-15 program became the most successful of all the X-plane research programs due to the can-do, fix-the-problem and go-fly-again attitude of the X-15's cadre of engineers and technicians.
The X-15/HL-20 operations support comparison
NASA Technical Reports Server (NTRS)
Morris, W. Douglas
1993-01-01
During the 1960's, the United States X-15 rocket-plane research program successfully demonstrated the ability to support a reusable vehicle operating in a near-space environment. The similarity of the proposed HL-20 lifting body concept in general size, weight, and subsystem composition to that of the X-15 provided an opportunity for a comparison of the predicted support manpower and turnaround times with those experienced in the X-15 program. Information was drawn from both reports and discussions with X-15 program personnel to develop comparative operations and support data. Based on the assumption of comparability between the two systems, the predicted staffing levels, skill mix, and refurbishment times of an operational HL-20 appear to be similar to those experienced by the X-15 for ground support. However, safety, environmental, and support requirements have changed such that the HL-20 will face a different operating environment than existed at Edwards during the 1950's and 1960's. Today's operational standards may impose additional requirements on the HL-20 that will add to the maintenance and support burden estimate based on the X-15 analogy.
By Land or By Sea: An Analysis of National Missile Defense Options
2000-01-01
technology evolves x and the design and specifications for elements of both systems change, having an understanding of the concepts will allow...successful program, the Nike-Zeus system claimed thirteen successful intercepts of ballistic missiles. As the program developed, Nike-Zeus became Nike- X ...5 11,185 14.56 X -33 single stage to orbit prototype 5.2 11,521 15 Nominal V(bo) GBI 6 13,422 17.48 Notional ICBM 10000 7.2 16,106 20.98 Space
X-15 mounted to B-52 mothership pylon - preparation for an attempt at two X-15 launches in one day
NASA Technical Reports Server (NTRS)
1960-01-01
This photo shows one of the four attempts NASA made at launching two X-15 aircraft in one day. This attempt occurred November 4, 1960. None of the four attempts was successful, although one of the two aircraft involved in each attempt usually made a research flight. In this case, Air Force pilot Robert A. Rushworth flew X-15 #1 on its 16th flight to a speed of Mach 1.95 and an altitude of 48,900 feet. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1960-01-01
The X-15 aircraft, ship #1 (56-6670), sits on the lakebed early in its illustrious career of high speed flight research. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation made three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 #3 pedestal-mounted full-scale replica covered in snow
NASA Technical Reports Server (NTRS)
1997-01-01
The full scale mock-up of X-15 #3 was installed September 1995 at the NASA Dryden Flight Research Center, Edwards, California. The original X-15 #3, serial number 56-6672, was destroyed on 15 November 1967, in a crash that also fatally injured pilot Maj. Michael J. Adams. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, recovered in 1992 by Peter Merlin and Tony Moore (The X-Hunters) are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from the X-15-3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.
X-15 Mated to B-52 Captive Flight
NASA Technical Reports Server (NTRS)
1960-01-01
High-altitude contrails frame the B-52 mothership as it carries the X-15 aloft for a research flight on 13 April 1960 on Air Force Maj. Robert M. White's first X-15 flight. The X-15s were air-launched so that they would have enough rocket fuel to reach their high speed and altitude test points. For this early research flight, the X-15 was equipped with a pair of XLR-11 rocket engines until the XLR-99 was available. The X-15s made a total of 199 flights over a period of nearly 10 years--1959 to 1968--and set unofficial world speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 feet. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
X-15A-2 with test pilot Pete Knight
NASA Technical Reports Server (NTRS)
1965-01-01
Air Force pilot William J. 'Pete' Knight is seen here in front of the X-15A-2 aircraft (56-6671). Pete Knight made 16 flights in the X-15, and set the world unofficial speed record for fixed wing aircraft, 4,520 mph (mach 6.7), in the X-15A-2. He also made one flight above 50 miles, qualifying him for astronaut wings. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1961-01-01
The X-15-3 (56-6672), seen here on the lakebed at Edwards Air Force Base, Edwards, California, was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1 serial number 56-6670, seen in this photo, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 on Lakebed after Landing with B-52 Mothership Flyover
NASA Technical Reports Server (NTRS)
1961-01-01
As crew members secure the X-15 rocket-powered aircraft after a research flight, the B-52 mothership used for launching this unique aircraft does a low fly-by overhead. The X-15s made a total of 199 flights over a period of nearly 10 years -- 1959 to 1968 -- and set unofficial world speed and altitude records of 4,520 mph (Mach 6.7) and 354,200. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
X-15 launch from B-52 mothership
NASA Technical Reports Server (NTRS)
1959-01-01
This photo illustrates how the X-15 rocket-powered aircraft was taken aloft under the wing of a B-52. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. This was one of the early powered flights using a pair of XLR-11 engines (until the XLR-99 became available). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 test pilots - Thompson, Dana, and McKay
NASA Technical Reports Server (NTRS)
1966-01-01
NASA pilots Milton O. Thompson, William H. 'Bill' Dana, and John B. 'Jack' McKay are seen here in front of the #2 X-15 (56-6671) rocket-powered research aircraft. Among them, the three NASA research pilots made 59 flights in the X-15 (14 for Thompson, 16 for Dana, and 29 for McKay). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1963-01-01
This photo shows the X-15 cockpit. The X-15 was unique for many reasons, including the fact that it had two types of controls for the pilot. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wing provided roll control. The conventional aerodynamic controls used a stick, located in the middle of the floor, and pedals. The reaction control system used a side arm controller, seen in this photo on the left. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1960-01-01
The X-15 #2 (56-6671) launches away from the B-52 mothership with its rocket engine ignited. The white patches near the middle of the ship are frost from the liquid oxygen used in the propulsion system, although very cold liquid nitrogen was also used to cool the payload bay, cockpit, windshields, and nose. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1961-01-01
The North American X-15 settles to the lakebed after a research flight from what is now the NASA Dryden Flight Research Center, Edwards, California. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15A-2 with full-scale ablative coating (pink X-15) in Building 4821
NASA Technical Reports Server (NTRS)
1967-01-01
In June 1967, the X-15A-2 rocket-powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with hypersonic flight (above Mach 5). This pink eraser-like substance, applied to the X-15A-2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15A-2 with full scale ablative coating (pink X-15) on NASA ramp
NASA Technical Reports Server (NTRS)
1967-01-01
In June 1967, the X-15A-2 rocket powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with supersonic flight. This pink eraser-like substance, applied to the #2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. However, the X-15A-2 had been elongated to 52 ft 5 in. Like the other two X-15s, it was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of piloted hypersonic flight. Information gained fromthe highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J Adams.
X-15 #2 on lakebed after engine failure forced pilot Jack McKay to make an emergency landing at Mud
NASA Technical Reports Server (NTRS)
1962-01-01
On 9 November 1962, an engine failure forced Jack McKay, a NASA research pilot, to make an emergency landing at Mud Lake, Nevada, in the second X-15 (56-6671); its landing gear collapsed and the X-15 flipped over on its back. McKay was promptly rescued by an Air Force medical team standing by near the launch site, and eventually recovered to fly the X-15 again. But his injuries, more serious than at first thought, eventually forced his retirement from NASA. The aircraft was sent back to the manufacturer, where it underwent extensive repairs and modifications. It returned to Edwards in February 1964 as the X-15A-2, with a longer fuselage (52 ft 5 in) and external fuel tanks. The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 #2 with test pilot Joe Walker
NASA Technical Reports Server (NTRS)
1961-01-01
Joe Walker is seen here after a flight in front of the X-15 #2 (56-6671) rocket-powered research aircraft. Joseph A. Walker was a Chief Research Pilot at the NASA Dryden Flight Research Center during the mid-1960s. He joined NACA in March 1945, and served as project pilot at the Edwards flight research facility on such pioneering research projects as the D-558-1, D-558-2, X-1, X-3, X-4, X-5, and the X-15. He also flew programs involving the F-100, F-101, F-102, F-104, and the B-47. Walker made the first NASA X-15 flight on March 25, 1960. He flew the research aircraft 24 times and achieved its highest altitude. He attained a speed of 4,104 mph (Mach 5.92) during a flight on June 27, 1962, and reached an altitude of 354,200 feet (67.08 miles) on August 22, 1963 (his last X-15 flight). This was one of three flights by Walker that achieved altitudes over 50 miles. Walker was killed on June 8, 1966, when his F-104 collided with the XB-70. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1967-01-01
This photo shows the X-15A-2 (56-6671) on a research flight with a dummy ramjet engine attached to the bottom of its wedge-shaped vertical tail. One of the experiments planned for the X-15A-2 involved tests of a functional ramjet at speeds above Mach 5. This photo was taken with a dummy ramjet. On this research flight, the X-15A-2 did not carry the two drop tanks used on its Mach 6.7 flight. It also had not yet been covered with an ablative coating. The X-15A-2 made several flights with the dummy ramjet, leading to the record Mach 6.7 flight on October 3, 1967. Delays in producing the operational ramjet, aerodynamic heating damage to the aircraft during the record flight (despite the ablative coating), and the end of the X-15 program in 1968 resulted in no flights with the actual ramjet. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
Installation of X-15 full-scale mock-up at Dryden
NASA Technical Reports Server (NTRS)
1995-01-01
This photo shows workers installing the full-scale mock-up of X-15 #3 at the NASA Dryden Flight Research Center, Edwards, California, in September 1995. The mock-up is now on a pedestal outside the main gate at the center. The original X-15 #3, serial number 56-6672, was destroyed 15 November 1967, in a crash that also fatally injured pilot Maj. Michael J. Adams. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, recovered by Peter Merlin and Tony Moore (The X-Hunters) in 1992, are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from the X-15-3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.
X-15 Mated to B-52 Captive Flight
NASA Technical Reports Server (NTRS)
1959-01-01
One of three X-15 rocket-powered research aircraft being carried aloft under the wing of its B-52 mothership. The X-15 was air launched from the B-52 so the rocket plane would have enough fuel to reach its high speed and altitude test points. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. The X-15s made a total of 199 flights over a period of nearly 10 years and set world's unofficial speed and altitude records of 4,520 miles per hour (Mach 6.7) and 354,200 feet. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs and also the Space Shuttle program. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
X-15 flight crew - Engle, Rushworth, McKay, Knight, Thompson, and Dana
NASA Technical Reports Server (NTRS)
1966-01-01
The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force Major William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. These six pilots made 125 of the 199 total flights in the X-15. Rushworth made 34 flights (the most of any X-15 pilot); McKay flew 29 times; Engle, Knight, and Dana each flew 16 times; Thompson's total was 14. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 with test pilot Major Robert M. White
NASA Technical Reports Server (NTRS)
1961-01-01
Major Robert M. White is seen here next to the X-15 aircraft after a research flight. White was one of the initial pilots selected for the X-15 program, representing the Air Force in the joint program with NASA, the Navy, and North American Aviation. Between 13 April 1960 and 14 December 1962, he made 16 flights in the rocket-powered aircraft. He was the first pilot to fly to Mach 4, 5, and 6 (respectively 4, 5, and 6 times the speed of sound). He also flew to the altitude of 314,750 feet on 17 July 1962, setting a world altitude record. This was 59.6 miles, significantly higher than the 50 miles the Air Force accepted as the beginning of space, qualifying White for astronaut wings. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 #3 with test pilot Bill Dana
NASA Technical Reports Server (NTRS)
1967-01-01
NASA research pilot Bill Dana is seen here next to the X-15 #3 (56-6672) rocket-powered aircraft after a flight. William H. Dana is Chief Engineer at NASA's Dryden Flight Research Center, Edwards, California. Formerly an aerospace research pilot at Dryden, Dana flew the F-15 HIDEC research aircraft and the Advanced Fighter Technology Integration/F-16 aircraft. Dana flew the famed X-15 research airplane 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 306,900 feet (over 58 miles high). The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio.X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 with test pilot Bill Dana
NASA Technical Reports Server (NTRS)
1966-01-01
NASA research pilot Bill Dana is seen here next to the X-15 #3 rocket-powered aircraft after a flight. William H. Dana is Chief Engineer at NASA's Dryden Flight Research Center, Edwards, California. Formerly an aerospace research pilot at Dryden, Dana flew the F-15 HiDEC research aircraft and the Advanced Fighter Technology Integration/F-16 aircraft. Dana flew the famed X-15 research airplane 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 310,000 feet (almost 59 miles high). The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation made 3 X-15 aircraft for the program. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 test pilots - Engle, Rushworth, McKay, Knight, Thompson, and Dana
NASA Technical Reports Server (NTRS)
1966-01-01
The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force pilot William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. of their 125 X-15 flights, 8 were above the 50 miles that constituted the Air Force's definition of the beginning of space (Engle 3, Dana 2, Rushworth, Knight, and McKay one each). NASA used the international definition of space as beginning at 62 miles above the earth. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 #3 being secured by ground crew after flight
NASA Technical Reports Server (NTRS)
1960-01-01
The X-15-3 (56-6672) research aircraft is secured by ground crew after landing on Rogers Dry Lakebed. The work of the X-15 team did not end with the landing of the aircraft. Once it had stopped on the lakebed, the pilot had to complete an extensive post-landing checklist. This involved recording instrument readings, pressures and temperatures, positioning switches, and shutting down systems. The pilot was then assisted from the aircraft, and a small ground crew depressurized the tanks before the rest of the ground crew finished their work on the aircraft. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
Pilot Neil Armstrong with X-15 #1
NASA Technical Reports Server (NTRS)
1960-01-01
Dryden pilot Neil Armstrong is seen here next to the X-15 ship #1 (56-6670) after a research flight. Armstrong made his first X-15 flight on November 30, 1960, in the #1 X-15. He made his second flight on December 9, 1960, in the same aircraft. This was the first X-15 flight to use the ball nose, which provided accurate measurement of air speed and flow angle at supersonic and hypersonic speeds. The servo-actuated ball nose can be seen in this photo in front of Armstrong's right hand. The X-15 employed a non-standard landing gear. It had a nose gear with a wheel and tire, but the main landing consisted of skids mounted at the rear of the vehicle. In the photo, the left skid is visible, as are marks on the lakebed from both skids. Because of the skids, the rocket-powered aircraft could only land on a dry lakebed, not on a concrete runway. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 #3 and F-104A chase plane landing
NASA Technical Reports Server (NTRS)
1960-01-01
Followed by a Lockheed F-104A Starfighter chase plane, the North American X-15 ship #3 (56-6672) sinks toward touchdown on Rogers Dry Lake following a research flight. In the foreground is green smoke, used to indicate wind direction. The F-104 chase pilot joined up with the X-15 as it glided to the landing. The chase pilot was there to warn the X-15 pilot of any problems and to call out the altitude above the lakebed. F-104 aircraft were also used for X-15 pilot training to simulate the landing characteristics of the rocket-powered airplane, which landed without engine power since the rocket engine had already burned all of its propellant before the landing. The F-104s could simulate the steep descent of the X-15 as it glided to a landing. They did this by extending the landing gear and speed brakes while setting the throttle to idle. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1961-01-01
This photo shows the X-15 flight simulator located at the NASA Flight Research Center, Edwards, California, in the 1960s. One of the major advances in aircraft development, pilot training, mission planning, and research flight activities in the 1950s and 1960s was the use of simulators. For the X-15, a computer was programmed with the flight characteristics of the aircraft. Before actually flying a mission, a research pilot could discover many potential problems with the aircraft or the mission while still on the ground by 'flying' the simulator. The problem could then be analyzed by engineers and a solution found. This did much to improve safety. The X-15 simulator was very limited compared to those available in the 21st century. The video display was simple, while the computer was analog rather than digital (although it became hybrid in 1964 with the addition of a digital computer for the X-15A-2; this generated the nonlinear aerodynamic coefficients for the modified No. 2 aircraft). The nonlinear aerodynamic function generators used in the X-15 simulator had hundreds of fuses, amplifiers, and potentiometers without any surge protection. After the simulator was started on a Monday morning, it would be noon before it had warmed up and stabilized. The electronics for the X-15 simulator took up many large consoles. The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
NASA Technical Reports Server (NTRS)
1962-01-01
The X-15 ship #3 (56-6672) is seen here on the lakebed at the Edwards Air Force Base, Edwards, California. Ship #3 made 65 flights during the program, attaining a top speed of Mach 5.65 and a maximum altitude of 354,200 feet. Only 10 of the 12 X-15 pilots flew Ship #3, and only eight of them earned their astronaut wings during the program. Robert White, Joseph Walker, Robert Rushworth, John 'Jack' McKay, Joseph Engle, William 'Pete' Knight, William Dana, and Michael Adams all earned their astronaut wings in Ship #3. Neil Armstrong and Milton Thompson also flew Ship #3. In fact, Armstrong piloted Ship #3 on its first flight, on 20 December 1961. On 15 November 1967, Ship #3 was launched over Delamar Lake, Nevada with Maj. Michael J. Adams at the controls. The vehicle soon reached a speed of Mach 5.2, and a peak altitude of 266,000 feet. During the climb, an electrical disturbance degraded the aircraft's controllability. Ship #3 began a slow drift in heading, which soon became a spin. Adams radioed that the X-15 'seems squirrelly,' and then said 'I'm in a spin.' Through some combination of pilot technique and basic aerodynamic stability, Adams recovered from the spin, and entered an inverted Mach 4.7 dive. As the X-15 plummeted into the increasingly thicker atmosphere, the Honeywell adaptive flight control system caused the vehicle to begin oscillating. As the pitching motion increased, aerodynamic forces finally broke the aircraft into several major pieces. Adams was killed when the forward fuselage impacted the desert. This was the only fatal accident during the entire X-15 program. The X-15 was a rocket powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph or Mach 6.7 (set by Ship #2) and 354,200 ft (set by Ship #3) in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini,and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, serial number 56-6672, recovered in 1992 by Peter Merlin and Tony Moore (The X-Hunters) are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from Ship #3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.
X-15 #3 in flight (USAF Photo)
NASA Technical Reports Server (NTRS)
1960-01-01
This U.S. Air Force photo shows the X-15 ship #3 (56-6672) in flight over the desert in the 1960s. Ship #3 made 65 flights during the program, attaining a top speed of Mach 5.65 and a maximum altitude of 354,200 feet. Only 10 of the 12 X-15 pilots flew Ship #3, and only eight of them earned their astronaut wings during the program. Robert White, Joseph Walker, Robert Rushworth, John 'Jack' McKay, Joseph Engle, William 'Pete' Knight, William Dana, and Michael Adams all earned their astronaut wings in Ship #3. Neil Armstrong and Milton Thompson also flew Ship #3. In fact, Armstrong piloted Ship #3 on its first flight, on 20 December 1961. On 15 November 1967, Ship #3 was launched over Delamar Lake, Nevada with Maj. Michael J. Adams at the controls. The vehicle soon reached a speed of Mach 5.2, and a peak altitude of 266,000 feet. During the climb, an electrical disturbance degraded the aircraft's controllability. Ship #3 began a slow drift in heading, which soon became a spin. Adams radioed that the X-15 'seems squirrelly' and then said 'I'm in a spin.' Through some combination of pilot technique and basic aerodynamic stability, Adams recovered from the spin and entered an inverted Mach 4.7 dive. As the X-15 plummeted into the increasingly thicker atmosphere, the Honeywell adaptive flight control system caused the vehicle to begin oscillating. As the pitching motion increased, aerodynamic forces finally broke the aircraft into several major pieces. Adams was killed when the forward fuselage impacted the desert. This was the only fatal accident during the entire X-15 program. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph or Mach 6.7 (set by Ship #2) and 354,200 ft (set by Ship #3) in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. Parts of the crashed X-15-3, serial number 56-6672, recovered in 1992 by Peter Merlin and Tony Moore (The X-Hunters) are on display at the Air Force Flight Test Center Museum at Edwards. The canopy from Ship #3, recovered during the original search in 1967, is displayed at the San Diego Aerospace Museum, San Diego, California.
X-15 mock-up with test pilot Milt Thompson
NASA Technical Reports Server (NTRS)
1993-01-01
NASA research pilot Milt Thompson is seen here with the mock-up of X-15 #3 that was later installed at the NASA Dryden Flight Research Center, Edwards, California. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the flight research facility on 19 March 1956, when it was still under the auspices of NACA. He became a research pilot on 25 May 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on 29 October 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. (On a different flight, he reached a Mach number of 5.48 but his mph was only 3712.) Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on 8 August 1993. The X-15 was a rocket powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 mock-up with test pilot Milt Thompson
NASA Technical Reports Server (NTRS)
1993-01-01
NASA research pilot Milt Thompson stands next to a mock-up of X-15 number 3 that was later installed at the NASA Dryden Flight Research Center, Edwards, California. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the flight research facility on 19 March 1956, when it was still under the auspices of NACA. He became a research pilot on 25 May 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on 29 October 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on 8 August 1993. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and moving horizontal stabilizers which control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 Novemebr 1967, resulting in the death of Maj. Michael J. Adams.
X-15 #3 with test pilot Milt Thompson
NASA Technical Reports Server (NTRS)
1964-01-01
NASA research pilot Milt Thompson stands next to the X-15 #3 ship after a research flight. Milton 0. Thompson was a research pilot, Chief Engineer and Director of Research Projects during a long career at the NASA Dryden Flight Research Center. Thompson was hired as an engineer at the Flight Research Facility on March 19, 1956, when it was still under the auspices of NACA. He became a research pilot on May 25, 1958. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the X-15 rocket-powered research aircraft between 1959 and 1968. He began flying X-15s on October 29, 1963. He flew the aircraft 14 times during the following two years, reaching a maximum speed of 3723 mph (Mach 5.42) and a peak altitude of 214,100 feet on separate flights. Thompson concluded his active flying career in 1968, becoming Director of Research Projects. In 1975 he was appointed Chief Engineer and retained the position until his death on August 8, 1993. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, andunique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudders on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a ballistic control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-51A Scramjet Demonstrator Program: Waverider Ground and Flight Test
2013-11-01
identification NASA National Aeronautics and Space Administration Scramjet supersonic ramjet (scramjet) TM telemetry 3 INTRODUCTION The fourth and final...aerodynamic parameter identification (PID) maneuvers were to be performed at Mach numbers 5, 4, 3, and 2. After almost 5 minutes of descent, the X-51A...resolve the issue and lineup for a second attempt. The F-15 successfully took off without major impact to the mission timing. As noted earlier, with the
Pilot Neil Armstrong in the X-15 #1 cockpit
NASA Technical Reports Server (NTRS)
1961-01-01
NASA pilot Neil Armstrong is seen here in the cockpit of the X-15 ship #1 (56-6670) after a research flight. A U.S. Navy pilot in the Korean War who flew 78 combat missions in F9F-2 jet fighters and who was awarded the Air Medal and two Gold Stars, Armstrong graduated from Purdue University in 1955 with a bachelor degree in aeronautical engineering. That same year, he joined the National Advisory Committee for Aeronautics' Lewis Flight Propulsion Laboratory in Cleveland, Ohio (today, the NASA Glenn Research Center). In July 1955, Armstrong transferred to the High-Speed Flight Station (HSFS, as Dryden Flight Research Center was then called) as an aeronautical research engineer. Soon thereafter, he became a research pilot. For the first few years at the HSFS, Armstrong worked on a number of projects. He was a pilot on the Navy P2B-1S used to launch the D-558-2 and also flew the F-100A, F-100C, F-101, F-104A, and X-5. His introduction to rocket flight came on August 15, 1957, with his first flight (of four, total) on the X-1B. He then became one of the first three NASA pilots to fly the X-15, the others being Joe Walker and Jack McKay. (Scott Crossfield, a former NACA pilot, flew the X-15 first but did so as a North American Aviation pilot.) The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
X-15 test pilots - in a lighter mood
NASA Technical Reports Server (NTRS)
1966-01-01
The X-15 pilots clown around in front of the #2 aircraft.From left to right: USAF Capt. Joseph Engle, USAF Maj. Robert Rushworth, NASA test pilot John 'Jack' McKay, USAF Maj. William 'Pete' Knight, NASA test pilot Milton Thompson, and NASA test pilot William Dana. First flown in 1959 from the NASA High Speed Flight Station (later renamed the Dryden Flight Research Center), the rocket powered X-15 was developed to provide data on aerodynamics, structures, flight controls and the physiological aspects of high speed, high altitude flight. Three were built by North American Aviation for NASA and the U.S. Air Force. They made a total of 199 flights during a highly successful research program lasting almost ten years, following which its speed and altitude records for winged aircraft remained unbroken until the Space Shuttle first returned from earth orbit in 1981. The X-15's main rocket engine provided thrust for the first 80 to 120 seconds of a 10 to 11 minute flight; the aircraft then glided to a 200 mph landing. The X-15 reached altitudes of 354,200 feet (67.08 miles) and a speed of 4,520 mph (Mach 6.7).
X-15 with test pilot Capt. Joe Engle
NASA Technical Reports Server (NTRS)
1965-01-01
Captain Joe Engle is seen here next to the X-15-2 (56-6671) rocket-powered research aircraft after a flight. Engle made 16 flights in the X-15 between October 7, 1963, and October 14, 1965. Three of the flights, on June 29, August 10, and October 14, 1965, were above 50 miles, qualifying him for astronaut wings under the Air Force definition. (NASA followed the international definition of space as starting at 62 miles.) Engle was selected as a NASA astronaut in 1966, making him the only person who had flown in space before being selected as an astronaut. First assigned to the Apollo program, he served on the support crew for Apollo X and then as backup lunar module pilot for Apollo XIV. In 1977, he was commander of one of two crews who were launched from atop a modified Boeing 747 in order to conduct approach and landing tests with the Space Shuttle Enterprise. Then in November 1981, he commanded the second flight of the Shuttle Columbia and manually flew the re-entry--performing 29 flight test maneuvers--from Mach 25 through landing roll out. This was the first and, so far, only time that a winged aerospace vehicle has been manually flown from orbit through landing. He accumulated the last of his 224 hours in space when he commanded the Shuttle Discovery during STS-51-I in August of 1985. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used: a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years--June 1959 to Oct. 1968--and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft (over 67 mi) in a program to investigate all aspects of piloted hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. The X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams.
M2-F2 Lifting Body being Carried Aloft by B-52 Mothership
NASA Technical Reports Server (NTRS)
1966-01-01
The M2-F2 Lifting Body is shown here being carried aloft by the Air Force's B-52 (tail number 003) prior to a research launch. The success of Dryden's 'homebuilt' M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies--the M2-F2 and the HL-10, both built by the Northrop Corporation. The 'M' refers to 'manned' and 'F' refers to 'flight' version. 'HL' comes from 'horizontal landing.' The first flight of the M2-F2--which looked much like the 'F1'--was on July 12, 1966. Milt Thompson was the pilot. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During the X-15 and Lifting-Body programs, another B-52, tail number 003, also served as a launch aircraft. During those programs, both B-52s were operated by the Air Force, NASA's partner in both programs. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Analysis of Factors Affecting the Success of Onions Development Program in Kampar Regency
NASA Astrophysics Data System (ADS)
Amalia; Putri, Asgami
2017-12-01
The purpose of this study is to analyze the factors influencing the success of the onion plant development program in Kampar regency. The research method used was the applied survey method using interview technique and observation or direct supervision on the location of the object. The briefing of the interviews as well as the accuracy of collecting the required data was guided by the structured questionnaires. Determination technique of location / region sampling was done purposively based on the potency and capacity of commodity development. While the respondents were taken by cluster purvosive sampling method in order to classify the samples in accordance with the purpose of the study, determined by as many as 100 people taken from members of the farmer group. Analytical technique used is by using Logic Regression Analysis to determine the factors that influence the success of the program seen from the characteristics of farmers. From the results of this study it can be concluded that the factors influencing the success of onion development program in Kampar regency were a age (X1), education (X2), income (X3), ethnicity (X4), jobs (X5) And family responsibility (X6) could be made as follows: Log Y (P/1-p) = -1.778 +X10.021 + X20.028 - X30.213 + X41.986 + X52.930 - X60.455 From the above equation, it can be explained that the attributes that are positively related are X1 (age), X2 (education), X4 (ethnicity) and X5 (jobs) while the negative correlates are X3 (income) and X6 (family responsibility). From the logical regression result it can be seen that the significant value <0,05, then the independent variable influenced the dependent variable, so that when viewed from the table in the equation it was found that factors affecting the success rate of red onion development program in Kampar regency were X2 (education), X4 (ethnicity), X5 (jobs), and X6 (family responsibility).
Target of Opportunity Positioning of Transient X-Ray Pulsars
NASA Technical Reports Server (NTRS)
Chakrabarty, Deepto
2003-01-01
Our program successfully localized three newly-identified transient X-ray pulsars. XTE J1858+034 is a 221 s pulsar (Takeshima et al. 1998, IAUC 6826), XTE J1946+274 is a 15.8 s pulsar (Takeshima and Chakrabarty 1998, IAUC 7016), and XTE J0111.2-7317 is a 31 s pulsar in the Small Magellanic Cloud (Chakrabarty et al. 1998, IAUC 7048). This last pulsar was a particularly interesting source, and our XTE observations enabled prompt follow-up observations with the ASCA mission (Yokogawa et al. 2000, ApJ. 539, 191).
NASA Dryden test pilot Michael J. Adams
1967-03-22
Air Force test pilot Maj. Michael J. Adams stands beside X-15 ship number one. Adams was selected for the X-15 program in 1966 and made his first flight on Oct. 6, 1966. On Nov. 15, 1967, Adams made his seventh and final X-15 flight. The X-15 launched from the B-52, but during the ascent an electrical problem affected the X-15's control system. The aircraft crashed northwest of Cuddeback Lake, California, causing the death of Adams. He was posthumously awarded Air Force astronaut wings because his final flight exceeded 50 miles in altitude. Adams was the only pilot lost in the 199-flight X-15 program.
Major General Robert A. Rushworth
NASA Technical Reports Server (NTRS)
1982-01-01
Air Force test pilot Robert A. Rushworth is shown in an X-15. He was selected for the X-15 program in 1958, and made his first flight on November 4, 1960. Over the next six years, he made 34 flights in the X-15, the most of any pilot. This included a flight to an altitude of 285,000 feet, made on June 27, 1963. This flight above 50 miles qualified Rushworth for astronaut wings. On a later X-15 flight, he was awarded a Distinguished Flying Cross for successfully landing an X-15 after its nose wheel extended while flying at nearly Mach 5. He made his final X-15 flight on July 1, 1966, then returned to regular Air Force duties. These included a tour in Vietnam as an F-4 pilot, flying 189 combat missions. He also served as the Commander of the Air Force Flight Test Center at Edwards AFB, and as the Commander of the Air Force Test and Evaluation Center at Kirtland AFB. At the time of his retirement as a major general, he was Vice Commander, Aeronautical Systems Division, Air Force Systems Command, at Wright-Patterson AFB. Rushworth flew C-47s and C-46s as a transport pilot in World War II, as well as F-80Cs, F-101s, TF-102s, F-104s, F-105s, F-106s, and F-4s. He died on March 17, 1993.
X-15 Hardware Design Challenges
NASA Technical Reports Server (NTRS)
Storms, Harrison A., Jr.
1991-01-01
Historical events in the development of the X-15 hardware design are presented. Some of the topics covered include: (1) drivers that led to the development of the X-15; (2) X-15 space research objectives; (3) original performance targets; (4) the X-15 typical mission; (5) X-15 dimensions and weight; (5) the propulsion system; (6) X-15 development milestones; (7) engineering and manufacturing challenges; (8) the X-15 structure; (9) ballistic flight control; (10) landing gear; (11) nose gear; and (12) an X-15 program recap.
X-15 and XB-70 parked on NASA ramp
NASA Technical Reports Server (NTRS)
1967-01-01
The X-15A-2 with drop tanks and ablative coating is shown parked on the NASA ramp in front of the XB-70. These aircraft represent two different approaches to flight research. The X-15 was a research airplane in the purest sense, whereas the XB-70 was an experimental bomber intended for production but diverted to research when production was cancelled by changes in the Department of Defense's offensive doctrine. The X-15A-2 had been modified from its original configuration with a longer fuselage and drop tanks. To protect it against aerodynamic heating, researchers had coated it with an ablative coating covered by a layer of white paint. These changes allowed the X-15A-2 to reach a maximum speed of Mach 6.7, although it could be sustained for only a brief period. The XB-70, by contrast, was designed for prolonged high-altitude cruise flight at Mach 3. The aircraft's striking shape--with a long forward fuselage, canards, a large delta wing, twin fins, and a box-like engine bay--allowed it to ride its own Mach 3 shockwave, so to speak. A joint NASA-Air Force program used the aircraft to collect data in support of the U.S supersonic transport (SST) program, which never came to fruition because of environmental concerns. X-15: The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as testbeds to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at approximately 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of manned hypersonic flight. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J. Adams. XB-70: The XB-70 was the world's largest experimental aircraft. It was capable of flight at speeds of three times the speed of sound (roughly 2,000 miles per hour) at altitudes of 70,000 feet. It was used to collect in-flight information for use in the design of future supersonic aircraft, military and civilian. The major objectives of the XB-70 flight research program were to study the airplane's stability and handling characteristics, to evaluate its response to atmospheric turbulence, and to determine the aerodynamic and propulsion performance. In addition there were secondary objectives to measure the noise and friction associated with airflow over the airplane and to determine the levels and extent of the engine noise during takeoff, landing, and ground operations. The XB-70 was about 186 feet long, 33 feet high, with a wingspan of 105 feet. Originally conceived as an advanced bomber for the United States Air Force, the XB-70 was limited to production of two aircraft when it was decided to limit the aircraft's mission to flight research. The first flight of the XB-70 was made on Sept. 21, 1964. The number two XB-70 was destroyed in a mid-air collision on June 8, 1966. Program management of the NASA-USAF research effort was assigned to NASA in March 1967. The final flight was flown on Feb. 4, 1969. Designed by North American Aviation (later North American Rockwell and still later, a division of Boeing) the XB-70 had a long fuselage with a canard or horizontal stabilizer mounted just behind the crew compartment. It had a sharply swept 65.6-percent delta wing. The outer portion of the wing could be folded down in flight to provide greater lateral-directional stability. The airplane had two windshields. A moveable outer windshield was raised for high-speed flight to reduce drag and lowered for greater visibility during takeoff and landing. The forward fuselage was constructed of riveted titanium frames and skin. The remainder of the airplane was constructed almost entirely of stainless steel. The skin was a brazed stainless-steel honeycomb material. Six General Electric YJ93-3 turbojet engines, each in the 30,000-pound-thrust class, powered the XB-70. Internal geometry of the inlets was controllable to maintain the most efficient airflow to the engines.
Moftakhar, Parham; Lillaney, Prasheel; Losey, Aaron D; Cooke, Daniel L; Martin, Alastair J; Thorne, Bradford R H; Arenson, Ronald L; Saeed, Maythem; Wilson, Mark W; Hetts, Steven W
2015-12-01
To assess the feasibility of multiplanar vascular navigation with a new magnetically assisted remote-controlled (MARC) catheter with real-time magnetic resonance (MR) imaging at 1.5 T and 3 T and to compare it with standard x-ray guidance in simulated endovascular catheterization procedures. A 1.6-mm-diameter custom clinical-grade microcatheter prototype with lithographed double-saddle coils at the distal tip was deflected with real-time MR imaging. Two inexperienced operators and two experienced operators catheterized anteroposterior (celiac, superior mesenteric, and inferior mesenteric arteries) and mediolateral (renal arteries) branch vessels in a cryogel abdominal aortic phantom. This was repeated with conventional x-ray fluoroscopy by using clinical catheters and guidewires. Mean procedure times and percentage success data were analyzed with linear mixed-effects regression. The MARC catheter tip was visible at 1.5 T and 3 T. Among inexperienced operators, MARC MR imaging guidance was not statistically different from x-ray guidance at 1.5 T (67% successful vessel selection turns with MR imaging vs 76% with x-ray guidance, P = .157) and at 3 T (75% successful turns with MR imaging vs 76% with x-ray guidance, P = .869). Experienced operators were more successful in catheterizing vessels with x-ray guidance (98% success within 60 seconds) than with 1.5-T (65%, P < .001) or 3-T (75%) MR imaging. Among inexperienced operators, mean procedure time was nearly equivalent by using MR imaging (31 seconds) and x-ray guidance (34 seconds, P = .436). Among experienced operators, catheterization was faster with x-ray guidance (20 seconds) compared with 1.5-T MR imaging (42 seconds, P < .001), but MARC guidance improved at 3 T (31 seconds). MARC MR imaging guidance at 3 T was not significantly different from x-ray guidance for the celiac (P = .755), superior mesenteric (P = .358), and inferior mesenteric (P = .065) arteries. Multiplanar navigation with a new MARC catheter with real-time MR imaging at 1.5 T and 3 T is feasible and comparable to x-ray guidance for anteroposterior vessels at 3 T in a vascular phantom.
Moftakhar, Parham; Lillaney, Prasheel; Losey, Aaron D.; Cooke, Daniel L.; Martin, Alastair J.; Thorne, Bradford R. H.; Arenson, Ronald L.; Saeed, Maythem; Wilson, Mark W.
2015-01-01
Purpose To assess the feasibility of multiplanar vascular navigation with a new magnetically assisted remote-controlled (MARC) catheter with real-time magnetic resonance (MR) imaging at 1.5 T and 3 T and to compare it with standard x-ray guidance in simulated endovascular catheterization procedures. Materials and Methods A 1.6-mm–diameter custom clinical-grade microcatheter prototype with lithographed double-saddle coils at the distal tip was deflected with real-time MR imaging. Two inexperienced operators and two experienced operators catheterized anteroposterior (celiac, superior mesenteric, and inferior mesenteric arteries) and mediolateral (renal arteries) branch vessels in a cryogel abdominal aortic phantom. This was repeated with conventional x-ray fluoroscopy by using clinical catheters and guidewires. Mean procedure times and percentage success data were analyzed with linear mixed-effects regression. Results The MARC catheter tip was visible at 1.5 T and 3 T. Among inexperienced operators, MARC MR imaging guidance was not statistically different from x-ray guidance at 1.5 T (67% successful vessel selection turns with MR imaging vs 76% with x-ray guidance, P = .157) and at 3 T (75% successful turns with MR imaging vs 76% with x-ray guidance, P = .869). Experienced operators were more successful in catheterizing vessels with x-ray guidance (98% success within 60 seconds) than with 1.5-T (65%, P < .001) or 3-T (75%) MR imaging. Among inexperienced operators, mean procedure time was nearly equivalent by using MR imaging (31 seconds) and x-ray guidance (34 seconds, P = .436). Among experienced operators, catheterization was faster with x-ray guidance (20 seconds) compared with 1.5-T MR imaging (42 seconds, P < .001), but MARC guidance improved at 3 T (31 seconds). MARC MR imaging guidance at 3 T was not significantly different from x-ray guidance for the celiac (P = .755), superior mesenteric (P = .358), and inferior mesenteric (P = .065) arteries. Conclusion Multiplanar navigation with a new MARC catheter with real-time MR imaging at 1.5 T and 3 T is feasible and comparable to x-ray guidance for anteroposterior vessels at 3 T in a vascular phantom. © RSNA, 2015 Online supplemental material is available for this article. PMID:26030659
X-15: the Perspective of History
NASA Technical Reports Server (NTRS)
Hallion, Richard P.
1991-01-01
The linkages between the Apollo 11 voyage to Tranquility Base and the 199 flights of the X-15 aircraft are discussed. Accomplishments of the X-15 program and a history of aircraft developments that led up to the X-15 are presented.
NASA personnel in a control room during the successful second flight of the X-43A aircraft
2004-03-27
NASA personnel in a control room during the successful second flight of the X-43A aircraft. front row, left to right: Randy Voland, LaRC Propulsion; Craig Christy, Boeing Systems; Dave Reubush, NASA Hyper-X Deputy Program Manager; and Vince Rausch, NASA Hyper-X Program Manager. back row, left to right: Bill Talley, DCI/consultant; Pat Stoliker, DFRC Director (Acting) of Research Engineering; John Martin, LaRC G&C; and Dave Bose, AMA/Controls.
Reusable launch vehicle development research
NASA Technical Reports Server (NTRS)
1995-01-01
NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.
X-15: Extending the Frontiers of Flight
NASA Technical Reports Server (NTRS)
Jenkins, Dennis R.
2007-01-01
A history of the design and achievements of the high-speed, 1950s-era X-15 airplane is presented. The following chapters are included: A New Science; A Hypersonic Research Airplane; Conflict and Innovation; The Million-Horsepower Engine; High Range and Dry Lakes; Preparations; The Flight Program; and the Research Program. Selected biographies, flight logs and physical characteristics of the X-15 Airplane are included in the appendices.
Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul
2005-01-01
Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.
Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft
NASA Technical Reports Server (NTRS)
1997-01-01
Dryden Experimental Fabrication Shop's Andy Blua and Jeff Doughty make sure the new pylon for the X-38 fits precisely during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California in 1997. The 1,200-pound steel pylon, fabricated at Dryden, was an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the bomber. The X-38 was a designed as a technology demonstrator to help develop an emergency Crew Return Vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Pegasus Mated to B-52 Mothership - Front View
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's B-52 launch aircraft takes off with the second Pegasus vehicle under its wing from the Dryden Flight Research Facility (now the Dryden Flight Research Center), Edwards, California. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Dryden B-52 Launch Aircraft on Dryden Ramp
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
B-52 Flight Mission Symbology on Side of Craft
NASA Technical Reports Server (NTRS)
1993-01-01
A view of some of the mission markings, painted on the side of NASA's B-52 mothership, that tell the story of its colorful history. Just as combat aircraft would paint a bomb on the side of an aircraft for each bombing mission completed, NASA crew members painted a silhouette on the side of the B-52's fuselage to commemorate each drop of an X-15, lifting body, remotely piloted research vehicle, X-38 crew return vehicle, or other experimental vehicle or parachute system. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Dryden B-52 Launch Aircraft on Edwards AFB Runway
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Managing External Relations: The Lifeblood of Mission Success
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2007-01-01
The slide presentation examines the role of customer and stakeholder relations in the success of space missions. Topics include agency transformation; an overview of project and program experience with a discussion of positions, technical accomplishments, and management lessons learned; and approaches to project success with emphasis on communication. Projects and programs discussed include the Space Shuttle Main Engine System, DC-XA Flight Demonstrator, X-33 Flight Demonstrator, Space Launch Initiative/2nd Generation Reusable Launch Vehicle, X-37 Flight Demonstrator, Constellation (pre Dr. Griffin), Safety and Mission Assurance, and Exploration Launch Projects.
X-38 Mounted on Pylon of B-52 Mothership
NASA Technical Reports Server (NTRS)
1997-01-01
A close-up view of the X-38 research vehicle mounted under the wing of the B-52 mothership prior to a 1997 test flight. The X-38, which was designed to help develop technology for an emergency crew return vehicle (CRV) for the International Space Station, is one of many research vehicles the B-52 has carried aloft over the past 40 years. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
NASA Technical Reports Server (NTRS)
1997-01-01
Reminiscent of the lifting body research flights conducted more than 30 years earlier, NASA's B-52 mothership lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
NASA Technical Reports Server (NTRS)
1997-01-01
In a scene reminiscent of the lifting body research flights conducted more than 30 years earlier, this photo shows a close-up view of NASA's B-52 mothership as it lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft
NASA Technical Reports Server (NTRS)
1997-01-01
Tom McMullen, Chief of Dryden's Experimental Fabrication Shop, makes adjustments to the new pylon for NASA's X-38 during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California, in 1997. The fit-check was the first time the 1,200-pound steel pylon was mated to the B-52 following fabrication at Dryden by the Center's Experimental Fabrication Shop. The pylon was built as an 'adapter' to allow the X-38 to be attached to and launched from the B-52's wing. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft
NASA Technical Reports Server (NTRS)
1997-01-01
The new pylon for the X-38 following a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California, in 1997. The fit-check was the first time the 1,200-pound steel pylon was mated to the B-52 following fabrication at Dryden by the Center's Experimental Fabrication Shop. The pylon was built as an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
NASA Technical Reports Server (NTRS)
1991-01-01
Kenneth J. Szalai is Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, California. He was named Center director in January 1994 assuming the position on March 1, 1994. Before that, he served as Ames-Dryden Deputy Center Director and Director of the Dryden Flight Research Facility from December 3, 1990, to March 1, 1994. Ken began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin with a bachelor of science degree in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. He has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics (AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's 'Aeronautics-2000' study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank Awards.
Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes
Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu
2013-01-01
We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275
Spin Research Vehicle (SRV) in B-52 Captive Flight
NASA Technical Reports Server (NTRS)
1981-01-01
This in-flight photo of NASA's B-52 mothership shows the bomber carrying a subscale model of an Air Force F-15, a remotely piloted vehicle that was used to conduct spin research. The F-15 Remotely Piloted Research Vehicles (RPRV) was air launched from the B-52 at approximately 45,000 feet and was controlled by a pilot in a ground cockpit complete with flight controls and a television screen. The F-15 model in this particular configuration was known as the Spin Research Vehicle (SRV). NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
B-52B Cockpit Instrument Panel
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows a close-up view of the instrument panel in the cockpit of NASA's B-52 research aircraft. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the HiMAT, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
X-38 Ship #2 in Free Flight after Release from B-52 Mothership
NASA Technical Reports Server (NTRS)
1999-01-01
The X-38 research vehicle drops away from NASA's B-52 mothership immediately after being released from the B-52's wing pylon. More than 30 years earlier, this same B-52 launched the original lifting-body vehicles flight tested by NASA and the Air Force at what is now called the Dryden Flight Research Center and the Air Force Flight Test Center. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
X-38 Ship #2 Mated to B-52 Mothership in Flight
NASA Technical Reports Server (NTRS)
1999-01-01
This photo shows one of the X-38 lifting-body research vehicles mated to NASA's B-52 mothership in flight prior to launch. The B-52 has been a workhorse for the Dryden Flight Research Center for more than 40 years, carrying numerous research vehicles aloft and conducting a variety of other research flight experiments. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
X-38 on B-52 Wing Pylon - View from Observation Window
NASA Technical Reports Server (NTRS)
1997-01-01
A unique, close-up view of the X-38 under the wing of NASA's B-52 mothership prior to launch of the lifting-body research vehicle. The photo was taken from the observation window of the B-52 bomber as it banked in flight. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft
NASA Technical Reports Server (NTRS)
1997-01-01
Andy Blua and Jeff Doughty of Dryden's Experimental Fabrication Shop, along with B-52 Crew Chief Dan Bains and assistant Mark Thompson, all eye the new X-38 pylon during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California. The fit-check was the first time the 1,200-pound steel pylon, which was fabricated at Dryden, was mated to the B-52. The pylon served as an 'adapter' that allowed the X-38 to be attached to the B-52's wing. Earlier flight research vehicles had used the X-15 pylon for attachment to and launch from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Proceedings of the X-15 First Flight 30th Anniversary Celebration
NASA Technical Reports Server (NTRS)
1991-01-01
A technical symposium and pilot's panel discussion were held on June 8, 1989, to commemorate the 30th anniversary of the first free flight of the X-15 rocket-powered research aircraft. The symposium featured technical presentations by former key government and industry participants in the advocacy, design, manufacturing, and flight research program activities. The X-15's technical contributions to the X-30 are cited. The panel discussion participants included seven of the eight surviving research pilots who flew the X-15 experimental aircraft to world altitude and speed records which still stand. Pilot's remarks include descriptions of their most memorable X-15 flight experience. The report also includes a historical perspective of the X-15.
An Introduction to X Window Application Development
1992-03-23
Acquisition and Policy Evaluation program using Cognitive Feed- back ( ESKAPE /CF) from the SunView windowing system to X Window. The new application...the generic X Window System. This thesis converts an Expert System Knowledge Acquisition and Policy Evaluation program using Cognitive Feedback ( ESKAPE ...15 IV. XESKAPE/CF: THE X WINDOW VERSION OF ESKAPE /CF ........................ 16 A. FUNCTIONAL COMPARISON TO
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
A close-up of an experimental drag chute deploying in a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
NASA Technical Reports Server (NTRS)
1988-01-01
A mock-up of an F-111 cockpit section drops out of the bomb bay of NASA's B-52 mothership on a test flight of a new parachute system for the F-111 'Aardvark' bomber. The F-111's ejection system separated the entire cockpit from the rest of the aircraft, and a large parachute was then deployed to lower the cockpit section to the ground. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Dryden B-52 Launch Aircraft in Flight over Dryden
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
M2-F2 Mated to B-52 Mothership on Ramp
NASA Technical Reports Server (NTRS)
1965-01-01
A head-on view of the M2-F2 lifting body mounted on the wing pylon of its B-52 mothership in 1965. This was for a captive flight made the following month. The M2-F2 remained attached to the B-52 throughout the flight to test its on-board systems. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Pegasus Mated to B-52 Mothership - First Flight
NASA Technical Reports Server (NTRS)
1989-01-01
The Pegasus air-launched space booster is carried aloft under the right wing of NASA's B-52 carrier aircraft on its first captive flight from the Dryden Flight Research Center, Edwards, California. The first of two scheduled captive flights was completed on November 9, 1989. Pegasus is used to launch satellites into low-earth orbits cheaply. In 1997, a Pegasus rocket booster was also modified to test a hypersonic experiment (PHYSX). An experimental 'glove,' installed on a section of its wing, housed hundreds of temperature and pressure sensors that sent hypersonic flight data to ground tracking facilities during the experiment's flight. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
HiMAT Subscale Research Vehicle Mated to B-52 Mothership in Flight
NASA Technical Reports Server (NTRS)
1980-01-01
The Highly Maneuverable Aircraft Technology (HiMAT) research vehicle is shown here mated to a wing pylon on NASA's B-52 mothership aircraft. The HiMAT was a technology demonstrator to test structures and configurations for advanced fighter concepts. Over the course of more than 40 years, the B-52 proved a valuable workhorse for NASA's Dryden Flight Research Center (under various names), launching a wide variety of vehicles and conducting numerous other research flights. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
An aerial view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
HiMAT Subscale Research Vehicle Mated to B-52 Mothership in Flight, Close-up View
NASA Technical Reports Server (NTRS)
1980-01-01
A close-up view of the Highly Maneuverable Aircraft Technology (HiMAT) research vehicle attached to a wing pylon on NASA's B-52 mothership during a 1980 test flight. The HiMAT used sharply swept-back wings and a canard configuration to test possible technology for advanced fighters. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
B-52 Flight Mission Symbology - Close up
NASA Technical Reports Server (NTRS)
1993-01-01
A close-up view of some of the mission markings that tell the story of the NASA B-52 mothership's colorful history. These particular markings denote some of the experiments the bomber conducted to develop parachute recovery systems for the solid rocket boosters used by the Space Shuttle. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's B-52 research aircraft deploys an experimental drag chute just after landing the runway at the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
An experimental drag chute deploys amidst a cloud of dust behind NASA's B-52 research aircraft just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
B-52 Testing Developmental Space Shuttle Drag Chute
NASA Technical Reports Server (NTRS)
1990-01-01
A rear view of NASA's B-52 research aircraft deploying an experimental drag chute just after landing on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, on a 1990 research flight. The B-52's tests led to the development of a drag chute to help the Space Shuttle land more safely and easily. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
NASA Technical Reports Server (NTRS)
1988-01-01
The main parachute begins to deploy on the mock-up of an F-111 'Aardvark' bomber cockpit section after being dropped from NASA's B-52 mothership during 1988 flight tests on improved parachute systems for the Air Force bomber. The F-111's ejection system separated the entire cockpit from the rest of the aircraft, and a large parachute was then deployed to lower the cockpit section to the ground. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Jay L. King, Joseph D. Huxman, and Orion D. Billeter Assist Pilot Milt Thompson into the M2-F2 Attac
NASA Technical Reports Server (NTRS)
1966-01-01
NASA research pilot Milt Thompson is helped into the cockpit of the M2-F2 lifting body research aircraft at NASA's Flight Research Center (now the Dryden Flight Research Center). The M2-F2 is attached to a wing pylon under the wing of NASA's B-52 mothership. The flight was a captive flight with the pilot on-board. Milt Thompson flew in the lifting body throughout the flight, but it was never dropped from the mothership. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Development and Evaluation of a Success Index for Professionals in Postgraduate Training Programs
1993-02-26
15 Predicting Success among Program Participants .... ......... .. 16 AEGD Success and Career Success .......... ................ .. 16...10), and general career success (8). Hough applied the principle of behavioral consistency and aspects of the biographical inventory to develop and...the opportunity to evaluate how measures of success in AEGD translate into career success . The 90 AERs were reviewed by two experienced senior dental
Apollo lunar orbital sciences program alpha and X-ray spectrometers
NASA Technical Reports Server (NTRS)
1972-01-01
The development of the alpha and X-ray spectrometers which were used on the Apollo 15 and 16 flights is discussed. Specific subjects presented are: (1) lunar program management, (2) scientific and technical approach, (3) major test programs, (4) reliability, quality assurance, and safety, and (5) subcontract management.
NASA Technical Reports Server (NTRS)
Zussman, A.; Levine, B. F.; Kuo, J. M.; De Jong, J.
1991-01-01
Success has been achieved in extending the spectral wavelength of GaAs/Al(x)Ga(1-x)As quantum-well infrared photodetectors to significantly longer wavelengths of 11-15 micron. High responsivity of 0.5 A/W, high quantum efficiency of 12 percent, and high detectivity as well as an excellent noise equivalent temperature difference of 4 mK have been achieved at T = 50 K. High performance of 19 mK has also been achieved at an even higher temperature of 60 K.
7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...
7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions Payment Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who...
7 CFR 4288.137 - Succession and loss of control of advanced biofuel facilities and production.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and loss of control of advanced biofuel... PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.137 Succession and loss of control of advanced biofuel facilities and production. (a) Contract succession. An entity who becomes the eligible...
NASA Technical Reports Server (NTRS)
Udomkesmalee, Suraphol; Padgett, Curtis; Zhu, David; Lung, Gerald; Howard, Ayanna
2000-01-01
A three-dimensional microelectronic device (3DANN-R) capable of performing general image convolution at the speed of 1012 operations/second (ops) in a volume of less than 1.5 cubic centimeter has been successfully built under the BMDO/JPL VIGILANTE program. 3DANN-R was developed in partnership with Irvine Sensors Corp., Costa Mesa, California. 3DANN-R is a sugar-cube-sized, low power image convolution engine that in its core computation circuitry is capable of performing 64 image convolutions with large (64x64) windows at video frame rates. This paper explores potential applications of 3DANN-R such as target recognition, SAR and hyperspectral data processing, and general machine vision using real data and discuss technical challenges for providing deployable systems for BMDO surveillance and interceptor programs.
SACD's Support of the Hyper-X Program
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin, John G.
2006-01-01
NASA s highly successful Hyper-X program demonstrated numerous hypersonic air-breathing vehicle related technologies including scramjet performance, advanced materials and hot structures, GN&C, and integrated vehicle performance resulting in, for the first time ever, acceleration of a vehicle powered by a scramjet engine. The Systems Analysis and Concepts Directorate (SACD) at NASA s Langley Research Center played a major role in the integrated team providing critical support, analysis, and leadership to the Hyper-X Program throughout the program s entire life and were key to its ultimate success. Engineers in SACD s Vehicle Analysis Branch (VAB) were involved in all stages and aspects of the program, from conceptual design prior to contract award, through preliminary design and hardware development, and in to, during, and after each of the three flights. Working closely with other engineers at Langley and Dryden, as well as industry partners, roughly 20 members of SACD were involved throughout the evolution of the Hyper-X program in nearly all disciplines, including lead roles in several areas. Engineers from VAB led the aerodynamic database development, the propulsion database development, and the stage separation analysis and database development effort. Others played major roles in structures, aerothermal, GN&C, trajectory analysis and flight simulation, as well as providing CFD support for aerodynamic, propulsion, and aerothermal analysis.
Organizational Models of Successful Advancement Programs.
ERIC Educational Resources Information Center
Smith, Nanette J.
A study was conducted to determine the organizational factors that were consistent with the success of two-year colleges in obtaining private financial support. Informal telephone surveys were conducted with 15 community colleges with successful endowment and fund-raising programs to gather information about organizational structures and factors…
Former Dryden pilot and NASA astronaut Neil Armstrong
NASA Technical Reports Server (NTRS)
1991-01-01
Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8 orbital space flight with David Scott as pilot - the first successful docking of two vehicles in orbit. On July 20, 1969, during the Apollo 11 lunar mission, he became the first human to set foot on the Moon. In this 1991 photo, he is in the cockpit of a NASA SR-71 aircraft.
Former Dryden pilot and NASA astronaut Neil Armstrong being inducted into the Aerospace Walk of Hono
NASA Technical Reports Server (NTRS)
1991-01-01
Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8 orbital space flight with David Scott as pilot - the first successful docking of two vehicles in orbit. On July 20, 1969, during the Apollo 11 lunar mission, he became the first human to set foot on the Moon.
Closeup of research pilot Neil Armstrong operating the Iron Cross Attitude Simulator reaction contro
NASA Technical Reports Server (NTRS)
1956-01-01
Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8 orbital space flight with David Scott as pilot - the first successful docking of two vehicles in orbit. On July 20, 1969, during the Apollo 11 lunar mission, he became the first human to set foot on the Moon.
B-52 Launch Aircraft in Flight
NASA Technical Reports Server (NTRS)
2001-01-01
NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet.
J-2X concludes series of tests
2008-05-09
NASA engineers successfully complete the first series of tests in the early development of the J-2X engine that will power the Ares I and Ares V rockets, key components of NASA's Constellation Program.
Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Woods, William C.; Engelund, Walter C.
2000-01-01
This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize. and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cowl-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale. risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.
Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Woods, William C.; Engelund, Walter C.
2000-01-01
This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize, and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cow-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale, risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.
1992-02-01
throated sparrow (Z. albicollis) X X Song sparrow (Melospiza melodia) X X Fox sparrow (Passerella iliaca) X X Mammals Opossum (Didelphis virginiana ) X...cm) and should not be less than 0.38 in. (0.4 cm). When Ellagood is pruned severely, an abundance of new shoots are produced (SCS, undated). Planting...Holes for the plants should be deep enough to take the full root without bending. Unusually long roots and tops may be pruned to 6 in. (15.2 cm) if
1982-10-01
The purpose of the program was to develop a production method for improved graphite fibers. A goal of 750 x 10 to the 3rd power psi tensile strength...at 60-65 x 10 to the 6th power psi modulus was set for the program. Improved 3-4 micron diameter boron strengthened graphite fibers were successfully... graphite fiber. An average tensile strength of 550 x 10 to the 3rd power psi at the 60 x 10 to the 6th power psi modulus level was achieved through a preliminary optimization of the plant processing conditions.
Sugawara, Nobuo; Kimura, Yasuyuki; Araki, Yasuhisa
2013-03-01
We describe a successful pregnancy outcome in a patient with non-mosaic Turner syndrome (45, X) via in vitro fertilization. The patient achieved a second pregnancy at 35 years of age. The her blood lymphocyte karyotype was examined by G-band and FISH. Furthermore, cumulus cells and her elbow skin cells were evaluated via FISH. Non-mosaic Turner syndrome was determined by G-banding [100 % (50/50) 45, X]. Lymphocytes were shown as 478/500 (95.6 %) cells of X sex chromosome signal, 15/500 (3.0 %) cells of XXX signal, and 7/500 (1.4 %) cells of XX signal. The cumulus cells were mosaic: 152/260 (58.5 %) were X; 84/260 (32.3 %) were XXX, 20/260 (7.7 %) were XX, and 4/260 (1.5 %) were XY. Moreover, skin cells included a mosaic karyotype [47, XXX(29)/46, XX(1)]. We conclude that the collection of a large number of blood lymphocytes can reveal different mosaic patterns (X, XX and XXX) by FISH in spite of non-mosaic Turner syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Marsden, David; Collins, George
Calabazas Creek Research, Inc. developed a 1.5 MW RF load for the ITER fusion research facility currently under construction in France. This program leveraged technology developed in two previous SBIR programs that successfully developed high power RF loads for fusion research applications. This program specifically focused on modifications required by revised technical performance, materials, and assembly specification for ITER. This program implemented an innovative approach to actively distribute the RF power inside the load to avoid excessive heating or arcing associated with constructive interference. The new design implemented materials and assembly changes required to meet specifications. Critical components were builtmore » and successfully tested during the program.« less
U.S.-Japan Codevelopment Review of the FS-X Program
1990-02-06
ion Stressed Quality and Quantity 13 \\Work-Share and Teclmology Flowback Section 2 15 FS-X Consultation and smm<, 15 Coordination I)OD’s (’C)nls tlat...was established); Technology Flowback • obtain free and automatic flowback of any technical improvements that .Japan made to the baseline aircraft, for...and about 40 per- cent of production work share. • Technology flowback provisions allow U .S. access to Japanese technologies. * Program strives to
X-15A-2 and HL-10 parked on NASA ramp
NASA Technical Reports Server (NTRS)
1966-01-01
The HL-10 is shown next to the X-15A-2 in 1966. Both aircraft later went on to set records. On October 3, 1967, the X-15A-2 reached a speed of Mach 6.7, which was the highest speed achieved by a piloted aircraft until the Space Shuttles far exceeded that speed in 1981 and afterwards. The HL-10 later became the fastest piloted lifting body when it flew at a speed of Mach 1.86 on February 18, 1970. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle. The X-15 was a rocket-powered aircraft roughly 50 feet long with a wingspan of 22 feet in its original configuration. The no. 2 aircraft was later modified to become the X-15A-2. First flown in 1959, the three X-15 aircraft made a total of 199 flights. Flight maximums of 354,200 feet in altitude and a speed of 4,520 miles per hour were obtained. The final flight occurred on Oct. 24, 1968. The X-15 was manufactured by North American Aviation (NAA), now a division of Boeing after that firm acquired the Rockwell International Corporation into which NAA had evolved. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 12,295 pounds empty and approximately 31,275 pounds at launch. The rocket engine, the XLR-99, was pilot-controlled and was capable of developing 57,000 pound of rated thrust and about 60,000 pounds of actual thrust. It was manufactured by the Reaction Motors Division of Thiokol Chemical Corp. Before that engine was installed, the aircraft was powered by two XLR-11 rocket engines. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the lower atmosphere, the X-15 used conventional aerodynamic controls such as vertical stabilizers to control yaw and horizontal stabilizers to control pitch when moving in synchronization, or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Eight hydrogen-peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Four of them on the wings (two on each wing) furnished roll control. Because the X-15 consumed a large amount of fuel, it was air launched from a B-52 aircraft at 45,000 feet and a speed of about 500 miles per hour. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 seconds of flight. The remainder of the normal 10- to 11-minute flight was without power and ended with a 200-mile-per-hour glide landing. Generally, one of two types of X-15 flight profiles was used--a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude.
Research Pilot Milt Thompson in M2-F2 Aircraft Attached to B-52 Mothership
NASA Technical Reports Server (NTRS)
1966-01-01
NASA research pilot Milt Thompson sits in the M2-F2 'heavyweight' lifting body research vehicle before a 1966 test flight. The M2-F2 and the other lifting-body designs were all attached to a wing pylon on NASA's B-52 mothership and carried aloft. The vehicles were then drop-launched and, at the end of their flights, glided back to wheeled landings on the dry lake or runway at Edwards AFB. The lifting body designs influenced the design of the Space Shuttle and were also reincarnated in the design of the X-38 in the 1990s. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Support to X-33/Reusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
2000-01-01
The Primary activities of Lee & Associates for the referenced Purchase Order has been in direct support of the X-33/Reusable Launch Vehicle Technology Program. An independent review to evaluate the X-33 liquid hydrogen fuel tank failure, which recently occurred after-test of the starboard tank has been provided. The purpose of the Investigation team was to assess the tank design modifications, provide an assessment of the testing approach used by MSFC (Marshall Space Flight Center) in determining the flight worthiness of the tank, assessing the structural integrity, and determining the cause of the failure of the tank. The approach taken to satisfy the objectives has been for Lee & Associates to provide the expertise of Mr. Frank Key and Mr. Wayne Burton who have relevant experience from past programs and a strong background of experience in the fields critical to the success of the program. Mr. Key and Mr. Burton participated in the NASA established Failure Investigation Review Team to review the development and process data and to identify any design, testing or manufacturing weaknesses and potential problem areas. This approach worked well in satisfying the objectives and providing the Review Team with valuable information including the development of a Fault Tree. The detailed inputs were made orally in real time in the Review Team daily meetings. The results of the investigation were presented to the MSFC Center Director by the team on February 15, 2000. Attached are four charts taken from that presentation which includes 1) An executive summary, 2) The most probable cause, 3) Technology assessment, and 4) Technology Recommendations for Cryogenic tanks.
The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results
NASA Technical Reports Server (NTRS)
Bahm, Catherine; Baumann, Ethan; Martin, John; Bose, David; Beck, Roger E.; Strovers, Brian
2005-01-01
The objective of the Hyper-X program was to flight demonstrate an airframe-integrated hypersonic vehicle. On March 27, 2004, the Hyper-X program team successfully conducted flight 2 and achieved all of the research objectives. The Hyper-X research vehicle successfully separated from the Hyper-X launch vehicle and achieved the desired engine test conditions before the experiment began. The research vehicle rejected the disturbances caused by the cowl door opening and the fuel turning on and off and maintained the engine test conditions throughout the experiment. After the engine test was complete, the vehicle recovered and descended along a trajectory while performing research maneuvers. The last data acquired showed that the vehicle maintained control to the water. This report will provide an overview of the research vehicle guidance and control systems and the performance of the vehicle during the separation event and engine test. The research maneuvers were performed to collect data for aerodynamics and flight controls research. This report also will provide an overview of the flight controls related research and results.
Hypersonics Before the Shuttle: A Concise History of the X-15 Research Airplane
NASA Technical Reports Server (NTRS)
Jenkins, Dennis R.
2000-01-01
It is a beginning. Over forty-five years have elapsed since the X-15 was conceived; 40 since it first flew. And 31 since the program ended. Although it is usually heralded as the most productive flight research program ever undertaken, no serious history has been assembled to capture its design, development, operations, and lessons. This monograph is the first step towards that history. Not that a great deal not previously been written about the X-15, because it has. But most of it has been limited to specific aspects of the program; pilot's stories, experiments. lessons-learned, etc. But with the exception of Robert S. Houston's history published by the Wright Air Development Center in 1958, and later included in the Air Force History Office's Hypersonic Revolution, no one has attempted to tell the entire story. And the WADC history is taken entirely from the Air Force perspective, with small mention of the other contributors.
X-15A-2 and HL-10 parked on NASA ramp
NASA Technical Reports Server (NTRS)
1966-01-01
Both the HL-10 and X-15A2, shown here parked beside one another on the NASA ramp in 1966, underwent modifications. The X-15 No. 2 had been damaged in a crash landing in November 1962. Subsequently, the fuselage was lengthened, and it was outfitted with two large drop tanks. These modifications allowed the X-15A-2 to reach the speed of Mach 6.7. On the HL-10, the stability problems that appeared on the first flight at the end of 1966 required a reshaping of the fins' leading edges to eliminate the separated airflow that was causing the unstable flight. By cambering the leading edges of the fins, the HL-10 team achieved attached flow and stable flight. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting point for designers of future entry vehicles, including the Space Shuttle. The X-15 was a rocket-powered aircraft roughly 50 feet long with a wingspan of 22 feet in its original configuration. The no. 2 aircraft was later modified to become the X-15A-2. First flown in 1959, the three X-15 aircraft made a total of 199 flights. Flight maximums of 354,200 feet in altitude and a speed of 4,520 miles per hour were obtained. The final flight occurred on Oct. 24, 1968. The X-15 was manufactured by North American Aviation (NAA), now a division of Boeing after that firm acquired the Rockwell International Corporation into which NAA had evolved. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 12,295 pounds empty and approximately 31,275 pounds at launch. The rocket engine, the XLR-99, was pilot-controlled and was capable of developing 57,000 pound of rated thrust and about 60,000 pounds of actual thrust. It was manufactured by the Reaction Motors Division of Thiokol Chemical Corp. Before that engine was installed, the aircraft was powered by two XLR-11 rocket engines. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the lower atmosphere, the X-15 used conventional aerodynamic controls such as vertical stabilizers to control yaw and horizontal stabilizers to control pitch when moving in synchronization, or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Eight hydrogen-peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Four of them on the wings (two on each wing) furnished roll control. Because the X-15 consumed a large amount of fuel, it was air launched from a B-52 aircraft at 45,000 feet and a speed of about 500 miles per hour. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 seconds of flight. The remainder of the normal 10- to 11-minute flight was without power and ended with a 200-mile-per-hour glide landing. Generally, one of two types of X-15 flight profiles was used--a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude.
2004-04-15
This is an artist's concept of the completely operational International Space Station being approached by an X-33 Reusable Launch Vehicle (RLV). The X-33 program was designed to pave the way to a full-scale, commercially developed RLV as the flagship technology demonstrator for technologies that would lower the cost of access to space. It is unpiloted, taking off vertically like a rocket, reaching an altitude of up to 60 miles and speeds between Mach 13 and 15, and landing horizontally like an airplane. The X-33 program was cancelled in 2001.
Research pilot and former astronaut C. Gordon Fullerton in an F/A-18
2002-05-14
Former NASA astronaut C. Gordon Fullerton, seated in the cockpit of an F/A-18, is a research pilot at NASA's Dryden Flight Research Center, Edwards, Calif. Since transferring to Dryden in 1986, his assignments have included a variety of flight research and support activities piloting NASA's B-52 launch aircraft, the 747 Shuttle Carrier Aircraft (SCA), and other multi-engine and high performance aircraft. He flew a series of development air launches of the X-38 prototype Crew Return Vehicle and in the launches for the X-43A Hyper-X project. Fullerton also flies Dryden's DC-8 Airborne Science aircraft in support a variety of atmospheric physics, ground mapping and meteorology studies. Fullerton also was project pilot on the Propulsion Controlled Aircraft program, during which he successfully landed both a modified F-15 and an MD-11 transport with all control surfaces neutralized, using only engine thrust modulation for control. Fullerton also evaluated the flying qualities of the Russian Tu-144 supersonic transport during two flights in 1998, one of only two non-Russian pilots to fly that aircraft. With more than 15,000 hours of flying time, Fullerton has piloted 135 different types of aircraft in his career. As an astronaut, Fullerton served on the support crews for the Apollo 14, 15, 16, and 17 lunar missions. In 1977, Fullerton was on one of the two flight crews that piloted the Space Shuttle prototype Enterprise during the Approach and Landing Test Program at Dryden. Fullerton was the pilot on the STS-3 Space Shuttle orbital flight test mission in 1982, and commanded the STS-51F Spacelab 2 mission in 1985. He has logged 382 hours in space flight. In July 1988, he completed a 30-year career with the U.S. Air Force and retired as a colonel.
Integration of a mechanical forebody vortex control system into the F-15
NASA Technical Reports Server (NTRS)
Boalbey, Richard E.; Citurs, Kevin D.; Ely, Wayne L.; Harbaugh, Stephen P.; Hollingsworth, William B.; Phillips, Ronald L.
1994-01-01
The goal of the F-15 Forebody Vortex Control (FVC) program is to develop a production FVC system for the F-15. The system may consist of either a mechanically actuated device such as the strakes developed for the HARV program, or a pneumatic device such as the port blowing system being tested on the X-29. Both types of systems are being evaluated under this program. Background information on the F-15 and a description and overview of forebody vortex controls (FVC) will be presented.
System Engineering for J-2X Development: The Simpler, the Better
NASA Technical Reports Server (NTRS)
Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter
2008-01-01
The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.
System Engineering on the Use for Ares I,V - the Simpler, the Better
NASA Technical Reports Server (NTRS)
Kelly, William; Greene, William D.; Greasley, Paul; Ackerman, Peter C.
2008-01-01
The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt & Whitney Rocketdyne Company. The J-2X is an improved higher power version of the original J-2 engine used during the Apollo program. With higher power and updated requirements for safety and performance, the J-2X becomes a new engine using state-of-the-art design methodology, materials and manufacturing processes. The implementation of Systems Engineering (SE) principles enables the rapid J-2X development program to remain aligned with the ARES I and V vehicle programs, Meeting the aggressive development schedule is a challenge. Coordinating the best expertise thai NASA and PWR have to offer requires effectively utilizing resources at multiple sites. This presents formidable communication challenges. SE allows honest and open discussions of issues and problems. This simple idea is often overlooked in large and complex SE programs. Regular and effective meetings linking SE objectives to component designs are used to voice differences of opinions with customer and contractor in attendance so that the best mutual decisions can be made on the shortest possible schedule. Regular technical interchange meetings on secure program wide computer networks and CM processes are effective,in the "Controlled Change" process that exemplifies good SE. Good communication is a key effective SE implementation. The System of Systems approach is the vision of the Orion program which facilitates the establishment of dynamic SE processes at all levels including the engine. SE enables requirements evolution by facilitating organizational and process agility. Flow down and distribution of requirements is controlled by Allocation Reports which breakdown numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements helps eliminate redundancy and potential mistakes inherent m separated systems. Another tool, the Architecture Design Description, is being used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof is in successful program accomplishment. The SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. The Ares I SE system of systems has delivered according to expectations thus far. All major design reviews (SRR. PDR, CDR) have been successfully conducted to satisfy overall program objectives using SE as the basis for accomplishment. The paper describes SE tools and techniques utilized to achieve this success.
Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites
NASA Astrophysics Data System (ADS)
Mansour, S. F.; Hemeda, O. M.; Abdo, M. A.; Nada, W. A.
2018-01-01
Nanocomposites from M-type hexaferrite BaFe11.7Al0.15Zn0.15O19 and spinel ferrite Mn0.8Mg0.2Fe2O4 nanoparticles according to the formula [(x)(Ba Fe11.7Al0.15 Zn0.15O19) + (1 - x)(Mn0.8 Mg0.2Fe2O4); x = 0.3, 0.4 and 0.5] have been manufactured by the citrate combustion method. The structure and morphology of the nanocomposites were appointed by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). The remanent magnetization and coercivity of the nanocomposites became 2 and 2.5 times higher, respectively by adding BaFe11.7Al0.15 Zn0.15O19 phase. The Cole-Cole plots of the nanocomposite x = 0.4 at the selected temperatures shows two successive semicircles at all the selected temperatures. The first low frequencies semicircle elucidates the contribution of the grain boundary and the second one, at high frequencies, gives the contribution of grain to conduction process. Multilateral applications for exchange spring magnets can be manufactured using those nanocomposites.
Razavian, Hamid; Kazemi, Shantia; Khazaei, Saber; Jahromi, Maryam Zare
2013-01-01
Background: Successful anesthesia during root canal therapy may be difficult to obtain. Intraosseous injection significantly improves anesthesia's success as a supplemental pulpal anesthesia, particularly in cases of irreversible pulpitis. The aim of this study was to compare the efficacy of X-tip intraosseous injection and inferior alveolar nerve (IAN) block in primary anesthesia for mandibular posterior teeth with irreversible pulpitis. Materials and Methods: Forty emergency patients with an irreversible pulpitis of mandibular posterior teeth were randomly assigned to receive either intraosseous injection using the X-tip intraosseous injection system or IAN block as the primary injection method for pulpal anesthesia. Pulpal anesthesia was evaluated using an electric pulp tester and endo ice at 5-min intervals for 15 min. Anesthesia's success or failure rates were recorded and analyzed using SPSS version 12 statistical software. Success or failure rates were compared using a Fisher's exact test, and the time duration for the onset of anesthesia was compared using Mann–Whitney U test. P < 0.05 was considered significant. Results: Intraosseous injection system resulted in successful anesthesia in 17 out of 20 patients (85%). Successful anesthesia was achieved with the IAN block in 14 out of 20 patients (70%). However, the difference (15%) was not statistically significant (P = 0.2). Conclusion: Considering the relatively expensive armamentarium, probability of penetrator separation, temporary tachycardia, and possibility of damage to root during drilling, the authors do not suggest intraosseous injection as a suitable primary technique. PMID:23946738
Razavian, Hamid; Kazemi, Shantia; Khazaei, Saber; Jahromi, Maryam Zare
2013-03-01
Successful anesthesia during root canal therapy may be difficult to obtain. Intraosseous injection significantly improves anesthesia's success as a supplemental pulpal anesthesia, particularly in cases of irreversible pulpitis. The aim of this study was to compare the efficacy of X-tip intraosseous injection and inferior alveolar nerve (IAN) block in primary anesthesia for mandibular posterior teeth with irreversible pulpitis. Forty emergency patients with an irreversible pulpitis of mandibular posterior teeth were randomly assigned to receive either intraosseous injection using the X-tip intraosseous injection system or IAN block as the primary injection method for pulpal anesthesia. Pulpal anesthesia was evaluated using an electric pulp tester and endo ice at 5-min intervals for 15 min. Anesthesia's success or failure rates were recorded and analyzed using SPSS version 12 statistical software. Success or failure rates were compared using a Fisher's exact test, and the time duration for the onset of anesthesia was compared using Mann-Whitney U test. P < 0.05 was considered significant. Intraosseous injection system resulted in successful anesthesia in 17 out of 20 patients (85%). Successful anesthesia was achieved with the IAN block in 14 out of 20 patients (70%). However, the difference (15%) was not statistically significant (P = 0.2). Considering the relatively expensive armamentarium, probability of penetrator separation, temporary tachycardia, and possibility of damage to root during drilling, the authors do not suggest intraosseous injection as a suitable primary technique.
X-43A Fluid and Environmental Systems: Ground and Flight Operation and Lessons Learned
NASA Technical Reports Server (NTRS)
Vachon, Michael Jacob; Grindle, Thomas J.; St.John, Clinton W.; Dowdell, David B.
2005-01-01
The X-43A Hyper-X program demonstrated the first successful flights of an airframe integrated scramjet powered hypersonic vehicle. The X-43A vehicles established successive world records for jet-powered vehicles at speeds of Mach 7 and Mach 10. The X-43A vehicle is a subscale version of proposed hypersonic reconnaissance strike aircraft. Scaled down to a length of 12 ft (3.66 m), the lifting body design with high fineness ratio resulted in very small internal space available for fluid systems and their corresponding environmental conditioning systems. Safe testing and operation of the X-43A fluid and environmental systems was critical for mission success, not only for the safety of the flight crew in the NASA B-52B carrier aircraft, but also to maintain the reliability of vehicle systems while exposed to dynamics and hostile conditions encountered during the boost trajectory. The X-43A fluid and environmental systems successfully managed explosive, pyrophoric, inert, and very high pressure gases without incident. This report presents a summary of the checkout and flight validation of the X-43A fluid systems. The testing used for mission assurance is summarized. System performance during captive carry and launch flights is presented. The lessons learned are also discussed.
X-43 Hypersonic Vehicle Technology Development
NASA Technical Reports Server (NTRS)
Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.
2005-01-01
NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.
X-ray metal film filters at cryogenic temperatures
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.
1989-01-01
Thin aluminum foil filters have been evaluated at cryogenic temperatures. The results of the test program, including cold cycling and vibration testing, indicate that these filters are fully successful at cryogenic temperatures and can provide the high X-ray transmittance and high background rejection required for the blocking filters which are being developed for the X-Ray Spectrometer, one of the focal plane instruments on the Advanced X-Ray Astrophysics Facility.
SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments
NASA Technical Reports Server (NTRS)
Leonard, R. F.
1977-01-01
A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.
Managing Radiation Degradation of CCDs on the Chandra X-Ray Observatory--III
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Aldcroft, Thomas L.; Blackwell, William C.; Bucher, Sabina L.; Chappell, Jon H.; DePasquale, Joseph M.; Grant, Catherine E.; Juda, Michael; Martin, Eric R.; Minow, Joseph I.;
2007-01-01
The CCDs on the Chandra X-ray Observatory are vulnerable to radiation damage from low-energy protons scattered off the telescope's mirrors onto the focal plane. Following unexpected damage incurred early in the mission, the Chandra team developed, implemented, and maintains a radiation-protection program. This program--involving scheduled radiation safing during radiation-belt passes, intervention based upon real-time space-weather conditions and radiation-environment modeling, and on-board radiation monitoring with autonomous radiation safing--has successfully managed the radiation damage to the CCDs. Since implementing the program, the charge-transfer inefficiency (CTI) has increased at an average annual rate of only 3.2x 10(exp -6) (2.3 percent) for the front-illuminated CCDs and 1.0x10(exp -6) (6.7 percent) for the back-illuminated CCDs. This paper describes the current status of the Chandra radiation-management program, emphasizing enhancements implemented since the previous papers.
John B. McKay after X-15 flight #3-27-44
1964-03-13
John B. McKay was one of the first pilots assigned to the X-15 flight research program at NASA's Flight Research Center, Edwards, Calif. As a civilian research pilot and aeronautical engineer, he made 30 flights in X-15s from October 28, 1960, until September 8, 1966. His peak altitude was 295,600 feet, and his highest speed was 3863 mph (Mach 5.64). McKay was with the NACA and NASA from February 8,1951 until October 5, 1971 and specialized in high-speed flight research programs. He began as an NACA intern, but assumed pilot status on July 11, 1952. In addition to the X-l5, he flew such experimental aircraft as the D-558-1, D-558-2, X-lB, and the X-lE. He has also served as a research pilot on flight programs involving the F-100, F-102, F-104, and the F-107. Born on December 8, 1922, in Portsmouth, Va., McKay graduated from Virginia Polytechnic Institute in 195O with a Bachelor of Science degree in Aeronautical Engineering. During World War II he served as a Navy pilot in the Pacific Theater, earning the Air Medal and Two Clusters, and a Presidential Unit Citation. McKay wrote several technical papers, and was a member of the American Institute of Aeronautics and Astronautics, as well as the Society of Experimental Test Pilots. He passed away on April 27, 1975.
NASA Astrophysics Data System (ADS)
Kumar, Virendra; Gaur, Anurag
2018-04-01
We synthesized YMnO3 and ZnFe2O4 composites, (1-x)YMnO3/x(ZnFe2O4) with x = 0, 0.05, 0.10, and 0.15 by high temperature sintering. X-ray diffraction (XRD) patterns indicate the successful formation of composites. Weak ferromagnetism is manifested below Néel temperature (TN) for pristine YMnO3, according to (M-H) study performed at 10 K. For (1-x)YMnO3/xZnFe2O4 (x = 0.05, 0.10, 0.15) a thin coercivity is observed in all compositions, due to short range magnetic ordering at low temperature after the insertion of ZnFe2O4. For pristine YMnO3 explicit divarication between FC-ZFC curves is observed, with crimps observed in both FC and ZFC curves at 75 K, which is the TN of YMnO3. For 1-x(YMnO3)/x ZnFe2O4 composites (x = 0.05, 0.10, 0.15) crimps are perceived only in ZFC curves at slightly varying values of 39.8, 42.32 and 45.63 K respectively. Anomalous peaks are observed in high temperature dielectric curves above 400 K for 1-x(YMnO3)/xZnFe2O4 (x = 0, 0.05, 0.10, 0.15) composites due to Maxwell-Wagner relaxation effect.
Historical Remembrances of the Chandra X-ray Observatory: How Partnerships Created Success
NASA Astrophysics Data System (ADS)
Burke, Robert
2009-09-01
As the astronomy community plans for new ventures in space, we're forced to find creative solutions to operate within the ever increasing fiscal constraints of the current economic environment. The Chandra X-ray Observatory program offers an example of how missions can be successfully developed within manageable budget constraints. The ten year anniversary offers us the chance to look back at the Chandra team's special partnership between scientists, managers, and industry that led to our success.Chandra experienced many of the challenges common to major observatories: state-of-the-art technical requirements, budget-induced slips, and restructurings. Yet the Chandra team achieved excellent performance for dramatically lower cost. In fact, Chandra completed its prime mission for billions of dollars less than originally planned. In 1992, NASA MSFC and Northrop Grumman (then TRW) together led a major restructure that saved approximately 3.4B in program cost, while we improved the imaging capability and observing efficiency of Chandra. This was accomplished by a combination of team-work, systems engineering, advanced technology insertion, and effective approaches for program implementation, combined with a high performance culture that aligned goals and focused on mission success. Northrop Grumman is proud of our role in supporting the NASA Marshall Space Flight Center and our academic partners in advancing the frontiers of x-ray astronomy and scientific discovery with Chandra. As Chandra continues its extended mission, the observatory continues to provide superb scientific performance.
1992-12-28
of the sample. Two other methods were used to determine the quality of the films. One is x - ray diffraction which is used to determine the...crystallographic orientation of the films. No phases other than the YBa 2Cu307 -. were observed in any of the films. The x - ray data for the films with high...c x ( A = .42 ( x = b = b The goal of the Gaussian elimination method Is to perform operations on A In order to obtain the values of the Identity
1993-01-01
Two other methods were used to determine the quality of the films. One is x - ray diffraction which is used to determine the crystallographic...orientation of the films. No phases other than the YBa 2Cu3O7. x were observed in any of the films. The x - ray data for the films with high critical current...spectra cups. The first analysis was done using the Portable X - ray Fluorescence Spectrometer. The soil samples. as well as. 10 metal fragments that
Sidewalks and City Streets: A Model for Vibrant Agricultural Education in Urban American Communities
ERIC Educational Resources Information Center
Brown, Nicholas R.; Kelsey, Kathleen D.
2013-01-01
In 2005, The National Council for Agricultural Education (NCAE) unveiled The Long Range Goal for Agricultural Education also known as 10 x 15. According to NCAE, the primary goal of 10 x 15 was to create 10,000 new agricultural education programs by 2015 that focused on an integrated model of classroom and laboratory instruction, experiential…
SpaceX CRS-11 Post-Launch News Conference
2017-06-03
NASA Television held a post launch news conference from Kennedy Space Center’s Press Site recapping the successful launch of SpaceX CRS-11 atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon spacecraft carried almost 6,000 pounds of cargo to the orbiting laboratory as SpaceX’s eleventh commercial resupply services mission to the International Space Station. The Falcon 9 rocket returned successfully to the pad about eight minutes after launching. Participants included: -Mike Curie, NASA Communications -Kirk Shireman, Manager, International Space Station Program -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX
Description of the three axis low-g accelerometer package
NASA Technical Reports Server (NTRS)
Amalavage, A. J.; Fikes, E. H.; Berry, E. H.
1978-01-01
The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.
Crystal growth and magnetic properties of spinel (Co,Mn)3O4
NASA Astrophysics Data System (ADS)
Kang, Sun Hee; Kim, Ill Won; Jeong, Yoon Hee; Koo, Tae Yeong
2012-04-01
Single crystals of cubic and tetragonal spinel Co3-xMnxO4 (x=1.0 and 1.5) were successfully grown using a solvent evaporation method with PbF2 flux. Single crystals in octahedral shape with a size of about 4 mm on edge were obtained from 100 cm3 Pt crucibles. Ferrimagnetic transitions were detected at 170 K and 160 K from the measurements of temperature dependent magnetization and specific heat of Co2MnO4 and Co1.5Mn1.5O4, respectively. Low temperature field-dependent magnetization curves give a strong indication of the non-collinear spin structure, offering an insulating Co3-xMnxO4 system as a possible candidate for examining the multiferroicity.
A miniature batteryless health and usage monitoring system based on hybrid energy harvesting
NASA Astrophysics Data System (ADS)
Huang, Chenling; Chakrabartty, Shantanu
2011-04-01
The cost and size of the state-of-the-art health and usage monitoring systems (HUMS) are determined by capacity of on-board energy storage which limits their large scale deployment. In this paper, we present a miniature low-cost mechanical HUMS integrated circuit (IC) based on the concept of hybrid energy harvesting where continuous monitoring is achieved by self-powering, where as the programming, localization and communication with the sensor is achieved using remote RF powering. The self-powered component of the proposed HUMS is based on our previous result which used a controllable hot electron injection on floatinggate transistor as an ultra-low power signal processor. We show that the HUMS IC can seamlessly switch between different energy harvesting modes based on the availability of ambient RF power and that the configuration, programming and communication functions can be remotely performed without physically accessing the HUMS device. All the measured results presented in this paper have been obtained from prototypes fabricated in a 0.5 micron standard CMOS process and the entire system has been successfully integrated on a 1.5cm x 1.5cm package.
Chaput, Ludovic; Martinez-Sanz, Juan; Saettel, Nicolas; Mouawad, Liliane
2016-01-01
In a structure-based virtual screening, the choice of the docking program is essential for the success of a hit identification. Benchmarks are meant to help in guiding this choice, especially when undertaken on a large variety of protein targets. Here, the performance of four popular virtual screening programs, Gold, Glide, Surflex and FlexX, is compared using the Directory of Useful Decoys-Enhanced database (DUD-E), which includes 102 targets with an average of 224 ligands per target and 50 decoys per ligand, generated to avoid biases in the benchmarking. Then, a relationship between these program performances and the properties of the targets or the small molecules was investigated. The comparison was based on two metrics, with three different parameters each. The BEDROC scores with α = 80.5, indicated that, on the overall database, Glide succeeded (score > 0.5) for 30 targets, Gold for 27, FlexX for 14 and Surflex for 11. The performance did not depend on the hydrophobicity nor the openness of the protein cavities, neither on the families to which the proteins belong. However, despite the care in the construction of the DUD-E database, the small differences that remain between the actives and the decoys likely explain the successes of Gold, Surflex and FlexX. Moreover, the similarity between the actives of a target and its crystal structure ligand seems to be at the basis of the good performance of Glide. When all targets with significant biases are removed from the benchmarking, a subset of 47 targets remains, for which Glide succeeded for only 5 targets, Gold for 4 and FlexX and Surflex for 2. The performance dramatic drop of all four programs when the biases are removed shows that we should beware of virtual screening benchmarks, because good performances may be due to wrong reasons. Therefore, benchmarking would hardly provide guidelines for virtual screening experiments, despite the tendency that is maintained, i.e., Glide and Gold display better performance than FlexX and Surflex. We recommend to always use several programs and combine their results. Graphical AbstractSummary of the results obtained by virtual screening with the four programs, Glide, Gold, Surflex and FlexX, on the 102 targets of the DUD-E database. The percentage of targets with successful results, i.e., with BDEROC(α = 80.5) > 0.5, when the entire database is considered are in Blue, and when targets with biased chemical libraries are removed are in Red.
Walter C. Williams (1919-1995)
NASA Technical Reports Server (NTRS)
1954-01-01
Walter C. Williams was Chief of the National Advisory Committee for Aeronautics' and the National Aeronautics and Space Administration's flight research organization on Edwards Air Force Base until his appointment as Associate Director of Project Mercury on September 15, 1959. Walt had started his career with NACA at Langley Memorial Aeronautical Laboratory in 1939 as an engineer in the Flight Division. In 1946 he transferred to the Muroc Army Air Field to be in charge of the small group of technicians and engineers who would be doing the flight research on a joint NACA-Army Air Forces program involving the rocket-powered Bell XS-1. See photo DIRECTORS E-49-0170, which addresses the first eight years of Walt's responsibilities with NACA. Williams' achievements as Chief of the NACA/NASA High-Speed Flight Station for the next five years continued to be significant. NACA pilot Joseph A. Walker made the first of 20 NACA research flights in the Douglas X-3 'Flying Stiletto'--on which inertial coupling was first experience--in 1954. The first NACA flight in an Lockheed F-104A aircraft occurred on August 27, 1956. On October 15, 1958, the first of three North American X-15 rocket research aircraft arrived at NASA High Speed Flight Station as preparations moved ahead for the highly successful NASA-Air Force-Navy-North American program that would last 10 years and investigate hypersonic flight. Walt directed a great variety of other flight research programs, including that on the Boeing B-47; investigations using the Century Series fighters, F-100, F-102, F-104, F-105 and F-107; and the ones involving the X-1 #2, which became the X1-E. During Williams' career, he twice received the NASA Distinguished Service Medal and was nominated both to the Meritorious Rank and Distinguished Rank in the Federal Senior Executive Service. In 1963 he was awarded an honorary doctorate of engineering degree by Louisiana State University. He received several awards from the American Institute of Aeronautics and Astronautics, including the Sylvanus Albert Reed Award for his contributions to supersonic and space flight in 1962 and the Haley Astronautics Award for his contributions to the advancement of space flight in 1964. His other honors and awards include the American Astronautical Society Space Flight Award in 1978, and the 1981 Federal Engineer of the Year Award by the National Society of Professional Engineers. Walter Charles Williams was born July 30, 1919, in New Orleans, Louisiana; he died October 7, 1995, in Tarzana, California.
1993-12-01
of the films. One is x - ray diffraction which is used to determine the crystallographic orientation of the films. No phases other than the YBa 2Cu3O 7...x were observed in any of the films. The x - ray data for the films with high critical current densities show strong peaks of reflections indicating a...Solving for x ca = (p/2 Now, if we look at a close-up of the prism face at the input ray (FIGURE 7), we want to solve for the angle between the rays
1980-02-01
8 d. Data Set 4 8 e. Data Set 5 9 f. Data Set 6 9 g. Data Set 7 10 h. Data Set 8 10 i. Data Set 9 11 J. Data Set 10 12 k. Data...Coordinates NODE X Y NODE X Y NODE X Y 1 4.0 0.5 7 3.50 1.0 13 1.50 1.5 2 4.0 1.0 8 3.50 1.5 14 1.25 0.5 3 4.0 1.5 9 2.50 0.5 15 1.25 1.5 4 3.75 0.5 10 ...4 1+5 1+6 1+7 1 1 3 8 6 2 5 7 4 2 8 13 11 6 10 12 9 7 3 16 11 13 18 14 12 15 17 Note that I can be chosen to be any corner node. 6. PLOTTING THE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosch, R.; Boutin, J. Y.; Le Breton, J. P.
This article describes x-ray imaging with grazing-incidence microscopes, developed for the experimental program carried out on the Ligne d'Integration Laser (LIL) facility [J. P. Le Breton et al., Inertial Fusion Sciences and Applications 2001 (Elsevier, Paris, 2002), pp. 856-862] (24 kJ, UV--0.35 nm). The design includes a large target-to-microscope (400-700 mm) distance required by the x-ray ablation issues anticipated on the Laser MegaJoule facility [P. A. Holstein et al., Laser Part. Beams 17, 403 (1999)] (1.8 MJ) which is under construction. Two eight-image Kirkpatrick-Baez microscopes [P. Kirkpatrick and A. V. Baez J. Opt. Soc. Am. 38, 766 (1948)] with differentmore » spectral wavelength ranges and with a 400 mm source-to-mirror distance image the target on a custom-built framing camera (time resolution of {approx}80 ps). The soft x-ray version microscope is sensitive below 1 keV and its spatial resolution is better than 30 {mu}m over a 2-mm-diam region. The hard x-ray version microscope has a 10 {mu}m resolution over an 800-{mu}m-diam region and is sensitive in the 1-5 keV energy range. Two other x-ray microscopes based on an association of toroidal/spherical surfaces (T/S microscopes) produce an image on a streak camera with a spatial resolution better than 30 {mu}m over a 3 mm field of view in the direction of the camera slit. Both microscopes have been designed to have, respectively, a maximum sensitivity in the 0.1-1 and 1-5 keV energy range. We present the original design of these four microscopes and their test on a dc x-ray tube in the laboratory. The diagnostics were successfully used on LIL first experiments early in 2005. Results of soft x-ray imaging of a radiative jet during conical shaped laser interaction are shown.« less
A Rapid Global Effects Capability
2016-06-01
and costs to the U.S. government. Companies such as SpaceWorks, SpaceX , Blue Origin, and Masten Space Systems are conducting similar research and...Capability. In the commercial sector, SpaceX Designs is the most noticeable entity in the field of space exploration. They are focusing their research...colonization of Mars by humans. Recently, they have had quite a few important successes. In 2014, SpaceX and their “commercial space program got
7 CFR 4288.25 - Succession and control of facilities and production.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...
7 CFR 4288.25 - Succession and control of facilities and production.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...
7 CFR 4288.25 - Succession and control of facilities and production.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Succession and control of facilities and production... Repowering Assistance Payments to Eligible Biorefineries § 4288.25 Succession and control of facilities and... that, the party is eligible, and permitting such succession would serve the purposes of the program. If...
A Compact Prototype of an Optical Pattern Recognition System
NASA Technical Reports Server (NTRS)
Jin, Y.; Liu, H. K.; Marzwell, N. I.
1996-01-01
In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.
15 CFR 296.22 - Award criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...
15 CFR 296.22 - Award criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...
15 CFR 296.22 - Award criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...
15 CFR 296.22 - Award criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...
Twu, Nancy; Li, Xin; Urban, Alexander; ...
2014-12-17
Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered Li xNi 2–4x/3Sb x/3O 2 (x = 1.00–1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies disclose a complex nanostructure pattern of Li–Sb and Ni–Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li–Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.
Twu, Nancy; Li, Xin; Urban, Alexander; Balasubramanian, Mahalingam; Lee, Jinhyuk; Liu, Lei; Ceder, Gerbrand
2015-01-14
Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered Li(x)Ni(2-4x/3)Sb(x/3)O2 (x = 1.00-1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies reveal a complex nanostructure pattern of Li-Sb and Ni-Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li-Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.
Flight Testing the X-36: The Test Pilots Perspective
NASA Technical Reports Server (NTRS)
Walker, Laurence A.
1997-01-01
The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.
PLOT3D- DRAWING THREE DIMENSIONAL SURFACES
NASA Technical Reports Server (NTRS)
Canright, R. B.
1994-01-01
PLOT3D is a package of programs to draw three-dimensional surfaces of the form z = f(x,y). The function f and the boundary values for x and y are the input to PLOT3D. The surface thus defined may be drawn after arbitrary rotations. However, it is designed to draw only functions in rectangular coordinates expressed explicitly in the above form. It cannot, for example, draw a sphere. Output is by off-line incremental plotter or online microfilm recorder. This package, unlike other packages, will plot any function of the form z = f(x,y) and portrays continuous and bounded functions of two independent variables. With curve fitting; however, it can draw experimental data and pictures which cannot be expressed in the above form. The method used is division into a uniform rectangular grid of the given x and y ranges. The values of the supplied function at the grid points (x, y) are calculated and stored; this defines the surface. The surface is portrayed by connecting successive (y,z) points with straight-line segments for each x value on the grid and, in turn, connecting successive (x,z) points for each fixed y value on the grid. These lines are then projected by parallel projection onto the fixed yz-plane for plotting. This program has been implemented on the IBM 360/67 with on-line CDC microfilm recorder.
The VELA Success Story and Lessons Learned
NASA Astrophysics Data System (ADS)
Perez, Mario R.; Belian, R. D.
2010-01-01
The VELA program was one of the first successful space programs in the U.S. This project was managed for the Department of Defense by the predecessor of DARPA, with the participation of the U.S. Air Force. Los Alamos National Laboratory (LANL) and Sandia National Laboratory (SNL) were in charge of providing nuclear surveillance sensors to verify compliance with the Nuclear Test Ban Treaty signed by President John F. Kennedy on October 7, 1963. The first two satellites were launched in tandem ten days later on October 17, 1963. A total of twelve satellites were launched from 1963 until 1970. Successful operations of some VELA on-board detectors continued until the early 1980s. We reviewed some of the many unique and valuable science achievements such as the discovery of gamma-ray bursts, galactic x-ray bursts, x-ray emission of solar flares, the plasma sheet and high Z ions in the solar wind, etc. Furthermore, a few lessons learned, both technical and managerial, are captured in this presentation.
Structural, optical and enhanced power filtering application of PEG capped Zn1-xCoxS quantum dots
NASA Astrophysics Data System (ADS)
Vineeshkumar, T. V.; Prasanth, S.; Pragash, R.; Unnikrishnan, N. V.; Sudarsanakumar, C.
2018-04-01
Zn1-xCoxS (x= 0.05, 0.1, 0.15 and 0.2) quantum dots were synthesized successfully using co precipitation technique in polyethylene glycol (PEG) matrix. The PEG acted as a capping agent as well as a reducing agent. The structural and optical properties of the samples were studied by x-ray diffraction (XRD), TEM analysis and UV-Visible absorption. Nonlinear optical properties were measured using open aperture z-scan technique, employing frequency doubled (532 nm) pumping sources.
78 FR 72791 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... operators Inspection, test, and 10 work-hours x $0 $850 260 $221,000. corrective actions $85 per hour... (new action).... 185 work-hours $28,771........ $44,496........ 569 $25,318,224. x $85 per hour = $15,725. Revise maintenance program 1 work-hour x $0 $85 569 $48,365. (new action). $85 per hour = $85...
15O(alpha,gamma)19Ne breakout reaction and impact on X-ray bursts.
Tan, W P; Fisker, J L; Görres, J; Couder, M; Wiescher, M
2007-06-15
The breakout reaction 15O(alpha,gamma)19Ne, which regulates the flow between the hot CNO cycle and the rp process, is critical for the explanation of the burst amplitude and periodicity of x-ray bursters. We report on the first successful measurement of the critical alpha-decay branching ratios of relevant states in 19Ne populated via 19F(3He,t)19Ne. Based on the experimental results and our previous lifetime measurements of these states, we derive the first experimental rate of 15O(alpha,gamma)19Ne. The impact of our experimental results on the burst pattern and periodicity for a range of accretion rates is analyzed.
INNOVATIVE SOIL AND GROUNDWATER REMEDIATION: THE SITE PROGRAM EXPERIENCE
The SITE program of the USEPA has been bringing together the private sector, EPA, and other federal and state agencies to succedssfully address complex hazardous waste problems. For more than 15 years, the SITE Program has successfully promoted the development, commercialization ...
AIM-9X Block II Sidewinder (AIM-9X Blk II)
2015-12-01
Selected Acquisition Report (SAR) RCS: DD- A &T(Q& A )823-442 AIM-9X Block II Sidewinder (AIM-9X Blk II) As of FY 2017 President’s Budget Defense...MDAP - Major Defense Acquisition Program MILCON - Military Construction N/ A - Not Applicable O&M - Operations and Maintenance ORD - Operational...15:14:10 UNCLASSIFIED 5 Mission and Description The AIM-9X Block II Sidewinder (AIM-9X Blk II) short-range air-to-air missile is a long term
1994-09-22
This photodepicts a 15 K Fastrac motor ignition test performed at Marshall Test Stand-116. The Fastrac motor is an alternative low-cost engine which is being developed and tested at Marshall. This engine was to eventually be used on an X-34 launchvehicle. The X-34 program was cancelled in 2001.
ERIC Educational Resources Information Center
Kiewik, M.; VanDerNagel, J. E.?L.; Kemna, L. E.?M.; Engels, R. C.?M.?E.; DeJong, C. A.?J.
2016-01-01
Background: Students without intellectual disability (ID) start experimenting with tobacco and alcohol between 12 and 15?years of age. However, data for 12- to 15-year old students with ID are unavailable. Prevention programs, like "prepared on time" (based on the attitude-social influence-efficacy model), are successful, but their…
Model-Based Systems Engineering Pilot Program at NASA Langley
NASA Technical Reports Server (NTRS)
Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.
2012-01-01
NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.
Space Radar Image of Lozere Department, Mende, France
1999-05-01
This is an X-band seasonal image of the central part of Lozere Departement situated south of the Massif Central in France. The image is 10 kilometers by 25 kilometers (6 miles by 15.5 miles) and is centered at approximately 44.3 degrees north latitude and 3 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on April 15, 1994 and on October 6, 1994. The image channels have the following color assignments: red was acquired in April; green was acquired in October; and blue is the ratio of the two data sets combined. Seasonal differences in the vegetation are visible in pink, which are heaths growing in the spring. This research area features two large limestone plateaus cut by the famous Gorges du Tarn, standing in parallel with the granite mountain range known as the Cevennes Mountains nearby. Land-use consists mainly of grasslands, heaths and forests. Forest types seen in the images are Austrian pines,Scots pines, spruce, fir and beech trees. Most forests were planted at the end of the 19th century through a national reforestation program aimed at reducing the strong erosion risks in these areas. This program was so successful that today the forests are exploited for forest pulpwood and sawlogs, but also remain protected as conservation regions. The study being performed in this area will assess the potential of spaceborne radar remote sensing for temperate forest type mapping and forest resource monitoring. The combination of X-band SAR data with lower frequency data (such as the SIR-C L-band data) allows scientists to distinguish forest tree species and biomass, or areas of ground vegetation. The lessons learned from the radar images of these controlled forest regions can be applied to larger areas and naturally grown forests to help ecologists protect and maintain them. The SIR-C/X-SAR images will be investigated by scientists from the remote sensing laboratory Cemagref in Montpellier and the National Forestry Board in Mende, France. http://photojournal.jpl.nasa.gov/catalog/PIA01755
ERIC Educational Resources Information Center
Linn, Mary S.; Naranjo, Tessie; Nicholas, Sheilah; Slaughter, Inee; Yamamoto, Akira; Zepeda, Ofelia
The Indigenous Language Institute (ILI) collaborates with indigenous language communities to combat language decline. ILI facilitates community-based language programs, increases public awareness of language endangerment, and disseminates information on language preservation and successful language revitalization programs. In response to numerous…
Mission and Objectives for the X-1 Advanced Radiation Source*
NASA Astrophysics Data System (ADS)
Rochau, Gary E.; Ramirez, Juan J.; Raglin, Paul S.
1998-11-01
Sandia National Laboratories PO Box 5800, MS-1178, Albuquerque, NM 87185 The X-1 Advanced Radiation Source represents a next step in providing the U.S. Department of Energy's Stockpile Stewardship Program with the high-energy, large volume, laboratory x-ray source for the Radiation Effects Science and Simulation, Inertial Confinement Fusion, and Weapon Physics Programs. Advances in fast pulsed power technology and in z-pinch hohlraums on Sandia National Laboratories' Z Accelerator provide sufficient basis for pursuing the development of X-1. The X-1 plan follows a strategy based on scaling the 2 MJ x-ray output on Z via a 3-fold increase in z-pinch load current. The large volume (>5 cm3), high temperature (>150 eV), temporally long (>10 ns) hohlraums are unique outside of underground nuclear weapon testing. Analytical scaling arguments and hydrodynamic simulations indicate that these hohlraums at temperatures of 230-300 eV will ignite thermonuclear fuel and drive the reaction to a yield of 200 to 1,200 MJ in the laboratory. Non-ignition sources will provide cold x-ray environments (<15 keV) and high yield fusion burn sources will provide high fidelity warm x-ray environments (15 keV-80 keV). This paper will introduce the X-1 Advanced Radiation Source Facility Project, describe the project mission, objective, and preliminary schedule.
Reusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene
1996-01-01
Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.
Community Leadership through Community-Based Programming: The Role of the Community College.
ERIC Educational Resources Information Center
Boone, Edgar J.; And Others
Organized around 15 tasks involved in the community-based programming (CBP) process, this book provides practical, field-tested guidance on successfully implementing CBP in community colleges. Following prefatory materials, the following chapters are provided: (1) "An Introduction to the Community-Based Programming Process" (Edgar J.…
NASA Astrophysics Data System (ADS)
Ohbayashi, Kazushige; Matsuoka, Takayuki; Kitamura, Kazuaki; Yamada, Hideto; Hishida, Tomoko; Yamazaki, Masato
2017-06-01
We developed a (K,Na)NbO3-based lead-free piezoelectric ceramic with a KTiNbO5 system, (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Fe2O3-MgO (K1- x N x N-NTK-FM). K1- x N x N-NTK-FM ceramic exhibits a very dense microstructure and a coupling coefficient of k p = 0.59, which is almost comparable to that of conventional lead zirconate titanate (PZT). The (K,Na)NbO3-based ceramic has the Γ15 mode for a wide x range. The nanodomains of orthorhombic (K,Na)NbO3 with the M3 mode coexist within the tetragonal Γ15 mode (K,Na)NbO3 matrix. Successive phase transition cannot occur with increasing x. The maximum k p is observed at approximately the minimum x required to generate the M3 mode phase. Unlike the behavior at the morphotropic phase boundary (MPB) in PZT, the characteristics of K1- x N x N-NTK-FM ceramic in this region changed moderately. This gentle phase transition seems to be a relaxor, although the diffuseness degree is not in line with this hypothesis. Furthermore, piezoelectric properties change from “soft” to “hard” upon the M3 mode phase aggregation.
The Human Factors of an Early Space Accident: Flight 3-65 of the X-15
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Statler, Irving C.; Orr, Jeb S.
2015-01-01
The X-15 was a critical research vehicle in the early days of space flight. On November 15, 1967, the X-15-3 suffered an in-flight breakup. This 191st flight of the X-15 and the 65th flight of this third configuration was the only fatal accident of the X-15 program. This paper presents an analysis, from a human factors perspective, of the events that led up to the accident. The analysis is based on the information contained in the report of the Air Force-NASA Accident Investigation Board (AIB) dated January, 1968. The AIBs analysis addressed, primarily, the events that occurred subsequent to the pilots taking direct control of the reaction control system. The analysis described here suggests that all of the events that caused the accident occurred well before the moment when the pilot switched to direct control. Consequently, the analyses and conclusions regarding the causal factors of, and the contributing factors to, the loss of Flight 3-65 presented here differ from those of the AIB based on the same evidence. Although the accident occurred in 1967, the results of the presented analysis are still relevant today. We present our analysis and discuss its implications for the safety of space operations.
The Human Factors of an Early Space Accident: Flight 3-65 of the X-15
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Statler, Irving C.; Orr, Jeb S.
2016-01-01
The X-15 was a critical research vehicle in the early days of space flight. On November 15, 1967, the X-15-3 suffered an in-flight breakup. This 191st flight of the X-15 and the 65th flight of this third configuration was the only fatal accident of the X-15 program. This paper presents an analysis, from a human factors perspective, of the events that led up to the accident. The analysis is based on the information contained in the report of the Air Force-NASA Accident Investigation Board (AIB) dated January, 1968. The AIBs analysis addressed, primarily, the events that occurred subsequent to the pilot's taking direct control of the reaction control system. The analysis described here suggests that, rather than events following the pilot's switch to direct control, it was the events preceding the switch that led to the accident. Consequently, the analyses and conclusions regarding the causal factors of, and the contributing factors to, the loss of Flight 3-65 presented here differ from those of the AIB based on the same evidence. Although the accident occurred in 1967, the results of the presented analysis are still relevant today. We present our analysis and discuss its implications for the safety of space operations.
Ahmad, Rima; Mullen, John T
2013-01-01
There remains a debate as to whether nondesignated preliminary (NDP) positions in surgery ultimately translate into successful surgical careers for those who pursue them. We sought to identify the success with which our NDP residents were able to transition to their desired career and what, if any, factors contributed to their success. The records of all NDP residents accepted into the Massachusetts General Hospital General Surgery Residency Program from 1995 to 2010 were examined and long-term follow-up was completed. Thirty-four NDP residents were identified, including 26.5% US graduates and 73.5% international medical graduates. At the end of the initial preliminary year, 30 (88%) got placed in a postgraduate residency program, whereas 4 (12%) pursued other career paths. Of those who got placed, 25 (83%) attained surgical residency positions, including 17 (57%) who continued as preliminary residents at our institution and 8 (27%) who got placed in categorical surgical positions at other programs. After multiple preliminary years, 15 of 17 achieved a categorical position, of which, 93% were in surgical fields. Overall, 64.7% of all entering NDP residents eventually went on to have careers in general surgery (50%) or surgical subspecialties (14.7%), and 24 of 34 (71%) fulfilled their desired career goals. No factor predicted success. From 1995 to 2012 there have been 15 midlevel (11 postgraduate year 4) vacancies in our program, 4 of which were filled by preliminary residents, 2 from our program and 2 from elsewhere. All have gone on to board certifications and careers in surgery. More than 70% of NDP residents in our program successfully transitioned to their desired career paths, many achieving categorical surgical positions and academic surgical careers, thus demonstrating the benefit of this track to both residency programs and trainees. © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
LH2 Tank Composite Coverplate Development and Flight Qualification for the X-33
NASA Technical Reports Server (NTRS)
Wright, Richard J.; Roule, Gerard M.
2000-01-01
In this paper, the development history for the first cryogenic pressurized fuel tank coverplates is presented along with a synopsis of the development strategy and technologies which led to success on this program. Coverplates are the large access panels used to access launch vehicle fuel tanks. These structures incorporate all of the requirements for a pressure vessel as well as the added requirement to mount all of the miscellaneous access points required for a fuel management system. The first composite coverplates to meet the requirements for flight qualification were developed on the X-33 program. The X-33 composite coverplates went from an open requirement to successful finished flight hardware with multiple unique configurations, complete with verification testing, in less than eighteen months. Besides the rapid development schedule, these components introduced several new technologies previously unseen in cryogenic composites including solutions to cryogenic shrinkage, self-supporting sealing surfaces, and highly loaded composite bosses with precision sealing interfaces. These components were proven to seal liquid hydrogen at cryogenic temperatures under maximum loading and pressure conditions.
Benzaquén, Tamara B; Barrera, Deicy A; Carraro, Paola M; Sapag, Karim; Alfano, Orlando M; Eimer, Griselda A
2018-06-02
SBA-15 and KIT-6 materials have been synthesized and modified with iron salts by the wet impregnation method with different metal loadings. The different mesostructures obtained were characterized by N 2 adsorption-desorption at 77 K, X-ray diffraction, temperature-programmed reduction, and ultraviolet-visible spectroscopy. These iron-containing mesostructured materials have been successfully tested for the heterogeneous photo-Fenton degradation of aqueous solutions of dangerous herbicides, such as atrazine, using UV-visible light irradiation, at room temperature and close to neutral pH. The results showed that the Fe/SBA-15 (10%) and Fe/KIT-6 (5%) catalysts exhibited the highest activities. However, the Fe/KIT-6 (5%) catalyst with minor Fe loading than Fe/SBA-15 (10%) presented a higher degradation of atrazine (above 98% in a reaction time of 240 min). Therefore, the interconnectivity of the cage-like mesopores had an important influence on the catalytic activity, favoring probably mass-transfer effects. Thus, the high performance of these materials indicates that the heterogeneous via of photo-Fenton process can also be efficiently employed to treat wastewaters containing pollutants such as herbicides, in order to reduce them to simplest and less toxic molecules.
Measurements of the Fuel Mileage of a KC-135 Aircraft with and Without Winglets
NASA Technical Reports Server (NTRS)
Temanson, G. E.
1982-01-01
The KC-135A Winglet Flight Research and Demonstration Program was a joint effort of the Air Force, NASA and the Boeing Military Airplane Company to flight test winglets on the KC-135A. The primary objective of the program was to verify the cruise performance improvements predicted by analysis and wind tunnel tests. Flight test data were obtained for winglets positioned at 15 deg cant/-2 deg incidence, 0 deg cant/-4 deg incidence, 15 deg cant/-4 deg incidence and for winglets off (baseline). Both fuel mileage and drag measurements were obtained. The 15 deg cant/-4 deg incidence winglet configuration provided the greatest performance improvement. The flight test measured fuel mileage improvement for a 0.78 Mach number was 3.1 percent at 8 x 10(5) pounds W/delta and 5.5 percent at 1.05 x 10(6) pounds W/delta. Correcting the flight measured data for surface pressure differences between wind tunnel and flight resulted in a fuel mileage improvement of 4.4 percent at 8 x 10(5) pounds W/delta and 7.2 percent at 1.05 x 10(6) pounds W/delta. The agreement between the fuel mileage and drag data was excellent.
The success of the X-33 depends on its technology—an overview
NASA Astrophysics Data System (ADS)
Bunting, Jackie O.; Sasso, Steven E.
1996-03-01
The success of the X-33, and therefore the Reusable Launch Vehicle (RLV) program, is highly dependent on the maturity of the components and subsystems selected and the ability to verify their performance, cost, and operability goals. The success of the technology that will be developed to support these components and subsystems will be critical to developing an operationally efficient X-33 that is traceable to a full-scale RLV system. This paper will delineate the key objectives of each technology demonstration area and provide an assessment of its ability to meet the X-33/RLV requirements. It is our intent to focus on these key technology areas to achieve the ambitious but achievable goals of the RLV and X-33 programs. Based on our assessment of the X-33 and RLV systems, we have focused on the performance verification and validation of the linear aerospike engine. This engine, first developed in the mid-1960s, shows promise in achieving the RLV objectives. Equally critical to the engine selection is the development of cryogenic composite tanks and the associated health management system required to meet the operability goals. We are also developing a highly reusable form of thermal protection system based on years of hypersonic research and Space Shuttle experience. To meet the mass fraction goals, reduction in engine component weights will also be developed. Due to the high degree of operability required, we will investigate the use of real-time integrated system health management and propulsion systems diagnostics, and mature the use of electromechanical actuators for highly reusable systems. The rapid turn-around requirements will require an adaptive guidance, navigation, and control algorithm toolset, which is well underway. We envision our X-33 and RLV to use mature, low-risk technologies that will allow truly low-cost access to space (Lockheed Martin Internal Document, 1995).
X-33 Reusable Launch Vehicle Demonstrator, Spaceport and Range
NASA Technical Reports Server (NTRS)
Letchworth, Gary F.
2011-01-01
The X-33 was a suborbital reusable spaceplane demonstrator, in development from 1996 to early 2001. The intent of the demonstrator was to lower the risk of building and operating a full-scale reusable vehicle fleet. Reusable spaceplanes offered the potential to lower the cost of access to space by an order of magnitude, compared with conventional expendable launch vehicles. Although a cryogenic tank failure during testing ultimately led to the end of the effort, the X-33 team celebrated many successes during the development. This paper summarizes some of the accomplishments and milestones of this X-vehicle program, from the perspective of an engineer who was a member of the team throughout the development. X-33 Program accomplishments include rapid, flight hardware design, subsystem testing and fabrication, aerospike engine development and testing, Flight Operations Center and Operations Control Center ground systems design and construction, rapid Environmental Impact Statement NEPA process approval, Range development and flight plan approval for test flights, and full-scale system concept design and refinement. Lessons from the X-33 Program may have potential application to new RLV and other aerospace systems being developed a decade later.
Category 3: Sound Generation by Interacting With a Gust
NASA Technical Reports Server (NTRS)
Envia, Edmane
2004-01-01
Solve the time-dependent inviscid flow equations for this geometry subject to the specified inflow/outflow mean conditions and the fluctuating inflow velocity distortion. (1) Compute the unsteady solution until periodicity in pressure is achieved by showing that at least two successive periods are identical. Periodicity must be achieved on both the airfoil surface and the inflow/outflow boundaries. (2) Once periodicity is achieved, compute the pressure frequency spectra on the reference airfoil on both the upper and lower surfaces at x=(-0.25c,0.00, +0.25c), on the inflow boundary at (x,y)={1.5c,-0.3c), (-1.5c,0.0),(-1.5c,0.3c)} and on the outflow boundary at (x,y)= {(1.5c,-0.3c),(1.5c,0.0), (1.5c,0.3c)}. Express the spectral results in dB using the standard definition 20 log(P(sub(r.m.s)/P(sub ref), where p(sub ref) == 20 microPa. (3) Extract the harmonic pressure distributions on the inflow and outflow boundaries (i.e., on x= -/+ 1.5c lines) at the fundamental frequency omega and apply a Fourier transform in y direction to identify the spatial (i.e., mode order) structure of the pressure perturbations. Express the result in dB for each mode order. Repeat the process for the frequencies 2omega and 3omega.
The X-43A (Hyper-X) Flies Into the Record Books
NASA Technical Reports Server (NTRS)
Grindle, Laurie; Bahm, Catherine
2006-01-01
The goal of the Hyper-X research program, conducted jointly by the NASA Dryden Flight Research Center and the NASA Langley Research Center, was to demonstrate and validate the technology, experimental techniques, and computation methods and tools for design and performance predictions of a hypersonic aircraft with an airframe-integrated, scramjet propulsion system. Three X-43A airframe-integrated, scramjet research vehicles were designed and fabricated to achieve that goal by flight test: two test flights at Mach 7 and one test flight at Mach 10. The first flight, conducted on June 2, 2001, experienced a launch vehicle failure and resulted in a 9-month mishap investigation. A two-year return-to-flight effort ensued and concluded when the second Mach 7 flight was successful on March 27, 2004. Just eight months later, on November 16, the X-43A successfully completed the third and final flight. These two flights were the first flight demonstrations, at Mach 7 and Mach 10 respectively, of an airframe-integrated, scramjet-powered, hypersonic vehicle.
Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics.
Sun, Zheng; Li, Lingxia; Yu, Shihui; Kang, Xinyu; Chen, Siliang
2017-10-24
Lead-free Ba 1-x Sm 2x/3 Zr 0.15 Ti 0.85 O 3 (BSZT) ceramics were synthesized by a solid state reaction route. The microstructure, dielectric relaxor behavior and energy storage properties of BSZT ceramics were studied. The growth of grain size was suppressed with the increase of Sm addition and kept in the submicrometer scale. Successive substitution of Sm 3+ for Ba 2+ disrupted the long-range dipole and promoted the increase of polar nano-region (PNR) size, resulting in the enhanced degree of relaxor behavior. The increasing PNR size also lead to the slimmer hysteresis loops and improved the energy storage efficiency. Furthermore, high saturated polarization (P max ) and low remnant polarization (P r ) were obtained due to the formation of defect dipoles, which facilitated the switch of PNRs and contributed to the enhancement of energy storage density. The x = 0.003 sample was found to exhibit a higher energy storage density of 1.15 J cm -3 and an energy storage efficiency of 92%. The result revealed that the BSZT ceramics may be a good candidate for energy storage application.
A comparison of hypersonic vehicle flight and prediction results
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Shafer, Mary F.
1995-01-01
Aerodynamic and aerothermodynamic comparisons between flight and ground test for four hypersonic vehicles are discussed. The four vehicles are the X-15, the Reentry F, the Sandia Energetic Reentry Vehicle Experiment (SWERVE), and the Space Shuttle. The comparisons are taken from papers published by researchers active in the various programs. Aerodynamic comparisons include reaction control jet interaction on the Space Shuttle. Various forms of heating including catalytic, boundary layer, shock interaction and interference, and vortex impingement are compared. Predictions were significantly exceeded for the heating caused by vortex impingement (on the Space Shuttle OMS pods) and for heating caused by shock interaction and interference on the X-15 and the Space Shuttle. Predictions of boundary-layer state were in error on the X-15, the SWERVE, and the Space Shuttle vehicles.
Current test results for the Athena radar responsive tag
NASA Astrophysics Data System (ADS)
Ormesher, Richard C.; Martinez, Ana; Plummer, Kenneth W.; Erlandson, David; Delaware, Sheri; Clark, David R.
2006-05-01
Sandia National Laboratories has teamed with General Atomics and Sierra Monolithics to develop the Athena tag for the Army's Radar Tag Engagement (RaTE) program. The radar-responsive Athena tag can be used for Blue Force tracking and Combat Identification (CID) as well as data collection, identification, and geolocation applications. The Athena tag is small (~4.5" x 2.4" x 4.2"), battery-powered, and has an integral antenna. Once remotely activated by a Synthetic Aperture Radar (SAR) or Moving Target Indicator (MTI) radar, the tag transponds modulated pulses to the radar at a low transmit power. The Athena tag can operate Ku-band and X-band airborne SAR and MTI radars. This paper presents results from current tag development testing activities. Topics covered include recent field tests results from the AN/APY-8 Lynx, F16/APG-66, and F15E/APG-63 V(1) radars and other Fire Control radars. Results show that the Athena tag successfully works with multiple radar platforms, in multiple radar modes, and for multiple applications. Radar-responsive tags such as Athena have numerous applications in military and government arenas. Military applications include battlefield situational awareness, combat identification, targeting, personnel recovery, and unattended ground sensors. Government applications exist in nonproliferation, counter-drug, search-and-rescue, and land-mapping activities.
30 CFR 901.15 - Approval of Alabama regulatory program amendments.
Code of Federal Regulations, 2010 CFR
2010-07-01
...); 10D-.28(3); 12A-.01 through .08; and other items. May 22, 1985 July 19, 1985 ASMC Rules 880-X-2E...; 11D-.10; 11E. July 16, 1990 February 28, 1991 ASMC Rules 880-X-2A-.07(1)(c); 2E-.01 through .11. July...
30 CFR 901.15 - Approval of Alabama regulatory program amendments.
Code of Federal Regulations, 2011 CFR
2011-07-01
...); 10D-.28(3); 12A-.01 through .08; and other items. May 22, 1985 July 19, 1985 ASMC Rules 880-X-2E...; 11D-.10; 11E. July 16, 1990 February 28, 1991 ASMC Rules 880-X-2A-.07(1)(c); 2E-.01 through .11. July...
30 CFR 901.15 - Approval of Alabama regulatory program amendments.
Code of Federal Regulations, 2012 CFR
2012-07-01
...); 10D-.28(3); 12A-.01 through .08; and other items. May 22, 1985 July 19, 1985 ASMC Rules 880-X-2E...; 11D-.10; 11E. July 16, 1990 February 28, 1991 ASMC Rules 880-X-2A-.07(1)(c); 2E-.01 through .11. July...
30 CFR 901.15 - Approval of Alabama regulatory program amendments.
Code of Federal Regulations, 2013 CFR
2013-07-01
...); 10D-.28(3); 12A-.01 through .08; and other items. May 22, 1985 July 19, 1985 ASMC Rules 880-X-2E...; 11D-.10; 11E. July 16, 1990 February 28, 1991 ASMC Rules 880-X-2A-.07(1)(c); 2E-.01 through .11. July...
30 CFR 901.15 - Approval of Alabama regulatory program amendments.
Code of Federal Regulations, 2014 CFR
2014-07-01
...); 10D-.28(3); 12A-.01 through .08; and other items. May 22, 1985 July 19, 1985 ASMC Rules 880-X-2E...; 11D-.10; 11E. July 16, 1990 February 28, 1991 ASMC Rules 880-X-2A-.07(1)(c); 2E-.01 through .11. July...
2009-10-28
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, a post-launch news conference is held in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. Smiling, from left, are Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Jeff Hanley, Constellation Program manager; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
2009-10-28
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, Constellation Program Manager Jeff Hanley addresses a post-launch news conference in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. From left, are, Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Hanley; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
Year One Summary of X-energy Pebble Fuel Development at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.
2017-06-01
The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.
SpaceX CRS-14 Post Launch Conference
2018-04-02
In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-14, a commercial resupply services mission to the International Space Station. Participants included Josh Finch of NASA Communications, Joel Montalbano, deputy manager of the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-14 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT.
Pedagogical Strategies for Work-Based Learning. IEE Working Paper No. 12.
ERIC Educational Resources Information Center
Hughes, Katherine L.; Moore, David Thornton
Fourteen school-to-work programs characterized by strong work-based learning components and solid employer involvement were examined in a 3-year study to identify pedagogical factors associated with successful work-based learning programs. The main data collection activities were as follows: site visits to the 15 programs to interview faculty,…
Report: EPA’s Voluntary WaterSense Program Demonstrated Success
Report #17-P-0352, August 1, 2017. The EPA estimated that consumers saved over 1.5 trillion gallons of water through use of WaterSense-labeled products. Consumers saved an estimated $1,100 for every federal dollar spent on the program.
Dryden Test Pilots 1990 - Smolka, Fullerton, Schneider, Dana, Ishmael, Smith, and McMurtry
NASA Technical Reports Server (NTRS)
1990-01-01
It was a windy afternoon on Rogers Dry Lake as the research pilots of the National Aeronautics and Space Administration's Ames-Dryden Flight Research Facility gathered for a photo shoot. It was a special day too, the 30th anniversary of the first F-104 flight by research pilot Bill Dana. To celebrate, a fly over of Building 4800, in formation, was made with Bill in a Lockheed F-104 (826), Gordon Fullerton in a Northrop T-38, and Jim Smolka in a McDonnell Douglas F/A-18 (841) on March 23, 1990. The F-18 (841), standing on the NASA ramp is a backdrop for the photo of (Left to Right) James W. (Smoke) Smolka, C. Gordon Fullerton, Edward T. (Ed) Schneider, William H. (Bill) Dana, Stephen D. (Steve) Ishmael, Rogers E. Smith, and Thomas C. (Tom) McMurtry. Smolka joined NASA Ames-Dryden Flight Research Facility in September 1985. He has been the project pilot on the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) research and F-15 Aeronautical Research Aircraft programs. He has also flown as a pilot on the NASA B-52 launch aircraft, as a co-project pilot on the F-16XL Supersonic Laminar Flow Control aircraft and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft. Other aircraft he has flown in research programs are the F-16, F-111, F-104 and the T-38 as support. Fullerton, joined NASA's Ames-Dryden Flight Research Facility in November 1986. He was project pilot on the NASA/Convair 990 aircraft to test space shuttle landing gear components, project pilot on the F-18 Systems Research Aircraft, and project pilot on the B-52 launch aircraft, where he was involved in six air launches of the commercially developed Pegasus space launch vehicle. Other assignments include a variety of flight research and support activities in multi-engine and high performance aircraft such as, F-15, F-111, F-14, X-29, MD-11 and DC-8. Schneider arrived at the NASA Ames-Dryden Flight Research Facility on July 5, 1982, as a Navy Liaison Officer, becoming a NASA research pilot one year later. He has been project pilot for the F-18 High Angle-of-Attack program (HARV), project pilot for the F-15 aeronautical research aircraft, the NASA B-52 launch aircraft, and the SR-71 'Blackbird' aircraft. His past research work at Dryden has included participation in the F-8 Digital Fly-By-Wire, the FAA/NASA 720 Controlled Impact Demonstration, the F-14 Automatic Rudder Interconnect and Laminar Flow programs, and the F-104 Aeronautical Research and Microgravity programs. Dana joined the NASA's High-Speed Flight Station on October 1, 1958. As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program, flying the wingless M2-F1, HL-10, M2-F3, and the X-24B vehicles. He was a project pilot on the hypersonic X-15 research aircraft and flew the rocket-powered vehicle 16 times, reaching a speed of 3,897 mph and an altitude of 310,000 feet. Bill was the pilot on the final (199th) flight of the 10-year program. Other research and support programs Dana participated in were the F-15 Highly Integrated Digital Electronic Control (HIDEC), the F-18 High Angle-of-Attack Research Vehicle (HARV), YF-12, F-104, F-16, PA-30, and T-38. In 1993 Dana became Chief Engineer at NASA's Ames-Dryden Flight Research Facility (soon to be renamed the Dryden Flight Research Center). Ishmael was a research pilot at NASA's Dryden Flight Research Center from January 1977 until the spring of 1995, when he became manager of Dryden's Reusable Launch Vehicle (RLV) programs. In 1996 he became NASA's X-33 Deputy Manager for Flight Test and Operation. As a research pilot he served as the chief project pilot on two major aeronautical research programs, the SR-71 High Speed Research program and the F-16XL Laminar Flow Technology program. He took part in the X-29 Forward-Swept-Wing program, and gave support to other pilots' research flights in a T-38 and F-104 aircraft. Smith became a research pilot at NASA's Ames-Dryden Flight Research Facility in August 1982. In the spring of 1995 he became Chief of the Flight Crew Branch where currently there are 8 other NASA pilots and 2 flight engineers. Smith has also been a co-project pilot on two major aeronautical programs at Dryden. They are the integrated thrust vectoring F-15 ACTIVE and the SR-71 'Blackbird' Research programs. Other research programs that he has been associated with are the F-104 Zero 'G' tests, F-18 HARV, X-29 Forward-Swept-Wing, with support flights being flown in a T-38 and F-104. McMurtry has been a pilot at NASA's Dryden since joining the Flight Research Center in November 1967. In 1981, Tom became Chief Pilot a position he held until February 1986, when he was appointed Chief of the Research Aircraft Operations Division. McMurtry has been project pilot for the AD-1 Oblique Wing program, the F-15 Digital Electronic Engine Control (DEEC) project and the F-8 Supercritical Wing program. He was co- project pilot on the F-15 ACTIVE program, F-8 Digital Fly-By-Wire program and on several remotely piloted research vehicle programs such as the FAA/NASA 720 Controlled Impact Demonstration and the sub-scale F-15 spin research project. He has also been a co-project pilot on the NASA 747 Shuttle Carrier Aircraft.
[MD PhD programs: Providing basic science education for ophthalmologists].
Spaniol, K; Geerling, G
2015-06-01
Enrollment in MD PhD programs offers the opportunity of a basic science education for medical students and doctors. These programs originated in the USA where structured programs have been offered for many years, but now German universities also run MD PhD programs. The MD PhD programs provided by German universities were investigated regarding entrance requirements, structure and financing modalities. An internet and telephone-based search was carried out. Out of 34 German universities 22 offered MD PhD programs. At 15 of the 22 universities a successfully completed course of studies in medicine was required for enrollment, 7 programs admitted medical students in training and 7 programs required a medical doctoral thesis, which had to be completed with at least a grade of magna cum laude in 3 cases. Financing required scholarships in many cases. Several German universities currently offer MD PhD programs; however, these differ considerably regarding entrance requirements, structure and financing. A detailed analysis investigating the success rates of these programs (e.g. successful completion and career paths of graduates) would be of benefit.
M2-F3 In-flight Launch from B-52
NASA Technical Reports Server (NTRS)
1971-01-01
This photo shows the M2-F3 Lifting Body being launched from NASA's B-52 mothership at the NASA Flight Research Center (FRC--now the Dryden Flight Research Center), Edwards, California. A fleet of lifting bodies flown at the FRC from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Early flight testing of the M2-F1 and M2-F2 lifting body reentry configurations had validated the concept of piloted lifting body reentry from space. When the M2-F2 crashed on May 10, 1967, valuable information had already been obtained and was contributing to new designs. NASA pilots said the M2-F2 had lateral control problems, so when the M2-F2 was rebuilt at Northrop and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. First flight of the M2-F3, with NASA pilot Bill Dana at the controls, was June 2, 1970. The modified vehicle exhibited much better lateral stability and control characteristics than before, and only three glide flights were necessary before the first powered flight on Nov. 25, 1970. Over the next 26 missions, the M2-F3 reached a top speed of l,064 mph (Mach 1.6). Highest altitude reached by vehicle was 7l,500 feet on Dec. 20, 1972, the date of its last flight, with NASA pilot John Manke at the controls. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner from 1965 to 1969. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Xylitol gummy bear snacks: a school-based randomized clinical trial
Ly, Kiet A; Riedy, Christine A; Milgrom, Peter; Rothen, Marilynn; Roberts, Marilyn C; Zhou, Lingmei
2008-01-01
Background Habitual consumption of xylitol reduces mutans streptococci (MS) levels but the effect on Lactobacillus spp. is less clear. Reduction is dependent on daily dose and frequency of consumption. For xylitol to be successfully used in prevention programs to reduce MS and prevent caries, effective xylitol delivery methods must be identified. This study examines the response of MS, specifically S. mutans/sobrinus and Lactobacillus spp., levels to xylitol delivered via gummy bears at optimal exposures. Methods Children, first to fifth grade (n = 154), from two elementary schools in rural Washington State, USA, were randomized to xylitol 15.6 g/day (X16, n = 53) or 11.7 g/day (X12, n = 49), or maltitol 44.7 g/day (M45, n = 52). Gummy bear snacks were pre-packaged in unit-doses, labeled with ID numbers, and distributed three times/day during school hours. No snacks were sent home. Plaque was sampled at baseline and six weeks and cultured on modified Mitis Salivarius agar for S. mutans/sobrinus and Rogosa SL agar for Lactobacillus spp. enumeration. Results There were no differences in S. mutans/sobrinus and Lactobacillus spp. levels in plaque between the groups at baseline. At six weeks, log10 S. mutans/sobrinus levels showed significant reductions for all groups (p = 0.0001): X16 = 1.13 (SD = 1.65); X12 = 0.89 (SD = 1.11); M45 = 0.91 (SD = 1.46). Reductions were not statistically different between groups. Results for Lactobacillus spp. were mixed. Group X16 and M45 showed 0.31 (SD = 2.35), and 0.52 (SD = 2.41) log10 reductions, respectively, while X12 showed a 0.11 (SD = 2.26) log10 increase. These changes were not significant. Post-study discussions with school staff indicated that it is feasible to implement an in-classroom gummy bear snack program. Parents are accepting and children willing to consume gummy bear snacks daily. Conclusion Reductions in S. mutans/sobrinus levels were observed after six weeks of gummy bear snack consumption containing xylitol at 11.7 or 15.6 g/day or maltitol at 44.7 g/day divided in three exposures. Lactobacillus spp. levels were essentially unchanged in all groups. These results suggest that a xylitol gummy bear snack may be an alternative to xylitol chewing gum for dental caries prevention. Positive results with high dose maltitol limit the validity of xylitol findings. A larger clinical trial is needed to confirm the xylitol results. Trial registration [ISRCTN63160504] PMID:18657266
ERIC Educational Resources Information Center
Taylor, Burton
The Ensuring Student Success Through Collaboration Network, administered by the Council of Chief State School Officers, is comprised of teams of state and local leaders from Arkansas, California, Iowa, Kentucky, Missouri, Oregon, and Washington and works to connect education improvement efforts with other human service reforms, economic…
Testing of Twin Linear Aerospike XRS-2200 Engine
NASA Technical Reports Server (NTRS)
2001-01-01
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode
NASA Astrophysics Data System (ADS)
Wang, Xiaoxiao; Wang, Wanwan; Zhu, Baichuan; Qian, Fangfang; Fang, Zhen
2018-03-01
NASICON-type Na3V2(PO4)3 (NVP) with superior electrochemical performance has attracted enormous attention with the development of sodium ion batteries. The structural aggregation as well as poor conductivity of NVP hinder its application in high rate perforamance cathode with long stablity. In this paper, Na3V2- x Mo x (PO4)3@C was successfully prepared through two steps method, including sol-gel and solid state thermal reduction. The optimal doping amount of Mo was defined by experiment. When x was 0.15, the Na3V1.85Mo0.15(PO4)3@C sample has the best cycle performance and rate performance. The discharge capacity of Na3V1.85Mo0.15(PO4)3@C could reach 117.26 mA·h·g-1 at 0.1 C. The discharge capacity retention was found to be 94.5% after 600 cycles at 5 C.
Ares I-X: First Flight of a New Era
NASA Technical Reports Server (NTRS)
Davis, Stephen R.; Askins, Bruce R.
2010-01-01
Since 2005, NASA s Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). The Ares Projects at Marshall Space Flight Center (MSFC) are developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Basing exploration launch vehicle designs on Ares I-X information puts NASA one step closer to full-up "test as you fly," a best practice in vehicle design. Although the final Constellation Program architecture is under review, the Ares I-X data and experience in vehicle design and operations can be applied to any launch vehicle. This paper presents the mission background as well as results and lessons learned from the flight.
Andersen, Anette; Bast, Lotus Sofie; Ringgaard, Lene Winther; Wohllebe, Louise; Jensen, Poul Dengsøe; Svendsen, Maria; Dalum, Peter; Due, Pernille
2014-05-28
Adolescent smoking is still highly prevalent in Denmark. One in four 13-year olds indicates that they have tried to smoke, and one in four 15-year olds answer that they smoke regularly. Smoking is more prevalent in socioeconomically disadvantaged populations in Denmark as well as in most Western countries. Previous school-based programs to prevent smoking have shown contrasting results internationally. In Denmark, previous programs have shown limited or no effect. This indicates a need for developing a well-designed, comprehensive, and multi-component intervention aimed at Danish schools with careful implementation and thorough evaluation.This paper describes X:IT, a study including 1) the development of a 3-year school-based multi-component intervention and 2) the randomized trial investigating the effect of the intervention. The study aims at reducing the prevalence of smoking among 13 to 15-year olds by 25%. The X:IT study is based on the Theory of Triadic Influences. The theory organizes factors influencing adolescent smoking into three streams: cultural environment, social situation, and personal factors. We added a fourth stream, the community aspects. The X:IT program comprises three main components: 1) smoke-free school premises, 2) parental involvement including smoke-free dialogues and smoke-free contracts between students and parents, and 3) a curricular component. The study encompasses process- and effect-evaluations as well as health economic analyses. Ninety-four schools in 17 municipalities were randomly allocated to the intervention (51 schools) or control (43 schools) group. At baseline in September 2010, 4,468 year 7 students were eligible of which 4,167 answered the baseline questionnaire (response rate = 93.3%). The X:IT study is a large, randomized controlled trial evaluating the effect of an intervention, based on components proven to be efficient in other Nordic settings. The X:IT study directs students, their parents, and smoking prevention policies at the schools. These elements have proven to be effective tools in preventing smoking among adolescents. Program implementation is thoroughly evaluated to be able to add to the current knowledge of the importance of implementation. X:IT creates the basis for thorough effect and process evaluation, focusing on various social groups. Current Controlled Trials ISRCTN77415416.
Design of a school-based randomized trial to reduce smoking among 13 to 15-year olds, the X:IT study
2014-01-01
Background Adolescent smoking is still highly prevalent in Denmark. One in four 13-year olds indicates that they have tried to smoke, and one in four 15-year olds answer that they smoke regularly. Smoking is more prevalent in socioeconomically disadvantaged populations in Denmark as well as in most Western countries. Previous school-based programs to prevent smoking have shown contrasting results internationally. In Denmark, previous programs have shown limited or no effect. This indicates a need for developing a well-designed, comprehensive, and multi-component intervention aimed at Danish schools with careful implementation and thorough evaluation. This paper describes X:IT, a study including 1) the development of a 3-year school-based multi-component intervention and 2) the randomized trial investigating the effect of the intervention. The study aims at reducing the prevalence of smoking among 13 to 15-year olds by 25%. Methods/Design The X:IT study is based on the Theory of Triadic Influences. The theory organizes factors influencing adolescent smoking into three streams: cultural environment, social situation, and personal factors. We added a fourth stream, the community aspects. The X:IT program comprises three main components: 1) smoke-free school premises, 2) parental involvement including smoke-free dialogues and smoke-free contracts between students and parents, and 3) a curricular component. The study encompasses process- and effect-evaluations as well as health economic analyses. Ninety-four schools in 17 municipalities were randomly allocated to the intervention (51 schools) or control (43 schools) group. At baseline in September 2010, 4,468 year 7 students were eligible of which 4,167 answered the baseline questionnaire (response rate = 93.3%). Discussion The X:IT study is a large, randomized controlled trial evaluating the effect of an intervention, based on components proven to be efficient in other Nordic settings. The X:IT study directs students, their parents, and smoking prevention policies at the schools. These elements have proven to be effective tools in preventing smoking among adolescents. Program implementation is thoroughly evaluated to be able to add to the current knowledge of the importance of implementation. X:IT creates the basis for thorough effect and process evaluation, focusing on various social groups. Trial registration Current Controlled Trials ISRCTN77415416. PMID:24886206
Hyper-X Hot Structures Comparison of Thermal Analysis and Flight Data
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Leonard, Charles P.; Bruce, Walter E., III
2004-01-01
The Hyper-X (X-43A) program is a flight experiment to demonstrate scramjet performance and operability under controlled powered free-flight conditions at Mach 7 and 10. The Mach 7 flight was successfully completed on March 27, 2004. Thermocouple instrumentation in the hot structures (nose, horizontal tail, and vertical tail) recorded the flight thermal response of these components. Preflight thermal analysis was performed for design and risk assessment purposes. This paper will present a comparison of the preflight thermal analysis and the recorded flight data.
Flight evaluation results for a digital electronic engine control in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.
1983-01-01
A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.
ERIC Educational Resources Information Center
Phillips, Kathleen J.; And Others
To determine the effect of attention to affective needs on the success of adult literacy programs, researchers analyzed data from 400 programs nominated by advisors to the National Adult Literacy Project (NALP), and selected a sample of 15 for the field research. The sample programs included three military, three prison, three English as a second…
The Summer Apprentice Program, 1992
1992-01-01
AD-A266 726 LABORATORY NOTE NO. 81 The Summer Apprentice Program 1992 Katherine Ellen Renn D TL C Thornton Samuel Mu JLE E DDavid M. Dahle JUL 0 6...Webster mice at 15-17 days gestation. The neocortex was removed, minced, and placed in media containing 0.08% acetylated trypsin at 370 C for one hour...plated on pure glial cultures. The cells were plated in 15 mm multiwell plates (2.5 x 10 -5 cells/well). The cultures were maintained at 370 C in a 5
Code of Federal Regulations, 2014 CFR
2014-07-01
... megajoule). (B) Oxides of Nitrogen plus Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines fueled... Nitrogen plus Non-methane Hydrocarbon Equivalent (NO X + NMHCE) for engines fueled with methanol. 1.5 grams... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...
Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code
NASA Astrophysics Data System (ADS)
Dong, M. G.; El-Mallawany, R.; Sayyed, M. I.; Tekin, H. O.
2017-12-01
Gamma ray shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses, where AnOm is Nb2O5 = 0.01, 5, Nd2O3 = 3, 5 and Er2O3 = 5 mol% have been achieved. Shielding parameters; mass attenuation coefficients, half value layers, and macroscopic effective removal cross section for fast neutrons have been computed by using WinXCom program and MCNP5 Monte Carlo code. In addition, by using Geometric Progression method (G-P), exposure buildup factor values were also calculated. Variations of shielding parameters are discussed for the effect of REO addition into the glasses and photon energy.
NASA Astrophysics Data System (ADS)
1982-05-01
The federal governments' energy conservation programs were examined. Testimony regarding issues discussed at the hearing include: energy policy, benefits of energy conservation, state and local governments and private sector activities, successes and failures of federal programs, barriers to conservation and a continuing federal role.
Ares I-X Flight Test Development Challenges and Success Factors
NASA Technical Reports Server (NTRS)
Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James
2010-01-01
The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that required creative thinking, risk taking, and a passion to succeed.
Where are they now? Cash and Counseling successes and challenges over time
Simon-Rusinowitz, Lori; Schwartz, Abby J.; Loughlin, Dawn; Sciegaj, Mark; Mahoney, Kevin J.; Donkoh, Yaw
2014-01-01
The positive results of the Cash & Counseling Demonstration and Evaluation (CCDE) led to the funding of a replication project that included 12 more states in 2008. Since then, the political and economic environments have changed. The authors sought to investigate how well the three original and 12 replication CCDE programs are coping with current challenges, and how their experiences may inform the growth and sustainability of emerging participant-directed programs. Semistructured telephone interviews were conducted with the 15 Cash & Counseling state program administrators. Key topics addressed included: successful aspects of state programs, biggest challenges for each program, and information program administrators would like to learn from state colleagues. Themes related to budget issues (e.g., staff shortages and program funding cuts) and non-budget related issues (e.g., understanding of program operations) emerged from the interviews. State program administrators also discussed program successes. To promote the sustainability and growth of participant-directed programs, existing participant-directed programs should be tied to national policy trends as well as review whether or not the programs address participant-directed principles. The development of new participant-directed programs should be based on other states’ experiences as discussed in this paper. PMID:25750590
The Hyper-X Flight Systems Validation Program
NASA Technical Reports Server (NTRS)
Redifer, Matthew; Lin, Yohan; Bessent, Courtney Amos; Barklow, Carole
2007-01-01
For the Hyper-X/X-43A program, the development of a comprehensive validation test plan played an integral part in the success of the mission. The goal was to demonstrate hypersonic propulsion technologies by flight testing an airframe-integrated scramjet engine. Preparation for flight involved both verification and validation testing. By definition, verification is the process of assuring that the product meets design requirements; whereas validation is the process of assuring that the design meets mission requirements for the intended environment. This report presents an overview of the program with emphasis on the validation efforts. It includes topics such as hardware-in-the-loop, failure modes and effects, aircraft-in-the-loop, plugs-out, power characterization, antenna pattern, integration, combined systems, captive carry, and flight testing. Where applicable, test results are also discussed. The report provides a brief description of the flight systems onboard the X-43A research vehicle and an introduction to the ground support equipment required to execute the validation plan. The intent is to provide validation concepts that are applicable to current, follow-on, and next generation vehicles that share the hybrid spacecraft and aircraft characteristics of the Hyper-X vehicle.
Successful Hazwaste Program Halts Annual State Inspection
2011-05-01
ES) Red River Army Depot ,100 James Carlow Drive, Texarkana ,TX,75507-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...MAIN DRIVE. TEXARKANA . lX 75507 ~5000103 334~3333 Accumulation Start Date ** Cert1fied F1ll Date. WC$0oocr- IIFiol ----= CUSTOMIZE YOUR OWN...MARKING/LABELING TO COMPLY BE AMERICA’S BEST Con tamer: *RRA0023678* RRAD023678 Hazardous Waste RED RIVER ARMY DEPOT 100 MAIN DRIVE TEXARKANA , 1X
Steadman, Patrick E; Crudden, Johanna; Boutis, Kathy
2015-09-01
Prospective research studies often advance clinical practice in the emergency department (ED), but they can be costly and difficult to perform. In this report, we describe the implementation of a volunteer university student research assistant program that provides students exposure to medicine and clinical research while simultaneously increasing the capacity of an ED's research program. This type of program provides 15 hours per day of research assistant coverage for patient screening and enrolment for minimal risk research studies, and screening for higher risk studies. The latter is true without the added burden or costs of co-administering university course credit or pay for service, which are common features of most of these types of programs currently in operation. We have shown that our volunteer-based program is effective for an ED's research success as well as for its student participants. For other EDs interested in adopting similar programs, we provide the details on how to get such a program started and highlight the structure and non-monetary incentives that facilitate a program's ongoing success.
X-33 Integrated Test Facility Extended Range Simulation
NASA Technical Reports Server (NTRS)
Sharma, Ashley
1998-01-01
In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
45 CFR 96.17 - Annual reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... services (42 U.S.C. 300x et. seq.), the prevention and treatment of substance abuse block grant (42 U.S.C... program activity reports, a state must make public and submit to the Department each annual report... reports for the low-income home energy assistance program. [58 FR 60128, Nov. 15, 1993] ...
45 CFR 96.17 - Annual reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... services (42 U.S.C. 300x et. seq.), the prevention and treatment of substance abuse block grant (42 U.S.C... program activity reports, a state must make public and submit to the Department each annual report... reports for the low-income home energy assistance program. [58 FR 60128, Nov. 15, 1993] ...
45 CFR 96.17 - Annual reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... services (42 U.S.C. 300x et. seq.), the prevention and treatment of substance abuse block grant (42 U.S.C... program activity reports, a state must make public and submit to the Department each annual report... reports for the low-income home energy assistance program. [58 FR 60128, Nov. 15, 1993] ...
45 CFR 96.17 - Annual reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... services (42 U.S.C. 300x et. seq.), the prevention and treatment of substance abuse block grant (42 U.S.C... program activity reports, a state must make public and submit to the Department each annual report... reports for the low-income home energy assistance program. [58 FR 60128, Nov. 15, 1993] ...
NASA Astrophysics Data System (ADS)
Stepanov, Sergey
2013-03-01
X-Ray Server (x-server.gmca.aps.anl.gov) is a WWW-based computational server for modeling of X-ray diffraction, reflection and scattering data. The modeling software operates directly on the server and can be accessed remotely either from web browsers or from user software. In the later case the server can be deployed as a software library or a data fitting engine. As the server recently surpassed the milestones of 15 years online and 1.5 million calculations, it accumulated a number of technical solutions that are discussed in this paper. The developed approaches to detecting physical model limits and user calculations failures, solutions to spam and firewall problems, ways to involve the community in replenishing databases and methods to teach users automated access to the server programs may be helpful for X-ray researchers interested in using the server or sharing their own software online.
Loza-Herrero, María A; Rivas-Tumanyan, Sona; Morou-Bermudez, Evangelia
2015-11-01
The success rate of implant-retained prostheses in a postdoctoral prosthodontics program was unknown and could not be related to any set of potential clinical issues or patient characteristics. The purpose of this study was to determine the success rate of implant-retained prostheses placed by prosthodontic residents between 1997 and 2012 and to evaluate the associations between patient classifications and specific restoration characteristics as related to prosthesis success or failure. A total of 272 prostheses in 119 patients were clinically evaluated. Success was defined as the absence of prosthetic complications or any implant-related complication that affected prosthesis survival. Logistic regression was used to evaluate associations between prosthesis success/failure and a wide array of study variables, adjusting for patient age, sex, and prosthesis longevity. The overall success rate was 71%, with a mean prosthesis age of 4.5 years (range: 4 months to 16.8 years). Implant single crowns were the most successful prosthesis type (81% success). The most common complications observed were porcelain fractures in fixed dental prostheses (15%) and lack of stability (31%) and retention (29%) in removable dental prostheses. Having a removable prosthesis (versus natural dentition) in the opposing occlusion significantly decreased the odds of success (OR=0.26, 95% CI: 0.11-0.64). Definitively cemented fixed prostheses were more successful than those cemented with an interim cement (OR=4.56, 95% CI: 1.37-15.22). The overall success rate of the implant-retained prostheses placed in the program was low compared with previously published studies. This study revealed the need for an efficient, comprehensive recall system for patients receiving implant-retained prostheses, either fixed or removable. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
2009-10-28
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, a post-launch news conference is held in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. Sharing a lighter moment are, from left, Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Jeff Hanley, Constellation Program manager; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
SpaceX CRS-13 Post Launch News Conference
2017-12-15
In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-13, a commercial resupply services mission to the International Space Station. Participants included Stephanie Martin of NASA Communications, Ven Feng, NASA manager of the Transportation Integration Office with the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-13 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:36 a.m. EST.
A data acquisition and control program for axial-torsional fatigue testing
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
1989-01-01
A computer program was developed for data acquisition and control of axial-torsional fatigue experiments. The multitasked, interrupt-driven program was written in Pascal and Assembly. This program is capable of dual-channel control and six-channel data acquisition. It can be utilized to perform inphase and out-of-phase axial-torsional isothermal fatigue or deformation experiments. The program was successfully used to conduct inphase axial-torsional fatigue experiments on 304 stainless steel at room temperature and on Hastelloy X at 800 C. The details of the software and some of the results generated to date are presented.
Hybrid vehicle system studies and optimized hydrogen engine design
NASA Astrophysics Data System (ADS)
Smith, J. R.; Aceves, S.
1995-04-01
We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO(x) emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO(x). Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today's gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.
Techniques for hot structures testing
NASA Technical Reports Server (NTRS)
Deangelis, V. Michael; Fields, Roger A.
1990-01-01
Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.
Training Young Researchers: Successful Strategies from University of Chicago College Economics
ERIC Educational Resources Information Center
Lima, Victor; Tsiang, Grace
2017-01-01
The authors summarize successes in training researchers in the University of Chicago economics program over the last 15 years. Students learn to investigate quantitative relations using models in which purposeful but constrained economic agents interact. They are shown how a productive research culture requires careful work, collegiality, and…
Exemplary Science in Grades 9-12: Standards-Based Success Stories
ERIC Educational Resources Information Center
Yager, Robert E., Ed
2005-01-01
In this collection of 15 essays, educators describe successful programs they've developed to fulfill the National Science Education Standards' vision for the reform of teaching, assessment, professional development, and content at the high school level. All the visions correspond with the Less Emphasis and More Emphasis conditions that conclude…
Impact of emerging technologies on future combat aircraft agility
NASA Technical Reports Server (NTRS)
Nguyen, Luat T.; Gilert, William P.
1990-01-01
The foreseeable character of future within-visual-range air combat entails a degree of agility which calls for the integration of high-alpha aerodynamics, thrust vectoring, intimate pilot/vehicle interfaces, and advanced weapons/avionics suites, in prospective configurations. The primary technology-development programs currently contributing to these goals are presently discussed; they encompass the F-15 Short Takeoff and Landing/Maneuver Technology Demonstrator Program, the Enhanced Fighter Maneuverability Program, the High Angle-of-Attack Technology Program, and the X-29 Technology Demonstrator Program.
Neurosteroids Reverse Tonic Inhibition Deficits in Fragile X Syndrome
2016-08-01
AWARD NUMBER: W81XWH-15-1-0190 TITLE: Neurosteroids Reverse Tonic Inhibition Deficits in Fragile X Syndrome PRINCIPAL INVESTIGATOR: Dr. Paul...AND SUBTITLE 5a. CONTRACT NUMBER Neurosteroids Reverse Tonic Inhibition Deficits in Fragile X Syndrome 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Appendices……………………………………………………………11 2 1. Introduction Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. In addition
X-24B launch - air drop from mothership
NASA Technical Reports Server (NTRS)
1974-01-01
A fleet of lifting bodies flown at the NASA Flight Research Center, Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver (in the atmosphere) and safely land a wingless vehicle. These lifting bodies were basically designed so they could fly back to Earth from space and be landed like an aircraft at a pre-determined site. (In 1976 NASA renamed the FRC as the NASA Dryden Flight Research Center in honor of Hugh L. Dryden.) In 1962, FRC Director Paul Bikle approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1. It featured a plywood shell, built by Gus Briegleb (a sailplane builder from El Mirage, California) placed over a tubular steel frame crafted at the FRC. Construction was completed in 1963. The success of the Flight Research Center M2-F1 program led to NASA development and construction of two heavyweight lifting bodies based on studies at the NASA Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, Hawthorne, California. The Air Force also became interested in lifting body research and had a third design concept built, the X-24A, built by the Martin Company, Denver, Colorado. It was later modified into the X-24B and both configurations were flown in the joint NASA-Air Force lifting body program located at Dryden. The X-24B design evolved from a family of potential reentry shapes, each with higher lift-to-drag ratios, proposed by the Air Force Flight Dynamics Laboratory. To reduce the costs of constructing a research vehicle, the Air Force returned the X-24A to Martin for modifications that converted its bulbous shape into one resembling a 'flying flatiron' -- rounded top, flat bottom, and a double-delta planform that ended in a pointed nose. First to fly the X-24B was John A. Manke, a glide flight on August 1, 1973. He was also the pilot on the first powered mission November 15, 1973. Among the final flights with the X-24B were two precise landings on the main concrete runway at Edwards, California, which showed that accurate unpowered reentry vehicle landings were operationally feasible. These missions were flown by Manke and Air Force Maj. Mike Love and represented the final milestone in a program that helped write the flight plan for the Space Shuttle program of today. After launch from the B-52 'mothership' at an altitude of about 45,000 feet, the XLR-11 rocket engine was ignited and the vehicle accelerated to speeds of more than 1,100 miles per hour and to altitudes of 60,000 to 70,000 feet. After the rocket engine was shut down, the pilots began steep glides towards the Edwards runway. As the pilots entered the final leg of their approach, they increased their rate of descent to build up speed and used this energy to perform a 'flare out' maneuver, which slowed their landing speed to about 200 miles per hour--the same basic approach pattern and landing speed of the Space Shuttles today. The final powered flight with the X-24B aircraft was on September 23, l975. The pilot was Bill Dana, and it was also the last rocket-powered flight flown at Dryden. It was also Dana who flew the last X-15 mission about seven years earlier. Top speed reached with the X-24B was 1,164 miles per hour (Mach 1.76) by Love on October 25, 1974. The highest altitude reached was 74,100 feet, by Manke on May 22, 1975. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio. This roughly 20-second video clip shows the X-24B dropping from the B-52 mothership, after which the rocket engine ignites.
Professional Student Exchange Program (PSEP) Administrative Manual. Revised
ERIC Educational Resources Information Center
Western Interstate Commission for Higher Education, 2012
2012-01-01
WICHE (the Western Interstate Commission for Higher Education) is a regional, nonprofit organization. WICHE and its 15 member states work to improve access to higher education and ensure student success. Its student exchange programs, regional initiatives, and its research and policy work allow it to assist constituents throughout the West and…
Constraints on Biogenic Emplacement of Crystalline Calcium Carbonate and Dolomite
NASA Astrophysics Data System (ADS)
Colas, B.; Clark, S. M.; Jacob, D. E.
2015-12-01
Amorphous calcium carbonate (ACC) is a biogenic precursor of calcium carbonates forming shells and skeletons of marine organisms, which are key components of the whole marine environment. Understanding carbonate formation is an essential prerequisite to quantify the effect climate change and pollution have on marine population. Water is a critical component of the structure of ACC and the key component controlling the stability of the amorphous state. Addition of small amounts of magnesium (1-5% of the calcium content) is known to promote the stability of ACC presumably through stabilization of the hydrogen bonding network. Understanding the hydrogen bonding network in ACC is fundamental to understand the stability of ACC. Our approach is to use Monte-Carlo simulations constrained by X-ray and neutron scattering data to determine hydrogen bonding networks in ACC as a function of magnesium doping. We have already successfully developed a synthesis protocol to make ACC, and have collected X-ray data, which is suitable for determining Ca, Mg and O correlations, and have collected neutron data, which gives information on the hydrogen/deuterium (as the interaction of X-rays with hydrogen is too low for us to be able to constrain hydrogen atom positions with only X-rays). The X-ray and neutron data are used to constrain reverse Monte-Carlo modelling of the ACC structure using the Empirical Potential Structure Refinement program, in order to yield a complete structural model for ACC including water molecule positions. We will present details of our sample synthesis and characterization methods, X-ray and neutron scattering data, and reverse Monte-Carlo simulations results, together with a discussion of the role of hydrogen bonding in ACC stability.
Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Hack
In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projectedmore » lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.« less
X-Ray Astronomy Research at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Austin, Robert A.
1999-01-01
For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.
Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin
2015-01-01
The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.
The use of x-ray radiography for measuring mass distributions of Rocket Injectors
2013-06-01
successfully applied to diesel injectors , aerated liquid jets and impinging-jet sprays [7-10]. X-ray radiography can be performed using either a...Rocket Injectors 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) S.A. Schumaker, A.L. Kastengren, M.D.A...measurements for injector design. Unfortunately, the mass flow rates typically encountered in rocket engines create sprays with high optical densities
Portfolio Acquisition - How the DoD Can Leverage the Commercial Product Line Model
2015-04-30
canceled (Harrison, 2011). A major contributing factor common to these failures is that the programs tried to do too much at once: they used a big - bang ...requirements in a single, big - bang approach. MDAPs take 10 to 15 years from Milestone A to initial operational capability, with many of the largest...2013). The block upgrade model for B-52, F-15, and F-16 proved successful over decades, yet with its big - bang structure the F-35 program is
NASA Astrophysics Data System (ADS)
Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian
2018-05-01
A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.
The Use of GOCE/GRACE Information in the Latest NGS xGeoid15 Model for the USA
NASA Astrophysics Data System (ADS)
Holmes, S. A.; Li, X.; Youngman, M.
2015-12-01
The U.S. National Geodetic Survey [NGS], through its Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, is flying airborne gravity surveys over the USA and its territories. By 2022, NGS intends that all orthometric heights in the USA will be determined in the field using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Towards this end, all available airborne data has been incorporated into a new NGS experimental geoid model - xGEOID15. The xGEOID15 model is the second in a series of annual experimental geoid models that incorporates NGS GRAV-D airborne data. This series provides a useful benchmark for assessing and improving current techniques, to ultimately compute a geoid model that can support a national physical height system by 2022. Here, we focus on the combination of the latest GOCE/GRACE models with the terrestrial gravimetry (land/airborne) that was applied for xGeoid15. Comparisons against existing combination gravitational solutions, such as EGM2008 and EIGEN6C4, as well as recent geoid models, such as xGeoid14 and CGG2013, are interesting for what they reveal about the respective use of the GOCE/GRACE satgrav information.
VizieR Online Data Catalog: JK photometry on 5 Galactic globular clusters (Valenti+, 2004)
NASA Astrophysics Data System (ADS)
Valenti, E.; Ferraro, F. R.; Perina, S.; Origlia, L.
2004-02-01
The IR catalogs of the observed clusters are based on ground-based observations using the near-IR camera ARNICA@TNG equipped with a NICMOS-3 256x256 array detector. By using a magnification of 0.35"/px a total FoV of 1.5'x1.5' has been covered. The instrumental magnitudes have been calibrated into the Ferraro et al. (2000AJ....119.1282F) system. The catalogs for all the program clusters have been astrometrically corrected by using 2MASS catalogs, with an accuracy of <0.2arcsec. (5 data files).
Advances in photographic X-ray imaging for solar astronomy
NASA Technical Reports Server (NTRS)
Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.
1989-01-01
The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.
Voltage and Current Measurements in HIFX Diodes
1977-08-01
Laboratories High- Intensity Flash X Ray Pacility. Sensitivities of these monitors have been measured to an accuracy of 10 percent or better by improved...importance of voltage (V) and current (1) monitors as a diagnostic tool for pulsed-electron beam machines such as High-Intensity Flash X Ray (HIFX) is well...15.4 2.7 109515. .2 7. - 3. 172.6 6.0 2.30 36. 4T. H. Martin, K. R. Prestwicht and D. L. Johnson, Summary of th e Hermes Flash X -Ray Program, Sandia
X-33 Environmental Impact Statement: A Fast Track Approach
NASA Technical Reports Server (NTRS)
McCaleb, Rebecca C.; Holland, Donna L.
1998-01-01
NASA is required by the National Environmental Policy Act (NEPA) to prepare an appropriate level environmental analysis for its major projects. Development of the X-33 Technology Demonstrator and its associated flight test program required an environmental impact statement (EIS) under the NEPA. The EIS process is consists of four parts: the "Notice of Intent" to prepare an EIS and scoping; the draft EIS which is distributed for review and comment; the final ETS; and the "Record of Decision." Completion of this process normally takes from 2 - 3 years, depending on the complexity of the proposed action. Many of the agency's newest fast track, technology demonstration programs require NEPA documentation, but cannot sustain the lengthy time requirement between program concept development to implementation. Marshall Space Flight Center, in cooperation with Kennedy Space Center, accomplished the NEPA process for the X-33 Program in 13 months from Notice of Intent to Record of Decision. In addition, the environmental team implemented an extensive public involvement process, conducting a total of 23 public meetings for scoping and draft EIS comment along with numerous informal meetings with public officials, civic organizations, and Native American Indians. This paper will discuss the fast track approach used to successfully accomplish the NEPA process for X-33 on time.
Interdisciplinary Project-Based Learning Leads to Success
ERIC Educational Resources Information Center
Anderson, James
2010-01-01
Project-based learning and academic integration are integral parts of the automotive technology program at Greenville High School. This Ohio comprehensive school has used both of these strategies for the past 15 years and their success is reflected in nine state SkillsUSA gold medals and one bronze, in addition to eight gold medals earned at the…
2017-12-08
Matthew Mullin and Bobby Meazell, Orbital ATK/Columbia Scientific Balloon Facility technicians, conduct compatibility testing on NASA Langley Research Center’s Radiation Dosimetry Experiment payload Wednesday, Sept. 9, at Fort Sumner, N.M. The successful compatibility test was a key milestone in ensuring the flight readiness of RaD-X, which is scheduled to launch on an 11-million-cubic-foot NASA scientific balloon no earlier than Friday, Sept. 11, from the agency’s balloon launching facility in Fort Sumner. RaD-X will measure cosmic ray energy at two separate altitude regions in the stratosphere—above 110,000 feet and between 69,000 to 88,500 feet. The data is key to confirming Langley’s Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which is a physics-based model that determines solar radiation and galactic cosmic ray exposure globally in real-time. The NAIRAS modeling tool will be used to help enhance aircraft safety as well as safety procedures for the International Space Station. In addition to the primary payload, 100 small student experiments will fly on the RaD-X mission as part of the Cubes in Space program. The program provides 11- to 18-year-old middle and high school students a no-cost opportunity to design and compete to launch an experiment into space or into the near-space environment. The cubes measure just 4 centimeters by 4 centimeters. NASA’s scientific balloons offer low-cost, near-space access for scientific payloads weighing up to 8,000 pounds for conducting scientific investigations in fields such as astrophysics, heliophysics and atmospheric research. NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon program with 10 to 15 flights each year from launch sites worldwide. Orbital ATK provides program management, mission planning, engineering services and field operations for NASA’s scientific balloon program. The program is executed from the Columbia Scientific Balloon Facility in Palestine, Texas. The Columbia team has launched more than 1,700 scientific balloons in over 35 years of operation. Anyone may track the progress of the Fort Sumner flights, which includes a map showing the balloon’s real-time location, at: towerfts.csbf.nasa.gov/ For more information on the balloon program, see: www.nasa.gov/scientificballoons NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1986-01-01
The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requested by TSA concerning Security Threat Assessments. (ix) A statement acknowledging and ensuring that each employee and agent will successfully complete a Security Threat Assessment under § 1548.15 before... training and Security Threat Assessments by relevant personnel. (4) Duration of security program. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Dongge; Han Xue; Chu Wei
Co-B flowers with mesoporous structure were first prepared via reduction of cobalt acetate by potassium borohydride in the presence of complexing agent ethylenediamine. The as-prepared Co-B flowers were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, N{sub 2} adsorption-desorption, and magnetic performance test. The Co-B flowers exhibited enhanced coercivity, and weakened saturation magnetization and remanet magnetization as compared with the regular Co-B. During the hydrolysis of KBH{sub 4}, the Co-B flowers exhibited higher catalytic activity than the regular Co-B. It is attributed to themore » larger specific surface area and mesoporous channels. During the successive reactions, the conversion of KBH{sub 4} over Co-B flowers was about 97%. The average H{sub 2} generation rate of Co-B flowers was 4620 mL/min/g-catalyst in 1.5 wt% NaOH + 15 wt% KBH{sub 4} solution, which may give a successive H{sub 2} supply for a 748 W polymer electrolyte membrane fuel cell (PEMFC) at 100% H{sub 2} utilization.« less
Parachute Testing for the NASA X-38 Crew Return Vehicle
NASA Technical Reports Server (NTRS)
Stein, Jenny M.
2005-01-01
NASA's X-38 program was an in-house technology demonstration program to develop a Crew Return Vehicle (CRV) for the International Space Station capable of returning seven crewmembers to Earth when the Space Shuttle was not present at the station. The program, managed out of NASA's Johnson Space Center, was started in 1995 and was cancelled in 2003. Eight flights with a prototype atmospheric vehicle were successfully flown at Edwards Air Force Base, demonstrating the feasibility of a parachute landing system for spacecraft. The intensive testing conducted by the program included testing of large ram-air parafoils. The flight test techniques, instrumentation, and simulation models developed during the parachute test program culminated in the successful demonstration of a guided parafoil system to land a 25,000 Ib spacecraft. The test program utilized parafoils of sizes ranging from 750 to 7500 p. The guidance, navigation, and control system (GN&C) consisted of winches, laser or radar altimeter, global positioning system (GPS), magnetic compass, barometric altimeter, flight computer, and modems for uplink commands and downlink data. The winches were used to steer the parafoil and to perform the dynamic flare maneuver for a soft landing. The laser or radar altimeter was used to initiate the flare. In the event of a GPS failure, the software navigated by dead reckoning using the compass and barometric altimeter data. The GN&C test beds included platforms dropped from cargo aircraft, atmospheric vehicles released from a 8-52, and a Buckeye powered parachute. This paper will describe the test program and significant results.
Two X Flares in Quick Succession
2014-06-16
A powerful active region just rotating into view produced two X-class flares (the strongest category) about an hour apart on June 9, 2014. An X-2.3 flare peaked at 11:52 UT followed by an X-1.5 flare at 12:52 UT. This image shows the first of the two flares. The same active region produced another X class flare and a medium (M-class) flare the following day. Credit: NASA/Goddard/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.
2009-10-28
CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, members of the news media attend a post-launch news conference in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. Onstage, from left, are moderator George Diller, NASA Public Affairs officer; Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Jeff Hanley, Constellation Program manager; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Hendershot, K. C.
1977-01-01
A 2.25% scale model of the space shuttle external tank and solid rocket boosters was tested in the NASA/Ames Unitary 11 x 11 foot transonic and 9 x 7 foot supersonic tunnels to obtain base pressure data with firing solid propellant exhaust plumes. Data system difficulties prevented the acquisition of any useful data in the 9 x 7 tunnel. However, 28 successful rocket test firings were made in the 11 x 11 tunnel, providing base pressure data at Mach numbers of 0.5, 0.9, 1.05, 1.2, and 1.3 and at plume pressure ratios ranging from 11 to 89.
The Rome Laboratory Reliability Engineer’s Toolkit
1993-04-01
34Testability Programs for Electronic Systems and Equipment" DODD 5000.1 "Defense Acquistion " DODI 5000.2 "Defense Acquisition Management Policies and...these paths have an equivalent failure rate of zero so that only the remaining serial elements need to be translated. 5. The requirement process...X6) X A2+B2+XAXB One standby off-line unit with n active on- line units required for success. Off-line spare assumed to have a failure rate of zero
Low-mass X-ray Binaries with RXTE
NASA Technical Reports Server (NTRS)
2004-01-01
Below are the publications which directly and indirectly evolved from this very successful program: 1) 'Search for millisecond periodicities in type I X-ray bursts of the Rapid Burster'; 2) 'High-Frequency QPOs in the 2000 Outburst of the Galactic Microquasar XTE J1550-564'; 3) 'Chandra and RXTE Spectroscopy of Galactic Microquasar XTE 51550-564 in Outburst'; 4) 'GX 339-4: back to life'; 5) 'Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state'.
Wright, Catherine M; Duquesnay, Paula J; Anzman-Frasca, Stephanie; Chomitz, Virginia R; Chui, Kenneth; Economos, Christina D; Langevin, Elizabeth G; Nelson, Miriam E; Sacheck, Jennifer M
2016-10-13
Physical activity (PA) is critical to preventing childhood obesity and contributes to children's overall physical and cognitive health, yet fewer than half of all children achieve the recommended 60 min per day of moderate-to-vigorous physical activity (MVPA). Schools are an ideal setting to meeting PA guidelines, but competing demands and limited resources have impacted PA opportunities. The Fueling Learning through Exercise (FLEX) Study is a randomized controlled trial that will evaluate the impact of two innovative school-based PA programs on children's MVPA, cognitive function, and academic outcomes. Twenty-four public elementary schools from low-income, ethnically diverse communities around Massachusetts were recruited and randomized to receive either 100 Mile Club® (walking/running program) or Just Move™ (classroom-based PA program) intervention, or control. Schoolchildren (grades 3-4, approximately 50 per school) were recruited to participate in evaluation. Primary outcome measures include PA via 7-day accelerometry (Actigraph GT3X+ and wGT3X-BT), cognitive assessments, and academic achievement via state standardized test scores. Additional measures include height and weight, surveys assessing psycho-social factors related to PA, and dietary intake. School-level surveys assess PA infrastructure and resources and intervention implementation. Data are collected at baseline, mid-point (5-6 months post-baseline), and post-intervention (approximately 1.5 years post-baseline). Demographic data were collected by parents/caregivers at baseline. Mixed-effect models will test the short- and long-term effects of both programs on minutes spent in MVPA, as well as secondary outcomes including cognitive and academic outcomes. The FLEX study will evaluate strategies for increasing children's MVPA through two innovative, low-cost, school-based PA programs as well as their impact on children's cognitive functioning and academic success. Demonstration of a relationship between school-based MVPA with neutral or improved, rather than diminished, academic outcomes in a naturalistic environment has the potential to positively influence investment in school PA programs and initiatives. ClinicalTrials.gov Identifier: NCT02810834 . Registered May 11, 2015. (Retrospectively registered).
Pharmacophore-Based Similarity Scoring for DOCK
2015-01-01
Pharmacophore modeling incorporates geometric and chemical features of known inhibitors and/or targeted binding sites to rationally identify and design new drug leads. In this study, we have encoded a three-dimensional pharmacophore matching similarity (FMS) scoring function into the structure-based design program DOCK. Validation and characterization of the method are presented through pose reproduction, crossdocking, and enrichment studies. When used alone, FMS scoring dramatically improves pose reproduction success to 93.5% (∼20% increase) and reduces sampling failures to 3.7% (∼6% drop) compared to the standard energy score (SGE) across 1043 protein–ligand complexes. The combined FMS+SGE function further improves success to 98.3%. Crossdocking experiments using FMS and FMS+SGE scoring, for six diverse protein families, similarly showed improvements in success, provided proper pharmacophore references are employed. For enrichment, incorporating pharmacophores during sampling and scoring, in most cases, also yield improved outcomes when docking and rank-ordering libraries of known actives and decoys to 15 systems. Retrospective analyses of virtual screenings to three clinical drug targets (EGFR, IGF-1R, and HIVgp41) using X-ray structures of known inhibitors as pharmacophore references are also reported, including a customized FMS scoring protocol to bias on selected regions in the reference. Overall, the results and fundamental insights gained from this study should benefit the docking community in general, particularly researchers using the new FMS method to guide computational drug discovery with DOCK. PMID:25229837
[Tuberculosis in Havana City, 1995-1999].
Sevy Court, José I; Peláez Sánchez, Otto; Arteaga Yero, Ana L; Armas Pérez, Luisa; Borroto Gutiérrez, Susana; González Ochoa, C Edilberto
2003-06-01
Tuberculosis is a worldwide health problem getting a prioritized attention by the Cuban National Health System. To describe the main indicators of the Cuban Tuberculosis Control Program. Based on surveillance data from the Provincial Center of Hygiene and Epidemiology, the health care network and strategies of the tuberculosis control program were reviewed; incidence rates, case finding indicators, diagnosis and case management were described. Eight subjects with respiratory symptoms were found per 1,000 attending general medical care services. The incidence rates of all tuberculosis types declined from 16.4 in 1995 to 12.0 x 10(5) people in 1999. Pulmonary tuberculosis incidence rate was reduced from 15.1 in1995 to 10.4 x 10(5) in 1999, whereas extrapulmonary tuberculosis had an increment from 1.3 to 1.6 x 10(5) in the same period. Of all new cases, 40-50 % were diagnosed at multispecialty clinics, 67.6% were diagnosed by positive smears, 15.2 % by positive cultures, 13.8 % by clinical and X-rays evidences only; and 0.9 % and 1.5 % were respectively diagnosed by biopsy and necropsy. There was an increase in the incidence rate in the age group 15-64 years in 1996 and 1997 but it declined again in 1998 and 1999. The age group 64 years and over showed a rate reduction from 1995 to 1999. In general, incidence rates diminished in the overall period. The average delay between onset of symptoms and diagnosis improved from 42 days in 1995 to 28.6 days in 1999. There seems to be a halt in reporting trends of new cases in 1996. Tuberculosis indicators reveal satisfactory changes in the study period.
NASA Astrophysics Data System (ADS)
Liu, Huatao; Zhao, Yanming; Zhang, Hui; Lian, Xin; Dong, Youzhong; Kuang, Quan
2017-12-01
A series of Fe-doped Na2Mn3-xFex(P2O7)2 (x = 0.0, 0.5, 1.0, 1.5 and 2.0) compounds have been successfully prepared by using sol-gel method. Rietveld refinement results indicate that single phase Na2Mn3-xFex(P2O7)2 with triclinic structure can be obtained within 0 ≤ x ≤ 2 although no Na2Fe3(P2O7)2 existing under our experimental conditions, and the cell parameters (including a, b, c and V) are decreasing with the increasing of x. Our results reveal that Na2Mn3(P2O7)2 exhibits an electrochemical activity in the voltage range of 1.5 V-4.5 V vs. Na+/Na when using as the cathode material for SIBs although it gives a limited rate capability and poor capacity retention. However, the electrochemical performance of Fe-doped Na2Mn3-xFex(P2O7)2 (0 ≤ x ≤ 2) can be improved significantly where cycle performance and rate capability can be improved significantly than that of the pristine one. Sodium ion diffusion coefficient can be increased by about two orders of magnitude with the Fe-doping content higher than x = 0.5.
1991-01-30
program of 15 January is limited to disar- mament. Work of no less importance is being carried out in other areas. Significant progress has been made in...Views Progress [PRAVDA 15 Jan] 18 ’Proper Perspective’Seen [B. Pvadvshev; PRAVDA 12 Jan] 20 Plan Said " Working Successfully’ [V. Chernyshev...Troop Withdrawals [Berlin ADN 15 Jan] 38 Last Air Force Regiment Leaves Czechoslovakia [A. Shapovalov; TASS 21 Jan] 38 First 93 Tanks Shipped
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Norman, Ryan B.; Gronoff, Guillaume P.; Tobiska, W. Kent; Wilkins, Rick
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.
Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER
NASA Astrophysics Data System (ADS)
Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele
2004-02-01
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.
X-43A Final Flight Observations
NASA Technical Reports Server (NTRS)
Grindle, Laurie
2011-01-01
The presentation will provide an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The third and final flight, which occurred on November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. As such, the final flight presented first time technical challenges in addition to final flight project closeout concerns. The goals and objectives for the third flight as well as those for the project will be presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter wil also be presented. Mission differences, vehicle modifications and lessons learned from the first and second flights as they applied to the third flight will also be discussed. Although X-43A flight 3 was always planned to be the final flight of the X-43A project, the X-43 program had two other vehicles and corresponding flight phases in X-43C and X-43B. Those other projects never manifested under the X-43 banner and X-43A flight 3 also became the final flight of X-43 program.
Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.
Zhang, F M; Liu, B S; Zhang, Y; Guo, Y H; Wan, Z Y; Subhan, Fazle
2012-09-30
A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700-850°C. The successive nine desulfurization-regeneration cycles at 800°C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn(2)O(3) particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800°C is 13.8 g S/100g sorbents, which is remarkably higher than these of 40 wt%LaFeO(3)/SBA-15 (4.8 g S/100g sorbents) and 50 wt%LaFe(2)O(x)/MCM-41 (5.58 g S/100g sorbents) used only at 500-550°C. This suggested that the loading of Mn(2)O(3) active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rozilah, R.; Ibrahim, N.; Mohamed, Z.; Yahya, A. K.; Khan, Nawazish A.; Khan, M. Nasir
2017-09-01
Polycrystalline Pr0.75Na0.25-xKxMnO3 (x = 0, 0.05, 0.10, 0.15 and 0.20) ceramics were prepared using conventional solid-state method and their structural, magnetic and electrical transport properties were investigated. Magnetization versus temperature measurements showed un-substituted sample exhibited paramagnetic behavior with charge-ordered temperature, TCO around 218 K followed by antiferromagnetic behavior at transition temperature, TN ∼ 170 K. K+-substitution initially weakened CO state for x = 0.05-0.10 then successfully suppressed the CO state for x = 0.15-0.20 and inducing ferromagnetic-paramagnetic transition with Curie temperature, TC increased with x. In addition, deviation of the temperature dependence of inverse magnetic susceptibility curves from the Curie-Weiss law suggests the existence of Griffiths phase-like increased with x. Magnetization versus magnetic field curves show existence of hysteresis loops at T < 260 K (x = 0) and T < 180 K (x = 0.05-0.10), which related to metamagnetic transition occurring at critical field. Electrical resistivity measurements showed an insulating behavior for x = 0 sample while for x = 0.05-0.20 samples showed metal-insulator transition and transition temperature, TMI increased with x. The increased in TC and TMI are attributed to the increase in tolerance factor which indicates reduction in MnO6 octahedral distortion consequently enhanced double exchange interaction.
Advanced Space Transportation Program (ASTP)
2003-07-01
NASA's X-37 Approach and Landing Test Vehicle is installed is a structural facility at Boeing's Huntington Beach, California plant. Tests, completed in July, were conducted to verify the structural integrity of the vehicle in preparation for atmospheric flight tests. Atmospheric flight tests of the Approach and Landing Test Vehicle are scheduled for 2004 and flight tests of the Orbital Vehicle are scheduled for 2006. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. It's experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000.00 per pound. The X-37 program is managed by the Marshall Space Flight Center and built by the Boeing Company.
Should the Air Force Establish a Formalized Mentoring Program
1990-05-01
typically senior members of an organization who take an active interest in the development and career success of a Junior member, called a protege...34fast track" recruits on career success matters. Examples are the Jewell Company, Bell Labs, and some departments of the U.S. Government. Senior...were selected because of their demonstrated career success . The AWC and ACSC students come from the top 5% and 15% of the Air Force respectively, aind
NASA Technical Reports Server (NTRS)
Schaaf, Michaela M. (Editor); Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.; Avery Shelly; Calamaio, Caprice; Carstenson, Larry; Dugan, James; Farr, Lynne; Farritor, Shane
2003-01-01
This 15-year evaluation serves as a summary document highlighting the numerous and complete successes of the Nebraska Space Grant Program. Innovation has been highlighted through significant new endeavors during this 5-year period, such as placement of students and faculty at NASA Centers and the expansion of NSGC Native American Outreach Programs. While the last national program evaluation resulted in Nebraska s ranking as the top Capability Enhancement Consortium, and 5th best overall, Nebraska felt there was room for significant growth and development. This has been validated through the recent competitive attainment of Designated Grant status and has allowed for the exploration of new initiatives, as well as the expansion of already successful programs. A comprehensive strategic planning effort has involved all Nebraska representative entities and has guided Nebraska Space Grant through the evaluation period, providing a basis for continual advancement. Nebraska rigorously employs evaluation techniques to ensure that stated outcomes and metrics are achieved and that weaknesses are identified and corrected. With this coordinated approach, Nebraska expects that the next 5 years will yield new opportunities for significant achievement. Nebraska Space Grant will embrace new national endeavors, including the integration of Pender Public Schools -Nebraska s NASA Explorer School, geospatial initiatives, and the National Student Satellite Program.
Faraday Rotation Studies of Indium Antimonide and CADMIUM(1-X) Manganese(x) Telluride
NASA Astrophysics Data System (ADS)
Jimenez Gonzalez, Hector J.
Faraday rotation has been studied in two material systems: narrow-gap InSb and wide-gap Cd_ {1-x}Mn_{x}Te. The measurements were done in the infrared region using high magnetic fields up to 150 kG. The Faraday rotation of n-type InSb has been measured for wavelengths between 8.0 and 13.0 μm at 9 K, using magnetic fields up to 150 kG. Measurements were made on samples with nominal carrier concentrations of 1 times 10^{14 }, 6 times 10 ^{14}, 1 times 10^{15}, and 5 times 10^{15} cm^{-3}. The experimental results have been successfully analyzed in terms of intraband and interband transitions at the Gamma point in the Brillouin zone, using a quantum-mechanical treatment. In this approach, there are three contributions to the Faraday rotation: (a) interband, (b) plasma, and (c) spin contributions. The interband contribution is dominant in the low concentration samples where the plasma and spin contributions, which are due to the free carriers, are small. At high carrier concentrations the spin and plasma contributions are dominant. In the low-magnetic -field regime the interband and plasma contributions are linearly proportional to the magnetic field and become small. This makes the spin contribution the leading contribution to the Faraday rotation at low magnetic fields. The 4 -band k cdot p Pidgeon and Brown model was used to calculate the energy levels and the matrix elements for these transitions. Quantum oscillatory effects were observed at low magnetic field. Cyclotron resonance absorption was observed in all samples for wavelengths _sp{~}{>}16.0 mum. The Faraday rotation of Cd_{1 -x}Mn_{x}Te has been measured for x = 0 to 0.27 at 300 and 77 K for photon energies between 0.1 and 1.5 eV, corresponding to wavelengths of 12.0 and 0.8 mum, respectively. We have developed a multioscillator model for the Faraday rotation using an analytical expression for the refractive index that includes contributions from interband transitions at the Gamma, L, and X points of the Brillouin zone as well as the lattice contribution from optical phonons. The multioscillator model explains the measured behavior of the Verdet constant as a function of photon energy for all the above values of x at both temperatures. This model has also been applied successfully to Faraday rotation data for Cd_ {1-x}Mn_{x}Te and Zn_{1-x}Mn _{x}Te from previous studies. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets
NASA Astrophysics Data System (ADS)
Van Thanh, Dang; Van Thien, Nguyen; Thang, Bui Hung; Van Chuc, Nguyen; Hong, Nguyen Manh; Trang, Bui Thi; Lam, Tran Dai; Huyen, Dang Thi Thu; Hong, Phan Ngoc; Minh, Phan Ngoc
2016-05-01
In this study, we report a highly efficient, convenient, and cost-effective technique for producing graphite nanoplatelets (GNPs) from plasma-expanded graphite oxides (PEGOs) obtained directly from low-cost, recycled graphite electrodes of used batteries, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy confirmed the successful preparation of GNPs. Scanning electron microscopy revealed that the GNPs have lateral width from several hundreds of nanometers to 1.5 μm with an approximate thickness of 20-50 nm. These GNPs can serve as a precursor for the preparation of GNPs-based nanocomposite.
ERIC Educational Resources Information Center
Manitoba Dept. of Education, Winnipeg. Div. of Vocational Education.
This curriculum guide provides 15 blocks/credits of instruction for a food services program. The program for grades 10-12 is designed to provide students with the foundation for a successful and safety-conscious career in the field of food services. Each of the three courses--Food Services 103, 203, and 303--consists of four blocks of one credit…
Buller, David B; Andersen, Peter A; Walkosz, Barbara J; Scott, Michael D; Cutter, Gary R; Dignan, Mark B; Kane, Ilima L; Zhang, Xiao
2012-01-01
Industry-based strategies for dissemination of an evidence-based occupational sun protection program, Go Sun Smart (GSS), were tested. Two dissemination strategies were compared in a randomized trial in 2004-2007. The North American ski industry. Ski areas in the United States and Canada (n = 69) and their senior managers (n = 469). Employers received GSS through a basic dissemination strategy (BDS) from the industry's professional association that included conference presentations and free starter kits. Half of the areas also received the enhanced dissemination strategy (EDS), in which project staff met face-to-face with managers and made ongoing contacts to support program use. Observation of program materials in use and managers' reports on communication about sun protection. The effects of two alternative dissemination strategies were compared on program use using PROC MIXED in SAS, adjusted for covariates using one-tailed p values. Ski areas receiving the EDS used more GSS materials (x¯ = 7.36) than those receiving the BDS (x¯ = 5.17; F = 7.82, p < .01). Managers from more areas receiving the EDS reported communicating about sun protection in employee newsletters/flyers (x¯ = .97, p = .04), in guest e-mail messages (x¯ = .75, p = .02), and on ski area Web sites (x¯ = .38, p = .02) than those receiving the BDS (x¯ = .84, .50, .15, respectively). Industry professional associations play an important role in disseminating prevention programs; however, active personal communication may be essential to ensure increased implementation fidelity.
NASA Technical Reports Server (NTRS)
Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takeda, Shin'lchiro; Takahashi, Tadayuki; Saito, Shinya; Glesener, Lindsay; Bultrago-Casas, Juan Camilo; Krucker, Sam;
2016-01-01
We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15 keV using the new technique of HXR focusing optics. The focal plane detector requires less than 100 micrometers position resolution (to take advantage of the angular resolution of the optics) and approximately equals 1 keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4 keV, with moderate cooling (greater than -30 C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15 keV for the silicon detectors) and position resolution of 75 micrometers for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 micrometers and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67 mm x 7.67 mm, corresponding to the field of view of 791'' x 791''. An energy resolution of 1 keV (FWHM) and low-energy threshold of approximately equals 4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun.
NASA Astrophysics Data System (ADS)
Shah, Ishfaq Ahmad; Hassan, Najam ul; Rauf, Abdur; Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Xu, Feng
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), Jiangsu Natural Science Foundation for Distinguished Young Scholars, China (Grant No. BK20140035), China Postdoctoral Science Foundation (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833 and BK20160829), Qing Lan Project of Jiangsu Province, China, Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and NMG-NJUST Joint Scholarship Program for Ishfaq Ahmad Shah (Student ID: 914116020118).
Structural and magnetic properties of Ni-doped SnO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Sonam, E-mail: vdinesh33@rediffmail.com, E-mail: sonam.dwivedi88@gmail.com; Kumar, Ashwini; Dar, Mashkoor A.
2015-06-24
Samples of Ni doped SnO{sub 2} nanocrystalline were successfully prepared by chemical co-precipitation method. X-ray diffraction pattern infers that Sn{sub 1-x}Ni{sub x}O{sub 2} (x=0.00, 0.10, 0.15 and 0.20) samples are in single phase with tetragonal structure (P4{sub 2}/mnm). Raman spectroscopy reveals the observed phonon modes of SnO{sub 2} are at about 387-397, and 559 - 572 cm{sup −1}. For Sn{sub 0.9}Ni{sub 0.1}O{sub 2}, these peaks are shifted to higher wave numbers, while to that for Sn{sub 0.85}Ni{sub 0.15}O{sub 2} and Sn{sub 0.8}Ni{sub 0.2}O{sub 2}, peaks are shifted to the lower wave numbers. The frequency dependent dielectric constant decreases with the increasemore » in the frequency and becomes constant at high frequencies for all compositions of Ni substituted SnO{sub 2}. The magnetization curve confirms the paramagnetic nature of all Ni doped SnO{sub 2} samples.« less
40 CFR 52.170 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Chapter 14—CAIR NO X Ozone Season Trading Program General Provisions Reg. 19.1401 Adoption of Regulations 07/15/07 09/26/07 (72 FR 54556) Reg. 19.1402 State Trading Budget 07/15/07 09/26/07 (72 FR 54556) Reg... Offsets 07/03/06 04/12/07 (72 FR 18394) Reg. 31.305 Zones Targeted for Economic Development 07/03/06 04/12...
Code of Federal Regulations, 2010 CFR
2010-10-01
...), or (4) of this section: (1) Successful completion of a program of formal training in X-ray technology in a school approved by the Joint Review Committee on Education in Radiologic Technology (JRCERT), or have earned a bachelor's or associate degree in radiologic technology from an accredited college or...
Quarter Scale RLV Multi-Lobe LH2 Tank Test Program
NASA Technical Reports Server (NTRS)
Blum, Celia; Puissegur, Dennis; Tidwell, Zeb; Webber, Carol
1998-01-01
Thirty cryogenic pressure cycles have been completed on the Lockheed Martin Michoud Space Systems quarter scale RLV composite multi-lobe liquid hydrogen propellant tank assembly, completing the initial phases of testing and demonstrating technologies key to the success of large scale composite cryogenic tankage for X33, RLV, and other future launch vehicles.
Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian
2017-06-01
Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).
Hermassi, Souhail; Ingebrigtsen, Jørgen; Schwesig, René; Fieseler, Georg; Delank, Karl-Stefan; Chamari, Karim; Shephard, Roy J; Chelly, Mohamed-Souhaiel
2018-01-01
This study examined the effects of a 7-week in-season aerobic and high-intensity interval-training program on performance tests linked to successful handball play (e.g., repeated sprint and jumping ability). Thirty participants (age 17.0±1.2 years, body mass 81.1±3.4 kg, height 1.82±0.07 m) performed a Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1), a squat (SJ) and a Countermovement Jump Test (CMJ), as well as a repeated Sprint Ability Test (RSA). From this, maximal aerobic speed (MAS, reached at the end of the Yo-Yo IR1), jumping ability, best time in a single sprint trial (RSAbest), total time (RSATT) and the performance decrement (RSAdec) during all sprints were calculated. Later, subjects were randomly assigned to a control group (CG; N.=15) performing their normal training schedule (5 weekly sessions of ~90 minutes of handball training) or an experimental group (EG; N.=15). The EG performed two 30 min sessions per week of high-intensity aerobic exercises at 100-130% of MAS in addition to their normal training schedule. A significant improvement in MAS (d=4.1), RSAbest (d=1.9), RSATT (d=1.5) and RSAdec (d=2.3) after the training period was demonstrated. Also, significant interaction effects (time x group) were found for all parameters as the EG significantly improved performances in all tests after training. The greatest interaction effects were observed in MAS (η2=0.811) and CMJ (η2=0.759). No relevant changes in test performances were found in the CG (mean d=-0.02). These results indicate that individually speed-controlled aerobic and interval training is effective for improving specific handball performance.
On Wings: Aerodynamics of Eagles.
ERIC Educational Resources Information Center
Millson, David
2000-01-01
The Aerodynamics Wing Curriculum is a high school program that combines basic physics, aerodynamics, pre-engineering, 3D visualization, computer-assisted drafting, computer-assisted manufacturing, production, reengineering, and success in a 15-hour, 3-week classroom module. (JOW)
Granularity of the Diffuse Background Observed
NASA Technical Reports Server (NTRS)
Gruber, D. E.; MacDonald, D.; Rothschild, R. E.; Boldt, E.; Mushotzky, R. F.; Fabian, A. C.
1995-01-01
First results are reported from a program for measuring the field-to-field fluctuation level of the cosmic diffuse background by using differences between the two background positions of each deep exposure with the High Energy X-ray Timing Experiment (HEXTE) instrument on the Remote X Ray Timing Explorer (RXTE). With 8 million live seconds accumulated to date a fluctuation level on the 15-25 keV band is observed which is consistent with extrapolations from the High Energy Astrophysical Observatory-1 (HEAO-1) measurements. Positive results are expected eventually at higher energies. Models of (active galactic nuclei) AGN origin will eventually be constrained by this program.
Bratt, Marilyn Meyer
2009-09-01
Because of the high costs associated with new graduate nurse turnover, an academic-service partnership developed a nurse residency program that provides a comprehensive support system that spans 15 months. Now in its fourth year, involving more than 50 urban and rural hospitals of varying sizes and geographic locations, the program provides formalized preceptor training, monthly daylong educational sessions, and mentoring by clinical coaches. Key factors contributing to the success of this program are a dedicated, cohesive planning team of individuals who embrace a common agenda, stakeholder buy-in, appropriate allocation of resources, and clear articulation of measures of success, with associated data collection. Successful elements of the monthly educational sessions are the use of interactive teaching methods, inclusion of content tailored to the unique needs of the nurse residents, and storytelling to facilitate learning from practice. Finally, training to advance the skill development of preceptors, coaches, educators, and facilitators has provided organizations with enduring benefits. Copyright 2009, SLACK Incorporated.
Where population planning makes a dent: (Indonesia).
Mcculla, J W
1979-03-15
In 1969, the government of Indonesia threw its full support behind a family planning program for the country. Since that time, more than 1/2 the women on the islands of Java and Bali have accepted family planning. In 1978, more than 1/4 of the married women of child-bearing age on the 2 islands were practicing some form of contraception. The fertility rate has dropped by 15% and planners hope for 50% acceptance by 1982. These successes are more remarkable when the poverty and cultural backwardness of the country is considered. Reasons for the extraordinary success of the program are: 1) total commitment of the government with interdepartmental organization; 2) adequate financing and technical support from outside sources; 3) detailed organization; 4) local involvement; 5) support of the country's major religious groups; and 6) the flexibility of the program's young administrators. Outside financing, especially by USAID, is discussed. Population density in Indonesia is so severe that success of the program is indispensable to future development of the country.
X-Ray Optics at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.;
2015-01-01
NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.
The X-windows interactive navigation data editor
NASA Technical Reports Server (NTRS)
Rinker, G. C.
1992-01-01
A new computer program called the X-Windows Interactive Data Editor (XIDE) was developed and demonstrated as a prototype application for editing radio metric data in the orbit-determination process. The program runs on a variety of workstations and employs pull-down menus and graphical displays, which allow users to easily inspect and edit radio metric data in the orbit data files received from the Deep Space Network (DSN). The XIDE program is based on the Open Software Foundation OSF/Motif Graphical User Interface (GUI) and has proven to be an efficient tool for editing radio metric data in the navigation operations environment. It was adopted by the Magellan Navigation Team as their primary data-editing tool. Because the software was designed from the beginning to be portable, the prototype was successfully moved to new workstation environments. It was also itegrated into the design of the next-generation software tool for DSN multimission navigation interactive launch support.
Spinors: A Mathematica package for doing spinor calculus in General Relativity
NASA Astrophysics Data System (ADS)
Gómez-Lobo, Alfonso García-Parrado; Martín-García, José M.
2012-10-01
The Spinors software is a Mathematica package which implements 2-component spinor calculus as devised by Penrose for General Relativity in dimension 3+1. The Spinors software is part of the xAct system, which is a collection of Mathematica packages to do tensor analysis by computer. In this paper we give a thorough description of Spinors and present practical examples of use. Program summary Program title: Spinors Catalogue identifier: AEMQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 117039 No. of bytes in distributed program, including test data, etc.: 300404 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer running Mathematica 7.0 or higher. Operating system: Any operating system compatible with Mathematica 7.0 or higher. RAM: 94Mb in Mathematica 8.0. Classification: 1.5. External routines: Mathematica packages xCore, xPerm and xTensor which are part of the xAct system. These can be obtained at http://www.xact.es. Nature of problem: Manipulation and simplification of spinor expressions in General Relativity. Solution method: Adaptation of the tensor functionality of the xAct system for the specific situation of spinor calculus in four dimensional Lorentzian geometry. Restrictions: The software only works on 4-dimensional Lorentzian space-times with metric of signature (1, -1, -1, -1). There is no direct support for Dirac spinors. Unusual features: Easy rules to transform tensor expressions into spinor ones and back. Seamless integration of abstract index manipulation of spinor expressions with component computations. Running time: Under one second to handle and canonicalize standard spinorial expressions with a few dozen indices. (These expressions arise naturally in the transformation of a spinor expression into a tensor one or vice versa.)
Schoenfeld, Brad J; Nickerson, Brett S; Wilborn, Colin D; Urbina, Stacie L; Hayward, Sara B; Krieger, James; Aragon, Alan A; Tinsley, Grant M
2018-06-20
Schoenfeld, BJ, Nickerson, BS, Wilborn, CD, Urbina, SL, Hayward, SB, Krieger, J, Aragon, AA, and Tinsley, G. Comparison of multifrequency bioelectrical impedance vs. dual-energy x-ray absorptiometry for assessing body composition changes after participation in a 10-week resistance training program. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to assess the ability of multifrequency bioelectrical impedance analysis (MF-BIA) to determine alterations in total and segmental body composition across a 10-week resistance training (RT) program in comparison with the criterion reference dual-energy X-ray absorptiometry (DXA). Twenty-one young male volunteers (mean ± SD; age = 22.9 ± 3.0 years; height = 175.5 ± 5.9 cm; body mass = 82.9 ± 13.6 kg; body mass index = 26.9 ± 3.6) performed an RT program that included exercises for all major muscle groups. Body composition was assessed using both methods before and after the intervention; change scores were determined by subtracting pre-test values from post-test values for percent body fat ([INCREMENT]%BF), fat mass ([INCREMENT]FM), and fat-free mass ([INCREMENT]FFM). Mean changes were not significantly different when comparing MF-BIA with DXA for [INCREMENT]%BF (-1.05 vs. -1.28%), [INCREMENT]FM (-1.13 vs. -1.19 kg), and FFM (0.10 vs. 0.37 kg, respectively). Both methods showed strong agreement for [INCREMENT]%BF (r = 0.75; standard error of the estimate [SEE] = 1.15%), [INCREMENT]FM (r = 0.84; SEE 1.0 kg), and [INCREMENT]FFM (r = 0.71; SEE of 1.5 kg). The 2 methods were poor predictors of each other in regards to changes in segmental measurements. Our data indicate that MF-BIA is an acceptable alternative for tracking changes in FM and FFM during a combined diet and exercise program in young, athletic men, but segmental lean mass measurements must be interpreted with circumspection.
Oost, Elco; Koning, Gerhard; Sonka, Milan; Oemrawsingh, Pranobe V; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2006-09-01
This paper describes a new approach to the automated segmentation of X-ray left ventricular (LV) angiograms, based on active appearance models (AAMs) and dynamic programming. A coupling of shape and texture information between the end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a multiview AAM. Over-constraining of the model was compensated for by employing dynamic programming, integrating both intensity and motion features in the cost function. Two applications are compared: a semi-automatic method with manual model initialization, and a fully automatic algorithm. The first proved to be highly robust and accurate, demonstrating high clinical relevance. Based on experiments involving 70 patient data sets, the algorithm's success rate was 100% for ED and 99% for ES, with average unsigned border positioning errors of 0.68 mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. The fully automatic algorithm, with intrinsically less user interaction was less robust, but showed a high potential, mostly due to a controlled gradient descent in updating the model parameters. The success rate of the fully automatic method was 91% for ED and 83% for ES, with average unsigned border positioning errors of 0.79 mm for ED and 1.55 mm for ES.
Optoelectronic Picosecond Detection of Synchrotron X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durbin, Stephen M.
2017-08-04
The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results ofmore » this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.« less
Fine tuning the heavy fermion ground state: A new handle on cerium cobalt indium
NASA Astrophysics Data System (ADS)
Pham, Long D.
A Two Fluid Description of the Kondo Lattice CeCoIn5 has been extended to include additional entropy terms that were not considered in the original work by S. Nakatsuji et al. [1]. The use of a Matlab computer code was successful at iteratively solving for f, the fraction of itinerant interacting heavy quasiparticles, and showed that it converges to a temperature dependent function invariant under successive iterations. The linear specific heat coefficient, gamma, was extracted from transport consideration in conjunction with f(T) and the Kadowacki-Woods ratio to be 204mJ/mole-K2, in good agreement from heat capacity measurements of 290mJ/mole-K2 for CeCoIn 5 [32]. Antiferromagnetism has been induced in CeCoIn5 as well as its two isostructural, isovalent sister compounds CeRhIn5 and CeIrIn 5. Cadmium-doping the heavy-fermion superconductor CeCoIn5 at the percent level acts as an electronic tuning agent, sensitively shifting the balance between superconductivity and antiferromagnetism and opening new ambient-pressure phase space in the study of heavy-fermion ground states. At nominal concentrations of x>0.070, CeCo(In1-xCd x)5 displays a two phase region of antiferromagnetism coexisting with superconductivity up to x<0.15, above which no trace of superconductivity persists in specific heat. Similar results was seen in CeIr(In1-xCd x)5 where a quantum critical point (QCP) was observed, separating superconductivity from antiferromagnetism at a nominal critical concentration of x≈0.0475, while CeRh(In1-xCdx)5 goes through an incommensurate to commensurate antiferromagnetic transition nominally at x≈0.10. Amazingly, pressure completely recovers Tc in CeCo(In1-x Cdx)5 measured at nominal concentrations of x=0.10, and 0.15. Phase diagrams were constructed from specific heat and confirmed with resistivity and magnetization. An introduction to strongly correlated physics, relevant to the 115 family, will be worked out followed by a description of general techniques of synthesis and physical properties measurements central to this dissertation and in the study of material science in general.
Very-High Level Concurrent Programming.
1984-12-01
8217 O-. ----------- !NODE NAME !DIMENSION NO. ASSERTjiON( 5l ): AASS 1 0 I AAS. IV LMrGA I V, ’*ANAME(FNJ RECIPELI. *r..-NAME: INTFOEI.) i’IV P~jflC.l...RECORD, 4 PROCID FLO (CHAR 10i, 1* MAIL ADDRESS * 4 ;M$2),PX$, X$2L,LIS- APY ,LISAY.UjSAR) ARE FLD ’DEC FLOAT( 15)): END. UlSARC (TI =T= I MYPD: 1 .0P FILE...LAO THEN X51(T) - (X111(T) + 151(T) + X11’(T) + XS14(T)+XW1(T)+516(T)) ELSE TS...EATA($,. 7): Y527(T) IF F;,LAOi THEN X52 (T) - (1521(T) + Y$5&2(TI
1982-02-25
source both liquid and solid fuel combustion devices have been successfully demonstrated during various development programs . Nuclear reactor heat...U02 fuel in the core . Improving the heat pipe model to correlate more closely with the experimental data is a major concern in the development of...ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK Research & Development Associates (RDA) AREA &WKNT AE (X Rosslyn, VA 22209 61102F 2301
NASA Technical Reports Server (NTRS)
1997-01-01
Kenneth J. Szalai was Director of the NASA Hugh L. Dryden Flight Research Center, Edwards, Calif., from January 1994 through July 1998. He retired from NASA at the end of July to join IBP Aerospace Group, Inc., as the company's new president and chief operating officer. As NASA's primary installation for flight research for more than half a century, Dryden is chartered to conceive and conduct experimental flight research for integrated flight and propulsion controls; advanced optical sensors and controls; viscous drag reduction; advanced configurations; high-altitude, long-endurance aircraft; remotely piloted vehicle technology; hypersonic vehicle experiments; high-speed research for civil transportation; atmospheric tests of advanced rocket and airbreathing propulsion concepts; instrumentation systems; and flight loads predictions. In carrying out this mission, Dryden operates some of the most advanced research aircraft in the nation. When Dryden was administratively a part of the NASA Ames Research Center, Moffett Field, Calif., Szalai was director and also held the position of Ames Deputy Director for Dryden from December 1990 until assuming his current position From 1982 until December 1990, Szalai directed the Dryden Research Engineering Division. He served as Associate Director of the Ames Research Center in 1989. Prior to 1982 he was chief of the Research Engineering Division's Dynamics and Control Branch, and chief of the Flight Control Section. Szalai began his NASA career at Dryden in 1964 following graduation from the University of Wisconsin, where he attended both the Milwaukee and Madison campuses. His bachelor of science degree is in electrical engineering. He also received a master of science degree in mechanical engineering from the University of Southern California in 1970. Szalai was principal investigator on the F-8 Digital Fly-By-Wire program, which successfully flew the first aircraft equipped with a digital electronic flight control system without any mechanical reversion capability. Szalai also held research and systems engineering positions on several research aircraft programs investigating flying qualities, integrated flight controls, and fault tolerant-flight critical systems. He was also flight test engineer and principal investigator on the NASA Airborne Simulator before assuming management positions within the Research Engineering Division. Szalai has worked in various technical and management positions on such programs as the F-111 IPCS, AFTI/F-16, HiMAT, F-15 DEEC, F-15 HIDEC, X-29, X-31, F-16XL Laminar Flow, Space Shuttle Orbiter, Pathfinder Solar Powered Aircraft, SR-71 Sonic Boom, F-15 and MD-11 Propulsion Controlled Aircraft, X-33, and X-38. Szalai has authored over 25 papers and reports and has been a lecturer for the NATO Advisory Group for Aeronautical Research and Development (AGARD). He has served on various technical committees and subcommittees for the American Institute of Aeronautics and Astronautics (AIAA) and Society of Automotive Engineers (SAE). Szalai, a Fellow of the AIAA, also served on the National Academy of Science's 'Aeronautics-2000' study. Among the awards Szalai has received are NASA's Exceptional Service Medal, the NASA Outstanding Leadership Medal, and the Presidential Meritorious and Distinguished Rank awards. Szalai was born June 1, 1942, in Milwaukee, Wisc., where he graduated from West Division High School.
Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders
2016-12-01
1 AWARD NUMBER: W81XWH-14-1-0433 TITLE: Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders PRINCIPAL INVESTIGATOR: Anis...SUBTITLE 5a. CONTRACT NUMBER Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders 5b. GRANT NUMBER W81XWH-14-1-0433 5c. PROGRAM...bumetanide to mice rescues synaptic and circuit dysfunction in Fragile X mice. 15. SUBJECT TERMS Autism Spectrum Disorders, Fragile X Syndrome Angelman
X-36 Tailless Fighter Agility Research Aircraft in flight
NASA Technical Reports Server (NTRS)
1997-01-01
The X-36 technology demonstrator shows off its distinctive shape as the remotely piloted aircraft flies a research mission over the Southern California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft in it's hangar at NASA Dryden Flight Research Center, Edwards, California, following its arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Taking off during First Flight
NASA Technical Reports Server (NTRS)
1997-01-01
The remotely-piloted X-36 Tailless Fighter Agility Research Aircraft lifts off from Rogers Dry Lake at the Dryden Flight Research Center on its first flight on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft in flight
NASA Technical Reports Server (NTRS)
1997-01-01
The tailless X-36 technology demonstrator research aircraft cruises over the California desert at low altitude during a 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
ERIC Educational Resources Information Center
Kelleher, Ann
The case studies presented in this volume offer comparative examples of undergraduate international education innovations in a wide variety of categories: curriculum, study abroad, community outreach, faculty development, and international students. The studies were conducted in the mid-1990s, and programs had to meet several criteria: they had to…
ERIC Educational Resources Information Center
Ward-Roof, Jeanine A., Ed.; Hatch, Cathie, Ed.
This monograph contains 15 papers on aspects of college and university student and family orientation programs. Following a prologue, "Reflections on the Future of Orientation," by M. Lee Upcraft, the papers are: (1) "Today's Students and Their Impact on Orientation and First-Year Programs" (Tony W. Cawthon and Michael Miller);…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Haoxi; Post-Doctor Station for Science and Technology of Chemical Engineering and Technology, Tianjin University, Tianjin 300072; Post-Doctor Workstation for Science and Technology, Shandong Haihua Group Co. Ltd, Weifang, Shandong 262737
2012-01-15
Nanocrystalline Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres were successfully synthesized via supercritical anti-solvent precipitation using supercritical CO{sub 2} as the anti-solvent. It was found that the as-produced samples exhibited hollow spherical structures with uniform diameters ranging from 30 to 50 nm and the sphere walls were composed of various oriented nanocrystallites, with sizes of 3-7 nm. The results of high-resolution transmission electron microscopy showed that the formation of the hollow structures could be controlled by adjusting the solution concentration. The results of temperature-programmed reduction and oxygen storage capacity measurements showed that the hollow nanospheres had enhanced redox properties. A possiblemore » mechanism for the formation of Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres has also been proposed and experimental investigated.« less
Effect of Ni content on stainless steel fabricated by laser melting deposition
NASA Astrophysics Data System (ADS)
Zhang, H.; Zhang, C. H.; Wang, Q.; Wu, C. L.; Zhang, S.; Chen, J.; Abdullah, Adil O.
2018-05-01
The novel stainless steel + x wt.% Ni (x = 0, 3.05, 6.10, 9.15) specimens were successfully fabricated by laser melting deposition, aiming at investigating the influence of Ni content on stainless steel structure and property. The effects of Ni content on phase compositions, microstructure, microhardness, wear and electrochemical corrosion resistance of as-deposited stainless steel were studied systematically using XRD, OM, SEM, microhardness tester, friction-wear tester and potentiodynamic polarization measurement, respectively. Experimental results showed that with the increase of Ni content, the constituent phase of the as-deposited specimen changed from ferrite phase (specimen for x = 0) to austenite phase (specimen for x = 9.15). The microstructure growth followed the principle of dendrite growth. However, the dominant microstructure varied from equiaxed dendrite to columnar dendrite with increasing Ni content. Phase transition from ferrite phase to austenite phase with the addition of Ni content resulted in the decrease of microhardness value from 643HV to 289HV. Meanwhile, the wear resistance of as-deposited specimens decreased gradually with the increasing of Ni content, which might be attributed to the fact that the wear resistance is proportional to microhardness according to Archard's law. It was noted that corrosion resistance of as-deposited stainless steel was extremely improved with the increase of Ni content. The higher Ni content specimen (specimen for x = 9.15) exhibited the best corrosion resistance among the tested specimens based on corrosion rate, which was one order of magnitude lower than that of the lower Ni content specimens (specimens for x = 0, 3.05).
Gain measurements and spatial coherence in neon-like x-ray lasers
NASA Astrophysics Data System (ADS)
Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.
1995-05-01
Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.
1956-10-08
Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8 or
Pradines, Maud; Baude, Marjolaine; Marciniak, Christina; Francisco, Gerard; Gracies, Jean-Michel; Hutin, Emilie; Bayle, Nicolas
2018-03-02
In current health care systems, long-duration stretching, performed daily, cannot be obtained through prescriptions of physical therapy. In addition, the short-term efficacy of the various stretching techniques is disputed, and their long-term effects remain undocumented. To evaluate changes in extensibility in 6 lower limb muscles and in ambulation speed after a ≥1-year self-stretch program, the Guided Self-rehabilitation Contract (GSC), in individuals with chronic spastic paresis. Retrospective study comparing self-stretched and nonself-stretched muscles. Neurorehabilitation clinic. Patients diagnosed with hemiparesis or paraparesis at least 1 year before the initiation of a GSC and who were then involved in the GSC program for at least 1 year. For each patient, specific muscles were identified for intervention among the following: gluteus maximus, hamstrings, vastus, rectus femoris, soleus, and gastrocnemius. Prescriptions and training for a daily, high-load, prolonged, home self-stretching program were primarily based on the baseline coefficient of shortening, defined as C SH = [(X N -X V1 )/X N ] (X V1 = PROM, passive range of motion; X N = normally expected amplitude). Six assessments were performed per year, measuring the Tardieu X V1 or maximal slow stretch range of motion angle (PROM), C SH , 10-m ambulation speed, and its functional ambulation category (Perry's classification: household, limited, or full). Changes from baseline in self-stretched and nonself-stretched muscles were compared, with meaningful X V1 change defined as ΔX V1 >5° for plantar flexors and >10° for proximal muscles. Correlation between the composite X V1 (mean PROM for the 6 muscles) and ambulation speed also was evaluated. Twenty-seven GSC participants were identified (14 women, mean age 44 years, range 29-59): 18 with hemiparesis and 9 with paraparesis. After 1 year, 47% of self-stretched muscles showed meaningful change in PROM (ΔX V1 ) versus 14% in nonself-stretched muscles (P < .0001, χ 2 ). ΔC SH was -31% (95% confidence interval [95% CI] -41.5 to -15.2) in self-stretched versus -7% (95% CI -11.9 to -2.1) in nonself-stretched muscles (P < .0001, t-test). Ambulation speed increased by 41% (P < .0001) from 0.81 m/s (95% CI 0.67-0.95) to 1.15 m/s (95% CI 1.01-1.29). Eight of the 12 patients (67%) who were in limited or household categories at baseline moved to a higher functional ambulation category. There was a trend for a correlation between composite X V1 and ambulation speed (r = 0.44, P = .09) in hemiparetic patients. Therapists should consider prescribing and monitoring a long-term lower limb self-stretch program using GSC, as this may increase muscle extensibility in adult-onset chronic paresis. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Losey, Aaron D; Lillaney, Prasheel; Martin, Alastair J; Cooke, Daniel L; Wilson, Mark W; Thorne, Bradford R H; Sincic, Ryan S; Arenson, Ronald L; Saeed, Maythem; Hetts, Steven W
2014-06-01
To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization under MR imaging guidance and was comparable to standard x-ray guidance.
NASA Technical Reports Server (NTRS)
1960-01-01
Milton O. Thompson was hired as an aeronautical research scientist at the National Advisory Committee for Aeronautics' High-Speed Flight Station, Edwards, California, on March 19, 1956, becoming a research pilot in January 1958. During his 37-year career at what became the National Aeronautics and Space Administration's Dryden Flight Research Center in 1976, Milt managed several research programs and flew many research flights. One of Milt's first research projects, after he became a research pilot, was a program to investigate the feasibility of obtaining substantial amounts of laminar flow on an airfoil at supersonic speeds. The testbed aircraft was an F-104 with one wing covered with a fiberglass glove that served as the test section for the experiment. Next was the Air Launched Sounding Rocket (ALSOR) research program using an F-104 with a rocket launcher installed on it. The intent of the program was to release a balloon from an air launched rocket at over 1,000,000 feet altitude (approximately 190 miles) and then measure its rate of descent to determine air density. In 1959, Thompson was assigned to the Boeing X-20 Dyna-Soar program as a pilot-consultant. The X-20 program was scheduled to launch a human into Earth orbit and recover with a horizontal ground landing. The program was canceled before construction of the vehicle began. Milt became interested in the Rogallo-wing concept, 'Parawing', for spacecraft reentry. The best way to acquire experience, of course, was by building and flying a Paraglider Research Vehicle (Paresev). After ground tows to demonstrate controllability with Milt in the cockpit, he made the first flight aloft on March 12, 1962. On August 16, 1963 Thompson became the first person to fly a lifting body, the lightweight M2-F1. The plywood and steel-tubing prototype was flown as a glider after releasing from an R4D tow plane. He flew it a total of 47 times, and also made the first five flights of the all-metal M2-F2 lifting body, beginning July 12, 1966. Thompson was one of the 12 NASA, Air Force, and Navy pilots to fly the North American X-15 rocket-powered research aircraft between 1959 and 1968. Milt's first flight was on October 29, 1963. He made a total of 14 flights during the next two years. He reached a maximum speed of 3712 mph (Mach 5.48) in the X-15-3 and a peak altitude of 214,100 feet in the X-15-1 aircraft. In January 1967, he retired from active flying and moved into the research organization's Project Sub-Division Office, becoming chief of the newly formed Research Projects Office in 1969. In this position he was responsible for all of the flight projects at the Center, which included the X-15 and the lifting bodies as well as a number of other projects. In April 1975, he became chief engineer with responsibility for the overview of all technical research activities at the Center and reported directly to the Center Director, a position he held until his death. Thompson began flying with the U.S. Navy as a pilot trainee at the age of 19. He subsequently served during World War II with duty in China and Japan. Following six years of active naval service, he entered the University of Washington, in Seattle, Wash. Milt graduated in 1953 with a Bachelor of Science degree in engineering. He remained in the Naval Reserves during college and continued flying--not only naval aircraft but crop dusters and forest-spraying aircraft. After college graduation, Milt became a flight test engineer for the Boeing Aircraft Company in Seattle, where he was employed for two years before coming to the NACA High-Speed Flight Station. Thompson was a member of the Society of Experimental Test Pilots, and received the organization's Iven C. Kincheloe trophy as the Outstanding Experimental Test Pilot of 1996 for his research flights in the M2 Lifting Bodies. He also received the 1967 Octave Chanute award from the American Institute of Aeronautics and Astronautics for his lifting-body research. Milt was a member of NASA's Space Transportation System Technology Steering Committee during the 1970s. In this role he was successful in leading the effort to design the Orbiters for power-off landings rather than increase weight with air-breathing engines for airliner-type landings. His committee work earned him NASA's highest award, the Distinguished Service Medal. In 1990, the National Aeronautics Association selected Thompson as one of the year's recipients of its Elder Statesman of Aviation awards. Thompson was author of several technical papers, was a member of NASA's Senior Executive Service, and received several NASA awards. Milton Orville Thompson was born May 4, 1926, in Crookston, Minnesota; he died on August 6, 1993, in Lancaster, California.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, K.L.
1976-04-30
Four die-casting alloys, the external-pressure-pin and conventional casting methods, an accelerated aging heat treatment, and an airfoil fillet modification were evaluated for 33F-S1 compressor blades considered for use in axial flow compressors installed during the Cascade Improvement and Uprating Programs at the three gaseous diffusion plants. Based on castability, resonant frequency, resistance to fatigue cracking, and shank breaking load, the ranking of the four alloys from highest to lowest is GAT2, 214X, X224, and D-15. The GAT2 alloy ranked highest in all categories except impact value; the impact values of both X224 and 214X alloys exceeded that of the GAT2more » alloy, thus indicating the latter is relatively more brittle. However, in view of its other excellent properties, including fatigue cracking resistance, GAT2 alloy is worthy of consideration for use in blades for CIP/CUP or Add-on Plant compressors, particularly if castability becomes a problem with the presently used 214X alloy. Use of the external-pressure-pin casting method is not recommended because the resulting casting difficulties cannot be justified by the small increases in shank breaking loads. The airfoil fillet modification, which is a change from the conventional circular fillet to an elliptical fillet, resulted in increases (1.5 to 4.0 percent) in the average resonant frequency and in resistance to fatigue cracking (15 to 100 percent). The results of giving the blades an accelerated aging heat treatment, designed to simulate in excess of 10,000 hours of cascade exposure, showed that overaging had no significant effect on average resonant frequency but that overaging improved blade quality by reducing residual casting stress. (auth)« less
Aircraft digital flight control technical review
NASA Technical Reports Server (NTRS)
Davenport, Otha B.; Leggett, David B.
1993-01-01
The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.
NASA Astrophysics Data System (ADS)
Manhas, Anita; Daya, K. S.; Singh, M.
2018-05-01
Sol gel auto combustion processed nano magnetic system of Co2Z hexaferrite of composition Ba3-xSrxCo2InyFe24-yO41 (x=1.5 and y=0.1) was investigated for microwave antenna miniaturization in the frequency range 2 GHz to 3.43 GHz. The structural properties performed by XRD and TEM with SAED clearly indicate the formation of single phased Z-type hexagonal nanoferrite with high crystallization. The magnetic property was measured using VSM show a typical feature of magnetically soft material with low coercivity. Successfully obtained appreciable microwave properties using network analyzer, as the nano magnetic system Ba1.5Sr1.5Co2In0.1Fe23.90O41 attained best results were μ' = 5.4 and ɛ' = 4.6 at 2GHz with controlled magnetic and electric loss tangents close to zero i.e. 0.005 and 0.008, respectively. Microwave results are explained on the basis of relevant existing theories and models.
Hyper-X Stage Separation Wind Tunnel Test Program
NASA Technical Reports Server (NTRS)
Woods, W. C.; Holland, S. D.; DiFulvio, M.
2000-01-01
NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.
Hyper-X Stage Separation Wind-Tunnel Test Program
NASA Technical Reports Server (NTRS)
Woods, William C.; Holland, Scott D.; DiFulvio, Michael
2001-01-01
NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system the vehicle must depend on some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind-tunnel tests to support multi-degree-of-freedom simulation of the separation process. Representative results from each series of tests are presented, and issues and concerns during the process and current status are highlighted.
Hyper-X Storage Separation Wind Tunnel Test Program
NASA Technical Reports Server (NTRS)
Woods, William C.; Holland, Scott D.; Difulvio, Michael
2000-01-01
NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow, conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.
1960-06-15
The Saturn Project was approved on January 18, 1960 as a program of the highest national priority. The formal test program to prove out the clustered-booster concept was well underway. A series of static tests of the Saturn I booster (S-I stage) began June 3, 1960 at the Marshall Space Flight Center (MSFC). This photograph depicts the Saturn I S-I stage equipped with eight H-1 engines, being successfully test-fired for the duration of 121 seconds on June 15, 1960.
Massively parallel X-ray holography
NASA Astrophysics Data System (ADS)
Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, Malcolm R.; Spence, John C. H.; Shaevitz, Joshua W.; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.
2008-09-01
Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.
Song, Suk-yoon; Hur, Byung-ung; Lee, Kyung-woo; Choi, Hyo-jung; Kim, Sung-soo; Kang, Goo; Cha, Sang-hoon
2009-03-31
The dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a 1.3 x 10(7) combinatorial antibody complexity, against fluorescein-BSA resulted in successful isolation of human Fab clones specific for the antigen despite the presence of only a single light chain in the library. By using the unique feature of the DVS-II, an antibody library of a larger size, named DVFAB-131L, which has a 1.5 x 10(9) combinatorial antibody complexity, was also generated in a rapid manner by combining 1.3 x 10(7) heavy chains and 131 light chains and more diverse anti-fluorescein-BSA Fab antibody clones were successfully obtained. Our results demonstrate that the DVS-II can be applied readily in creating phage-displayed antibody libraries with much less effort, and target-specific antibody clones can be isolated reliably via light chain promiscuity of antibody molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, G.L.; Lee, G.
1983-11-01
Full thickness chest wall resection and single stage reconstruction for osteoradionecrosis of the chest wall was performed on five patients. All patients had undergone radical mastectomy and radiation therapy from 5 to 18 years prior to chest wall resection. Defects varied from 12 X 5 cm to 15 X 15 cm, and included from two to four ribs. Reconstruction was performed using Marlex mesh to reconstruct the bony thorax and a rotated latissimus dorsi myocutaneous flap. Coverage was successfully performed in all cases, and no patient experienced postoperative pulmonary dysfunction. There were no complications related to either the bony thoraxmore » reconstruction or the latissimus flap. The use of this technique has provided a safe, convenient, and reliable method of chest wall reconstruction.« less
Trends in Health Insurance Coverage of Title X Family Planning Program Clients, 2005-2015.
Decker, Emily J; Ahrens, Katherine A; Fowler, Christina I; Carter, Marion; Gavin, Loretta; Moskosky, Susan
2018-05-01
The federal Title X Family Planning Program supports the delivery of family planning services and related preventive care to 4 million individuals annually in the United States. The implementation of the 2010 Affordable Care Act's (ACA's) Medicaid expansion and provisions expanding access to health insurance, which took effect in January 2014, resulted in higher rates of health insurance coverage in the U.S. population; the ACA's impact on individuals served by the Title X program has not yet been evaluated. Using administrative data we examined changes in health insurance coverage among Title X clinic patients during 2005-2015. We found that the percentage of clients without health insurance decreased from 60% in 2005 to 48% in 2015, with the greatest annual decrease occurring between 2013 and 2014 (63% to 54%). Meanwhile, between 2005 and 2015, the percentage of clients with Medicaid or other public health insurance increased from 20% to 35% and the percentage of clients with private health insurance increased from 8% to 15%. Although clients attending Title X clinics remained uninsured at substantially higher rates compared with the national average, the increase in clients with health insurance coverage aligns with the implementation of ACA-related provisions to expand access to affordable health insurance.
Functional training improves club head speed and functional fitness in older golfers.
Thompson, Christian J; Cobb, Karen Myers; Blackwell, John
2007-02-01
Functional training programs have been used in a variety of rehabilitation settings with documented success. Based on that success, the concept of functional training has gained popularity in applied fitness settings to enhance sport performance. However, there has been little or no research studying the efficacy of functional training programs on the improvement of sport performance or functional fitness. Thus, it was the purpose of this study to determine the effect of a progressive functional training program on club head speed and functional fitness in older male golfers. Eighteen male golfers (age: 70.7 +/- 9.1 [SD] years) were randomly assigned to an exercise (N = 11) or control (N = 7) group. The exercise group participated in an 8-week progressive functional training program including flexibility exercises, core stability exercises, balance exercises, and resistance exercises. Pre- and postmeasurements included club head speed of a driver by radar (exercise and Control) and Fullerton Senior Fitness Test measurements (exercise only). One-way analysis of covariance was performed on club head speed measurements using pretest measurements as the covariate. Paired t-tests were performed to analyze Senior Fitness Test variables. After the intervention, maximal club head speed increased in the exercise group (127.3 +/- 13.4 to 133.6 +/- 14.2 km x hr(-1)) compared with the control group (134.5 +/- 14.6 to 133.3 +/- 11.2 km x hr(-1); p < 0.05). Additionally, improvements (p < 0.05) were detected for most Senior Fitness Test variables in the exercise group. In summary, this functional training program resulted in significant improvements in club head speed and several components of functional fitness. Future research should continue to examine the effect of functional training programs on sport performance and functional fitness in older adults.
Analytical and scale model research aimed at improved hangglider design
NASA Technical Reports Server (NTRS)
Kroo, I.; Chang, L. S.
1979-01-01
Research consisted of a theoretical analysis which attempts to predict aerodynamic characteristics using lifting surface theory and finite-element structural analysis as well as an experimental investigation using 1/5 scale elastically similar models in the NASA Ames 2m x 3m (7' x 10') wind tunnel. Experimental data were compared with theoretical results in the development of a computer program which may be used in the design and evaluation of ultralight gliders.
NASA Astrophysics Data System (ADS)
Hadorn, Jason Paul; Hirayama, Yusuke; Ohkubo, Tadakatsu
2018-01-01
Thin films with compositions of NdFe12 and NdFe11Ti1 were fabricated on W-buffered MgO(001) substrates of varying roughness. In this study, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the films microstructurally, chemically, and crystallographically. This study revealed successful heteroepitaxial synthesis of the tetragonal NdFe12 and NdFe12- x Ti x phases in the Ti-free and Ti-containing films, respectively, both with surface-normal c-axis orientation. It also revealed the presence of other phases within the magnetic layer. The NdFe12 films contained many α-Fe particles, which preferentially precipitated at locally rough regions of the W-buffer interface. The NdFe11Ti1 film showed the ubiquitous presence of an Fe2Ti phase, which covered most of the buffer thereby preventing the formation of α-Fe. This phase was determined to have a novel Cu2Mg-type cubic Laves ( C15) crystal structure with fourfold interfacial symmetry, good coherency, and a low mismatch with the W-buffer, thus rendering itself as being an ideal interface for the heteroepitaxial synthesis of NdFe12- x Ti x crystals. It is proposed that successful application of a cubic Fe2Ti underlayer on W can contribute to the development of a fabrication strategy for NdFe12 thin films without the presence of soft magnetic α-Fe.
Han, Yang-dong; Liang, Feng; Chen, Peng
2015-01-01
The effect of different concentrations of rocuronium bromide used for anesthesia induction during thyroid surgery on the intraoperative recurrent laryngeal nerve monitoring was evaluated. One hundred patients undergoing thyroid operation were randomized into five groups (20 patients per group). Patients in group I were operated and monitored without the use of rocuronium bromide. Patients in groups II-V were respectively injected with 0.5x, 1x, 1.5x, and 2x ED95 rocuronium bromide intravenously. The time from injecting the rocuronium bromide to the beginning of tube insertion was recorded, the conditions of tracheal intubation were evaluated, and the changes in blood pressure and pulse during the intubation process were monitored. Vagus nerve/recurrent laryngeal nerve evoked muscle potential was monitored using the NIM-Response3.0 nerve electromyography monitor. The amplitude of electromyography signal was recorded every 5 min during 30 min after successful tracheal intubation. The tracheal intubation success rate was 100% in all groups. Compared with group I, intubating condition scores (Cooper scores) in the patients of groups II-V were higher (P < 0.05). The stability of intraoperative neuromonitoring signal amplitude in groups I-III met the monitoring standards. The findings suggest that the use of 0.5x or 1x ED95 rocuronium bromide during the anesthesia induction can improve the tracheal tube conditions without affecting the intraoperative recurrent laryngeal nerve monitoring. The use of 1x ED95 rocuronium bromide induction was associated with the best results.
Ares I-X: Lessons for a New Era of Spaceflight
NASA Technical Reports Server (NTRS)
Davis, Stephan R.
2010-01-01
Since 2005, the Ares Projects at Marshall Space Flight Center (MSFC) have been developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Despite the President s intention to cancel the Constellation Program of which Ares is a part, this historic flight has produced a great amount of data and numerous lessons learned for any future launch vehicles. This paper will describe the accomplishments of Ares I-X and the lessons that other programs can glean from this successful mission. Ares I was designed to carry up to four astronauts to the International Space Station (ISS). It also was designed to be used with the Ares V cargo launch vehicle for a variety of missions beyond low-Earth orbit (LEO). The Ares I-X development flight test was conceived in 2006 to acquire early engineering and environment data during liftoff, ascent, and first stage recovery. The test achieved the following primary objectives: Demonstrated control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Performed an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrated assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrated First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterized the magnitude of integrated vehicle roll torque throughout First Stage flight.
1977-04-01
aluminum ) is photographed using a double-pinhole x-ray camera. Fig. 21 shows , 45 —.— LASER >1.0keV LASER >1.5keV 100 /im Fig. 21 — Pinhole x...i ’ 1 i 6.0 7.0 Ml) 8.0 Fig. 29 — Comparison of computed spectral line intensities of aluminum and that obtained from the experiment 56...Mg-target used in this partic- ular exposure contained aluminum and carbon as impurities; the AJ6II 3-3p 1P - 3s2 1S line at 1670.8 A and the CIV 2p
Sounding rockets shot from the Shuttle
NASA Technical Reports Server (NTRS)
Cruddace, R.; Fritz, G.; Glaab, J.; Shrewsberry, D.
1985-01-01
The Space Shuttle-launched sounding rocket Spartan-1 will map the structure of two extended X-ray sources: the hot gas pervading the Perseus cluster of galaxies, and the central core of the Milky Way. Spartan-1 contains two large X-ray proportional counter detectors sensitive to the 1-15 A wavelength range. A new generation of instruments destined for X-ray telescope focal planes will yield high resolution imaging and spectroscopy, over observation times sometimes exceeding one day/source, in the course of a long-term Spartan research program that will encompass planetary, solar, and UV astronomy missions.
Stohl, Hindi E.; Hueppchen, Nancy A.; Bienstock, Jessica L.
2010-01-01
Background During the evaluation process, Residency Admissions Committees typically gather data on objective and subjective measures of a medical student's performance through the Electronic Residency Application Service, including medical school grades, standardized test scores, research achievements, nonacademic accomplishments, letters of recommendation, the dean's letter, and personal statements. Using these data to identify which medical students are likely to become successful residents in an academic residency program in obstetrics and gynecology is difficult and to date, not well studied. Objective To determine whether objective information in medical students' applications can help predict resident success. Method We performed a retrospective cohort study of all residents who matched into the Johns Hopkins University residency program in obstetrics and gynecology between 1994 and 2004 and entered the program through the National Resident Matching Program as a postgraduate year-1 resident. Residents were independently evaluated by faculty and ranked in 4 groups according to perceived level of success. Applications from residents in the highest and lowest group were abstracted. Groups were compared using the Fisher exact test and the Student t test. Results Seventy-five residents met inclusion criteria and 29 residents were ranked in the highest and lowest quartiles (15 in highest, 14 in lowest). Univariate analysis identified no variables as consistent predictors of resident success. Conclusion In a program designed to train academic obstetrician-gynecologists, objective data from medical students' applications did not correlate with successful resident performance in our obstetrics-gynecology residency program. We need to continue our search for evaluation criteria that can accurately and reliably select the medical students that are best fit for our specialty. PMID:21976076
Advanced Space Transportation Program (ASTP)
2003-07-01
NASA's X-37 Approach and Landing Test Vehicle is installed is a structural facility at Boeing's Huntington Beach, California plant, where technicians make adjustments to composite panels. Tests, completed in July, were conducted to verify the structural integrity of the vehicle in preparation for atmospheric flight tests. Atmospheric flight tests of the Approach and Landing Test Vehicle are scheduled for 2004 and flight tests of the Orbital Vehicle are scheduled for 2006. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. It's experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000.00 per pound. The X-37 program is managed by the Marshall Space Flight Center and built by the Boeing Company.
NASA Astrophysics Data System (ADS)
Sacristán, Ana Isabel; Rojano, Teresa
Here we give an overview of the Mexican experience of a national program, begun in 1997, of gradual implementation of computational tools in the lower secondary-school classrooms (children 12-15 years-old) for mathematics and science. This project illustrates, through the benefit of long-term hindsight, the successes and difficulties of large-scale massive implementation of technologies in schools. The key factors for success and for transforming school practices seem to be: adequate planning, gradual implementation, continuous training and support, and enough time (years) for assimilation and integration.
X-36 on Ground after Radio and Telemetry Tests
NASA Technical Reports Server (NTRS)
1996-01-01
A UH-1 helicopter lowers the X-36 Tailless Fighter Agility Research Aircraft to the ground after radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Carried Aloft by Helicopter during Radio and Telemetry Tests
NASA Technical Reports Server (NTRS)
1996-01-01
A Bell UH-1 helicopter lifts the X-36 Tailless Fighter Agility Research Aircraft off the ground for radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed/ high angles of attack and at high speed/low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Carried Aloft by Helicopter during Radio and Telemetry Tests
NASA Technical Reports Server (NTRS)
1996-01-01
A Bell UH-1 helicopter lifts the X-36 Tailless Fighter Agility Research Aircraft off the ground for radio frequency and telemetry tests above Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, in November 1996. The purpose of taking the X-36 aloft for the radio and telemetry system checkouts was to test the systems more realistically while airborne. More taxi and radio frequency tests were conducted before the aircraft's first flight in early 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
The Lockheed OSO-8 program. Analysis of data from the mapping X-ray heliometer experiment
NASA Technical Reports Server (NTRS)
Acton, L. W.; Wolfson, C. J.; Datlowe, D. W.; Mosher, J. M.; Roethig, D. T.; Smith, K. L.
1980-01-01
The final report describes the extent of the analysis effort, and other activities associated with the preservation and documentation of the data set are described. The main scientific results, which are related to the behavior of individual solar activity regions in the energy band 1.5 - 15 keV, are summarized, and a complete bibliography of publications and presentations is given. Copies of key articles are also provided.
Nanocrystalline Ce1- x La x O2- δ Solid Solutions Synthesized by Hydrolyzing and Oxidizing
NASA Astrophysics Data System (ADS)
Hou, Xueling; Xue, Yun; Han, Ning; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong; Zhong, Yunbo
2016-05-01
We undertook a novel batch production approach for the synthesis of CeO2 nanopowders doped with rare earth elements. Solid solution nanopowders of Ce1- x La x O2- δ ( x = 0.15) were successfully synthesized in a large-scale and low-cost production by hydrolyzing and oxidizing Ce-La-C alloys at room temperature and subsequent calcining of their powders at different temperatures (873-1073 K) for 1 h. The Ce-La-C alloys were prepared in a vacuum induction melting furnace. The final products were characterized by x-ray diffraction, transmission electron microscopy, Brunner-Emmet-Teller (BET) surface area analyzer, and Raman spectroscopy. The calculated lattice parameters of the cubic fluorite-type phase of CeO2 tended to increase when La3+ was incorporated into CeO2. The F 2g band shift and the absence of a peak corresponding to La2O3 in the Raman spectra consistently confirmed the incorporation of the La3+ ion into CeO2, and the formation of Ce1- x La x O2- δ solid solutions as manifested by increased oxygen vacancy defects. High-quality Ce1- x La x O2- δ nanopowders of ~10-15 nm diameter with a high BET surface area of ~77 m2 g-1 were obtained. The average crystallite size of Ce1- x La x O2- δ was found to be smaller than that of CeO2 for the same calcination temperature of 1073 K, demonstrating that the introduction of La3+ into CeO2 can stabilize the host lattice and refine the grain size at high temperatures.
Scientific and Engineering Studies; Spectral Estimation.
1977-01-01
Approved for public release; distribution unlimited. TD 5419 FORTRAN PROGRAM FOR MULTIVARIATE LINEAR PREDICTIVE SPECTRAL ANALYSIS, EMPLOYING FORWARD...Time Series Analysis Symposium, Tulsa, Oklahoma, 14-15 May 1976. 1/2 REVERSE BLANK TD 541.9 0. Z o 0 zx .3 z a Z 9-. LU. u ~ .v C3. 4c U -4 :0 z -...0 XZ a Z a.a- :2n 3 TD 5419 4A 0 -. .4 z LL - LL LA. I-. D z q uiL L" LA.. wa Q W w i0 c x -Al 2 0 w x41 Is -4 x . I. x .f < I It I- - -4 U 4 -41-C4
77 FR 64402 - Order of Succession for HUD Region X
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Region X AGENCY: Office of Field Policy and Management, HUD. ACTION: Notice of Order of Succession... Field Offices (Region X). This Order of Succession supersedes all previous Orders of Succession for HUD Region X. DATES: Effective Date: October 9, 2012. FOR FURTHER INFORMATION CONTACT: Lawrence D. Reynolds...
NASA Astrophysics Data System (ADS)
Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li
2016-07-01
It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.
NASA Astrophysics Data System (ADS)
Neurgaonkar, R. R.; Cross, L. E.
1984-02-01
SBN:50 and SBN:60 crystals have now been grown with improved optical quality using the Czochralski technique with automatic diameter control. The liquid phase epitaxial (LPE) growth of SBN:50 on SBN substrates has also been successfully demonstrated, with particularly good results for (100) and (110) film orientations. Electro-optic measurements on SBN:60 single crystals have shown a high value for r51 of 80 x 10 to the minus 12th power m/v, nearly a factor a 2 greater than for SBN:75. The tungsten bronze system Pb1-xBaxNb2O6 (PBN) has shown enhanced piezoelectric, dielectric and optical properties near the morphotropic boundary at x = 0.37. Substantial data on the physical properties of PBN single crystals is presented as a function of composition. Work on an appropriate flux system for LPE growth of PBN is in progress, with particular focus on the system Pb2V2O7 - PBN:60. Systematic work on the tungsten bronze system Ba2NaNb5O15 Sr2NaNb5O15 (BNN-SNN) and Pb2KNb5O15 - Ba2NaNb5O15 (PKN-BNN) has been undertaken, with both systems showing morphotropic boundary conditions with enhanced dielectric properties. Both systems look promising for future electro-optic development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal-Abarca, C., E-mail: q02vigac@uco.es; Aragón, M.J.; Lavela, P.
2014-01-01
Graphical abstract: - Highlights: • Cation mixing was determined in the Ca{sub 0.5−x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} biphasic series. • Nanometric Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} delivered 138 mAh/g at C/20 in lithium cells. • Low content of Ca{sup 2+} increases cell volume favoring Li{sup +} insertion in R-3c framework. • Diminution of R{sub SEI} and R{sub CT} for Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} discharged electrodes. • Fast electrode response for x = 0.35. - Abstract: The Ca{sub 0.5−x}Mg{sub x}Ti{sub 2}(PO{sub 4}){sub 3} series (0.0 ≤ x ≤ 0.5) was prepared by a sol–gel method. X-ray diffraction patternsmore » showed two rhombohedral phases which coexist for intermediate compositions. Despite of the absence of a solid solution mechanism for the whole stoichiometry range, an appreciable cation mixing was observed in both phases. {sup 31}P MAS NMR spectroscopy revealed that low magnesium contents are incorporated to the calcium compound inducing changes in the ordering of the alkaline earth cations in M{sub 1} sites. Derivative plots of the voltage–capacity curves revealed two reversible regions ascribed to the reduction of Ti{sup 4+} to Ti{sup 3+}, ascribable to the subsequent insertion of lithium ions into M{sub 1} and M{sub 2} vacant sites. Capacity values as high as 138 mAh/g after the first discharge were monitored for nanometric Ca{sub 0.15}Mg{sub 0.35}Ti{sub 2}(PO{sub 4}){sub 3} at C/20. Cell cycling under successive kinetic rates revealed a good capacity retention for samples with x = 0.15 and 0.25. Impedance spectra were recorded in lithium cells discharged after different number of cycles at different C rates. The increase in charge transfer resistance was shown to be an important factor determining the electrode behavior on extended cycling.« less
M2-F2 cockpit instrument panels
1966-03-27
This photo shows the right side cockpit instrumentation panel of the M2-F2 Lifting Body. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers -- the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2 -- which looked much like the "F1" -- was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52 used to air launch the famed X-15 rocket research aircraft was modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation control system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969.
M2-F2 cockpit instrument panels
1966-03-27
This photo shows the left side cockpit instrumentation panel of the M2-F2 Lifting Body. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers -- the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2 -- which looked much like the "F1" -- was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52 used to air launch the famed X-15 rocket research aircraft was modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation control system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969.
1966-02-24
The M2-F2 Lifting Body is seen here on the ramp at the NASA Dryden Flight Research Center. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers -- the M2-F2 and the HL-10, both built by the Northrop Corporation. The "M" refers to "manned" and "F" refers to "flight" version. "HL" comes from "horizontal landing" and 10 is for the tenth lifting body model to be investigated by Langley. The first flight of the M2-F2 -- which looked much like the "F1" -- was on July 12, 1966. Milt Thompson was the pilot. By then, the same B-52 used to air launch the famed X-15 rocket research aircraft was modified to also carry the lifting bodies. Thompson was dropped from the B-52's wing pylon mount at an altitude of 45,000 feet on that maiden glide flight. The M2-F2 weighed 4,620 pounds, was 22 feet long, and had a width of about 10 feet. On May 10, 1967, during the sixteenth glide flight leading up to powered flight, a landing accident severely damaged the vehicle and seriously injured the NASA pilot, Bruce Peterson. NASA pilots and researchers realized the M2-F2 had lateral control problems, even though it had a stability augmentation control system. When the M2-F2 was rebuilt at Dryden and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. The M2-F2/F3 was the first of the heavy-weight, entry-configuration lifting bodies. Its successful development as a research test vehicle answered many of the generic questions about these vehicles. NASA donated the M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner at Dryden from 1965 to 1969.
Advance Noise Control Fan II: Test Rig Fan Risk Management Study
NASA Technical Reports Server (NTRS)
Lucero, John
2013-01-01
Since 1995 the Advanced Noise Control Fan (ANCF) has significantly contributed to the advancement of the understanding of the physics of fan tonal noise generation. The 9'x15' WT has successfully tested multiple high speed fan designs over the last several decades. This advanced several tone noise reduction concepts to higher TRL and the validation of fan tone noise prediction codes.
Success in tutoring electronic troubleshooting
NASA Technical Reports Server (NTRS)
Parker, Ellen M.
1990-01-01
Two years ago Dr. Sherrie Gott of the Air Force Human Resources Laboratory described an avionics troubleshooting tutor being developed under the Basic Job Skills Research Program. The tutor, known as Sherlock, is directed at teaching the diagnostic procedures necessary to investigate complex test equipment used to maintain F-15 fighter aircraft. Since Dr. Gott's presentation in 1987, the tutor has undergone field testing at two Air Force F-15 flying wings. The results of the field test showed that after an average of 20 hours on the tutor, the 16 airmen in the experimental group (who average 28 months of experience) showed significant performance gains when compared to a control group (having a mean experience level of 37 months) who continued participating in the existing on-the-job training program. Troubleshooting performance of the tutored group approached the level of proficiency of highly experienced airmen (averaging approximately 114 months of experience), and these performance gains were confirmed in delayed testing six months following the intervention. The tutor is currently undergoing a hardware and software conversion form a Xerox Lisp environment to a PC-based environment using an object-oriented programming language. Summarized here are the results of the successful field test. The focus is on: (1) the instructional features that contributed to Sherlock's success; and (2) the implementation of these features in the PC-based version of the avionics troubleshooting tutor.
NASA Technical Reports Server (NTRS)
Peebles, Curtis
2006-01-01
The NASA Dryden Flight Research Center, in partnership with the NASA Langley Research Center and industrial contractors, conducted the first flight tests of a supersonic combustion ramjet (scramjet) in 2004. This was a revolutionary airbreathing engine able to operate at speeds above Mach 5, which carries potential for both high-speed atmospheric flight and as a space launcher. For the Dryden engineers, the X-43 program was the culmination of a nearly 60-year history of flight research, going back to the early days of supersonic flight, and to rocket planes such as the X-1, D-558-II Skyrocket, and the X-15. For the propulsion community, it marked a turning point in a quest that had taken nearly as long. The scramjet engine did not arise from the work of a single individual or from a single technological breakthrough. It evolved instead from work under way on ramjets in the early 1950s, and from research programs at the National Advisory Committee for Aeronautics (NACA) Lewis Research Center, at the U.S. Army Aberdeen Proving Ground, and by the U.S. Navy. Studies developed in the course of these disparate projects raised the possibility of supersonic combustion. Many researchers had considered the notion impractical due to the difficulty of stabilizing a flame front in a supersonic airflow. NACA researchers at Lewis attempted to test the idea's feasibility by burning aluminum borohydride in a supersonic wind tunnel. Sustained burning was believed to have been observed at Mach 1.5, Mach 2, and Mach 3 for as long as two seconds.
2018-05-24
The Gravity Recovery and Climate Experiment Follow-On mission, or GRACE-FO, began with a successful launch aboard a SpaceX Falcon 9 rocket from California’s Vandenberg Air Force Base on May 22, 2018. NASA’s Launch Services Program, based at Kennedy, served in an advisory role for the mission. Meanwhile, preparations continue for the upcoming launch of the Ionospheric Connection Explorer, or ICON.
A Snapshot Survey of The Most Massive Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Ebeling, Harald
2007-07-01
We propose the continuation of our highly successful SNAPshot survey of a sample of 125 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14 and Cycle15 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy interactions. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. All of our primary science goals require only the detection and characterisation of high-surface-brightness features and are thus achievable even at the reduced sensitivity of WFPC2. Because of their high redshift and thus compact angular scale our target clusters are less adversely affected by the smaller field of view of WFPC2 than more nearby systems. Acknowledging the broad community interest in this sample we waive our data rights for these observations. Due to a clerical error at STScI our approved Cycle15 SNAP program was barred from execution for 3 months and only 6 observations have been performed to date - reinstating this SNAP at Cycle16 priority is of paramount importance to reach meaningful statistics.
NASA Astrophysics Data System (ADS)
Tarlani, Aliakbar; Zarabadi, Mir Pouyan
2013-02-01
In a new approach, strong basic sites has been successfully prepared by loading of calcium nitrate (Ca) on organized nano-porous alumina (ONPA). The prepared CaONPAs were characterized by low-angle X-ray diffraction (XRD), N2 adsorption-desorption isotherms (Brunauer-Emmett-Teller (BET)-Barret-Joyner-Halenda (BJH)), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Measuring of the amount of the basic sites and the basicity was carried out by titration method, temperature-programmed desorption (TPD-CO2) and Hammett indicators. Resistance of the basic sites was also tested by washing with water. N2 sorption measurements showed that supporting of the calcium nitrate on ONPA can lead to the bimodal porosity at lower loading. BET surface area of the bare ONPA was 212 m2/g which decreased to 111 m2/g for the 25% of loading of Ca (25CaONPA). The results pointed out that CaONPA samples have basicity between 18.4 < H_ < 22 for 15 and 25% of loadings and well-preserved of the basicity after washing with water especially for 5 and 15% samples. Also no crystalline phase of CaO was observed for 25CaONPA which was calcined at 600 °C.
Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C
2014-02-28
Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
1978-05-01
controls and executes the jet plume flow field compu- tation. After each axial slice has been evaluated, the MAIN program calls subroutine SLICE to...input data; otherwise the execution is halted. 4.3.2 ARCCOS(X) This is a function subroutine which computes the principal value of the arc cosine of the... execution time available. Each successive case requires a title card (80 - character label in columns 1 - 80), followed by the INPUT NAMELIST. The data from
HgCdTe Surface and Defect Study Program.
1985-01-01
LWIR (x 0.2) HgCdTe surface will be so depleted in cations that the resulting equivajqnt alloy will be metallic or semimetallic (x < 0.17), and hence...spectrometry (PES) results on MWIR are applicable to the first 10 to 15A of the surface. The point here is that LWIR material may respond to passivation...processes to produce a fundamentally different result than does MWIR material, and LWIR should in fact be treated as a completely different material. These
Optical polarimetry and photometry of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Jannuzi, Buell T.; Smith, Paul S.; Elston, Richard
1993-01-01
We present the data from 3 years of monitoring the optical polarization and apparent brightness of 37 X-ray-selected BL Lacertae objects. The monitored objects include a complete sample drawn from the Einstein Extended Medium Sensitivity Survey. We confirm the BL Lac identifications for 15 of these 22 objects. We include descriptions of the objects and samples in our monitoring program and of the existing complete samples of BL Lac objects, highly polarized quasars, optically violent variable quasars, and blazars.
Keys to Sustaining Successful School Turnarounds
ERIC Educational Resources Information Center
Duke, Daniel L.
2006-01-01
To identify the changes associated with the school turnaround process, this article reviewed 15 case studies of elementary school turnaround initiatives that sustained improvements for at least two years. Changes were clustered into eight categories: leadership, school policy, programs, organizational processes, staffing, classroom practices,…
Bérard, A; Bréchat, P-H; Rymer, R; Londsdorfer, J
2009-02-01
According to the framework legislation promulgated as part of the reform of finance laws in France, quality is a mandatory feature of all governmental actions. In this context, this work was conducted to assess the construction cost of a national health program designed to promote physical and sports activities and prevent doping behaviors. This program was considered to have the characteristic features of a successful governmental health intervention. Four cost categories were evaluated: cost of the activity itself, transportation costs, communication costs and promotion costs. It was found that the program costs for 2002-2007 were 100,000 euro, with 15% of the costs in the communication category. Economic elements could be associated with factors of successful health service interventions in order to help decision makers responsible for the public interest and the consistency of public health actions.
10 CFR 420.15 - Minimum criteria for required program activities for plans.
Code of Federal Regulations, 2014 CFR
2014-01-01
.../vanpool matching and promotion campaign; (ii) Park-and-ride lots; (iii) Preferential traffic control for... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... efficiency standards for renovated buildings. (e) A traffic law or regulation which permits the operator of a...
10 CFR 420.15 - Minimum criteria for required program activities for plans.
Code of Federal Regulations, 2013 CFR
2013-01-01
.../vanpool matching and promotion campaign; (ii) Park-and-ride lots; (iii) Preferential traffic control for... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... efficiency standards for renovated buildings. (e) A traffic law or regulation which permits the operator of a...
10 CFR 420.15 - Minimum criteria for required program activities for plans.
Code of Federal Regulations, 2012 CFR
2012-01-01
.../vanpool matching and promotion campaign; (ii) Park-and-ride lots; (iii) Preferential traffic control for... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... efficiency standards for renovated buildings. (e) A traffic law or regulation which permits the operator of a...
30 CFR 926.15 - Approval of Montana regulatory program amendments.
Code of Federal Regulations, 2013 CFR
2013-07-01
....301(13), (34), (39), (46), (47), (64), (71), (73), (76), (79), (95), (103), (110), (111), (133); 17.24...(143); 17.24.302; 17.24.303(1)(w), (x), and (y); 17.24.305(2)(b)(i); 17.24.308(1)(b)(vii); 17.24.312(1...
30 CFR 926.15 - Approval of Montana regulatory program amendments.
Code of Federal Regulations, 2012 CFR
2012-07-01
....301(13), (34), (39), (46), (47), (64), (71), (73), (76), (79), (95), (103), (110), (111), (133); 17.24...(143); 17.24.302; 17.24.303(1)(w), (x), and (y); 17.24.305(2)(b)(i); 17.24.308(1)(b)(vii); 17.24.312(1...
30 CFR 926.15 - Approval of Montana regulatory program amendments.
Code of Federal Regulations, 2011 CFR
2011-07-01
....301(13), (34), (39), (46), (47), (64), (71), (73), (76), (79), (95), (103), (110), (111), (133); 17.24...(143); 17.24.302; 17.24.303(1)(w), (x), and (y); 17.24.305(2)(b)(i); 17.24.308(1)(b)(vii); 17.24.312(1...
30 CFR 926.15 - Approval of Montana regulatory program amendments.
Code of Federal Regulations, 2014 CFR
2014-07-01
....301(13), (34), (39), (46), (47), (64), (71), (73), (76), (79), (95), (103), (110), (111), (133); 17.24...(143); 17.24.302; 17.24.303(1)(w), (x), and (y); 17.24.305(2)(b)(i); 17.24.308(1)(b)(vii); 17.24.312(1...
Recent achievements using chemical vapor composite silicon carbide (CVC SiC)
NASA Astrophysics Data System (ADS)
Goodman, William A.; Tanaka, Clifford
2009-08-01
This annual review documents our progress towards inexpensive mass production of silicon carbide mirrors and optical structures. Results are provided for a NASA Small Business Technology Transfer (STTR) X-Ray Mirror project. Trex partnered with the University of Alabama-Huntsville Center for Advanced Optics (UAH-CAO) to develop fabrication methods for polished cylindrical and conical chemical vapor composite (CVCTM) SiC mandrels. These mandrels are envisioned as pre-forms for the replication of fused silica x-ray optics to be eventually used in the International X-Ray Observatory (IXO). CVC SiCTM offers superior high temperature stability, thermal and mechanical performance and polishability required for this precision replication process. In this program, Trex fabricated prototype mandrels with design diameters of 10.5cm, 20cm and 45cm. UAH-CAO was Trex's university partner in this effort and worked on polishing and metrology of the unusual x-ray mandrel geometries. UAH-CAO successfully developed an innovative interferometric method for measuring the CVC SiCTM x-ray mandrels based on a precision cylindrical lens system. UAH-CAO also developed finishing and polishing methods for CVC SiCTM that utilized a Zeeko IRP200 computer controlled polishing tool. The three technologies key technologies demonstrated in this program (near net shape forming of CVC SiCTM mandrels, the x-ray mandrel metrology and free-form polishing capability on CVC SiCTM) could enable cost-effective manufacture of the x-ray mandrels required for the International X-Ray Observatory (IXO).
Support to X-33/Resusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
2000-01-01
The X-33 Guidance, Navigation, and Control (GN&C) Peer Review Team (PRT) was formed to assess the integrated X-33 vehicle GN&C system in order to identify any areas of disproportionate risk for initial flight. The eventual scope of the PRT assessment encompasses the GN&C algorithms, software, avionics, control effectors, applicable models, and testing. The initial (phase 1) focus of the PRT was on the GN&C algorithms and the Flight Control Actuation Subsystem (FCAS). The PRT held meetings during its phase 1 assessment at X-33 assembly facilities in Palmdale, California on May 17-18, 2000 and at Honeywell facilities in Tempe, Arizona on June 7, 2000. The purpose of these meetings was for the PRT members to get background briefings on the X-33 vehicle and for the PRT team to be briefed on the design basis and current status of the X-33 GN&C algorithms as well as the FCAS. The following material is covered in this PRT phase 1 final report. Some significant GN&C-related accomplishments by the X-33 development team are noted. Some topics are identified that were found during phase 1 to require fuller consideration when the PRT reconvenes in the future. Some new recommendations by the PRT to the X-33 program will likely result from a thorough assessment of these subjects. An initial list of recommendations from the PRT to the X-33 program is provided. These recommendations stem from topics that received adequate review by the PRT in phase 1. Significant technical observations by the PRT members as a result of the phase 1 meetings are detailed. (These are covered in an appendix.) There were many X-33 development team members who contributed to the technical information used by the PRT during the phase 1 assessment, who supported presentations to the PRT, and who helped to address the many questions posed by the PRT members at and after the phase 1 meetings. In all instances the interaction between the PRT and the X-33 development team members was cordial and very professional. The members of the PRT are grateful for the time and effort applied by all of these individuals and hope that the contents of this report will help to make the X-33 program a success.
Giant Radio Flare of Cygnus X-3 in September 2016
NASA Astrophysics Data System (ADS)
Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.
2017-06-01
In the long-term multi-frequency monitoring program of the microquasars with RATAN-600 we discovered the giant flare from X-ray binary Cyg X-3 on 13 September 2016. It happened after 2000 days of the 'quiescent state' of the source passed after the former giant flare (˜18 Jy) in March 2011. We have found that during this quiet period the hard X-ray flux (Swift/BAT, 15-50 keV) and radio flux (RATAN-600, 11 GHz) have been strongly anti-correlated. Both radio flares occurred after transitions of the microquasar to a 'hypersoft' X-ray state that occurred in February 2011 and in the end of August 2016. The giant flare was predicted by us in the first ATel (Trushkin et al. (2016)). Indeed after dramatic decrease of the hard X-ray Swift 15-50 keV flux and RATAN 4- 11 GHz fluxes (a 'quenched state') a small flare (0.7 Jy at 4-11 GHz) developed on MJD 57632 and then on MJD 57644.5 almost simultaneously with X-rays radio flux rose from 0.01 to 15 Jy at 4.6 GHz during few days. The rise of the flaring flux is well fitted by a exponential law that could be a initial phase of the relativistic electrons generation by internal shock waves in the jets. Initially spectra were optically thick at frequencies lower 2 GHz and optically thin at frequencies higher 8 GHz with typical spectral index about -0.5. After maximum of the flare radio fluxes at all frequencies faded out with exponential law.
Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)
NASA Astrophysics Data System (ADS)
We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, Paul
2013-11-07
The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites asmore » well as contaminated sites around the United States and beyond.« less
NASA Technical Reports Server (NTRS)
Littlefield, Alan C.; Melton, Gregory S.
2000-01-01
The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-off" umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.
NASA Technical Reports Server (NTRS)
Littlefield, Alan C.; Melton, Gregory S.
1999-01-01
The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-ofF' umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.
Space shuttle system program definition. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
1972-01-01
The Phase B Extension of the Space Shuttle System Program Definition study was redirected to apply primary effort to consideration of space shuttle systems utilizing either recoverable pressure fed liquids or expendable solid rocket motor boosters. Two orbiter configurations were to be considered, one with a 15x60 foot payload bay with a 65,000 lb, due East, up-payload capability and the other with a 14x45 payload bay with 45,000 lb, of due East, up-payload. Both were to use three SSME engines with 472,000 lb of vacuum thrust each. Parallel and series burn ascent modes were to be considered for the launch configurations of primary interest. A recoverable pump-fed booster is included in the study in a series burn configuration with the 15x60 orbiter. To explore the potential of the swing engine orbiter configuration in the pad abort case, it is included in the study matrix in two launch configurations, a series burn pressure fed BRB and a parallel burn SRM. The resulting matrix of configuration options is shown. The principle objectives of this study are to evaluate the cost and technical differences between the liquid and solid propellant booster systems and to assess the development and operational cost savings available with a smaller orbiter.
X-36 in Flight over Mojave Desert
NASA Technical Reports Server (NTRS)
1997-01-01
The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Being Prepared on Lakebed for First Flight
NASA Technical Reports Server (NTRS)
1997-01-01
Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepare the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight in May 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 in Flight over Mojave Desert during 5th Flight
NASA Technical Reports Server (NTRS)
1997-01-01
The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
NASA Technical Reports Server (NTRS)
1997-01-01
The remotely-piloted X-36 Tailless Fighter Agility Research Aircraft climbs out from Rogers Dry Lake at the Dryden Flight Research Center on its first flight in May 1997. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden
NASA Technical Reports Server (NTRS)
1996-01-01
NASA and McDonnell Douglas Corporation (MDC) personnel remove protective covers from the newly arrived NASA/McDonnell Douglas Corporation X-36 Tailless Fighter Agility Research Aircraft. It arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 in Flight near Edge of Rogers Dry Lake during 5th Flight
NASA Technical Reports Server (NTRS)
1997-01-01
This photo shows the X-36 Tailless Fighter Agility Research Aircraft passing over the edge of Rogers Dry Lake as the remotely-piloted aircraft flies over Edwards Air Force Base on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Being Prepared on Lakebed for First Flight
NASA Technical Reports Server (NTRS)
1997-01-01
Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, a technician prepares the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 on Ramp Viewed from Above
NASA Technical Reports Server (NTRS)
1997-01-01
This look-down view of the X-36 Tailless Fighter Agility Research Aircraft on the ramp at NASA's Dryden Flight Research Center, Edwards, California, clearly shows the unusual wing and canard design of the remotely-piloted aircraft. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Being Prepared on Lakebed for First Flight
NASA Technical Reports Server (NTRS)
1997-01-01
Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepares the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden
NASA Technical Reports Server (NTRS)
1996-01-01
NASA and McDonnell Douglas Corporation (MDC) personnel wait to attach a hoist to the X-36 Tailless Fighter Agility Research Aircraft, which arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Taking off During First Flight
NASA Technical Reports Server (NTRS)
1997-01-01
The X-36 remotely piloted aircraft lifts off on its first flight, May 17, 1997, at NASA's Dryden Flight Research Center, Edwards, California. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Being Prepared on Lakebed for First Flight
NASA Technical Reports Server (NTRS)
1997-01-01
As the sun creeps above the horizon of Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California, technicians make final preparations for the first flight of the X-36 Tailless Fighter Agility Research Aircraft. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. More taxi and radio frequency tests were slated before it's first flight would be made. This took place on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft in flight
NASA Technical Reports Server (NTRS)
1997-01-01
The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
NASA Technical Reports Server (NTRS)
1996-01-01
NASA and McDonnell Douglas Corporation (MDC) personnel steady the X-36 Tailless Fighter Agility Research Aircraft following arrival at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The aircraft is being hoisted out of it's shipping crate. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft is steered to it's hangar at NASA Dryden Flight Research Center, Edwards, California, following arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.
NASA Technical Reports Server (NTRS)
Pallavicini, R.; Vaiana, G. S.; Kahler, S. W.; Krieger, A. S.
1975-01-01
Morphological and quantitative analyses are presented of a 1B solar flare that was observed with high spatial and temporal resolution by the S-054 grazing-incidence X-ray telescope aboard Skylab. It is found that the flare had the configuration of a compact region with a characteristic size of the order of 30 arcsec at the intensity peak, the interior of the region appeared to be highly structured and to consist of temporally changing complex loop systems, brightening over an extended part of the active region preceded the flare onset, and the impulsive phase was marked by rapid brightening in the loop structures. The X-ray photographs also indicate that the X-ray emission was centered over the neutral line of the longitudinal magnetic field, loop systems formed at successively increasing heights during the decay phase, and different regions of the flare had distinctly different light curves. The flux profiles for the different regions are shown to suggest continued heating during the decay phase. It is concluded that flare models should be based on a multiplicity of volumes ordered in loops of successively larger scale lengths and heights rather than on a single point of energy release and deposition.
Plasma Interactions With Spacecraft (I)
2009-04-01
with the Windows, Red hat LINUX, and MacOS X environments. We wrote N2kScriptRunner, a C++ code that runs a Nascap-2k script outside of the Java ...console-based and with a Java interface), a stand alone program that reads and writes Nascap-2k database files. This program has proved invaluable...surface currents for DSX and prototyped it in Java . A description of the algorithm and the prototype implementation is in Section 3. 1.5. DSX
NASA Technical Reports Server (NTRS)
1951-01-01
In the early days of transonic flight research, many aerodynamicists believed that eliminating conventional tail surfaces could reduce the problems created by shock wave interaction with the tail's lifting surfaces. To address this issue, the Army Air Forces's Air Technical Service awarded a contract to Northrop Aircraft Corporation on 5 April 1946 to build a piloted 'flying laboratory.' Northrop already had experience with tailless flying wing designs such as the N-1M, N-9M, XB-35, and YB-49. Subsequently, the manufacturer built two semi-tailless X-4 research aircraft, the first of which flew half a century ago. The X-4 was designed to investigate transonic compressibility effects at speeds near Mach 0.85 to 0.88, slightly below the speed of sound. Northrop project engineer Arthur Lusk designed the aircraft with swept wings and a conventional fuselage that housed two turbojet engines. It had a vertical stabilizer, but no horizontal tail surfaces. It was one of the smallest X-planes ever built, and every bit of internal space was used for systems and instrumentation. The first X-4 arrived at Muroc Air Force Base by truck on 15 November 1948. Over the course of several weeks, engineers conducted static tests, and Northrop test pilot Charles Tucker made initial taxi runs. Although small of stature, he barely fit into the diminutive craft. Tucker, a veteran Northrop test pilot, had previously flown the XB-35 and YB-49 flying wing bomber prototypes. Prior to flying for Northrop, he had logged 400 hours in jet airplanes as a test pilot for Lockheed and the Air Force. He would now be responsible for completing the contractor phase of the X-4 flight test program. Finally, all was ready. Tucker climbed into the cockpit, and made the first flight on 15 December 1948. It only lasted 18 minutes, allowing just enough time for the pilot to become familiar with the basic handling qualities of the craft. The X-4 handled well, but Tucker noted some longitudinal instability at all speeds. Data generated during the initial flight led to design changes that improved handling and performance. While the first aircraft underwent modifications, the second X-4 arrived at Muroc in early 1949. Heavy rains flooded the dry lakebed at Muroc, delaying further flight testing until 27 April. The first X-4 made a few more flights, but was beset by mechanical problems. Soon, the second aircraft became the workhorse of the contractor test program. Its first flight was accomplished on 7 June 1949. It was more completely instrumented than its stablemate, and didn't suffer from the same plague of malfunctions. The National Advisory Committee for Aeronautics (NACA) expressed interest in using the second X-4 for research, but was frustrated by the slow pace of the contractor's test phase. Both X-4 aircraft were grounded temporarily for installation of spin recovery parachutes, and improvements to the landing gear uplock system. After these tasks were completed, the first X-4 made its tenth and final flight on 26 January 1950. It was grounded, and used as a source of spare parts for the second aircraft. On 17 February, the remaining X-4 completed the contractor testing phase. The aircraft was then turned over to the NACA and the Air Force for a joint research program. NACA technicians prepared the aircraft, and made a number of design improvements. The joint NACA/USAF program consisted of 82 flights to evaluate handling qualities, stability and control, and performance at various lift-to-drag ratios. NACA pilots during the program included Stanley Butchart, George Cooper, Scott Crossfield, John Griffith, Walter Jones, John 'Jack' McKay, and Joe Walker. The Air Force pilots included B/Gen. Albert Boyd, Col. Frank 'Pete' Everest, Lt. Col. Richard Johnson, Capt. J. S. Nash, and Maj. Charles 'Chuck' Yeager. The final X-4 flight took place in September 1953. Further flights were planned, but a chronic fuel leak lead to cancellation of the program. NACA engineers had acquired a wealth of data, and the cost of repairing the leak could not be justified. Although the X-4 was never designed to fly at supersonic speeds, it gathered transonic data that proved that conventional tailless swept-wing configurations were unsuitable for supersonic performance. The design suffered from noticeable instability in all directions, increasing as it approached the speed of sound. It was, however, a valuable tool for dynamic stability research. Additionally low lift-to-drag data gathered with the X-4 was later beneficial to development of the X-15. On 10 March 1954, both X-4 aircraft were returned to the Air Force. The ejection seat from the second X-4 was retained by the NACA for use in the X-1E. The first X-4 is currently on display at the United States Air Force Academy in Colorado. The second aircraft is displayed at the USAF Museum in Ohio. This movie clip running approximately 7 seconds shows the Northrop X-4 in an air-to-air view climbing away from its chase aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com; Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com
2016-05-06
Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi{sub 2}O{sub 3} + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ{sub m}) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z{sub eff}) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.
The detection of X-ray variability in O stars
NASA Technical Reports Server (NTRS)
Snow, T. P., Jr.; Cash, W.; Grady, C. A.
1981-01-01
Seven O stars known to have strong, and sometimes variable, stellar winds have been observed repeatedly with the Imaging Proportional Counter on the Einstein Observatory, in a program designed to determine whether the X-ray fluxes from these stars are variable. In three cases, definite changes were seen, either on a time scale of a year (Iota Ori and Delta Ori) or five days (15 Mon). In two of these cases, the X-ray spectrum was harder when the overall flux was higher, indicating that some of the fluctuations may take place in a hot (approximately 10 to the 7th K) emitting region at the bottom of the winds.
TRAO Multibeam Receiver System and Key Science Programs
NASA Astrophysics Data System (ADS)
Lee, Youngung
2017-06-01
Taeduk Radio Astronomy Observatory (TRAO) is now equipped with a main controling computer with VxWorks operating system, a new receiver system, and a new backend system. The new receiver system(TRAO-SEQUOIA) is equipped with high-performing 16-pixel MMIC pre-amplifiers in a 4x4 array, operating within 85~115 GHz frequency range. The system temperature ranges from 150 K (86~110 GHz) to 450 K (115 GHz). The 2nd IF modules with the narrow band and the 8 channels with 4 FFT spectrometers allow to observe 2 frequencies simultaneously within the 85~100 or 100~115 GHz bands for all 16 pixels of the receiver. Radome replacement was completed successfully as of February 2017. In addition, a new servo system will be installed in 2017 summer. We provide OTF (On-The-Fly) as a main observing mode, and position switching mode is available as well. The backend system (FFT spectrometer) provides the 4096x2 channels with fine velocity resolution of about 0.05 km/sec (15 kHz) per channel, and their full spectra bandwidth is 60 MHz. Beam efficiency of the TRAO was measured to be about 46% - 54% (with less than 2% error) between 86 and 115 GHz bands and pointing errors of the 14m telescope were found be 4.4 arcsec in AZ direction and 6 arcsec in EL direction. Generally, we allocate 18 hours of telescope time a day from January to the middle of May, and from October to December. Three Key Science Programs had been selected in 2015 fall and they are supposed to have higher priority for telescope time.
FORMOSAT-3/COSMIC POD Data Processing and Initial Results
NASA Astrophysics Data System (ADS)
Tang, C.
2006-12-01
The six satellites of the collaborative Taiwan-U.S. FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) space program were successfully launched from Vandenberg, U.S.A. on April 15, 2006. As of September 7, 2006, one satellite (FM5) has already been transferred to the 800-km final orbit, while the other five satellites (FM1-4 and FM6) are currently waiting in the ~520-km parking orbit for subsequent orbit raising deployment. There are two GPS antennas with different orientation onboard each satellite whose measurements are used specifically for precise orbit determination (POD). The received GPS signals by the POD antennas were rather sparse and unstable in the initial 5 weeks. Since then, the available GPS measurements have gradually increased from 10-20% in the early stage to almost 90% in 11 weeks after the launch. For the two POD antennas (POD+X and POD-X), one antenna can perform normally and record observations from up to 9 GPS satellites in view; however, the other antenna is programmed to track up to 4 GPS satellites due to onboard memory limitation. For this reason, we first performed orbit computation using zero-difference GPS phases collected by the normal antenna. For each day's orbit computation, we designed a 6-hr (25%) overlap for inner orbital accuracy assessment, and overlap analysis shows that the achievable 3D RMS was around 19 cm, or 11 cm per axis. In a separate effort, orbit computation based on the lesser antenna was also performed. The orbital difference between the results obtained from the two antennas was significant, with a 3D RMS value of 64 cm. The early results indicate that more work is needed in order to incorporate GPS data from both antennas into a unified solution.
Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy
NASA Technical Reports Server (NTRS)
Domingo, George
1997-01-01
This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.
F-15 RPRV Attached Under the Wing of the B-52 Mothership in Flight
NASA Technical Reports Server (NTRS)
1973-01-01
This photograph shows one of NASA's 3/8th-scale F-15 remotely piloted research vehicles under the wing of the B-52 mothership in flight during 1973, the year that the research program began. The vehicle was used to make stall-spin studies of the F-15 shape before the actual F-15s began their flight tests. B-52 Project Description: NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant. - - - - - - - - - - - F-15A RPRV/SRV Project Description: In April of 1971, Assistant Secretary of the Air Force for Research and Development Grant Hanson sent a memorandum noting the comparatively small amount of research being conducted on stalls (losses of lift) and spins despite the yearly losses that they caused (especially of fighter aircraft). In the spring and summer of that year, NASA's Flight Research Center (redesignated in 1976 the Dryden Flight Research Center, Edwards, California) studied the feasibility of conducting flight research with a sub-scale fighter-type Remotely Piloted Research Vehicle (RPRV) in the stall-spin regime. In November, NASA Headquarters approved flight research for a 3/8-scale F-15 RPRV. It would measure aerodynamic derivatives of the aircraft throughout its angle-of-attack range and compare them with those from wind tunnels and full-scale flight. (Angle of attack refers to the angle of the wings or fuselage with respect to the prevailing wind.) The McDonnell Douglas Aircraft Co., builder of the full-size F-15, designed and constructed three 3/8-scale mostly fiberglass, unpowered F-15 RPRV's for a little more than $250,000 apiece (compared with $6.8 million for a full-size F-15). The FRC set up a dedicated RPRV control facility in a room on the first floor next to the hangar for the RPRV and set up a much more sophisticated control system than was used for an earlier RPRV--the Hyper III. The control facility featured a digital uplink capability, a ground computer, a television monitor, and a telemetry system. Launched from a B-52, the first F-15 RPRV flew its initial flight on October 12, 1973. The initial flights were recovered in mid-air by helicopters, but later flights employed horizontal landings by the remote research pilot, who 'flew' the aircraft from the RPRV control facility. Chosen because of the risks involved in spin testing a full-scale fighter aircraft, the remotely piloted research technique enabled the pilot to interact with the vehicle much as he did in normal flight. Flying remotely, however, called for some special techniques to make up for the cues available to a pilot in the airplane but not to a remote pilot. It also allowed the flight envelope to be expanded more rapidly than conventional flight research methods permitted for piloted vehicles. During its first 26 flights, through the end of 1975, flight research over an angle-of-attack range of minus 20 degrees to plus 53 degrees with the 3/8-scale vehicle in the basic F-15 configuration allowed FRC engineers to test the mathematical model of the aircraft in an angle-of-attack range not previously examined in flight research. The basic airplane configuration proved to be resistant to departure from straight and level flight, hence to spins; however, the vehicle could be flown into a spin using a technique developed in the simulator. Data obtained during the first 26 flights gave researchers a better understanding of the spin characteristics of the full-scale fighter. Researchers later obtained spin data with the vehicle in other configurations at angles of attack as large as minus 70 degrees and plus 88 degrees. There were 35 flights of the 3/8-scale F-15s by the end of 1978 and 52 flights by mid-July of 1981. These included some in which the vehicle--redesignated the Spin Research Vehicle after it was modified from the basic F-15 configuration--evaluated the effects of an elongated nose and a wind-tunnel-designed nose strake (among other modifications) on the airplane's stall/spin characteristics. Results of flight research with these modifications indicated that the addition of the nose strake increased the vehicle's resistance to departure from the intended flight path, especially entrance into a spin. Large differential tail deflections, a tail chute, and a nose chute all proved effective as spin recovery techniques, although it was essential to release the nose chute once it had deflated in order to prevent an inadvertent reentry into a spin. Overall, remote piloting with the 3/8-scale F-15 provided high-quality data about spin characteristics. The SRV was about 23 and one-half feet long and had a 16-foot wing span.
Kraschnewski, Jennifer L.; Hwang, Kevin O.; George, Daniel R.; Lehman, Erik B.; Sciamanna, Christopher N.
2014-01-01
Objectives As the prevalence of obesity in US adults continues to increase, addressing weight control will require an effective, lower-cost intervention. A model for delivering free peer-to-peer counseling has the potential to create a paradigm shift in the way weight and other chronic illnesses are addressed in the US. The objective of this study is to understand the potential for utilizing successful peer volunteers as counselors in weight control programs and as a possible intervention strategy to address the global obesity epidemic in a cost-effective manner. Study Design This cross-sectional study surveyed a nationwide panel of US adults (n=806) in 2010. Methods We created survey items to identify participant interest in three specific types of weight control programs; a free program led by successful peers, a paid program led by successful peers and a program led by trained paid professionals. Statistical analysis was conducted in 2011. Logistic regression was used to adjust for the effect of potential confounders on participant interest in different weight control programs and willingness to volunteer. Results More than three times as many subjects (27.4% v. 8.3%) were interested in the free peer-led program versus the expert-led paid option. Of participants who had ever had successful weight loss, 15% were interested in volunteering to help others lose weight. Conclusions Individuals appear to be willing to both attend and conduct peer volunteer-led weight control groups. Further research is necessary to develop and test interventions to assess the effectiveness of such interventions. PMID:25263838
Third order intermodulation distortion in HTS Josephson Junction downconverter at 12GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Katsumi; Hayashi, Kunihiko; Fujimoto, Manabu
1994-12-31
Here the authors first report on the microwave characteristics of the third order intermodulation distortion(IMD3) in High-Tc Superconductor (HTS) Josephson Junction (JJ) Downconverter at 12GHz. They have successfully developed high quality nonlinear YBCO microbridge Josephson junctions for such an active MMIC as a mixer with RF, LO, IF and bias filters, which have been fabricated on (100) MgO substrates with 20mm x 20mm x 0.5mm dimensions. The minimum conversion loss of the JJ mixer is 11 dB at very small local microwave input power LO= {minus}20dBm which is two order less than Schottky diode mixer. Consequently, this small optimum LOmore » power gives the small RF input power at which the output IF power of the YBCO mixer saturates. Two-tone third-order intercept point(IP3) performance is a significantly important figure of merit typically used to define linearity of devices and circuits. The RF input power = {minus}15dBm at the IP3 point is obtained for the YBCO mixer at 15K and LO = 10.935GHz with {minus}22dBm. The have successfully measured the dependence of IMD3 on temperature, bias current and LO power.« less
Konishi, Yasuhiro; Tsukiyama, Takeshi; Saitoh, Norizoh; Nomura, Toshiyuki; Nagamine, Shinsuke; Takahashi, Yoshio; Uruga, Tomoya
2007-06-01
X-ray absorption near-edge structure spectroscopy (XANES) was successfully employed to determine the gold valence in the metal-reducing bacterium Shewanella algae after exposure to a 1 mM aqueous HAuCl4 solution for 10-120 min. XANES spectra revealed the oxidation state of gold in the bacterial cells to be Au(0) without any contribution from Au(III), demonstrating that S. algae cells can reduce AuCl4- ions to elemental gold. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis confirmed that gold nanoparticles 5-15 nm in size were deposited in the periplasmic space of the bacterial cells; a preferable, cell surface location for the easy recovery of biogenic nanoparticles.
The Tunable XUV Imager (TXI) Sounding Rocket Payload
NASA Technical Reports Server (NTRS)
Brinton, John (Technical Monitor); Golub, Leon
2004-01-01
The TXI was flown successfully on 21 June 2001 (36.199 US). All systems functioned as planned and image data were acquired and sent to the ground. Unfortunately, due to a parachute failure the payload was destroyed. In this report we summarize results from the flight and provide detailed information on the high resolution X-ray imaging detector which was developed as part of the program.
VIPS: A Visual Imagery and Perception System; the Result of a Protocol Analysis. Volume 2
1974-05-01
note the difference between subject and program descriptions and renresentat.ons of this appendix and the previous appendix API , This is a (me eia...Figure 11.11.7(c) i R 0 c 1 k c Ik V U T f^ t * 2. 2. Z KOX * H S ool * i X ToU ♦ 5L X Tot.\\ * 1 » ToUK ♦ Z 2. •Vot^T. ♦ 1 1 TOLL...VSPEC (UO DP, SPEC TE TYPE VEPTEX),P.9 K~ 3 ft55 X5fl A53 X52 Aol) ) i7(CR E38 VSPEC DIAGONAL TYPE SIDE)...) .n[rnQirrT, . ilOIVAS A3a V2.5 A15
The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M.; Kastner, J. H.; Montez, R. Jr.
2014-10-20
We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted allmore » (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Huajuan; Zhao, Ze; Wang, Jing
2015-08-15
A series of novel Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} ( (0.01 ≤ x ≤ 0.20) phosphors for white light-emitting (W-LEDs) were successfully prepared by the solid state reaction technology at 973 K for 12 h. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. The emission spectra of the Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors consisted of some sharp emission peaks of Sm{sup 3+} ions centered at 565 nm, 605 nm, 650 nm, and 712 nm. The strongest one is located at 605 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2}more » transition of Sm{sup 3+}, generating bright orange–red light. The optimum dopant concentration of Sm{sup 3+} ions in Y{sub 2}Mo{sub 4}O{sub 15}:xSm{sup 3+} is around 5 mol% and the critical transfer distance of Sm{sup 3+} is calculated as 23.32 Å. The CIE chromaticity coordinates of the Y{sub 2}Mo{sub 4}O{sub 15}:0.05Sm{sup 3+} phosphors were located in the orange reddish region. The Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphors may be potentially used as red phosphors for white light-emitting diodes. - Graphical abstract: The excitation spectrum of Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} is composed of a broad band and some sharp f–f transitions. Under 407 nm excitation, the phosphor presents some sharp emission peaks of Sm{sup 3+} ions. - Highlights: • An orange–red emitting Y{sub 2}Mo{sub 4}O{sub 15}:Sm{sup 3+} phosphor has been firstly synthesized. • Their structures, luminescent properties have also been investigated. • The optical absorption edge for the molybdate lies around 325 nm. • The CIE chromaticity coordinates were located in the orange reddish region.« less
Zhang, Fei; Tashpolat, Tiyip; Ding, Jian-Li; Tian, Yuan; Mamat, Sawut
2009-02-01
With the establishment and implement of national and regional land use programming, to approach the technology and methodology of environmental assessment appropriate for the overall land use programming is of great significance. By using the theories of strategic environmental assessment and taking ecosystem services value as an evaluation index, a comprehensive assessment on the potential eco-environmental effects of 1996-2010 land use programming of Shaya County in Xinjiang Uygur Automous Region was made. The results showed that from 1996 to 2010, the total ecosystem services value of the County increased from 69.33 x 10(8) Yuan to 70.81 x 10(8) Yuan, with an annual increment of 0.15%, which suggested that this programming was basically reasonable. However, the common land expansion should be controlled strictly. The increase rate of eco-value was higher than that of GDP, indicating that Shaya County was of eco-value gaining. There were still some shortages in the programming; e.g., the area ratio of unutilized land (desert) would be 83.95% in 2010, and thus, the programming should be emended to increase the eco-benefit of land use.
NASA Technical Reports Server (NTRS)
Sherriff, Abigail
2015-01-01
The Field Test study is currently in full swing, preceded by the successful completion of the Pilot Field Test study that paved the way for collecting data on the astronauts in the medical tent in Kazakhstan. Abigail Sherriff worked alongside Logan Dobbe on one Field Test aspect to determine foot clearance over obstacles (5cm, 10cm, and 15cm) using APDM Inc. Internal Measurement Units (IMU) worn by the astronauts. They created a program to accurately calculate foot clearance using the accelerometer, magnetometer, and gyroscope data with the IMUs attached to the top of the shoes. To validate the functionality of their program, they completed a successful study on test subjects performing various tasks in an optical motion studio, considered a gold standard in biomechanics research. Future work will include further validation and expanding the program to include other analyses.
Localized Electron Heating by Strong Guide-Field Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Sugawara, Takumichi; Inomoto, Michiaki; Yamasaki, Kotaro; Ono, Yasushi; UTST Team
2015-11-01
Localized electron heating of magnetic reconnection was studied under strong guide-field (typically Bt 15Bp) using two merging spherical tokamak plasmas in Univ. Tokyo Spherical Tokamak (UTST) experiment. Our new slide-type two-dimensional Thomson scattering system documented for the first time the electron heating localized around the X-point. The region of high electron temperature, which is perpendicular to the magnetic field, was found to have a round shape with radius of 2 [cm]. Also, it was localized around the X-point and does not agree with that of energy dissipation term Et .jt . When we include a guide-field effect term Bt / (Bp + αBt) for Et .jt where α =√{ (vin2 +vout2) /v∥2 } , the energy dissipation area becomes localized around the X-point, suggesting that the electrons are accelerated by the reconnection electric field parallel to the magnetic field and thermalized around the X-point. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus,'' a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
ERIC Educational Resources Information Center
Western Interstate Commission for Higher Education, 2012
2012-01-01
Western Interstate Commission for Higher Education (WICHE) and its 15 member states work to improve access to higher education and ensure student success. Their student exchange programs, regional initiatives, and research and policy work allow them to assist constituents throughout the West and beyond. In fiscal 2013 WICHE's four units--Programs…
Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross.
Xu, K; Riaz, S; Roncoroni, N C; Jin, Y; Hu, R; Zhou, R; Walker, M A
2008-01-01
Resistance to the dagger nematode Xiphinema index has been an important objective in grape rootstock breeding programs. This nematode not only causes severe feeding damage to the root system, but it also vectors grapevine fanleaf virus (GFLV), the causal agent of fanleaf degeneration and one of the most severe viral diseases of grape. The established screening procedures for dagger nematode resistance are time consuming and can produce inconsistent results. A fast and reliable greenhouse-based system for screening resistance to X. index that is suitable for genetic studies and capable of evaluating breeding populations is needed. In this report, the dynamics of nematode numbers, gall formation, and root weight loss were investigated using a variety of soil mixes and pot sizes over a 52-week period. Results indicated that the number of galls formed was correlated with the size of the nematode population and with the degree of root weight loss. After inoculation with 100 nematodes, gall formation could be reliably evaluated in 4-8 weeks in most plant growth conditions and results were obtained 6 months more rapidly than past evaluation methods. This modified X. index resistance screening method was successfully applied to 185 of the 188 F(1) progeny from a cross of D8909-15 x F8909-17 (the 9621 population), which segregates for a form of X. index resistance originally derived from Vitis arizonica. Quantitative trait loci (QTL) analysis was carried out on both parental genetic maps of 255 markers using MapQTL 4.0. Results revealed that X. index resistance is controlled by a major QTL, designated Xiphinema index Resistance 1 (XiR1), near marker VMC5a10 on chromosome 19. The XiR1 QTL was supported by a LOD score of 36.9 and explained 59.9% of the resistance variance in the mapping population.
Ares I-X Flight Data Evaluation: Executive Overview
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Waits, David A.; Lewis, Donny L.; Richards, James S.; Coates, R. H., Jr.; Cruit, Wendy D.; Bolte, Elizabeth J.; Bangham, Michal E.; Askins, Bruce R.; Trausch, Ann N.
2011-01-01
NASA's Constellation Program (CxP) successfully launched the Ares I-X flight test vehicle on October 28, 2009. The Ares I-X flight was a developmental flight test to demonstrate that this very large, long, and slender vehicle could be controlled successfully. The flight offered a unique opportunity for early engineering data to influence the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office (APO) established a set of 33 flight evaluation tasks to correlate flight results with prospective design assumptions and models. The flight evaluation tasks used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. Included within these tasks were direct comparisons of flight data with preflight predictions and post-flight assessments utilizing models and processes being applied to design and develop Ares I. The benefits of early development flight testing were made evident by results from these flight evaluation tasks. This overview provides summary information from assessment of the Ares I-X flight test data and represents a small subset of the detailed technical results. The Ares Projects Office published a 1,600-plus-page detailed technical report that documents the full set of results. This detailed report is subject to the International Traffic in Arms Regulations (ITAR) and is available in the Ares Projects Office archives files.
Line profile variation in delta-Orionis A, l-Orionis A, and 15 Monocerotis
NASA Technical Reports Server (NTRS)
Grady, C. A.; Snow, T. P.; Cash, W. C.
1984-01-01
The results of a monitoring program with IUE and Einstein are presented for three stars, delta-Ori A, l-Ori A, and 15 Mon. Line profile variability is observed in the UV profiles accessible to IUE and the relation between the variation in the different ions suggests that the ionization level is varying in the winds of these stars. This is consistent with Einstein observations of soft X-ray variability for two of the stars.
[Microfabricated X-ray Optics Technology Development for the Constellation X-Mission
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2005-01-01
MIT has previously developed advanced methods for the application of silicon microstructures (so-called microcombs) in the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) technology development at the NASA Goddard Space Flight Center (GSFC). During the first year of the above Cooperative Agreement, MIT has developed a new, mature, potentially high- yield process for the manufacturing of microcombs that can be applied to a range of substrates independent of thickness. MIT also developed techniques to extract microcomb accuracy from an assembly truss metrology test stand and to extend the dynamic range of its Shack-Hartmann foil metrology tool. The placement repeatability of foil optics with microcombs in the assembly truss has been improved by a factor of two to approximately 0.15 micron. This was achieved by electric contact determination in favor of determining contact through force measurements. Development work on a stress-free thin foil holder was also supported by this agreement and successfully continued under a different grant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jing; Aguiar, Jeffery A.; Ferrere, Suzanne
Achieving solar-to-hydrogen efficiencies above 15% is key for the commercial success of photoelectrochemical water splitting devices. While tandem cells can reach those efficiencies, increasing the catalytic activity and long-term stability remains a significant challenge. We show that annealing a bilayer of amorphous titanium dioxide (TiO x) and molybdenum sulfide (MoS x) deposited onto GaInP 2 results in a photocathode with high catalytic activity (current density of 11 mA/cm -2 at 0 V vs. the reversible hydrogen electrode under 1 sun illumination) and stability (retention of 80% of initial photocurrent density over a 20 h durability test) for the hydrogen evolutionmore » reaction. Microscopy and spectroscopy reveal that annealing results in a graded MoS x/MoO x/TiO 2 layer that retains much of the high catalytic activity of amorphous MoS x but with stability similar to crystalline MoS 2. These findings demonstrate the potential of utilizing a hybridized, heterogeneous surface layer as a cost-effective catalytic and protective interface for solar hydrogen production.« less
NASA Astrophysics Data System (ADS)
Sreenivasu, T.; Tirupathi, P.; Prabahar, K.; Suryanarayana, B.; Chandra Mouli, K.
The solid solutions of (1-x) LaFeO3-xBaTiO3 (0.0≤x≤0.25) have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT) X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to x=0.25. The dielectric permittivity shows colossal dielectric constant (CDC) at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition x=0.15, further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of x. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe-O-Fe network of LaFeO3.
NASA Technical Reports Server (NTRS)
1958-01-01
Neil A. Armstrong joined the National Advisory Committee for Aeronautics at the Lewis Flight Propulsion Laboratory, Cleveland, Ohio, in 1955. He transferred to the NACA High-Speed Flight Station at Edwards Air Force Base, California, in July 1955, as an aeronautical research scientist. He became a research pilot later that year. Neil was named as one of nine astronauts for NASA's Gemini and Apollo Projects, leaving the Center for the National Aeronautics and Space Administration's Manned Spacecraft Center, Houston, Texas, in September 1962. Upon graduation from High School in 1947, Armstrong received a scholarship from the U.S. Navy. He enrolled at Purdue University to begin the study of aeronautical engineering. In 1949, the Navy called him to active duty and he became a navy pilot. In 1950, he was sent to Korea where he flew 78 combat missions from the carrier USS Essex in a Grumman F9F-2 Panther. He received the Air Medal and two Gold Stars. In 1952, Armstrong returned to Purdue University and graduated with a bachelors degree in aeronautical engineering in 1955. He later earned a masters degree in aerospace engineering from the University of Southern California. At the High-Speed Flight Station (which later became the NASA Dryden Flight Research Center) Armstrong served as project pilot on the North American F-100A and -C aircraft, McDonnell F-101, and the Lockheed F-104A. He also flew the Bell X-1B (4 flights, first on August 15, 1957), Bell X-5 (one flight, the last in the program, on October 25, 1955) and the Paresev. On November 30, 1960, Armstrong made his first flight in the X-15. He made a total of seven flights in the rocket plane reaching an altitude of 207,500 feet in the X-15-3 and a Mach number of 5.74 (3,989 mph) in the X-15-1. He left the Flight Research Center with a total of 2450 flying hours in more than 50 aircraft types. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong later accumulated a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966, he was commander of the Gemini 8 mission that performed the first successful docking of two vehicles in space. As spacecraft commander for the Apollo 11 lunar mission, on July 20, 1969, he became the first human to set foot on the Moon. In 1970 he was appointed Deputy Associate Administrator for Aeronautics at NASA Headquarters. He resigned in 1971. Neil wrote several technical reports and presented a number of research papers. In June 1962, the Octave Chanute Award was presented to Neil by the Institute of the Aerospace Sciences. Other awards received by Neil have included the NASA Distinguished Service Medal and the NASA Exceptional Service Medal.
10 CFR 420.15 - Minimum criteria for required program activities for plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... standards shall be adopted by the State as a model code for those local governments of the State for which... employees; (x) Urban area traffic restrictions; (xi) Geographical or time restrictions on automobile use; or... Organization, unless no Metropolitan Planning Organization exists in the urbanized area, and not be...
Flight vehicle thermal testing with infrared lamps
NASA Technical Reports Server (NTRS)
Fields, Roger A.
1992-01-01
The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.
Broad Specification Fuels Combustion Technology Program. Phase 2
1990-10-01
4 4C Where: M is the molecular weight of th hxth specie Nt is the mole fraction of the x specie a is the hydrogen to carbon ratio of the fuel...RATIO F’gure 7-15 Idle Emisions Characteristics of Variable Geometry Cornbusuom geometry combustor configurations as well. The remaining performance
Grigorian, A S; Nabiev, F Kh; Golovin, R V
2005-01-01
In experimental study on 15 rabbits (chinchilla) influence of titanium plates implanted lapped on adjacent tissues in the region of the lower jaw body (comparison group) and carbon material with added boron in the concentrations of 8 and 15% (the study group) was studied. Results of the experimental-morphological investigation show that carbon-based materials with boron addition (with its content 8 and 15%) did not impede adaptive rebuilding of bone tissues and in particular bone structure regeneration in the process of reactive rebuilding of the "maternal" bone. Moreover, as the result of reactive processes developing in osseous tissues after implantation of the tested materials their successful integration in surrounding tissue structures was detected.
xPerm: fast index canonicalization for tensor computer algebra
NASA Astrophysics Data System (ADS)
Martín-García, José M.
2008-10-01
We present a very fast implementation of the Butler-Portugal algorithm for index canonicalization with respect to permutation symmetries. It is called xPerm, and has been written as a combination of a Mathematica package and a C subroutine. The latter performs the most demanding parts of the computations and can be linked from any other program or computer algebra system. We demonstrate with tests and timings the effectively polynomial performance of the Butler-Portugal algorithm with respect to the number of indices, though we also show a case in which it is exponential. Our implementation handles generic tensorial expressions with several dozen indices in hundredths of a second, or one hundred indices in a few seconds, clearly outperforming all other current canonicalizers. The code has been already under intensive testing for several years and has been essential in recent investigations in large-scale tensor computer algebra. Program summaryProgram title: xPerm Catalogue identifier: AEBH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 93 582 No. of bytes in distributed program, including test data, etc.: 1 537 832 Distribution format: tar.gz Programming language: C and Mathematica (version 5.0 or higher) Computer: Any computer running C and Mathematica (version 5.0 or higher) Operating system: Linux, Unix, Windows XP, MacOS RAM:: 20 Mbyte Word size: 64 or 32 bits Classification: 1.5, 5 Nature of problem: Canonicalization of indexed expressions with respect to permutation symmetries. Solution method: The Butler-Portugal algorithm. Restrictions: Multiterm symmetries are not considered. Running time: A few seconds with generic expressions of up to 100 indices. The xPermDoc.nb notebook supplied with the distribution takes approximately one and a half hours to execute in full.
Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.
Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi
2009-05-30
Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.
Development of double-sided silicon strip detectors for solar hard x-ray observation
NASA Astrophysics Data System (ADS)
Saito, Shinya; Ishikawa, Shin-Nosuke; Watanabe, Shin; Odaka, Hirokazu; Sugimoto, Soichiro; Fukuyama, Taro; Kokubun, Motohide; Takahashi, Tadayuki; Terada, Yukikatsu; Tajima, Hiroyasu; Tanaka, Takaaki; Krucker, Säm; Christe, Steven; McBride, Steve; Glesener, Lindsay
2010-07-01
The Focusing Optics X-ray Solar Imager (FOXSI) is a rocket experiment scheduled for January 2011 launch. FOXSI observes 5 - 15 keV hard X-ray emission from quiet-region solar flares in order to study the acceleration process of electrons and the mechanism of coronal heating. For observing faint hard X-ray emission, FOXSI uses focusing optics for the first time in solar hard X-ray observation, and attains 100 times higher sensitivity than RHESSI, which is the present solar hard X-ray observing satellite. Now our group is working on developments of both Double-sided Silicon Strip Detector (DSSD) and read-out analog ASIC "VATA451" used for FOXSI. Our DSSD has a very fine strip pitch of 75 μm, which has sufficient position resolution for FOXSI mirrors with angular resolution (FWHM) of 12 arcseconds. DSSD also has high spectral resolution and efficiency in the FOXSI's energy range of 5 - 15 keV, when it is read out by our 64-channel analog ASIC. In advance of the FOXSI launch, we have established and tested a setup of 75 μm pitch DSSD bonded with "VATA451" ASICs. We successfully read out from almost all the channels of the detector, and proved ability to make a shadow image of tungsten plate. We also confirmed that our DSSD has energy resolution (FWHM) of 0.5 keV, lower threshold of 5 keV, and position resolution less than 63 μm. These performance satisfy FOXSI's requirements.
November 15, 1991 X Flare -- The Movie: Hα , Soft X-rays, and Hard X-rays and Magnetic Fields
NASA Astrophysics Data System (ADS)
Wulser, J.-P.; Acton, L.; Sakao, T.; Canfield, R.; Kosugi, T.; Slater, G.; Strong, K.; Tsuneta, S.
1992-05-01
The X1.5/3B flare on 1991 November 15, 22:33 UT was well observed by the Hα Imaging Spectrograph and the Vector Magnetograph (Stokes Polarimeter) at Mees Solar Observatory, and by the Soft- and Hard X-ray Telescopes (SXT and HXT) aboard YOHKOH. We have combined this multispectral dataset into a series of temporally and spatially co-aligned video movies and analyzed the morphological and temporal relationships of the various flare emissions. The earliest manifestations of this flare include unresolved preflare SXR brightenings very close to the magnetic neutral line and preflare motions of filaments seen in Hα . In the flare core, SXR and Hα emission show moving and rotating coronal structures which we interpret as a successive brightening of adjacent loops during the main phase of the flare. The HXR source shows much more dramatic variability than the SXR source, and they are clearly not cospatial. On the other hand, there is a close spatial relationship between the HXR and Hα blue wing emission sites. The Hα , HXR, and SXR images all point to acceleration and heating in a region that starts close to the neutral line and moves outward during each HXR burst and during the gradual phase. Spectacular mass ejections are seen in both SXR and Hα , with clear unwinding of tightly coiled structures, acceleration of X-ray and Hα material to velocities of order 1000 km/s, and a striking thermal bifurcation between hot and cold plasma.
Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 20-Inch Mach 6 Air Tunnel
NASA Technical Reports Server (NTRS)
Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.
2000-01-01
Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.
Pierce, Aaron R.; King, S.L.
2007-01-01
Flooding and sedimentation are two of the dominant disturbances that influence tree species composition and succession in floodplain forests. The importance of these disturbances may be most notable during the germination and establishment phases of plant succession. Channelization of most alluvial systems in the southeastern United States has caused dramatic and systematic alterations to both hydrologic and sedimentation processes of floodplain systems. We determined the influence of these altered abiotic processes on the germination and growth of two common floodplain tree species: swamp chestnut oak (Quercus michauxii Nutt.) and overcup oak (Q. lyrata Walt.). Flood durations of 0 days, 15 days, and 30 days prior to germination was a factor in germination, but the effect varied by species. For instance, ovcrcup oak, which has a higher tolerance to flooding than swamp chestnut oak, had higher germination rates in the flooded treatments (15-day x?? = 78% and 30-day x?? = 85%) compared to the non-flooded treatment (x?? = 54%). In contrast, germination rates of swamp chestnut oak were negatively affected by the 30-day flood treatment. Sediment deposition rates of 2 cm of top soil, 2 cm of sand, and 8 cm of sand also affected germination, but were secondary to flood duration. The main effect of the sediment treatment in this experiment was a reduction in above-ground height of seedlings. Our study provides evidence for the importance of both flooding and sedimentation in determining tree species composition in floodplain systems, and that tolerance levels to such stressors vary by species. ?? 2007, The Society of Wetland Scientists.
NASA Technical Reports Server (NTRS)
Williams, Walter C.
1991-01-01
The historical events that led to the development of the X-15 research aircraft are presented. Some of the topics presented include: (1) manned airplane performance regions; (2) X-15 flight problems; (3) design characteristics for conceptual aircraft; (4) analysis of X-15 accident potential; (5) X-15 performance requirements; and (6) milestones in the development of the X-15.
Co-Operation Between FADD and Bin1 in Prostate Cancer Apoptosis
2006-04-01
manuscript. Research in our laboratory is supported bygrants from the National Institutes of Health, the US Army Breast Cancer and Prostate Cancer Research...Programs and the Susan G. Komen Breast Cancer Foundation.References [1] Wang X. Genes Dev 2001;15(22):2922–33. [2] Huang DS, Strasser A. Cell 2000;103...This work was supported by U.S. Army breast and prostate cancer research programs grants DAMD17-02-1-0612 and DAMD17- 03-1-0049. REFERENCES Ali, S
Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Cooke, Daniel L.; Wilson, Mark W.; Thorne, Bradford R. H.; Sincic, Ryan S.; Arenson, Ronald L.; Saeed, Maythem
2014-01-01
Purpose To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. Materials and Methods The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. Results The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. Conclusion In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization under MR imaging guidance and was comparable to standard x-ray guidance. © RSNA, 2014 Online supplemental material is available for this article. PMID:24533872
Design development of graphite primary structures enables SSTO success
NASA Astrophysics Data System (ADS)
Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.
Active cooling from the sixties to NASP
NASA Technical Reports Server (NTRS)
Kelly, H. Neale; Blosser, Max L.
1994-01-01
Vehicles, such as the X-15 or the National Aerospace Plane (NASP), traveling at hypersonic speeds through the earth's atmosphere experience aerodynamic heating. The heating can be severe enough that a thermal protection system is required to limit the temperature of the vehicle structure. Although several categories of thermal protection systems are mentioned briefly, the majority of the present paper describes convectively cooled structures for large areas. Convective cooling is a method of limiting structural temperatures by circulating a coolant through the vehicle structure. Efforts to develop convectively cooled structures during the past 30 years, from early engine structures which were intended to be tested on the X-15 to structural panels fabricated and tested under the NASP program, are described. Many of the lessons learned from these research efforts are presented.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1999-01-01
This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning. For example, the section on computer hardware and software contains specific findings related to required longer range safety-related actions. NASA can be proud of its accomplishments this past year, but must remain ever vigilant, particularly as ISS assembly begins to accelerate. The Panel will continue to focus on both the short- and long-term aspects of risk management and safety planning. This task continues to be made manageable and productive by the excellent cooperation the Panel receives from both NASA and its contractors. Particular emphasis will continue to be directed to longer term workforce and program planning issues as well as the immediate risks associated with ISS assembly and the initial flights of the X-33 and X-34. Section 2 of this report presents specific findings and recommendations generated by ASAP activities during 1998. Section 3 contains more detailed information in support of these findings and recommendations. Appendix A is a current roster of Panel members, consultants, and staff. Appendix B contains NASA's response to the findings and recommendations from the 1997 ASAP Annual Report. Appendix C details the fact-finding activities of the Panel in 1998. During the year, Mr. Richard D. Blomberg was elected chair of the Panel and Vice Admiral (VADM) Robert F Dunn was elected deputy chair. VADM Bernard M. Kauderer moved from consultant to member. Mr. Charles J. Donlan retired from the Panel after many years of meritorious service. Ms. Shirley C. McCarty and Mr. Robert L. ('Hoot') Gibson joined the Panel as consultants.
Hai, Henglin; Li, Huatao; Chen, Yang; Li, Qiang; Wu, Shenggang; Lili, Wang; Yan, Lei; Xiaoying, Zhou
2013-03-01
To investigate the effectiveness of pedicled superior gluteal artery perforator bilateral quadrilobed flaps for repairing large sacrococcygeal pressure sores. Between June 2003 and August 2011, 6 paraplegia patients with large sacrococcygeal pressure sores were repaired with the pedicled superior gluteal artery perforator bilateral quadrilobed flaps. There were 2 males and 4 females with an average age of 45.6 years (range, 37-62 years). The mean disease duration was 8.4 months (range, 3-26 months). According to National Pressure Ulcer Advisory Panel (NPUAP) standard, 6 cases rated as degree IV. The size of pressure sores ranged from 15 cm x 13 cm to 18 cm x 16 cm. The size of flaps ranged from 18 cm x 14 cm to 21 cm x 15 cm. After operation, all flaps survived successfully. The wounds healed by first intention in 5 cases; partial dehiscence of incision occurred in 1 case, which was cured after dressing change for 26 days. Six patients were followed up 6-24 months (mean, 12.5 months). The appearance and texture of the flaps were smooth and soft with good elasticity and no ulceration. Pedicled superior gluteal artery perforator bilateral quadrilobed flaps can repair large sacrococcygeal pressure sores. The appearance of flaps is smooth and has good compression-resistance effect.
Luginbuehl, Helena; Lehmann, Corinne; Baeyens, Jean-Pierre; Kuhn, Annette; Radlinger, Lorenz
2015-11-17
Pelvic floor muscle training is effective and recommended as first-line therapy for female patients with stress urinary incontinence. However, standard pelvic floor physiotherapy concentrates on voluntary contractions even though the situations provoking stress urinary incontinence (for example, sneezing, coughing, running) require involuntary fast reflexive pelvic floor muscle contractions. Training procedures for involuntary reflexive muscle contractions are widely implemented in rehabilitation and sports but not yet in pelvic floor rehabilitation. Therefore, the research group developed a training protocol including standard physiotherapy and in addition focused on involuntary reflexive pelvic floor muscle contractions. The aim of the planned study is to compare this newly developed physiotherapy program (experimental group) and the standard physiotherapy program (control group) regarding their effect on stress urinary incontinence. The working hypothesis is that the experimental group focusing on involuntary reflexive muscle contractions will have a higher improvement of continence measured by the International Consultation on Incontinence Modular Questionnaire Urinary Incontinence (short form), and - regarding secondary and tertiary outcomes - higher pelvic floor muscle activity during stress urinary incontinence provoking activities, better pad-test results, higher quality of life scores (International Consultation on Incontinence Modular Questionnaire) and higher intravaginal muscle strength (digitally tested) from before to after the intervention phase. This study is designed as a prospective, triple-blinded (participant, investigator, outcome assessor), randomized controlled trial with two physiotherapy intervention groups with a 6-month follow-up including 48 stress urinary incontinent women per group. For both groups the intervention will last 16 weeks and will include 9 personal physiotherapy consultations and 78 short home training sessions (weeks 1-5 3x/week, 3x/day; weeks 6-16 3x/week, 1x/day). Thereafter both groups will continue with home training sessions (3x/week, 1x/day) until the 6-month follow-up. To compare the primary outcome, International Consultation on Incontinence Modular Questionnaire (short form) between and within the two groups at ten time points (before intervention, physiotherapy sessions 2-9, after intervention) ANOVA models for longitudinal data will be applied. This study closes a gap, as involuntary reflexive pelvic floor muscle training has not yet been included in stress urinary incontinence physiotherapy, and if shown successful could be implemented in clinical practice immediately. NCT02318251 ; 4 December 2014 First patient randomized: 11 March 2015.
NASA Technical Reports Server (NTRS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-01-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
NASA Astrophysics Data System (ADS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-08-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
Staff Training Tips: Focusing on Early Childhood Education and Services.
ERIC Educational Resources Information Center
2003
This document collects 15 brief guides to staff training in inclusive early childhood education settings. Guides offer examples of successful programs, research findings, and practical tips. Titles are: (1) "Giving Families Better Access to Early Intervention Services"; (2) "Creating Integrated Classrooms that Work"; (3) "Seamless Transition…
Job-Sharing: A Survey of the Literature and a Plan for Academic Libraries.
ERIC Educational Resources Information Center
Bobay, Julie
1988-01-01
Discusses the social context of job sharing, reported benefits and disadvantages, and general issues that affect the successful implementation of job sharing programs. Issues specifically affecting job sharing in academic libraries are outlined, and methods for dealing with these issues are suggested. (15 references) (CLB)
Regularization of soft-X-ray imaging in the DIII-D tokamak
Wingen, A.; Shafer, M. W.; Unterberg, E. A.; ...
2015-03-02
We developed an image inversion scheme for the soft X-ray imaging system (SXRIS) diagnostic at the DIII-D tokamak in order to obtain the local soft X-ray emission at a poloidal cross-section from the spatially line-integrated image taken by the SXRIS camera. The scheme uses the Tikhonov regularization method since the inversion problem is generally ill-posed. The regularization technique uses the generalized singular value decomposition to determine a solution that depends on a free regularization parameter. The latter has to be chosen carefully, and the so called {\\it L-curve} method to find the optimum regularization parameter is outlined. A representative testmore » image is used to study the properties of the inversion scheme with respect to inversion accuracy, amount/strength of regularization, image noise and image resolution. Moreover, the optimum inversion parameters are identified, while the L-curve method successfully computes the optimum regularization parameter. Noise is found to be the most limiting issue, but sufficient regularization is still possible at noise to signal ratios up to 10%-15%. Finally, the inversion scheme is applied to measured SXRIS data and the line-integrated SXRIS image is successfully inverted.« less
2010-09-01
DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13 . SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS...consideration of a U.S. military strike), peacefully return North Korea to the NPT and freeze its nuclear program 19 months later. 13 In the process...lifted the nuclear freeze and in January 2003 withdrew from 13 Redefining Success the NPT, citing two main reasons: U.S. failure to honor the reactor
2006-12-01
Terry Shaffer of the USGS-Northern Prairies Wildlife Research Center and Eileen Kirsch of the USGS-Upper Midwest Environmental Sciences Center...years that variation in chick survival may be the most important factor in overall reproductive success (i.e., Kirsch 1996), monitoring nest success at...Center (NPWRC) o Jennifer Stucker, USGS, NPWRC o Eileen Kirsch , USGS, Upper Midwest Environmental Sciences Center o Mark Sherfy, USGS, NPWRC o
Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
Structural characterization of LiCrxMn2-xO4 via a simple reflux technique
NASA Astrophysics Data System (ADS)
Purwaningsih, Dyah; Roto, Roto; Sutrisno, Hari; Purwanto, Agus
2017-03-01
LiCrxMn2-xO4 (x=0; 0.02; 0.04; 0.06; 0.08, 0.10) have been successfully synthesized via a facile and simple reflux technique. The SEM-EDS data confirm the presence of Cr, Mn and O elements in the products, while the XRD pattern suggests that the materials have well-developed cubic crystals. Direct method was applied to extract structural parameters of LiCrxMn2-xO4 using the Fullprof and Oscail software in WinPlotr package program. Materials were refined in the crystal system, and space group of structures Fd3m phase were then identified. The lattice parameters decrease with the decrease in Cr content. The highest Li-O bond length was found for LiCr0.10Mn1.90O4. It was observed that there is no significant change in particle size as Cr content increased.
Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho
2014-01-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299
Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho
2014-11-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.
Zheutlin, Alexander R; Deshpande, Sagar S; Nelson, Noah S; Kang, Stephen Y; Gallagher, Kathleen K; Polyatskaya, Yekaterina; Rodriguez, Jose J; Donneys, Alexis; Ranganathan, Kavitha; Buchman, Steven R
2016-05-01
The purpose of this study is to determine if intraoperatively placed bone marrow stem cells (BMSCs) will permit successful osteocyte and mature bone regeneration in an isogenic murine model of distraction osteogenesis (DO) following radiation therapy (XRT). Lewis rats were split into three groups, DO only (Control), XRT followed by DO (xDO) and XRT followed by DO with intraoperatively placed BMSCs (xDO-BMSC). Coronal sections from the distraction site were obtained, stained and analyzed via statistical analysis with analysis of variance (ANOVA) and subsequent Tukey or Games-Howell post-hoc tests. Comparison of the xDO-BMSC and xDO groups demonstrated significantly improved osteocyte count (87.15 ± 10.19 vs. 67.88 ± 15.38, P = 0.00), and empty lacunae number (2.18 ± 0.79 vs 12.34 ± 6.61, P = 0.00). Quantitative analysis revealed a significant decrease in immature osteoid volume relative to total volume (P = 0.00) and improved the ratio of mature woven bone to immature osteoid (P = 0.02) in the xDO-BMSC compared with the xDO group. No significant differences were found between the Control and xDO-BMSC groups. In an isogenic murine model of DO, BMSC therapy assuaged XRT-induced cellular depletion, resulting in a significant improvement in histological and histomorphometric outcomes. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dance, David R.; McVey, Graham; Sandborg, Michael P.; Persliden, Jan; Carlsson, Gudrun A.
1999-05-01
A Monte Carlo program has been developed to model X-ray imaging systems. It incorporates an adult voxel phantom and includes anti-scatter grid, radiographic screen and film. The program can calculate contrast and noise for a series of anatomical details. The use of measured H and D curves allows the absolute calculation of the patient entrance air kerma for a given film optical density (or vice versa). Effective dose can also be estimated. In an initial validation, the program was used to predict the optical density for exposures with plastic slabs of various thicknesses. The agreement between measurement and calculation was on average within 5%. In a second validation, a comparison was made between computer simulations and measurements for chest and lumbar spine patient radiographs. The predictions of entrance air kerma mostly fell within the range of measured values (e.g. chest PA calculated 0.15 mGy, measured 0.12 - 0.17 mGy). Good agreement was also obtained for the calculated and measured contrasts for selected anatomical details and acceptable agreement for dynamic range. It is concluded that the program provides a realistic model of the patient and imaging system. It can thus form the basis of a detailed study and optimization of X-ray imaging systems.
Soil microbiological composition and its evolution along with forest succession in West Siberia
NASA Astrophysics Data System (ADS)
Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil
2015-04-01
Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid age, and from mid age to mature forest. On the contrary, azotobacter disappears in mature forest while nitrifiers decline by several times from young to mid age forest. Large variation in microbiological activity was observed between sites reaching different succession stage, however further studies are needed to discriminate between effects of the site productivity and forest age.
A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.
Koga, Y; McNeilage, C; Searls, J H; Ohshima, S
2001-01-01
A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.
Field measurements and modeling of dilution in the wake of a US navy frigate.
Katz, C N; Chadwick, D B; Rohr, J; Hyman, M; Ondercin, D
2003-08-01
A field measurement and computer modeling effort was made to assess the dilution field of pulped waste materials discharged into the wake of a US Navy frigate. Pulped paper and fluorescein dye were discharged from the frigate's pulper at known rates. The subsequent particle and dye concentration field was then measured throughout the wake by a following vessel using multiple independent measures. Minimum dilution of the pulped paper reached 3.2 x 10(5) within 1900 m behind the frigate, or about 8 min after discharge. Independent measures typically agreed within 25% of one another and within 20% of model predictions. Minimum dilution of dye reached 2.3 x 10(5) at a down-wake distance of approximately 3500 m, or roughly 15 min. Comparison to model measurements were again within 20%. The field test was not only successful at characterizing wake dilution under one set of at-sea conditions, but was successful at validating the computer model used for assessing a wide range of ships and conditions.
East Europe Report, Economic and Industrial Affairs, No. 2400.
1983-05-18
ducts, such as, for instance, oil, natural gas , coal, steel and cement. The socialist countries participate in large-scale successful joint programs of...which there are not many in international practice. Regarding their impact and significance, the joint construction and integration of natural gas ...separators; —reduced pollution (fallout of flue ashes and concentration of gaseous pol- lutants, particularly SO2 and N0X in ground layers of the
NASA and X PRIZE Announce Winners of Lunar Lander Challenge
2009-11-05
NASA Administrator Charles Bolden gives opening remarks at an awards ceremony for the Northrop Grumman Lunar Lander Challenge at the Rayburn House Office Building on Nov. 5, 2009, in Washington, DC. NASA's Centennial Challenges program gave $1.65 million in prize money to a pair of aerospace companies that successfully simulated landing a spacecraft on the moon and lifting off again. Photo Credit: (NASA/Carla Cioffi)
Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.
Sutherland, Jeffrey J; Nandigam, Ravi K; Erickson, Jon A; Vieth, Michal
2007-01-01
Docking methods are used to predict the manner in which a ligand binds to a protein receptor. Many studies have assessed the success rate of programs in self-docking tests, whereby a ligand is docked into the protein structure from which it was extracted. Cross-docking, or using a protein structure from a complex containing a different ligand, provides a more realistic assessment of a docking program's ability to reproduce X-ray results. In this work, cross-docking was performed with CDocker, Fred, and Rocs using multiple X-ray structures for eight proteins (two kinases, one nuclear hormone receptor, one serine protease, two metalloproteases, and two phosphodiesterases). While average cross-docking accuracy is not encouraging, it is shown that using the protein structure from the complex that contains the bound ligand most similar to the docked ligand increases docking accuracy for all methods ("similarity selection"). Identifying the most successful protein conformer ("best selection") and similarity selection substantially reduce the difference between self-docking and average cross-docking accuracy. We identify universal predictors of docking accuracy (i.e., showing consistent behavior across most protein-method combinations), and show that models for predicting docking accuracy built using these parameters can be used to select the most appropriate docking method.
A program continuation to develop processing procedures for advanced silicon solar cells
NASA Technical Reports Server (NTRS)
Avery, J. E.; Scott-Monck, J. A.
1976-01-01
Shallow junctions, aluminum back surface fields and tantalum pentoxide (Ta205) antireflection coatings coupled with the development of a chromium-palladium-silver contact system, were used to produce a 2 x 4 cm wraparound contact silicon solar cell. One thousand cells were successfully fabricated using batch processing techniques. These cells were 0.020 mm thick, with the majority (800) made from nominal ten ohm-cm silicon and the remainder from nominal 30 ohm-cm material. Unfiltered, these cells delivered a minimum AMO efficiency at 25 C of 11.5 percent and successfully passed all the normal in-process and acceptance tests required for space flight cells.
German national femtosecond technology project (FST)
NASA Astrophysics Data System (ADS)
Dausinger, Friedrich
2002-06-01
The German federal government started the funding of a national project intended to exploit the potential of femtosecond technology. In a forgoing competition five research consortia had been successful and have started now together with an adjoin research consortium their investigations in the following fields: (i) micro-machining of technical materials for microstructuring and drilling, (ii) medical therapy in: ophthalmology, dentistry, neurology and ear surgery, (iii) metrology, (iv) laser safety, (v) x- ray generation. Lasers, systems and technologies required in these potential fields of applications will be investigated. The program aims at industrial success and is dominated by industrial partners, therefore. The more fundamental research is done in university institutes and research centers.
NASA Technical Reports Server (NTRS)
Withington, J. R.; Williams, W. F.
1982-01-01
Williams and Withington (1979) have considered a prototype X-S-band feedhorn which enabled simultaneous X- and S-band reception from a Cassegrain antenna. This feedhorn has quite successfully demonstrated an alternate method to the standard Deep Space Network (DSN) system of multiple subreflectors and dichroic plate for dual-band reception. In connection with a Network Consolidation Program, involving centralized control of existing antennas and construction of new reflector antennas, a second-generation feedhorn/combiner was conceived to show that this common-aperture feedhorn system was capable of performing all necessary functions the DSN would be called upon to perform with existing and future X-S-band spacecraft. Attention is given to the feedhorn concept, the combiner concept, the first and the second generation of the horn, Sand X-band tuning, and planned capabilities. The feedhorn greatly extends the state of the art in DSN performance and will enhance DSN capabilities in the future.
X-38 Experimental Aeroheating at Mach 10
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Weilmuenster, K. James; Alter, Stephan J.; Merski, N. Ronald
2001-01-01
This report provides an update of the hypersonic aerothermodynamic wind tunnel test program conducted at the NASA Langley Research Center in support of the X-38 program. Global surface heat transfer distributions were measured on 0.0177 and 0.0236 scale models of the proposed X-38 configuration at Mach 10 in air. The parametrics that were investigated primarily include freestream unit Reynolds numbers of 0.6 to 2.2 million per foot and body flap deflections of 15, 20, and 25 deg for an angle-of-attack of 40 deg. The model-scale variance was tested to obtain laminar, transitional, and turbulent heating levels on the defected bodyflaps. In addition, a limited investigation of forced boundary layer transition through the use of discrete roughness elements was performed. Comparisons of the present experimental results to computational predictions and previous experimental data were conducted Laminar, transitional, and turbulent heating levels were observed on the deflected body flap, which compared favorably to the computational results and to the predicted heating based on the flight aerothermodynamic database.
Effects of different resistance training frequencies on flexibility in older women
Carneiro, Nelson H; Ribeiro, Alex S; Nascimento, Matheus A; Gobbo, Luís A; Schoenfeld, Brad J; Achour Júnior, Abdallah; Gobbi, Sebastião; Oliveira, Arli R; Cyrino, Edilson S
2015-01-01
Objective The main purpose of the investigation reported here was to analyze the effect of resistance training (RT) performed at different weekly frequencies on flexibility in older women. Participants and methods Fifty-three older women (≥60 years old) were randomly assigned to perform RT either two (n=28; group “G2x”), or three (n=25; group “G3x”) times per week. The RT program comprised eight exercises in which the participants performed one set of 10–15 repetitions maximum for a period of 12 weeks. Anthropometric, body-composition, and flexibility measurements were made at baseline and post-study. The flexibility measurements were obtained by a fleximeter. Results A significant group-by-time interaction (P<0.01) was observed for frontal hip flexion, in which G3x showed a higher increase than G2x (+12.8% and +3.0%, respectively). Both groups increased flexibility in cervical extension (G2x=+19.1%, G3x=+20.0%), right hip flexion (G2x=+14.6%, G3x=+15.9%), and left hip flexion (G2x=+25.7%, G3x=+19.2%), with no statistical difference between groups. No statistically significant differences were noted for the increase in skeletal muscle mass between training three versus two times a week (+7.4% vs +4.4%, respectively). Conclusion Twelve weeks of RT improves the flexibility of different joint movements in older women, and the higher frequency induces greater increases for frontal hip flexion. PMID:25767380
Use of novel nest boxes by carmine bee-eaters (Merops nubicus) in captivity.
Elston, Jennifer J; Carney, Jennifer; Quinones, Glorieli; Sky, Christy; Plasse, Chelle; Bettinger, Tammie
2007-01-01
Carmine bee-eaters make attractive additions to zoo aviaries but breeding programs have had challenges and limited success. The objectives of this study were to document nesting behavior of Carmine bee-eaters in a captive setting and compare reproductive success between a novel nest box (plastic, 17 x 30 x 22 cm) and a PVC pipe model used previously (30 cm long, 8 cm in diameter). Three bee-eater pairs were given access to seven nest chambers (six novel boxes, one PVC model). Behavioral observations occurred during a 15-min period in the morning or afternoon before egg production and continued until chicks fledged for a total of 87 observation periods (21.75 hr). All occurrences by an individual bird entering or exiting a nest tunnel, food provision, and the time (min) spent inside a nest cavity were documented. Additionally, daily temperature within each nest chamber was recorded. Before eggs were produced the average daily temperature (23.02 degrees C) within the nest chambers did not differ, suggesting that nest cavity choice was not influenced by temperature. No differences were detected among pairs in percent of observed time spent inside their nest cavities or number of times a nest tunnel was entered during the incubation or fledging periods. During incubation females spent a greater percent of observed time inside the nest cavity than males (P=0.02). During the fledging period food provision did not differ between the pairs, however males entered their nest tunnels more often per hour than females (P=0.03), and males tended to provide food more often than females (P=0.053). Two pairs nested in novel nest boxes and successfully fledged one chick each. The pair that nested in the PVC model did not fledge a chick. A nest box that aids in keeping eggs intact is essential for breeding bee-eaters in captivity, and maintaining captive populations will provide opportunities for zoo visitors to enjoy these birds and will reduce the need to remove birds from the wild. Zoo Biol 0:1-13, 2007. (c) 2007 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
National Committee on United States-China Relations, New York, NY.
This collection of 15 curriculum projects is the result of a summer seminar in China for teachers and scholars. Projects in the collection are: (1) "Perspectives on Modern Political/Social Issues in China" (Sandy Conlon); (2) "Ancient History X Projects/China" (Michael Corey); (3) "Education and Development: China, a Case…
McDonald, Paige L; Harwood, Kenneth J; Butler, Joan T; Schlumpf, Karen S; Eschmann, Carson W; Drago, Daniela
2018-12-01
Intensive courses (ICs), or accelerated courses, are gaining popularity in medical and health professions education, particularly as programs adopt e-learning models to negotiate challenges of flexibility, space, cost, and time. In 2014, the Department of Clinical Research and Leadership (CRL) at the George Washington University School of Medicine and Health Sciences began the process of transitioning two online 15-week graduate programs to an IC model. Within a year, a third program also transitioned to this model. A literature review yielded little guidance on the process of transitioning from 15-week, traditional models of delivery to IC models, particularly in online learning environments. Correspondingly, this paper describes the process by which CRL transitioned three online graduate programs to an IC model and details best practices for course design and facilitation resulting from our iterative redesign process. Finally, we present lessons-learned for the benefit of other medical and health professions' programs contemplating similar transitions. CRL: Department of Clinical Research and Leadership; HSCI: Health Sciences; IC: Intensive course; PD: Program director; QM: Quality Matters.
McDonald, Paige L.; Harwood, Kenneth J.; Butler, Joan T.; Schlumpf, Karen S.; Eschmann, Carson W.; Drago, Daniela
2018-01-01
ABSTRACT Intensive courses (ICs), or accelerated courses, are gaining popularity in medical and health professions education, particularly as programs adopt e-learning models to negotiate challenges of flexibility, space, cost, and time. In 2014, the Department of Clinical Research and Leadership (CRL) at the George Washington University School of Medicine and Health Sciences began the process of transitioning two online 15-week graduate programs to an IC model. Within a year, a third program also transitioned to this model. A literature review yielded little guidance on the process of transitioning from 15-week, traditional models of delivery to IC models, particularly in online learning environments. Correspondingly, this paper describes the process by which CRL transitioned three online graduate programs to an IC model and details best practices for course design and facilitation resulting from our iterative redesign process. Finally, we present lessons-learned for the benefit of other medical and health professionsʼ programs contemplating similar transitions. Abbreviations: CRL: Department of Clinical Research and Leadership; HSCI: Health Sciences; IC: Intensive course; PD: Program director; QM: Quality Matters PMID:29277143
Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2
NASA Astrophysics Data System (ADS)
Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.
2015-12-01
The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.
NASA Technical Reports Server (NTRS)
Cruddace, R. G.; Brandenstein, D. C.; Creighton, J. O.; Gutschewski, G.; Lucid, S. W.; Nagel, S. R.; Fabian, J. M.; Fenimore, E. E.; Shrewsberry, D. J.; Zimmermann, D.
1990-01-01
The first Spartan mission is documented. The Spartan program, an outgrowth of a joint Naval Research Laboratory (NRL)/National Aeronautics and Space Administration (NASA)-Goddard Space Flight Center (GSFC) development effort, was instituted by NASA for launching autonomous, recoverable payloads from the Space Shuttle. These payloads have a precise pointing system and are intended to support a wide range of space-science observations and experiments. The first Spartan, carrying an NRL X-ray astronomy instrument, was launched by the orbiter Discovery (STS51G) on June 20, 1985 and recovered successfully 45 h later, on June 22. During this period, Spartan 1 conducted a preprogrammed series of observations of two X-ray sources: the Perseus cluster of galaxies and the center of our galaxy. The mission was successful from both on engineering and a scientific viewpoint. Only one problem was encountered, the attitude control system (ACS) shut down earlier than planned because of high attitude control system gas consumption. A preplanned emergency mode then placed Spartan 1 into a stable, safe condition and allowed a safe recovery. The events are described of the mission and presents X-ray maps of the two observed sources, which were produced from the flight data.
ERIC Educational Resources Information Center
Heenan, Barbara; Helms, Jenifer V.
2013-01-01
Inverness Research has conducted a "legacy study" focusing on a series of philanthropic investments aimed at improving science education in the San Francisco South Bay Area that extended for over 15 years. Roughly nine school districts enjoyed a steady stream of support for science education improvement that began with funding from the…
Joseph A. Walker after X-15 flight #2-14-28
1961-03-30
Joseph A. Walker was a Chief Research Pilot at the NASA Dryden Flight Research Center during the mid-1960s. He joined the NACA in March 1945, and served as project pilot at the Edwards flight research facility on such pioneering research projects as the D-558-1, D-558-2, X-1, X-3, X-4, X-5, and the X-15. He also flew programs involving the F-100, F-101, F-102, F-104, and the B-47. Walker made the first NASA X-15 flight on March 25, 1960. He flew the research aircraft 24 times and achieved its fastest speed and highest altitude. He attained a speed of 4,104 mph (Mach 5.92) during a flight on June 27, 1962, and reached an altitude of 354,300 feet on August 22, 1963 (his last X-15 flight). He was the first man to pilot the Lunar Landing Research Vehicle (LLRV) that was used to develop piloting and operational techniques for lunar landings. Walker was born February 20, 1921, in Washington, Pa. He lived there until graduating from Washington and Jefferson College in 1942, with a B.A. degree in Physics. During World War II he flew P-38 fighters for the Air Force, earning the Distinguished Flying Cross and the Air Medal with Seven Oak Clusters. Walker was the recipient of many awards during his 21 years as a research pilot. These include the 1961 Robert J. Collier Trophy, 1961 Harmon International Trophy for Aviators, the 1961 Kincheloe Award and 1961 Octave Chanute Award. He received an honorary Doctor of Aeronautical Sciences degree from his alma mater in June of 1962. Walker was named Pilot of the Year in 1963 by the National Pilots Association. He was a charter member of the Society of Experimental Test Pilots, and one of the first to be designated a Fellow. He was fatally injured on June 8, 1966, in a mid-air collision between an F-104 he was piloting and the XB-70.
NASA Astrophysics Data System (ADS)
Lv, Qun-Chen; Li, Ying; Zhong, Zhi-Kui; Wu, Hui-Jun; He, Fu-An; Lam, Kwok-Ho
2018-05-01
To improve the dielectric performance of high-dielectric-constant conductive filler/polymer composites, polyaniline was deposited on exfoliated graphite nanoplates (xGNPs) by in-situ polymerization method to form polyaniline (PANI) coated xGNPs (xGNPs@PANI) as the conductive filler for the oxidized styrene-butadienestyrene copolymer (SBS-FH) containing both hydroxyl and formyloxy groups. The results of TEM, SEM, FTIR, TGA, Raman spectrum, XPS, and WAXD showed that PANI had been coated onto the surface of xGNPs successfully. The xGNPs@PANI/SBS-FH composites were prepared by a simple solution-blending method and the homogenous distribution of xGNPs@PANI in the SBS-FH matrix was confirmed by SEM. The presence of xGNPs@PANI was found to significantly improve the dielectric properties of resultant composite compared to the unmodified xGNPs. For example, the xGNPs@PANI/SBS-FH composite near percolation threshold filled with 9.38 vol.% xGNPs@PANI showed a dielectric constant of 56.8 and a dielectric loss factor of 0.51 at 1000 Hz, while the corresponding values of xGNPs (1.19 vol.%)/SBS composite were 15.96 and 2.91 at 1000 Hz, respectively. In addition, the incorporation of xGNPs@PANI into SBS-FH could effectively enhance the thermal conductivity of resultant xGNPs@PANI/SBS-FH composite.
Hüsler, Gebhard; Werlen, Egon; Rehm, Jürgen
2005-01-01
It is difficult to draw causal conclusions about the effectiveness of secondary prevention programs for adolescents at risk, when the programs use a variety of different interventions. The Action Plan is an instrument that is designed to make collection of such data possible. This allows calculating different kinds of intervention patterns for each participant and program, which, in combination with outcome measures, gives an estimate of successful vs. less successful interventions. The study compared intervention patterns from 12 different sites in a national intervention program in Switzerland. The program, called supra-f (www.supra-f.ch), started in 1999 and will end in 2005. Results are presented from the ongoing study with approximately 600 adolescents. We calculated effect sizes (ES) to compare interventions with outcome measures. Effect sizes (ES) are presented on well being, coping, self-esteem, delinquency, and substance use (cigarettes, alcohol, cannabis) in relation to intervention packages, risk groups (low, moderate, high), and age (two groups: 11-15 and 16-20 years of age) using data collected from 1999-2002.
High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures
NASA Technical Reports Server (NTRS)
Neurgaonkar, R. R.; Nelson, J. G.
1999-01-01
The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and Epsilon. The challenge was to find PZT compositions that maintained high d(sub ij) and Epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.
High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures
NASA Technical Reports Server (NTRS)
Neurgaonkar, R. R.; Nelson, J. G.
1999-01-01
The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and epsilin. The challenge was to find PZT compositions that maintained high d(sub ij) and epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manigandan, D; Kumar, M; Mohandas, P
Purpose: To study the impact of different photon beam combination during VMAT planning and treatment delivery. Methods: Five prostate patients with no nodal involvement were chosen for the study and only prostate was considered as target (7920cGy/44fractions). In each case, three different VMAT plans were generated with two arcs (200°–160°&160°–200°). First plan used only 6MV in both arcs (6X-6X) and second utilized 6MV&15MV (6X-15X), whereas third one used 15MV&15MV (15X-15X). For consistency, all the plans were generated by the same planner using Monaco− treatment planning system (V5.1) for Elekta Synergy− linear accelerator with 1cm leaf-width. For plan comparison, target meanmore » dose, conformity index (CI)=Planning target volume (PTV) covered by 95% of prescription dose/PTV were analyzed. Mean doses of bladder, rectum, left femur and right femur were analyzed. Integral dose (liter-Gray) to normal tissue (patient volume minus PTV), total monitor unit (MU) required to deliver a plan and gamma pass rate for each plan was analyzed. Results: The CI for PTV was 0.9937±0.0037, 0.9917±0.0033, and 0.9897±0.0048 for 6X-6X, 6X-15X and 15X-15X, respectively. Mean dose to target slightly increases with the decrease of energy. Mean doses to bladder were 3546.23±692.13cGy, 3487.43±715.53cGy and 3504.40±683.1cGy for 6X-6X, 6X-15X and 15X-15X, respectively. Mean doses to rectum were 4294.60±309.5cGy, 4277.07±279.93cGy and 4290.77±379.07cGy. Mean doses to left femur were 2737.13±545.93cGy, 2668.67±407.12cGy and 2416.77±300.73cGy and mean doses to the right femur were 2682.70±460.81cGy, 2722.58±541.92cGy and 2598.57±481.83cGy. Higher Integral doses to normal tissue observed for 6X-6X (163.06±24.6 Litre-Gray) followed by 6X-15X (154.35±24.74 Litre-Gray) and 15X-15X (145.84±26.03 Litre-Gray). Average MU required to deliver one fraction was 680.75±72.09, 634.81±95.07 and 605.06±114.65. Gamma pass rates were 99.83±0.21, 99.53±0.27 and 99.2±0.20. Conclusion: 6X-15X VMAT plan offer dosimetric advantage compared to 6X-6X in terms of lesser MU and integral dose without significant compromise in plan quality, where as in 15X-15X, neutron contamination risk is relatively higher.« less
Alaska Plants and Trees. Grade 3. Revised. Anchorage School District Elementary Science Program.
ERIC Educational Resources Information Center
Defendorf, Jean, Ed.
This unit includes 15 lessons on Alaskan plants and trees for third graders. It describes materials, supplementary materials including books and films, use of process skill terminology, unit objectives, vocabulary, background information (including the information source), field trip organization, succession, and major plants. Included are: (1)…
Working People and Lifelong Learning. A Study of the Impact of an Employee Development Scheme.
ERIC Educational Resources Information Center
Beattie, Andy
A British study verified whether the educational participation of Ford Motor Company's manual workers significantly increased following introduction of the Employee Development and Assistance Program (EDAP) and identified the features that contributed to its success. Over the past 15 years, studies of working class adults' educational…
Rekindling Minority Enrollment. New Directions for Community Colleges, Number 74.
ERIC Educational Resources Information Center
Angel, Dan, Ed.; Barrera, Adriana, Ed.
1991-01-01
A variety of community college programs and services designed to enhance minority student participation and success in higher education are described in this volume. Issues related to minority student recruitment, retention, and transfer to four-year institutions, and to minority staff professional development are explored in the following 15…
Fighting Poverty: What Works and What Doesn't.
ERIC Educational Resources Information Center
Danziger, Sheldon H., Ed.; Weinberg, Daniel H., Ed.
The 15 essays in this book discuss the success and failure of federal anti-poverty programs since the 1960s. Titles (and authors) are: (1) "Introduction" (Sheldon H. Danziger and Daniel H. Weinberg); (2) "Public Spending for the Poor: Trends, Prospects, and Economic Limits" (Gary Burtless); (3) "Antipoverty Policy: Effects on the Poor and the…
Succeeding in Graduate School Online: Tips from Successful Students
ERIC Educational Resources Information Center
Payne, Denise A.; Johnson, Julie M.
2005-01-01
The purpose of this project was to provide a resource for distance education graduate students or their instructors to help students excel in their online programs. The researchers interviewed 15 people, consisting of current students and recent graduates. Participants provided information about the nature of online courses, why these courses were…
NASA Astrophysics Data System (ADS)
Miller, K. C.; Garcia, S. J.; Houser, C.; GeoX Team
2011-12-01
An emerging challenge in science, technology, engineering and math (STEM) education is the recruitment of underrepresented groups in those areas of the workforce. This paper describes the structure and first-year results of the Geosciences Exploration Summer Program (GeoX) at Texas A&M University. Recent evidence suggest that pipeline programs should target junior and senior high school students who are beginning to seriously consider future career choices and appropriate college programs. GeoX is an overnight program that takes place during the summer at Texas A&M University. Over the course of a week, GeoX participants interact with faculty from the College of Geosciences, administrators, current students, and community leaders through participation in inquiry-based learning activities, field trips, and evening social events. The aim of this project is to foster a further interest in pursuing geosciences as an undergraduate major in college and thereby increase participation in the geosciences by underrepresented ethnic minority students. With funding from industry and private donors, high achieving rising junior and rising senior students, with strong interest in science and math, were invited to participate in the program. Students and their parents were interviewed before and after the program to determine if it was successful in introducing and enhancing awareness of the: 1) various sub-disciplines in the geosciences, 2) benefits of academia and research, 3) career opportunities in each of those fields and 4) college admission process including financial aid and scholarship opportunities. Results of the survey suggest that the students had a very narrow and stereotypical view of the geosciences that was almost identical to the views of their parents. Following the program, the students had a more expanded and positive view of the geosciences compared to the pre-program survey and compared to their parents. While it remains to be seen how many of those students will apply to a geosciences program, the level of interest and the number of students identifying the geosciences as a likely college and career choice greatly increased. Students identified the wide range of field and laboratory activities (including atmospheric soundings, GPR, coring, etc.) and the excitement of the faculty involved as key aspects of the program and for introducing and enhancing their view of the geosciences.
A Three-Year Program of Micro- and Nano-System Technology Development for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Canizares, Claude R.
1997-01-01
For many years the work at MIT aimed at the development of new concepts and technologies for space experiments in high-energy astrophysics, but not explicitly supported by flight programs, has been supported. This work has yielded new devices and techniques for X-ray astronomy, primarily low-noise, deep-depletion charge-coupled devices (CCDS) for spectrally-resolved X-ray imaging, and high-performance transmission gratings for high-resolution X-ray spectroscopy. Among the most significant recent achievements have been the development by G. Ricker and associates of the X-ray CCD camera flying on ASCA, and currently in development for AXAF and Astro-E, and the development by C. Canizares and associates of thick, 200 nm-period transmission gratings employing the phenomenon of phase shifting for high-resolution X-ray spectroscopy up to energies of 8- 1 0 keV that is essential for the operation of the AXAF High Energy Transmission Grating Spectrometer (HETGS). Through the current SR&T grant, the latter technology is now being extended successfully to the fabrication of 100 nm-period transmission gratings, which have twice the dispersion of the AXAF gratings. We note that, among other outcomes, the modest investments of past SR&T Grants at MIT resulted in the development of the key technologies for fully one-half of the scientific instrumentation on AXAF. In addition, NASA flight programs that have benefited from previous SR&T support at MIT include the SAS 3 X-ray Observatory, which carried the first rotation modulation collimator, the Focal Plane Crystal Spectrometer (FPCS) on the Einstein Observatory, the CCD cameras on ASCA and planned for Astro-E, the High Energy Transient Experiment (HETE), the Solar EUV Monitor on the Solar and Heliospheric Observatory (SOHO), the Medium Energy Neutral Atom imager (MENA) on the Image for Magnetopause-to-aurora Global Exploration (IMAGE) mission, and the recently-approved Two Wide-Angle Imaging Neutral-atom Spectrometers (TWINS) Mission of Opportunity.
Wen, Yufeng; Zhang, Zhiping; Li, Xianxiang; Xia, Dan; Ma, Jun; Dong, Yuanyuan; Zhang, Xinwei
2018-03-05
Monitoring the treatment outcomes of tuberculosis and determining the specific factors associated with unsuccessful treatment outcome are essential to evaluate the effectiveness of tuberculosis control program. This study aimed to assess treatment outcomes and explore the factors associated with unsuccessful outcomes among new pulmonary smear positive and negative tuberculosis patients in Anqing, China. A nine-year retrospective study was conducted using data from Anqing Center for Diseases Prevention and Control. New pulmonary tuberculosis patients treated with two six-month regimens were investigated. Non-conditional logistic regression was performed to calculate odds ratios and 95% confidence intervals for factors associated with unsuccessful outcomes. Among 22,998 registered patients (16,939 males, 6059 females), 64.54% were smear-positive patients. The treatment success rates was 95.02% for smear-positive patients and 95.00% for smear-negative patients. Characteristics associated with an higher risk of unsuccessful treatment among smear-positive patients included aged above 35 years, treatment management model of self-medication, full-course management and supervision in intensive phase, unchecked chest X-ray, cavity in chest X-ray, and miliary shadow in chest X-ray, while normal X-ray was negative factor. Unsuccessful treatment among smear-negative patients was significantly associated with age over 45 years, treatment management model of full-course management, unchecked chest X-ray, presence of miliary shadow in chest X-ray and delay over 51 days. Tuberculosis treatment in Anqing area was successful and independent of treatment regimens. Special efforts are required for patients with unsuccessful outcomes.
3. COMPLETE X15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ ...
3. COMPLETE X-15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ OF X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Experimental Supersonic Combustion Research at NASA Langley
NASA Technical Reports Server (NTRS)
Rogers, R. Clayton; Capriotti, Diego P.; Guy, R. Wayne
1998-01-01
Experimental supersonic combustion research related to hypersonic airbreathing propulsion has been actively underway at NASA Langley Research Center (LaRC) since the mid-1960's. This research involved experimental investigations of fuel injection, mixing, and combustion in supersonic flows and numerous tests of scramjet engine flowpaths in LaRC test facilities simulating flight from Mach 4 to 8. Out of this research effort has come scramjet combustor design methodologies, ground test techniques, and data analysis procedures. These technologies have progressed steadily in support of the National Aero-Space Plane (NASP) program and the current Hyper-X flight demonstration program. During NASP nearly 2500 tests of 15 scramjet engine models were conducted in LaRC facilities. In addition, research supporting the engine flowpath design investigated ways to enhance mixing, improve and apply nonintrusive diagnostics, and address facility operation. Tests of scramjet combustor operation at conditions simulating hypersonic flight at Mach numbers up to 17 also have been performed in an expansion tube pulse facility. This paper presents a review of the LaRC experimental supersonic combustion research efforts since the late 1980's, during the NASP program, and into the Hyper-X Program.
42GHz ECRH assisted Plasma Breakdown in tokamak SST-1
NASA Astrophysics Data System (ADS)
Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.
2015-03-01
In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.
1988-09-01
defense programs lost far more to inefficient procedures than to fraud and dishonesty * (President’s Commission, l986c:15). Based on the Commission...recommendations from current studies, lessons learned from a successful program, and DOD expert opinions to develop an acquisition management strategy that...established for the alternative(s) selected in the preceding phase. 5. In the concept demonstration/validation phase the technical risk and economic
2011 Agile (Scrum) Workshop Held in Baltimore, Maryland on November 14-15, 2011
2011-11-15
have success- fully implemented Agile Development within DoD. SUSI MCKEE OC2IS Program Manager, U.S. Air Force Susana V. McKee has 25 years of DoD T...AGILE WILL WORK IN DOD: THREE EXAMPLES u Ms. Kelly Goshorn, Patriot Excalibur (PEX) Program Manager, U.S. Air Force u Ms. Susi McKee, Operational...OPS PEX Team: Internal •Devs/SMEs/Testers •Architecture Committee •Etc. none Future implementation, not Current release Big R/ Little r I n
Implementation of the TOMS contamination control requirements in the former USSR
NASA Technical Reports Server (NTRS)
Abrams, Eve M.
1992-01-01
The American Total Ozone Mapping Spectrometer (TOMS) was integrated with the Russian Meteor-3 spacecraft and launched on August 15, 1991. Although the TOMS instrument was sensitive to both particulate and molecular contamination, the program for Meteor-3 had not formerly addressed contamination control in ground operations. In order to accommodate the TOMS cleanliness requirements, a contamination control program was successfully established from inception at both the Meteor-3 spacecraft plant near Moscow and at the launch site in Plesetsk.
The Stardust: A Successful Encounter with the Remarkable Comet Wild 2
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Anderson, J. D.; Atkins, K.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T. C.; Economou, T.; Hanner, M. S.; Hoerz, F.
2004-01-01
On January 2, 2004 the Stardust spacecraft completed a close flyby of comet Wild2 (P81). Flying at a relative speed of 6.1 km/s within 237km of the 5 km nucleus, the spacecraft took 72 close-in images, measured the flux of impacting particles and did in-situ compositional analysis of freshly released dust with a time-of-flight mass spectrometer. The primary goal of the mission is to collect >500 particles >15 m diameter and return them to Earth on January 15, 2006. The cometary particles ranging in size from a micron to approx.100 microns were collected in low density silica aerogel. After returning over a hundred 2x4x3 cm aerogel collection cells will be processed at the curatorial facility at the NASA Johnson Space Center and 5 to 100 micron size extracted cometary particles will be distributed to analysts by a system that will be based on the allocation procedures for cosmic dust, Antarctic meteorites and lunar samples.
The 15-K neutron structure of saccharide-free concanavalin A.
Blakeley, M P; Kalb, A J; Helliwell, J R; Myles, D A A
2004-11-23
The positions of the ordered hydrogen isotopes of a protein and its bound solvent can be determined by using neutron crystallography. Furthermore, by collecting neutron data at cryo temperatures, the dynamic disorder within a protein crystal is reduced, which may lead to improved definition of the nuclear density. It has proved possible to cryo-cool very large Con A protein crystals (>1.5 mm3) suitable for high-resolution neutron and x-ray structure analysis. We can thereby report the neutron crystal structure of the saccharide-free form of Con A and its bound water, including 167 intact D2O molecules and 60 oxygen atoms at 15 K to 2.5-A resolution, along with the 1.65-A x-ray structure of an identical crystal at 100 K. Comparison with the 293-K neutron structure shows that the bound water molecules are better ordered and have lower average B factors than those at room temperature. Overall, twice as many bound waters (as D2O) are identified at 15 K than at 293 K. We note that alteration of bound water orientations occurs between 293 and 15 K; such changes, as illustrated here with this example, could be important more generally in protein crystal structure analysis and ligand design. Methodologically, this successful neutron cryo protein structure refinement opens up categories of neutron protein crystallography, including freeze-trapped structures and cryo to room temperature comparisons.
X-24B with Test Pilot Michael V. Love
NASA Technical Reports Server (NTRS)
1973-01-01
This photo shows Air Force Lieutenant Colonel Michael V. Love in front of the X-24B lifting-body research vehicle at Edwards Air Force Base in 1973. Love was assigned as a project pilot on the joint NASA-USAF X-24B Lifting Body flight test program at the NASA Flight Research Center. He made a total of 12 flights in the plane from October 4, 1973 until July 15, 1975. Love flew it to a speed of Mach 1.76 on October 25, 1974, a record for the X-24B. Love attended the USAF Test Pilot School and remained as an instructor there from 1969 through 1971. He was a test pilot at Edwards when assigned to fly to the X-24B. Love was a combat veteran of Vietnam and was awarded the Distinguished Flying Cross with two Oak Leaf clusters. Love perished while attempting an emergency landing in an RF-4C on March 1, 1976. The X-24B was the last aircraft to fly in the Dryden Flight Research Center's manned lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph--Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated that accurate unpowered reentry vehicle landings were operationally feasible. Top speed achieved by the X-24B was 1,164 mph and the highest altitude it reached was 74,130 feet. The vehicle is on display at the Air Force Museum, Wright-Patterson Air Force Base, Ohio. The pilot on the last powered flight of the X-24B was Bill Dana, who also flew the last X-15 flight about seven years earlier. The X-24A shape was later borrowed for the X-38 Crew Return Vehicle (CRV) technology demonstrator for the International Space Station. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio.
X-24B with Test Pilot Lt. Col. Michael V. Love
NASA Technical Reports Server (NTRS)
1976-01-01
This photo shows Air Force Lieutenant Colonel Michael V. Love in front of the X-24B lifting body research vehicle at Edwards Air Force Base in 1976. Love was assigned as a project pilot on the joint NASA-USAF X-24B Lifting Body flight test program at the NASA Flight Research Center. He made a total of 12 flights in the plane from October 4, 1973 until July 15, 1975. Love flew it to a speed of Mach 1.76 on October 25, 1974, a record for the X-24B. Love attended the USAF Test Pilot School and remained as an instructor there from 1969 through 1971. He was a test pilot at Edwards when assigned to fly to the X-24B. Love was a combat veteran of Vietnam and was awarded the Distinguished Flying Cross with two Oak Leaf clusters. Love perished while attempting an emergency landing in an RF-4C on March 1, 1976 - less than a month after this photo was taken. The X-24B was the last aircraft to fly in the Dryden Flight Research Center's manned lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph--Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated that accurate unpowered reentry vehicle landings were operationally feasible. Top speed achieved by the X-24B was 1,164 mph and the highest altitude it reached was 74,130 feet. The vehicle is on display at the Air Force Museum, Wright-Patterson Air Force Base, Ohio. The pilot on the last powered flight of the X-24B was Bill Dana, who also flew the last X-15 flight about seven years earlier. The X-24A shape was later borrowed for the X-38 Crew Return Vehicle (CRV) technology demonstrator for the International Space Station. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio.
Pre-amplification in the context of high-throughput qPCR gene expression experiment.
Korenková, Vlasta; Scott, Justin; Novosadová, Vendula; Jindřichová, Marie; Langerová, Lucie; Švec, David; Šídová, Monika; Sjöback, Robert
2015-03-11
With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., R13E 1 X T1N, R14E X T1N, R15E X T1S, R14E 1 X T1S, R141/2E X T1S, R15E X T2N, R13E 1 X T2N, R16E X T1N...); T1S, R14E (sections 124); T1S, R141/2E; and T1S, R15E 11/15/90 Nonattainment 11/15/90 Moderate. Gila...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., R13E 1 X T1N, R14E X T1N, R15E X T1S, R14E 1 X T1S, R141/2E X T1S, R15E X T2N, R13E 1 X T2N, R16E X T1N...); T1S, R14E (sections 124); T1S, R141/2E; and T1S, R15E 11/15/90 Nonattainment 11/15/90 Moderate. Gila...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., R13E 1 X T1N, R14E X T1N, R15E X T1S, R14E 1 X T1S, R141/2E X T1S, R15E X T2N, R13E 1 X T2N, R16E X T1N...); T1S, R14E (sections 124); T1S, R141/2E; and T1S, R15E 11/15/90 Nonattainment 11/15/90 Moderate. Gila...
Operation of the CESR-TA vertical beam size monitor at Eb = 4 GeV
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Conolly, C.; Edwards, E.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2015-10-01
We describe operation of the CESR-TA vertical beam size monitor (xBSM) with e± beams with Eb=4 GeV. The xBSM measures vertical beam size by imaging synchrotron radiation x-rays through an optical element onto a detector array of 32 InGaAs photodiodes with 50 μm pitch. The device has previously been successfully used to measure vertical beam sizes of 10-100 μm on a bunch-by-bunch, turn-by-turn basis at e± beam energies of ~2 GeV and source magnetic fields below 2.8 kG, for which the detector required calibration for incident x-rays of 1-5 keV. At Eb = 4.0 GeV and B=4.5 kG, however, the incident synchrotron radiation spectrum extends to ~20 keV, requiring calibration of detector response in that regime. Such a calibration is described and then used to analyze data taken with several different thicknesses of filters in front of the detector. We obtain a relative precision of better than 4% on beam size measurement from 15 to 100 μm over several different ranges of x-ray energy, including both 1-12 keV and 6-17 keV. The response of an identical detector, but tilted vertically by 60° in order to increase magnification without a longer beamline, is measured and shown to improve x-ray detection above 4 keV without compromising sensitivity to beam size. We also investigate operation of a coded aperture using gold masking backed by synthetic diamond.
Kim, Minji; Kim, Won-Baek; Koo, Kyoung Yoon; Kim, Bo Ram; Kim, Doohyun; Lee, Seoyoun; Son, Hong Joo; Hwang, Dae Youn; Kim, Dong Seob; Lee, Chung Yeoul; Lee, Heeseob
2017-04-28
This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ( X 1 : 1-5%), amount of starter culture ( X 2 : 1-5%), pH ( X 3 : 4-8), and fermentation time ( X 4 : 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.
A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares
NASA Technical Reports Server (NTRS)
Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.
1989-01-01
Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data.
Mlynarczyk-Evans, Susanna; Roelens, Baptiste; Villeneuve, Anne M.
2013-01-01
Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which in turn enable segregation of the homologs to opposite poles at the meiosis I division. Here, we challenge the mechanisms of pairing and synapsis during C. elegans meiosis by disrupting the normal 1∶1 correspondence between homologs through karyotype manipulation. Using a combination of cytological tools, including S-phase labeling to specifically identify X chromosome territories in highly synchronous cohorts of nuclei and 3D rendering to visualize meiotic chromosome structures and organization, our analysis of trisomic (triplo-X) and polyploid meiosis provides insight into the principles governing pairing and synapsis and how the meiotic program is “wired” to maximize successful sexual reproduction. We show that chromosomes sort into homologous groups regardless of chromosome number, then preferentially achieve pairwise synapsis during a period of active chromosome mobilization. Further, comparisons of synapsis configurations in triplo-X germ cells that are proficient or defective for initiating recombination suggest a role for recombination in restricting chromosomal interactions to a pairwise state. Increased numbers of homologs prolong markers of the chromosome mobilization phase and/or boost germline apoptosis, consistent with triggering quality control mechanisms that promote resolution of synapsis problems and/or cull meiocytes containing synapsis defects. However, we also uncover evidence for the existence of mechanisms that “mask” defects, thus allowing resumption of prophase progression and survival of germ cells despite some asynapsis. We propose that coupling of saturable masking mechanisms with stringent quality controls maximizes meiotic success by making progression and survival dependent on achieving a level of synapsis sufficient for crossover formation without requiring perfect synapsis. PMID:24339786