Sample records for successfully flight tested

  1. Sierra Nevada Corporation's Dream Chaser Test Article Altitude T

    NASA Image and Video Library

    2017-08-30

    Sierra Nevada Corporation’s Dream Chaser completed an important step toward orbital flight with a successful captive carry test at NASA’s Armstrong Flight Research Center in California, located on Edwards Air Force Base. A helicopter successfully carried a Dream Chaser test article, which has the same specifications as a flight-ready spacecraft, to the same altitude and flight conditions of an upcoming free flight test. The Dream Chaser is a lifting-body, winged spacecraft that will fly back to Earth in a manner similar to NASA’s space shuttles. The successful captive carry test clears the way for a free flight test of the spacecraft later this year in which the uncrewed Dream Chaser will be released to glide on its own and land.

  2. SNC’s Dream Chaser Achieves Successful Free Flight at NASA Armstrong

    NASA Image and Video Library

    2017-11-17

    Sierra Nevada Corporation's Dream Chaser® spacecraft underwent a successful free-flight test on November 11, 2017 at NASA’s Armstrong Flight Research Center, Edwards, California. The test verified and validated the performance of the Dream Chaser in the critical final approach and landing phase of flight, meeting expected models for a future return from the International Space Station. The full-scale Dream Chaser test vehicle was lifted to 12,400 feet altitude by a 234-UT Chinook helicopter, released and flew a pre-planned flight path ending with a successful autonomous landing.

  3. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  4. The Orion Pad Abort 1 (PA-1) Flight Test: A Propulsion Success

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.

    2015-01-01

    This poster provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.

  5. B-52B-008/DTV (Drop Test Vehicle) configuration 1 (with and without fins) flight test results - captive flight and drop test missions

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The B-52B-008 drop test consisted of one takeoff roll to 60 KCAS, two captive flights to accomplish limited safety of flight flutter and structural demonstration testing, and seven drop test flights. Of the seven drop test missions, one flight was aborted due to the failure of the hook mechanism to release the drop test vehicle (DTV); but the other six flights successfully dropped the DTV.

  6. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    Fiber Optic Wing Shape Sensing on Ikhana involves five major areas 1) Algorithm development: Local-strain-to-displacement algorithms have been developed for complex wing shapes for real-time implementation (NASA TP-2007-214612, patent application submitted) 2) FBG system development: Dryden advancements to fiber optic sensing technology have increased data sampling rates to levels suitable for monitoring structures in flight (patent application submitted) 3) Instrumentation: 2880 FBG strain sensors have been successfully installed on the Ikhana wings 4) Ground Testing: Fiber optic wing shape sensing methods for high aspect ratio UAVs have been validated through extensive ground testing in Dryden s Flight Loads Laboratory 5) Flight Testing: Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008) Real-time fiber optic wing shape sensing successfully demonstrated in flight

  7. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  8. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  9. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    NASA Technical Reports Server (NTRS)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  10. Orion Launch Abort System (LAS) Propulsion on Pad Abort 1 (PA-1)

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.

    2015-01-01

    This presentation provides a concise overview of the highly successful Orion Pad Abort 1 (PA-1) flight test, and the three rocket motors that contributed to this success. The primary purpose of the Orion PA-1 flight was to help certify the Orion Launch Abort System (LAS), which can be utilized in the unlikely event of an emergency on the launchpad or during mission vehicle ascent. The PA-1 test was the first fully integrated flight test of the Orion LAS, one of the primary systems within the Orion Multi-Purpose Crew Vehicle (MPCV). The Orion MPCV is part of the architecture within the Space Launch System (SLS), which is being designed to transport astronauts beyond low-Earth orbit for future exploration missions. Had the Orion PA-1 flight abort occurred during launch preparations for a real human spaceflight mission, the PA-1 LAS would have saved the lives of the crew. The PA-1 flight test was largely successful due to the three solid rocket motors of the LAS: the Attitude Control Motor (ACM); the Jettison Motor (JM); and the Abort Motor (AM). All three rocket motors successfully performed their required functions during the Orion PA-1 flight test, flown on May 6, 2010 at the White Sands Missile Range in New Mexico, culminating in a successful demonstration of an abort capability from the launchpad.

  11. Ares I-X Separation and Reentry Trajectory Analyses

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Starr, Brett R.

    2011-01-01

    The Ares I-X Flight Test Vehicle was launched on October 28, 2009 and was the first and only test flight of NASA s two-stage Ares I launch vehicle design. The launch was successful and the flight test met all of its primary and secondary objectives. This paper discusses the stage separation and reentry trajectory analysis that was performed in support of the Ares I-X test flight. Pre-flight analyses were conducted to assess the risk of stage recontact during separation, to evaluate the first stage flight dynamics during reentry, and to define the range safety impact ellipses of both stages. The results of these pre-flight analyses were compared with available flight data. On-board video taken during flight showed that the flight test vehicle successfully separated without any recontact. Reconstructed trajectory data also showed that first stage flight dynamics were well characterized by pre-flight Monte Carlo results. In addition, comparisons with flight data indicated that the complex interference aerodynamic models employed in the reentry simulation were effective in capturing the flight dynamics during separation. Finally, the splash-down locations of both stages were well within predicted impact ellipses.

  12. Testing Strategies and Methodologies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.; Yuchnovicz, Daniel E.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.

  13. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.

  14. A parachute system for upper atmospheric studies

    NASA Technical Reports Server (NTRS)

    Maksimovic, V. M.

    1979-01-01

    The Goddard Space Flight Center's Sounding Rocket Division successfully flight tested a high altitude, low velocity, 63.5 foot cross parachute system. The system was developed to provide a platform for atmospheric studies at altitudes higher than those attainable with balloons. This paper represents the approach taken to determine the necessary conditions for a successful apogee deployment of the parachute. The test flight deployed the parachute system at an apogee altitude of 61 kilometers. Post-flight results of rocket and parachute performance are compared to the preflight analyses.

  15. The X-43A (Hyper-X) Flies Into the Record Books

    NASA Technical Reports Server (NTRS)

    Grindle, Laurie; Bahm, Catherine

    2006-01-01

    The goal of the Hyper-X research program, conducted jointly by the NASA Dryden Flight Research Center and the NASA Langley Research Center, was to demonstrate and validate the technology, experimental techniques, and computation methods and tools for design and performance predictions of a hypersonic aircraft with an airframe-integrated, scramjet propulsion system. Three X-43A airframe-integrated, scramjet research vehicles were designed and fabricated to achieve that goal by flight test: two test flights at Mach 7 and one test flight at Mach 10. The first flight, conducted on June 2, 2001, experienced a launch vehicle failure and resulted in a 9-month mishap investigation. A two-year return-to-flight effort ensued and concluded when the second Mach 7 flight was successful on March 27, 2004. Just eight months later, on November 16, the X-43A successfully completed the third and final flight. These two flights were the first flight demonstrations, at Mach 7 and Mach 10 respectively, of an airframe-integrated, scramjet-powered, hypersonic vehicle.

  16. Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Maliska, Heather

    2006-01-01

    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight.

  17. Delivery of Colloid Micro-Newton Thrusters for the Space Technology 7 Mission

    NASA Technical Reports Server (NTRS)

    Ziemer, John K.; Randolph, Thomas M.; Franklin, Garth W.; Hruby, Vlad; Spence, Douglas; Demmons, Nathaniel; Roy, Thomas; Ehrbar, Eric; Zwahlen, Jurg; Martin, Roy; hide

    2008-01-01

    Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.

  18. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  19. Chimpanzee Ham after sucessful MR-2 flight

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Closeup view of the chimpanzee 'Ham', the live test subject for Mercury-Redstone 2 test flight being fed an apple. This photo was taken after his successful recovery from the Atlantic. Note he is still strapped into his special flight couch.

  20. The NASA MLAS Flight Demonstration - A Review of a Highly Successful Test

    NASA Technical Reports Server (NTRS)

    Taylor, Anthony P.; Kelley, Christopher; Magner, Eldred; Peterson, David; Hahn, Jeffrey; Yuchnovicz, Daniel

    2010-01-01

    NASA has tested the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is not Maximum, but rather dedicated to Max Faget, The renowned NASA Spacecraft designer. In the fall of 2009, the mission was flown, with great success, from the NASA Wallops Flight Facility. The MLAS flight test vehicle prototype consists of a boost ring, coast ring, and the MLAS fairing itself, which houses an Orion Command Module (CM) boilerplate. The objective of the MLAS flight test is to reorient the fairing with the CM, weighing approximately 29,000 lbs and traveling 290 fps, 180 degrees to an orientation suitable for the release of the CM during a pad abort and low altitude abort. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft DO ribbon parachutes, and the remaining four are standard G-12 cargo parachutes. This paper presents an overview of the 27.6 ft DO ribbon parachute system employed on the MLAS flight test vehicle for coast ring separation, fairing reorientation, and as drogue parachutes for the CM after separation from the fairing. Discussion will include: the process used to select this design, previously proven as a spin/stall recovery parachute; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs; a discussion of the rigging techniques used to interface the parachute system to the vehicle; a brief description of how the evolution of the program affected parachute usage and analysis; and a summary of the results of the flight test, including video of the flight test and subsequent summary analysis. . A discussion of the flight test which was highly successful as well as the flight test observations will be a significant portion of the review.

  1. The X-43A Flush Airdata Sensing System Flight Test Results

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Pahle, Joseph W.; Davis, Mark; White, John Terry

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has flight-tested a flush airdata sensing (FADS) system on the Hyper-X Research Vehicle (X-43A) at hypersonic speeds during the course of two successful flights. For this series of tests, the FADS system was calibrated to operate between Mach 3 and Mach 8, and flight test data was collected between Mach 1 and Mach 10. The FADS system acquired pressure data from surface-mounted ports and generated a real-time angle-of-attack (alpha) estimate on board the X-43A. The collected data were primarily intended to evaluate the FADS system performance, and the estimated alpha was used by the flight control algorithms on the X-43A for only a portion of the first successful flight. This paper provides an overview of the FADS system and alpha estimation algorithms, presents the in-flight alpha estimation algorithm performance, and provides comparisons to wind tunnel results and theory. Results indicate that the FADS system adequately estimated the alpha of the vehicle during the hypersonic portions of the two flights.

  2. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  3. Spacelab Life Sciences 1, development towards successive life sciences flights

    NASA Technical Reports Server (NTRS)

    Dalton, B. P.; Jahns, G.; Hogan, R.

    1992-01-01

    A general review is presented of flight data and related hardware developments for Spacelab Life Sciences (SLS) 1 with an eye toward applying this knowledge to projected flight planning. Specific attention is given to the Research Animal Holding Facility (RAHF), the General Purpose Work Station (GPWS), the Small Mass Measuring Instrument (SMMI), and the Animal Enclosure Module (AEM). Preflight and in-flight testing methods are detailed including biocompatibility tests, parametric engineering sensitivity analyses, measurements of environmental parameters, and studies of operational interfaces. Particulate containment is demonstrated for some of the equipment, and successful use of the GPWS, RAHF, AEM, and SMMI are reported. The in-flight data are useful for developing more advanced hardware such as the AEM for SLS flight 2 and the modified RAHF for SLS flight 3.

  4. NASA's Webb "Pathfinder Telescope" Successfully Completes First Super-Cold Optical Test

    NASA Image and Video Library

    2017-12-08

    Testing is crucial part of NASA's success on Earth and in space. So, as the actual flight components of NASA's James Webb Space Telescope come together, engineers are testing the non-flight equipment to ensure that tests on the real Webb telescope later goes safely and according to plan. Recently, the "pathfinder telescope," or just “Pathfinder,” completed its first super-cold optical test that resulted in many first-of-a-kind demonstrations. "This test is the first dry-run of the equipment and procedures we will use to conduct an end-to-end optical test of the flight telescope and instruments," said Mark Clampin, Webb telescope Observatory Project Scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It provides confidence that once the flight telescope is ready, we are fully prepared for a successful test of the flight hardware." The Pathfinder is a non-flight replica of the Webb telescope’s center section backplane, or “backbone,” that includes mirrors. The flight backplane comes in three segments, a center section and two wing-like parts, all of which will support large hexagonal mirrors on the Webb telescope. The pathfinder only consists of the center part of the backplane. However, during the test, it held two full size spare primary mirror segments and a full size spare secondary mirror to demonstrate the ability to optically test and align the telescope at the planned operating temperatures of -400 degrees Fahrenheit (-240 Celsius). Read more: www.nasa.gov/feature/goddard/nasas-webb-pathfinder-telesc... Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Ares I-X Range Safety Trajectory Analyses Overview and Independent Validation and Verification

    NASA Technical Reports Server (NTRS)

    Tarpley, Ashley F.; Starr, Brett R.; Tartabini, Paul V.; Craig, A. Scott; Merry, Carl M.; Brewer, Joan D.; Davis, Jerel G.; Dulski, Matthew B.; Gimenez, Adrian; Barron, M. Kyle

    2011-01-01

    All Flight Analysis data products were successfully generated and delivered to the 45SW in time to support the launch. The IV&V effort allowed data generators to work through issues early. Data consistency proved through the IV&V process provided confidence that the delivered data was of high quality. Flight plan approval was granted for the launch. The test flight was successful and had no safety related issues. The flight occurred within the predicted flight envelopes. Post flight reconstruction results verified the simulations accurately predicted the FTV trajectory.

  6. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on December 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests that would validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  7. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine; Baumann, Ethan; Martin, John; Bose, David; Beck, Roger E.; Strovers, Brian

    2005-01-01

    The objective of the Hyper-X program was to flight demonstrate an airframe-integrated hypersonic vehicle. On March 27, 2004, the Hyper-X program team successfully conducted flight 2 and achieved all of the research objectives. The Hyper-X research vehicle successfully separated from the Hyper-X launch vehicle and achieved the desired engine test conditions before the experiment began. The research vehicle rejected the disturbances caused by the cowl door opening and the fuel turning on and off and maintained the engine test conditions throughout the experiment. After the engine test was complete, the vehicle recovered and descended along a trajectory while performing research maneuvers. The last data acquired showed that the vehicle maintained control to the water. This report will provide an overview of the research vehicle guidance and control systems and the performance of the vehicle during the separation event and engine test. The research maneuvers were performed to collect data for aerodynamics and flight controls research. This report also will provide an overview of the flight controls related research and results.

  8. CFD to Flight: Some Recent Success Stories of X-plane Design to Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and ight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the authors personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the authors experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further re ned CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of ow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  9. Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin

    2015-01-01

    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.

  10. Ares I-X Flight Data Evaluation: Executive Overview

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Waits, David A.; Lewis, Donny L.; Richards, James S.; Coates, R. H., Jr.; Cruit, Wendy D.; Bolte, Elizabeth J.; Bangham, Michal E.; Askins, Bruce R.; Trausch, Ann N.

    2011-01-01

    NASA's Constellation Program (CxP) successfully launched the Ares I-X flight test vehicle on October 28, 2009. The Ares I-X flight was a developmental flight test to demonstrate that this very large, long, and slender vehicle could be controlled successfully. The flight offered a unique opportunity for early engineering data to influence the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office (APO) established a set of 33 flight evaluation tasks to correlate flight results with prospective design assumptions and models. The flight evaluation tasks used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. Included within these tasks were direct comparisons of flight data with preflight predictions and post-flight assessments utilizing models and processes being applied to design and develop Ares I. The benefits of early development flight testing were made evident by results from these flight evaluation tasks. This overview provides summary information from assessment of the Ares I-X flight test data and represents a small subset of the detailed technical results. The Ares Projects Office published a 1,600-plus-page detailed technical report that documents the full set of results. This detailed report is subject to the International Traffic in Arms Regulations (ITAR) and is available in the Ares Projects Office archives files.

  11. What made Apollo a success?

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Spacecraft development, mission design planning, flight crew operations, and flight operations are considered. Spacecraft design principles and test activities are described. Determination of the best series of flights leading to a lunar landing at the earliest possible time, flight planning, techniques for establishing flight procedures and carrying out flight operations, and crew training and simulation activities are discussed.

  12. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  13. The NASA super pressure balloon - A path to flight

    NASA Astrophysics Data System (ADS)

    Cathey, H. M.

    2009-07-01

    The National Aeronautics and Space Administration's Balloon Program Office has invested significant time and effort in extensive ground testing of model super pressure balloons. The testing path has been developed as an outgrowth of the results of the super pressure balloon test flight in 2006. Summary results of the June 2006 super pressure test flight from Kiruna, Sweden are presented including the balloon performance and "lessons learned". This balloons flight performance exceeded expectations, but did not fully deploy. The flight was safely terminated by command. The results of this test flight refocused the project's efforts toward additional ground testing and analysis; a path to flight. A series of small 4 m diameter models were made and tested to further explore the deployment and structural capabilities of the balloons and materials. A series of ˜27 m model balloons were successfully tested indoors. These balloons successfully replicated the cleft seen in the Sweden flight, explored the deployment trade space to help characterize better design approaches, and demonstrated an acceptable fix to the deployment issue. Photogrammetry was employed during these ˜27 m model tests to help characterize both the balloon and gore shape evolution under pressurization. A ˜8.5 m ground model was used to explore the design and materials performance. Results of these tests will be presented. A general overview of some of the other project advancements made related to demonstrating the strain arresting nature of the proposed design, materials and analysis work will also be presented. All of this work has prepared a clear path toward a renewed round of test flights. This paper will give an overview of the development approach pursued for this super pressure balloon development. A description of the balloon design, including the modifications made as a result of the lessons learned, is presented. A short deployment test flight of the National Aeronautics and Space Administration's super pressure balloon took place in June 2008. This flight was from Ft. Sumner, New Mexico. Preliminary results of this flight are presented. Future plans for both ground testing and additional test flights are also presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, are presented. This includes the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.

  14. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    Sierra Nevada Corp’s Dream Chaser was lifted by helicopter from the ramp at NASA’s Armstrong Flight Research Center in Edwards, California, before its successful approach and landing flight test on Nov. 11, 2017.

  15. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    Sierra Nevada Corp’s Dream Chaser crew prepared for helicopter lift off ramp at NASA’s Armstrong Flight Research Center in California, for its successful approach and landing flight test on Nov. 11, 2017.

  16. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Honeycutt, Timothy; Sowards, Stephanie

    2008-01-01

    Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.

  17. Pegasus first mission - Flight results

    NASA Astrophysics Data System (ADS)

    Mosier, Marty; Harris, Gary; Richards, Bob; Rovner, Dan; Carroll, Brent

    On April 5, 1990, after release from a B-52 aircraft at 43,198 ft, the three-stage Pegasus solid-propellant rocket successfully completed its maiden flight by injecting its 423-lb payload into a 273 x 370-nmi 94-deg-inclination orbit. The first flight successfully achieved all mission objectives, validating Pegasus's unique air-launched concept, the vehicle's design, and its straightforward ground processing, integration and test methods.

  18. Flight test results of the strapdown ring laser gyro tetrad inertial navigation system

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.

    1983-01-01

    A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.

  19. Project Hermes 'Use of Smartphones for Receiving Telemetry and Commanding a Satellite'

    NASA Technical Reports Server (NTRS)

    Maharaja, Rishabh (Principal Investigator)

    2016-01-01

    TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility. TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility.

  20. A Review of the NASA MLAS Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Taylor, Anthony P.; Kelley, Christopher; Manger, Eldred; Peterson, David; Hahn, Jeffrey; Yuchnovicz, Daniel

    2011-01-01

    The NASA Engineering and Safety Center (NESC) has tested the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is not Maximum, but rather dedicated to Max Faget, the renowned NASA Spacecraft designer. In July 2009, the mission was flown, with great success, from the NASA Wallops Flight Facility. The MLAS flight test vehicle prototype consists of a boost skirt, coast skirt, and the MLAS fairing itself, which houses an Orion Command Module (CM) boilerplate. The objective of the MLAS flight test is to reorient the fairing with the CM, weighing approximately 29,000 lbs and traveling 290 fps, 180 degrees to an orientation suitable for the release of the CM during a pad abort or low altitude abort. The boost and coast skirts provide the necessary thrust and stability to establish the flight test conditions and are released prior to the reorientation of the fairing. A secondary test objective after successful release of the CM from the fairing is to demonstrate the removal of the CM forward bay cover (FBC) with the CM drogue parachutes, and subsequent deployment of the CM main parachutes attached to the FBC. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft DO ribbon parachutes already proven as a spin/stall parachute for military aircraft, and the remaining four are G-12 cargo parachutes modified for increased strength and reefing. This paper presents an overview of the 27.6 ft DO ribbon parachute system employed on the MLAS flight test vehicle for coast skirt separation, fairing reorientation, and as CM drogue parachutes. Discussion will include: the process used to select this design; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs including discussions of how the evolution of the program affected parachute usage and analysis; a summary of the results of the highly successful flight test, including video of the flight test; and an overview of the subsequent post-test analysis.

  1. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    After a successful approach and landing flight test on Nov. 11, 2017, Sierra Nevada Corp’s Dream Chaser was towed back to NASA Armstrong Flight Research Center in California, and placed in the former space shuttle hangar.

  2. Flight test evaluation of the E-systems Differential GPS category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Mcnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) III precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT III precision approach and landing applications. An IAI Westwind 1124 aircraft (N24RH) was equipped with DGPS receiving equipment and additional computing capability provided by E-Systems. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and landings. The navigation sensor error accuracy requirements were based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and landings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and landings shows that the E-Systems DGPS system met the navigation sensor error requirements for a successful approach and landing 98 out of 100 approaches and landings, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan. In addition, the E-Systems DGPS system met the integrity requirements for a successful approach and landing or stationary trial for all 100 approaches and landings and all ten stationary trials, based on the requirements specified in the FAA CAT III Level 2 Flight Test Plan.

  3. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  4. Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    Lessons Learne: 1. Design-out unnecessary risk to prevent excessive mitigation management during flight. 2. Consider iterative checkouts to confirm or improve human factor characteristics. 3. Consider the total flight test profile to uncover unanticipated human-algorithm interactions. 4. Consider test card cadence as a metric to assess test readiness. 5. Full-scale flight test is critical to development, maturation, and acceptance of adaptive control laws for operational use.

  5. CHIMPANZEE HAM - POST MERCURY-REDSTONE (MR)-2 FLIGHT

    NASA Image and Video Library

    1963-01-01

    S63-18198 (31 Jan. 1961) --- Closeup view of the chimpanzee "Ham", the live test subject for the Mercury-Redstone 2 (MR-2) test flight, following his successful recovery from the Atlantic. The 420-statute mile suborbital MR-2 flight by the 37-pound primate was a significant accomplishment on the American route toward manned spaceflight. Photo credit: NASA

  6. Development and flight test evaluation of a pitch stability augmentation system for a relaxed stability L-1011

    NASA Technical Reports Server (NTRS)

    Rising, J. J.

    1982-01-01

    The L-1011 has been flight tested to demonstrate the relaxed static stability concept as a means of obtaining significant drag benefits to achieve a more energy efficient transport. Satisfactory handling qualities were maintained with the design of an active control horizontal tail for stability and control augmentation to allow operation of the L-1011 at centers of gravity close to the neutral point. Prior to flight test, a motion base visual flight simulator program was performed to optimize the augmentation system. The system was successfully demonstrated in a test program totaling forty-eight actual flight hours.

  7. Crew Exploration Vehicle Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2007-01-01

    The Constellation program is an organization within NASA whose mission is to create the new generation of spacecraft that will replace the Space Shuttle after its planned retirement in 2010. In the event of a catastrophic failure on the launch pad or launch vehicle during ascent, the successful use of the launch abort system will allow crew members to escape harm. The Flight Test Office is the organization within the Constellation project that will flight-test the launch abort system on the Orion crew exploration vehicle. The Flight Test Office has proposed six tests that will demonstrate the use of the launch abort system. These flight tests will be performed at the White Sands Missile Range in New Mexico and are similar in nature to the Apollo Little Joe II tests performed in the 1960s. An overview of the launch abort system flight tests for the Orion crew exploration vehicle is given. Details on the configuration of the first pad abort flight test are discussed. Sample flight trajectories for two of the six flight tests are shown.

  8. Centaur Standard Shroud (CSS) Heated Altitude Jettison Tests

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Altitude jettison tests, at a pressure of 20 torr (0.39 psia), were performed on the Centaur Standard Shroud (CSS) in a 100-foot diameter vacuum chamber. These jettison tests were part of a series of flight qualification tests which were performed on the new CSS system in preparation for the Helios and Viking missions. The first two tests subjected the CSS to a thermal cycle which simulated aerodynamic heating during ascent flight and the third test was performed at altitude pressure and in ambient temperature conditions. The purpose of the ambient temperature test was to provide base line data by which the separate machanical and thermal factors that influence jettison performance could be evaluated individually. The CSS was successfully jettisoned in each of the three tests. Also, thermal, stress, and structural deflection data were obtained which verified the analytical predictions of CSS response to flight environmental conditions and performance during jettison. In addition, much important information was obtained on critical CSS-to-payload clearance losses due to shell motions prior to and during jettison. The effectiveness of the separation system was successfully demonstrated at maximum flight temperatures.

  9. National Report on the NASA Sounding Rocket and Balloon Programs

    NASA Technical Reports Server (NTRS)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to conduct supersonic decelerator tests. An overview of NASA's Sounding Rockets and Balloon Operations, Technology Development and Science support activities will be presented.

  10. Eclipse - tow flight closeup and release

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful towed flight occurred on Dec. 20, 1997. Prior to this first tow test flight, the C-141A and EXD-01 were used to conduct a series of tethered taxi tests to validate the tow procedures. Before these tethered taxi tests, a successful joint flight test was conducted in late October 1996, by Dryden, AFFTC, and KST, in which one of the Dryden F-18 chase aircraft flew at various ranges and locations behind the C-141A to define the wake turbulence and wingtip vortex environment. This flight test was replicated in July 1997, with an unmodified QF-106 flight proficiency aircraft.

  11. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  12. Ares I-X Thermal Model Correlation and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    2010-01-01

    The Ares I-X vehicle launched and flew successfully on October 28, 2009. This paper will describe the correlation of the vehicle thermal model to both ground testing and flight data. A main purpose of the vehicle model and ground testing was to ensure that the avionics within the vehicle were held within their thermal limits prior to launch and during flight. The correlation of the avionics box temperatures will be shown. Also, the lessons learned in the thermal discipline during the modeling, test, correlation to test, and flight of the Ares I-X flight test vehicle will be described. Lessons learned will cover thermal modeling, as well as management of the thermal discipline, thermal team, and thermal-related actions in design, testing, and flight.

  13. Flight performance in the altricial zebra finch: Developmental effects and reproductive consequences.

    PubMed

    Crino, Ondi L; Klaassen van Oorschot, Brett; Crandell, Kristen E; Breuner, Creagh W; Tobalske, Bret W

    2017-04-01

    The environmental conditions animals experience during development can have sustained effects on morphology, physiology, and behavior. Exposure to elevated levels of stress hormones (glucocorticoids, GCs) during development is one such condition that can have long-term effects on animal phenotype. Many of the phenotypic effects of GC exposure during development (developmental stress) appear negative. However, there is increasing evidence that developmental stress can induce adaptive phenotypic changes. This hypothesis can be tested by examining the effect of developmental stress on fitness-related traits. In birds, flight performance is an ideal metric to assess the fitness consequences of developmental stress. As fledglings, mastering takeoff is crucial to avoid bodily damage and escape predation. As adults, takeoff can contribute to mating and foraging success as well as escape and, thus, can affect both reproductive success and survival. We examined the effects of developmental stress on flight performance across life-history stages in zebra finches ( Taeniopygia guttata ). Specifically, we examined the effects of oral administration of corticosterone (CORT, the dominant avian glucocorticoid) during development on ground-reaction forces and velocity during takeoff. Additionally, we tested for associations between flight performance and reproductive success in adult male zebra finches. Developmental stress had no effect on flight performance at all ages. In contrast, brood size (an unmanipulated variable) had sustained, negative effects on takeoff performance across life-history stages with birds from small broods performing better than birds from large broods. Flight performance at 100 days posthatching predicted future reproductive success in males; the best fliers had significantly higher reproductive success. Our results demonstrate that some environmental factors experienced during development (e.g. clutch size) have stronger, more sustained effects than others (e.g. GC exposure). Additionally, our data provide the first link between flight performance and a direct measure of reproductive success.

  14. Post Flight Analysis Of SHEFEX I: Shock Tunnel Testing And Related CFD Analysis

    NASA Astrophysics Data System (ADS)

    Schramm, Jan Martinez; Barth, Tarik; Wagner, Alexander; Hannemann, Klaus

    2011-05-01

    The SHarp Edge Flight EXperiment (SHEFEX) program of the German Aerospace Center (DLR) is primarily focused on the investigation of the potential to utilise improved shapes for space vehicles by considering sharp edges and facetted surfaces. One goal is to set up a sky based test facility to gain knowledge of the physics of hypersonic flow, complemented by numerical analysis and ground based testing. Further, the series of SHEFEX flight experiments is an excellent test bed for new technological concepts and flight instrumentation, and it is a source of motivation for young scientist and engineers providing an excellent school for future space-program engineers and managers. After the successful first SHEFEX flight in October 2005, a second flight is scheduled for September 2011 and additional flights are planned for 2015 ff. With the SHEFEX-I flight and the subsequent numerical and experimental post flight analysis, DLR could for the first time close the loop between the three major disciplines of aerothermodynamic research namely CFD, ground based testing and flight.

  15. In-flight measurements of propeller blade deformation on a VUT100 cobra aeroplane using a co-rotating camera system

    NASA Astrophysics Data System (ADS)

    Boden, F.; Stasicki, B.; Szypuła, M.; Ružička, P.; Tvrdik, Z.; Ludwikowski, K.

    2016-07-01

    Knowledge of propeller or rotor blade behaviour under real operating conditions is crucial for optimizing the performance of a propeller or rotor system. A team of researchers, technicians and engineers from Avia Propeller, DLR, EVEKTOR and HARDsoft developed a rotating stereo camera system dedicated to in-flight blade deformation measurements. The whole system, co-rotating with the propeller at its full speed and hence exposed to high centrifugal forces and strong vibration, had been successfully tested on an EVEKTOR VUT 100 COBRA aeroplane in Kunovice (CZ) within the project AIM2—advanced in-flight measurement techniques funded by the European Commission (contract no. 266107). This paper will describe the work, starting from drawing the first sketch of the system up to performing the successful flight test. Apart from a description of the measurement hardware and the applied IPCT method, the paper will give some impressions of the flight test activities and discuss the results obtained from the measurements.

  16. Return to flight SSME test at A2 test stand

    NASA Image and Video Library

    2004-07-16

    The Space Shuttle Main Engine (SSME) reached a historic milestone July 16, 2004, when a successful flight acceptance test was conducted at NASA Stennis Space Center (SSC). The engine tested today is the first complete engine to be tested and shipped in its entirety to Kennedy Space Center for installation on Space Shuttle Discovery for STS-114, NASA's Return to Flight mission. The engine test, which began about 3:59 p.m. CDT, ran for 520 seconds (8 minutes), the length of time it takes for the Space Shuttle to reach orbit.

  17. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  18. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    Sierra Nevada Corp’s Dream Chaser is released for a landing on Edwards Air Force Base runway after departing a ramp at NASA’s Armstrong Flight Research Center in California, for its successful approach and landing flight test on Nov. 11, 2017.

  19. Lateral stability and control derivatives of a jet fighter airplane extracted from flight test data by utilizing maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Steinmetz, G. G.

    1972-01-01

    A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data.

  20. NASA reliability preferred practices for design and test

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  1. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  2. A Chimpanzee, 'Ham,' in the Biopack Couch for the MR-2 Flight

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee 'Ham' over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  3. An Assessment of Ares I-X Aeroacoustic Measurements with Comparisons to Pre-Flight Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Reed, Darren K.

    2011-01-01

    During the recent successful launch of the Ares I-X Flight Test Vehicle, aeroacoustic data was gathered at fifty-seven locations along the vehicle as part of the Developmental Flight Instrumentation. Several of the Ares I-X aeroacoustic measurements were placed to duplicate measurement locations prescribed in pre-flight, sub-scale wind tunnel tests. For these duplicated measurement locations, comparisons have been made between aeroacoustic data gathered during the ascent phase of the Ares I-X flight test and wind tunnel test data. These comparisons have been made at closely matching flight conditions (Mach number and vehicle attitude) in order to preserve a one-to-one relationship between the flight and wind tunnel data. These comparisons and the current wind tunnel to flight scaling methodology are presented and discussed. The implications of using wind tunnel test data scaled under the current methodology to predict conceptual launch vehicle aeroacoustic environments are also discussed.

  4. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  5. Computational Fluid Dynamics Analysis Success Stories of X-Plane Design to Flight Test

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    Examples of the design and flight test of three true X-planes are described, particularly X-plane design techniques that relied heavily on computational fluid dynamics(CFD) analysis. Three examples are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and the X-48B Blended Wing Body Demonstrator Aircraft. An overview is presented of the uses of CFD analysis, comparison and contrast with wind tunnel testing, and information derived from CFD analysis that directly related to successful flight test. Lessons learned on the proper and improper application of CFD analysis are presented. Highlights of the flight-test results of the three example X-planes are presented. This report discusses developing an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the areas in which CFD analysis does and does not perform well during this process is presented. How wind tunnel testing complements, calibrates, and verifies CFD analysis is discussed. Lessons learned revealing circumstances under which CFD analysis results can be misleading are given. Strengths and weaknesses of the various flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed.

  6. Flight-Tested Prototype of BEAM Software

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  7. The Question of Spontaneous Wing Oscillations : Determination of Critical Velocity Through Flight-oscillation Tests

    NASA Technical Reports Server (NTRS)

    Schlippe, B V

    1936-01-01

    Determination of the spontaneous oscillations of a wing or tail unit entail many difficulties, both the mathematical determination and the determination by static wing oscillation tests being far from successful and flight tests involving very great risks. The present paper gives a method developed at the Junkers Airplane Company by which the critical velocity with respect to spontaneous oscillations of increasing amplitude can be ascertained in flight tests without undue risks, the oscillation of the surface being obtained in the tests by the application of an external force.

  8. NASA Acting Deputy Chief Technologist Vicki Crisp Discusses Sierra Nevada Corporation's Dream Chaser with Lee Archambault

    NASA Image and Video Library

    2017-08-30

    NASA Acting Deputy Chief Technologist Vicki Crisp discusses Sierra Nevada Corporation’s Dream Chaser captive carry flight and future tests with former Astronaut Lee "Bru" Archambault, who is now a test pilot for the American company. The Dream Chaser completed a successful captive carry flight at NASA’s Armstrong Flight Research Center at Edwards, California, on Aug. 30, 2017.

  9. On the attitude control and flight result of winged reentry test vehicle

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hinada, Motoki

    The Institute of Space and Astronautical Science (ISAS) has been studying the unmanned winged space vehicle HIMES (HIghly Maneuverable Engineering Space vehicle) for a decade and successfully carried out sub-sonic Gliding Flight Experiments several years ago, which was followed by Reentry Flight Experiment, utilizing so called 'Rockoon' method, in September of 1988, which failed due to the unexpected burst of the balloon. ISAS conducted it again making use of refined 'Rockoon' scheme in February of 1992. In spite of its small bulk property, it was equipped with not only a reaction control system (RCS) but a surface control system (SCS) capability as well, which enabled it to make a successful flight under both vacuum and atmospheric circumstances. The highest Mach number exceeded 3.5 and the highest altitude was a bit lower to 67 km. Switching from reaction control to surface control was one of the essential engineering interests in the flight like this. Supersonic autonomous flight control with high angle of attack was also what should be established through this, since in general it inevitably carries inherent lateral instability. A flight test this time revealed those features and characteristics quite well. This paper deals with the attitude control strategy with three-axis Motion Simulation Test as well as the flight results.

  10. Shuttle avionics software development trials: Tribulations and successes, the backup flight system

    NASA Technical Reports Server (NTRS)

    Chevers, E. S.

    1985-01-01

    The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.

  11. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  12. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  13. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  14. X-43A Fluid and Environmental Systems: Ground and Flight Operation and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Vachon, Michael Jacob; Grindle, Thomas J.; St.John, Clinton W.; Dowdell, David B.

    2005-01-01

    The X-43A Hyper-X program demonstrated the first successful flights of an airframe integrated scramjet powered hypersonic vehicle. The X-43A vehicles established successive world records for jet-powered vehicles at speeds of Mach 7 and Mach 10. The X-43A vehicle is a subscale version of proposed hypersonic reconnaissance strike aircraft. Scaled down to a length of 12 ft (3.66 m), the lifting body design with high fineness ratio resulted in very small internal space available for fluid systems and their corresponding environmental conditioning systems. Safe testing and operation of the X-43A fluid and environmental systems was critical for mission success, not only for the safety of the flight crew in the NASA B-52B carrier aircraft, but also to maintain the reliability of vehicle systems while exposed to dynamics and hostile conditions encountered during the boost trajectory. The X-43A fluid and environmental systems successfully managed explosive, pyrophoric, inert, and very high pressure gases without incident. This report presents a summary of the checkout and flight validation of the X-43A fluid systems. The testing used for mission assurance is summarized. System performance during captive carry and launch flights is presented. The lessons learned are also discussed.

  15. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  16. Max Launch Abort System (MLAS) Landing Parachute Demonstrator (LPD) Drop Test

    NASA Technical Reports Server (NTRS)

    Shreves, Christopher M.

    2011-01-01

    The Landing Parachute Demonstrator (LPD) was conceived as a low-cost, rapidly-developed means of providing soft landing for the Max Launch Abort System (MLAS) crew module (CM). Its experimental main parachute cluster deployment technique and off-the-shelf hardware necessitated a full-scale drop test prior to the MLAS mission in order to reduce overall mission risk. This test was successfully conducted at Wallops Flight Facility on March 6, 2009, with all vehicle and parachute systems functioning as planned. The results of the drop test successfully qualified the LPD system for the MLAS flight test. This document captures the design, concept of operations and results of the drop test.

  17. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  18. STS-114: Discovery Post Landing Press Briefing from JSC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    LeRoy Cain, STS-114 Ascent/Entry Flight Director, takes a solo stand with the Press in this briefing. He noted that the successful flight and return of Discovery is another important milestone, a fresh start, and a new beginning as part of NASA's commitment to the President's vision of man's return to the Moon, Mars and beyond. From this successful test flight, NASA will have a lot of learning and hard work to do in preparation for the next flight. Weather factors, safe landing, touch down, communications, re-entry, the Columbia, were some topics covered with the News media.

  19. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  20. Aerothermodynamic Insight From The HIFIRE Program

    NASA Astrophysics Data System (ADS)

    Kimmel, Roger L.; Adamczak, David; Dolvin, Douglas; Borg, Matthew; Stanfield, Scott

    2011-05-01

    The HIFiRE (Hypersonic International Flight Research and Experimentation) program is a joint venture of the United States Air Force Research Laboratory and Australian Defence Science and Technology Organisation to utilize economical flight research opportunities in the exploration of flight science issues for space access systems. Flights 1 and 5 focus on collecting high-resolution experimental data on critical aerothermodynamic phenomena, including laminar-turbulent transition and shock/boundary layer interactions. Flight 1, successfully flown in March 2010, employed a test article composed of a 7-deg right angle cone, followed by a cylinder and flare. The test article remained attached to the second-stage booster throughout the ballistic trajectory. Flight 5, to be launched in a similar fashion, will feature a 2:1 elliptic cross-section cone as the test article. For both flights significant resources have been invested in pre-flight aerothermodynamic analysis and testing. This manuscript will summarize the overall strategy of the HIFiRE program, review the pre-flight aerothermodynamic analysis for Flights 1 and 5, and present a brief look at preliminary results from the post-flight analysis of Flight 1.

  1. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    Sierra Nevada Corp’s Dream Chaser was released from a helicopter for a landing on an Edwards Air Force Base runway after it was lifted from the ramp at NASA’s Armstrong Flight Research Center in California, for its successful approach and landing flight test on Nov. 11, 2017.

  2. STS-4 test mission simulates operational flight: President terms success golden spike in space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The fourth Space Shuttle flight is summarized. STS certification as operational, applications experiments, experiments involving crew, the first Getaway Special, a lightning survey. Shuttle environment measurement, prelaunch rain and hail, loss of solid rocket boosters, and modification of the thermal test program are reviewed.

  3. HIFIRE Flight 2 Overview and Status Update 2011

    NASA Technical Reports Server (NTRS)

    Jackson, Kevin R.; Gruber, Mark R.; Buccellato, Salvatore

    2011-01-01

    A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.

  4. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas J.; Kapernick, Richard J.; Bragg-Sitton, Shannon M.

    2004-02-01

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  5. PICASSO VISION instrument design, engineering model test results, and flight model development status

    NASA Astrophysics Data System (ADS)

    Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe

    2016-10-01

    PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.

  6. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with the lower superheat was sensitive to the thermal environment around the compensation chamber, while the LHP with the higher superheat (similar in design to DM LHP) was not. In response to the test results the placement of the starter heater will be optimized for the flight instrument testing for higher achieved superheat. This presentation discusses startup behavior, overall conductance of a radiator system, low power operation, high power operation, temperature control stability, and control heater power requirements as measured during this acceptance thermal vacuum test. A brief summary of 'lessons learned' will be included.

  7. A Chief Engineer's View of the NASA X-43A Scramjet Flight Test

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper presents an overview of the preparation and execution of the first two flights of the NASA X-43A scramjet flight test project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The challenges faced by the project team as they prepared the first ever scramjet-powered airplane for flight are presented. Modifications made to the second flight vehicle as a result of the first flight failure and the return to flight activities are discussed. Flight results and lessons learned are also presented.

  8. Implementation of the Enhanced Flight Termination System at National Aeronautics and Space Administration Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Tow, David

    2010-01-01

    This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.

  9. Flight Qualification of the NASA's Super Pressure Balloon

    NASA Astrophysics Data System (ADS)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test flight by successfully demonstrated balloon vehicle performance, obtained a large amount of videos, measured balloon differential pressure, obtained temperature and altitude data, assessed structure strength through pressurization, and demonstrated the balloon vehicles altitude stability. This flight was the first of several to qualify this design for the science community. Results of the most recent flights will be presented. Some of the related material characterization testing which is vital to the balloon design development for the balloon will also be presented. Additionally, this paper will provide a current overview of the development and qualification approach pursued for the NASA’s Super Pressure Balloon. Future plans and goals of future test flights will also be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.

  10. Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.; Woods, William C.; Engelund, Walter C.

    2000-01-01

    This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize. and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cowl-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale. risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.

  11. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Koelfgen, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The NASA Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This paper provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles.

  12. Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.; Woods, William C.; Engelund, Walter C.

    2000-01-01

    This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize, and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cow-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale, risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.

  13. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    Sierra Nevada Corp’s Dream Chaser facing sunrise over Rogers Dry Lake by NASA Armstrong Flight Research Center in California where it was being prepared for a successful approach and landing test Nov. 11, 2017.

  14. B-52B/DTV (Drop Test Vehicle) flight test results: Drop test missions

    NASA Technical Reports Server (NTRS)

    Doty, L. J.

    1985-01-01

    The NASA test airplane, B-52B-008, was a carrier for drop tests of the shuttle booster recovery parachute system. The purpose of the test support by Boeing was to monitor the vertical loads on the pylon hooks. The hooks hold the Drop Test Vehicle to the B-52 pylon during drop test missions. The loads were monitored to assure the successful completion of the flight and the safety of the crew.

  15. Air STAR Beyond Visual Range UAS Description and Preliminary Test Results

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Cox, David E.; Foster, John V.; Riddick, Stephen E.; Laughter, Sean A.

    2016-01-01

    The NASA Airborne Subscale Transport Aircraft Research Unmanned Aerial System project's capabilities were expanded by updating the system design and concept of operations. The new remotely piloted airplane system design was flight tested to assess integrity and operational readiness of the design to perform flight research. The purpose of the system design is to improve aviation safety by providing a capability to validate, in high-risk conditions, technologies to prevent airplane loss of control. Two principal design requirements were to provide a high degree of reliability and that the new design provide a significant increase in test volume (relative to operations using the previous design). The motivation for increased test volume is to improve test efficiency and allow new test capabilities that were not possible with the previous design and concept of operations. Three successful test flights were conducted from runway 4-22 at NASA Goddard Space Flight Center's Wallops Flight Facility.

  16. The F-15B Lifting Insulating Foam Trajectory (LIFT) Flight Test

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Whiteman, Donald; Tseng, Ting; Machin, Ricardo

    2006-01-01

    A series of flight tests has been performed to assess the structural survivability of space shuttle external tank debris, known as divots, in a real flight environment. The NASA F-15B research test bed aircraft carried the Aerodynamic Flight Test Fixture configured with a shuttle foam divot ejection system. The divots were released in flight at subsonic and supersonic test conditions matching points on the shuttle ascent trajectory. Very high-speed digital video cameras recorded the divot trajectories. The objectives of the flight test were to determine the structural survivability of the divots in a real flight environment, assess the aerodynamic stability of the divots, and provide divot trajectory data for comparison with debris transport models. A total of 10 flights to Mach 2 were completed, resulting in 36 successful shuttle foam divot ejections. Highspeed video was obtained at 2,000 pictures per second for all of the divot ejections. The divots that were cleanly ejected remained structurally intact. The conical frustum-shaped divots tended to aerodynamically trim in both the subsonic and supersonic free-stream flow.

  17. GO1 Inert Test Article Captive Carry

    NASA Image and Video Library

    2018-01-10

    Generation Orbit Launch Services, Inc. (GO) completed the GO1 Inert Test Article captive carry flight test at NASA’s Armstrong Flight Research Center in December. Under a public-private partnership with NASA, GO developed the GO1-ITA, a mass properties and outer mold line simulator for the GO1 hypersonic flight testbed and earned NASA airworthiness approval for flight on NASA’s C-20a. NASA’s C-20a was originally modified to add a centerline hard point to carry the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) pod. Together with the NASA Armstrong team, a campaign of three flight tests was conducted, successfully completing all test objectives including clearing the operational flight envelope of the C-20a with the GO1-ITA mounted to the centerline hard point, and demonstrated the unique launch maneuver designed for air launch of the GO1 on operational flights starting in 2019. Data collected during the campaign will be used to validate models and inform the ongoing design and development of GO1.

  18. Dimpled ball grid array process development for space flight applications

    NASA Technical Reports Server (NTRS)

    Barr, S. L.; Mehta, A.

    2000-01-01

    A 472 dimpled ball grid array (D-BGA) package has not been used in past space flight environments, therefore it was necessary to develop a process that would yield robust and reliable solder joints. The process developing assembly, inspection and rework techniques, were verified by conducting environmental tests. Since the 472 D-BGA packages passed the above environmental tests within the specifications, the process was successfully developed for space flight electronics.

  19. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  20. Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.

  1. Design and Flight Performance of the Orion Pre-Launch Navigation System

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  2. Mission Report: STS-4 Test Mission Simulates Operational Flight. President Terms Success Golden Spike in Space

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The fourth space shuttle flight is summarized. An onboard electrophoresis experiment is reviewed. Crew physiology, the first getaway special, a lightning survey, shuttle environment measurement, prelaunch weather conditions, loss of solid rocket boosters, modification of thermal test program, and other events are also reviewed.

  3. The Neutron Star Interior Composition Explorer (NICER): Design and Development

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; hide

    2016-01-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded successfully through Phase C, Design and Development. An X-ray (0.2{12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray \\concentrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.

  4. The Neutron star Interior Composition Explorer (NICER): design and development

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith C.; Arzoumanian, Zaven; Adkins, Phillip W.; Albert, Cheryl L.; Anders, John F.; Aylward, Andrew T.; Baker, Charles L.; Balsamo, Erin R.; Bamford, William A.; Benegalrao, Suyog S.; Berry, Daniel L.; Bhalwani, Shiraz; Black, J. Kevin; Blaurock, Carl; Bronke, Ginger M.; Brown, Gary L.; Budinoff, Jason G.; Cantwell, Jeffrey D.; Cazeau, Thoniel; Chen, Philip T.; Clement, Thomas G.; Colangelo, Andrew T.; Coleman, Jerry S.; Coopersmith, Jonathan D.; Dehaven, William E.; Doty, John P.; Egan, Mark D.; Enoto, Teruaki; Fan, Terry W.; Ferro, Deneen M.; Foster, Richard; Galassi, Nicholas M.; Gallo, Luis D.; Green, Chris M.; Grosh, Dave; Ha, Kong Q.; Hasouneh, Monther A.; Heefner, Kristofer B.; Hestnes, Phyllis; Hoge, Lisa J.; Jacobs, Tawanda M.; Jørgensen, John L.; Kaiser, Michael A.; Kellogg, James W.; Kenyon, Steven J.; Koenecke, Richard G.; Kozon, Robert P.; LaMarr, Beverly; Lambertson, Mike D.; Larson, Anne M.; Lentine, Steven; Lewis, Jesse H.; Lilly, Michael G.; Liu, Kuochia Alice; Malonis, Andrew; Manthripragada, Sridhar S.; Markwardt, Craig B.; Matonak, Bryan D.; Mcginnis, Isaac E.; Miller, Roger L.; Mitchell, Alissa L.; Mitchell, Jason W.; Mohammed, Jelila S.; Monroe, Charles A.; Montt de Garcia, Kristina M.; Mulé, Peter D.; Nagao, Louis T.; Ngo, Son N.; Norris, Eric D.; Norwood, Dwight A.; Novotka, Joseph; Okajima, Takashi; Olsen, Lawrence G.; Onyeachu, Chimaobi O.; Orosco, Henry Y.; Peterson, Jacqualine R.; Pevear, Kristina N.; Pham, Karen K.; Pollard, Sue E.; Pope, John S.; Powers, Daniel F.; Powers, Charles E.; Price, Samuel R.; Prigozhin, Gregory Y.; Ramirez, Julian B.; Reid, Winston J.; Remillard, Ronald A.; Rogstad, Eric M.; Rosecrans, Glenn P.; Rowe, John N.; Sager, Jennifer A.; Sanders, Claude A.; Savadkin, Bruce; Saylor, Maxine R.; Schaeffer, Alexander F.; Schweiss, Nancy S.; Semper, Sean R.; Serlemitsos, Peter J.; Shackelford, Larry V.; Soong, Yang; Struebel, Jonathan; Vezie, Michael L.; Villasenor, Joel S.; Winternitz, Luke B.; Wofford, George I.; Wright, Michael R.; Yang, Mike Y.; Yu, Wayne H.

    2016-07-01

    During 2014 and 2015, NASA's Neutron star Interior Composition Explorer (NICER) mission proceeded success- fully through Phase C, Design and Development. An X-ray (0.2-12 keV) astrophysics payload destined for the International Space Station, NICER is manifested for launch in early 2017 on the Commercial Resupply Services SpaceX-11 flight. Its scientific objectives are to investigate the internal structure, dynamics, and energetics of neutron stars, the densest objects in the universe. During Phase C, flight components including optics, detectors, the optical bench, pointing actuators, electronics, and others were subjected to environmental testing and integrated to form the flight payload. A custom-built facility was used to co-align and integrate the X-ray "con- centrator" optics and silicon-drift detectors. Ground calibration provided robust performance measures of the optical (at NASA's Goddard Space Flight Center) and detector (at the Massachusetts Institute of Technology) subsystems, while comprehensive functional tests prior to payload-level environmental testing met all instrument performance requirements. We describe here the implementation of NICER's major subsystems, summarize their performance and calibration, and outline the component-level testing that was successfully applied.

  5. When Failure Means Success: Accepting Risk in Aerospace Development

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Singer, Christopher E.

    2009-01-01

    Over the last three decades, NASA has been diligent in qualifying systems for human space flight. As the Agency transitions from operating the Space Shuttle, its employees must learn to accept higher risk levels to generate the data needed to certify its next human space flight system. The Marshall Center s Engineering workforce is developing the Ares I crew launch vehicle and designing the Ares V cargo launch vehicle for safety, reliability, and cost-effective operations. This presentation will provide a risk retrospective, using first-hand examples from the Delta Clipper-Experimental Advanced (DC-XA) and the X-33 single-stage-to-orbit flight demonstrators, while looking ahead to the upcoming Ares I-X uncrewed test flight. The DC-XA was successfully flown twice in 26 hours, setting a new turnaround-time record. Later, one of its 3 landing gears did not deploy, it tipped over, and was destroyed. During structural testing, the X-33 s advanced composite tanks were unable to withstand the forces to which it was subjected and the project was later cancelled. These are examples of successful failures, as the data generated are captured in databases used by vehicle designers today. More recently, the Ares I-X flight readiness review process was streamlined in keeping with the mission's objectives, since human lives are not at stake, which reflects the beginning of a cultural change. Failures are acceptable during testing, as they provide the lessons that actually lead to mission success. These and other examples will stimulate the discussion of when to accept risk in aerospace projects.

  6. Flight Testing of Guidance, Navigation and Control Systems on the Mighty Eagle Robotic Lander Testbed

    NASA Technical Reports Server (NTRS)

    Hannan, Mike; Rickman, Doug; Chavers, Greg; Adam, Jason; Becker, Chris; Eliser, Joshua; Gunter, Dan; Kennedy, Logan; O'Leary, Patrick

    2015-01-01

    During 2011 a series of progressively more challenging flight tests of the Mighty Eagle autonomous terrestrial lander testbed were conducted primarily to validate the GNC system for a proposed lunar lander. With the successful completion of this GNC validation objective the opportunity existed to utilize the Mighty Eagle as a flying testbed for a variety of technologies. In 2012 an Autonomous Rendezvous and Capture (AR&C) algorithm was implemented in flight software and demonstrated in a series of flight tests. In 2012 a hazard avoidance system was developed and flight tested on the Mighty Eagle. Additionally, GNC algorithms from Moon Express and a MEMs IMU were tested in 2012. All of the testing described herein was above and beyond the original charter for the Mighty Eagle. In addition to being an excellent testbed for a wide variety of systems the Mighty Eagle also provided a great learning opportunity for many engineers and technicians to work a flight program.

  7. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  8. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Image and Video Library

    1998-03-04

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. "I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE."

  9. KSC-2009-5954

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, a post-launch news conference is held in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. Smiling, from left, are Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Jeff Hanley, Constellation Program manager; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-5955

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, Constellation Program Manager Jeff Hanley addresses a post-launch news conference in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. From left, are, Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Hanley; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  11. Flight Tests of N.A.C.A. Nose-slot Cowlings on the BFC-1 Airplane

    NASA Technical Reports Server (NTRS)

    Stickle, George W

    1939-01-01

    The results of flight tests of four nose-slot cowling designs with several variations in each design are presented. The tests were made in the process of developing the nose-slot cowling. The results demonstrate that a nose-slot cowling may be successfully applied to an airplane and that it utilizes the increased slipstream velocity of low-speed operation to produce increased cooling pressure across the engine. A sample design calculation using results from wind-tunnel, flight, and ground tests is given in an appendix to illustrate the design procedure.

  12. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  13. Smart command recognizer (SCR) - For development, test, and implementation of speech commands

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.

    1988-01-01

    The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.

  14. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    Sierra Nevada Corp’s Dream Chaser being towed from the former space shuttle hangar at NASA Armstrong Flight Research Center in California where it was housed and prepared for its successful Nov. 11, 2017 approach and landing test.

  15. AJ26 engine test

    NASA Image and Video Library

    2011-02-07

    NASA Administrator Charles Bolden (l) and John C. Stennis Space Center Director Patrick Scheuermann watch the successful test of the first Aerojet AJ26 flight engine Feb. 7, 2011. The test was conducted on the E-1 Test Stand at Stennis. The engine now will be sent to Wallops Flight Facility in Virginia, where it will be used to power the first stage of Orbital Sciences Corporation's Taurus II space vehicle. The Feb. 7 test supports NASA's commitment to partner with companies to provide commercial cargo flights to the International Space Station. NASA has partnered with Orbital to carry out the first of eight cargo missions to the space station in early 2012.

  16. Executive Summary of Propulsion on the Orion Abort Flight-Test Vehicles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Brooks, Syri J.; Barnes, Marvin W.; McCauley, Rachel J.; Wall, Terry M.; Reed, Brian D.; Duncan, C. Miguel

    2012-01-01

    The National Aeronautics and Space Administration Orion Flight Test Office was tasked with conducting a series of flight tests in several launch abort scenarios to certify that the Orion Launch Abort System is capable of delivering astronauts aboard the Orion Crew Module to a safe environment, away from a failed booster. The first of this series was the Orion Pad Abort 1 Flight-Test Vehicle, which was successfully flown on May 6, 2010 at the White Sands Missile Range in New Mexico. This report provides a brief overview of the three propulsive subsystems used on the Pad Abort 1 Flight-Test Vehicle. An overview of the propulsive systems originally planned for future flight-test vehicles is also provided, which also includes the cold gas Reaction Control System within the Crew Module, and the Peacekeeper first stage rocket motor encased within the Abort Test Booster aeroshell. Although the Constellation program has been cancelled and the operational role of the Orion spacecraft has significantly evolved, lessons learned from Pad Abort 1 and the other flight-test vehicles could certainly contribute to the vehicle architecture of many future human-rated space launch vehicles

  17. Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    2001-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.

  18. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-11

    Sierra Nevada Corp’s Dream Chaser crew attached the wires that the helicopter would use to pick it up from NASA’s Armstrong Flight Research Center in California in preparation for its successful approach and landing test Nov. 11, 2017.

  19. Dream Chaser ALT-2 Free Flight

    NASA Image and Video Library

    2017-11-07

    A lift device was attached to Sierra Nevada Corp’s Dream Chaser for a helicopter to pick it up to drop for its successful approach and landing test at NASA’s Armstrong Flight Research Center in California on Nov. 11, 2017.

  20. Ares I-X Test Flight Reference Trajectory Development

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Gumbert, Clyde R.; Tartabini, Paul V.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I crew launch vehicle. Ares I is a two stage to orbit launch vehicle that provides crew access to low Earth orbit for NASA's future manned exploration missions. The Ares I first stage consists of a Shuttle solid rocket motor (SRM) modified to include an additional propellant segment and a liquid propellant upper stage with an Apollo J2X engine modified to increase its thrust capability. The modified propulsion systems were not available for the first test flight, thus the test had to be conducted with an existing Shuttle 4 segment reusable solid rocket motor (RSRM) and an inert Upper Stage. The test flight's primary objective was to demonstrate controllability of an Ares I vehicle during first stage boost and the ability to perform a successful separation. In order to demonstrate controllability, the Ares I-X ascent control algorithms had to maintain stable flight throughout a flight environment equivalent to Ares I. The goal of the test flight reference trajectory development was to design a boost trajectory using the existing RSRM that results in a flight environment equivalent to Ares I. A trajectory similarity metric was defined as the integrated difference between the Ares I and Ares I-X Mach versus dynamic pressure relationships. Optimization analyses were performed that minimized the metric by adjusting the inert upper stage weight and the ascent steering profile. The sensitivity of the optimal upper stage weight and steering profile to launch month was also investigated. A response surface approach was used to verify the optimization results. The analyses successfully defined monthly ascent trajectories that matched the Ares I reference trajectory dynamic pressure versus Mach number relationship to within 10% through Mach 3.5. The upper stage weight required to achieve the match was found to be feasible and varied less than 5% throughout the year. The paper will discuss the flight test requirements, provide Ares I-X vehicle background, discuss the optimization analyses used to meet the requirements, present analysis results, and compare the reference trajectory to the reconstructed flight trajectory.

  1. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program

    NASA Technical Reports Server (NTRS)

    Roudakov, Alexander S.; Semenov, Vyacheslav L.; Hicks, John W.

    1998-01-01

    Under a contract with NASA, a joint Central Institute of Aviation Motors (CIAM) and NASA team recently conducted the fourth flight test of a dual-mode scramjet aboard the CIAM Hypersonic Flying Laboratory, 'Kholod'. With an aim test Mach 6.5 objective, the successful launch was conducted at the Sary Shagan test range in central Kazakstan on February 12, 1998. Ground-launch, rocket boosted by a modified Russian SA5 missile, the redesigned scramjet was accelerated to a new maximum velocity greater than Mach 6.4. This launch allowed for the measurement of the fully supersonic combustion mode under actual flight conditions. The primary program objective was the flight-to-ground correlation of measured data with preflight analysis and wind-tunnel tests in Russia and potentially in the United States. This paper describes the development and objectives of the program as well as the technical details of the scramjet and SA5 redesign to achieve the Mach 6.5 aim test condition. An overview of the launch operation is also given. Finally, preliminary flight test results are presented and discussed.

  2. Lunar Atmosphere and Dust Environment Explorer Integration and Test

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.; McCormick, John L.

    2010-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA collaborative flight project to explore the lunar exosphere. It is being developed through a unique partnership between NASA's Ames Research Center (ARC) and Goddard Space Flight Center (GSFC). Each center brings its own experience and flight systems heritage to the task of integrating and testing the LADEE subsystems, instruments, and spacecraft. As an "in-house" flight project being implemented at low-cost and moderate risk, LADEE relies on single-string subsystems and protoflight hardware to accomplish its mission. Integration and test (l&T) of the LADEE spacecraft with the instruments will be performed at GSFC, and includes assembly, integration, functional testing, and flight qualification and acceptance testing. Due to the nature of the LADEE mission, l&T requirements include strict contamination control measures and instrument calibration procedures. Environmental testing will include electromagnetic compatibility (EMC), vibro-acoustic testing, and thermal-balance/vacuum. Upon successful completion of spacecraft l&T, LADEE will be launched from NASA's Wallops Flight Facility. Launch of the LADEE spacecraft is currently scheduled for December 2012.

  3. Orion’s first flight on This Week @NASA - December 8, 2014

    NASA Image and Video Library

    2014-12-08

    The successful first flight test of NASA’s Orion spacecraft on Dec. 5 not only was a historic moment for the agency – but also was a critical step on NASA’s Journey to Mars. Orion rode to space from Cape Canaveral Air Force Station on a Delta IV heavy rocket with no crew, but loaded with about 1,200 sensors. The flight test basically was a compilation of the riskiest events that will happen when astronauts fly on Orion on deep space missions. Also, Journey to Mars briefing, 1st SLS flight barrel and Commercial crew milestone.

  4. Development of the Astrobee F sounding rocket system.

    NASA Technical Reports Server (NTRS)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  5. Annotated Bibliography of Research Relevant to the Development and Validation of the Situational Test of Aircrew Response Styles Inventory

    DTIC Science & Technology

    1997-08-01

    have difficulties dealing with the stress of the flight training environment. The DMT presents subjects with repeated subliminal exposure to a...ability (i.e., visual and auditory ) and flight training performance. Also, there have been some reports of success for using a variety of tests (e.g...has reported moderate correlations (.22 to .54) between a measure of dual-tasking ability (i.e., visual and auditory ) and flight training performance

  6. NASA Precision Landing Technologies Completes Initial Flight Tests on Vertical Testbed Rocket

    NASA Image and Video Library

    2017-04-19

    This 2-minute, 40-second video shows how over the past 5 weeks, NASA and Masten Space Systems teams have prepared for and conducted sub-orbital rocket flight tests of next-generation lander navigation technology through the CoOperative Blending of Autonomous Landing Technologies (COBALT) project. The COBALT payload was integrated onto Masten’s rocket, Xodiac. The Xodiac vehicle used the Global Positioning System (GPS) for navigation during this first campaign, which was intentional to verify and refine COBALT system performance. The joint teams conducted numerous ground verification tests, made modifications in the process, practiced and refined operations’ procedures, conducted three tether tests, and have now flown two successful free flights. This successful, collaborative campaign has provided the COBALT and Xodiac teams with the valuable performance data needed to refine the systems and prepare them for the second flight test campaign this summer when the COBALT system will navigate the Xodiac rocket to a precision landing. The technologies within COBALT provide a spacecraft with knowledge during entry, descent, and landing that enables it to precisely navigate and softly land close to surface locations that have been previously too risky to target with current capabilities. The technologies will enable future exploration destinations on Mars, the moon, Europa, and other planets and moons. The two primary navigation components within COBALT include the Langley Research Center’s Navigation Doppler Lidar, which provides ultra-precise velocity and line-of-sight range measurements, and Jet Propulsion Laboratory’s Lander Vision System (LVS), which provides navigation estimates relative to an existing surface map. The integrated system is being flight tested onboard a Masten suborbital rocket vehicle called Xodiac. The COBALT project is led by the Johnson Space Center, with funding provided through the Game Changing Development, Flight Opportunities program, and Advanced Exploration Systems programs. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.

  7. The Airborne Research Instrumentation Testing Opportunity (ARISTO)

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Romashkin, P.; Lussier, L.; Baeuerle, B.; Stith, J. L.

    2016-12-01

    In 2015 the National Science Foundation (NSF) began a program to sponsor an annual flight campaign on one of its research aircraft (the C-130 and GV) operated by the National Center for Atmospheric Research (NCAR). The aircraft are managed by the Research Aviation Facility (RAF), which is part of the Earth Observing Laboratory (EOL) and responsible for planning and executing the campaigns. The purpose of this program, known as the Airborne Research Instrumentation Testing Opportunity or ARISTO, is to provide regular flight test opportunities for newly developed or highly modified instruments as part of their development effort. The NSF community has expressed a strong desire for regularly scheduled flight-testing programs to be able to test instrumentation, data systems, inlets, and software. ARISTO allows this testing in a low-pressure environment where any issues or problems will not affect the scientific goals of a large-scale field campaign. For this reason it is also a good experience for students who may be learning about the operation of an instrument or have not had previous exposure to a field project. They are also able to contribute to flight planning exercises and gain experience in acting as an instrument scientist during the program. A goal of the program is to incorporate students into the project operations to prepare the next generation of airborne researchers. ARISTO is conducted at the Research Aviation Facility at Rocky Mountain Metropolitan Airport in Broomfield, Colorado. The flight campaign consists of 20 flight hours, spread over three weeks. Flights are planned to allow the ARISTO participants to successfully test their instruments based on requirements they described in the initial application. Due to the limited hours most flights are focused in and around Colorado, though some have gone as far as Oklahoma and the Pacific Northwest to find the right conditions to meet testing requirements. Two ARISTO campaigns were successfully completed in 2015 and 2016, and a summary of these projects will be presented. Preparations for the 2017 campaign are underway, with flights scheduled to take place in February and March. The next ARISTO campaign is likely to occur in the summer of 2018, and details on the schedule and how to apply will be discussed.

  8. B-52/Pegasus with X-43A departing on first captive flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  9. B-52/Pegasus with X-43A in flight over Pacific Ocean.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  10. Close view of B-52/Pegasus with X-43A in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  11. B-52/Pegasus with X-43A landing after first captive carry flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden. After taking off from the Dryden Flight Research Center, Edwards, Calif., at 12:33 p.m. PDT, the B-52 soared off the California coast on the predetermined flight path, and returned to Dryden for a 2:19 p.m. PDT landing. Pending thorough evaluation of all flight data, this captive-carry test could lead to the first flight of the X-43A 'stack' as early as mid-May. The first free flight will be air-launched by NASA's B-52 at about 24,000 feet altitude. The booster will accelerate the X-43A to Mach 7 to approximately 95,000 feet altitude. At booster burnout, the X-43 will separate from the booster and fly under its own power on a preprogrammed flight path. The hydrogen-fueled aircraft has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  12. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    NASA Technical Reports Server (NTRS)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  13. Results of the Stable Microgravity Vibration Isolation Flight Experiment

    NASA Technical Reports Server (NTRS)

    Edberg, Donald; Boucher, Robert; Schenck, David; Nurre, Gerald; Whorton, Mark; Kim, Young; Alhorn, Dean

    1996-01-01

    This paper presents an overview of the STABLE microgravity isolation system developed and successfully flight tested in October 1995. A description of the hardware design and operational principles is given. A sample of the measured flight data is presented, including an evaluation of attenuation performance provided by the actively controlled electromagnetic isolation system. Preliminary analyses of flight data show that the acceleration environment aboard STABLE's isolated platform was attenuated by a factor of more than 25 between 0.1 and 100 Hz. STABLE was developed under a cooperative agreement between National Aeronautics and Space Administration, Marshall Space Flight Center, and McDonnell Douglas Aerospace. The flight hardware was designed, fabricated, integrated, tested, and delivered to the Cape during a five month period.

  14. Design and flight testing of a nullable compressor face rake

    NASA Technical Reports Server (NTRS)

    Holzman, J. K.; Payne, G. A.

    1973-01-01

    A compressor face rake with an internal valve arrangement to permit nulling was designed, constructed, and tested in the laboratory and in flight at the NASA Flight Research Center. When actuated by the pilot in flight, the nullable rake allowed the transducer zero shifts to be determined and then subsequently removed during data reduction. Design details, the fabrication technique, the principle of operation, brief descriptions of associated digital zero-correction programs and the qualification tests, and test results are included. Sample flight data show that the zero shifts were large and unpredictable but could be measured in flight with the rake. The rake functioned reliably and as expected during 25 hours of operation under flight environmental conditions and temperatures from 230 K (-46 F) to greater than 430 K (314 F). The rake was nulled approximately 1000 times. The in-flight zero-shift measurement technique, as well as the rake design, was successful and should be useful in future applications, particularly where accurate measurements of both steady-state and dynamic pressures are required under adverse environmental conditions.

  15. Mars Science Laboratory Boot Robustness Testing

    NASA Technical Reports Server (NTRS)

    Banazadeh, Payam; Lam, Danny

    2011-01-01

    Mars Science Laboratory (MSL) is one of the most complex spacecrafts in the history of mankind. Due to the nature of its complexity, a large number of flight software (FSW) requirements have been written for implementation. In practice, these requirements necessitate very complex and very precise flight software with no room for error. One of flight software's responsibilities is to be able to boot up and check the state of all devices on the spacecraft after the wake up process. This boot up and initialization is crucial to the mission success since any misbehavior of different devices needs to be handled through the flight software. I have created a test toolkit that allows the FSW team to exhaustively test the flight software under variety of different unexpected scenarios and validate that flight software can handle any situation after booting up. The test includes initializing different devices on spacecraft to different configurations and validate at the end of the flight software boot up that the flight software has initialized those devices to what they are suppose to be in that particular scenario.

  16. Flight Control Laws for NASA's Hyper-X Research Vehicle

    NASA Technical Reports Server (NTRS)

    Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.

    1999-01-01

    The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.

  17. Chimpanzee 'Ham' In Biopack Couch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee 'Ham' over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  18. Mercury Project

    NASA Image and Video Library

    1961-01-31

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  19. Mercury Project

    NASA Image and Video Library

    1961-01-01

    A three-year-old chimpanzee, named Ham, in the biopack couch for the MR-2 suborbital test flight. On January 31, 1961, a Mercury-Redstone launch from Cape Canaveral carried the chimpanzee "Ham" over 640 kilometers down range in an arching trajectory that reached a peak of 254 kilometers above the Earth. The mission was successful and Ham performed his lever-pulling task well in response to the flashing light. NASA used chimpanzees and other primates to test the Mercury Capsule before launching the first American astronaut Alan Shepard in May 1961. The successful flight and recovery confirmed the soundness of the Mercury-Redstone systems.

  20. KSC-2009-5956

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, a post-launch news conference is held in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. Sharing a lighter moment are, from left, Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Jeff Hanley, Constellation Program manager; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  1. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    NASA and its commercial industry team achieved significant progress in 2016 in manufacturing and testing of the Block 1 vehicle for the first launch of the Space Launch System (SLS). Test and flight article hardware for the liquid hydrogen fuel tank as well as the engine section for the core stage were completed at Michoud Assembly Facility (MAF) in New Orleans. Test stands neared completion at Marshall Space Flight Center for the propellant tanks, engine section, intertank and payload section. Stennis Space Center completed major structural renovations on the B2 test stand, where the core stage "green run" test program will be conducted. The SLS team completed a hotfire test series at Stennis to successfully demonstrate the ability of the RS-25 engine to operate under SLS environments and performance conditions. The team also test fired the second qualification five-segment solid rocket motor and cast the first six motor segments for the first SLS mission. The Interim Cryogenic Propulsion Stage (ICPS) test article was delivered to Marshall for structural tests, and work is nearly finished on the flight stage. Flight software testing completed at Marshall included power quality and command and data handling. In 2017, that work continues. SLS completed Preliminary Design Review (PDR) on the Exploration Upper Stage (EUS), a powerful, human-rated spacecraft that will propel explorers to cis-lunar space. In 2017, hardware will continue to be integrated at MAF for core stage structural test articles and the first two operational flights. RS-25 hotfire testing will continue to explore engine performance, as well as test flight-like software and four new Engine Controller Units (ECUs) for the first mission. Production of development components for a more affordable RS-25 design is underway. Core stage structural test articles have begun arriving at Marshall. While engineering challenges typical of a new development are possible, SLS is working toward launch readiness in late 2018. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before first flight

  2. Space Shuttle Flight Support Motor no. 1 (FSM-1)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil D.

    1990-01-01

    Space Shuttle Flight Support Motor No. 1 (FSM-1) was static test fired on 15 Aug. 1990 at the Thiokol Corporation Static Test Bay T-24. FSM-1 was a full-scale, full-duration static test fire of a redesigned solid rocket motor. FSM-1 was the first of seven flight support motors which will be static test fired. The Flight Support Motor program validates components, materials, and manufacturing processes. In addition, FSM-1 was the full-scale motor for qualification of Western Electrochemical Corporation ammonium perchlorate. This motor was subjected to all controls and documentation requirements CTP-0171, Revision A. Inspection and instrumentation data indicate that the FSM-1 static test firing was successful. The ambient temperature during the test was 87 F and the propellant mean bulk temperature was 82 F. Ballistics performance values were within the specified requirements. The overall performance of the FSM-1 components and test equipment was nominal.

  3. Reusable launch vehicle development research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  4. Recent European Developments in Helicopters

    NASA Technical Reports Server (NTRS)

    1921-01-01

    Descriptions are given of two captured helicopters, one driven by electric power, the other by a gasoline engine. An account is given of flight tests of the gasoline powered vehicle. After 15 successful flight tests, the gasoline powered vehicle crashed due to the insufficient thrust. Also discussed here are the applications of helicopters for military observations, for meteorological work, and for carrying radio antennas.

  5. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  6. Eclipse project QF-106 and C-141A climbs out under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW LAUNCH DEMONSTRATION - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 climbs out under tow by a USAF C-141A on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  7. Eclipse project QF-106 and C-141A takeoff on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    TOW ROPE TAKEOFF - The Kelly Space & Technology (KST)/USAF Eclipse project's modified QF-106 and a USAF C-141A takeoff for the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  8. Eclipse project closeup of QF-106 under tow on takeoff on first flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    OFF THE GROUND - The Kelly Space & Technology (KST)/USAF/NASA Eclipse project's modified QF-106 lifts off under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, hosted the project, providing engineering and facility support as well as the project pilot. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  9. Eclipse project closeup of QF-106 under tow on first tethered flight December 20, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Kelly Space and Technology (KST)/USAF/NASA Eclipse project's modified QF-106 is shown under tow on the project's first tethered flight on December 20, 1997. The successful 18-minute-long flight reached an altitude of 10,000 feet. NASA's Dryden Flight Research Center, Edwards, California, is hosting the project, providing engineering and facility support as well as the project pilot, Mark Stucky. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  10. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    NASA Technical Reports Server (NTRS)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  11. Morpheus Vertical Test Bed Flight Testing

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy; Devolites, Jennifer

    2014-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Morpheus onboard software is autonomous from ignition all the way through landing, and is designed to be capable of executing a variety of flight trajectories, with onboard fault checks and automatic contingency responses. The Morpheus 1.5A vehicle performed 26 integrated vehicle test flights including hot-fire tests, tethered tests, and two attempted freeflights between April 2011 and August 2012. The final flight of Morpheus 1.5A resulted in a loss of the vehicle. In September 2012, development began on the Morpheus 1.5B vehicle, which subsequently followed a similar test campaign culminating in free-flights at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. This paper describes the integrated test campaign, including successes and setbacks, and how the system design for handling faults and failures evolved over the course of the project.

  12. Fiber Optic System Test Results In A Tactical Military Aircraft

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Roger W.; Greenwell, Roger A.

    1980-09-01

    The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.

  13. Overview of medical operations for a manned stratospheric balloon flight.

    PubMed

    Blue, Rebecca S; Law, Jennifer; Norton, Sean C; Garbino, Alejandro; Pattarini, James M; Turney, Matthew W; Clark, Jonathan B

    2013-03-01

    Red Bull Stratos was a commercial program designed to bring a test parachutist protected by a full-pressure suit via a stratospheric balloon with a pressurized capsule to 120,000 ft (36,576 m), from which he would freefall and subsequently parachute to the ground. On March 15, 2012, the Red Bull Stratos program successfully conducted a preliminary manned balloon test flight and parachute jump, reaching a final altitude of 71,581 ft (21,818 m). In light of the uniqueness of the operation and medical threats faced, a comprehensive medical plan was needed to ensure prompt and efficient response to any medical contingencies. This report will serve to discuss the medical plans put into place before the first manned balloon flight and the actions of the medical team during that flight. The medical operations developed for this program will be systematically evaluated, particularly, specific recommendations for improvement in future high-altitude and commercial space activities. A multipronged approach to medical support was developed, consisting of event planning, medical personnel, equipment, contingency-specific considerations, and communications. Medical operations were found to be highly successful when field-tested during this stratospheric flight, and the experience allowed for refinement of medical operations for future flights. The lessons learned and practices established for this program can easily be used to tailor a plan specific to other aviation or spaceflight events.

  14. Results of the recent precipitation static flight test program on the Navy P-3B antisubmarine aircraft

    NASA Technical Reports Server (NTRS)

    Whitaker, Mike

    1991-01-01

    Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.

  15. Control Oriented Modeling and Validation of Aeroservoelastic Systems

    NASA Technical Reports Server (NTRS)

    Crowder, Marianne; deCallafon, Raymond (Principal Investigator)

    2002-01-01

    Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.

  16. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  17. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; hide

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  18. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    NASA Technical Reports Server (NTRS)

    Wachholz, James J.; Murphy, David M.

    1996-01-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.

  19. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachholz, J.J.; Murphy, D.M.

    1996-05-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and designmore » development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.« less

  20. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  1. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  2. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  3. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  4. The Orion Pad Abort 1 Flight Test A Highly Successful Test

    NASA Technical Reports Server (NTRS)

    Sinclair, Robert; Taylor, Anthony P. (Tony); Johnston, Justin

    2011-01-01

    The Orion Pad Abort 1 (PA-1) flight test was designed as an early demonstration of the Launch Abort System (LAS) for the Orion capsule. The LAS was designed developed and manufactured by the Lockheed Martin/Orbital Sciences team. At inception it was realized that recovery of the Orion Capsule simulator would be useful from an engineering analysis and data recovery point of view. Additionally this test represented a flight opportunity for the Orion parachute system, which in a real abort would provide final landing deceleration. The Orion parachute program is named CPAS (CEV Parachute Assembly System). Thus CPAS became a part of the PA-1 flight, as a secondary test objective. At program kick off, the CPAS system was in the design state described below. Airbag land landing of the spacecraft was the program baseline. This affected the rigging of the parachutes. The system entry deployment conditions and vehicle mass have both evolved since that original design. It was decided to use the baseline CPAS Generation 1 (Gen 1) parachute system for the recovery of the PA-1 flight. As CPAS was a secondary test objective, the system would be delivered in its developmental state. As the PA-1 program evolved, the parachute recovery system (CPAS) moved from a secondary objective to a more important portion of the program. Tests were added, weights and deployment conditions changed and some hardware portions of the CPAS configuration were not up to the new challenges. Additional tests were added to provide confidence in the developmental system. This paper will review a few of these aspects with the goal of showing some preliminary and qualitative results from what we believe was a highly successful test.

  5. Wright Brothers National Memorial: Site of the First Controlled Powered Flight. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Olio, Brenda K.

    Wilbur and Orville Wright undertook the first test airplane flight on December 17, 1903, at the Outer Banks of North Carolina. Their success represented the culmination of four years of painstaking research and trials in which they designed and improved their flying machines at home in Dayton, Ohio, and tested them each year near Kitty Hawk, North…

  6. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  7. Automatic treatment of flight test images using modern tools: SAAB and Aeritalia joint approach

    NASA Astrophysics Data System (ADS)

    Kaelldahl, A.; Duranti, P.

    The use of onboard cine cameras, as well as that of on ground cinetheodolites, is very popular in flight tests. The high resolution of film and the high frame rate of cinecameras are still not exceeded by video technology. Video technology can successfully enter the flight test scenario once the availability of solid-state optical sensors dramatically reduces the dimensions, and weight of TV cameras, thus allowing to locate them in positions compatible with space or operational limitations (e.g., HUD cameras). A proper combination of cine and video cameras is the typical solution for a complex flight test program. The output of such devices is very helpful in many flight areas. Several sucessful applications of this technology are summarized. Analysis of the large amount of data produced (frames of images) requires a very long time. The analysis is normally carried out manually. In order to improve the situation, in the last few years, several flight test centers have devoted their attention to possible techniques which allow for quicker and more effective image treatment.

  8. Annual Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 2: Summary of Information Developed in the Panel's Fact-Finding Activities

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The panel focused its attention on those areas that are considered most significant for flight success and safety. Elements required for the Approach and Landing Test Program, the Orbital Flight Test Program, and those management systems and their implementation which directly affect safety, reliability, and quality control, were investigated. Ground facilities and the training programs for the ground and flight crews were studied. Of special interest was the orbiter thermal protection subsystems.

  9. KSC-2009-5953

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, members of the news media attend a post-launch news conference in the Press Site auditorium following the successful launch of the Ares I-X test rocket at 11:30 a.m. EDT Oct. 28. Onstage, from left, are moderator George Diller, NASA Public Affairs officer; Doug Cooke, associate administrator for NASA's Exploration Systems Mission Directorate; Jeff Hanley, Constellation Program manager; Bob Ess, mission manager for the Ares I-X flight test; and Edward Mango, launch director for the Ares I-X flight test. For more information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  10. UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.

  11. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    NASA Astrophysics Data System (ADS)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1 km from the target, including the wind drift acting on the parachute from an altitude of 4.5 km.

  12. A smoke generator system for aerodynamic flight research

    NASA Technical Reports Server (NTRS)

    Richwine, David M.; Curry, Robert E.; Tracy, Gene V.

    1989-01-01

    A smoke generator system was developed for in-flight vortex flow studies on the F-18 high alpha research vehicle (HARV). The development process included conceptual design, a survey of existing systems, component testing, detailed design, fabrication, and functional flight testing. Housed in the forebody of the aircraft, the final system consists of multiple pyrotechnic smoke cartridges which can be fired simultaneously or in sequence. The smoke produced is ducted to desired locations on the aircraft surface. The smoke generator system (SGS) has been used successfully to identify vortex core and core breakdown locations as functions of flight condition. Although developed for a specific vehicle, this concept may be useful for other aerodynamic flight research which requires the visualization of local flows.

  13. Computer assisted performance tests of the Lyman Alpha Coronagraph

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.

    1979-01-01

    Preflight calibration and performance tests of the Lyman Alpha Coronagraph rocket instrument in the laboratory, with the experiment in its flight configuration and illumination levels near those expected during flight were successfully carried out using a pulse code modulation telemetry system simulator interfaced in real time to a PDP 11/10 computer system. Post acquisition data reduction programs developed and implemented on the same computer system aided in the interpretation of test and calibration data.

  14. Assessment and Mission Planning Capability For Quantitative Aerothermodynamic Flight Measurements Using Remote Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin

    2008-01-01

    High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an assessment study focused on increasing the probability of returning spatially resolved scientific/engineering thermal imagery. This paper provides an overview of the assessment task and the systematic approach designed to establish confidence in the ability of existing assets to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. A discussion of capability demonstration in support of a potential Shuttle boundary layer transition flight test is presented. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the proposed Shuttle boundary layer transition flight test could lead to potential future applications with hypersonic flight test programs within the USAF and DARPA along with flight test opportunities supporting NASA s project Constellation.

  15. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  16. The extension of the thermal-vacuum test optimization program to multiple flights

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Byrd, J.

    1981-01-01

    The thermal vacuum test optimization model developed to provide an approach to the optimization of a test program based on prediction of flight performance with a single flight option in mind is extended to consider reflight as in space shuttle missions. The concept of 'utility', developed under the name of 'availability', is used to follow performance through the various options encountered when the capabilities of reflight and retrievability of space shuttle are available. Also, a 'lost value' model is modified to produce a measure of the probability of a mission's success, achieving a desired utility using a minimal cost test strategy. The resulting matrix of probabilities and their associated costs provides a means for project management to evaluate various test and reflight strategies.

  17. Honey bee queens do not count mates to assess their mating success

    USDA-ARS?s Scientific Manuscript database

    The mating system of honey bees (genus Apis) is extremely polyandrous, where reproductive females (queens) typically mate with 12 or more males (drones) during their mating flight(s). The evolutionary implications for hyperpolyandry have been subject to considerable debate and empirical testing beca...

  18. Sampling High-Altitude and Stratified Mating Flights of Red Imported Fire Ant

    USDA-ARS?s Scientific Manuscript database

    With the exception of an airplane equipped with nets, no method has been developed that successfully samples red imported fire ant, Solenopsis invicta Buren, sexuals in mating/dispersal flights throughout their potential altitudinal trajectories. We developed and tested a method for sampling queens ...

  19. B-52/Pegasus with X-43A in flight over Pacific Ocean

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  20. Close view of B-52/Pegasus with X-43A in flight

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  1. B-52/Pegasus with X-43A departing on first captive flight

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  2. B-52/Pegasus with X-43A landing after first captive carry flight

    NASA Image and Video Library

    2001-04-28

    The NASA X-43A hypersonic research vehicle and its Pegasus booster rocket, mounted beneath the wing of their B-52 mothership, had a successful first captive-carry flight on April 28, 2001, Basically a dress rehearsal for a subsequent free flight, the captive-carry flight kept the X-43A-and-Pegasus combination attached to the B-52's wing pylon throughout the almost two-hour mission from NASA's Dryden Flight Research Center, Edwards, Calif., over the Pacific Missile Test Range, and back to Dryden.

  3. Armstrong Flight Research Center Research Technology and Engineering 2017

    NASA Technical Reports Server (NTRS)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  4. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  5. Systems Engineering Management Plan NASA Traffic Aware Planner Integration Into P-180 Airborne Test-Bed

    NASA Technical Reports Server (NTRS)

    Maris, John

    2015-01-01

    NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).

  6. Ares I-X: First Flight of a New Era

    NASA Technical Reports Server (NTRS)

    Davis, Stephen R.; Askins, Bruce R.

    2010-01-01

    Since 2005, NASA s Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). The Ares Projects at Marshall Space Flight Center (MSFC) are developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Basing exploration launch vehicle designs on Ares I-X information puts NASA one step closer to full-up "test as you fly," a best practice in vehicle design. Although the final Constellation Program architecture is under review, the Ares I-X data and experience in vehicle design and operations can be applied to any launch vehicle. This paper presents the mission background as well as results and lessons learned from the flight.

  7. Man-rated flight software for the F-8 DFBW program

    NASA Technical Reports Server (NTRS)

    Bairnsfather, R. R.

    1975-01-01

    The design, implementation, and verification of the flight control software used in the F-8 DFBW program are discussed. Since the DFBW utilizes an Apollo computer and hardware, the procedures, controls, and basic management techniques employed are based on those developed for the Apollo software system. Program Assembly Control, simulator configuration control, erasable-memory load generation, change procedures and anomaly reporting are discussed. The primary verification tools--the all-digital simulator, the hybrid simulator, and the Iron Bird simulator--are described, as well as the program test plans and their implementation on the various simulators. Failure-effects analysis and the creation of special failure-generating software for testing purposes are described. The quality of the end product is evidenced by the F-8 DFBW flight test program in which 42 flights, totaling 58 hours of flight time, were successfully made without any DFCS inflight software, or hardware, failures.

  8. GN and C Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Ryamond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system (LAS) already in development. The NESC was tasked with both formulating a conceptual objective system (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall, the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the guidance navigation and control (GN&C) technical approaches employed on this rapid prototyping activity. This paper describes the methodology used to design the MLAS flight test vehicle (FTV). Lessons that were learned during this rapid prototyping project are also summarized.

  9. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael

    2015-01-01

    Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.

  10. Career Profile: Flight Operations Engineer (Airborne Science) Matthew Berry

    NASA Image and Video Library

    2014-11-05

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Matthew Berry during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  11. Career Profile: Flight Operations Engineer (Aeronautics) Brian Griffin

    NASA Image and Video Library

    2014-10-17

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Brian Griffin during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  12. Analytical and Experimental Verification of a Flight Article for a Mach-8 Boundary-Layer Experiment

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance; Monaghan, Richard C.

    1996-01-01

    Preparations for a boundary-layer transition experiment to be conducted on a future flight mission of the air-launched Pegasus(TM) rocket are underway. The experiment requires a flight-test article called a glove to be attached to the wing of the Mach-8 first-stage booster. A three-dimensional, nonlinear finite-element analysis has been performed and significant small-scale laboratory testing has been accomplished to ensure the glove design integrity and quality of the experiment. Reliance on both the analysis and experiment activities has been instrumental in the success of the flight-article design. Results obtained from the structural analysis and laboratory testing show that all glove components are well within the allowable thermal stress and deformation requirements to satisfy the experiment objectives.

  13. Hyper-X Stage Separation Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Woods, W. C.; Holland, S. D.; DiFulvio, M.

    2000-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.

  14. Hyper-X Stage Separation Wind-Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Woods, William C.; Holland, Scott D.; DiFulvio, Michael

    2001-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system the vehicle must depend on some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind-tunnel tests to support multi-degree-of-freedom simulation of the separation process. Representative results from each series of tests are presented, and issues and concerns during the process and current status are highlighted.

  15. Hyper-X Storage Separation Wind Tunnel Test Program

    NASA Technical Reports Server (NTRS)

    Woods, William C.; Holland, Scott D.; Difulvio, Michael

    2000-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow, conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.

  16. Flight Testing the X-36: The Test Pilots Perspective

    NASA Technical Reports Server (NTRS)

    Walker, Laurence A.

    1997-01-01

    The X-36 is a 28% scale, remotely piloted research aircraft, designed to demonstrate tailless fighter agility. Powered by a modified Williams International F-112 jet engine, the X-36 uses thrust vectoring and a fly-by-wire control system. Although too small for an onboard pilot, a full-sized remote cockpit was designed to virtually place the test pilot into the aircraft using a variety of innovative techniques. To date, 22 flights have been flown, successfully completing the second phase of testing. Handling qualities have been matching predictions; the test operation is flown similarly to that for full sized manned aircraft. All takeoffs, test maneuvers and landings are flown by the test pilot, affording a greater degree of flexibility and the ability to handle the inevitable unknowns which may occur during highly experimental test programs. The cockpit environment, cues, and display techniques used in this effort have proven to enhance the 'virtual' test pilot's awareness and have helped ensure a successful RPV test program.

  17. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  18. A Turbine-powered UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.; Guerreiro, Nelson M.; Chambers, Ryan S.; Howard, Keith D.

    2007-01-01

    The latest version of the NASA Flying Controls Testbed (FLiC) integrates commercial-off-the-shelf components including airframe, autopilot, and a small turbine engine to provide a low cost experimental flight controls testbed capable of sustained speeds up to 200 mph. The series of flight tests leading up to the demonstrated performance of the vehicle in sustained, autopiloted 200 mph flight at NASA Wallops Flight Facility's UAV runway in August 2006 will be described. Earlier versions of the FLiC were based on a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate at Fort Eustis, Virginia and NASA Langley Research Center. The newer turbine powered platform (J-FLiC) builds on the successes using the relatively smaller, slower and less expensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches with the implementation of C-coded experimental controllers. Tracking video was taken during the test flights at Wallops and will be available for presentation at the conference. Analysis of flight data from both remotely piloted and autopiloted flights will be presented. Candidate experimental controllers for implementation will be discussed. It is anticipated that flight testing will resume in Spring 2007 and those results will be included, if possible.

  19. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  20. Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.

    2014-01-01

    In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.

  1. HIFiRE Direct-Connect Rig (HDCR) Phase I Ground Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.

    2010-01-01

    The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.

  2. Flight Tests of the Turbulence Prediction and Warning System (TPAWS)

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.; Ahmad, Nashat N.

    2012-01-01

    Flight tests of the National Aeronautics and Space Administration's Turbulence Prediction And Warning System (TPAWS) were conducted in the Fall of 2000 and Spring of 2002. TPAWS is a radar-based airborne turbulence detection system. During twelve flights, NASA's B-757 tallied 53 encounters with convectively induced turbulence. Analysis of data collected during 49 encounters in the Spring of 2002 showed that the TPAWS Airborne Turbulence Detection System (ATDS) successfully detected 80% of the events at least 30 seconds prior to the encounter, achieving FAA recommended performance criteria. Details of the flights, the prevailing weather conditions, and each of the turbulence events are presented in this report. Sensor and environmental characterizations are also provided.

  3. Results of the 1978 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Seaman, C. H.; Sidwell, L. B.

    1979-01-01

    The 1978 scheduled solar cell calibration balloon flight was successfully completed. Thirty six modules were carried to an altitude of above 36 kilometers. Recovery of telemetry and flight packages was without incident. These calibrated standard cells are used as reference standards in simulator testing of cells and arrays with similar spectral response characteristics. The factors affecting the spectral transmission of the atmosphere at various altitudes are summarized.

  4. Ares I-X: Lessons for a New Era of Spaceflight

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    Since 2005, the Ares Projects at Marshall Space Flight Center (MSFC) have been developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Despite the President s intention to cancel the Constellation Program of which Ares is a part, this historic flight has produced a great amount of data and numerous lessons learned for any future launch vehicles. This paper will describe the accomplishments of Ares I-X and the lessons that other programs can glean from this successful mission. Ares I was designed to carry up to four astronauts to the International Space Station (ISS). It also was designed to be used with the Ares V cargo launch vehicle for a variety of missions beyond low-Earth orbit (LEO). The Ares I-X development flight test was conceived in 2006 to acquire early engineering and environment data during liftoff, ascent, and first stage recovery. The test achieved the following primary objectives: Demonstrated control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Performed an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrated assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrated First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterized the magnitude of integrated vehicle roll torque throughout First Stage flight.

  5. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission success by focusing effort on more critical activities.

  6. Ares I-X First Stage Separation Loads and Dynamics Reconstruction

    NASA Technical Reports Server (NTRS)

    Demory, Lee; Rooker, BIll; Jarmulowicz, Marc; Glaese, John

    2011-01-01

    The Ares I-X flight test provided NASA with the opportunity to test hardware and gather critical data to ensure the success of future Ares I flights. One of the primary test flight objectives was to evaluate the environment during First Stage separation to better understand the conditions that the J-2X second stage engine will experience at ignition [1]. A secondary objective was to evaluate the effectiveness of the stage separation motors. The Ares I-X flight test vehicle was successfully launched on October 29, 2009, achieving most of its primary and secondary test objectives. Ground based video camera recordings of the separation event appeared to show recontact of the First Stage and the Upper Stage Simulator followed by an unconventional tumbling of the Upper Stage Simulator. Closer inspection of the videos and flight test data showed that recontact did not occur. Also, the motion during staging was as predicted through CFD analysis performed during the Ares I-X development. This paper describes the efforts to reconstruct the vehicle dynamics and loads through the staging event by means of a time integrated simulation developed in TREETOPS, a multi-body dynamics software tool developed at NASA [2]. The simulation was built around vehicle mass and geometry properties at the time of staging and thrust profiles for the first stage solid rocket motor as well as for the booster deceleration motors and booster tumble motors. Aerodynamic forces were determined by models created from a combination of wind tunnel testing and CFD. The initial conditions such as position, velocity, and attitude were obtained from the Best Estimated Trajectory (BET), which is compiled from multiple ground based and vehicle mounted instruments. Dynamic loads were calculated by subtracting the inertial forces from the applied forces. The simulation results were compared to the Best Estimated Trajectory, accelerometer flight data, and to ground based video.

  7. Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane

    NASA Technical Reports Server (NTRS)

    Gera, Joseph; Bosworth, John T.

    1987-01-01

    Novel flight test and analysis techniques in the flight dynamics and handling qualities area are described. These techniques were utilized at NASA Ames-Dryden during the initial flight envelope clearance of the X-29A aircraft. It is shown that the open-loop frequency response of an aircraft with highly relaxed static stability can be successfully computed on the ground from telemetry data. Postflight closed-loop frequency response data were obtained from pilot-generated frequency sweeps and it is found that the current handling quality requirements for high-maneuverability aircraft are generally applicable to the X-29A.

  8. The Western Aeronautical Test Range. Chapter 10 Tools

    NASA Technical Reports Server (NTRS)

    Knudtson, Kevin; Park, Alice; Downing, Robert; Sheldon, Jack; Harvey, Robert; Norcross, April

    2011-01-01

    The Western Aeronautical Test Range (WATR) staff at the NASA Dryden Flight Research Center is developing a translation software called Chapter 10 Tools in response to challenges posed by post-flight processing data files originating from various on-board digital recorders that follow the Range Commanders Council Inter-Range Instrumentation Group (IRIG) 106 Chapter 10 Digital Recording Standard but use differing interpretations of the Standard. The software will read the date files regardless of the vendor implementation of the source recorder, displaying data, identifying and correcting errors, and producing a data file that can be successfully processed post-flight

  9. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  10. Early Flight Fission Test Facilities (EFF-TF) and Concepts That Support Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.

  11. A Year of Progress: NASA's Space Launch System Approaches Critical Design Review

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly

    2015-01-01

    NASA's Space Launch System (SLS) made significant progress on the manufacturing floor and on the test stand in 2014 and positioned itself for a successful Critical Design Review in mid-2015. SLS, the world's only exploration-class heavy lift rocket, has the capability to dramatically increase the mass and volume of human and robotic exploration. Additionally, it will decrease overall mission risk, increase safety, and simplify ground and mission operations - all significant considerations for crewed missions and unique high-value national payloads. Development now is focused on configuration with 70 metric tons (t) of payload to low Earth orbit (LEO), more than double the payload of the retired Space Shuttle program or current operational vehicles. This "Block 1" design will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on an uncrewed flight beyond the Moon and back and the first crewed flight around the Moon. The current design has a direct evolutionary path to a vehicle with a 130t lift capability that offers even more flexibility to reduce planetary trip times, simplify payload design cycles, and provide new capabilities such as planetary sample returns. Every major element of SLS has successfully completed its Critical Design Review and now has hardware in production or testing. In fact, the SLS MPCV-to-Stage-Adapter (MSA) flew successfully on the Exploration Flight Test (EFT) 1 launch of a Delta IV and Orion spacecraft in December 2014. The SLS Program is currently working toward vehicle Critical Design Review in mid-2015. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  12. Ares I-X Flight Evaluation Tasks in Support of Ares I Development

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Richards, James S.; Coates, Ralph H., III; Cruit, Wendy D.; Ramsey, Matthew N.

    2010-01-01

    NASA s Constellation Program successfully launched the Ares I-X Flight Test Vehicle on October 28, 2009. The Ares I-X flight was a development flight test that offered a unique opportunity for early engineering data to impact the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office established a set of 33 flight evaluation tasks to correlate fight results with prospective design assumptions and models. Included within these tasks were direct comparisons of flight data with pre-flight predictions and post-flight assessments utilizing models and modeling techniques being applied to design and develop Ares I. A discussion of the similarities and differences in those comparisons and the need for discipline-level model updates based upon those comparisons form the substance of this paper. The benefits of development flight testing were made evident by implementing these tasks that used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. The areas in which partial validation from the flight test was most significant included flight control system algorithms to predict liftoff clearance, ascent, and stage separation; structural models from rollout to separation; thermal models that have been updated based on these data; pyroshock attenuation; and the ability to predict complex flow fields during time-varying conditions including plume interactions.

  13. Qualification flight tests of the Viking decelerator system.

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bendura, R. J.; Timmons, J. D.; Lau, R. A.

    1973-01-01

    The Balloon Launched Decelerator Test (BLDT) series conducted at White Sands Missile Range (WSMR) during July and August of 1972 flight qualified the NASA Viking '75 decelerator system at conditions bracketing those expected for Mars. This paper discusses the decelerator system design requiremnts, compares the test results with prior work, and discusses significant considerations leading to successful qualification in earth's atmosphere. The Viking decelerator system consists of a single-stage mortar-deployed 53-foot nominal diameter disk-gap-band parachute. Full-scale parachutes were deployed behind a full-scale simulated Viking vehicle at Mach numbers from 0.47 to 2.18 and dynamic pressures from 6.9 to 14.6 psf. Analyses show that the system is qualified with sufficient margin to perform successfully for the Viking mission.

  14. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    NASA Technical Reports Server (NTRS)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  15. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  16. Results of the 1984 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1984-01-01

    The 1984 solar cell calibration balloon flight was successfully completed on July 19, meeting all objectives of the program. Thirty-six modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  17. Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1986-01-01

    The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  18. Results of the 1982 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1983-01-01

    The 1982 solar cell calibration balloon flight was successfully completed on July 21, meeting all objectives of the program. Twenty-eight modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  19. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    PubMed

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  20. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    PubMed Central

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  1. Results of the 1983 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Downing, R. G.; Weiss, R. S.

    1984-01-01

    The 1983 solar cell calibration balloon flight was successfully completed and met all objectives of the program. Thirty-four modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. Cell calibration data are tabulated as well as the repeatability of standard solar cell BFS-17A (35 flights over a 21-year period).

  2. 16-Inch Diameter Ramjet Prepared for Flight Test

    NASA Image and Video Library

    1947-07-21

    A NACA researcher prepares a 16-inch diameter and 16-foot long ramjet for a launch over Wallops Island in July 1947. The Lewis Flight Propulsion Laboratory conducted a wide variety of studies on ramjets in the 1940s and 1960s to determine the basic operational data necessary to design missiles. Although wind tunnel and test stand investigations were important first steps in determining these factors, actual flight tests were required. Lewis possessed several aircraft for the ramjet studies, including North American F-82 Mustangs, a Northrup P-61 Black Widow, and a Boeing B-29 Superfortress, which was used for this particular ramjet. This was Lewis’ first flight at over the experimental testing ground at Wallops Island. The NACA’s Langley laboratory established the station on the Virginia coast in 1945 to conduct early missile tests. This ramjet-powered missile was affixed underneath the B-29’s left wing and flown up to 29,000 feet. The ramjet was ignited as the aircraft reached Mach 0.5 and released. The flight went well, but a problem with the data recording prevented a successful mission. Nonetheless additional flights in November 1947 provided researchers with data on the engine’s combustion efficiency at different levels of fuel-air ratios, thrust coefficients, temperatures, and drag. Transonic flight data such as the rapid acceleration through varying flight conditions could not be easily captured in wind tunnels.

  3. Flight test evaluation of the Stanford University/United Airlines differential GPS Category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Ncnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) 3 precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT 3 precision approach and landing applications. A United Airlines Boeing 737-300 (N304UA) was equipped with DGPS receiving equipment and additional computing capability provided by Stanford University. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and autolandings; 90 touch and go, and 10 terminating with a full stop. Two types of accuracy requirements were evaluated: 1) Total system error, based on the Required Navigation Performance (RNP), and 2) Navigation sensor error, based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and autolandings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and autolandings shows that the Stanford University/United Airlines system met the requirements for a successful approach and autolanding 98 out of 100 approaches and autolandings, based on the total system error requirements as specified in the FAA CAT 3 Level 2 Flight Test Plan.

  4. Free-Flight Test of a Technique for Inflating an NASA 12-Foot-Diameter Sphere at High Altitudes

    NASA Technical Reports Server (NTRS)

    Kehlet, Alan B.; Patterson, Herbert G.

    1959-01-01

    A free-flight test has been conducted to check a technique for inflating an NASA 12-foot-diameter inflatable sphere at high altitudes. Flight records indicated that the nose section was successfully separated from the booster rocket, that the sphere was ejected, and that the nose section was jettisoned from the fully inflated sphere. On the basis of preflight and flight records, it is believed that the sphere was fully inflated by the time of peak altitude (239,000 feet). Calculations showed that during descent, jettison of the nose section occurred above an altitude of 150,000 feet. The inflatable sphere was estimated to start to deform during descent at an altitude of about 120,000 feet.

  5. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  6. The development and testing of a regenerable CO2 and humidity control system for Shuttle

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1977-01-01

    A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.

  7. Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Neal, Bradford A.; Moes, Timothy R.; Cox, Timothy H.; Monaghan, Richard C.; Voelker, Leonard S.; Corpening, Griffin P.; Larson, Richard R.; Powers, Bruce G.

    1998-01-01

    The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new space vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV), are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine has been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.

  8. SubTec-7 Gives New Technologies a Flight Test

    NASA Image and Video Library

    2017-12-08

    NASA successfully launched the SubTec-7 payload on a Black Brant IX suborbital sounding rocket at 5:45 a.m. EDT, May 16, from the NASA's Wallops Flight Facility. The payload flew to an altitude of about 154 miles before descending by parachute and landing in the Atlantic Ocean. SubTec-7 provided a flight test for more than 20 technologies to improve sounding rocket and spacecraft capabilities. Good data was received during the flight. The payload has been recovered. Credit: NASA/Wallops NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Deputy Administrator Lori Garver and other guests react after having watched the successful launch of the Orbital Sciences Corporation Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  10. Flight Testing a Real-Time Hazard Detection System for Safe Lunar Landing on the Rocket-Powered Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.

    2015-01-01

    The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.

  11. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available dynamic range while mitigating the potential for saturation. Post flight, analysis tools were used to assess atmospheric effects and to convert the 2-D intensity images to 3-D temperature maps of the windward surface. Comparison of the spatially resolved global thermal measurements to surface thermocouples and CFD prediction is made. Successful demonstration of a quantitative, spatially resolved, global temperature measurement on the Shuttle suggests future applications towards hypersonic flight test programs within NASA, DoD and DARPA along with flight test opportunities supporting NASA's project Constellation.

  12. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Chenevert, Donald J.

    2009-01-01

    NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions.

  13. NASA's Space Launch System Marks Critical Design Review

    NASA Technical Reports Server (NTRS)

    Singer, Chris

    2016-01-01

    With completion of its Critical Design Review (CDR) in 2015, NASA is deep into the manufacturing and testing phases of its new Space Launch System (SLS) for beyond-Earth exploration. This CDR was the first in almost 40 years for a NASA human launch vehicle and marked another successful milestone on the road to the launch of a new era of deep space exploration. The review marked the 90-percent design-complete, a final look at the design and development plan of the integrated vehicle before full-scale fabrications begins and the prelude to the next milestone, design certification. Specifically, the review looked at the first of three increasingly capable configurations planned for SLS. This "Block I" design will stand 98.2 meters (m) (322 feet) tall and provide 39.1 million Newtons (8.8 million pounds) of thrust at liftoff to lift a payload of approximately 70 metric tons (154,000 pounds). This payload is more than double that of the retired space shuttle program or other current launch vehicles. It dramatically increases the mass and volume of human and robotic exploration. Additionally, it will decrease overall mission risk, increase safety, and simplify ground and mission operations - all significant considerations for crewed missions and unique, high-value national payloads. The Block 1 SLS will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on an uncrewed flight beyond the moon and back and the first crewed flight around the moon. The current design has a direct evolutionary path to a vehicle with a 130t lift capability that offers even more flexibility to reduce planetary trip times, simplify payload design cycles, and provide new capabilities such as planetary sample returns. Every major element of SLS has hardware in production or testing, including flight hardware for the Exploration 1 (EM-1) test flight. In fact, the SLS MPCV-to-Stage-Adapter (MSA) flew successfully on the Exploration Flight Test (EFT) 1 launch of a Delta IV and Orion spacecraft in December 2014. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  14. 14 CFR 125.296 - Training, testing, and checking conducted by training centers: Special rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.296 Training, testing, and checking conducted by training centers: Special rules. A crewmember who has successfully completed training, testing, or checking in... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training, testing, and checking conducted...

  15. 14 CFR 125.296 - Training, testing, and checking conducted by training centers: Special rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.296 Training, testing, and checking conducted by training centers: Special rules. A crewmember who has successfully completed training, testing, or checking in... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training, testing, and checking conducted...

  16. 14 CFR 125.296 - Training, testing, and checking conducted by training centers: Special rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.296 Training, testing, and checking conducted by training centers: Special rules. A crewmember who has successfully completed training, testing, or checking in... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training, testing, and checking conducted...

  17. 14 CFR 125.296 - Training, testing, and checking conducted by training centers: Special rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.296 Training, testing, and checking conducted by training centers: Special rules. A crewmember who has successfully completed training, testing, or checking in... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training, testing, and checking conducted...

  18. 14 CFR 125.296 - Training, testing, and checking conducted by training centers: Special rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT Flight Crewmember Requirements § 125.296 Training, testing, and checking conducted by training centers: Special rules. A crewmember who has successfully completed training, testing, or checking in... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training, testing, and checking conducted...

  19. Electronic delay ignition module for single bridgewire Apollo standard initiator

    NASA Technical Reports Server (NTRS)

    Ward, R. D.

    1975-01-01

    An engineering model and a qualification model of the EDIM were constructed and tested to Scout flight qualification criteria. The qualification model incorporated design improvements resulting from the engineering model tests. Compatibility with single bridgewire Apollo standard initiator (SBASI) was proven by test firing forty-five (45) SBASI's with worst case voltage and temperature conditions. The EDIM was successfully qualified for Scout flight application with no failures during testing of the qualification unit. Included is a method of implementing the EDIM into Scout vehicle hardware and the ground support equipment necessary to check out the system.

  20. Telemetry Tracking and Control Through Commercial LEO Satellites

    NASA Technical Reports Server (NTRS)

    Streich, Ronald C.; Morgan, Dwayne R.; Bull, Barton B.; Grant, Charles E.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF in Virginia have successfully tested commercial LEO communications satellites for sounding rocket, balloon and aircraft flight TT&C. The Flight Modern became a GSFC/WFF Advanced Range Technology Initiative (ARTI) in an effort to streamline TT&C capability to the user community at low cost. Ground tests of the Flight Modem verified duplex communications quality of service and measured transmission latencies. These tests were completed last year and results reported in the John Hopkins University (JHU) Applied Physics Laboratory (APL) 4th International Symposium on Reducing Spacecraft Costs for Ground Systems and Operations. The second phase of the Flight Modem baseline test program was a demonstration of the ruggedized version of the WFF Flight Modem flown on a sounding rocket launched it the Swedish rocket range (Esrangc) near Kiruna, Sweden, with results contained in this paper. Aircraft flight tests have been and continue to be conducted. Flights of opportunity are being actively pursued with other centers, ranges and users at universities. The WFF Flight Modem contains a CPS receiver to provide vehicle position for tracking and vehicle recovery. The system architecture, which integrates antennas, CPS receiver, commercial satellite packet data modem and a single board computer with custom software, is described. Small satellite use of the WFF Flight Modem is also being investigated, The Flight Modem provides an independent vehicle position source for Range Safety applications. The LEO communication system contains a coarse position location system, which is compared to GPS ace acy. This comparison allows users, to determine the need for a CPS receiver in addition to the satellite packet data modem for their application.

  1. Next Generation Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Spencer, Susan; Bryan, Tom; Johnson, Jimmie; Robertson, Bryan

    2008-01-01

    The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. The United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport. Systems (COTS) Automated Rendezvous and Docking (AR&D). AVGS has a proven pedigree, based on extensive ground testing and flight demonstrations. The AVGS on the Demonstration of Autonomous Rendezvous Technology (DART)mission operated successfully in "spot mode" out to 2 km. The first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. Parts obsolescence issues prevent the construction of more AVGS. units, and the next generation sensor must be updated to support the CEV and COTS programs. The flight proven AR&D sensor is being redesigned to update parts and add additional. capabilities for CEV and COTS with the development of the Next, Generation AVGS (NGAVGS) at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities might include greater sensor range, auto ranging, and real-time video output. This paper presents an approach to sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, parts selection and test plans for the NGAVGS will be addressed to provide a highly reliable flight qualified sensor. Expanded capabilities through innovative use of existing capabilities will also be discussed.

  2. Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies

    NASA Astrophysics Data System (ADS)

    Balonek, Gregory; Brown, Joshua J.; Andre, James E.; Chesbrough, Christian D.; Chrisp, Michael P.; Dalpiaz, Michael; Lennon, Joseph; Richards, B. C.; Clark, Kristin E.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.

  3. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  4. Morpheus Lander Testing Campaign

    NASA Technical Reports Server (NTRS)

    Hart, Jeremy J.; Mitchell, Jennifer D.

    2011-01-01

    NASA s Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing designed to serve as a testbed for advanced spacecraft technologies. The Morpheus vehicle has successfully performed a set of integrated vehicle test flights including hot-fire and tether tests, ultimately culminating in an un-tethered "free-flight" This development and testing campaign was conducted on-site at the Johnson Space Center (JSC), less than one year after project start. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper documents the integrated testing campaign, including descriptions of test types (hot-fire, tether, and free-flight), test objectives, and the infrastructure of JSC testing facilities. A major focus of the paper will be the fast pace of the project, rapid prototyping, frequent testing, and lessons learned from this departure from the traditional engineering development process at NASA s Johnson Space Center.

  5. Flight Data Analysis of HyShot 2

    NASA Technical Reports Server (NTRS)

    Hass, Neal E.; Smart, Michael K.; Paull, Alan

    2005-01-01

    The development of scramjet propulsion for alternative launch and payload delivery capabilities has comprised largely of ground experiments for the last 40 years. With the goal of validating the use of short duration ground test facilities, the University of Queensland, supported by a large international contingency, devised a ballistic re-entry vehicle experiment called HyShot to achieve supersonic combustion in flight above Mach 7.5. It consisted of a double wedge intake and two back-to-back constant area combustors; one supplied with hydrogen fuel at an equivalence ratio of 0.33 and the other un-fueled. Following a first launch failure on October 30th 2001, the University of Queensland conducted a successful second launch on July 30th, 2002. Post-flight data analysis of the second launch confirmed the presence of supersonic combustion during the approximately 3 second test window at altitudes between 35 and 29 km. Reasonable correlation between flight and some pre-flight shock tunnel tests was observed.

  6. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Cross, Jack; Schneider, John; Cariani, Pete

    2013-05-01

    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  7. Orbiter windward surface entry Heating: Post-orbital flight test program update

    NASA Technical Reports Server (NTRS)

    Harthun, M. H.; Blumer, C. B.; Miller, B. A.

    1983-01-01

    Correlations of orbiter windward surface entry heating data from the first five flights are presented with emphasis on boundary layer transition and the effects of catalytic recombination. Results show that a single roughness boundary layer transition correlation developed for spherical element trips works well for the orbiter tile system. Also, an engineering approach for predicting heating in nonequilibrium flow conditions shows good agreement with the flight test data in the time period of significant heating. The results of these correlations, when used to predict orbiter heating for a high cross mission, indicate that the thermal protection system on the windward surface will perform successfully in such a mission.

  8. Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.

    2018-05-01

    In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.

  9. Flight Testing of Hybrid Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  10. Description and flight tests of an oculometer

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Hurt, G. J., Jr.; Wise, M. A.; Holt, J. D.

    1977-01-01

    A remote sensing oculometer was successfully operated during flight tests with a NASA experimental Twin Otter aircraft at the Langley Research Center. Although the oculometer was designed primarily for the laboratory, it was able to track the pilot's eye-point-of-regard (lookpoint) consistently and unobtrusively in the flight environment. The instantaneous position of the lookpoint was determined to within approximately 1 deg. Data were recorded on both analog and video tape. The video data consisted of continuous scenes of the aircraft's instrument display and a superimposed white dot (simulating the lookpoint) dwelling on an instrument or moving from instrument to instrument as the pilot monitored the display information during landing approaches.

  11. Defense Science and Technology RELIANCE. Defense Technology Objectives Success Stories

    DTIC Science & Technology

    2001-03-01

    27 MD.04 Medical Countermeasures for Botulinum Toxin ...flexibility of U.S. forces. Completed. 1998 SPONSORS DoD Chemical and Biological Defense Program MEDICAL COUNTERMEASURES FOR BOTULINUM TOXIN (MD.04) 29...system operates satisfactorily against a high-level jamming environment in the target area. On four AGTFT free flights, the AGTFT flight test vehicles

  12. Results of the 1987 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1987-01-01

    The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.

  13. Results of the 1988 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1988-01-01

    The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  14. Results of the 1989 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1989-01-01

    The 1989 solar cell calibration balloon flight was successfully completed on August 9, 1989, meeting all objectives of the program. Forty-two modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  15. Results of the 1985 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Weiss, R. S.

    1986-01-01

    The 1985 solar cell calibration balloon flight was successfully completed on July 12, 1985, meeting all objectives of the program. Fifty-seven modules were carried to an altitude of 115,000 ft (35.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.

  16. X-15 test pilots - in a lighter mood

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 pilots clown around in front of the #2 aircraft.From left to right: USAF Capt. Joseph Engle, USAF Maj. Robert Rushworth, NASA test pilot John 'Jack' McKay, USAF Maj. William 'Pete' Knight, NASA test pilot Milton Thompson, and NASA test pilot William Dana. First flown in 1959 from the NASA High Speed Flight Station (later renamed the Dryden Flight Research Center), the rocket powered X-15 was developed to provide data on aerodynamics, structures, flight controls and the physiological aspects of high speed, high altitude flight. Three were built by North American Aviation for NASA and the U.S. Air Force. They made a total of 199 flights during a highly successful research program lasting almost ten years, following which its speed and altitude records for winged aircraft remained unbroken until the Space Shuttle first returned from earth orbit in 1981. The X-15's main rocket engine provided thrust for the first 80 to 120 seconds of a 10 to 11 minute flight; the aircraft then glided to a 200 mph landing. The X-15 reached altitudes of 354,200 feet (67.08 miles) and a speed of 4,520 mph (Mach 6.7).

  17. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 2: Complete set of flight data

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating System (ATOPS) Transportation Research Vehicle (TSRV)--a modified Boeing 737 Aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the Microwave Landing System (MLS) installation on Runway 22. This report is primarily a collection of data plots of all performance variables recorded for the entire five flight tests. A description and source of the performance variables is included. Performance variables include inertial data, air data, automatic control commands, control servo positions, sensor data, DIALS guidance and control parameters, and Kalman filter data. This data illustrates low overshoot captures of the localizer for intercept angles of 20 deg, 30 deg, 40 deg, and 50 deg intercept angles, and low overshoot captures of the glideslope slope for 3 deg, 4.5 deg, and 5 deg glideslopes. Flare maneuvers were successfully performed from the various glideslope angles and good decrab maneuvers were performed in crosswinds of 6 knots. In 18 to 20 knot crosswind conditions rudder limiting occurred which caused lateral drifting although heading alignment was achieved.

  18. Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.

  19. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    NASA Technical Reports Server (NTRS)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  20. Cryogenic Two-Phase Flight Experiment: Results overview

    NASA Technical Reports Server (NTRS)

    Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

    1995-01-01

    This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

  1. Flight data results of estimate fusion for spacecraft rendezvous navigation from shuttle mission STS-69

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Bishop, Robert H.

    1996-01-01

    A recently developed rendezvous navigation fusion filter that optimally exploits existing distributed filters for rendezvous and GPS navigation to achieve the relative and inertial state accuracies of both in a global solution is utilized here to process actual flight data. Space Shuttle Mission STS-69 was the first mission to date which gathered data from both the rendezvous and Global Positioning System filters allowing, for the first time, a test of the fusion algorithm with real flight data. Furthermore, a precise best estimate of trajectory is available for portions of STS-69, making possible a check on the performance of the fusion filter. In order to successfully carry out this experiment with flight data, two extensions to the existing scheme were necessary: a fusion edit test based on differences between the filter state vectors, and an underweighting scheme to accommodate the suboptimal perfect target assumption made by the Shuttle rendezvous filter. With these innovations, the flight data was successfully fused from playbacks of downlinked and/or recorded measurement data through ground analysis versions of the Shuttle rendezvous filter and a GPS filter developed for another experiment. The fusion results agree with the best estimate of trajectory at approximately the levels of uncertainty expected from the fusion filter's covariance matrix.

  2. A practical concept for powered or tethered weight-lifting LTA vehicles

    NASA Technical Reports Server (NTRS)

    Balleyguier, M. A.

    1975-01-01

    A concept for a multi-hull weightlifting airship is presented. The concept is based upon experience in the design and handling of gas-filled balloons for commercial purposes, it was first tested in April, 1972. In the flight test, two barrage balloons were joined side-by-side, with an intermediate frame, and launched in captive flight. The success of this flight test led to plans for a development program calling for a powered, piloted prototype, a follow-on 40 ton model, and a 400 ton transport model. All of these airships utilize a tetrehedric three-line tethering method for loading and unloading phases of flight, which bypasses many of the difficulties inherent in the handling of a conventional airship near the ground. Both initial and operating costs per ton of lift capability are significantly less for the subject design than for either helicopters or airships of conventional mono-hull design.

  3. Summary of Payload Integration Plan (PIP) for Starlab-1 flight experiment, enclosure 3

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, W.; Kamiya, J.; Miller, N.; Sharp, J.

    1988-01-01

    The objectives of the Autogenic Feedback Training (AFT) are to: determine if preflight AFT is an effective treatment for space adaptation syndrome (SAS); determine if preflight improvements in motion sickness tolerance can be used to predict crewmembers' success in controlling symptoms in flight; and identify differences and similarities between the physiological data from preflight motion sickness tests and data collected during symptom episodes in space. The goal is to test the AFT on 8 trained and 8 control subjects. At present 2 trained and 2 contol subjects were tested. The testing will continue until the experimental goal of testing 16 individual is reached.

  4. HIFiRE Direct-Connect Rig (HDCR) Phase I Scramjet Test Results from the NASA Langley Arc-Heated Scramjet Test Facility

    NASA Technical Reports Server (NTRS)

    Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark

    2011-01-01

    A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.

  5. Spaceflight Ground Support Equipment Reliability & System Safety Data

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Riddlebaugh, Jeffrey; Brinkman, John; Wilkinson, Myron

    2012-01-01

    Presented were Reliability Analysis, consisting primarily of Failure Modes and Effects Analysis (FMEA), and System Safety Analysis, consisting of Preliminary Hazards Analysis (PHA), performed to ensure that the CoNNeCT (Communications, Navigation, and Networking re- Configurable Testbed) Flight System was safely and reliably operated during its Assembly, Integration and Test (AI&T) phase. A tailored approach to the NASA Ground Support Equipment (GSE) standard, NASA-STD-5005C, involving the application of the appropriate Requirements, S&MA discipline expertise, and a Configuration Management system (to retain a record of the analysis and documentation) were presented. Presented were System Block Diagrams of selected GSE and the corresponding FMEA, as well as the PHAs. Also discussed are the specific examples of the FMEAs and PHAs being used during the AI&T phase to drive modifications to the GSE (via "redlining" of test procedures, and the placement of warning stickers to protect the flight hardware) before being interfaced to the Flight System. These modifications were necessary because failure modes and hazards were identified during the analysis that had not been properly mitigated. Strict Configuration Management was applied to changes (whether due to upgrades or expired calibrations) in the GSE by revisiting the FMEAs and PHAs to reflect the latest System Block Diagrams and Bill Of Material. The CoNNeCT flight system has been successfully assembled, integrated, tested, and shipped to the launch site without incident. This demonstrates that the steps taken to safeguard the flight system when it was interfaced to the various GSE were successful.

  6. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Administrator Charles Bolden and NASA Deputy Administrator Lori Garver and other guests react after having watched the successful launch of the Orbital Sciences Corporation Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  7. An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization.

    PubMed

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  8. Attitude control system for a lightweight flapping wing MAV.

    PubMed

    Tijmons, Sjoerd; Karásek, Matěj; de Croon, G C H E

    2018-03-14

    Robust attitude control is an essential aspect of research on autonomous flight of flapping wing Micro Air Vehicles. The mechanical solutions by which the necessary control moments are realised come at the price of extra weight and possible loss of aerodynamic efficiency. Stable flight of these vehicles has been shown by several designs using a conventional tail, but also by tailless designs that use active control of the wings. In this study a control mechanism is proposed that provides active control over the wings. The mechanism improves vehicle stability and agility by generation of control moments for roll, pitch and yaw. Its effectiveness is demonstrated by static measurements around all the three axes. Flight test results confirm that the attitude of the test vehicle, including a tail, can be successfully controlled in slow forward flight conditions. Furthermore, the flight envelope is extended with robust hovering and the ability to reverse the flight direction using a small turn space. This capability is very important for autonomous flight capabilities such as obstacle avoidance. Finally, it is demonstrated that the proposed control mechanism allows for tailless hovering flight. © 2018 IOP Publishing Ltd.

  9. Aerodynamic and Acoustic Flight Test Results and Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Cliatt, Larry J.; Frederick, Michael A.

    2014-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy program, a 747SP airplane was modified to carry a 2.5-m telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the operating envelope of the airplane for astronomical observations, planned to be performed between the altitudes of 35,000 ft and 45,000 ft. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight-test results in the areas of cavity acoustics, stability and control, and air data.

  10. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  11. SSME component assembly and life management expert system

    NASA Technical Reports Server (NTRS)

    Ali, M.; Dietz, W. E.; Ferber, H. J.

    1989-01-01

    The space shuttle utilizes several rocket engine systems, all of which must function with a high degree of reliability for successful mission completion. The space shuttle main engine (SSME) is by far the most complex of the rocket engine systems and is designed to be reusable. The reusability of spacecraft systems introduces many problems related to testing, reliability, and logistics. Components must be assembled from parts inventories in a manner which will most effectively utilize the available parts. Assembly must be scheduled to efficiently utilize available assembly benches while still maintaining flight schedules. Assembled components must be assigned to as many contiguous flights as possible, to minimize component changes. Each component must undergo a rigorous testing program prior to flight. In addition, testing and assembly of flight engines and components must be done in conjunction with the assembly and testing of developmental engines and components. The development, testing, manufacture, and flight assignments of the engine fleet involves the satisfaction of many logistical and operational requirements, subject to many constraints. The purpose of the SSME Component Assembly and Life Management Expert System (CALMES) is to assist the engine assembly and scheduling process, and to insure that these activities utilize available resources as efficiently as possible.

  12. The Hyper-X Flight Systems Validation Program

    NASA Technical Reports Server (NTRS)

    Redifer, Matthew; Lin, Yohan; Bessent, Courtney Amos; Barklow, Carole

    2007-01-01

    For the Hyper-X/X-43A program, the development of a comprehensive validation test plan played an integral part in the success of the mission. The goal was to demonstrate hypersonic propulsion technologies by flight testing an airframe-integrated scramjet engine. Preparation for flight involved both verification and validation testing. By definition, verification is the process of assuring that the product meets design requirements; whereas validation is the process of assuring that the design meets mission requirements for the intended environment. This report presents an overview of the program with emphasis on the validation efforts. It includes topics such as hardware-in-the-loop, failure modes and effects, aircraft-in-the-loop, plugs-out, power characterization, antenna pattern, integration, combined systems, captive carry, and flight testing. Where applicable, test results are also discussed. The report provides a brief description of the flight systems onboard the X-43A research vehicle and an introduction to the ground support equipment required to execute the validation plan. The intent is to provide validation concepts that are applicable to current, follow-on, and next generation vehicles that share the hybrid spacecraft and aircraft characteristics of the Hyper-X vehicle.

  13. Ares I-X: First Flight of a New Generation

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    The Ares I-X suborbital development flight test demonstrated NASA s ability to design, develop, launch and control a new human-rated launch vehicle (Figure 14). This hands-on missions experience will provide the agency with necessary skills and insights regardless of the future direction of space exploration. The Ares I-X team, having executed a successful launch, will now focus on analyzing the flight data and extracting lessons learned that will be used to support the development of future vehicles.

  14. The failure analysis, redesign, and final preparation of the Brilliant Eyes Thermal Storage Unit for flight testing

    NASA Astrophysics Data System (ADS)

    Lamkin, T.; Whitney, Brian

    1995-09-01

    This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.

  15. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  16. Ares I-X Malfunction Turn Range Safety Analysis

    NASA Technical Reports Server (NTRS)

    Beaty, J. R.

    2011-01-01

    Ares I-X was the designation given to the flight test version of the Ares I rocket which was developed by NASA (also known as the Crew Launch Vehicle (CLV) component of the Constellation Program). The Ares I-X flight test vehicle achieved a successful flight test on October 28, 2009, from Pad LC-39B at Kennedy Space Center, Florida (KSC). As part of the flight plan approval for the test vehicle, a range safety malfunction turn analysis was performed to support the risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could have caused the vehicle trajectory to deviate from its normal flight path. The effects of these failures were evaluated with an Ares I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version II (POST2) simulation tool. The Ares I-X simulation analysis provided output files containing vehicle trajectory state information. These were used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at KSC, and to develop the vehicle destruct criteria used by the flight test range safety officer in the event of a flight test anomaly of the vehicle. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study.

  17. ATIC Experiment: Elemental Spectra from the Flight in 2000

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.

    2003-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a silicon matrix charge detector, a 0.75 nuclear interaction length graphite target, 3 scintillator strip hodoscopes, and an 18 radiation length thick BGO calorimeter to measure the cosmic ray composition and energy spectra from approximately 30 GeV to near 100 TeV. In this paper, we present preliminary results from the first flight, which was a test flight that lasted for 16 days, starting on 12/28/00.

  18. Career Profile- Subscale UAS engineer/pilot Robert "Red" Jensen- Operations Engineering Branch

    NASA Image and Video Library

    2015-08-03

    Robert “Red” Jensen is an Operations Engineer and Pilot for subscale aircraft here at NASA’s Armstrong Flight Research Center. As part fabricator, engineer and integrator, Red is responsible for testing subscale models of aircraft and ensuring they are safe, capable of flight and ready to support the center’s needs. Operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. This video highlights Red’s responsibilities and daily activities as well as some of the projects and missions he is currently working on.

  19. Orion Exploration Flight Test-1 (EFT-1) Absolute Navigation Performance

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2015-01-01

    The Orion vehicle, being design to take men back to the Moon and beyond, successfully completed its first flight test, EFT-1 (Exploration Flight Test-1), on December 5th, 2014. The main objective of the test was to demonstrate the capability of re-enter into the Earth's atmosphere and safely splash-down into the pacific ocean. This un-crewed mission completes two orbits around Earth, the second of which is highly elliptical with an apogee of approximately 5908 km, higher than any vehicle designed for humans has been since the Apollo program. The trajectory was designed in order to test a high-energy re-entry similar to those crews will undergo during lunar missions. The mission overview is shown in Figure 1. The objective of this paper is to document the performance of the absolute navigation system during EFT-1 and to present its design.

  20. Reliability of provocative tests of motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Calkins, D. S.; Reschke, M. F.; Kennedy, R. S.; Dunlop, W. P.

    1987-01-01

    Test-retest reliability values were derived from motion sickness susceptibility scores obtained from two successive exposures to each of three tests: (1) Coriolis sickness sensitivity test; (2) staircase velocity movement test; and (3) parabolic flight static chair test. The reliability of the three tests ranged from 0.70 to 0.88. Normalizing values from predictors with skewed distributions improved the reliability.

  1. Phase 1 Space Fission Propulsion System Testing and Development Progress

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter; Schafer, Charles (Technical Monitor)

    2001-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core, Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans.

  2. NASA's Space Launch Transitions: From Design to Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  3. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  4. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  5. Developing and flight testing the HL-10 lifting body: A precursor to the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.; Thompson, Milton O.

    1994-01-01

    The origins of the lifting-body idea are traced back to the mid-1950's, when the concept of a manned satellite reentering the Earth's atmosphere in the form of a wingless lifting body was first proposed. The advantages of low reentry deceleration loads, range capability, and horizontal landing of a lifting reentry vehicle (as compared with the high deceleration loads and parachute landing of a capsule) are presented. The evolution of the hypersonic HL-10 lifting body is reviewed from the theoretical design and development process to its selection as one of two low-speed flight vehicles for fabrication and piloted flight testing. The design, development, and flight testing of the low-speed, air-launched, rocket-powered HL-10 was part of an unprecedented NASA and contractor effort. NASA Langley Research Center conceived and developed the vehicle shape and conducted numerous theoretical, experimental, and wind-tunnel studies. NASA Flight Research Center (now NASA Dryden Flight Research Center) was responsible for final low-speed (Mach numbers less than 2.0) aerodynamic analysis, piloted simulation, control law development, and flight tests. The prime contractor, Northrop Corp., was responsible for hardware design, fabrication, and integration. Interesting and unusual events in the flight testing are presented with a review of significant problems encountered in the first flight and how they were solved. Impressions by the pilots who flew the HL-10 are included. The HL-10 completed a successful 37-flight program, achieved the highest Mach number and altitude of this class vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies.

  6. Some VTOL head-up display drive-law problems and solutions

    NASA Technical Reports Server (NTRS)

    Merrick, Vernon K.

    1993-01-01

    A piloted simulation test was conducted on the Ames Research Center's vertical motion simulator (VMS) in support of the Phase 2A flight test of NASA's V/STOL systems research aircraft (VSRA). During the simulation several problems were found with the head-up display (HUD) symbol drive laws and the flightpath synthesis. These problems and the solutions devised to solve them are described. Most of the resulting HUD drive-law changes were implemented during the simulation and their effectiveness was verified. Subsequently both the HUD symbol drive-law and flightpath-synthesis changes were implemented in the VSRA and tested successfully in the Phase 2A flight tests.

  7. Analysis of the Shuttle Orbiter reinforced carbon-carbon oxidation protection system

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.; Chao, Dennis; Pham, Vuong T.

    1994-01-01

    Reusable, oxidation-protected reinforced carbon-carbon (RCC) has been successfully flown on all Shuttle Orbiter flights. Thermal testing of the silicon carbide-coated RCC to determine its oxidation characteristics has been performed in convective (plasma Arc-Jet) heating facilities. Surface sealant mass loss was characterized as a function of temperature and pressure. High-temperature testing was performed to develop coating recession correlations for predicting performance at the over-temperature flight conditions associated with abort trajectories. Methods for using these test data to establish multi-mission re-use (i.e., mission life) and single mission limits are presented.

  8. F-15 RPRV Spin Research Vehicle (SRV) attached to B-52 pylon

    NASA Technical Reports Server (NTRS)

    1975-01-01

    In this ground photo, one of the F-15 RPRV/SRVs is shown on the same pylon used for the X-15 and lifting body flights. The vehicle was a 3/8 scale model of the F-15 aircraft, and was designed for stall and spin research. The cost was $250,000 for each RPRV versus $6.8 million for an actual F-15. After being released from the B-52, the unpowered vehicle was flown by pilots on the ground, including Einar K. Envoldson, William H. Dana, Thomas C. McMurtry, John A. Manke, and Michael C. Swann. During the descent, the F-15 RPRV underwent tests of its stability and control, departure characteristics, spin evaluation at high and low altitude, upright and inverted spins, and different spin modes. On its first 16 flights, the F-15 RPRV was to be recovered in midair by a helicopter. The F-15 RPRV's parachute would be caught by ropes strung between two poles below the helicopter. Of the 16 attempts, 13 were successful, while the three other flights ended with parachute landings and varying amounts of damage. The F-15 RPRVs were then fitted with three retractable skids, which allowed the ground pilot to land the aircraft on the lakebed. Of the next 10 flights, nine were successful lakebed landings, while the other came down by parachute. After 26 flights, the aircraft was renamed the Spin Research Vehicle (SRV) and was used to test different nose configurations. The tests made on flights 27 through 52 were spin mode determination, auto-spin recovery, airflow visualization, the effects of strakes on vortex flow, aft pressure measurements, and a nose-mounted anti-spin parachute. The latter was unusual, as anti-spin parachutes are commonly mounted on the tail. During flight 36, on February 18, 1981, the nose-mounted parachute fouled the pitot tube after deployment. This forced a parachute landing, which was the only one in the SRV flights. The last RPRV/SRV flight was made on July 15, 1981. One of the vehicles has been restored and is on display at the Dryden Flight Research Center.

  9. Performance Enhancement of a Full-Scale Vertical Tail Model Equipped with Active Flow Control

    NASA Technical Reports Server (NTRS)

    Whalen, Edward A.; Lacy, Douglas; Lin, John C.; Andino, Marlyn Y.; Washburn, Anthony E.; Graff, Emilio; Wygnanski, Israel J.

    2015-01-01

    This paper describes wind tunnel test results from a joint NASA/Boeing research effort to advance active flow control (AFC) technology to enhance aerodynamic efficiency. A full-scale Boeing 757 vertical tail model equipped with sweeping jet actuators was tested at the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel (40x80) at NASA Ames Research Center. The model was tested at a nominal airspeed of 100 knots and across rudder deflections and sideslip angles that covered the vertical tail flight envelope. A successful demonstration of AFC-enhanced vertical tail technology was achieved. A 31- actuator configuration significantly increased side force (by greater than 20%) at a maximum rudder deflection of 30deg. The successful demonstration of this application has cleared the way for a flight demonstration on the Boeing 757 ecoDemonstrator in 2015.

  10. Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.

    2000-01-01

    NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.

  11. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  12. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Deputy Administrator Lori Garver talks with CEO and President of Orbital Sciences Corporation David Thompson, left, Executive Vice President and Chief Technical Officer, Orbital Sciences Corporation Antonio Elias, second from left, and Executive Director, Va. Commercial Space Flight Authority Dale Nash, background, in the Range Control Center at the NASA Wallops Flight Facility after the successful launch of the Orbital Sciences Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  13. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe.

    PubMed

    Sauvard, Daniel; Imbault, Vanessa; Darrouzet, Éric

    2018-01-01

    The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet's flight capacity to understand the species' success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts.

  14. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe

    PubMed Central

    Imbault, Vanessa; Darrouzet, Éric

    2018-01-01

    The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet’s flight capacity to understand the species’ success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts. PMID:29883467

  15. Results from an Interval Management (IM) Flight Test and Its Potential Benefit to Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.

  16. Investigation of Slosh Dynamics on Flight and Ground Platforms

    NASA Astrophysics Data System (ADS)

    Vergalla, Michael; Zhou, Ran

    The slosh dynamics in cryogenic fuel tanks under microgravity is a problem that severely affects the reliability of spacecraft launching. To investigate slosh dynamics and their effects on space vehicle dynamics three levels of testing are presently in progress. Platforms include a 3-DOF ground testing table, parabolic flights, sounding rockets and finally the International Space Station. Ground tests provide an economically viable platform for investigating rotational, translational, and coupled feed-back modes due to repeatable CNC motions. The parabolic flight campaign has conducted four successful flights aboard multiple aircraft using static and tethered slosh packages. Using the PANTHER II student designed rocket, a slosh package was launched as a payload. Finally with collaboration between Florida Institute of Technology and Massachusetts Institute of Technology SPHERES project, two test sessions investigating feedback using partially and fully filled propellant tanks have been completed aboard the In-ternational Space Station. Motion data from all tests will be input to in house Dynamic Mesh Model to further establish confidence in the versatility and accuracy of the method. The results show that it is necessary to construct additional hardware for slosh studies.

  17. Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.

    2015-01-01

    The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.

  18. STARS: a software application for the EBEX autonomous daytime star cameras

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel; Didier, Joy; Hanany, Shaul; Hillbrand, Seth; Limon, Michele; Miller, Amber; Reichborn-Kjennerud, Britt; Tucker, Greg; Vinokurov, Yury

    2014-07-01

    The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. EBEX employs two star cameras to achieve its real-time and post-flight pointing requirements. We wrote a software application called STARS to operate, command, and collect data from each of the star cameras, and to interface them with the main flight computer. We paid special attention to make the software robust against potential in-flight failures. We report on the implementation, testing, and successful in flight performance of STARS.

  19. Deployment and Drop Test of Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi

    A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.

  20. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  1. Rules to fly by: pigeons navigating horizontal obstacles limit steering by selecting gaps most aligned to their flight direction.

    PubMed

    Ros, Ivo G; Bhagavatula, Partha S; Lin, Huai-Ti; Biewener, Andrew A

    2017-02-06

    Flying animals must successfully contend with obstacles in their natural environments. Inspired by the robust manoeuvring abilities of flying animals, unmanned aerial systems are being developed and tested to improve flight control through cluttered environments. We previously examined steering strategies that pigeons adopt to fly through an array of vertical obstacles (VOs). Modelling VO flight guidance revealed that pigeons steer towards larger visual gaps when making fast steering decisions. In the present experiments, we recorded three-dimensional flight kinematics of pigeons as they flew through randomized arrays of horizontal obstacles (HOs). We found that pigeons still decelerated upon approach but flew faster through a denser array of HOs compared with the VO array previously tested. Pigeons exhibited limited steering and chose gaps between obstacles most aligned to their immediate flight direction, in contrast to VO navigation that favoured widest gap steering. In addition, pigeons navigated past the HOs with more variable and decreased wing stroke span and adjusted their wing stroke plane to reduce contact with the obstacles. Variability in wing extension, stroke plane and wing stroke path was greater during HO flight. Pigeons also exhibited pronounced head movements when negotiating HOs, which potentially serve a visual function. These head-bobbing-like movements were most pronounced in the horizontal (flight direction) and vertical directions, consistent with engaging motion vision mechanisms for obstacle detection. These results show that pigeons exhibit a keen kinesthetic sense of their body and wings in relation to obstacles. Together with aerodynamic flapping flight mechanics that favours vertical manoeuvring, pigeons are able to navigate HOs using simple rules, with remarkable success.

  2. Rules to fly by: pigeons navigating horizontal obstacles limit steering by selecting gaps most aligned to their flight direction

    PubMed Central

    Ros, Ivo G.; Bhagavatula, Partha S.; Lin, Huai-Ti

    2017-01-01

    Flying animals must successfully contend with obstacles in their natural environments. Inspired by the robust manoeuvring abilities of flying animals, unmanned aerial systems are being developed and tested to improve flight control through cluttered environments. We previously examined steering strategies that pigeons adopt to fly through an array of vertical obstacles (VOs). Modelling VO flight guidance revealed that pigeons steer towards larger visual gaps when making fast steering decisions. In the present experiments, we recorded three-dimensional flight kinematics of pigeons as they flew through randomized arrays of horizontal obstacles (HOs). We found that pigeons still decelerated upon approach but flew faster through a denser array of HOs compared with the VO array previously tested. Pigeons exhibited limited steering and chose gaps between obstacles most aligned to their immediate flight direction, in contrast to VO navigation that favoured widest gap steering. In addition, pigeons navigated past the HOs with more variable and decreased wing stroke span and adjusted their wing stroke plane to reduce contact with the obstacles. Variability in wing extension, stroke plane and wing stroke path was greater during HO flight. Pigeons also exhibited pronounced head movements when negotiating HOs, which potentially serve a visual function. These head-bobbing-like movements were most pronounced in the horizontal (flight direction) and vertical directions, consistent with engaging motion vision mechanisms for obstacle detection. These results show that pigeons exhibit a keen kinesthetic sense of their body and wings in relation to obstacles. Together with aerodynamic flapping flight mechanics that favours vertical manoeuvring, pigeons are able to navigate HOs using simple rules, with remarkable success. PMID:28163883

  3. Results of tests on a specimen of the SRB aft skirt heat shield curtain in the MSFC LRLF

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1980-01-01

    A full scale segment of the actual Solid Rocket Booster aft skirt heat shield curtain was tested in the Large Radiant Lamp Facility (LRLF) at Marshall Space Flight Center. The curtain was mounted in the horizontal position in the same manner as it is to be mounted on the SRB. A shaker rig was designed and used to provide a motion of the curtain, simulating that to be caused in flight by vehicle acoustics. Thermocouples were used to monitor curtain materials temperatures. Both ascent and reentry heat loads were applied to the test specimen. All aspects of the test setup performed as expected, and the test was declared successful.

  4. Summary of Rocketdyne Engine A5 Rocket Based Combined Cycle Testing

    NASA Technical Reports Server (NTRS)

    Ketchum. A.; Emanuel, Mark; Cramer, John

    1998-01-01

    Rocketdyne Propulsion and Power (RPP) has completed a highly successful experimental test program of an advanced rocket based combined cycle (RBCC) propulsion system. The test program was conducted as part of the Advanced Reusable Technology program directed by NASA-MSFC to demonstrate technologies for low-cost access to space. Testing was conducted in the new GASL Flight Acceleration Simulation Test (FAST) facility at sea level (Mach 0), Mach 3.0 - 4.0, and vacuum flight conditions. Significant achievements obtained during the test program include 1) demonstration of engine operation in air-augmented rocket mode (AAR), ramjet mode and rocket mode and 2) smooth transition from AAR to ramjet mode operation. Testing in the fourth mode (scramjet) is scheduled for November 1998.

  5. Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Brandon, Jay M.

    2017-01-01

    Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.

  6. The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Smith, Andrew

    An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.

  7. The CF6 jet engine performance improvement: New front mount

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The New Front Mount was evaluated in component tests including stress, deflection/distortion and fatigue tests. The test results demonstrated a performance improvement of 0.1% in cruise sfc, 16% in compressor stall margin and 10% in compressor stator angle margin. The New Front Mount hardware successfully completed 35,000 simulated flight cycles endurance testing.

  8. Managing Risk to Ensure a Successful Cassini/Huygens Saturn Orbit Insertion (SOI)

    NASA Technical Reports Server (NTRS)

    Witkowski, Mona M.; Huh, Shin M.; Burt, John B.; Webster, Julie L.

    2004-01-01

    I. Design: a) S/C designed to be largely single fault tolerant; b) Operate in flight demonstrated envelope, with margin; and c) Strict compliance with requirements & flight rules. II. Test: a) Baseline, fault & stress testing using flight system testbeds (H/W & S/W); b) In-flight checkout & demos to remove first time events. III. Failure Analysis: a) Critical event driven fault tree analysis; b) Risk mitigation & development of contingencies. IV) Residual Risks: a) Accepted pre-launch waivers to Single Point Failures; b) Unavoidable risks (e.g. natural disaster). V) Mission Assurance: a) Strict process for characterization of variances (ISAs, PFRs & Waivers; b) Full time Mission Assurance Manager reports to Program Manager: 1) Independent assessment of compliance with institutional standards; 2) Oversight & risk assessment of ISAs, PFRs & Waivers etc.; and 3) Risk Management Process facilitator.

  9. Design and Integration of an Actuated Nose Strake Control System

    NASA Technical Reports Server (NTRS)

    Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

    1996-01-01

    Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

  10. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  11. On-Orbit Constraints Test - Performing Pre-Flight Tests with Flight Hardware, Astronauts and Ground Support Equipment to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad, Michael E.

    2008-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  12. 2011-2012 Dryden Center Innovation Fund End of the Year Report: Altitude-Compensating Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.

    2012-01-01

    This report highlights one of the many successful projects at the NASA Dryden Flight Research Center that was approved for FY12 funding under the Center Innovation Fund. This project was focused on advancing the technology readiness level of one specific type of altitude-compensating nozzle: the dual-bell rocket nozzle. When considering a rocket's performance over its entire integrated trajectory, the dual-bell nozzle has been predicted to achieve a higher total impulse over the conventional bell nozzle, which is expected to result in a greater capability of payload mass to low-Earth orbit. Although the dual-bell rocket nozzle has been thoroughly studied for several decades, this nozzle has still not been adequately tested in a relevant flight-like environment. This report provides highlights and top-level details on the FY12 feasibility effort to advance this promising technology through flight test, a collaborative effort which leverages NASA Marshall's dual-bell nozzle research and development with Dryden's expertise in propulsion-focused flight testing. To accomplish this goal, the NASA F-15B is proposed as the testbed for the initial flight-test campaign to advance this greatly needed capability.

  13. X-1A on lakebed

    NASA Technical Reports Server (NTRS)

    1955-01-01

    The Bell Aircraft Corporation X-1A (48-1384) is photographed in 1955 sitting on the Rogers Dry Lakebed at Edwards, California. This view of the right side of the aircraft shows a middle section that contrasts quite distinctively with the over-all white paint scheme of the X-1A during its NACA High-Speed Flight Research Station tenure. The extreme cold of the liquid oxygen used as a propellant (along with alcohol) and its deleterious affect on paint dictated that the fuselage area next to the tank be left unpainted. The X-1A arrived at Edwards Air Force Base, California, on January 7, 1953. Bell test pilot Jean 'Skip' Ziegler made six test flights between 14 February and 25 April 1953. Air Force test pilots Maj. Charles 'Chuck' Yeager and Maj. Arthur 'Kit' Murray made 18 flights between 21 November 1953 and 26 August 1954. NACA test pilot Joe Walker made one successful flight on 20 July 1955. During a second flight attempt on 8 August 1955, an explosion damaged the aircraft shortly before launch. Walker climbed back up into the JTB-29A mothership, and the X-1A was jettisoned over the Edwards AFB bombing range.

  14. Space-Based Range

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Space-Based Range (SBR), previously known as Space-Based Telemetry and Range Safety (STARS), is a multicenter NASA proof-of-concept project to determine if space-based communications using NASA's Tracking and Data Relay Satellite System (TDRSS) can support the Range Safety functions of acquiring tracking data and generating flight termination signals, while also providing broadband Range User data such as voice, video, and vehicle/payload data. There was a successful test of the Range Safety system at Wallops Flight Facility (WFF) on December 20, 2005, on a two-stage Terrier-Orion spin-stabilized sounding rocket. SBR transmitted GPS tracking data and maintained links with two TDRSS satellites simultaneously during the 10-min flight. The payload section deployed a parachute, landed in the Atlantic Ocean about 90 miles downrange from the launch site, and was successfully recovered. During the Terrier-Orion tests flights, more than 99 percent of all forward commands and more than 95 percent of all return frames were successfully received and processed. The time latency necessary for a command to travel from WFF over landlines to White Sands Complex and then to the vehicle via TDRSS, be processed onboard, and then be sent back to WFF was between 1.0 s and 1.1 s. The forward-link margins for TDRS-10 (TDRS East [TDE]) were 11 dB to 12 dB plus or minus 2 dB, and for TDRS-4 (TDRS Spare [TDS]) were 9 dB to 10 dB plus or minus 1.5 dB. The return-link margins for both TDE and TDS were 6 dB to 8 dB plus or minus 3 dB. There were 11 flights on an F-15B at Dryden Flight Research Center (DFRC) between November 2006 and February 2007. The Range User system tested a 184-element TDRSS Ku-band (15 GHz) phased-array antenna with data rates of 5 Mbps and 10 Mbps. This data was a combination of black-and-white cockpit video, Range Safety tracking and transceiver data, and aircraft and antenna controller data streams. IP data formatting was used.

  15. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

  16. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  17. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  18. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    PubMed Central

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416

  19. Flight and Preflight Tests of a Ram Jet Burning Magnesium Slurry Fuel and Utilizing a Solid-propellant Gas Generator for Fuel Expulsion

    NASA Technical Reports Server (NTRS)

    Bartlett, Walter, A , jr; Hagginbotham, William K , Jr

    1955-01-01

    Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.

  20. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  1. On Fast Post-Processing of Global Positioning System Simulator Truth Data and Receiver Measurements and Solutions Data

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Day, John H. (Technical Monitor)

    2000-01-01

    Post-processing of data, related to a GPS receiver test in a GPS simulator and test facility, is an important step towards qualifying a receiver for space flight. Although the GPS simulator provides all the parameters needed to analyze a simulation, as well as excellent analysis tools on the simulator workstation, post-processing is not a GPS simulator or receiver function alone, and it must be planned as a separate pre-flight test program requirement. A GPS simulator is a critical resource, and it is desirable to move off the pertinent test data from the simulator as soon as a test is completed. The receiver and simulator databases are used to extract the test data files for postprocessing. These files are then usually moved from the simulator and receiver systems to a personal computer (PC) platform, where post-processing is done typically using PC-based commercial software languages and tools. Because of commercial software systems generality their functions are notoriously slow and more than often are the bottleneck even for short duration simulator-based tests. There is a need to do post-processing faster and within an hour after test completion, including all required operations on the simulator and receiver to prepare and move off the post-processing files. This is especially significant in order to use the previous test feedback for the next simulation setup or to run near back-to-back simulation scenarios. Solving the post-processing timing problem is critical for a pre-flight test program success. Towards this goal an approach was developed that allows to speed-up post-processing by an order of a magnitude. It is based on improving the post-processing bottleneck function algorithm using a priory information that is specific to a GPS simulation application and using only the necessary volume of truth data. The presented postprocessing scheme was used in support of a few successful space flight missions carrying GPS receivers.

  2. Thermal Performance of LANDSAT-7 ETM+ Instruments During First Year in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    Landsat-7 was successfully launched into orbit on April 15, 1999. After devoting three months to the t bakeout and cool-down of the radiative cooler, and on- t orbit checkout, the Enhanced Thematic Mapper Plus (ETM+) began the normal imaging phase of the mission in mid-July 1999. This paper presents the thermal performance of the ETM+ from mid-July 1999 to mid-May 2000. The flight temperatures are compared to the yellow temperature limits, and worst cold case and worst hot case flight temperature predictions in the 15-orbit mission design profile. The flight temperature predictions were generated by a thermal model, which was correlated to the observatory thermal balance test data. The yellow temperature limits were derived from the flight temperature predictions, plus some margins. The yellow limits work well in flight, so that only several minor changes to them were needed. Overall, the flight temperatures and flight temperature predictions have good agreement. Based on the ETM+ thermal vacuum qualification test, new limits on the imaging time are proposed to increase the average duty cycle, and to resolve the problems experienced by the Mission Operation Team.

  3. Statistical Analysis of a Large Sample Size Pyroshock Test Data Set Including Post Flight Data Assessment. Revision 1

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2010-01-01

    The Earth Observing System (EOS) Terra spacecraft was launched on an Atlas IIAS launch vehicle on its mission to observe planet Earth in late 1999. Prior to launch, the new design of the spacecraft's pyroshock separation system was characterized by a series of 13 separation ground tests. The analysis methods used to evaluate this unusually large amount of shock data will be discussed in this paper, with particular emphasis on population distributions and finding statistically significant families of data, leading to an overall shock separation interface level. The wealth of ground test data also allowed a derivation of a Mission Assurance level for the flight. All of the flight shock measurements were below the EOS Terra Mission Assurance level thus contributing to the overall success of the EOS Terra mission. The effectiveness of the statistical methodology for characterizing the shock interface level and for developing a flight Mission Assurance level from a large sample size of shock data is demonstrated in this paper.

  4. Background Oriented Schlieren (BOS) of a Supersonic Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    Heineck, James T.; Banks, Daniel W.; Schairer, Edward T.; Haering, Edward A.; Bean, Paul S.

    2016-01-01

    This article describes the development and use of Background Oriented Schlieren on a full-scale supersonic jet in flight. A series of flight tests was performed in October, 2014 and February 2015 using the flora of the desert floor in the Supersonic Flight Corridor on the Edwards Air Force Base as a background. Flight planning was designed based on the camera resolution, the mean size and color of the predominant plants, and the navigation and coordination of two aircraft. Software used to process the image data was improved with additional utilities. The planning proved to be effective and the vast majority of the passes of the target aircraft were successfully recorded. Results were obtained that are the most detailed schlieren imagery of an aircraft in flight to date.

  5. Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera

    NASA Image and Video Library

    2015-05-14

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.

  6. Eclipse program F-106 aircraft in flight, front view

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  7. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing and parametrics were performed at NASA / Glenn Research Center (GRC) and NASA / Langley Research Center (LaRC) for both the Aerojet and Rocketdyne concepts. LaRC conducted an Air-Breathing Launch Vehicle (ABLV) study for several vehicle concepts with RBCC propulsion systems. LaRC is also performing a CFD analysis of the ramjet mode for both flowpaths based on GASL test conditions. A study was performed in 1999 to investigate the feasibility of performing an RBCC flight test on the NASA / Dryden Flight Research Center (DFRC) SR-71 aircraft. Academia involvement in the ART project includes parametric RBCC flowpath testing by Pennsylvania State University (PSU). In addition to thrust and wall static pressure measurements, PSU is also using laser diagnostics to analyze the flowfield in the test rig. MSFC is performing CFD analysis of the PSU rig at select test conditions for model baseline and validation. Also, Georgia Institute of Technology (GT) conducted a vision vehicle study using the Aerojet RBCC concept. Overall, the ART project has been very successful in advancing RBCC technology. Along the way, several major milestones were achieved and "firsts" accomplished. For example, under the ART project, the first dynamic trajectory simulation testing was performed and the Rocketdyne engine A5 logged over one hour of accumulated test time. The next logical step is to develop and demonstrate a flight-weight RBCC engine system.

  8. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  9. Developpement d'une plateforme de simulation et d'un pilote automatique - Application aux Cessna Citation X et Hawker 800XP

    NASA Astrophysics Data System (ADS)

    Ghazi, Georges

    This report presents several methodologies for the design of tools intended to the analysis of the stability and the control of a business aircraft. At first, a generic flight dynamic model was developed to predict the behavior of the aircraft further to a movement on the control surfaces or further to any disturbance. For that purpose, different categories of winds were considered in the module of simulation to generate various scenarios and conclude about the efficiency of the autopilot. Besides being realistic, the flight model takes into account the variation of the mass parameters according to fuel consumption. A comparison with a simulator of the company CAE Inc. and certified level D allowed to validate this first stage with an acceptable success rate. Once the dynamics is validated, the next stage deals with the stability around a flight condition. For that purpose, a first static analysis is established to find the trim conditions inside the flight envelop. Then, two algorithms of linearization generate the state space models which approximate the decoupled dynamics (longitudinal and lateral) of the aircraft. Then to test the viability of the linear models, 1,500 comparisons with the nonlinear dynamics have been done with a 100% rate of success. The study of stability allowed to highlight the need of control systems to improve first the performances of the plane, then to control its different axes. A methodology based on a coupling between a modern control technique (LQR) and a genetic algorithm is presented. This methodology allowed to find optimal and successful controllers which satisfy a large number of specifications. Besides being successful, they have to be robust to uncertainties owed to the variation of mass. Thus, an analysis of robustness using the theory of the guardian maps was applied to uncertain dynamics. However, because of a too sensitive region of the flight envelop, some analyses are biased. Nevertheless, a validation with the nonlinear dynamics allowed to prove the robustness of the controllers over the entire flight envelope. Finally, the last stage of this project concerned the control laws for the autopilot. Once again, the proposed methodology, bases itself on the association of flight mechanic equations, control theory and a metaheuristic optimization method. Afterward, four detailed test scenarios are presented to illustrate the efficiency and the robustness of the entire autopilot.

  10. Lessons Learned during Thermal Hardware Integration on the Global Precipitation Measurement Satellite

    NASA Technical Reports Server (NTRS)

    Cottingham, Christine; Dwivedi, Vivek H.; Peters, Carlton; Powers, Daniel; Yang, Kan

    2012-01-01

    The Global Precipitation Measurement mission is a joint NASA/JAXA mission scheduled for launch in late 2013. The integration of thermal hardware onto the satellite began in the Fall of 2010 and will continue through the Summer of 2012. The thermal hardware on the mission included several constant conductance heat pipes, heaters, thermostats, thermocouples radiator coatings and blankets. During integration several problems arose and insights were gained that would help future satellite integrations. Also lessons learned from previous missions were implemented with varying degrees of success. These insights can be arranged into three categories. 1) the specification of flight hardware using analysis results and the available mechanical resources. 2) The integration of thermal flight hardware onto the spacecraft, 3) The preparation and implementation of testing the thermal flight via touch tests, resistance measurements and thermal vacuum testing.

  11. The feasibility of laryngoscope-guided tracheal intubation in microgravity during parabolic flight: a comparison of two techniques.

    PubMed

    Groemer, Gernot E; Brimacombe, Joseph; Haas, Thorsten; de Negueruela, Cristina; Soucek, Alexander; Thomsen, Michael; Keller, Christian

    2005-11-01

    We determined the feasibility of laryngoscope-guided tracheal intubation (LG-TI) in microgravity obtained during parabolic flight and tested the hypothesis that LG-TI is similarly successful in the free-floating condition, with the patient's head gripped between the anesthesiologist's knees, as in the restrained condition, with the torso strapped to the surface. Three personnel with no experience in airway management or microgravity participated in the study. LG-TI of a sophisticated full-size manikin was attempted on seven occasions in each condition by each investigator after ground-based training. The parabolic flights, which took place in an Airbus 300 over the Atlantic Ocean, provided 23 s of microgravity. During this time, the investigator opened a box with airway equipment, performed LG-TI, and attached and held onto a self-inflating bag. The efficacy of ventilation was assessed during level flight by squeezing the bag and noting whether the manikin sensors indicated a tidal volume > or =300 mL. There were no differences in ventilation success (41% versus 33%) or time to successful insertion (both 18 s) between the free-floating and the restrained conditions. More than 90% of failures were caused by the inability to insert the tracheal tube within 23 s. There were no differences in performance among investigators. We conclude that LG-TI is feasible in microgravity obtained during parabolic flight, but the success rate is infrequent because of severe time restrictions. There were no differences in success rate between the free-floating condition, with the head gripped between the knees, and the restrained condition, with the torso strapped to the surface.

  12. Recurring norovirus transmission on an airplane.

    PubMed

    Thornley, Craig N; Emslie, Nicola A; Sprott, Tim W; Greening, Gail E; Rapana, Jackie P

    2011-09-01

    Previously reported outbreaks of norovirus gastroenteritis associated with aircraft have been limited to transmission during a single flight sector. During October 2009, an outbreak of diarrhea and vomiting occurred among different groups of flight attendants who had worked on separate flight sectors on the same airplane. We investigated the cause of the outbreak and whether the illnesses were attributable to work on the airplane. Information was obtained from flight attendants on demographic characteristics, symptoms, and possible transmission risk factors. Case patients were defined as flight attendants with diarrhea or vomiting <51 hours after the end of their first flight sector on the airplane during 13-18 October 2009. Stool samples were tested for norovirus RNA. A passenger had vomited on the Boeing 777-200 airplane on the 13 October flight sector. Sixty-three (82%) of 77 flight attendants who worked on the airplane during 13-18 October provided information, and 27 (43%) met the case definition. The attack rate among flight attendants decreased significantly over successive flight sectors from 13 October onward (P < .001). Working as a supervisor was independently associated with development of illness (adjusted odds ratio, 5.8; 95% confidence interval, 1.3-25.6). Norovirus genotype GI.6 was detected in stool samples from 2 case patients who worked on different flight sectors. Sustained transmission of norovirus is likely to have occurred because of exposures on this airplane during successive flight sectors. Airlines should make provision for adequate disinfection of airplanes with use of products effective against norovirus and other common infectious agents after vomiting has occurred.

  13. STS-37 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-05-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  14. STS-37 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-37 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-ninth flight of the Space Shuttle and the eighth flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-37/LWT-30); three Space Shuttle main engines (SSME's) (serial numbers 2019, 2031, and 2107 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-042. The primary objective of this flight was to successfully deploy the Gamma Ray Observatory (GRO) payload. The secondary objectives were to successfully perform all operations necessary to support the requirements of the Protein Crystal Growth (PCG) Block 2 version, Radiation Monitoring Experiment-3 (RME-3), Ascent Particle Monitor (APM), Shuttle Amateur Radio Experiment-2 (SAREX-2), Air Force Maui Optical Site Calibration Test (AMOS), Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA), and the Crew and Equipment Transfer Aids (CETA) payloads.

  15. NASA’s Space Launch System Engine Testing Heats Up

    NASA Image and Video Library

    2017-05-23

    NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.

  16. Near-space flight of a correlated photon system

    PubMed Central

    Tang, Zhongkan; Chandrasekara, Rakhitha; Sean, Yau Yong; Cheng, Cliff; Wildfeuer, Christoph; Ling, Alexander

    2014-01-01

    We report the successful test flight of a device for generating and monitoring correlated photon pairs under near-space conditions up to 35.5 km altitude. Data from ground based qualification tests and the high altitude experiment demonstrate that the device continues to operate even under harsh environmental conditions. The design of the rugged, compact and power-efficient photon pair system is presented. This design enables autonomous photon pair systems to be deployed on low-resource platforms such as nanosatellites hosting remote nodes of a quantum key distribution network. These results pave the way for tests of entangled photon technology in low earth orbit. PMID:25219935

  17. An Analysis of the Speed Commands from an Interval Management Algorithm during the ATD-1 Flight Test

    NASA Technical Reports Server (NTRS)

    Watters, Christine; Wilson, Sara R.; Swieringa, Kurt A.

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) successfully completed a nineteen-day flight test under a NASA contract with Boeing, with Honeywell and United Airlines as sub-contractors. An Interval Management (IM) avionics prototype was built based on international IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. This paper describes the speed behavior of the IM avionics prototype, focusing on the speed command rate and the number of speed increases.

  18. A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001

    NASA Image and Video Library

    2001-03-14

    A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  19. The Interaction of the Space Shuttle Launch and Entry Suits and Sustained Weightless on Astronaut Egress Locomotion

    NASA Technical Reports Server (NTRS)

    Greenisen, M. C.; Bishop, P. A.; Sothmann, M.

    2008-01-01

    The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1963-01-01

    Marshall Space Flight Center successfully conducted hydrostatic testing on the Saturn V S-IC (first) stage fuel tank. The first stage was powered by five F-1 engines, that used liquid oxygen and kerosene as its propellant.

  1. Satellite Broadcast of Graphical Weather Data Flight Tested

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    2000-01-01

    NASA Glenn Research Center at Lewis Field's aviation Weather Information Communications (WINCOMM) and NASA Langley Research Center's Aviation Weather Information (AWIN) programs collaborated in a flight test and evaluation of a worldwide weather data-link capability using satellites. This successful flight testing moves NASA closer to its goal of developing advanced communications and information technologies to enable high-quality and timely dissemination of aviation weather information to all relevant users on the aviation information network. Recognized as a major contributing factor in aviation accidents and incidents, weather contributes directly or indirectly to nearly 80 percent of fatal general aviation (small private aircraft) accidents. In 1997, the Aeronautics Safety Investment Strategy Team s weather team produced a prioritized list of investment areas under weather accident prevention. Weather data dissemination is the most critical and highest ranked priority on the list. NASA's Aviation Safety Program founded the Aviation Weather Information initiative to focus efforts on significantly reducing the number of weather-related aviation fatalities. Access to accurate and timely weather data could contribute to a major reduction of weather-related incidents and accidents. However, a cost-effective solution has eluded most general aviation pilots because of the high cost of onboard weather radar equipment. Rockwell Collins, through a contract with NASA and in cooperation with WorldSpace Corporation, successfully completed ground and flight testing of a receiver and antenna in Johannesburg, South Africa. This NASA/Rockwell Collins project is an evaluation of worldwide weather data-link capability using transmissions from the Satellite Digital Audio Radio Services (S DARS) AfriStar satellite. Owned and operated by WorldSpace, AfriStar is a geostationary satellite that broadcasts commercial digital audio services to stationary and mobile platforms. S DARS satellites are the most powerful communications satellites produced to date, allowing users to receive signals using simple, low-cost patch antennas instead of more expensive, beam-steered antenna arrays. Engineers connected an inexpensive, commercially available radio receiver to a laptop computer and an antenna designed and built by Rockwell Collins, enabling them to receive WorldSpace signals from the AfriStar satellite during flight tests. WorldSpace broadcast their composite color graphical weather data files, which were multiplexed with normal audio streams, to the flat patch antenna mounted on a single-engine aircraft. The aircraft was equipped with a modified commercial S-DARS receiver, a Global Positioning Satellite (GPS) receiver, and a laptop computer with color display. Continuous data reception occurred during normal aircraft maneuvers performed throughout takeoff, cruise, and landing operations. In addition, engineers monitored receiver power levels during steep turns and banks. In most instances, the receiver was able to maintain acceptable power levels during all phases of flight and to obtain weather data with little or with the successful completion of ground and flight testing of a receiver and antenna in Johannesburg, South Africa, the team has started to prepare for experiments using highspeed aircraft in areas of the world with limited access to timely weather data. NASA plans to provide a more advanced antenna design and consultation support. This successful test of real-time aviation-related weather data is a positive step toward solving communications-specific issues associated with the dissemination of weather data directly to the cockpit.

  2. Psychological Distress and Physiological Reactivity During In Vivo Exposure in People With Aviophobia.

    PubMed

    Busscher, Bert; Spinhoven, Philip; de Geus, Eco J C

    2015-09-01

    Exposure is regarded to be a crucial component of therapies for phobias. According to emotional processing theory, the success of exposure therapy is predicted by activation of subjective and physiological fear responses and their within-session habituation and between-session adaptation. This study tested this prediction for aviophobia. Seventy-nine participants following a highly standardized treatment program for aviophobia provided self-reported and physiological (heart rate, respiratory sinus arrhythmia and pre-ejection period) measurements of fear activation, within-session habituation, and between-session adaptation during exposure to flight-related stimuli, a flight simulator, and during two real flights. Multiple regression analyses were conducted to examine whether these measurements predicted therapy outcome up to 3 years after finishing therapy, including number of flights flown in this period. Both subjective and physiological arousal measurements indicated strong fear activation and large within-session habituation and between-session adaptation during exposure. Flight anxiety measures showed large improvements up to 3 years after treatment (η between 0.72 and 0.91). Lower self-reported anxiety during flight exposure was associated with lower flight anxiety after exposure (R = 0.15) and more flights flown (R = 0.14). Within-flight habituation or between-session adaptation of self-reported anxiety had no relationship with treatment outcome. Within-flight habituation of HR reactivity (R = 0.10) and respiratory sinus arrhythmia reactivity (R = 0.11) was associated with lower flight anxiety directly after the flight, but not on flight anxiety 3 years after finishing therapy or on long-term flying behavior. The results provide only weak support for emotional processing theory. Low self-reported anxiety during in vivo flight exposure was the best predictor of successful long-term therapy outcome.

  3. Centaur liquid oxygen boost pump vibration test

    NASA Technical Reports Server (NTRS)

    Tang, H. M.

    1975-01-01

    The Centaur LOX boost pump was subjected to both the simulated Titan Centaur proof flight and confidence demonstration vibration test levels. For each test level, both sinusoidal and random vibration tests were conducted along each of the three orthogonal axes of the pump and turbine assembly. In addition to these tests, low frequency longitudinal vibration tests for both levels were conducted. All tests were successfully completed without damage to the boost pump.

  4. Orion Exploration Flight Test 1 (EFT-1) Best Estimated Trajectory Development

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Brown, Aaron

    2016-01-01

    The Orion Exploration Flight Test 1 (EFT-1) mission successfully flew on Dec 5, 2014 atop a Delta IV Heavy launch vehicle. The goal of Orions maiden flight was to stress the system by placing an uncrewed vehicle on a high-energy trajectory replicating conditions similar to those that would be experienced when returning from an asteroid or a lunar mission. The Orion navigation team combined all trajectory data from the mission into a Best Estimated Trajectory (BET) product. There were significant challenges in data reconstruction and many lessons were learned for future missions. The team used an estimation filter incorporating radar tracking, onboard sensors (Global Positioning System and Inertial Measurement Unit), and day-of-flight weather balloons to evaluate the true trajectory flown by Orion. Data was published for the entire Orion EFT-1 flight, plus objects jettisoned during entry such as the Forward Bay Cover. The BET customers include approximately 20 disciplines within Orion who will use the information for evaluating vehicle performance and influencing future design decisions.

  5. CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica

    1997-01-01

    A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.

  6. View of USSR flight controllers in Mission Control during touchdown

    NASA Image and Video Library

    1975-07-21

    S75-28659 (21 July 1975) --- An overall view of the group of Soviet Union flight controllers who served at the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. They are applauding the successful touchdown of the Soyuz spacecraft in Central Asia. The television monitor had just shown the land landing of the Soyuz descent vehicle.

  7. Postflight analysis for Delta Program Mission no. 113: COS-B Mission

    NASA Technical Reports Server (NTRS)

    1976-01-01

    On 8 August 1975, the COS-B spacecraft was launched successfully from the Western Test Range (Delta Program Mission No. 113). The launch vehicle was a three stage Extended Long Tank Delta DSV-3P-11B vehicle. Postflight analyses performed in connection with flight are presented. Vehicle trajectory, stage performance, vehicle reliability and the propulsion, guidance, flight control, electronics, mechanical and structural systems are evaluated.

  8. Thermal Vacuum/Balance Test Results of Swift BAT with Loop Heat Pipe Thermal System

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2004-01-01

    The Swift Burst Alert Telescope (BAT) Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate PAP), and two loop heat pipes (LHPs) transport heat from the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array xA1 ASIC temperatures. The radiator has AZ-Tek's AZW-LA-II low solar absorptance white paint as the thermal coating, and is located on the anti-sun side of the spacecraft. A thermal balance (T/B) test on the BAT was successfully completed. It validated that the thermal design satisfies the temperature requirements of the BAT in the flight thermal environments. Instrument level and observatory level thermal vacuum (TN) cycling tests of the BAT Detector Array by using the LHP thermal system were successfully completed. This paper presents the results of the T/B test and T N cycling tests.

  9. Lunar Landing Testing at NASA Langley

    NASA Image and Video Library

    1965-06-18

    Lunar Landing Testing at NASA Langley. Lunar Landing Testing at NASA Langley. A simulated environment that contributed in a significant way to the success of Apollo project was the Lunar Landing Research Facility, an imposing 250 foot high, 400 foot long gantry structure that became operational in 1965. Published in the book "Space Flight Revolution" NASA SP-4308 pg. 376

  10. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  11. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  12. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.

  13. Orion Pad Abort 1 Crew Module Inertia Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2010-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  14. J-FLiC UAS Flights for Acoustic Testing Research

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2016-01-01

    The jet-powered flying testbed (J-FLiC) unmanned aircraft system (UAS) successfully completed twenty-six flights at Fort AP Hill, VA, from 27 August until September 3 2015, supporting tests of a microphone array system for aircraft noise measurement. The test vehicles, J-FLiC NAVY2 (N508NU), and J-FLiC 4 (N509NU), were flown under manual and autopiloted control in a variety of test conditions: clean at speeds ranging from 80 to 150 knots; and full landing configuration at speeds ranging from 50 to 95 knots. During the test campaign, autopilot capability was incrementally improved to ultimately provide a high degree of accuracy and repeatability of the critical test requirements for airspeed, altitude, runway alignment and position over the microphone array. Manual flights were performed for test conditions at the both ends of the speed envelope where autopiloted flight would have required flight beyond visual range and more extensive developmental work. The research objectives of the campaign were fully achieved. The ARMD Integrated Systems Research Program (ISRP) Environmentally Responsible Aviation (ERA) Project aims to develop the enabling capabilities/technologies that will allow prediction/reduction of aircraft noise. A primary measurement tool for ascertaining and characterizing empirically the effectiveness of various noise reduction technologies is a microphone phased array system. Such array systems need to be vetted and certified for operational use via field deployments and overflights of the array with test aircraft, in this case with sUAS aircraft such as J-FLiC.

  15. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  16. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1991-01-01

    Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.

  17. Functional Fitness Testing Results Following Long-Duration ISS Missions.

    PubMed

    Laughlin, Mitzi S; Guilliams, Mark E; Nieschwitz, Bruce A; Hoellen, David

    2015-12-01

    Long-duration spaceflight missions lead to the loss of muscle strength and endurance. Significant reduction in muscle function can be hazardous when returning from spaceflight. To document these losses, NASA developed medical requirements that include measures of functional strength and endurance. Results from this Functional Fitness Test (FFT) battery are also used to evaluate the effectiveness of in-flight exercise countermeasures. The purpose of this paper is to document results from the FFT and correlate this information with performance of in-flight exercise on board the International Space Station. The FFT evaluates muscular strength and endurance, flexibility, and agility and includes the following eight measures: sit and reach, cone agility, push-ups, pull-ups, sliding crunches, bench press, leg press, and hand grip dynamometry. Pre- to postflight functional fitness measurements were analyzed using dependent t-tests and correlation analyses were used to evaluate the relationship between functional fitness measurements and in-flight exercise workouts. Significant differences were noted post space flight with the sit and reach, cone agility, leg press, and hand grip measurements while other test scores were not significantly altered. The relationships between functional fitness and in-flight exercise measurements showed minimal to moderate correlations for most in-flight exercise training variables. The change in FFT results can be partially explained by in-flight exercise performance. Although there are losses documented in the FFT results, it is important to realize that the crewmembers are successfully performing activities of daily living and are considered functional for normal activities upon return to Earth.

  18. Parachute Testing for the NASA X-38 Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.

    2005-01-01

    NASA's X-38 program was an in-house technology demonstration program to develop a Crew Return Vehicle (CRV) for the International Space Station capable of returning seven crewmembers to Earth when the Space Shuttle was not present at the station. The program, managed out of NASA's Johnson Space Center, was started in 1995 and was cancelled in 2003. Eight flights with a prototype atmospheric vehicle were successfully flown at Edwards Air Force Base, demonstrating the feasibility of a parachute landing system for spacecraft. The intensive testing conducted by the program included testing of large ram-air parafoils. The flight test techniques, instrumentation, and simulation models developed during the parachute test program culminated in the successful demonstration of a guided parafoil system to land a 25,000 Ib spacecraft. The test program utilized parafoils of sizes ranging from 750 to 7500 p. The guidance, navigation, and control system (GN&C) consisted of winches, laser or radar altimeter, global positioning system (GPS), magnetic compass, barometric altimeter, flight computer, and modems for uplink commands and downlink data. The winches were used to steer the parafoil and to perform the dynamic flare maneuver for a soft landing. The laser or radar altimeter was used to initiate the flare. In the event of a GPS failure, the software navigated by dead reckoning using the compass and barometric altimeter data. The GN&C test beds included platforms dropped from cargo aircraft, atmospheric vehicles released from a 8-52, and a Buckeye powered parachute. This paper will describe the test program and significant results.

  19. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. A number of flight tests have been conducted and are planned to demonstrate the performance and enable certification of the Orion Spacecraft. Exploration Flight Test 1, the first flight test of the Orion spacecraft, was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. Orion's first flight was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety, such as heat shield performance, separation events, avionics and software performance, attitude control and guidance, parachute deployment and recovery operations. One of the key separation events tested during this flight was the nominal jettison of the LAS. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. The LAS nominal jettison event on Exploration Flight Test 1 occurred at six minutes and twenty seconds after liftoff (See Fig. 3). The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. A suite of developmental flight instrumentation was included on the flight test to provide data on spacecraft subsystems and separation events. This paper will focus on the flight test objectives and performance of the LAS during ascent and nominal jettison. Selected LAS subsystem flight test data will be presented and discussed in the paper. Exploration Flight Test -1 will provide critical data that will enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly contribute to the vehicle architecture of a human-rated space launch vehicle.

  20. NASA Bioculture System: From Experiment Definition to Flight Payload

    NASA Technical Reports Server (NTRS)

    Sato, Kevin Y.; Almeida, Eduardo; Austin, Edward M.

    2014-01-01

    Starting in 2015, the NASA Bioculture System will be available to the science community to conduct cell biology and microbiology experiments on ISS. The Bioculture System carries ten environmentally independent Cassettes, which house the experiments. The closed loop fluids flow path subsystem in each Cassette provides a perfusion-based method for maintain specimen cultures in a shear-free environment by using a biochamber based on porous hollow fiber bioreactor technology. Each Cassette contains an incubator and separate insulated refrigerator compartment for storage of media, samples, nutrients and additives. The hardware is capable of fully automated or manual specimen culturing and processing, including in-flight experiment initiation, sampling and fixation, up to BSL-2 specimen culturing, and the ability to up to 10 independent cultures in parallel for statistical analysis. The incubation and culturing of specimens in the Bioculture System is a departure from standard laboratory culturing methods. Therefore, it is critical that the PI has an understanding the pre-flight test required for successfully using the Bioculture System to conduct an on-orbit experiment. Overall, the PI will conduct a series of ground tests to define flight experiment and on-orbit implementation requirements, verify biocompatibility, and determine base bioreactor conditions. The ground test processes for the utilization of the Bioculture System, from experiment selection to flight, will be reviewed. Also, pre-flight test schedules and use of COTS ground test equipment (CellMax and FiberCell systems) and the Bioculture System will be discussed.

  1. NASA's Space Launch System Transitions From Design To Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block 1, SLS will a minimum of 70 metric tons (t) (154,324 pounds) of payload to low Earth orbit (LEO). It will evolve to a 130 t (286,601 pound) payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test-fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility in New Orleans, Louisiana. Renovations to the B-2 test stand for stage green run testing were completed at NASA's Stennis Space Center (SSC), near Bay St. Louis, Mississippi. Core stage test stands are reaching completion at NASA's Marshall Space Flight Center in Huntsville, Alabama. The modified Pegasus barge for core stage transportation from manufacturing to testing and launch sites was delivered to SSC. The Interim Cryogenic Propulsion System test article was also completed. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  2. Objectives and Progress on Ground Vibration Testing for the Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Askins, Bruce R.; Chenevert, Donald J.

    2009-01-01

    NASA has conducted dynamic tests on each of its major launch vehicles during the past 45 years. Each test has provided invaluable data to correlate and correct analytical models used to predict structural responses to differing dynamics for these vehicles. With both Saturn V and Space Shuttle, hardware changes were also required to the flight vehicles to ensure crew and vehicle safety. The Ares I IVGVT will undoubtedly provide similar valuable test data to support successful flights of the Constellation Program. The IVGVT will provide test determined natural frequencies, mode shapes and damping for the Ares I. This data will be used to support controls analysis by providing this test data to reduce uncertainty in the models. The value of this testing has been proven by past launch vehicle successes and failures. Performing dynamic testing on the Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions. In addition, IVGVT will provide the following benefits for the Ares rockets: a) IVGVT data along with Ares development flights like Ares I-X, Ares I-Y, Ares I-X Prime, and Orion-1 or others will reduce the risk to the Orion-2 crew. IVGVT will permit anchoring the various analytical and operational models used in so many different aspects of Ares operations. b) IVGVT data will permit better understanding of the structural and GN&C margins of the spacecraft and may permit mass savings or expanded day-of-launch opportunities or fewer constraints to launch. c) Undoubtedly IVGVT will uncover some of the "unknown unknowns" so often seen in developing, launching, and flying new spacecraft vehicles and data from IVGVT may help prevent a loss of vehicle or crew. d) IVGVT also will be the first time Ares I flight-like hardware is transported, handled, rotated, mated, stacked, and integrated. e) Furthermore, handling and stacking the IVGVT launch vehicle stacks will be an opportunity to understand certain aspects of vehicle operability much better (for example, handling procedures, touch-labor time to accomplish tasks, access at interfaces, access to stage mating bolts, access to avionics boxes, access to the Interstage, GSE functionality, and many other important aspects of Ares I operability). All of these results will provide for better vehicle safety and better stewardship of national resources as NASA begins its next phase of human space exploration.

  3. KSC-2014-4823

    NASA Image and Video Library

    2014-12-15

    CAPE CANAVERAL, Fla. – NASA’s Project Morpheus prototype lander comes to rest after a successful landing, capping free flight test No. 15 at the north end of the Shuttle Landing Facility at Kennedy Space Center in Florida. During the 97-second test, onboard autonomous landing and hazard avoidance technology sensors, or ALHAT, surveyed the hazard field for safe landing sites, then guided the lander forward and downward to a successful landing. For more information on Morpheus, visit: http://www.morpheuslander.jsc.nasa.gov. Photo credit: NASA

  4. A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    1999-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.

  5. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  6. University of Virginia suborbital infrared sensing experiment

    NASA Astrophysics Data System (ADS)

    Holland, Stephen; Nunnally, Clayton; Armstrong, Sarah; Laufer, Gabriel

    2002-03-01

    An Orion sounding rocket launched from Wallops Flight Facility carried a University of Virginia payload to an altitude of 47 km and returned infrared measurements of the Earth's upper atmosphere and video images of the ocean. The payload launch was the result of a three-year undergraduate design project by a multi-disciplinary student group from the University of Virginia and James Madison University. As part of a new multi-year design course, undergraduate students designed, built, tested, and participated in the launch of a suborbital platform from which atmospheric remote sensors and other scientific experiments could operate. The first launch included a simplified atmospheric measurement system intended to demonstrate full system operation and remote sensing capabilities during suborbital flight. A thermoelectrically cooled HgCdTe infrared detector, with peak sensitivity at 10 micrometers , measured upwelling radiation and a small camera and VCR system, aligned with the infrared sensor, provided a ground reference. Additionally, a simple orientation sensor, consisting of three photodiodes, equipped with red, green, and blue light with dichroic filters, was tested. Temperature measurements of the upper atmosphere were successfully obtained during the flight. Video images were successfully recorded on-board the payload and proved a valuable tool in the data analysis process. The photodiode system, intended as a replacement for the camera and VCR system, functioned well, despite low signal amplification. This fully integrated and flight tested payload will serve as a platform for future atmospheric sensing experiments. It is currently being modified for a second suborbital flight that will incorporate a gas filter correlation radiometry (GFCR) instrument to measure the distribution of stratospheric methane and imaging capabilities to record the chlorophyll distribution in the Metompkin Bay as an indicator of pollution runoff.

  7. [Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed

    2018-01-01

    Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.

  8. Fabrication and evaluation of brazed titanium-clad borsic/aluminum skin-stringer panels

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Mcwithey, R. R.

    1980-01-01

    A successful brazing process was developed and evaluated for fabricating full-scale titanium-clad Borsic/aluminum skin-stringer panels. A panel design was developed consisting of a hybrid composite skin reinforced with capped honeycomb-core stringers. Six panels were fabricated for inclusion in the program which included laboratory testing of panels at ambient temperatures and 533 K (500 F) and flight service evaluation on the NASA Mach 3 YF-12 airplane. All panels tested met or exceeded stringent design requirements and no deleterious effects on panel properties were detected followng flight service evaluation on the YF-12 airplane.

  9. Flight test results for the Digital Integrated Automatic Landing Systems (DIALS): A modern control full-state feedback design

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1984-01-01

    The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.

  10. Micogreens Experiment

    NASA Image and Video Library

    2018-03-13

    Kennedy Space Center scientists worked with OSRAM to insert a smart horticulture lighting system prototype into a food production system. The Phytofy RL prototype LED provides similar wavelength capability to a plant growth system currently on orbit. Photofy RL provides another avenue for future investigators conducting flight experiments to perform ground tests prior to flight under similar lighting conditions. The Phytofy RLs have been used to successfully grow microgreens of Wasabi, Tokyo Bekana, Mizuna, Broccoli, Garnet Giant, and Cauliflower.

  11. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  12. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles D. Griffin

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  13. Development of flight experiments for remote measurement of pollution

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Kopia, L. P.

    1973-01-01

    The status as of February 1973 of several NASA-sponsored development projects is reported concerning flight experiments for remote measurement of pollution. Eight passive multispectral instruments for remotely sensing air and water pollutants are described, as well as two active (laser radar) measuring techniques. These techniques are expected to add some new dimensions to the remote sensing of water quality, oceanographic parameters, and earth resources. Multiple applications in these fields are generally possible. Successful completion of the flight demonstration tests and comparisons with simultaneously obtained surface truth measurements may establish these techniques as valid water quality monitoring tools.

  14. Aircraft Integration and Flight Testing of 4STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, CJ; Kassianov, E; Russell, P

    2012-10-12

    Under funding from the U.S. Dept. of Energy, in conjunction with a funded NASA 2008 ROSES proposal, with internal support from Battelle Pacific Northwest Division (PNWD), and in collaboration with NASA Ames Research Center, we successfully integrated the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR-Air) instrument for flight operation aboard Battelle’s G-1 aircraft and conducted a series of airborne and ground-based intensive measurement campaigns (hereafter referred to as “intensives”) for the purpose of maturing the initial 4STAR-Ground prototype to a flight-ready science-ready configuration.

  15. The Rocket Electric Field Sounding (REFS) program: Prototype design and successful first launch

    NASA Astrophysics Data System (ADS)

    Willett, J. C.; Curtis, D. C.; Driesman, A. R.; Longstreth, R. K.; Rison, W.; Winn, W. P.; Jones, J. J.

    1992-01-01

    The motivation, design, and successful first flight of a sounding rocket to measure profiles of vector electrostatic field in the lower troposphere are described. The design employs eight shutter field mills amd a corona-charging system in a manner similar to aircraft previously instrumented for the measurement of electric fields. A rocket offers significant advantages over an aircraft in simplicity and calibration. A single cylindrical rotor covering most of the payload acts as the shutter for all eight mills in this design. The cylindrical symmetry and circular cross sections of the vehicle facilitate straightforward calibration. Also included in the payload are a pressure sensor, a longitudinal accelerometer, a transverse magnometer, and a novel cloud-penetration detector. A fair-weather test flight at the NASA Wallops Flight Facility demonstrated the workability of the basic design and identified a few necessary modifications.

  16. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  17. Phase 1 space fission propulsion system testing and development progress

    NASA Astrophysics Data System (ADS)

    van Dyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter

    2001-02-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems are expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified, MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired, they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans. .

  18. Design and Analysis of Outer Mold Line Close-outs for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Knutson, Jeffrey R.; Schuster, David M.; Tyler, Erik D.

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale, passive aerodynamically stabilized Max Launch Abort System (MLAS) pad abort demonstrator was successfully launched from NASA Goddard Space Flight Center's Wallops Flight Facility. Aerodynamic close-outs were required to cover openings on the MLAS fairing to prevent aerodynamic flow-through and to maintain the MLAS OML surface shape. Two-ply duct tape covers were designed to meet these needs. The duct tape used was a high strength fiber reinforced duct tape with a rubberized adhesive that demonstrated 4.6 lb/in adhesion strength to the unpainted fiberglass fairing. Adhesion strength was observed to increase as a function of time. The covers were analyzed and experimentally tested to demonstrate their ability to maintain integrity under anticipated vehicle ascent pressure loads and to not impede firing of the drogue chute mortars. Testing included vacuum testing and a mortar fire test. Tape covers were layed-up on thin Teflon sheets to facilitate installation on the vehicle. Custom cut foam insulation board was used to fill mortar hole and separation joint cavities and provide support to the applied tape covers. Flight test results showed that the tape covers remained adhered during flight.

  19. Test and evaluation of the HIDEC engine uptrim algorithm

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemented into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  20. Flight Testing of Terrain-Relative Navigation and Large-Divert Guidance on a VTVL Rocket

    NASA Technical Reports Server (NTRS)

    Trawny, Nikolas; Benito, Joel; Tweddle, Brent; Bergh, Charles F.; Khanoyan, Garen; Vaughan, Geoffrey M.; Zheng, Jason X.; Villalpando, Carlos Y.; Cheng, Yang; Scharf, Daniel P.; hide

    2015-01-01

    Since 2011, the Autonomous Descent and Ascent Powered-Flight Testbed (ADAPT) has been used to demonstrate advanced descent and landing technologies onboard the Masten Space Systems (MSS) Xombie vertical-takeoff, vertical-landing suborbital rocket. The current instantiation of ADAPT is a stand-alone payload comprising sensing and avionics for terrain-relative navigation and fuel-optimal onboard planning of large divert trajectories, thus providing complete pin-point landing capabilities needed for planetary landers. To this end, ADAPT combines two technologies developed at JPL, the Lander Vision System (LVS), and the Guidance for Fuel Optimal Large Diverts (G-FOLD) software. This paper describes the integration and testing of LVS and G-FOLD in the ADAPT payload, culminating in two successful free flight demonstrations on the Xombie vehicle conducted in December 2014.

  1. Flight Versus Ground Out-of-hospital Rapid Sequence Intubation Success: a Systematic Review and Meta-analysis.

    PubMed

    Fouche, Pieter F; Stein, Christopher; Simpson, Paul; Carlson, Jestin N; Zverinova, Kristina M; Doi, Suhail A

    2018-01-29

    Endotracheal intubation (ETI) is a critical procedure performed by both air medical and ground based emergency medical services (EMS). Previous work has suggested that ETI success rates are greater for air medical providers. However, air medical providers may have greater airway experience, enhanced airway education, and access to alternative ETI options such as rapid sequence intubation (RSI). We sought to analyze the impact of the type of EMS on RSI success. A systematic literature search of Medline, Embase, and the Cochrane Library was conducted and eligibility, data extraction, and assessment of risk of bias were assessed independently by two reviewers. A bias-adjusted meta-analysis using a quality-effects model was conducted for the primary outcomes of overall intubation success and first-pass intubation success. Forty-nine studies were included in the meta-analysis. There was no difference in the overall success between flight and ground based EMS; 97% (95% CI 96-98) vs. 98% (95% CI 91-100), and no difference in first-pass success for flight compared to ground based RSI; 82% (95% CI 73-89) vs. 82% (95% CI 70-93). Compared to flight non-physicians, flight physicians have higher overall success 99% (95% CI 98-100) vs. 96% (95% CI 94-97) and first-pass success 89% (95% CI 77-98) vs. 71% (95% CI 57-84). Ground-based physicians and non-physicians have a similar overall success 98% (95% CI 88-100) vs. 98% (95% CI 95-100), but no analysis for physician ground first pass was possible. Both overall and first-pass success of RSI did not differ between flight and road based EMS. Flight physicians have a higher overall and first-pass success compared to flight non-physicians and all ground based EMS, but no such differences are seen for ground EMS. Our results suggest that ground EMS can use RSI with similar outcomes compared to their flight counterparts.

  2. Development of indigenous linear low-density polyethylene film and other related techniques for heavy-load balloons in India

    NASA Astrophysics Data System (ADS)

    Redkar, R. T.

    1993-02-01

    A new grade of balloon film extruded out of LLDPE resin with Butene as comonomer and Cold Brittle Point (CBP) at -88°C was extruded and successfully flight tested with a 25 micron single shell 53,000 Cu.M. balloon carrying 330 Kg. payload to 33 Km. altitude. We have also produced superior LLDPE film out of Dowlex 2045 Dow Chemicals resin with Octene as comonomer, which has the cold brittle point lower than -90°C and superior mechanical properties at low temperatures. A high pressure hydrogen filling system capable of delivering 2200 Cu.Ft. of hydrogen per minute has been commissioned and successfully utilised in 11 flights. With this new filling system, the inflation time is drastically reduced by over 50% thereby reducing the duration of pre-launch stresses on the ground bubble. After the acceptance of our revised design criteria for balloons to be flown from equatorial latitudes by M/s.Winzen International Inc., U.S.A., 41 flights have been made, out of which 36 have been successful giving us a success record of 88%. Out of the 5 failures, 3 have been float failures with gross inflations exceeding 1950 kg, for which launch spool damage is a suspect. To reduce the spool damage, the shell thickness of the subsequent balloon was increased to 20.32 microns from 17.78 microns and the flight was a success. For further reducing the possibility of launch spool damage, a larger diameter spool is being designed.

  3. NASA Successfully Conducts Wallops Rocket Launch with Technology Experiments

    NASA Image and Video Library

    2015-07-07

    NASA successfully launched a NASA Black Brant IX suborbital sounding rocket carrying two space technology demonstration projects at 6:15 a.m. today. The rocket carried the SOAREX-8 Exo-Brake Flight Test from NASA’s Ames Research Center in California and the Radial Core Heat Spreader from NASA’s Glenn Research Center in Ohio. Preliminary analysis shows that data was received on both projects. The payload flew to an altitude of 206 miles and impacted in the Atlantic Ocean approximately 10 minutes after launch. The payload will not be recovered. The flight was conducted through NASA’s Space Technology Mission Directorate. The next launch from NASA’s Wallops Flight Facility is a Terrier-Improved Malemute suborbital sounding rocket early in the morning on August 11 carrying the RockSat-X university student payload. For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  5. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  6. Essentials for Team Based Rehearsals and the Differences Between Earth Orbiting and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin

    2015-01-01

    The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key milestone for predicting and ensuring on-orbit success.

  7. Alternative Approaches to Mission Control Automation at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rackley, Michael; Cooter, Miranda; Davis, George; Mackey, Jennifer

    2001-01-01

    To meet its objective of reducing operations costs without incurring a corresponding increase in risk, NASA is seeking new methods to automate mission operations. This paper examines the state of the art in automating ground operations for space missions. A summary of available technologies and methods for automating mission operations is provided. Responses from interviews with several space mission FOTs (Flight Operations Teams) to assess the degree and success of those technologies and methods implemented are presented. Mission operators that were interviewed approached automation using different tools and methods resulting in varying degrees of success - from nearly completely automated to nearly completely manual. Two key criteria for successful automation are the active participation of the FOT in the planning, designing, testing, and implementation of the system and the relative degree of complexity of the mission.

  8. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  9. First incremental buy for Increment 2 of the Space Transportation System (STS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Thiokol manufactured and delivered 9 flight motors to KSC on schedule. All test flights were successful. All spent SRMs were recovered. Design, development, manufacture, and delivery of required transportation, handling, and checkout equipment to MSFC and to KSC were completed on schedule. All items of data required by DPD 400 were prepared and delivered as directed. In the system requirements and analysis area, the point of departure from Buy 1 to the operational phase was developed in significant detail with a complete set of transition documentation available. The documentation prepared during the Buy 1 program was maintained and updated where required. The following flight support activities should be continued through other production programs: as-built materials usage tracking on all flight hardware; mass properties reporting for all flight hardware until sample size is large enough to verify that the weight limit requirements were met; ballistic predictions and postflight performance assessments for all production flights; and recovered SRM hardware inspection and anomaly identification. In the safety, reliability, and quality assurance area, activities accomplished were assurance oriented in nature and specifically formulated to prevent problems and hardware failures. The flight program to date has adequately demonstrated the success of this assurance approach. The attention focused on details of design, analysis, manufacture, and inspection to assure the production of high-quality hardware has resulted in the absence of flight failures. The few anomalies which did occur were evaluated, design or manufacturing changes incorporated, and corrective actions taken to preclude recurrence.

  10. Managing the Mars Science Laboratory Thermal Vacuum Test for Safety and Success

    NASA Technical Reports Server (NTRS)

    Evans, Jordan P.

    2010-01-01

    The Mars Science Laboratory is a NASA/JPL mission to send the next generation of rover to Mars. Originally slated for launch in 2009, development problems led to a delay in the project until the next launch opportunity in 2011. Amidst the delay process, the Launch/Cruise Solar Thermal Vacuum Test was undertaken as risk reduction for the project. With varying maturity and capabilities of the flight and ground systems, undertaking the test in a safe manner presented many challenges. This paper describes the technical and management challenges and the actions undertaken that led to the ultimate safe and successful execution of the test.

  11. X-38 Bolt Retractor Subsystem Separation Demonstration

    NASA Technical Reports Server (NTRS)

    Rugless, Fedoria (Editor); Johnston, A. S.; Ahmed, R.; Garrison, J. C.; Gaines, J. L.; Waggoner, J. D.

    2002-01-01

    The Flight Robotics Laboratory FRL successfully demonstrated the X-38 bolt retractor subsystem (BRS). The BRS design was proven safe by testing in the Pyrotechnic Shock Facility (PSI) before being demonstrated in the FRL. This Technical Memorandum describes the BRS, FRL, PSF, and interface hardware. Bolt retraction time, spacecraft simulator acceleration, and a force analysis are also presented. The purpose of the demonstration was to show the FRL capability for spacecraft separation testing using pyrotechnics. Although a formal test was not performed due to schedule and budget constraints, the data will show that the BRS is a successful design concept and the FRL is suitable for future separation tests.

  12. Performance Testing of the Astro-H Flight Model 3-Stage ADR

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; DiPirro, Michael; Bialas, Tom G.

    2014-01-01

    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon micro calorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASAGSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This presentation summarizes the performance of the flight ADR in both cryogen-based and cryogen-free operating modes.

  13. Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction

    NASA Astrophysics Data System (ADS)

    Calkins, Frederick T.; Mabe, James H.; Butler, George W.

    2006-03-01

    Boeing is applying cutting edge smart material actuators to the next generation morphing technologies for aircraft. This effort has led to the Variable Geometry Chevrons (VGC), which utilize compact, light weight, and robust shape memory alloy (SMA) actuators. These actuators morph the shape of chevrons on the trailing edge of a jet engine in order to optimize acoustic and performance objectives at multiple flight conditions. We have demonstrated a technical readiness level of 7 by successfully flight testing the VGCs on a Boeing 777-300ER with GE-115B engines. In this paper we describe the VGC design, development and performance during flight test. Autonomous operation of the VGCs, which did not require a control system or aircraft power, was demonstrated. A parametric study was conducted showing the influence of VGC configurations on shockcell generated cabin noise reduction during cruise. The VGC system provided a robust test vehicle to explore chevron configurations for community and shockcell noise reduction. Most importantly, the VGC concept demonstrated an exciting capability to optimize jet nozzle performance at multiple flight conditions.

  14. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  15. Performance Testing of the Astro-H Flight Model 3-stage ADR

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; DiPirro, Michael J.; Bialas, Thomas G.

    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015/early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon microcalorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASA/GSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (<1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This paper summaries the performance of the flight ADR in both cryogen-based and cryogen-free operating modes.

  16. Ares I-X Flight Test Development Challenges and Success Factors

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James

    2010-01-01

    The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that required creative thinking, risk taking, and a passion to succeed.

  17. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  18. Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Elam, S. K.

    2000-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.

  19. X-33 Reusable Launch Vehicle Demonstrator, Spaceport and Range

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary F.

    2011-01-01

    The X-33 was a suborbital reusable spaceplane demonstrator, in development from 1996 to early 2001. The intent of the demonstrator was to lower the risk of building and operating a full-scale reusable vehicle fleet. Reusable spaceplanes offered the potential to lower the cost of access to space by an order of magnitude, compared with conventional expendable launch vehicles. Although a cryogenic tank failure during testing ultimately led to the end of the effort, the X-33 team celebrated many successes during the development. This paper summarizes some of the accomplishments and milestones of this X-vehicle program, from the perspective of an engineer who was a member of the team throughout the development. X-33 Program accomplishments include rapid, flight hardware design, subsystem testing and fabrication, aerospike engine development and testing, Flight Operations Center and Operations Control Center ground systems design and construction, rapid Environmental Impact Statement NEPA process approval, Range development and flight plan approval for test flights, and full-scale system concept design and refinement. Lessons from the X-33 Program may have potential application to new RLV and other aerospace systems being developed a decade later.

  20. Cooperative Collision Avoidance Step 1 - Technology Demonstration Flight Test Report. Revision 1

    NASA Technical Reports Server (NTRS)

    Trongale, Nicholas A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) Access 5 Project Office sponsored a cooperative collision avoidance flight demonstration program for unmanned aircraft systems (UAS). This flight test was accomplished between September 21st and September 27th 2005 from the Mojave Airport, Mojave, California. The objective of these flights was to collect data for the Access 5 Cooperative Collision Avoidance (CCA) Work Package simulation effort, i.e., to gather data under select conditions to allow validation of the CCA simulation. Subsequent simulation to be verified were: Demonstrate the ability to detect cooperative traffic and provide situational awareness to the ROA pilot; Demonstrate the ability to track the detected cooperative traffic and provide position information to the ROA pilot; Demonstrate the ability to determine collision potential with detected cooperative traffic and provide notification to the ROA pilot; Demonstrate that the CCA subsystem provides information in sufficient time for the ROA pilot to initiate an evasive maneuver to avoid collision; Demonstrate an evasive maneuver that avoids collision with the threat aircraft; and lastly, Demonstrate the ability to assess the adequacy of the maneuver and determine that the collision potential has been avoided. The Scaled Composites, LLC Proteus Optionally Piloted Vehicle (OPV) was chosen as the test platform. Proteus was manned by two on-board pilots but was also capable of being controlled from an Air Vehicle Control Station (AVCS) located on the ground. For this demonstration, Proteus was equipped with cooperative collision sensors and the required hardware and software to place the data on the downlink. Prior to the flight phase, a detailed set of flight test scenarios were developed to address the flight test objectives. Two cooperative collision avoidance sensors were utilized for detecting aircraft in the evaluation: Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B). A single intruder aircraft was used during all the flight testing, a NASA Gulfstream III (G-III). During the course of the testing, six geometrically different near-collision scenarios were evaluated. These six scenarios were each tested using various combinations of sensors and collision avoidance software. Of the 54 planned test points 49 were accomplished successfully. Proteus flew a total of 21.5 hours during the testing and the G-III flew 19.8 hours. The testing fully achieved all flight test objectives. The Flight IPT performed an analysis to determine the accuracy of the simulation model used to predict the location of the host aircraft downstream during an avoidance maneuver. The data collected by this flight program was delivered to the Access 5 Cooperative Collision Avoidance (CCA) Work Package Team who was responsible for reporting on their analysis of this flight data.

  1. Cardiovascular adaptations in weightlessness: The influence of in-flight exercise programs on the cardiovascular adjustments during weightlessness and upon returning to Earth

    NASA Technical Reports Server (NTRS)

    Bennett, C. H.

    1981-01-01

    The effect of in-flight exercise programs on astronauts' cardiovascular adjustments during spaceflight weightlessness and upon return to Earth was studied. Physiological changes in muscle strength and volume, cardiovascular responses during the application of lower body negative pressure, and metabolic activities during pre-flight and flight tests were made on Skylab crewmembers. The successful completion of the Skylab missions showed that man can perform submaximal and maximal aerobic exercise in the weightless enviroment without detrimental trends in any of the physiologic data. Exercise tolerance during flight was unaffected. It was only after return to Earth that a tolerance decrement was noted. The rapid postflight recovery of orthostatic and exercise tolerance following two of the three Skylab missions appeared to be directly related to total in-flight exercise as well as to the graded, regular program of exercise performed during the postflight debriefing period.

  2. A knowledge-based system design/information tool for aircraft flight control systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.; Allen, James G.

    1989-01-01

    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

  3. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    NASA Astrophysics Data System (ADS)

    Augere, B.; Besson, B.; Fleury, D.; Goular, D.; Planchat, C.; Valla, M.

    2016-05-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms-1, angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed.

  4. Xenon Feed System Progress (Postprint)

    DTIC Science & Technology

    2006-06-13

    development, assembly and test of an electric propulsion xenon feed system for a flight technology demonstration program. Major accomplishments...pressure transducer feedback, the PFCV has successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed

  5. Orion Heat Shield

    NASA Image and Video Library

    2015-03-09

    THE ORION HEAT SHIELD THAT SUCCESSFULLY SURVIVED A HIGH-VELOCITY REENTRY DURING ITS DEC. 5 FLIGHT TEST, IS CONTINUING ITS JOURNEY, NOW AT MARSHALL. IT ARRIVED ON MONDAY, MARCH 9 AND WILL BE INSTALLED IN THE BUILDING 4705 7-AXIS MILLING AND MACHINING CENTER.

  6. Mach 10 Stage Separation Analysis for the X43-A

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Bose, David M.; Thornblom, Mark N.; Lien, J. P.; Martin, John G.

    2007-01-01

    This paper describes the pre-flight stage separation analysis that was conducted in support of the final flight of the X-43A. In that flight, which occurred less than eight months after the successful Mach 7 flight, the X-43A Research Vehicle attained a peak speed of Mach 9.6. Details are provided on how the lessons learned from the Mach 7 flight affected separation modeling and how adjustments were made to account for the increased flight Mach number. Also, the procedure for defining the feedback loop closure and feed-forward parameters employed in the separation control logic are described, and their effect on separation performance is explained. In addition, the range and nominal values of these parameters, which were included in the Mission Data Load, are presented. Once updates were made, the nominal pre-flight trajectory and Monte Carlo statistical results were determined and stress tests were performed to ensure system robustness. During flight the vehicle performed within the uncertainty bounds predicted in the pre-flight analysis and ultimately set the world record for airbreathing powered flight.

  7. Volume Sensor Development Test. Series 5 - Multi-Compartment System

    DTIC Science & Technology

    2005-12-30

    while concurrently rejecting nuisance sources. The VSP system was also successfully integrated with the DD(X) Autonomic Fire Suppression System ( AFSS ...represents a functional prototype of the device-level layer of the envisioned DD(X) Flight I AFSS control system [24]. The system’s automated response to...present in the DD(X) Flight I design [24]. The VSP system was incorporated into the AFSS control system , replacing the fire and smoke detectors that were

  8. Underway Recovery Test 6 (URT-6) - Day 6 Activities

    NASA Image and Video Library

    2018-01-22

    During Underway Recovery Test 6, Kennedy Space Center's NASA Recovery Team spent a week aboard the USS Anchorage where they and the U.S. Navy tested procedures and ground support equipment to improve recovery procedures and hardware ahead of Orion's next flight, Exploration Mission-1, when it splashes down in the Pacific Ocean. The Orion test article sits inside the well deck of the USS Anchorage after a successful recovery test.

  9. Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.

    2011-01-01

    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.

  10. Updated Electronic Testbed System

    NASA Technical Reports Server (NTRS)

    Brewer, Kevin L.

    2001-01-01

    As we continue to advance in exploring space frontiers, technology must also advance. The need for faster data recovery and data processing is crucial. In this, the less equipment used, and lighter that equipment is, the better. Because integrated circuits become more sensitive in high altitude, experimental verification and quantification is required. The Center for Applied Radiation Research (CARR) at Prairie View A&M University was awarded a grant by NASA to participate in the NASA ER-2 Flight Program, the APEX balloon flight program, and the Student Launch Program. These programs are to test anomalous errors in integrated circuits due to single event effects (SEE). CARR had already begun experiments characterizing the SEE behavior of high speed and high density SRAM's. The research center built a error testing system using a PC-104 computer unit, an Iomega Zip drive for storage, a test board with the components under test, and a latchup detection and reset unit. A test program was written to continuously monitor a stored data pattern in the SRAM chip and record errors. The devices under test were eight 4Mbit memory chips totaling 4Mbytes of memory. CARR was successful at obtaining data using the Electronic TestBed System (EBS) in various NASA ER-2 test flights. These series of high altitude flights of up to 70,000 feet, were effective at yielding the conditions which single event effects usually occur. However, the data received from the series of flights indicated one error per twenty-four hours. Because flight test time is very expensive, the initial design proved not to be cost effective. The need for orders of magnitude with more memory became essential. Therefore, a project which could test more memory within a given time was created. The goal of this project was not only to test more memory within a given time, but also to have a system with a faster processing speed, and which used less peripherals. This paper will describe procedures used to build an updated Electronic Testbed System.

  11. Balloon launched decelerator test program: Post-test test report

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.

    1972-01-01

    Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.

  12. The NASA Wallops Arc-Second Pointer (WASP) System for Precision Pointing of Scientific Balloon Instruments and Telescopes

    NASA Technical Reports Server (NTRS)

    Stuchlik, David W.; Lanzi, Raymond J.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) Wallops Flight Facility (WFF), part of the Goddard Space Flight Center (GSFC), has developed a unique pointing control system for instruments aboard scientific balloon gondolas. The ability to point large telescopes and instruments with arc-second accuracy and stability is highly desired by multiple scientific disciplines, such as Planetary, Earth Science, Heliospheric and Astrophysics, and the availability of a standardized system supplied by NASA alleviates the need for the science user to develop and provide their own system. In addition to the pointing control system, a star tracker has been developed with both daytime and nighttime capability to augment the WASP and provide an absolute pointing reference. The WASP Project has successfully completed five test flights and one operational science mission, and is currently supporting an additional test flight in 2017, along with three science missions with flights scheduled between 2018 and 2020. The WASP system has demonstrated precision pointing and high reliability, and is available to support scientific balloon missions.

  13. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  14. TurboBrayton Cryocooler: A Flight Worthy and Promising Future

    NASA Technical Reports Server (NTRS)

    Gibbon, Judith A.; Swift, Walt L.; Zagarola, Mark V.; DiPirro, Mike; Whitehouse, Paul

    1999-01-01

    A new development in cryocooler technology, a reverse TurboBrayton cycle cryocooler, developed by Creare, Inc. of Hanover, NH, has now been flight tested. This cooler provides high reliability and long life. With no linear moving components common in current flight cryocoolers, the TurboBrayton cooler requires no active control systems to provide a vibration-free signature. The cooler provides first stage cooling for advanced cryogenic systems and serves as a direct replacement for stored cryogen systems with a longer lifetime. Following a successful flight on STS-95, a TurboBrayton cryocooler will be flown on Hubble Space Telescope (HST) in 2000 to provide renewed refrigeration capability for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The TurboBrayton cycle cooler is a promising technology already being considered for additional flight programs such as Next Generation Space Telescope (NGST) and Constellation X. These future missions require an advanced generation of the cooler that is currently under development to provide cooling at 10K and less. This paper presents an overview of the current generation cooler with recent flight test results and details the current plans and development progress on the next generation TurboBrayton technology for future missions.

  15. Flight Team Development in Support of LCROSS - A Class D Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; Bresina, John; Galal, Ken; Shirley, Mark; Munger, James; Sawyer, Scott

    2010-01-01

    The LCROSS (Lunar Crater Observation and Sensing Satellite) project presented a number of challenges to the preparation for mission operations. A class D mission under NASA s risk tolerance scale, LCROSS was governed by a $79 million cost cap and a 29 month schedule from "authority to proceed" to flight readiness. LCROSS was NASA Ames Research Center s flagship mission in its return to spacecraft flight operations after many years of pursuing other strategic goals. As such, ARC needed to restore and update its mission support infrastructure, and in parallel, the LCROSS project had to newly define operational practices and to select and train a flight team combining experienced operators and staff from other arenas of ARC research. This paper describes the LCROSS flight team development process, which deeply involved team members in spacecraft and ground system design, implementation and test; leveraged collaborations with strategic partners; and conducted extensive testing and rehearsals that scaled in realism and complexity in coordination with ground system and spacecraft development. As a testament to the approach, LCROSS successfully met its full mission objectives, despite many in-flight challenges, with its impact on the lunar south pole on October 9, 2009.

  16. STS-39 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  17. STS-39 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-06-01

    The STS-39 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the fortieth flight of the Space Shuttle and the twelfth flight of the Orbiter Vehicle Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of the following: an External Tank (ET) (designated as ET-46 (LWT-39); three Space Shuttle main engines (SSME's) (serial numbers 2026, 2030, and 2029 in positions 1, 2, and 3, respectively); and two Solid Rocket Boosters (SRB's) designated as BI-043. The primary objective of this flight was to successfully perform the planned operations of the Infrared Background Signature Survey (IBSS), Air Force Payload (AFP)-675, Space Test Payload (STP)-1, and the Multipurpose Experiment Canister (MPEC) payloads.

  18. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.

    2017-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  19. M2-F1 in flight on tow line

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow at the Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The wingless, lifting-body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Flight Research Center management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The M2-F1 project had limited goals. They were to show that a piloted lifting body could be built, that it could not only fly but be controlled in flight, and that it could make a successful landing. While the M2-F1 did prove the concept, with a wooden fuselage and fixed landing gear, it was far from an operational spacecraft. The next step in the lifting-body development was to build a heavyweight, rocket-powered vehicle that was more like an operational lifting body, albeit one without the thermal protection system that would be needed for reentry into the atmosphere from space at near-orbital speeds. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, and the U.S. Air Force's X-24 program. The Lifting Body program also heavily influenced the Space Shuttle program. The M2-F1 program demonstrated the feasibility of the lifting body concept for horizontal landings of atmospheric entry vehicles. It also demonstrated a procurement and management concept for prototype flight test vehicles that produced rapid results at very low cost (approximately $50,000, excluding salaries of government employees assigned to the project).

  20. Orion Pad Abort 1 Crew Module Mass Properties Test Approach and Results

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia; Harding, Adam

    2012-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module (CM). These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance coefficients to be calculated post-launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test setup that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  1. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  2. SPRITE: A TPS Test Bed for Ground and Flight

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Peterson, Keith; Swanson, Gregory; Skokova, Kristina; Mangini, Nancy; Empey, Daniel M.; Gorbunov, Sergey; Venkatapathy, Ethiraj

    2012-01-01

    Engineers in the Entry Systems and Technology Division at NASA Ames Research Center developed a fully instrumented, small atmospheric entry probe called SPRITE (Small Probe Reentry Investigation for TPS Engineering). SPRITE, conceived as a flight test bed for thermal protection materials, was tested at full scale in an arc-jet facility so that the aerothermal environments the probe experiences over portions of its flight trajectory and in the arc-jet are similar. This ground-to-flight traceability enhances the ability of mission designers to evaluate margins needed in the design of thermal protection systems (TPS) of larger scale atmospheric entry vehicles. SPRITE is a 14-inch diameter, 45 deg. sphere-cone with a conical aftbody and designed for testing in the NASA Ames Aerodynamic Heating Facility (AHF). The probe is a two-part aluminum shell with PICA (phenolic impregnated carbon ablator) bonded on the forebody and LI-2200 (Shuttle tile material) bonded to the aftbody. Plugs with embedded thermocouples, similar to those installed in the heat shield of the Mars Science Laboratory (MSL), and a number of distributed sensors are integrated into the design. The data from these sensors are fed to an innovative, custom-designed data acquisition system also integrated with the test article. Two identical SPRITE models were built and successfully tested in late 2010-early 2011, and the concept is currently being modified to enable testing of conformable and/or flexible materials.

  3. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    NASA Technical Reports Server (NTRS)

    Yew, Calinda; Lui, Yan; Whitehouse, Paul; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) completed its system-level space simulation testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered to the next level of integration with the Optical Telescope Element (OTE), to form OTIS (OTE + ISIM), after concluding a series of three cryo-vacuum (CV) tests. During these tests, the complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration following mechanical environmental tests (vibration and acoustics). From one test to the next, shortcomings of the facility were uncovered and associated improvements in operational capabilities and reliability of the facility were required to enable the project to verify system-level requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  4. Results of the 1990 NASA/JPL balloon flight solar cell calibration program

    NASA Technical Reports Server (NTRS)

    Anspaugh, Bruce E.; Weiss, Robert S.

    1990-01-01

    The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  5. Balloon-Borne Observations of the Anisotropy of the Cosmic Microwave'Background on Angular Scales of 0.2 to 40 Degrees'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During this final period, BOOMERANG was deployed to McMurdo Mtn., Antarctica in late 1998 and successfully flew a 10.5 day long duration flight. The experiment returned excellent data, and produced the first resolved images of the early universe. These results, as well as those produced during a test flight over North America in August, 1997, are given in the references below. Analysis of the data from the 1998 flight is continuing. In parallel, we have begun to prepare the payload for a long-duration flight from McMurdo in December 2001. For this flight, the focal plane is being outfitted with polarization sensitive detectors, with the goal of detecting the polarization of the CMB that is predicted to exist at degree angular scales.

  6. NIRCam: Development and Testing of the JWST Near-Infrared Camera

    NASA Technical Reports Server (NTRS)

    Greene, Thomas; Beichman, Charles; Gully-Santiago, Michael; Jaffe, Daniel; Kelly, Douglas; Krist, John; Rieke, Marcia; Smith, Eric H.

    2011-01-01

    The Near Infrared Camera (NIRCam) is one of the four science instruments of the James Webb Space Telescope (JWST). Its high sensitivity, high spatial resolution images over the 0.6 - 5 microns wavelength region will be essential for making significant findings in many science areas as well as for aligning the JWST primary mirror segments and telescope. The NIRCam engineering test unit was recently assembled and has undergone successful cryogenic testing. The NIRCam collimator and camera optics and their mountings are also progressing, with a brass-board system demonstrating relatively low wavefront error across a wide field of view. The flight model?s long-wavelength Si grisms have been fabricated, and its coronagraph masks are now being made. Both the short (0.6 - 2.3 microns) and long (2.4 - 5.0 microns) wavelength flight detectors show good performance and are undergoing final assembly and testing. The flight model subsystems should all be completed later this year through early 2011, and NIRCam will be cryogenically tested in the first half of 2011 before delivery to the JWST integrated science instrument module (ISIM).

  7. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  8. Flight Testing of the Gulfstream Quiet Spike(TradeMark) on a NASA F-15B

    NASA Technical Reports Server (NTRS)

    Smolka, James W.; Cowert, Robert A.; Molzahn, Leslie M.

    2007-01-01

    Gulfstream Aerospace has long been interested in the development of an economically viable supersonic business jet (SBJ). A design requirement for such an aircraft is the ability for unrestricted supersonic flight over land. Although independent studies continue to substantiate that a market for a SBJ exists, regulatory and public acceptance challenges still remain for supersonic operation over land. The largest technical barrier to achieving this goal is sonic boom attenuation. Gulfstream's attention has been focused on fundamental research into sonic boom suppression for several years. This research was conducted in partnership with the NASA Aeronautics Research Mission Directorate (ARMD) supersonic airframe cruise efficiency technical challenge. The Quiet Spike, a multi-stage telescopic nose boom and a Gulfstream-patented design (references 1 and 2), was developed to address the sonic boom attenuation challenge and validate the technical feasibility of a morphing fuselage. The Quiet Spike Flight Test Program represents a major step into supersonic technology development for sonic boom suppression. The Gulfstream Aerospace Quiet Spike was designed to reduce the sonic boom signature of the forward fuselage for an aircraft flying at supersonic speeds. In 2004, the Quiet Spike Flight Test Program was conceived by Gulfstream and NASA to demonstrate the feasibility of sonic boom mitigation and centered on the structural and mechanical viability of the translating test article design. Research testing of the Quiet Spike consisted of numerous ground and flight operations. Each step in the process had unique objectives, and involved numerous test team members from the NASA Dryden Flight Research Center (DFRC) and Gulfstream Aerospace. Flight testing of the Quiet Spike was conducted at the NASA Dryden Flight Research Center on an F-15B aircraft from August, 2006, to February, 2007. During this period, the Quiet Spike was flown at supersonic speeds up to Mach 1.8 at the maximum design dynamic pressure of 685 pounds per square foot. Extension and retraction tests were conducted at speeds up to Mach 1.4. The design of the Quiet Spike to shape the forward shock wave environment of the aircraft was confirmed during near-field shock wave probing at Mach 1.4. Thirty-two flights were performed without incident and all project objectives were achieved. The success of the Quiet Spike Flight Test Program represents an important step towards developing commercial aircraft capable of supersonic flight over land within the continental United States and in international airspace.

  9. SPHERES as Formation Flight Algorithm Development and Validation Testbed: Current Progress and Beyond

    NASA Technical Reports Server (NTRS)

    Kong, Edmund M.; Saenz-Otero, Alvar; Nolet, Simon; Berkovitz, Dustin S.; Miller, David W.; Sell, Steve W.

    2004-01-01

    The MIT-SSL SPHERES testbed provides a facility for the development of algorithms necessary for the success of Distributed Satellite Systems (DSS). The initial development contemplated formation flight and docking control algorithms; SPHERES now supports the study of metrology, control, autonomy, artificial intelligence, and communications algorithms and their effects on DSS projects. To support this wide range of topics, the SPHERES design contemplated the need to support multiple researchers, as echoed from both the hardware and software designs. The SPHERES operational plan further facilitates the development of algorithms by multiple researchers, while the operational locations incrementally increase the ability of the tests to operate in a representative environment. In this paper, an overview of the SPHERES testbed is first presented. The SPHERES testbed serves as a model of the design philosophies that allow for the various researches being carried out on such a facility. The implementation of these philosophies are further highlighted in the three different programs that are currently scheduled for testing onboard the International Space Station (ISS) and three that are proposed for a re-flight mission: Mass Property Identification, Autonomous Rendezvous and Docking, TPF Multiple Spacecraft Formation Flight in the first flight and Precision Optical Pointing, Tethered Formation Flight and Mars Orbit Sample Retrieval for the re-flight mission.

  10. Optimization of the design of X-Calibur for a long-duration balloon flight and results from a one-day test flight

    NASA Astrophysics Data System (ADS)

    Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric

    2018-01-01

    X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.

  11. Leadership Development Program Final Project

    NASA Technical Reports Server (NTRS)

    Parrish, Teresa C.

    2016-01-01

    TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.

  12. Major General Robert A. Rushworth

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Air Force test pilot Robert A. Rushworth is shown in an X-15. He was selected for the X-15 program in 1958, and made his first flight on November 4, 1960. Over the next six years, he made 34 flights in the X-15, the most of any pilot. This included a flight to an altitude of 285,000 feet, made on June 27, 1963. This flight above 50 miles qualified Rushworth for astronaut wings. On a later X-15 flight, he was awarded a Distinguished Flying Cross for successfully landing an X-15 after its nose wheel extended while flying at nearly Mach 5. He made his final X-15 flight on July 1, 1966, then returned to regular Air Force duties. These included a tour in Vietnam as an F-4 pilot, flying 189 combat missions. He also served as the Commander of the Air Force Flight Test Center at Edwards AFB, and as the Commander of the Air Force Test and Evaluation Center at Kirtland AFB. At the time of his retirement as a major general, he was Vice Commander, Aeronautical Systems Division, Air Force Systems Command, at Wright-Patterson AFB. Rushworth flew C-47s and C-46s as a transport pilot in World War II, as well as F-80Cs, F-101s, TF-102s, F-104s, F-105s, F-106s, and F-4s. He died on March 17, 1993.

  13. Design, implementation and flight testing of PIF autopilots for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    The designs of Proportional-Integrated-Filter (PIF) auto-pilots for a General Aviation (NAVION) aircraft are presented. The PIF autopilot uses the sampled-data regulator and command generator tracking to determine roll select, pitch select, heading select, altitude select and localizer/glideslope capture and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback, command error integration for command tracking, digital complementary filtering and analog prefiltering for sensor noise suppression, a control filter for computation delay accommodation and the incremental form to eliminate trim values in implementation. Theoretical developments described in detail, were needed to combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and linear simulations. The implementation of the PIF autopilots in a digital flight computer using a high order language (FORTRAN) is briefly described. The successful flight test results for each PIF autopilot mode is presented.

  14. Real-Time Stability and Control Derivative Extraction From F-15 Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Moes, Timothy R.; Morelli, Eugene A.

    2003-01-01

    A real-time, frequency-domain, equation-error parameter identification (PID) technique was used to estimate stability and control derivatives from flight data. This technique is being studied to support adaptive control system concepts currently being developed by NASA (National Aeronautics and Space Administration), academia, and industry. This report describes the basic real-time algorithm used for this study and implementation issues for onboard usage as part of an indirect-adaptive control system. A confidence measures system for automated evaluation of PID results is discussed. Results calculated using flight data from a modified F-15 aircraft are presented. Test maneuvers included pilot input doublets and automated inputs at several flight conditions. Estimated derivatives are compared to aerodynamic model predictions. Data indicate that the real-time PID used for this study performs well enough to be used for onboard parameter estimation. For suitable test inputs, the parameter estimates converged rapidly to sufficient levels of accuracy. The devised confidence measures used were moderately successful.

  15. The Hitchhiker's Guide to I&T

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.

    1999-01-01

    With over two dozen missions since the first in 1986, the Hitchhiker project has a reputation for providing quick-reaction, low-cost flight services for Shuttle Small Payloads Project (SSPP) customers. Despite the successes, several potential improvements in customer payload integration and test (I&T) deserve consideration. This paper presents suggestions to Hitchhiker customers on how to help make the I&T process run smoother. Included are: customer requirements and interface definition, pre-integration test and evaluation, configuration management, I&T overview and planning, problem mitigation, and organizational communication. In this era of limited flight opportunities and new ISO-based requirements, issues such as these have become more important than ever.

  16. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  17. Preliminary Results From The First Flight of ATIC

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) instrument is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range approximately 10 GeV - 100 TeV. The instrument was calibrated in September 1999 at CERN using accelerated electron, proton and pion beams. ATIC was launched as a long duration balloon test flight on 12/28/00 local time from McMurdo, Antarctica. After flying successfully for about 16 days the payload was recovered in excellent condition. Absolute calibration of the detector response was made using cosmic-ray muons. The data analysis algorithm which was developed with Monte Carlo simulations and validated with the CERN beam test will be used for the flight data analysis. Preliminary results of the proton and helium spectra will be reported in this paper.

  18. Preliminary Results From the First Flight of ATIC

    NASA Technical Reports Server (NTRS)

    Seo, E. S.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) instrument is designed to measure the composition C and energy spectra of Z = 1 to 28 cosmic rays over the energy range approximately 10 GeV - 100 TeV. The instrument was calibrated in September 1999 at CERN using accelerated electron, proton and pion beams. ATIC was launched as a long duration balloon test flight on 12/28/00 local time from McMurdo, Antarctica. After flying successfully for about 16 days the payload was recovered in excellent condition. Absolute calibration of the detector response was made using cosmic-ray muons. The data analysis algorithm which was developed with Monte Carlo simulations and validated with the CERN beam test will be used for the flight data analysis. Preliminary results of the protons and C helium spectra will be reported in this paper.

  19. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  20. In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric; Baker, Charles; McCarthy, Tom

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.

  1. A New Definition for Ground Control

    NASA Technical Reports Server (NTRS)

    2002-01-01

    LandForm(R) VisualFlight(R) blends the power of a geographic information system with the speed of a flight simulator to transform a user's desktop computer into a "virtual cockpit." The software product, which is fully compatible with all Microsoft(R) Windows(R) operating systems, provides distributed, real-time three-dimensional flight visualization over a host of networks. From a desktop, a user can immediately obtain a cockpit view, a chase-plane view, or an airborne tracker view. A customizable display also allows the user to overlay various flight parameters, including latitude, longitude, altitude, pitch, roll, and heading information. Rapid Imaging Software sought assistance from NASA, and the VisualFlight technology came to fruition under a Phase II SBIR contract with Johnson Space Center in 1998. Three years later, on December 13, 2001, Ken Ham successfully flew NASA's X-38 spacecraft from a remote, ground-based cockpit using LandForm VisualFlight as part of his primary situation awareness display in a flight test at Edwards Air Force Base, California.

  2. Qualification Motor no. 8 (QM-8), volume 1

    NASA Technical Reports Server (NTRS)

    Garecht, D. M.

    1989-01-01

    All inspection and instrumentation data indicate that the QM-8 static test firing conducted 20 January 1989 was successful. Ambient temperature at T-0 was 28 F. With two flights successfully accomplished, this final test in the redesigned solid rocket motor (RSRM) program certified that the design meets motor performance requirements under extreme cold conditions. This test was a prerequisite to the third flight. The entire test article was cold conditioned at 20 to 25 F for approximately 31 days to assure a maximum propellant mean bulk temperature (PMBT) of 40 F, making it the lowest PMBT in the history of the program. This extreme condition also presented the opportunity to certify critical components at low temperatures. Certification of field joint and igniter heaters, adhesive bondline integrity, flex bearing performance, flight instrumentation performance, RSRM seal performance, and LSC and nozzle plug performance was accomplished. Prior to motor ignition, the field joints were maintained between 75 to 130 F, the igniter-to-case joint was maintained between 75 to 123 F, and the case-to-nozzle joint was maintained between 75 to 120 F. QM-8 was tested with induced side loads to simulate the strut loads experienced during ignition and maximum aerodynamic loading conditions. The ability of the safe and arm device to change position from safe-to-arm and arm-to-safe was certified. Ballistics performance was certified at the lower limits. Values were within specification requirements. Nozzle performance was nominal with typical erosion. The use of Fiberite carbon-cloth phenolic was certified. The water deluge system, CO2 quench, and other test equipment performed as planned during all required test operations.

  3. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  4. X-33 Combustion-Wave Ignition System Tested

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1999-01-01

    The NASA Lewis Research Center, in cooperation with Rocketdyne, the Boeing Company, tested a novel rocket engine ignition system, called the combustion-wave ignition system, in its Research Combustion Laboratory. This ignition system greatly simplifies ignition in rocket engines that have a large number of combustors. The particular system tested was designed and fabricated by Rocketdyne for the national experimental spacecraft, X-33, which uses Rocketdyne s aerospike rocket engines. The goal of the tests was to verify the system design and define its operational characteristics. Results will contribute to the eventual successful flight of X-33. Furthermore, the combustion-wave ignition system, after it is better understood and refined on the basis of the test results and, later, flight-proven onboard X-33, could become an important candidate engine ignition system for our Nation s next-generation reusable launch vehicle.

  5. Performance Evaluation of Nose Cap to Silica Tile Joint of RLV-TD under the Simulated Flight Environment using Plasma Wind Tunnel Facility

    NASA Astrophysics Data System (ADS)

    Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen

    2017-12-01

    Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.

  6. A function-based approach to cockpit procedure aids

    NASA Technical Reports Server (NTRS)

    Phatak, Anil V.; Jain, Parveen; Palmer, Everett

    1990-01-01

    The objective of this research is to develop and test a cockpit procedural aid that can compose and present procedures that are appropriate for the given flight situation. The procedure would indicate the status of the aircraft engineering systems, and the environmental conditions. Prescribed procedures already exist for normal as well as for a number of non-normal and emergency situations, and can be presented to the crew using an interactive cockpit display. However, no procedures are prescribed or recommended for a host of plausible flight situations involving multiple malfunctions compounded by adverse environmental conditions. Under these circumstances, the cockpit procedural aid must review the prescribed procedures for the individual malfunction (when available), evaluate the alternatives or options, and present one or more composite procedures (prioritized or unprioritized) in response to the given situation. A top-down function-based conceptual approach towards composing and presenting cockpit procedures is being investigated. This approach is based upon the thought process that an operating crew must go through while attempting to meet the flight objectives given the current flight situation. In order to accomplish the flight objectives, certain critical functions must be maintained during each phase of the flight, using the appropriate procedures or success paths. The viability of these procedures depends upon the availability of required resources. If resources available are not sufficient to meet the requirements, alternative procedures (success paths) using the available resources must be constructed to maintain the critical functions and the corresponding objectives. If no success path exists that can satisfy the critical functions/objectives, then the next level of critical functions/objectives must be selected and the process repeated. Information is given in viewgraph form.

  7. 2017-04-28_W88 ALT 370 Program Overview(OUO).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Vonceil

    2017-04-01

    All major program milestones have been met and the program is executing within budget. The ALT 370 program achieved Phase 6.4 authorization in February of this year. Five component Final Design Reviews (FDRs) have been completed, indicating progress in finalizing the design and development phase of the program. A series of ground-based qualification activities have demonstrated that designs are meeting functional requirements. The first fully functional flight test, FCET-53, demonstrated end-to-end performance in normal flight environments in February. Similarly, groundbased nuclear safety and hostile environments testing indicates that the design meets requirements in these stringent environments. The first in amore » series of hostile blast tests was successfully conducted in April.« less

  8. Recommendations for Hypersonic Boundary Layer Transition Flight Testing

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Kimmel, Roger; Reshotko, Eli

    2011-01-01

    Much has been learned about the physics underlying the transition process at supersonic and hypersonic speeds through years of analysis, experiment and computation. Generally, the application of this knowledge has been restricted to simple shapes like plates, cones and spherical bodies. However, flight reentry vehicles are in reality never simple. They typically are highly complex geometries flown at angle of attack so three-dimensional effects are very important, as are roughness effects due to surface features and/or ablation. This paper will review our present understanding of the physics of the transition process and look back at some of the recent flight test programs for their successes and failures. The goal of this paper is to develop rationale for new hypersonic boundary layer transition flight experiments. Motivations will be derived from both an inward look at what we believe constitutes a good flight test program as well as an outward review of the goals and objectives of some recent US based unclassified proposals and programs. As part of our recommendations, this paper will address the need for careful experimental work as per the guidelines enunciated years ago by the U.S. Transition Study Group. Following these guidelines is essential to obtaining reliable, usable data for allowing refinement of transition estimation techniques.

  9. Fielding An Amphibious UAV: Development, Results, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Morris, Stephen

    2002-01-01

    This report summarizes the work completed on the design and flight-testing of a small, unmanned, amphibious demonstrator aircraft that flies autonomously. The aircraft named ACAT (Autonomous Cargo Amphibious Transport) is intended to be a large cargo carrying unmanned aircraft that operates from water to avoid airspace and airfield conflict issues between manned and unmanned aircraft. To demonstrate the feasibility of this concept, a demonstrator ACAT was designed, built, and flown that has a six-foot wingspan and can fly autonomously from land or water airfield. The demonstrator was designed for a 1-hour duration and 1-mile telemetry range. A sizing code was used to design the smallest demonstrator UAV to achieve these goals. The final design was a six-foot wingspan, twin hull configuration that distributes the cargo weight across the span, reducing the wing structural weight. The demonstrator airframe was constructed from balsa wood, fiberglass, and plywood. A 4-stroke model airplane engine powered by methanol fuel was mounted in a pylon above the wing and powers the ACAT UAV. Initial flight tests from land and water were conducted under manual radio control and confirmed the amphibious capability of the design. Flight avionics that were developed by MLB for production UAVs were installed in the ACAT demonstrator. The flight software was also enhanced to permit autonomous takeoff and landing from water. A complete autonomous flight from ahard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and landing under complete computer control. A completely autonomous flight that featured a water takeoff and landing was completed on October 4, 2001. This report describes these activities in detail and highlights the challenges encountered and solved during the development of the ACAT demonstrator. hard runway was successfully completed on July 5, 2001 and consisted of a take-off, rectangular flight pattern, and landing under complete computer control. A completely autonomous flight that featured a water takeoff and landing was completed on October 4, 2001. This report describes these activities in detail and highlights the challenges encountered and solved during the development of the ACAT demonstrator.

  10. X-31 Mishap: Lessons Learned

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    2007-01-01

    The experimental X-31 High Angle of Attack Research Aircraft crashed during a 1995 test mission flight conducted by NASA at Edwards Air Force Base, California. The pilot lost control of the airplane and was forced to eject, sustaining a permanent back injury that ended his flying career. Prior to this incident the airplane had a perfect record of several hundred non-eventful flights supported by an experienced team. During the subsequent investigation by a mishap committee it was discovered that a series of cascading events contributed to this accident. Some of the identified contributing factors that resulted in this mishap are common to aircraft design and to flight-test in general. The mistakes and the solutions are presented here so that the flight-test community may consider and learn from them. The primary cause of the crash was icing and, ultimately, a complete blockage of the pitot-static nose probe. The icing was caused by a freak weather phenomenon that was neither expected nor known to exist on the day of the mishap. The normal probe had been replaced with a special Kiel probe to allow total pressure measurements of up to 70 degrees angle of attack for flight-test purposes. The Kiel probe did not include a heater, because it was assumed that the airplane would not be flown in the clouds or in conditions conducive to icing. This assumption was later proven to be incorrect. The iced Kiel probe caused incorrect gain scheduling in the flight control system, resulting in an unstable aircraft. This failure was essentially undetected because of a faulty design in the flight control system architecture. There were, however, also a number of other issues that lead up to this situation that never should have happened. This presentation discusses what the issues were that contributed to the incident. After the incident was investigated, some of these issues were addressed and some changes were made. The second X-31 aircraft flew the remainder of the flight tests, and the program was successfully completed without incident. This presentation also shows a video of the mishap including lessons learned, and the changes that were made to resume the flight-test program are presented.

  11. CF6 jet engine performance improvement program. Short core exhaust nozzle performance improvement concept. [specific fuel consumption reduction

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.

  12. Space Based Communications

    NASA Technical Reports Server (NTRS)

    Simpson, James; Denson, Erik; Valencia, Lisa; Birr, Richard

    2003-01-01

    Current space lift launches on the Eastern and Western Range require extensive ground-based real-time tracking, communications and command/control systems. These are expensive to maintain and operate and cover only limited geographical areas. Future spaceports will require new technologies to provide greater launch and landing opportunities, support simultaneous missions, and offer enhanced decision support models and simulation capabilities. These ranges must also have lower costs and reduced complexity while continuing to provide unsurpassed safety to the public, flight crew, personnel, vehicles and facilities. Commercial and government space-based assets for tracking and communications offer many attractive possibilities to help achieve these goals. This paper describes two NASA proof-of-concept projects that seek-to exploit the advantages of a space-based range: Iridium Flight Modem and Space-Based Telemetry and Range Safety (STARS). Iridium Flight Modem uses the commercial satellite system Iridium for extremely low cost, low rate two-way communications and has been successfully tested on four aircraft flights. A sister project at Goddard Space Flight Center's (GSFC) Wallops Flight Facility (WFF) using the Globalstar system has been tested on one rocket. The basic Iridium Flight Modem system consists of a L1 carrier Coarse/Acquisition (C/A)-Code Global Positioning System (GPS) receiver, an on-board computer, and a standard commercial satellite modem and antennas. STARS uses the much higher data rate NASA owned Tracking and Data Relay Satellite System (TDRSS), a C/A-Code GPS receiver, an experimental low-power transceiver, custom built command and data handler processor, and digitized flight termination system (FTS) commands. STARS is scheduled to fly on an F-15 at Dryden Flight Research Center in the spring of 2003, with follow-on tests over the next several years.

  13. Official Portrait of Astronaut Michael Collins

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This is the official NASA portrait of astronaut Michael Collins. Collins chose an Air Force career following graduation from West Point. He served as an experimental flight test officer at the Air Force Flight Test Center, Edwards Air Force Base, California, and, in that capacity, tested performance and stability and control characteristics of Air Force aircraft, primarily jet fighters. Having logged approximately 5,000 hours flying time, Collins was one of the third group of astronauts named by NASA in October 1963. Collins completed two space flights, logging 266 hours in space, of which, 1 hour and 27 minutes was spent in Extra Vehicular Activity (EVA). On July 18, 1966, he served as backup pilot for the Gemini VII mission which included a successful rendezvous and docking with a separately launched Agena target vehicle and, using the power of the Agena, maneuvered the Gemini spacecraft into another orbit for a rendezvous with a second, passive Agena. His skillful performance in completing two periods of EVA included the recovery of a micrometeorite detection experiment from the passive Agena. July 16-24, 1969, Collins served as command module (CM) pilot on Apollo 11, the historic first lunar landing mission. He remained aboard the CM, Columbia, on station in lunar orbit and performed the final re-docking maneuvers following a successful lunar orbit rendezvous with the Lunar Module (LM), Eagle. Collins left NASA in January 1970.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-09

    This is the official NASA portrait of astronaut Michael Collins. Collins chose an Air Force career following graduation from West Point. He served as an experimental flight test officer at the Air Force Flight Test Center, Edwards Air Force Base, California, and, in that capacity, tested performance and stability and control characteristics of Air Force aircraft, primarily jet fighters. Having logged approximately 5,000 hours flying time, Collins was one of the third group of astronauts named by NASA in October 1963. Collins completed two space flights, logging 266 hours in space, of which, 1 hour and 27 minutes was spent in Extra Vehicular Activity (EVA). On July 18, 1966, he served as backup pilot for the Gemini VII mission which included a successful rendezvous and docking with a separately launched Agena target vehicle and, using the power of the Agena, maneuvered the Gemini spacecraft into another orbit for a rendezvous with a second, passive Agena. His skillful performance in completing two periods of EVA included the recovery of a micrometeorite detection experiment from the passive Agena. July 16-24, 1969, Collins served as command module (CM) pilot on Apollo 11, the historic first lunar landing mission. He remained aboard the CM, Columbia, on station in lunar orbit and performed the final re-docking maneuvers following a successful lunar orbit rendezvous with the Lunar Module (LM), Eagle. Collins left NASA in January 1970.

  15. Results of the Second U.S. Manned Suborbital Space Flight, July 21, 1961

    NASA Technical Reports Server (NTRS)

    1961-01-01

    This document presents the results of the second United States manned suborbital space flight. The data and flight description presented form a continuation of the information provided at an open conference held under the auspices of the National Aeronautics and Space Administration, in cooperation with the National Institutes of Health and the National Academy of Sciences, at the U.S. Department of State Auditorium on June 6, 1961. The papers presented herein generally parallel the presentations of the first report and were prepared by the personnel of the NASA Manned Spacecraft Center in collaboration with personnel from other government agencies, participating industry, and universities. The second successful manned suborbital space flight on July 21, 1961, in which Astronaut Virgil I. Grissom was the pilot was another step in the progressive research, development, and training program leading to the study of man's capabilities in a space environment during manned orbital flight. Data and operational experiences gained from this flight were in agreement with and supplemented the knowledge obtained from the first suborbital flight of May 5, 1961, piloted by Astronaut Alan B. Shepard, Jr. The two recent manned suborbital flights, coupled with the unmanned research and development flights, have provided valuable engineering nd scientific data on which the program can progress. The successful active participation of the pilots, in much the same way as in the development and testing of high performance aircraft, has. greatly increased our confidence in giving man a significant role in future space flight activities. It is the purpose of this report to continue the practice of providing data to the scientific community interested in activities of this nature. Brief descriptions are presented of the Project Mercury spacecraft and flight plan. Papers are provided which parallel the presentations of data published for the first suborbital space flight. Additional information is given relating to the operational aspects of the medical support activities for the two manned suborbital space flights.

  16. Fast Paced, Low Cost Projects at MSFC

    NASA Technical Reports Server (NTRS)

    Watson-Morgan, Lisa; Clinton, Raymond

    2012-01-01

    What does an orbiting microsatellite, a robotic lander and a ruggedized camera and telescope have in common? They are all fast paced, low cost projects managed by Marshall Space Flight Center (MSFC) teamed with successful industry partners. MSFC has long been synonymous with human space flight large propulsion programs, engineering acumen and risk intolerance. However, there is a growing portfolio/product line within MSFC that focuses on these smaller, fast paced projects. While launching anything into space is expensive, using a managed risk posture, holding to schedule and keeping costs low by stopping at egood enough f were key elements to their success. Risk is defined as the possibility of loss or failure per Merriam Webster. The National Aeronautics and Space Administration (NASA) defines risk using procedural requirement 8705.4 and establishes eclasses f to discern the acceptable risk per a project. It states a Class D risk has a medium to significant risk of not achieving mission success. MSFC, along with industry partners, has created a niche in Class D efforts. How did the big, cautious MSFC succeed on these projects that embodied the antithesis of its heritage in human space flight? A key factor toward these successful projects was innovative industry partners such as Dynetics Corporation, University of Alabama in Huntsville (UAHuntsville), Johns Hopkins Applied Physics Laboratory (JHU APL), Teledyne Brown Engineering (TBE), Von Braun Center for Science and Innovation (VCSI), SAIC, and Jacobs. Fast Affordable Satellite Technology (FastSat HSV01) is a low earth orbit microsatellite that houses six instruments with the primary scientific objective of earth observation and technology demonstration. The team was comprised of Dynetics, UAHuntsvile, SAIC, Goddard Space Flight Center (GSFC) and VCSI with the United States Air Force Space Test Program as the customer. The team completed design, development, manufacturing, environmental test and integration in one year. FastSat HSV01 also deployed a Poly Picosatellite Orbital Deployer (PPOD) for a separate nano ]satellite class spacecraft (Cubesat: Nano Sail Demonstration) in partnership with Ames Research Center. The Robotic lunar lander is a MSFC JHU APL partnership that led to the development of a flexible architecture for landers to support robotic missions to a wide range of lunar and asteroid destinations. The team started with the goal of meeting NASA agency directives that led to the creation of a test bed focusing on GN&C and software to demonstrate the descent and landing on any airless body for the final 30 to 60 meters. The team created a complex technology demonstration as well as Guidance Control and Navigation (GN&C) algorithms providing autonomous control of the lander. The team uses a green propellant of 90% hydrogen peroxide and has completed 18 successful test flights. The International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) is a technology demonstration payload to assist the SERVIR project with environmental monitoring for disaster relief and humanitarian efforts. The ISERV project was a partnership with TBE. The ISERV payload consists of a commercial off the shelf camera, telescope, and MSFC developed power distribution box and interfaces on ISS with the Window Observational Research Facility in the US Lab. MSFC has identified three key areas that enabled the low cost mission success to include culture, partnering, and cost/schedule control. This paper will briefly discuss these three Class D efforts, FastSat HSV-01, the Robotic Lunar Lander and the ISERV camera system, the lessons learned, their successes and challenges.

  17. 14 CFR 61.43 - Practical tests: General procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.43... consists of— (1) Performing the tasks specified in the areas of operation for the airman certificate or... performing each task successfully; (3) Demonstrating proficiency and competency within the approved standards...

  18. Crew roles and interactions in scientific space exploration

    NASA Astrophysics Data System (ADS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  19. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.

    2000-01-01

    The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.

  20. Full power level development of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Colbo, H. I.

    1982-01-01

    Development of the Space Shuttle main engine for nominal operation at full power level (109 percent rated power) is continuing in parallel with the successful flight testing of the Space Transportation System. Verification of changes made to the rated power level configuration currently being flown on the Orbiter Columbia is in progress and the certification testing of the full power level configuration has begun. The certification test plan includes the accumulation of 10,000 seconds on each of two engines by early 1983. Certification testing includes the simulation of nominal mission duty cycles as well as the two abort thrust profiles: abort to orbit and return to launch site. Several of the certification tests are conducted at 111 percent power to demonstrate additional safety margins. In addition to the flight test and development program results, future plans for life demonstration and engine uprating will be discussed.

  1. Test of the Equivalence Principle in an Einstein Elevator

    NASA Technical Reports Server (NTRS)

    Shapiro, Irwin I.; Glashow, S.; Lorenzini, E. C.; Cosmo, M. L.; Cheimets, P. N.; Finkelstein, N.; Schneps, M.

    2005-01-01

    This Annual Report illustrates the work carried out during the last grant-year activity on the Test of the Equivalence Principle in an Einstein Elevator. The activity focused on the following main topics: (1) analysis and conceptual design of a detector configuration suitable for the flight tests; (2) development of techniques for extracting a small signal from data strings with colored and white noise; (3) design of the mechanism that spins and releases the instrument package inside the cryostat; and (4) experimental activity carried out by our non-US partners (a summary is shown in this report). The analysis and conceptual design of the flight-detector (point 1) was focused on studying the response of the differential accelerometer during free fall, in the presence of errors and precession dynamics, for various detector's configurations. The goal was to devise a detector configuration in which an Equivalence Principle violation (EPV) signal at the sensitivity threshold level can be successfully measured and resolved out of a much stronger dynamics-related noise and gravity gradient. A detailed analysis and comprehensive simulation effort led us to a detector's design that can accomplish that goal successfully.

  2. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy A.; Cumming, Stephen B.

    2012-01-01

    The primary focus of this paper is how the flight test team for the Stratospheric Observatory For Infrared Astronomy (SOFIA) re-cast an extensive developmental test program to meet key milestones while simultaneously ensuring safe certification of the airframe and delivery of an operationally relevant platform, ultimately saving the overall program from financial demise. Following a brief introduction to the observatory and what it is designed to do, SOFIAs planned developmental test program is summarized, including analysis and design philosophy, envelope expansion, model validation and airframe certification. How NASA used lessons learned from other aircraft that employed open cavities in flight is explained as well as how and why the chosen design was selected. The approach to aerodynamic analysis, including bare airframe testing, wind tunnel testing, computational fluid dynamics and finite element modeling proved absolutely critical. Despite a solid analytical foundation, many unknowns remained. History provides several examples of disastrous effects on both systems and flight safety if cavity design is not approached properly. For these reasons, an extensive test plan was developed to ensure a safe and thorough build-up for envelope expansion, airframe certification and early science missions. Unfortunately, as is often the case, because of chronic delays in overall program execution, severe schedule and funding pressures were present. If critical milestones were not met, domestic as well as international funding was in serious jeopardy, and the demise of the entire program loomed large. Concentrating on rigorous model validation, the test team challenged certification requirements, increased test efficiency and streamlined engineering analysis. This resulted in the safe reduction of test point count by 72%, meeting all program milestones and a platform that soundly satisfied all operational science requirements. Results from early science missions are shown and a proof of concept mission for which SOFIA was opportunely positioned is showcased. Success on this time-critical mission to observe a rare astronomical event proved the usefulness of an airborne observatory and the value in waiting for the capability provided by SOFIA. Finally, lessons learned in the test program are presented with emphasis on how lessons from previous aircraft and successful test programs were applied to SOFIA. Effective application of these lessons was crucial to the success of the SOFIA flight test program. SOFIA is an international cooperative program between NASA and the German Space Agency, DLR. It is a 2.5 meter (100-inch) telescope mounted in a Boeing 747SP aircraft used for astronomical observations at altitudes above 35,000 feet. SOFIA will accommodate a host of scientific instruments from the international science community and has a planned operational lifespan of more than 20 years.

  3. Fluid Acquisition and Resupply Experiment (FARE-I) flight results

    NASA Astrophysics Data System (ADS)

    Dominick, Sam M.; Driscoll, Susan L.

    1993-06-01

    The Fluid Acquisition and Resupply Experiment, (FARE) is a Shuttle middeck-mounted experiment to demonstrate techniques for handling liquids in zero gravity for operations such as refueling spacecraft in orbit. The first flight took place on STS 53 launched December 2, 1992. Eight tests were performed during the mission and the experiment achieved 100 percent mission success. The second flight will be on STS 57, scheduled for launch in June 1993. The objective of FARE I was to demonstrate techniques for controlling the position of the liquid and gas within a tank during refilling and to better understand the operation of screen-type surface tension devices used to drain tanks in zero gravity. Tests were performed to demonstrate tank refilling, low gravity propellant slosh, and expulsion efficiency of the screen device. Expulsion efficiencies of 97 percent - 98 percent were demonstrated under a variety of flowrates and accelerations. Final fill levels of 60 percent to 80 percent were achieved during the vented fill tests.

  4. Can we use virtual reality tools in the planning of an experiment?

    NASA Astrophysics Data System (ADS)

    Kucaba-Pietal, Anna; Szumski, Marek; Szczerba, Piotr

    2015-03-01

    Virtual reality (VR) has proved to be a particularly useful tool in engineering and design. A related area of aviation in which VR is particularly significant is a flight training, as it requires many hours of practice and using real planes for all training is both expensive and more dangerous. Research conducted at the Rzeszow University of Technology (RUT) showed that virtual reality can be successfully used for planning experiment during a flight tests. Motivation to the study were a wing deformation measurements of PW-6 glider in flight by use Image Pattern Correlation Technique (IPCT) planned within the frame of AIM2 project. The tool VirlIPCT was constructed, which permits to perform virtual IPCT setup on an airplane. Using it, we can test a camera position, camera resolution, pattern application. Moreover performed tests on RUT indicate, that VirlIPCT can be used as a virtual IPCT image generator. This paper presents results of the research on VirlIPCT.

  5. Autonomous Airborne Refueling Demonstration: Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small.

  6. Autonomous Airborne Refueling Demonstration, Phase I Flight-Test Results

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the NASA Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small

  7. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  8. Orbital express capture system: concept to reality

    NASA Astrophysics Data System (ADS)

    Stamm, Shane; Motaghedi, Pejmun

    2004-08-01

    The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the Phase II SBIR work, while the new mechanism, the Orbital Express Capture System, will emerge as a flight-qualified design for the Orbital Express program.

  9. Pathfinder

    NASA Image and Video Library

    1966-05-21

    The Delta Clipper-Experimental Advanced (DC-XA) is a single-stage-to-orbit, vertical takeoff / vertical landing launch vehicle concept, whose development was geared to significantly reduce launch cost and provided a test bed for NASA Reusable Launch Vehicle (RLV) technology. This photograph shows the descending vehicle landing during the first successful test flight at White Sands Missile Range, New Mexico. The program was discontinued in 2003.

  10. "American Way's" Flight Pattern: A Profile of American Airline's In-Flight Magazine.

    ERIC Educational Resources Information Center

    Rising, Suzanne

    The success of "American Way," American Airline's in-flight magazine, comes from three major factors: the success of American Airlines itself, the high advertising revenue of the magazine, and the quality editorial material produced. Beginning in 1966, "American Way" has evolved from a brochure of flight information and travel…

  11. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  12. Coaxial Cables for Martian Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Harvey, Wayne L.; Valas, Sam; Tsai, Michael C.

    2011-01-01

    Work was conducted to validate the use of the rover external flexible coaxial cabling for space under the extreme environments to be encountered during the Mars Science Laboratory (MSL) mission. The antennas must survive all ground operations plus the nominal 670-Martian-day mission that includes summer and winter seasons of the Mars environment. Successful development of processes established coaxial cable hardware fatigue limits, which were well beyond the expected in-flight exposures. In keeping with traditional qualification philosophy, this was accomplished by subjecting flight-representative coaxial cables to temperature cycling of the same depth as expected in-flight, but for three times the expected number of in-flight thermal cycles. Insertion loss and return loss tests were performed on the coaxial cables during the thermal chamber breaks. A vector network analyzer was calibrated and operated over the operational frequency range 7.145 to 8.450 GHz. Even though some of the exposed cables function only at UHF frequencies (approximately 400 MHz), the testing was more sensitive, and extending the test range down to 400 MHz would have cost frequency resolution. The Gore flexible coaxial cables, which were the subject of these tests, proved to be robust and displayed no sign of degradation due to the 3X exposure to the punishing Mars surface operations cycles.

  13. Joint helmet-mounted cueing system (JHMCS) helmet qualification testing requirements

    NASA Astrophysics Data System (ADS)

    Orf, Garry W.

    1998-08-01

    The Joint Helmet-Mounted Cueing System (JHMCS) program will provide capability to cue high off-boresight (HOBS) weapons to the operator's line of sight and to confirm weapon sensor LOS for the US Air Force and US Navy (USN) aircrew. This capability will ensure the USAF and USN pilots a first shot opportunity. The JHMCS incorporates an ejection-compatible helmet-mounted display system that will be installed on F- 15, F-16, F/A-18, and F-22 aircraft. The JHMCS includes a flight helmet with display optics, miniature cathode ray tube, magnetic receiver unit, miniature camera, automatic brightness control sensor, and microcontroller. The flight helmet for JHMCS is based on the new lightweight HGU-55A/P. This paper describes the requirements for the helmet qualification tests including: windblast, ejection tower, hanging harness, centrifuge, mass properties, energy attenuation and penetration resistance, noise attenuation, visor characteristics, compatibility demonstration, sled/in- flight ejection, water survival, standard conditions and environment. The test objective, success criteria, equipment configuration, and data collection requirements for each test is discussed.

  14. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  15. AJ26 rocket engine test

    NASA Image and Video Library

    2010-11-10

    Fire and steam signal a successful test firing of Orbital Sciences Corporation's Aerojet AJ26 rocket engine at John C. Stennis Space Center. AJ26 engines will be used to power Orbital's Taurus II space vehicle on commercial cargo flights to the International Space Station. On Nov. 10, operators at Stennis' E-1 Test Stand conducted a 10-second test fire of the engine, the first of a series of three verification tests. Orbital has partnered with NASA to provide eight missions to the ISS by 2015.

  16. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    NASA Astrophysics Data System (ADS)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  17. Aeroelastic Optimization Study Based on the X-56A Model

    NASA Technical Reports Server (NTRS)

    Li, Wesley W.; Pak, Chan-Gi

    2014-01-01

    One way to increase the aircraft fuel efficiency is to reduce structural weight while maintaining adequate structural airworthiness, both statically and aeroelastically. A design process which incorporates the object-oriented multidisciplinary design, analysis, and optimization (MDAO) tool and the aeroelastic effects of high fidelity finite element models to characterize the design space was successfully developed and established. This paper presents two multidisciplinary design optimization studies using an object-oriented MDAO tool developed at NASA Armstrong Flight Research Center. The first study demonstrates the use of aeroelastic tailoring concepts to minimize the structural weight while meeting the design requirements including strength, buckling, and flutter. Such an approach exploits the anisotropic capabilities of the fiber composite materials chosen for this analytical exercise with ply stacking sequence. A hybrid and discretization optimization approach improves accuracy and computational efficiency of a global optimization algorithm. The second study presents a flutter mass balancing optimization study for the fabricated flexible wing of the X-56A model since a desired flutter speed band is required for the active flutter suppression demonstration during flight testing. The results of the second study provide guidance to modify the wing design and move the design flutter speeds back into the flight envelope so that the original objective of X-56A flight test can be accomplished successfully. The second case also demonstrates that the object-oriented MDAO tool can handle multiple analytical configurations in a single optimization run.

  18. Technical Evaluation Motor no. 5 (TEM-5)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.

  19. Gravity Probe B data system description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.

    2015-11-01

    The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.

  20. Flight research on natural laminar flow nacelles - A progress report

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Schoenster, J. A.; Obara, C. J.; Dodbele, S. S.

    1986-01-01

    This paper presents a progress report on an ongoing flight experiment for natural laminar flow nacelles. The results given herein were obtained during the first phase of the experiment, in which an instrumented natural laminar flow nacelle fairing was flight tested in the presence of turbofan engine noise and a controlled noise source. The results indicate that with the controlled noise source off, natural laminar flow was measured as far aft as 37 percent of the fairing length. The transition front was irregular in contour, and the extent of natural laminar flow was significantly affected by the relative flow angle for the fairing. In addition to these test results, the paper discusses the results of some recent computational analyses to predict pressure distributions and transition location, and to explain some of the data trends. Comparisons between measured and predicted data indicate that the analytical methods successfully predicted trends for the baseline (no controlled noise source) studies.

  1. Definition ofthe Design Trajectory and Entry Flight Corridor for the NASA Orion Exploration Mission 1 Entry Trajectory Using an Integrated Approach and Optimization

    NASA Technical Reports Server (NTRS)

    McNamara, Luke W.; Braun, Robert D.

    2014-01-01

    One of the key design objectives of NASA's Orion Exploration Mission 1 (EM- 1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is defining the flyable entry corridor for EM-1 taking into account multiple subsystem constraints such as complex aerothermal heating constraints, aerothermal heating objectives, landing accuracy constraints, structural load limits, Human-System-Integration-Requirements, Service Module debris disposal limits and other flight test objectives. During the EM-1 Design Analysis Cycle 1 design challenges came up that made defining the flyable entry corridor for the EM-1 mission critical to mission success. This document details the optimization techniques that were explored to use with the 6-DOF ANTARES simulation to assist in defining the design entry interface state and entry corridor with respect to key flight test constraints and objectives.

  2. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust cells of an aerospike engine and was mounted on a housing known as the 'canoe,' which contained the gaseous hydrogen, helium, and instrumentation gear. The model, engine, and canoe together were called a 'pod.' The experiment focused on determining how a reusable launch vehicle's engine flume would affect the aerodynamics of its lifting-body shape at specific altitudes and speeds. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements looked at minimizing this interaction. The entire pod was 41 feet in length and weighed 14,300 pounds. The experimental pod was mounted on one of NASA's SR-71s, which were at that time on loan to NASA from the U.S. Air Force. Lockheed Martin may use the information gained from the LASRE and X-33 Advanced Technology Demonstrator Projects to develop a potential future reusable launch vehicle. NASA and Lockheed Martin were partners in the X-33 program through a cooperative agreement. The goal of that program was to enable significant reductions in the cost of access to space and to promote creation and delivery of new space services and activities to improve the United States's economic competitiveness. In March 2001, however, NASA cancelled the X-33 program.

  3. New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community

    NASA Technical Reports Server (NTRS)

    Cutright, Amanda; Shaughnessy, Brendan

    2010-01-01

    The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.

  4. Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight-testing performed on the unconventional ACTE flaps.

  5. Ares I-X: First Step in a New Era of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    Since 2005, NASA's Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). On October 28, 2009, the Ares Projects successfully launched the first suborbital development flight test of the Ares I crew launch vehicle, Ares I-X, from Kennedy Space Center (KSC). Although the final Constellation Program architecture is under review, data and lessons obtained from Ares I-X can be applied to any launch vehicle. This presentation will discuss the mission background and future impacts of the flight. Ares I is designed to carry up to four astronauts to the International Space Station (ISS). It also can be used with the Ares V cargo launch vehicle for a variety of missions beyond LEO. The Ares I-X development flight test was conceived in 2006 to acquire early engineering, operations, and environment data during liftoff, ascent, and first stage recovery. Engineers are using the test flight data to improve the Ares I design before its critical design review the final review before manufacturing of the flight vehicle begins. The Ares I-X flight test vehicle incorporated a mix of flight and mockup hardware, reflecting a similar length and mass to the operational vehicle. It was powered by a four-segment SRB from the Space Shuttle inventory, and was modified to include a fifth, spacer segment that made the booster approximately the same size as the five-segment SRB. The Ares I-X flight closely approximated flight conditions the Ares I will experience through Mach 4.5, performing a first stage separation at an altitude of 125,000 feet and reaching a maximum dynamic pressure ("Max Q") of approximately 850 pounds per square foot. The Ares I-X Mission Management Office (MMO) was organized functionally to address all the major test elements, including: first stage, avionics, and roll control (Marshall Space Flight Center); upper stage simulator (Glenn Research Center); crew module/launch abort system simulator (Langley Research Center); and ground systems and operations (KSC). Interfaces between vehicle elements and vehicle-ground elements, as well as environment analyses were performed by a systems engineering and integration team at Langley. Experience and lessons learned from these integrated product teams area are already being integrated into the Ares Projects to support the next generation of exploration launch vehicles.

  6. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  7. Neonicotinoids Interfere with Specific Components of Navigation in Honeybees

    PubMed Central

    Fischer, Johannes; Müller, Teresa; Spatz, Anne-Kathrin; Greggers, Uwe; Grünewald, Bernd; Menzel, Randolf

    2014-01-01

    Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory) was less compromised than the second phase that leads the animal back to the hive (homing flight). The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection. PMID:24646521

  8. Optimization of moisture content for wheat seedling germination in a cellulose acetate medium for a space flight experiment

    NASA Technical Reports Server (NTRS)

    Johnson, C. F.; Dreschel, T. W.; Brown, C. S.; Wheeler, R. M.

    1996-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.

  9. Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.

    2012-01-01

    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.

  10. Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.

    2015-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.

  11. Fiber Optic Control System Integration program: for optical flight control system development

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Seal, Daniel W.

    1994-10-01

    Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.

  12. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  13. Extendible-retractable electric field measurement antenna for IMP J

    NASA Technical Reports Server (NTRS)

    Larrick, W.

    1973-01-01

    An antenna dispenser mechanism for the IMP J spacecraft was designed, fabricated, and tested. Upon command the mechanism deploys or retracts a conductor for use as a receiving antenna for an electric field measurement experiment. Five identical units were fabricated and tested to the IMP H & J environmental test specification. Of these, four are designated for flight on the IMP J spacecraft and one as a prototype flight spare. The testing program was successfully completed although certain design modifications were required as problems were uncovered by the testing; particularly thermal vacuum operation. The antenna mechanism functions well under the expected environmental and loading conditions. The wear life and load capability of the dry molybdenum disulphide lubricant originally used on the heavily loaded worm and gear pair were disappointing and a substitute material was applied. The lubricant finally applied performed well; although other problems were generated.

  14. Space Shuttle Body Flap Actuator Bearing Testing for NASA Return to Flight

    NASA Technical Reports Server (NTRS)

    Jet, Timothy R.; Predmore, Roamer E.; Dube, Michael; Jones, William R., Jr.

    2006-01-01

    The Space Shuttle body flap (BF) is located beneath the main engine nozzles and is required for proper aerodynamic control during orbital descent. The body flap is controlled by four actuators connected by a common shaft and driven by the hydraulic power drive unit. Inspection of the actuators during refurbishment revealed three shaft bearings with unexpected damage. One was coated with black oxide on the balls and race wear surfaces, a second contained a relatively deep wear scar, and the third with scratches and an aluminum particle in the wear track. A shaft bearing life test program was initiated to measure the wear life and explain the 5.08-micrometer wear scar. A tribological analysis was conducted to demonstrate that the black oxide coated wear surfaces did not damage the bearing, interfere with the lubrication, or cause severe bearing wear. Pre-damaged (equivalent of 30 missions), commercial equivalent bearings and previously flown shaft bearings were tested at axial loads, speeds, and temperatures seen during flight operations. These bearing were successfully life tested at 60 C for 24 hours or 90 flights. With a safety factor of 4X, the bearings were qualified for 22 flights when only a maximum of 12 flights are expected. Additional testing at 23 C was performed to determine the lubricant life and to further understand the mechanism that caused the blackened balls. Test results indicating bearing life was shortened at a lower temperature surprised the investigators. Start\\Stop bearing testing that closely simulates mission profile was conducted at 23 C. Results of this testing showed lubricant life of 12 flights including a safety factor of four. Additional testing with bearings that have the equivalent of 30 missions of damage is being tested at 23 C. These tests are being performed over the Shuttle load profile to demonstrate the residual bearing life in the actuators exceeds 12 missions. Testing showed that the end of the shaft bearing life was characterized by bearing temperature rise, preload drop, and the onset of a severe wear bearing failure mechanism. The severe wear failure mechanism is characterized by rough wear scars, extensive bearing wear and steel transfer between the balls and the races.

  15. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing of RS-25 engines and flight engine controllers This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  16. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability.

    PubMed

    Tosi, Simone; Burgio, Giovanni; Nieh, James C

    2017-04-26

    Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decreases homing success in honey bees. Neonicotinoids can alter bee navigation, but we present the first evidence that neonicotinoid exposure alone can impair the physical ability of bees to fly. We tested the effects of acute or chronic exposure to thiamethoxam on the flight ability of foragers in flight mills. Within 1 h of consuming a single sublethal dose (1.34 ng/bee), foragers showed excitation and significantly increased flight duration (+78%) and distance (+72%). Chronic exposure significantly decreased flight duration (-54%), distance (-56%), and average velocity (-7%) after either one or two days of continuous exposure that resulted in bees ingesting field-relevant thiamethoxam doses of 1.96-2.90 ng/bee/day. These results provide the first demonstration that acute or chronic exposure to a neonicotinoid alone can significantly alter bee flight. Such exposure may impair foraging and homing, which are vital to normal colony function and ecosystem services.

  17. An Analytical Explanation for the X-43A Flush Air Data Sensing System Pressure Mismatch Between Flight and Theory

    NASA Technical Reports Server (NTRS)

    Ellsworth, Joel C.

    2010-01-01

    Following the successful Mach 7 flight test of the X-43A, unexpectedly low pressures were measured by the aft set of the onboard Flush Air Data Sensing System s pressure ports. These in-flight aft port readings were significantly lower below Mach 3.5 than was predicted by theory. The same lower readings were also seen in the Mach 10 flight of the X-43A and in wind-tunnel data. The pre-flight predictions were developed based on 2-dimensional wedge flow, which fails to predict some of the significant 3-dimensional flow features in this geometry at lower Mach numbers. Using Volterra s solution to the wave equation as a starting point, a three-dimensional finite wedge approximation to flow over the X-43A forebody is presented. The surface pressures from this approximation compare favorably with the measured wind tunnel and flight data at speeds of Mach 2.5 and 3.

  18. X-33 Integrated Test Facility Extended Range Simulation

    NASA Technical Reports Server (NTRS)

    Sharma, Ashley

    1998-01-01

    In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.

  19. 2015-1021

    NASA Image and Video Library

    2015-01-06

    CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden, standing near Orion, looked over the agency's spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston

  20. (abstract) Airborne Emission Spectrometer (AES)

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    AES is a low-cost analog of the TES downlooking modes. Because AES operates at ambient temperature, limb-viewing is not possible. The first flight of AES took place in April 1994 on the NASA P3B aircraft out of Wallops Island, VA. While planned as an engineering test flight, spectra were successfully acquired both over the Atlantic Ocean and the area of the Great Dismal Swamp on the Virginia-North Carolina border. At this writing (July 1994), a second series of flights on the NASA DC8 aircraft out of Ames RC,CA is in progress. By the time of the workshop, a third series using the NASA C130 should have been accomplished.

Top