Sample records for suction specific speed

  1. An artificial neural network-based noninvasive detector for suction and left atrium pressure in the control of rotary blood pumps: an in vitro study.

    PubMed

    Stöcklmayer, C; Dorffner, G; Schmidt, C; Schima, H

    1995-07-01

    Rotary blood pumps are used in clinical applications to assist circulation via pumping blood from the left atrium to the aorta. Negative inflow pressures at high flow rates can cause suction of the cannula in the left atrium with deleterious effects on the atrial wall, the blood, and the lung. Therefore, stable and reliable detection of suction and the prediction of the left atrium pressure (LAP) would be of major interest for the control of these pumps. This work reports about an in vitro study of such a detector based on artificial neural networks (ANN). In the first project phase, an ANN was used to estimate the LAP based on pump speed, pump flow, and aortic pressure, obtained from a mock circulation. The inputs for the ANN were 11 characteristic values computed from these three parameters. In the second phase, another ANN was trained to classify various system states, such as suction, danger of suction (a state close to actual suction), and no suction. The first ANN was able to estimate the LAP with an accuracy of +/- 1.8 mm Hg. The discrimination of suction versus the other two states could be performed with a sensitivity and specificity of about 95% while the more interesting task of distinguishing danger of suction from no suction reached a sensitivity and specificity of about 65% (leaving 25% of each class unclassified and 10% of each class incorrectly classified).(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Design and analysis of axial aspirated compressor stages

    NASA Astrophysics Data System (ADS)

    Merchant, Ali A.

    The pressure ratio of axial compressor stages can be significantly increased by controlling the development of blade and endwall boundary layers in regions of adverse pressure gradient by means of boundary layer suction. This concept is validated and demonstrated through the design and analysis of two unique aspirated compressor stages: a low-speed stage with a design pressure ratio of 1.6 at a tip speed of 750 ft/s, and a high-speed stage with a design pressure ratio of 3.5 at a tip speed of 1500 ft/s. The aspirated compressor stages were designed using a new procedure which is a synthesis of low speed and high speed blade design techniques combined with a flexible inverse design method which enabled precise independent control over the shape of the blade suction and pressure surfaces. Integration of the boundary layer suction calculation into the overall design process is an essential ingredient of the new procedure. The blade design system consists of two axisymmetric through-flow codes coupled with a quasi three-dimensional viscous cascade plane code with inverse design capability. Validation of the completed designs were carried out with three-dimensional Euler and Navier-Stokes calculations. A single spanwise slot on the blade suction surface is used to bleed the boundary layer. The suction mass flow requirement for the low-speed and high-speed stages are 1% and 4% of the inlet mass flow, respectively. Additional suction between 1-2% is also required on the compressor endwalls near shock impingement locations. The rotor is modeled with a tip shroud to eliminate tip clearance effects and to discharge the suction flow radially from the flowpath. Three-dimensional viscous evaluation of the designs showed good agreement with the quasi three-dimensional design intent, except in the endwall regions. The suction requirements predicted by the quasi three-dimensional calculation were confirmed by the three-dimensional viscous calculations. The three-dimensional viscous analysis predicted a peak pressure ratio of 1.59 at an isentropic efficiency of 89% for the low-speed stage, and a peak pressure ratio of 3.68 at an isentropic efficiency of 94% for the high-speed rotor. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  3. Design criteria monograph on turbopump inducers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    State of the art and design criteria for liquid rocket engine turbopump inducers are summarized for optimal fabrication. Design criteria optimize hydrodynamic parameters to obtain highest suction specific speed without violating structural and mechanical constraints.

  4. Twin-spool turbopumps for ''low'' net positive suction pressure operations

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Campbell, W. E.; Ford, O. I.

    1970-01-01

    Modified single-shaft turbopump incorporates inducer and main pump, each separately driven at different speeds through coaxial-shaft arrangement. Inducer operates at low speed for low net positive suction pressure, main pump operates at high speed to generate high pressure. This arrangement requires no external control for the inducer.

  5. Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture.

    PubMed

    Yaniv, Sarit; Elad, David; Holzman, Roi

    2014-10-15

    Suction feeding is thought to be the primary mode of prey capture in most larval fishes. Similar to adult suction feeders, larvae swim towards their prey while rapidly expanding their mouth cavity to generate an inward flow of water that draws the prey into the mouth. Although larvae are known to experience flows with lower Reynolds numbers than adults, it is unclear how the suction-induced flow field changes throughout ontogeny, and how such changes relate to prey capture performance. To address these questions, we determined mouth dimensions and opening speeds in Sparus aurata from first-feeding larvae to adults. We proceeded to develop a computational model of mouth expansion in order to analyze the scaling of suction flows under the observed parameters. Larval fish produced suction flows that were around two orders of magnitude slower than those of adults. Compared with adult fish, in which flow speed decays steeply with distance in front of the mouth, flow speed decayed more gradually in larval fish. This difference indicates that viscous forces in low Reynolds number flows modify the spatial distribution flow speed in front of the mouth. Consequently, simulated predator-prey encounters showed that larval fish could capture inert prey from a greater distance compared with adults. However, if prey attempted to escape then larval fish performed poorly: simulations inferred capture success in only weakly escaping prey immediately in front of the mouth. These ontogenetic changes in Reynolds number, suction-induced flow field and feeding performance could explain a widespread ontogenetic diet shift from passive prey at early life stages to evasive prey as larvae mature. © 2014. Published by The Company of Biologists Ltd.

  6. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.

    PubMed

    Wang, Yu; Koenig, Steven C; Slaughter, Mark S; Giridharan, Guruprasad A

    2015-01-01

    The risk for left ventricular (LV) suction during left ventricular assist devices (LVAD) support has been a clinical concern. Current development efforts suggest LVAD suction prevention and physiologic control algorithms may require chronic implantation of pressure or flow sensors, which can be unreliable because of baseline drift and short lifespan. To overcome this limitation, we designed a sensorless suction prevention and physiologic control (eSPPC) algorithm that only requires LVAD intrinsic parameters (pump speed and power). Two gain-scheduled, proportional-integral controllers maintain a differential pump speed (ΔRPM) above a user-defined threshold to prevent LV suction while maintaining an average reference differential pressure (ΔP) between the LV and aorta. ΔRPM is calculated from noisy pump speed measurements that are low-pass filtered, and ΔP is estimated using an extended Kalman filter. Efficacy and robustness of the eSPPC algorithm were evaluated in silico during simulated rest and exercise test conditions for 1) excessive ΔP setpoint (ES); 2) rapid eightfold increase in pulmonary vascular resistance (PVR); and 3) ES and PVR. Simulated hemodynamic waveforms (LV pressure and volume; aortic pressure and flow) using only intrinsic pump parameters showed the feasibility of our proposed eSPPC algorithm in preventing LV suction for all test conditions.

  7. Effects of wall suction/blowing on two-dimensional flow past a confined square cylinder.

    PubMed

    Zhang, Wei; Jiang, Yanqun; Li, Lang; Chen, Guoping

    2016-01-01

    A numerical simulation is conducted to study the laminar flow past a square cylinder confined in a channel (the ratio of side length of the square to channel width is fixed at 1/4) subjected to a locally uniform blowing/suction speed placed at the top and bottom channel walls. Governing equations with boundary conditions are resolved using a finite volume method in pressure-velocity formulation. The flow patterns relevant to the critical spacing values are investigated. Numerical results show that wall blowing has a stabilizing effect on the flow, and the corresponding critical Reynolds number increases monotonically with increasing blowing velocity. Remarkably, steady asymmetric solutions and hysteretic mode transitions exist in a certain range of parameters (Reynolds number and suction speed) in the case of suction.

  8. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    1999-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6-blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Results showed excellent correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state impeller exit and radial diffuser pressure distributions were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and interesting rotating phenomena at the inducer inlet were observed. These rotating phenomena's cell numbers, direction, and speed were correlated with pump operating parameters. The impact of the unsteady phenomena and their corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  9. Area-Suction Boundary-Layer Control as Applied to the Trailing-Edge Flaps of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L; Anderson, Seth B; Cooper, George E

    1958-01-01

    A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying area-suction boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effect of boundary-layer control in the handling qualities and operation of the airplane, particularly during landing. The wind-tunnel and flight tests indicated that area suction applied to the trailing-edge flaps produced significant increases in flap lift increment. Although the flap boundary-layer control reduced the stall speed only slightly, a reduction in minimum comfortable approach speed of about 12 knots was obtained.

  10. Single-stage evaluation of highly-loaded high-Mach-number compressor stages 5. Data and performance of baseline, corner-blow wall suction and combined corner blow wall suction stator

    NASA Technical Reports Server (NTRS)

    Nikkanen, J. P.; Brooky, J. P.

    1972-01-01

    A single-stage compressor with a rotor tip speed of 1600 ft/sec and a 0.5 hub tip ratio was used to investigate the effects of several stator endwall treatment methods on stage range and performance. These endwall treatment methods consisted of stator corner-blow, annular wall suction upstream of stator leading edge, and combined corner-blow and annular wall suction. The overall stage performance with corner blow was essentially the same as the baseline performance. The performance for the annular wall suction and the combined corner-blow and wall suction showed a reduction in peak efficiency of 2.5 percentage points compared to the baseline data.

  11. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds. Likewise, only small circumferential variations in steady-state were observed from 80% to 120% of the design flow coefficient, matching the computational predictions and confirming that the integrated design approach has minimized any exit volute-induced distortions. The test article exhibited suction performance trends typically observed in inducer designs with virtually constant head rise with decreasing inlet pressure until complete pump head breakdown. Unfortunately, the net positive suction head at 3% head fall-off occurred far below that predicted at all tested flow coefficients, resulting in a negative net positive suction head margin at the design point in water. Additional testing to map the unsteady pressure environment was conducted and cavitation-induced flow disturbances at the inducer inlet were observed. Two distinct disturbances were identified, one rotating and one stationary relative to the fixed frame of reference, while the transition from one regime to the next produced significant effects on the steady state pump performance. The impact of the unsteady phenomena and the corresponding energy losses on the unexpectedly poor pump performance is also discussed.

  12. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    system as an inducer and/or mainstage pump for liquid rocket applications. This investigation consisted of the analysis, design, and test of a disk...pumping action is a function of the viscous properties of the pumped fluid. (2) The pump does not require the conventional pump lifting forces. ( 3 ...with no apparent head deterioration. The representative maximum suction specific speed at a 3 % head drop was never reached. The pump demonstrated

  13. Subsonic Investigation of a Leading-Edge Boundary Layer Control Suction System on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.; Coe, Paul L., Jr.; Owens, D. Bruce; Gile, Brenda E.; Parikh, Pradip G.; Smith, Don

    1999-01-01

    A wind tunnel investigation of a leading edge boundary layer control system was conducted on a High Speed Civil Transport (HSCT) configuration in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.08 to 0.27, with corresponding chord Reynolds numbers of 1.79 x 10(exp 6) to 5.76 x 10(exp 6). Variations in the amount of suction, as well as the size and location of the suction area, were tested with outboard leading edge flaps deflected 0 and 30 deg and trailing-edge flaps deflected 0 and 20 deg. The longitudinal and lateral aerodynamic data are presented without analysis. A complete tabulated data listing is also presented herein.

  14. VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method.

  15. Ultra-fast underwater suction traps.

    PubMed

    Vincent, Olivier; Weisskopf, Carmen; Poppinga, Simon; Masselter, Tom; Speck, Thomas; Joyeux, Marc; Quilliet, Catherine; Marmottant, Philippe

    2011-10-07

    Carnivorous aquatic Utricularia species catch small prey animals using millimetre-sized underwater suction traps, which have fascinated scientists since Darwin's early work on carnivorous plants. Suction takes place after mechanical triggering and is owing to a release of stored elastic energy in the trap body accompanied by a very fast opening and closing of a trapdoor, which otherwise closes the trap entrance watertight. The exceptional trapping speed--far above human visual perception--impeded profound investigations until now. Using high-speed video imaging and special microscopy techniques, we obtained fully time-resolved recordings of the door movement. We found that this unique trapping mechanism conducts suction in less than a millisecond and therefore ranks among the fastest plant movements known. Fluid acceleration reaches very high values, leaving little chance for prey animals to escape. We discovered that the door deformation is morphologically predetermined, and actually performs a buckling/unbuckling process, including a complete trapdoor curvature inversion. This process, which we predict using dynamical simulations and simple theoretical models, is highly reproducible: the traps are autonomously repetitive as they fire spontaneously after 5-20 h and reset actively to their ready-to-catch condition.

  16. Experimental Investigation of the Flow Field in a Transonic, Axial Flow Compressor with Respect to the Development of Blockage and Loss

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    1996-01-01

    A detailed experimental investigation to understand and quantify the development of loss and blockage in the flow field of a transonic, axial flow compressor rotor has been undertaken. Detailed laser anemometer measurements were acquired upstream, within, and downstream of a transonic, axial compressor rotor operating at design and off-design conditions. The rotor was operated at 100%, 85%, 80%, and 60% of design speed which provided inlet relative Mach numbers at the blade tip of 1.48, 1.26, 1.18, and 0.89 respectively. At design speed the blockage is evaluated ahead of the rotor passage shock, downstream of the rotor passage shock, and near the trailing edge of the blade row. The blockage is evaluated in the core flow area as well as in the casing endwall region. Similarly at pm speed conditions for the cases of (1) where the rotor passage shock is much weaker than that at design speed and (2) where there is no rotor passage shock, the blockage and loss are evaluated and compared to the results at design speed. Specifically, the impact of the rotor passage shock on the blockage and loss development, pertaining to both the shock/boundary layer interactions and the shock/tip clearance flow interactions, is discussed. In addition, the blockage evaluated from the experimental data is compared to (1) an existing correlation of blockage development which was based on computational results, and (2) computational results on a limited basis. The results indicate that for this rotor the blockage in the endwall region is 2-3 times that of the core flow region and the blockage in the core flow region more than doubles when the shock strength is sufficient to separate the suction surface boundary layer. The distribution of losses in the care flow region indicate that the total loss is primarily comprised of the shock loss when the shock strength is not sufficient to separate the suction surface boundary layer. However, when the shock strength is sufficient to separate the suction surface boundary layer, the profile loss is comparable to the shock loss and can exceed the shock loss.

  17. Clinical techniques of performing suctioning tasks and of positioning the high volume evacuation (HVE) attachment and inlet when assisting a dentist. A guide for dental assistants: Part 1.

    PubMed

    Mamoun, John S

    2011-01-01

    When assisting a dentist, an assistant may need to hold the high volume evacuation (HVE) attachment and use it to suction aerosols produced by the dentist's tools, particularly the high speed hand piece or the cavitron. The main objective of suctioning is to hold the inlet of the HVE attachment close enough to the source of aerosols to evacuate those aerosols, while avoiding suctioning of the patient's intra-oral soft tissues, and avoiding contact of the HVE attachment with the hand piece, cavitron or other instrument that the dentist is using. In general, assisting a dentist with suctioning is a somewhat complex skill that may require months of experience before an assistant develops an intuition for suctioning. This is the first part of a two-part article. The first part describes the basic concepts and clinical techniques that an assistant should be conscious of in order to be able to properly assist a dentist in performing evacuation tasks, describes retraction techniques for use while suctioning, and describes use of the saliva ejector and surgical suction attachment.

  18. Results for the hybrid laminar flow control experiment conducted in the NASA Langley 8-foot transonic pressure tunnel on a 7-foot chord model

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Ferris, James C.; Harvey, William D.; Goradia, Suresh H.

    1992-01-01

    A description is given of the development of, and results from, the hybrid laminar flow control (HLFC) experiment conducted in the NASA LaRC 8 ft Transonic Pressure Tunnel on a 7 ft chord, 23 deg swept model. The methods/codes used to obtain the contours of the HLFC model surface and to define the suction requirements are outlined followed by a discussion of the model construction, suction system, instrumentation, and some example results from the wind tunnel tests. Included in the latter are the effects of Mach number, suction level, and the extent of suction. An assessment is also given of the effect of the wind tunnel environment on the suction requirements. The data show that, at or near the design Mach number, large extents of laminar flow can be achieved with suction mass flows over the first 25 percent, or less, of the chord. Top surface drag coefficients with suction extending from the near leading edge to 20 percent of the chord were approximately 40 percent lower than those obtained with no suction. The results indicate that HLFC can be designed for transonic speeds with lift and drag coefficients approaching those of LFC designs but with much smaller extents and levels of suction.

  19. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  20. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.

    PubMed

    Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel

    2014-09-01

    Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow during exercise without causing pulmonary venous congestion. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.

    PubMed

    Gregory, Shaun D; Schummy, Emma; Pearcy, Mark; Pauls, Jo P; Tansley, Geoff; Fraser, John F; Timms, Daniel

    2015-02-01

    Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm(5) until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm(5) ) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm(5) . Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Independently evolved upper jaw protrusion mechanisms show convergent hydrodynamic function in teleost fishes.

    PubMed

    Staab, Katie Lynn; Holzman, Roi; Hernandez, L Patricia; Wainwright, Peter C

    2012-05-01

    A protrusible upper jaw has independently evolved multiple times within teleosts and has been implicated in the success of two groups in particular: Acanthomorpha and Cypriniformes. We use digital particle image velocimetry (DPIV) to compare suction feeding flow dynamics in a representative of each of these clades: goldfish and bluegill. Using DPIV, we contrast the spatial pattern of flow, the temporal relationship between flow and head kinematics, and the contribution of jaw protrusion to the forces exerted on prey. As expected, the spatial patterns of flow were similar in the two species. However, goldfish were slower to reach maximal kinematic excursions, and were more flexible in the relative timing of jaw protrusion, other jaw movements and suction flows. Goldfish were also able to sustain flow speeds for a prolonged period of time as compared with bluegill, in part because goldfish generate lower peak flow speeds. In both species, jaw protrusion increased the force exerted on the prey. However, slower jaw protrusion in goldfish resulted in less augmentation of suction forces. This difference in force exerted on prey corresponds with differences in trophic niches and feeding behavior of the two species. The bluegill uses powerful suction to capture insect larvae whereas the goldfish uses winnowing to sort through detritus and sediment. The kinethmoid of goldfish may permit jaw protrusion that is independent of lower jaw movement, which could explain the ability of goldfish to decouple suction flows (due to buccal expansion) from upper jaw protrusion. Nevertheless, our results show that jaw protrusion allows both species to augment the force exerted on prey, suggesting that this is a fundamental benefit of jaw protrusion to suction feeders.

  3. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.

    PubMed

    Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel

    2016-09-01

    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Theoretical and Computational Studies of Stability, Transition and Flow Control in High-Speed Flows

    DTIC Science & Technology

    2011-02-22

    A. H. Nayfeh. Nonparallel stability of boundary layers with pressure gradients and suction. Technical Report AGARD - CP -224, 1977. [Squ33] H. B. Squire...only. µ = µr ( T Tr )3/2 Tr + Ts T + Ts , (2.13) 8 K = µcp Pr , (2.14) where µr = 1.7894 × 10−5 Ns/m2, Tr = 288.0 K, Ts = 110.33 K, and cp is the...fraction of species s Cpf = frozen specific heat, cal/g-mole-K Cp ,s = specific heat at constant pressure of species s, cal/g-mole Dij = binary diffusion

  5. STAYLAM: A FORTRAN program for the suction transition analysis of a yawed wing laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Carter, J. E.

    1977-01-01

    A computer program called STAYLAM is presented for the computation of the compressible laminar boundary-layer flow over a yawed infinite wing including distributed suction. This program is restricted to the transonic speed range or less due to the approximate treatment of the compressibility effects. The prescribed suction distribution is permitted to change discontinuously along the chord measured perpendicular to the wing leading edge. Estimates of transition are made by considering leading edge contamination, cross flow instability, and instability of the Tollmien-Schlichting type. A program listing is given in addition to user instructions and a sample case.

  6. Feasibility of generating an artificial burst in a turbulent boundary layer, phase 2

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, Mohamed

    1989-01-01

    Various drag accounts for about half of the total drag on commercial aircraft at subsonic cruise conditions. Two avenues are available to achieve drag reduction: either laminar flow control or turbulence manipulation. The present research deals with the latter approach. The primary objective of Phase 2 research was to investigate experimentally the feasibility of substantially reducing the skin-friction drag in a turbulent boundary layer. The method combines the beneficial effects of suction and a longitudinally ribbed surface. At a sufficiently large spanwise separation, the streamwise grooves act as a nucleation site causing a focusing of low-speed streaks over the peaks. Suction is then applied intermittently through longitudinal slots located at selected locations along those peaks to obliterate the low-speed regions and to prevent bursting. Phase 2 research was divided into two tasks. In the first, selective suction from a single streamwise slot was used to eliminate either a single burst-like event or a periodic train of artificially generated bursts in laminar and turbulent boundary layers that develop on a flat plate towed in a water channel. The results indicate that equivalent values of the suction coefficient as low as 0.0006 were sufficient to eliminate the artificially generated bursts in a laminar boundary layer.

  7. Hydrodynamic modelling of aquatic suction performance and intra-oral pressures: limitations for comparative studies

    PubMed Central

    Van Wassenbergh, Sam; Aerts, Peter; Herrel, Anthony

    2006-01-01

    The magnitude of sub-ambient pressure inside the bucco-pharyngeal cavity of aquatic animals is generally considered a valuable metric of suction feeding performance. However, these pressures do not provide a direct indication of the effect of the suction act on the movement of the prey item. Especially when comparing suction performance of animals with differences in the shape of the expanding bucco-pharyngeal cavity, the link between speed of expansion, water velocity, force exerted on the prey and intra-oral pressure remains obscure. By using mathematical models of the heads of catfishes, a morphologically diverse group of aquatic suction feeders, these relationships were tested. The kinematics of these models were fine-tuned to transport a given prey towards the mouth in the same way. Next, the calculated pressures inside these models were compared. The results show that no simple relationship exists between the amount of generated sub-ambient pressure and the force exerted on the prey during suction feeding, unless animals of the same species are compared. Therefore, for evaluating suction performance in aquatic animals in future studies, the focus should be on the flow velocities in front of the mouth, for which a direct relationship exists with the hydrodynamic force exerted on prey. PMID:16849247

  8. Two-, three-, and four-poster jets in cross flow

    NASA Technical Reports Server (NTRS)

    Vukits, Thomas J.; Sullivan, John P.; Murthy, S. N. B.

    1993-01-01

    In connection with the problems of the ingestion of hot exhaust gases in engines of V/STOL and STOVL aircraft in ground effect, a series of studies have been undertaken. Ground impinging, two- and three-poster jets operating in the presence of cross flow were studied. The current paper is divided into two parts. The first part is a comparison of the low speed, two-, three-, and four-poster jet cases, with respect to the flowfield in the region of interaction between the forward and the jet flows. These include cases with mass balanced inlet suction. An analysis of the inlet entry plane of the low speed two- and three-poster jet cases is also given. In the second part, high speed results for a two jet configuration without inlet suction are given. The results are based on quantitative, marker concentration distributions obtained by digitizing video images.

  9. Instability and Transition of Flow at, and Near, an Attachment-Line: Including Control by Surface Suction

    NASA Technical Reports Server (NTRS)

    Smith, A.; Poll, D. I. A.

    1998-01-01

    Experiments have been performed on an untapered, swept cylinder model in the Cranfield College of Aeronautics 8 ft x 6 ft low-speed wind tunnel to investigate the effect of surface transpiration on the process of relaminarization in the attachment-line boundary layer. Suction coefficients for complete suppression of turbulence were determined as a function of Reynolds number and spanwise distance. The effect of attachment-line suction on the spanwise propagation of gross disturbances emanating from the fuselage-wing junction region was also studied. Finally, the effect of blowing on a laminar attachment-line boundary layer was also considered and excellent agreement was achieved with previous studies.

  10. Closed Loop Active Flow Separation Detection and Control in a Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Braunscheidel, Edward P.; Welch, Gerard E.

    2005-01-01

    Active closed loop flow control was successfully demonstrated on a full annulus of stator vanes in a low speed axial compressor. Two independent methods of detecting separated flow conditions on the vane suction surface were developed. The first technique detects changes in static pressure along the vane suction surface, while the second method monitors variation in the potential field of the downstream rotor. Both methods may feasibly be used in future engines employing embedded flow control technology. In response to the detection of separated conditions, injection along the suction surface of each vane was used. Injected mass flow on the suction surface of stator vanes is known to reduce separation and the resulting limitation on static pressure rise due to lowered diffusion in the vane passage. A control algorithm was developed which provided a proportional response of the injected mass flow to the degree of separation, thereby minimizing the performance penalty on the compressor system.

  11. Boundary-Layer Transition Results from the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    1999-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport (HSCT). Boundary-layer transition data have been obtained on the titanium glove primarily at Mach 2.0 and altitudes of 53,000-55,000 ft. The objectives of this supersonic laminar flow control flight experiment have been to achieve 50- to 60-percent-chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point (Mach 1.9 at an altitude of 50,000 ft). At Mach 2.0 and an altitude of 53,000 ft, which corresponds to a Reynolds number of 22.7 X 10(exp 6), optimum suction levels have allowed long runs of a minimum of 46-percent-chord laminar flow to be achieved. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  12. PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    1998-01-01

    This paper presents measurements of static pressures on the stator vane suction side of a high-speed single stage fan using the technique of pressure sensitive paint (PSP). The paper illustrates development in application of the relatively new experimental technique to the complex environment of internal flows in turbomachines. First, there is a short explanation of the physics of the PSP technique and a discussion of calibration methods for pressure sensitive paint in the turbomachinery environment. A description of the image conversion process follows. The recorded image of the stator vane pressure field is skewed due to the limited optical access and must be converted to the meridional plane projection for comparison with analytical predictions. The experimental results for seven operating conditions along an off-design rotational speed line are shown in a concise form, including performance map points, mindspan static tap pressure distributions, and vane suction side pressure fields. Then, a comparison between static tap and pressure sensitive paint data is discussed. Finally, the paper lists shortcomings of the pressure sensitive paint technology and lessons learned in this high-speed fan application.

  13. Method and apparatus for controlling the solenoid current of a solenoid valve which controls the amount of suction of air in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiuchi, T.; Sakurai, H.

    1988-09-20

    This patent describes an apparatus for controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine. The apparatus consists of: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term (Ifb(n)) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) first determiningmore » and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover means.« less

  14. Method and apparatus for controlling the solenoid current of a solenoid valve which controls the amount of suction of air in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiuchi, T.; Yasuoka, A.

    1988-09-13

    This patent describes apparatus for controlling the solenoid current of a selenoid valve which controls the amount of suction air in an internal combustion engine, the apparatus comprising: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term Ifb(n) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) firstmore » determining and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover.« less

  15. Physics and function of operating room suction.

    PubMed

    Meagher, A P; Hugh, T B; Li, B; Montano, S R

    1991-09-01

    A study was done to evaluate the performance of suction apparatus in the operating room. The investigation was prompted by perceived poor suction performance in a suite of new operating rooms built in accordance with Standards Australia (SA) specifications. SA performance tests were conducted on each of four suction outlets in nine operating rooms. All 36 outlets complied with SA standards for flow-rate (minimum 40 L/min) and occluded negative pressure (ONP; minimum -60 kPa). However, 24 collection units failed to comply with standards (ONP) of -40 kPa achieved in less than 4 s when a 4 L disposable suction apparatus was connected (mean time to ONP: 6.1 s, 95% confidence interval: 4.9, 7.3). When smaller capacity suction jars were substituted, more units met SA standards. The standards therefore need revision to include specification of the capacity of the collecting apparatus. Other factors that were found to degrade suction performance significantly were air leakage and defective shut-off valves. The physical principles involved in operating room suction are described. Surgeons and anaesthetists should understand these principles, and it is recommended that a simple pre-operative check of the suction apparatus should be carried out, as follows: (1) Turn the wall control knob fully on, and disconnect the suction apparatus. The gauge should register zero. (2) Connect the suction jars. If the indicated gauge pressure is in excess of -15 kPa, investigate the equipment for excessive resistance, particularly in the shut-off valve, which should be replaced with a new unit if necessary.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Sound levels in conservative dentistry and endodontics clinic

    PubMed Central

    Dutta, Arindam; Mala, Kundabala; Acharya, Shashi Rashmi

    2013-01-01

    Aim: To evaluate the sound levels generated in dental clinics of conservative dentistry and endodontics. Material and Methods: A decibel-meter with digital readout was used to measure sound levels at different time intervals at the chairside and at the center of the clinic. Minimum and maximum readings during a 3 min interval were recorded. Results: In the post-graduate (PG) clinic, there was significant difference in noise levels between the chairside (66-81 dB[A]) and the center of the clinic (66-67 dB[A]) at certain times. In the under graduate (UG) clinic, noise levels with suction and either high/slow speed handpieces (67-80 dB[A]) were significantly higher than the center of clinic. Suction alone in the UG clinic (63-75 dB[A]) was significantly quieter than in the PG clinic (69-79 dB[A]). Conclusions: (1) Mean sound levels in the working clinics ranged from 63.0 dB[A] to 81.5 dB[A]. These are within the recommended range for dental equipment. (2) With suction and either low/high speed handpiece combination, the PG clinic was significantly noisier than the UG clinic at several time periods. PMID:23716962

  17. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  18. Kinematics of benthic suction feeding in Callichthyidae and Mochokidae, with functional implications for the evolution of food scraping in catfishes.

    PubMed

    Van Wassenbergh, Sam; Lieben, Tim; Herrel, Anthony; Huysentruyt, Frank; Geerinckx, Tom; Adriaens, Dominique; Aerts, Peter

    2009-01-01

    Food scraping has independently evolved twice from suction feeding in the evolution of catfishes: within neotropical Loricarioidea and paleotropical Mochokidae. To gain insight in the evolutionary transitions associated with the evolution towards scraping, we analyzed prey capture kinematics in two species of benthic suction feeders which belong to taxa that are closely related to the scraper lineages (respectively, Corydoras splendens and Synodontis multipunctatus), and compared it to prey capture in a more distantly related, generalist suction feeder (Clarias gariepinus). Simultaneous ventral and lateral view high-speed videos were recorded to quantify the movements of the lower jaw, hyoid, pectoral girdle and neurocranium. Additionally, ellipse modeling was applied to relate head shape differences to buccal expansion kinematics. Similarly to what has been observed in scrapers, rotations of the neurocranium are minimal in the benthic suction feeders, and may consequently have facilitated the evolution of a scraping feeding mechanism. The hypothesis that fish with a more laterally compressed head rely more heavily on lateral expansion of the buccal cavity to generate suction, was confirmed in our sample of catfish species. Since an important contribution of lateral expansion of the head to suction may avoid the need for a strong, ventral depression of the mouth floor during feeding, we hypothesized that this may have allowed a closer association with the substrate in the ancestors of scrapers. However, our hypothesis was not supported by an ancestral state reconstruction, which suggests that scraping probably evolved from sub-terminal mouthed ancestors with dorsoventrally flattened heads.

  19. Passive control of a biventricular assist device with compliant inflow cannulae.

    PubMed

    Gregory, Shaun David; Pearcy, Mark John; Timms, Daniel

    2012-08-01

    Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. [Extendable Cords to Prevent Tumbling of a Suction Device during Craniotomy].

    PubMed

    Shimizu, Satoru; Mochizuki, Takahiro; Osawa, Shigeyuki; Sekiguchi, Tomoko; Koizumi, Hiroyuki; Kumabe, Toshihiro

    2016-02-01

    Suction is necessary during craniotomy, and intraoperative tumbling of the suction device interrupts operative procedures. To avoid this, we developed a technique that would fasten the device to an extendable cord as is used to secure cell phones. We used this technique in more than 300 craniotomies at the specific point of time when the suction device tends to tumble, i. e., during the opening and closure of a wound, which requires frequent instrument exchanges. Extendable cords fastened to the tip of the suction hose using a gift tie were attached to the drapes to secure the suction device next to the operative field. During the operation, the extendable cord followed the suction device manipulations. Consequently, although there was some tension in the cord during its extension, the maneuverability of the suction device was maintained. As the hanging suction device was closer to the operative field than devices stored in conventional pockets, its manipulation was easier and quicker. Upon release, the suction device automatically returned to its original position without distracting the surgeon. Tumbling of the device was prevented, and there were no procedure-related complications. Our simple modification using extendable cords prevented tumbling, avoided unnecessary replacements, and eased the manipulation of a suction device.

  1. Summary of Transition Results From the F-16XL-2 Supersonic Laminar Flow Control Experiment

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.

    2000-01-01

    A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport. Boundary-layer transition data on the titanium glove primarily have been obtained at speeds of Mach 2.0 and altitudes of 15,240-16,764 m (50,000-55,000 ft). The objectives of this flight experiment have been to achieve 0.50-0.60 chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point, a speed of Mach 1.9 at an altitude of 15,240 m (50,000 ft); but rather at a speed of Mach 2.0 and an altitude of 16,154 m (53,000 ft). Laminar flow has been obtained to more than 0.46 wing chord at a Reynolds number of 22.7 x 10(exp 6). A turbulence diverter has been used to initially obtain a laminar boundary layer at the attachment line. A lower-surface shock fence was required to block an inlet shock from the wing leading edge. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.

  2. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  3. Secondary instability of high-speed flows and the influence of wall cooling and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1992-01-01

    The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two dimensional first mode or second mode wave makes the resulting base flow susceptible to a broadband spanwise-periodic three dimensional type of instability. The principal parametric resonance of this instability (subharmonic) was analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical nature of the subharmonic secondary instability are assessed for both a first mode and a second mode primary wave. Results indicate that the secondary subharmonic instability of the insulated wall boundary layer is weakened as Mach number increases. Cooling of the wall destabilizes the secondary subharmonic of a second mode primary wave, but stabilizes it when the primary wave is a first mode. Suction stabilizes the secondary subharmonic at all Mach numbers.

  4. A Report on Deliverable Four: Develop a specifications list for a portable, lightweight prehospital suction device

    DTIC Science & Technology

    reflect it. There are commercially available manual and powered suction devices on the market , and several are specifically advertised for use in...combine to suggest that no device on the market meets even the most basic requirements of being small, lightweight, rugged, and demonstrating adequate

  5. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    NASA Astrophysics Data System (ADS)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.

  6. Development of Wing Inlets

    NASA Technical Reports Server (NTRS)

    Racisz, Stanley F.

    1946-01-01

    Lift, drag, internal flow, and pressure distribution measurements were made on a low-drag airfoil incorporating various air inlet designs. Two leading-edge air inlets are developed which feature higher lift coefficients and critical Mach than the basic airfoil. Higher lift coefficients and critical speeds are obtained for leading half of these inlet sections but because of high suction pressures near exist, slightly lower critical speeds are obtained for the entire inlet section than the basic airfoil.

  7. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  8. Size does matter - Intraspecific variation of feeding mechanics in the crested newt Triturus dobrogicus (Kiritzescu, 1903)

    NASA Astrophysics Data System (ADS)

    Kucera, Florian; Beisser, Christian J.; Lemell, Patrick

    2018-03-01

    Many studies have yet been conducted on suction feeding in aquatic salamander species. Within the Salamandridae, the crested newt Triturus dobrogicus (Kiritzescu, 1903), occurring from the Austrian Danube floodplains to the Danube Delta, was not subject of investigations so far. The present study examines the kinematics of aquatic suction feeding in this species by means of high-speed videography. Recordings of five individuals of different size and sex while feeding on bloodworms were conducted, in order to identify potential discrepancies among individuals and sizes. Five coordinate points were digitized from recordings of prey capture and twelve time- and velocity-determined variables were evaluated. All specimens follow a typical inertial suction feeding process, where rapid hyoid depression expands the buccal cavity. Generated negative pressure within the buccal cavity causes influx of water along with the prey item into the mouth. Results demonstrate higher distance values and angles for gape in individuals with smaller size. In addition, hyoid depression is maximized in smaller individuals. While Triturus dobrogicus resembles a typical inertial suction feeder in its functional morphology, intraspecific differences could be found regarding the correlation of different feeding patterns and body size.

  9. Time resolved measurements of the flow generated by suction feeding fish

    NASA Astrophysics Data System (ADS)

    Day, Steven W.; Higham, Timothy E.; Wainwright, Peter C.

    2007-11-01

    The majority of aquatic vertebrates are suction feeders: by rapidly expanding the mouth cavity they generate a fluid flow outside of their head in order to draw prey into their mouth. In addition to the biological relevance, the generated flow field is interesting fluid mechanically as it incorporates high velocities, is localized in front of the mouth, and is unsteady, typically lasting between 10 and 50 ms. Using manometry and high-speed particle image velocimetry, this is the first study to quantify pressure within and outside the mouth of a feeding fish while simultaneously measuring the velocity field outside the mouth. Measurements with a high temporal (2 ms) and spatial (<1 mm) resolution were made for several feeding events of a single largemouth bass ( Micropterus salmoides). General properties of the flow were evaluated, including the transient velocity field, its relationship to pressure within the mouth and pressure at the prey. We find that throughout the feeding event a relationship exists for the magnitude of fluid speed as a function of distance from the predator mouth that is based on scaling the velocity field according to the size of the mouth opening and the magnitude of fluid speed at the mouth. The velocity field is concentrated within an area extending approximately one mouth diameter from the fish and the generated pressure field is even more local to the mouth aperture. Although peak suction pressures measured inside the mouth were slightly larger than those that were predicted using the equations of motion, we find that these equations give a very accurate prediction of the timing of peak pressure, so long as the unsteady nature of the flow is included.

  10. Time resolved measurements of the flow generated by suction feeding fish

    NASA Astrophysics Data System (ADS)

    Day, Steven W.; Higham, Timothy E.; Wainwright, Peter C.

    The majority of aquatic vertebrates are suction feeders: by rapidly expanding the mouth cavity they generate a fluid flow outside of their head in order to draw prey into their mouth. In addition to the biological relevance, the generated flow field is interesting fluid mechanically as it incorporates high velocities, is localized in front of the mouth, and is unsteady, typically lasting between 10 and 50 ms. Using manometry and high-speed particle image velocimetry, this is the first study to quantify pressure within and outside the mouth of a feeding fish while simultaneously measuring the velocity field outside the mouth. Measurements with a high temporal (2 ms) and spatial (<1 mm) resolution were made for several feeding events of a single largemouth bass (Micropterus salmoides). General properties of the flow were evaluated, including the transient velocity field, its relationship to pressure within the mouth and pressure at the prey. We find that throughout the feeding event a relationship exists for the magnitude of fluid speed as a function of distance from the predator mouth that is based on scaling the velocity field according to the size of the mouth opening and the magnitude of fluid speed at the mouth. The velocity field is concentrated within an area extending approximately one mouth diameter from the fish and the generated pressure field is even more local to the mouth aperture. Although peak suction pressures measured inside the mouth were slightly larger than those that were predicted using the equations of motion, we find that these equations give a very accurate prediction of the timing of peak pressure, so long as the unsteady nature of the flow is included.

  11. Effect of nonzero surface admittance on receptivity and stability of compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The effect of small-amplitude short-scale variations in surface admittance on the acoustic receptivity and stability of two-dimensional compressible boundary layers is examined. In the linearized limit, the two problems are shown to be related both physically and mathematically. This connection between the two problems is used, in conjunction with some previously reported receptivity results, to infer the modification of stability properties due to surface permeability. Numerical calculations are carried out for a self-similar flat-plate boundary layer at subsonic and low supersonic speeds. Variations in mean suction velocity at the perforated admittance surface can also induce receptivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced receptivity on the acoustic-wave orientation is significantly different from that of the receptivity produced via mean suction variation. The admittance-induced receptivity is generally independent of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves for which the receptivity becomes weaker. However, this range of angles is precisely that for which the suction-induced receptivity tends to be large. At supersonic Mach numbers, the admittance-induced receptivity to slow acoustic models is relatively weaker than that in the case of the fast acoustic modes. We also find that purely real values for the surface admittance tend to have a destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The limits on the validity of the linearized approximation are also assessed in one specific case.

  12. Optimization of temperature field of tobacco heat shrink machine

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Yang, Hai; Sun, Dong; Xu, Mingyang

    2018-06-01

    A company currently shrinking machine in the course of the film shrinkage is not compact, uneven temperature, resulting in poor quality of the shrinkage of the surface film. To solve this problem, the simulation and optimization of the temperature field are performed by using the k-epsilon turbulence model and the MRF model in fluent. The simulation results show that after the mesh screen structure is installed at the suction inlet of the centrifugal fan, the suction resistance of the fan can be increased and the eddy current intensity caused by the high-speed rotation of the fan can be improved, so that the internal temperature continuity of the heat shrinkable machine is Stronger.

  13. Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer

    NASA Technical Reports Server (NTRS)

    Bhat, M. K.; Vakili, A. D.; Wu, J. M.

    1990-01-01

    The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.

  14. Experimental and simulation studies on the effect of suction opening orientation on solar vertical chimney

    NASA Astrophysics Data System (ADS)

    Kumar, L. Madan Ananda; Sivaramakrishnan, V.; Premalatha, M.; Vivekanandan, M.

    2017-07-01

    The zero energy building considered is a single storey building in Tiruchirappalli city retrofitted with various green features. This study investigated the effect of a suction opening orientation on a vertical solar chimney (VSC), integrated into a one-storey building. It was designed, manufactured and tested through selection of different suction openings for the entry of air, including right, left, front, back, both right and left and both front and back sides. Genetic algorithm (GA) calculates maximum air flow rate for a building with VSC for better suction opening, in Tiruchirappalli's dry, environmental conditions. GA is a useful technique for finding an improved suction opening specifically in the presence of a host of independent parameters which are large. The obtained results are related to fluid flow temperature distribution along the chimney, mass flow rate and air change per hour. The findings between the GA and the experimental results show sound agreement.

  15. Impulsive Injection for Compressor Stator Separation Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Braunscheidel, Edward P.; Bright, Michelle M.

    2005-01-01

    Flow control using impulsive injection from the suction surface of a stator vane has been applied in a low speed axial compressor. Impulsive injection is shown to significantly reduce separation relative to steady injection for vanes that were induced to separate by an increase in vane stagger angle of 4 degrees. Injected flow was applied to the airfoil suction surface using spanwise slots pitched in the streamwise direction. Injection was limited to the near-hub region, from 10 to 36 percent of span, to affect the dominant loss due to hub leakage flow. Actuation was provided externally using high-speed solenoid valves closely coupled to the vane tip. Variations in injected mass, frequency, and duty cycle are explored. The local corrected total pressure loss across the vane at the lower span region was reduced by over 20 percent. Additionally, low momentum fluid migrating from the hub region toward the tip was effectively suppressed resulting in an overall benefit which reduced corrected area averaged loss through the passage by 4 percent. The injection mass fraction used for impulsive actuation was typically less than 0.1 percent of the compressor through flow.

  16. Instruction Workbook for Tracheostomy Suctioning and Misting in a School Setting.

    ERIC Educational Resources Information Center

    Wolf, Karen McKinney; Roach, Antionette Andolfatto

    The handbook presents California guidelines for training school personnel to provide skilled nursing procedures such as tracheostomy suctioning and misting for students with special health needs. The workbook begins with an overview of the anatomy and function of the respiratory system, specifically breathing mechanics. Part 2 considers the…

  17. Empirical evaluation of pump inlet compliance

    NASA Technical Reports Server (NTRS)

    Ghahremani, F. G.; Rubin, S.

    1972-01-01

    Cavitation compliance was determined experimentally from pulsing tests on a number of rocket turbopumps. The primary test data used for this study are those for the Rocketdyne H-1, F-1, and J-2 oxidizer and fuel pumps employed on Saturn vehicles. The study shows that these data can be correlated by a particular form of nondimensionalization, the key feature of which is to divide the operating cavitation number or suction specific speed by its value at head breakdown. An expression is obtained for a best-fit curve for these data. Another set of test data for the Aerojet LR87 and 91 pumps can be correlated by a somewhat different nondimensional pump performance parameter, specifically by relating the cavitation number to its position between the head breakdown point and the point of zero slope of the head coefficient versus cavitation number. Recommendations are given for the estimation of the cavitation compliance for new designs in the Rocketdyne family of pumps.

  18. Control method for mixed refrigerant based natural gas liquefier

    DOEpatents

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  19. Suction-recirculation device for stabilizing particle flows within a solar powered solid particle receiver

    DOEpatents

    Kolb, Gregory J [Albuquerque, NM

    2012-02-07

    A suction-recirculation device for stabilizing the flow of a curtain of blackened heat absorption particles falling inside of a solar receiver with an open aperture. The curtain of particles absorbs the concentrated heat from a solar mirror array reflected up to the receiver on a solar power tower. External winds entering the receiver at an oblique angle can destabilize the particle curtain and eject particles. A fan and ductwork is located behind the back wall of the receiver and sucks air out through an array of small holes in the back wall. Any entrained particles are separated out by a conventional cyclone device. Then, the air is recirculated back to the top of the receiver by injecting the recycled air through an array of small holes in the receiver's ceiling and upper aperture front wall. Since internal air is recirculated, heat losses are minimized and high receiver efficiency is maintained. Suction-recirculation velocities in the range of 1-5 m/s are sufficient to stabilize the particle curtain against external wind speeds in excess of 10 m/s.

  20. Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants

    PubMed Central

    Poppinga, Simon; Weisskopf, Carmen; Westermeier, Anna Sophia; Masselter, Tom; Speck, Thomas

    2016-01-01

    Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved without the presence of muscles, nerves and technical hinge analogies. The suction traps (bladders) of carnivorous bladderworts (Utricularia spp., Lentibulariaceae, Lamiales) are considered as some of the most elaborate moving structures in the plant kingdom. A complex interplay of morphological and physiological adaptations allows the traps to pump water out of their body and to store elastic energy in the deformed bladder walls. Mechanical stimulation by prey entails opening of the otherwise watertight trapdoor, followed by trap wall relaxation, sucking in of water and prey, and consecutive trapdoor closure. Suction can also occur spontaneously in non-stimulated traps. We review the current state of knowledge about the suction trap mechanism with a focus on architectonically homogeneous traps of aquatic bladderwort species from section Utricularia (the so-called ‘Utricularia vulgaris trap type’). The functional morphology and biomechanics of the traps are described in detail. We discuss open questions and propose promising aspects for future studies on these sophisticated ultra-fast trapping devices. PMID:26602984

  1. A Report on Deliverable Six: Develop a Concept Design for a Ruggedized, Lightweight, Portable, Powered Handheld Suction Device

    DTIC Science & Technology

    reflect it. There are commercially available manual and powered suction devices on the market , and several are specifically advertised for use in...combine to suggest that no device on the market meets even the most basic requirements of being small, lightweight, rugged, and demonstrating adequate

  2. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    NASA Technical Reports Server (NTRS)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  3. An experimental study of heat transfer and film cooling on low aspect ratio turbine nozzles

    NASA Astrophysics Data System (ADS)

    Takeishi, K.; Matsuura, M.; Aoki, S.; Sato, T.

    1989-06-01

    The effects of the three-dimensional flow field on the heat transfer and the film cooling on the endwall, suction and pressure surface of an airfoil were studied using a low speed, fully annular, low aspect h/c = 0.5 vane cascade. The predominant effects that the horseshoe vortex, secondary flow, and nozzle wake increases in the heat transfer and decreases in the film cooling on the suction vane surface and the endwall were clearly demonstrated. In addition, it was demonstrated that secondary flow has little effect on the pressure surface. Pertinent flow visualization of the flow passage was also carried out for better understanding of these complex phenomena. Heat transfer and film cooling on the fully annular vane passage surface is discussed.

  4. Great Bend tornadoes of August 30, 1974

    NASA Technical Reports Server (NTRS)

    Umenhofer, T. A.; Fujita, T. T.; Dundas, R.

    1977-01-01

    Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.

  5. A Report on Deliverable One: Determine Required Performance Characteristics [of Suction] for Management Of Prehospital Combat Casualty Care Injuries

    DTIC Science & Technology

    reflect it. There are commercially available manual and powered suction devices on the market , and several are specifically advertised for use in...combine to suggest that no device on the market meets even the most basic requirements of being small, lightweight, rugged, and demonstrating adequate

  6. Some new tests at the Gottingen laboratory

    NASA Technical Reports Server (NTRS)

    1921-01-01

    The tests at the Gottingen laboratory included: friction tests on a surface treated with omelette, verification tests on the M.V.A. 356 wing, and comparative tests of wing no. 36 at the Eiffel laboratory. The examination of all these experiments leads to the belief that, at large incidences, the speeds registered by the suction manometer of the testing chamber of the Eiffel laboratory wind tunnel are, owing to pressure drop, greater than the actual speeds. Therefore, the values of k(sub x) and k(sub y) measured at the Eiffel laboratory at large incidences are too low.

  7. Pressure measurements on a thick cambered and twisted 58 deg delta wing at high subsonic speeds

    NASA Technical Reports Server (NTRS)

    Chu, Julio; Lamar, John E.

    1987-01-01

    A pressure experiment at high subsonic speeds was conducted by a cambered and twisted thick delta wing at the design condition (Mach number 0.80), as well as at nearby Mach numbers (0.75 and 0.83) and over an angle-of-attack range. Effects of twin vertical tails on the wing pressure measurements were also assessed. Comparisons of detailed theoretical and experimental surface pressures and sectional characteristics for the wing alone are presented. The theoretical codes employed are FLO-57, FLO-28, PAN AIR, and the Vortex Lattice Method-Suction Analogy.

  8. Hydrodynamic Constraints of Suction Feeding in Low Reynolds Numbers, and the Critical Period of Larval Fishes.

    PubMed

    Holzman, Roi; China, Victor; Yaniv, Sarit; Zilka, Miri

    2015-07-01

    Larval fishes suffer prodigious mortality rates, eliminating 99% of the cohort within a few days after their first feeding. Hjort (1914) famously attributed this "critical period" of low survival to larval inability to obtain sufficient food. We discuss recent experimental and modeling work, suggesting that the viscous hydrodynamic regime have marked effects on the mechanism of suction feeding in larval fish. As larvae grow, the size of the gape and associated volume of the mouth increase. At the same time, larvae swim faster and can generate faster suction flows, thus transiting to a hydrodynamic regime of higher Reynolds numbers. This hydrodynamic regime further leads to changes in the spatio-temporal patterns of flow in front of the mouth, and an increasing ability in larger larvae to exert suction forces on the prey. Simultaneously, the increase in swimming speed and the distance from which the prey is attacked result in higher rates of encountering prey by larger (older) larvae. In contrast, during the first few days after feeding commence the lower rates of encounter and success in feeding translate to low feeding rates. We conclude that young larvae experience "hydrodynamic starvation," in which low Reynolds numbers mechanically limit their feeding performance even under high densities of prey. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants.

    PubMed

    Poppinga, Simon; Weisskopf, Carmen; Westermeier, Anna Sophia; Masselter, Tom; Speck, Thomas

    2015-11-24

    Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved without the presence of muscles, nerves and technical hinge analogies. The suction traps (bladders) of carnivorous bladderworts (Utricularia spp., Lentibulariaceae, Lamiales) are considered as some of the most elaborate moving structures in the plant kingdom. A complex interplay of morphological and physiological adaptations allows the traps to pump water out of their body and to store elastic energy in the deformed bladder walls. Mechanical stimulation by prey entails opening of the otherwise watertight trapdoor, followed by trap wall relaxation, sucking in of water and prey, and consecutive trapdoor closure. Suction can also occur spontaneously in non-stimulated traps. We review the current state of knowledge about the suction trap mechanism with a focus on architectonically homogeneous traps of aquatic bladderwort species from section Utricularia (the so-called 'Utricularia vulgaris trap type'). The functional morphology and biomechanics of the traps are described in detail. We discuss open questions and propose promising aspects for future studies on these sophisticated ultra-fast trapping devices. Published by Oxford University Press on behalf of the Annals of Botany Company.

  10. Transport suction apparatus and absorption materials evaluation

    NASA Technical Reports Server (NTRS)

    Krupa, Debra T.; Gosbee, John

    1991-01-01

    The specific objectives were as follows. The effectiveness and function was evaluated of the hand held, manually powered v-vac for suction during microgravity. The function was evaluated of the battery powered laerdal suction unit in microgravity. The two units in control of various types of simulated bodily fluids were compared. Various types of tubing and attachments were evaluated which are required to control the collection of bodily fluids during transport. Various materials were evaluated for absorption of simulated bodily fluids. And potential problems were identified for waste management and containment of secretions and fluids during transport. Test procedures, results, and conclusions are briefly discussed.

  11. Effects of Various Fillet Shapes on a 76/40 Double Delta Wing from Mach 0.18 to 0.7

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Bell, James H.; Gonzalez, Hugo A.; McLachlan, Blair G.

    2003-01-01

    The effects of linear, diamond, and parabolic fillets on a double delta wing were investigated in the NASA Langley 7 x 10 ft High Speed Tunnel from Mach 0.18 to 0.7 and angles of attack from 4 deg. to 42 deg. Force and moment, pneumatic pressures, pressure sensitive paint, and vapor screen flow visualization measurements were used to characterize the flow field and to determine longitudinal forces and moments. The fillets increased lift coefficient and reduced induced drag without significantly affecting pitching moment. Pressure sensitive paint showed the increase in lift is caused by an increase in suction and broadening of the vortex suction footprint. Vapor screen results showed the mixing and coalescing of the strake fillet and wing vortices causes the footprint to broaden.

  12. Research of performance prediction to energy on hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.

    2012-11-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  13. Spinal cord electrophysiology II: extracellular suction electrode fabrication.

    PubMed

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-02-20

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively.

  14. Spinal Cord Electrophysiology II: Extracellular Suction Electrode Fabrication

    PubMed Central

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-01-01

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively. PMID:21372792

  15. Prey capture kinematics and four-bar linkages in the bay pipefish, Syngnathus leptorhynchus.

    PubMed

    Flammang, Brooke E; Ferry-Graham, Lara A; Rinewalt, Christopher; Ardizzone, Daniele; Davis, Chante; Trejo, Tonatiuh

    2009-01-01

    Because of their modified cranial morphology, syngnathid pipefishes have been described as extreme suction feeders. The presumption is that these fishes use their elongate snout much like a pipette in capturing planktonic prey. In this study, we quantify the contribution of suction to the feeding strike and quantitatively describe the prey capture mechanics of the bay pipefish Syngnathus leptorhynchus, focusing specifically on the role of both cranial elevation and snout movement. We used high-speed video to capture feeding sequences from nine individuals feeding on live brine shrimp. Sequences were digitized in order to calculate kinematic variables that could be used to describe prey capture. Prey capture was very rapid, from 2 to 6 ms from the onset of cranial rotation. We found that suction contributed at most about one-eighth as much as ram to the reduction of the distance between predator and prey. This movement of the predator was due almost exclusively to movement of the snout and neurocranium rather than movement of the whole body. The body was positioned ventral and posterior to the prey and the snout was rotated dorsally by as much as 21 degrees, thereby placing the mouth immediately behind the prey for capture. The snout did not follow the identical trajectory as the neurocranium, however, and reached a maximum angle of only about 10 degrees. The snout consists, in part, of elongate suspensorial elements and the linkages among these elements are retained despite changes in shape. Thus, when the neurocranium is rotated, the four-bar linkage that connects this action with hyoid depression simultaneously acts to expand and straighten the snout relative to the neurocranium. We confirm the presence of a four-bar linkage that facilitates these kinematics by couplings between the pectoral girdle, urohyal, hyoid complex, and the neurocranium-suspensorium complex.

  16. Design and performance of a dynaniic gas flux chamber.

    PubMed

    Reichman, Rivka; Rolston, Dennis E

    2002-01-01

    Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.

  17. A novel suction/coagulation integrated probe for achieving better hemostasis: development and clinical use.

    PubMed

    Takahashi, Hidekazu; Haraguchi, Naotsugu; Nishimura, Junichi; Hata, Taishi; Matsuda, Chu; Yamamoto, Hirofumi; Mizushima, Tsunekazu; Mori, Masaki; Doki, Yuichiro; Nakajima, Kiyokazu

    2018-06-01

    Modern electrosurgical tools have a specific coagulation mode called "soft coagulation". However, soft coagulation has not been widely accepted for surgical operations. To optimize the soft coagulation environment, we developed a novel suction device integrated with an electrosurgical probe, called the "Suction ball coagulator" (SBC). In this study, we aimed to optimize the SBC design with a prototyping process involving a bench test and preclinical study; then, we aimed to demonstrate the feasibility, safety, and potential effectiveness of the SBC for laparoscopic surgery in clinical settings. SBC prototyping was performed with a bench test. Device optimization was performed in a preclinical study with a domestic swine bleeding model. Then, SBC was tested in a clinical setting during 17 clinical laparoscopic colorectal surgeries. In the bench tests, two tip hole sizes and patterns showed a good suction capacity. The preclinical study indicated the best tip shape for accuracy. In clinical use, no device-related adverse event was observed. Moreover, the SBC was feasible for prompt hemostasis and blunt dissections. In addition, SBC could evacuate vapors generated by tissue ablation using electroprobe during laparoscopic surgery. We successfully developed a novel, integrated suction/coagulation probe for hemostasis and commercialized it.

  18. Vortical and acoustical mode coupling inside a porous tube with uniform wall suction.

    PubMed

    Jankowskia, T A; Majdalani, J

    2005-06-01

    This paper considers the oscillatory motion of gases inside a long porous tube of the closed-open type. In particular, the focus is placed on describing an analytical solution for the internal acoustico-vortical coupling that arises in the presence of appreciable wall suction. This unsteady field is driven by longitudinal oscillatory waves that are triggered by small unavoidable fluctuations in the wall suction speed. Under the assumption of small amplitude oscillations, the time-dependent governing equations are linearized through a regular perturbation of the dependent variables. Further application of the Helmholtz vector decomposition theorem enables us to discriminate between acoustical and vortical equations. After solving the wave equation for the acoustical contribution, the boundary-driven vortical field is considered. The method of matched-asymptotic expansions is then used to obtain a closed-form solution for the unsteady momentum equation developing from flow decomposition. An exact series expansion is also derived and shown to coincide with the numerical solution for the problem. The numerically verified end results suggest that the asymptotic scheme is capable of providing a sufficiently accurate solution. This is due to the error associated with the matched-asymptotic expansion being smaller than the error introduced in the Navier-Stokes linearization. A basis for comparison is established by examining the evolution of the oscillatory field in both space and time. The corresponding boundary-layer behavior is also characterized over a range of oscillation frequencies and wall suction velocities. In general, the current solution is found to exhibit features that are consistent with the laminar theory of periodic flows. By comparison to the Sexl profile in nonporous tubes, the critically damped solution obtained here exhibits a slightly smaller overshoot and depth of penetration. These features may be attributed to the suction effect that tends to attract the shear layers closer the wall.

  19. Aerodynamic Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  20. Calculation of wing response to gusts and blast waves with vortex lift effect

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex lattice method, unsteady suction analogy and Pade approximant. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  1. Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Teng, S.

    2000-01-01

    The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.

  2. How propeller suction is the dominant factor for ship accidents at shallow water conditions

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan

    2017-04-01

    The laminar flow comes to the fore with the disappearance of the several other directions in the internal displacements in the water current. Due to the dominant speed direction during the straightforward motion of the ship, the underwater hull is associated with the continuous flow of laminar currents. The open marine environment acts as a compressible liquid medium because of the presence of many variables about water volume overflow boundaries where the ship is associated. Layers of water rising over the sea surface due to ship's body and the propeller's water push provides loss of liquid lifting force for the ship. These situations change the well-known sea-floor morphology and reliable depth limits, and lead to probable accidents. If the ship block coefficient for the front side is 0.7 or higher, the "squat" will be more on the bow, because the associated factor "displacement volume" causes to the low-pressure environment due to large and rapid turbulence. Thus, the bow sinks further, which faced with liquid's weaker lift force. The vessels Gerardus Mercator, Queen Elizabeth and Costa Concordia had accidents because of unified reasons of squat, fast water mass displacement by hull push and propeller suction interaction. In the case of water mass displacement from the bow side away, that accident occurred in 2005 by the vessel Gerardus Mercator with excessive longitudinal trim angularity in the shallow water. The vessel Costa Concordia (2012), voluminous water displaced from the rear left side was an important factor because of the sharp manoeuvre of that the captain made before the accident. Observations before the accident indicate that full-speed sharp turn provided listed position for the ship from left (port side) in the direction of travel before colliding and then strike a rock on the sloping side of the seabed. The reason why the ship drifted to the left depends mainly the water discharge occurred at the left side of the hull during left-hand rudder control. Additionally the second water drainage from the shallow ridge area by the propeller's left-directed suction created a shallower environment. Similar situation for example collision of two ships during their side by side forward motions; their positions will be approached and listed to each other more same as downslope movement because of the shared area's water level collapse occur more by two propeller's suction.

  3. Selected Scientific and Technical Contributions of Edward C. Polhamus

    NASA Technical Reports Server (NTRS)

    Luckring, James M.

    2016-01-01

    Edward C. Polhamus joined the NACA Langley Research Center staff in 1944 and was active in a broad range of aerodynamic research related to high-speed aircraft technology, aerodynamic prediction methods, and cryogenic wind-tunnel development. This lecture will focus on his 'leading-edge suction analogy' for the prediction of vortex-lift effects on slender wings. Briefer treatment of his contributions to variable-sweep aircraft and cryogenic wind tunnels is also included.

  4. A biorobotic model of the suction-feeding system in largemouth bass: the roles of motor program speed and hyoid kinematics.

    PubMed

    Kenaley, Christopher P; Lauder, George V

    2016-07-01

    The vast majority of ray-finned fishes capture prey through suction feeding. The basis of this behavior is the generation of subambient pressure through rapid expansion of a highly kinetic skull. Over the last four decades, results from in vivo experiments have elucidated the general relationships between morphological parameters and subambient pressure generation. Until now, however, researchers have been unable to tease apart the discrete contributions of, and complex relationships among, the musculoskeletal elements that support buccal expansion. Fortunately, over the last decade, biorobotic models have gained a foothold in comparative research and show great promise in addressing long-standing questions in vertebrate biomechanics. In this paper, we present BassBot, a biorobotic model of the head of the largemouth bass (Micropterus salmoides). BassBot incorporates a 3D acrylic plastic armature of the neurocranium, maxillary apparatus, lower jaw, hyoid, suspensorium and opercular apparatus. Programming of linear motors permits precise reproduction of live kinematic behaviors including hyoid depression and rotation, premaxillary protrusion, and lateral expansion of the suspensoria. BassBot reproduced faithful kinematic and pressure dynamics relative to live bass. We show that motor program speed has a direct relationship to subambient pressure generation. Like vertebrate muscle, the linear motors that powered kinematics were able to produce larger magnitudes of force at slower velocities and, thus, were able to accelerate linkages more quickly and generate larger magnitudes of subambient pressure. In addition, we demonstrate that disrupting the kinematic behavior of the hyoid interferes with the anterior-to-posterior expansion gradient. This resulted in a significant reduction in subambient pressure generation and pressure impulse of 51% and 64%, respectively. These results reveal the promise biorobotic models have for isolating individual parameters and assessing their role in suction feeding. © 2016. Published by The Company of Biologists Ltd.

  5. Effects of shallow and deep endotracheal tube suctioning on cardiovascular indices in patients in intensive care units.

    PubMed

    Irajpour, Alireza; Abbasinia, Mohammad; Hoseini, Abbas; Kashefi, Parviz

    2014-07-01

    Clearing the endotracheal tube through suctioning should be done to promote oxygenation. Depth of suctioning is one of the variables in this regard. In shallow suctioning method, the catheter passes to the tip of the endotracheal tube, and in deep suctioning method, it passes beyond the tip into the trachea or brunches. This study aimed to evaluate the effect of shallow and deep suctioning methods on cardiovascular indices in patients hospitalized in the intensive care units (ICUs). In this clinical trial, 74 patients were selected among those who had undergone mechanical ventilation in the ICU of Al-Zahra Hospital, Isfahan, Iran using convenience sampling method. The subjects were randomly allocated to shallow and deep suctioning groups. Heart rate (HR) and blood pressure (BP) were measured immediately before and 1, 2, and 3 min after each suctioning. Number of times of suctioning was also noted in both the groups. Data were analyzed using repeated measures analysis of variance (ANOVA), Chi-square and independent t-tests. HR and BP were significantly increased after suctioning in both the groups (P < 0.05). But these changes were not significant between the two groups (P > 0.05). The suctioning count was significantly higher in the shallow suctioning group than in the deep suctioning group. Shallow and deep suctioning were similar in their effects on HR and BP, but shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, in order to prevent complications, nurses are recommended to perform the endotracheal tube suctioning by the deep method.

  6. Comparison the effects of shallow and deep endotracheal tube suctioning on respiratory rate, arterial blood oxygen saturation and number of suctioning in patients hospitalized in the intensive care unit: a randomized controlled trial.

    PubMed

    Abbasinia, Mohammad; Irajpour, Alireza; Babaii, Atye; Shamali, Mehdi; Vahdatnezhad, Jahanbakhsh

    2014-09-01

    Endotracheal tube suctioning is essential for improve oxygenation in the patients undergoing mechanical ventilation. There are two types of shallow and deep endotracheal tube suctioning. This study aimed to evaluate the effect of shallow and deep suctioning methods on respiratory rate (RR), arterial blood oxygen saturation (SpO2) and number of suctioning in patients hospitalized in the intensive care units of Al-Zahra Hospital, Isfahan, Iran. In this randomized controlled trial, 74 patients who hospitalized in the intensive care units of Isfahan Al-Zahra Hospital were randomly allocated to the shallow and deep suctioning groups. RR and SpO2 were measured immediately before, immediately after, 1 and 3 minute after each suctioning. Number of suctioning was also noted in each groups. Data were analyzed using repeated measures analysis of variance (RMANOVA), chi-square and independent t-tests. RR was significantly increased and SpO2 was significantly decreased after each suctioning in the both groups. However, these changes were not significant between the two groups. The numbers of suctioning was significantly higher in the shallow suctioning group than in the deep suctioning group. Conclusion : Shallow and deep suctioning had a similar effect on RR and SpO2. However, shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, it seems that deep endotracheal tube suctioning method can be used to clean the airway with lesser manipulation of the trachea.

  7. Comparison the Effects of Shallow and Deep Endotracheal Tube Suctioning on Respiratory Rate, Arterial Blood Oxygen Saturation and Number of Suctioning in Patients Hospitalized in the Intensive Care Unit: A Randomized Controlled Trial

    PubMed Central

    Abbasinia, Mohammad; Irajpour, Alireza; Babaii, Atye; Shamali, Mehdi; Vahdatnezhad, Jahanbakhsh

    2014-01-01

    Introduction: Endotracheal tube suctioning is essential for improve oxygenation in the patients undergoing mechanical ventilation. There are two types of shallow and deep endotracheal tube suctioning. This study aimed to evaluate the effect of shallow and deep suctioning methods on respiratory rate (RR), arterial blood oxygen saturation (SpO2) and number of suctioning in patients hospitalized in the intensive care units of Al-Zahra Hospital, Isfahan, Iran. Methods: In this randomized controlled trial, 74 patients who hospitalized in the intensive care units of Isfahan Al-Zahra Hospital were randomly allocated to the shallow and deep suctioning groups. RR and SpO2 were measured immediately before, immediately after, 1 and 3 minute after each suctioning. Number of suctioning was also noted in each groups. Data were analyzed using repeated measures analysis of variance (RMANOVA), chi-square and independent t-tests. Results: RR was significantly increased and SpO2 was significantly decreased after each suctioning in the both groups. However, these changes were not significant between the two groups. The numbers of suctioning was significantly higher in the shallow suctioning group than in the deep suctioning group. Conclusion: Shallow and deep suctioning had a similar effect on RR and SpO2. However, shallow suctioning caused further manipulation of patient's trachea than deep suctioning method. Therefore, it seems that deep endotracheal tube suctioning method can be used to clean the airway with lesser manipulation of the trachea. PMID:25276759

  8. Characteristics of Boundary Layer Transition in a Multi-Stage Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Wisler, Dave; Halstead, David E.; Okiishi, Ted

    2007-01-01

    An experimental investigation of boundary layer transition in a multi-stage turbine has been completed using surface-mounted hot-film sensors. Tests were carried out using the two-stage Low Speed Research Turbine of the Aerodynamics Research Laboratory of GE Aircraft Engines. Blading in this facility models current, state-of-the-art low pressure turbine configurations. The instrumentation technique involved arrays of densely-packed hot-film sensors on the surfaces of second stage rotor and nozzle blades. The arrays were located at mid-span on both the suction and pressure surfaces. Boundary layer measurements were acquired over a complete range of relevant Reynolds numbers. Data acquisition capabilities provided means for detailed data interrogation in both time and frequency domains. Data indicate that significant regions of laminar and transitional boundary layer flow exist on the rotor and nozzle suction surfaces. Evidence of relaminarization both near the leading edge of the suction surface and along much of the pressure surface was observed. Measurements also reveal the nature of the turbulent bursts occuring within and between the wake segments convecting through the blade row. The complex character of boundary layer transition resulting from flow unsteadiness due to nozzle/nozzle, rotor/nozzle, and nozzle/rotor wake interactions are elucidated using these data. These measurements underscore the need to provide turbomachinery designers with models of boundary layer transition to facilitate accurate prediction of aerodynamic loss and heat transfer.

  9. Exploring the efficacy of cyclic vs static aspiration in a cerebral thrombectomy model: an initial proof of concept study.

    PubMed

    Simon, Scott; Grey, Casey Paul; Massenzo, Trisha; Simpson, David G; Longest, P Worth

    2014-11-01

    Current technology for endovascular thrombectomy in ischemic stroke utilizes static loading and is successful in approximately 85% of cases. Existing technology uses either static suction (applied via a continuous pump or syringe) or flow arrest with a proximal balloon. In this paper we evaluate the potential of cyclic loading in aspiration thrombectomy. In order to evaluate the efficacy of cyclic aspiration, a model was created using a Penumbra aspiration system, three-way valve and Penumbra 5Max catheter. Synthetic clots were aspirated at different frequencies and using different aspiration mediums. Success or failure of clot removal and time were recorded. All statistical analyses were based on either a one-way or two-way analysis of variance, Holm-Sidak pairwise multiple comparison procedure (α=0.05). Cyclic aspiration outperformed static aspiration in overall clot removal and removal speed (p<0.001). Within cyclic aspiration, Max Hz frequencies (∼6.3 Hz) cleared clots faster than 1 Hz (p<0.001) and 2 Hz (p=0.024). Loading cycle dynamics (specific pressure waveforms) affected speed and overall clearance (p<0.001). Water as the aspiration medium was more effective at clearing clots than air (p=0.019). Cyclic aspiration significantly outperformed static aspiration in speed and overall clearance of synthetic clots in our experimental model. Within cyclic aspiration, efficacy is improved by increasing cycle frequency, utilizing specific pressure cycle waveforms and using water rather than air as the aspiration medium. These findings provide a starting point for altering existing thrombectomy technology or perhaps the development of new technologies with higher recanalization rates. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Viscous peeling with capillary suction

    NASA Astrophysics Data System (ADS)

    Peng, Gunnar; Lister, John

    2014-11-01

    If an elastic tape is stuck to a rigid substrate by a thin film of viscous fluid and then peeled off by pulling at a small angle to the horizontal, then both viscous and capillary forces affect the peeling speed (McEwan and Taylor, 1966). If there is no capillary meniscus (e.g. if the peeling is due to viscous fluid being injected under the tape), then the peeling speed is given by a Cox-Voinov-like law, and is an increasing function of the peeling angle. We show that, with a meniscus present, the effect of the capillary forces is to suck down the tape, reducing the effective peeling angle and hence the peeling speed. When surface tension dominates and the peeling speed tends to zero, the system transitions to a new state whose time-evolution can be described by a system of coupled ordinary differential equations. These asymptotic results are confirmed by numerical calculations. Similar results hold for the peeling-by-bending of elastic beams, with ``angle'' replaced by ``curvature'' (i.e. bending moment).

  11. Digital data acquisition and preliminary instrumentation study for the F-16 laminar flow control vehicle

    NASA Technical Reports Server (NTRS)

    Ostowari, Cyrus

    1992-01-01

    Preliminary studies have shown that maintenance of laminar flow through active boundary-layer control is viable. Current research activity at NASA Langley and NASA Dryden is utilizing the F-16XL-1 research vehicle fitted with a laminar-flow suction glove that is connected to a vacuum manifold in order to create and control laminar flow at supersonic flight speeds. This experimental program has been designed to establish the feasibility of obtaining laminar flow at supersonic speeds with highly swept wing and to provide data for computational fluid dynamics (CFD) code calibration. Flight experiments conducted as supersonic speeds have indicated that it is possible to achieve laminar flow under controlled suction at flight Mach numbers greater than 1. Currently this glove is fitted with a series of pressure belts and flush mounted hot film sensors for the purpose of determining the pressure distributions and the extent of laminar flow region past the stagnation point. The present mode of data acquisition relies on out-dated on board multi-channel FM analogue tape recorder system. At the end of each flight, the analogue data is digitized through a long laborious process and then analyzed. It is proposed to replace this outdated system with an on board state-of-the-art digital data acquisition system capable of a through put rate of up to 1 MegaHertz. The purpose of this study was three-fold: (1) to develop a simple algorithm for acquiring data via 2 analogue-to-digital convertor boards simultaneously (total of 32 channels); (2) to interface hot-film/wire anemometry instrumentation with a PCAT type computer; and (3) to characterize the frequency response of a flush mounted film sensor. A brief description of each of the above tasks along with recommendations are given.

  12. Tracheal Suctioning Improves Gas Exchange but not Hemodynamics in Asphyxiated Lambs with Meconium Aspiration

    PubMed Central

    Lakshminrusimha, Satyan; Mathew, Bobby; Nair, Jayasree; Gugino, Sylvia F.; Koenigsknecht, Carmon; Rawat, Munmun; Nielsen, Lori; Swartz, Daniel D.

    2014-01-01

    Background Current neonatal resuscitation guidelines recommend tracheal suctioning of non-vigorous neonates born through meconium stained amniotic fluid. Methods We evaluated the effect of tracheal suctioning at birth in 29 lambs with asphyxia induced by cord occlusion and meconium aspiration during gasping. Results Tracheal suctioning at birth (n=15) decreased amount of meconium in distal airways (53±29 particles/mm2 lung area) compared to no-suction (499±109 particles/mm2, n=14, p<0.001). Three lambs in the suction group had cardiac arrest during suctioning requiring chest compressions and epinephrine. Onset of ventilation was delayed in the suction group (146±11 vs. 47±3 sec in no-suction group, p=0.005). There was no difference in pulmonary blood flow, carotid blood flow, pulmonary or systemic blood pressure between the two groups. Left atrial pressure was significantly higher in the suction group. Tracheal suctioning resulted in higher PaO2/FiO2 levels (122±21 vs. 78±10 mmHg) and ventilator efficiency index (0.3±0.05 vs.0.16±0.03). Two lambs in the no-suction group required inhaled NO. Lung 3-nitrotyrosine levels were higher in the suction group (0.65±0.03 ng/μg protein) compared to the no-suction group (0.47 ± 0.06). Conclusion Tracheal suctioning improves oxygenation and ventilation. Suctioning does not improve pulmonary/systemic hemodynamics or oxidative stress in an ovine model of acute meconium aspiration with asphyxia. PMID:25406897

  13. Application of Laminar Flow Control Technology to Long-Range Transport Design

    NASA Technical Reports Server (NTRS)

    Gratzer, L. B.; George-Falvy, D.

    1978-01-01

    The impact of laminar flow control (LFC) technology on aircraft structural design concepts and systems was discussed and the corresponding benefits were shown in terms of performance and fuel economy. Specific topics discussed include: (1) recent advances in laminar boundary layer development and stability analysis techniques in terms of suction requirements and wing suction surface design; (2) validation of theory and realistic simulation of disturbances and off-design conditions by wind tunnel testing; (3) compatibility of aerodynamic design of airfoils and wings with LFC requirements; (4) structural alternatives involving advanced alloys or composites in combinations made possible by advanced materials processing and manufacturing techniques; (5) addition of suction compressor and drive units and their location on the aircraft; and (6) problems associated with operation of LFC aircraft, including accumulation of insects at low altitudes and environmental considerations.

  14. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  15. Temporal pattern of soil matric suction in the unsaturated soil slope under different forest cover

    NASA Astrophysics Data System (ADS)

    Hayati, Elyas; Abdi, Ehsan; Mohseni Saravi, Mohsen; Nieber, John; Majnounian, Baris; Chirico, Giovanni

    2017-04-01

    In the vadose zone, usually, soils experience high matric suction during dry periods which results in a significant additional soil strength component (i.e., apparent cohesion) and thus plays a crucial role in the stability of unsaturated soil slopes. But, in the wet periods, when rain-water infiltrates into the soil, the matric suction of the soil dissipates partially or completely. It is a well-understood concept that vegetation can modify the hillslope hydrology and subsequent stability conditions by increasing soil matric suction through both interception of rainfall and depletion of soil water content via transpiration. Anthropogenic pressures, particularly clear-cutting and deforestation, affect many hydro-geomorphological processes including catchment and hillslope hydrology and stability. However, quantifying the changes in soil hydrologic conditions and the resulted stability of slopes due to these degrading activities remained an unresolved problem. To address this gap, a continuous measurement of soil water dynamics has been conducted at two adjacent hillslopes (one forested hillslope and one degraded hillslope) using PR2/6 profile probe for a 9-month period of time to demonstrate the forest cover-specific influence on the hillslope hydrology and stability during different seasons. The results have been then presented in terms of estimated soil matric suction to facilitate analyzing the resulted stability states due to the changes in soil water balance with time in the two studied hillslopes. The data were tested to check whether there are any differences between the forested and degraded hillslopes in terms of soil matric suction and augmented soil cohesion during different seasons. Finally, the response of soil hydrologic condition and the resulted slope stability for the 9-month period were analyzed and discussed for the different hillslopes.

  16. Overcoming the problem of residual microbial contamination in dental suction units left by conventional disinfection using novel single component suction handpieces in combination with automated flood disinfection.

    PubMed

    Boyle, M A; O'Donnell, M J; Russell, R J; Galvin, N; Swan, J; Coleman, D C

    2015-10-01

    Decontaminating dental chair unit (DCU) suction systems in a convenient, safe and effective manner is problematic. This study aimed to identify and quantify the extent of the problems using 25 DCUs, methodically eliminate these problems and develop an efficient approach for reliable, effective, automated disinfection. DCU suction system residual contamination by environmental and human-derived bacteria was evaluated by microbiological culture following standard aspiration disinfection with a quaternary ammonium disinfectant or alternatively, a novel flooding approach to disinfection. Disinfection of multicomponent suction handpieces, assembled and disassembled, was also studied. A prototype manual and a novel automated Suction Tube Cleaning System (STCS) were developed and tested, as were novel single component suction handpieces. Standard aspiration disinfection consistently failed to decontaminate DCU suction systems effectively. Semi-confluent bacterial growth (101-500 colony forming units (CFU) per culture plate) was recovered from up to 60% of suction filter housings and from up to 19% of high and 37% of low volume suction hoses. Manual and automated flood disinfection of DCU suction systems reduced this dramatically (ranges for filter cage and high and low volume hoses of 0-22, 0-16 and 0-14CFU/plate, respectively) (P<0.0001). Multicomponent suction handpieces could not be adequately disinfected without prior removal and disassembly. Novel single component handpieces, allowed their effective disinfection in situ using the STCS, which virtually eliminated contamination from the entire suction system. Flood disinfection of DCU suction systems and single component handpieces radically improves disinfection efficacy and considerably reduces potential cross-infection and cross-contamination risks. DCU suction systems become heavily contaminated during use. Conventional disinfection does not adequately control this. Furthermore, multicomponent suction handpieces cannot be adequately disinfected without disassembly, which is costly in time, staff and resources. The automated STCS DCU suction disinfection system used with single component handpieces provides an effective solution. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Investigation of aerodynamic characteristics of subsonic wings

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Frink, N. T.

    1979-01-01

    An analytical strake design procedure is investigated. A numerical solution to the governing strake design equation is used to generate a series of strakes which are tested in a water tunnel to study their vortex breakdown characteristics. The strakes are scaled for use on a half-scale model of the NASA-LaRC general research fuselage with a 44 degrees trapezoidal wing. An analytical solution to the governing design equation is obtained. The strake design procedure relates the potential-flow leading-edge suction and pressure distributions to vortex stability. Several suction distributions are studied and those which are more triangular and peak near the tip generate strakes that reach higher angles of attack before vortex breakdown occurs at the wing trailing edge. For the same suction distribution, a conical rather than three dimensional pressure specification results in a better strake shape as judged from its vortex breakdown characteristics.

  18. Discharge of thoracic patients on portable digital suction: Is it cost-effective?

    PubMed

    Southey, Dawn; Pullinger, Diane; Loggos, Spiros; Kumari, Nelam; Lengyel, Emma; Morgan, Ian; Yiu, Patrick; Nandi, Jayanta; Luckraz, Heyman

    2015-09-01

    A portable suction drainage device for patients undergoing thoracic surgical procedures was introduced into our service in January 2010. Patients who met strict discharge criteria were allowed to continue their treatment at home with the device. They were monitored in a designated follow-up clinic. Data were collected to identify the impact of this service in relation to the duration of follow-up required, bed-days saved, and potential cost/benefits. All patients who underwent a thoracic procedure from March 2012 to April 2014 and required suction postoperatively for air leak were included in the study. Patients were identified as suitable according to the discharge criteria. Data regarding patient demographics were collected prospectively on the thoracic database, and data on the drainage device were logged in a specific data sheet. Visits to the follow-up clinic were also recorded. During the study period, 50 patients stayed a total 1125 days on the portable suction system. Twenty were discharged home, equating to 772 bed-days saved (GBP 270,000 cost-saving). Clinic attendance totalled 162 visits (GBP 24,300 cost reimbursement for attendance). Six (30%) patients were readmitted on 9 occasions due to device malfunction or inability to cope at home. Careful identification of patients suitable for discharge with a portable suction device achieved a significant cost-saving and freed hospital beds, thus allowing increased surgical activity. Patients were also able to be cared for within their home environment and maintain their quality of life. © The Author(s) 2015.

  19. Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps.

    PubMed

    Ng, Boon C; Smith, Peter A; Nestler, Frank; Timms, Daniel; Cohn, William E; Lim, Einly

    2017-03-01

    The successful clinical applicability of rotary left ventricular assist devices (LVADs) has led to research interest in devising a total artificial heart (TAH) using two rotary blood pumps (RBPs). The major challenge when using two separately controlled LVADs for TAH support is the difficulty in maintaining the balance between pulmonary and systemic blood flows. In this study, a starling-like controller (SLC) hybridized with an adaptive mechanism was developed for a dual rotary LVAD TAH. The incorporation of the adaptive mechanism was intended not only to minimize the risk of pulmonary congestion and atrial suction but also to match cardiac demand. A comparative assessment was performed between the proposed adaptive starling-like controller (A-SLC) and a conventional SLC as well as a constant speed controller. The performance of all controllers was evaluated by subjecting them to three simulated scenarios [rest, exercise, head up tilt (HUT)] using a mock circulation loop. The overall results showed that A-SLC was superior in matching pump flow to cardiac demand without causing hemodynamic instabilities. In contrast, improper flow regulation by the SLC resulted in pulmonary congestion during exercise. From resting supine to HUT, overpumping of the RBPs at fixed speed (FS) caused atrial suction, whereas implementation of SLC resulted in insufficient flow. The comparative study signified the potential of the proposed A-SLC for future TAH implementation particularly among outpatients, who are susceptible to variety of clinical scenarios.

  20. Fiber optic suctioning of urinary stone phantoms during laser lithotripsy

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-03-01

    Fiber optic attraction of urinary stones during laser lithotripsy has been previously observed, and this phenomenon may potentially be exploited to pull stones inside the urinary tract without mechanical grasping tools, thus saving the urologist valuable time and space in the ureteroscope's single working channel. In this study, Thulium fiber laser (TFL) high-pulse-rate/low-pulse-energy operation and Holmium:YAG low-pulse-rate/high-pulse-energy operation are compared for fiber optic "suctioning" of Plaster-of-Paris stone phantoms. A TFL with wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10-350 Hz, and Holmium laser with wavelength of 2120 nm, pulse energy of 35-360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz were tested using 270-μm-core fibers. A peak "pull" speed of 2.5 mm/s was measured for both TFL (35 mJ and 150-250 Hz) and Holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber optic suctioning of urinary stone phantoms is feasible for both lasers. However, TFL operation at high-pulse-rates/low-pulse-energies provides faster, smoother stone pulling than Holmium operation at low-pulserates/ high-pulse-energies. After further study, this method may be used to manipulate urinary stones in the clinic.

  1. Modulation of shark prey capture kinematics in response to sensory deprivation.

    PubMed

    Gardiner, Jayne M; Atema, Jelle; Hueter, Robert E; Motta, Philip J

    2017-02-01

    The ability of predators to modulate prey capture in response to the size, location, and behavior of prey is critical to successful feeding on a variety of prey types. Modulating in response to changes in sensory information may be critical to successful foraging in a variety of environments. Three shark species with different feeding morphologies and behaviors were filmed using high-speed videography while capturing live prey: the ram-feeding blacktip shark, the ram-biting bonnethead, and the suction-feeding nurse shark. Sharks were examined intact and after sensory information was blocked (olfaction, vision, mechanoreception, and electroreception, alone and in combination), to elucidate the contribution of the senses to the kinematics of prey capture. In response to sensory deprivation, the blacktip shark demonstrated the greatest amount of modulation, followed by the nurse shark. In the absence of olfaction, blacktip sharks open the jaws slowly, suggestive of less motivation. Without lateral line cues, blacktip sharks capture prey from greater horizontal angles using increased ram. When visual cues are absent, blacktip sharks elevate the head earlier and to a greater degree, allowing them to overcome imprecise position of the prey relative to the mouth, and capture prey using decreased ram, while suction remains unchanged. When visual cues are absent, nurse sharks open the mouth wider, extend the labial cartilages further, and increase suction while simultaneously decreasing ram. Unlike some bony fish, neither species switches feeding modalities (i.e. from ram to suction or vice versa). Bonnetheads failed to open the mouth when electrosensory cues were blocked, but otherwise little to no modulation was found in this species. These results suggest that prey capture may be less plastic in elasmobranchs than in bony fishes, possibly due to anatomical differences, and that the ability to modulate feeding kinematics in response to available sensory information varies by species, rather than by feeding modality. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Pilot Study Comparing Closed Versus Open Tracheal Suctioning in Postoperative Neonates and Infants With Complex Congenital Heart Disease.

    PubMed

    Tume, Lyvonne N; Baines, Paul B; Guerrero, Rafael; Hurley, Margaret A; Johnson, Robert; Kalantre, Atul; Ramaraj, Ram; Ritson, Paul C; Walsh, Laura; Arnold, Philip D

    2017-07-01

    To determine the hemodynamic effect of tracheal suction method in the first 36 hours after high-risk infant heart surgery on the PICU and to compare open and closed suctioning techniques. Pilot randomized crossover study. Single PICU in United Kingdom. Infants undergoing surgical palliation with Norwood Sano, modified Blalock-Taussig shunt, or pulmonary artery banding in the first 36 hours postoperatively. Infants were randomized to receive open or closed (in-line) tracheal suctioning either for their first or second study tracheal suction in the first 36 hours postoperatively. Twenty-four infants were enrolled over 18 months, 11 after modified Blalock-Taussig shunt, seven after Norwood Sano, and six after pulmonary artery banding. Thirteen patients received the open suction method first followed by the closed suction method second, and 11 patients received the closed suction method first followed by the open suction method second in the first 36 hours after their surgery. There were statistically significant larger changes in heart rate (p = 0.002), systolic blood pressure (p = 0.022), diastolic blood pressure (p = 0.009), mean blood pressure (p = 0.007), and arterial saturation (p = 0.040) using the open suction method, compared with closed suctioning, although none were clinically significant (defined as requiring any intervention). There were no clinically significant differences between closed and open tracheal suction methods; however, there were statistically significant greater changes in some hemodynamic variables with open tracheal suctioning, suggesting that closed technique may be safer in children with more precarious physiology.

  3. F-16XL Ship #2 in hangar for Laminar Flow Glove mounting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's two-seat F-16XL research aircraft is shown in the modification hangar at the Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently concluded a 13 month-long, 45-flight research program which investigated drawing off a small portion of the boundary-layer air in order to provide laminar -- or smooth -- flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future high-speed aircraft in developing a more efficient civil transport.

  4. F-16XL Ship #2 Laminar Flow Glove mounting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's two-seat F-16XL research aircraft is shown in the modification hangar at NASA's Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently carried out a 13-month-long, 45-flight research program which investigated drawing off a small part of the boundary-layer air in order to provide laminar--or smooth--flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future aircraft in developing a more efficient high-speed civil transport.

  5. Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility

    NASA Technical Reports Server (NTRS)

    Mcdevitt, J. B.; Okuno, A. F.

    1985-01-01

    The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.

  6. Proximal suction tracheotomy tube reduces aspiration volume.

    PubMed

    Coffman, Heather M S; Rees, Catherine J; Sievers, Ann E F; Belafsky, Peter C

    2008-04-01

    Conventional cuffed tracheotomy tubes do not prevent aspiration of secretions. Aspiration of saliva may be decreased with the use of a subglottic suction port. Prospective. Shiley Disposable Cuffed Tracheotomy (DCT) tubes sizes 4, 6, and 8 (Tyco Healthcare, Pleasanton, CA) were compared to Portex Blue Line Ultra Suctionaid (BLUS) tracheotomy tubes sizes 6, 7, and 8 (Fig 1; Smiths Medical, Watford, UK). All tubes were tested in a simulated tracheal model using 10 cc of human saliva with no suction, intermittent suction, and constant suction (15 minutes). There was a significant decrease in aspirate between the larger Shiley and BLUS tubes with intermittent suction (mean 8.38 mL Shiley 6 vs 1.60 mL BLUS 7; 8.50 mL Shiley 8 vs 2.80 mL BLUS 8). There was a significant decrease in aspirate between all sizes of Shiley and BLUS tubes with continuous suction. For BLUS 7 and 8, there was a significant difference between intermittent suction (mean, 1.60 mL, 2.80 mL, respectively) and continuous suction (mean, 0.20 mL, 0.60 mL respectively). Shiley and BLUS without suction were equivalent. Subglottic suction tracheotomy tubes reduce the risk of aspiration beyond the cuff in a bench-top model.

  7. F-16XL Ship #2 during last flight viewed from below showing shock fence on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A special 'shock fence' installed beneath the leading edge of the left wing is visible in this underside aerial view of NASA's F-16XL #2 research aircraft. The small structure assisted researchers in NASA's Supersonic Laminar Flow Control (SLFC) program in controlling the shock wave coming off the F-16XL's engine air inlet when the craft flew at speeds above Mach 1, or the speed of sound. The two-seat F-16XL, one of two 'XLs' flown by NASA's Drdyen Flight Research Center, Edwards, California, flew 45 missions comprising over 90 flight hours during the SLFC project, much of it at supersonic speeds up to Mach 2 and altitudes up to 55,000 feet. The project demonstrated that laminar -- or smooth -- airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  8. Method for maintaining precise suction strip porosities

    NASA Technical Reports Server (NTRS)

    Gallimore, Frank H. (Inventor)

    1989-01-01

    This invention relates to a masking method generally and, more particularly to a method of masking perforated titanium sheets having laminar control suction strips. As illustrated in the drawings, a nonaerodynamic surface of a perforated sheet has alternating suction strip areas and bonding land areas. Suction strip tapes overlie the bonding land areas during application of a masking material to an upper surface of the suction strip tapes. Prior to bonding the perforated sheet to a composite structure, the bonding land tapes are removed. The entire opposite aerodynamic surface is masked with tape before bonding. This invention provides a precise control of suction strip porosities by ensuring that no chemicals penetrate the suction strip areas during bonding.

  9. Massive aspiration past the tracheal tube cuff caused by closed tracheal suction system.

    PubMed

    Dave, Mital H; Frotzler, Angela; Madjdpour, Caveh; Koepfer, Nelly; Weiss, Markus

    2011-01-01

    Aspiration past the tracheal tube cuff has been recognized to be a risk factor for the development of ventilator-associated pneumonia (VAP). This study investigated the effect of closed tracheal suctioning on aspiration of fluid past the tracheal tube cuff in an in vitro benchtop model. High-volume low pressure tube cuffs of 7.5 mm internal diameter (ID) were placed in a 22 mm ID artificial trachea connected to a test lung. Positive pressure ventilation (PPV) with 15 cm H₂O peak inspiratory pressure and 5 cm H₂O positive end-expiratory pressure (PEEP) was used. A closed tracheal suction system (CTSS) catheter (size 14Fr) was attached to the tracheal tube and suction was performed for 5, 10, 15, or 20 seconds under 200 or 300 cm H₂O suction pressures. Amount of fluid (mL) aspirated along the tube cuff and the airway pressure changes were recorded for each suction procedure. Fluid aspiration during different suction conditions was compared using Kruskal-Wallis and Mann-Whitney test (Bonferroni correction [α = .01]). During 10, 15, and 20 seconds suction, airway pressure consistently dropped down to -8 to -13 cm H₂O (P < .001) from the preset level. Fluid aspiration was never observed under PPV + PEEP but occurred always during suctioning. Aspiration along the tube cuff was higher with -300 cm H₂O than with -200 cm H₂O suction pressure (P < .001) and was much more during 15 and 20 seconds suction time as compared to 5 seconds (P < .001). Massive aspiration of fluid occurs along the tracheal tube cuff during suction with the closed tracheal suction system. © SAGE Publications 2011.

  10. SST Technology Follow-On Program - Phase 2. Noise Suppressor/Nozzle Development. Volume 9. Performance Technology - Analysis of the Low Speed Performance of Multitube Suppressor/Ejector Nozzles (0-167 kn)

    DTIC Science & Technology

    1975-03-01

    Layer Suction 18 Temperature and Pressure Profile at Charging Station |9 Roiind-Corivergent Reference Nozzle 20 Elliptical Ramps 21 37-Tube...between plumes of the jets in the outer row of a suppressor Homulary layer Discharge coelticient, accounting for temperature induced no/./Ie area...tunnel floor. The suppressor air tlow rate was measured with an A.S.M.H. long-radius flow nozzle. The boundary layer ihickness at the ejector inlet

  11. Suction-based grasping tool for removal of regular- and irregular-shaped intraocular foreign bodies.

    PubMed

    Erlanger, Michael S; Velez-Montoya, Raul; Mackenzie, Douglas; Olson, Jeffrey L

    2013-01-01

    To describe a suction-based grasping tool for the surgical removal of irregular-shaped and nonferromagnetic intraocular foreign bodies. A surgical tool with suction capabilities, consisting of a stainless steel shaft with a plastic handle and a customizable and interchangeable suction tip, was designed in order to better engage and manipulate irregular-shaped in-traocular foreign bodies of various sizes and physical properties. The maximal suction force and surgical capabilities were assessed in the laboratory and on a cadaveric eye vitrectomy model. The suction force of the water-tight seal between the intraocular foreign body and the suction tip was estimated to be approximately 40 MN. During an open-sky vitrectomy in a porcine model, the device was successful in engaging and firmly securing foreign bodies of different sizes and shapes. The suction-based grasping tool enables removal of irregular-shaped and nonferromagnetic foreign bodies. Copyright 2013, SLACK Incorporated.

  12. Conceptual design for a laminar-flying-wing aircraft

    NASA Astrophysics Data System (ADS)

    Saeed, T. I.

    The laminar-flying-wing aircraft appears to be an attractive long-term prospect for reducing the environmental impact of commercial aviation. In assessing its potential, a relatively straightforward initial step is the conceptual design of a version with restricted sweep angle. Such a design is the topic of this thesis. Subject to constraints, this research aims to; provide insight into the parameters affecting practical laminar-flow-control suction power requirements; identify a viable basic design specification; and, on the basis of this, an assessment of the fuel efficiency through a detailed conceptual design study. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly-loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, it is found that the pressure drop from the aerofoil surface to the pump collector ducts determines the power penalty. To identify the viable basic design specification, a high-level exploration of the laminar flying wing design space is performed. The characteristics of the design are assessed as a function of three parameters: thickness-to-chord ratio, wingspan, and unit Reynolds number. A feasible specification, with 20% thickness-to-chord, 80 m span and a unit Reynolds number of 8 x 106 m-1, is identified; it corresponds to a 187 tonne aircraft which cruises at Mach 0.67 and altitude 22,500 ft, with lift coefficient 0.14. On the basis of this specification, a detailed conceptual design is undertaken. A 220-passenger laminar-flying-wing concept, propelled by three turboprop engines, with a cruise range of 9000 km is developed. The laminar flying wing proposed in this thesis falls short of the performance improvements expected of the concept, and is not worth the development effort.

  13. Numerical simulation on the cavitation of waterjet propulsion pump

    NASA Astrophysics Data System (ADS)

    Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.

    2016-05-01

    Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles is about 40% in the suction surface of blade. It means that the critical point of cavitation of pump system is not the accrue point of install cavitation but cavitation has been developed to a certain stage.

  14. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    NASA Technical Reports Server (NTRS)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  15. Reduction of acoustic disturbances in the test section of supersonic wind tunnels by laminarizing their nozzle and test section wall boundary layers by means of suction

    NASA Technical Reports Server (NTRS)

    Pfenninger, W.; Syberg, J.

    1974-01-01

    The feasibility of quiet, suction laminarized, high Reynolds number (Re) supersonic wind tunnel nozzles was studied. According to nozzle wall boundary layer development and stability studies, relatively weak area suction can prevent amplified nozzle wall TS (Tollmien-Schlichting) boundary layer oscillations. Stronger suction is needed in and shortly upstream of the supersonic concave curvature nozzle area to avoid transition due to amplified TG (Taylor-Goertler) vortices. To control TG instability, moderately rapid and slow expansion nozzles require smaller total suction rates than rapid expansion nozzles, at the cost of larger nozzle length Re and increased TS disturbances. Test section mean flow irregularities can be minimized with suction through longitudinal or highly swept slots (swept behind local Mach cone) as well as finely perforated surfaces. Longitudinal slot suction is optimized when the suction-induced crossflow velocity increases linearly with surface distance from the slot attachment line toward the slot (through suitable slot geometry). Suction in supersonic blowdown tunnels may be operated by one or several individual vacuum spheres.

  16. Multi-objective shape optimization of runner blade for Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  17. Flexible endoscopes: structure and function. The suction and biopsy channel.

    PubMed

    Holland, P

    2001-01-01

    Flexible endoscopes are complex medical instruments that are easily damaged. To maintain the flexible endoscope in optimum working condition, the user must have a thorough understanding of the structure and function of the instrument. This is the second in a series of articles presenting an in-depth look at the care and handling of the flexible endoscope. The first article discussed the air and water system. This article will focus specifically on the suction and biopsy channel system. The flexible endoscope is constructed of several systems that operate simultaneously to produce a highly technical, yet effective diagnostic and therapeutic medical device. These systems include the air and water system, the suction or operating channel system, the mechanical system, the endoscopic retrograde cholangiopancreatography (ERCP) elevator system, the optical system, and the electrical system. A review of the internal and external structure of the flexible endoscope and the functions of the channel system, including infection control issues, potential problems and evaluation, and prevention of minor problems to avoid expensive repairs, will be addressed.

  18. Initial design of a novel suction enteroscope for endoscopic locomotion in the small bowel (with video).

    PubMed

    Wagh, Mihir S; Montane, Roberto

    2012-02-01

    The upper GI tract and the colon are readily accessible endoscopically, but the small intestine is relatively difficult to evaluate. To demonstrate the feasibility of using suction as a means of locomotion and to assess the initial design of a suction enteroscope. Feasibility study. Animal laboratory. Various prototype suction devices designed in our laboratory were tested in swine small intestine in a force test station. For in vivo experiments in live anesthetized animals, two suction devices (1 fixed tip and 1 movable tip) were attached to the outside of the endoscope. By creating suction in the fixed tip, the endoscope was anchored while the movable tip was advanced. Suction was then applied to the extended tip to attach it to the distal bowel. Suction on the fixed tip was then released and the movable tip with suction pulled back, resulting in advancement of the endoscope. These steps were sequentially repeated. Intestinal segments were sent for pathologic assessment after testing. Force generated ranged from 0.278 to 4.74 N with 64.3 to 88 kPa vacuum pressure. A linear relationship was seen between the pull force and vacuum pressures and tip surface area. During in vivo experiments, the endoscope was advanced in 25-cm segmental increments with sequential suction-and-release maneuvers. No significant bowel trauma was seen on pathology and necropsy. The enteroscopy system requires further refinement. A novel suction enteroscope was designed and tested. Suction tip characteristics played a critical role impacting the functionality of this enteroscopy system. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  19. The effect of open and closed endotracheal tube suctioning system on respiratory parameters of infants undergoing mechanical ventilation

    PubMed Central

    Taheri, Parvin; Asgari, Narges; Mohammadizadeh, Majid; Golchin, Mehri

    2012-01-01

    Aims: Mechanical ventilation is used for some infants in neonatal intensive care units (NICU) due to many physiological and clinical causes. Since these patients have endotracheal tubes, cleaning and keeping the airways open through suctioning should be done to increase oxygenation. This study aimed to evaluate effect of open and closed suctioning methods on respiratory parameters of infants undergoing mechanical ventilation. Materials and Methods: In this crossover clinical trial, 44 infants were selected among those undergone mechanical ventilation in NICU of Isfahan's Al-Zahra Hospital using convenience sampling method. The subjects were randomly divided into two groups. In the first group, open suctioning was carried out and after three hours of cleaning, closed suctioning was done. In the second group, closed suctioning was firstly done and following three hours of cleaning, open suctioning was implemented. Respiratory rate (RR) and percentage of arterial blood oxygen saturation was measured before, during and after each type of suctioning. Data were analyzed using repeated measures ANOVA and independent student's t-test. Findings: There was a significant difference between mean respiratory rate and arterial blood oxygen saturation in infants before, during and after the closed and open suctioning. The percentage of arterial blood oxygen saturation had a significant reduction in open method compared to closed method during suctioning and immediately after it. RR three minutes after suctioning showed a significant reduction in both steps in open method compared to closed method. Conclusions: Close method caused fewer changes in hemodynamic status of infants. Therefore, in order to prevent respiratory complications in infants, nurses are recommended to perform the endotracheal tube suctioning by closed method. PMID:23493041

  20. A Report on Deliverable Five: Evaluate Current Commercially Available Suction Pump Devices for Use in Prehospital Combat Care

    DTIC Science & Technology

    Develop a consumer-style report for currently available suction pump devices on the market . List parameters such as suction flow rate, pressure...evaluate whether suction devices that are currently on the market meet these requirements.

  1. Bursting into space: alterations of sympathetic control by space travel

    NASA Technical Reports Server (NTRS)

    Eckberg, D. L.

    2003-01-01

    AIM: Astronauts return to Earth with reduced red cell masses and hypovolaemia. Not surprisingly, when they stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied autonomic function in six male astronauts (average +/- SEM age: 40 +/- 2 years) before, during, and after the 16-day Neurolab space shuttle mission. METHOD: We recorded electrocardiograms, finger photoplethysmographic arterial pressures, respiration, peroneal nerve muscle sympathetic activity, plasma noradrenaline and noradrenaline kinetics, and cardiac output, and we calculated stroke volume and total peripheral resistance. We perturbed autonomic function before and during spaceflight with graded Valsalva manoeuvres and lower body suction, and before and after the mission with passive upright tilt. RESULTS: In-flight baseline sympathetic nerve activity was increased above pre-flight levels (by 10-33%) in three subjects, in whom noradrenaline spillover and clearance also were increased. Valsalva straining provoked greater reductions of arterial pressure, and proportionally greater sympathetic responses in space than on Earth. Lower body suction elicited greater increases of sympathetic nerve activity, plasma noradrenaline, and noradrenaline spillover in space than on Earth. After the Neurolab mission, left ventricular stroke volume was lower and heart rate was higher during tilt, than before spaceflight. No astronaut experienced orthostatic hypotension or pre-syncope during 10 min of post-flight tilting. CONCLUSION: We conclude that baseline sympathetic outflow, however measured, is higher in space than on earth, and that augmented sympathetic nerve responses to Valsalva straining, lower body suction, and post-flight upright tilt represent normal adjustments to greater haemodynamic stresses associated with hypovolaemia.

  2. Aerodynamic performances of three fan stator designs operating with rotor having tip speed of 337 meters per second and pressure ratio of 1.54. Relation of analytical code calculations to experimental performance

    NASA Technical Reports Server (NTRS)

    Gelder, T. F.; Schmidt, J. F.; Esgar, G. M.

    1980-01-01

    A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters within four stator-blade rows. The produced ratios of maximum suction-surface velocity to trailing-edge velocity correlated well in the midspan region, with the measured total-parameters over the minimum-loss to near stall operating range for all stators and speeds studied. The potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign.

  3. Experimental observation of intraocular pressure changes during microkeratome suctioning in laser in situ keratomileusis.

    PubMed

    Bissen-Miyajima, Hiroko; Suzuki, Shintaro; Ohashi, Yoshie; Minami, Keiichiro

    2005-03-01

    To observe changes in intraocular pressure (IOP), the manner in which the eye is suctioned, and the effect of the number of suction ports. Department of Ophthalmology, Tokyo Dental College, Suidobashi Hospital, Tokyo, Japan. Suction rings with single or dual ports were made of transparent acrylic acid resin to facilitate observation with a digital video camera. The IOP and the duration of the IOP increase (time to reach 90% of the maximum IOP) were measured in 6 porcine eyes with an intra-vein pressure-sensor catheter in the vitreous cavity. The IOP changes were recorded using a personal computer. Suctioning with single- and dual-port suction rings was similar. The IOP increases with single- and dual-port suction rings were similar (99.1 mm Hg +/- 6.1 [SD] and 99.0 +/- 6.5 mm Hg, respectively) (P=.987). The duration of the IOP increase was also similar (4.21 +/- 0.24 seconds and 4.12 +/- 0.33 seconds, respectively) (P=.190). The number of ports did not affect suctioning and changes in IOP. This technique is useful in developing the ideal shape and setting of the suction ring.

  4. Half versus full vacuum suction drainage after modified radical mastectomy for breast cancer- a prospective randomized clinical trial[ISRCTN24484328

    PubMed Central

    Chintamani; Singhal, Vinay; Singh, JP; Bansal, Anju; Saxena, Sunita

    2005-01-01

    Background Suction drains are routinely used after modified radical mastectomy and are an important factor contributing to increased hospital stay as the patients are often discharged only after their removal. Amongst various factors that influence the amount of postoperative drainage, the negative suction pressure applied to the drain has been reported to be of great significance. While a high negative suction pressure is expected to drain the collection and reduce the dead space promptly, it may also prevent the leaking lymphatics from closing and lead to increased drainage from the wound. Against this background a prospective randomized clinical study was conducted to compare the amount and duration of drainage between a half negative suction and full vacuum suction drainage in patients following modified radical mastectomy. The associated postoperative morbidity was also compared between the two groups. Methods 85 FNAC (fine needle aspiration cytology) proven cases of locally advanced breast cancer were randomized. (Using randomly ordered sealed envelops, which were opened immediately before the closure of the wound) in to 50 patients with full vacuum suction (pressure = 700 g/m2) and 35 cases in to half vacuum suction drainage (pressure = 350 g/m2) groups. The two groups were comparable in respect of age, weight, and technique of operation and extent of axillary dissection. Surgery was performed by the same surgical team comprising of five surgeons (two senior and three resident surgeons) using a standardized technique with electrocautery. External compression dressing was provided over the axilla for first 48 hrs and following that patients were encouraged to do active and passive shoulder exercises. The outcomes measured were postoperative morbidity and the length of hospital stay. Statistical methods used: Descriptive studies were performed with SPSS version 10 and group characteristics were compared using student t-test. Results Half vacuum suction drains were removed earlier than the full suction vacuum suction drains. There was no significant difference in the incidence of seroma formation in the two groups and there was a significant reduction in the total hospital stay in patients with half vacuum suction drainage systems as compared to the full suction drainage group (p < 0.001) without any added morbidity. Conclusions Half negative suction drains provide an effective compromise between no suction and full or high suction drainage after modified radical mastectomy by reducing the hospital stay and the post operative morbidity including post operative seromas. PMID:15676064

  5. Optimum Suction Distribution for Transition Control

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.

    1996-01-01

    The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.

  6. 21 CFR 880.5740 - Suction snakebite kit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Suction snakebite kit. 880.5740 Section 880.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5740 Suction snakebite kit. (a) Identification. A suction snakebite kit is a device...

  7. 21 CFR 880.5740 - Suction snakebite kit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Suction snakebite kit. 880.5740 Section 880.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5740 Suction snakebite kit. (a) Identification. A suction snakebite kit is a device...

  8. 21 CFR 880.5740 - Suction snakebite kit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Suction snakebite kit. 880.5740 Section 880.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5740 Suction snakebite kit. (a) Identification. A suction snakebite kit is a device...

  9. 21 CFR 880.5740 - Suction snakebite kit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Suction snakebite kit. 880.5740 Section 880.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5740 Suction snakebite kit. (a) Identification. A suction snakebite kit is a device...

  10. 21 CFR 880.5740 - Suction snakebite kit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Suction snakebite kit. 880.5740 Section 880.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5740 Suction snakebite kit. (a) Identification. A suction snakebite kit is a device...

  11. 75 FR 70112 - Medical Devices; General and Plastic Surgery Devices; Classification of Non-Powered Suction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Suction Apparatus Device Intended for Negative Pressure Wound Therapy AGENCY: Food and Drug Administration...- powered suction apparatus device intended for negative pressure wound therapy (NPWT) into class II... ``Class II Special Controls Guidance Document: Non-Powered Suction Apparatus Device Intended for Negative...

  12. 21 CFR 870.5050 - Patient care suction apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Patient care suction apparatus. 870.5050 Section 870.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... suction apparatus. (a) Identification. A patient care suction apparatus is a device used with an...

  13. 21 CFR 870.5050 - Patient care suction apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Patient care suction apparatus. 870.5050 Section 870.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... suction apparatus. (a) Identification. A patient care suction apparatus is a device used with an...

  14. 21 CFR 878.4780 - Powered suction pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered suction pump. 878.4780 Section 878.4780...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be...

  15. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or sample...

  16. 21 CFR 880.6740 - Vacuum-powered body fluid suction apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum-powered body fluid suction apparatus. 880... Personal Use Miscellaneous Devices § 880.6740 Vacuum-powered body fluid suction apparatus. (a) Identification. A vacuum-powered body fluid suction apparatus is a device used to aspirate, remove, or sample...

  17. 21 CFR 878.4683 - Non-Powered suction apparatus device intended for negative pressure wound therapy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Non-Powered suction apparatus device intended for... Surgical Devices § 878.4683 Non-Powered suction apparatus device intended for negative pressure wound therapy. (a) Identification. A non-powered suction apparatus device intended for negative pressure wound...

  18. Functional morphology of the feeding apparatus, feeding constraints, and suction performance in the nurse shark Ginglymostoma cirratum.

    PubMed

    Motta, Philip J; Hueter, Robert E; Tricas, Timothy C; Summers, Adam P; Huber, Daniel R; Lowry, Dayv; Mara, Kyle R; Matott, Michael P; Whitenack, Lisa B; Wintzer, Alpa P

    2008-09-01

    The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction-feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction-feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior-directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic-feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction-feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey.

  19. An Ultrathin Endoscope with a 2.4-mm Working Channel Shortens the Esophagogastroduodenoscopy Time by Shortening the Suction Time

    PubMed Central

    Shinozaki, Satoshi; Miura, Yoshimasa; Ino, Yuji; Shinozaki, Kenjiro; Lefor, Alan Kawarai; Yamamoto, Hironori

    2015-01-01

    Background/Aims: Poor suction ability through a narrow working channel prolongs esophagogastroduodenoscopy (EGD). The aim of this study was to evaluate suction with a new ultrathin endoscope (EG-580NW2; Fujifilm Corp.) having a 2.4-mm working channel in clinical practice. Methods: To evaluate in vitro suction, 200 mL water was suctioned and the suction time was measured. The clinical data of 117 patients who underwent EGD were retrospectively reviewed on the basis of recorded video, and the suction time was measured by using a stopwatch. Results: In vitro, the suction time with the EG-580NW2 endoscope was significantly shorter than that with the use of an ultrathin endoscope with a 2.0-mm working channel (EG-580NW; mean ± standard deviation, 22.7±1.1 seconds vs. 34.7±2.2 seconds; p<0.001). We analyzed the total time and the suction time for routine EGD in 117 patients (50 in the EG-580NW2 group and 67 in the EG-580NW group). In the EG-580NW2 group, the total time for EGD was significantly shorter than that in the EG-580NW group (275.3±42.0 seconds vs. 300.6±46.5 seconds, p=0.003). In the EG-580NW2 group, the suction time was significantly shorter than that in the EG-580NW group (19.2±7.6 seconds vs. 38.0±15.9 seconds, p<0.001). Conclusions: An ultrathin endoscope with a 2.4-mm working channel considerably shortens the routine EGD time by shortening the suction time, in comparison with an endoscope with a 2.0-mm working channel. PMID:26668798

  20. The effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation.

    PubMed

    Bousarri, Mitra Payami; Shirvani, Yadolah; Agha-Hassan-Kashani, Saeed; Nasab, Nouredin Mousavi

    2014-05-01

    In patients undergoing mechanical ventilation, mucus production and secretion is high as a result of the endotracheal tube. Because endotracheal suction in these patients is essential, chest physiotherapy techniques such as expiratory rib cage compression before endotracheal suctioning can be used as a means to facilitate mobilizing and removing airway secretion and improving alveolar ventilation. As one of the complications of mechanical ventilation and endotracheal suctioning is decrease of cardiac output, this study was carried out to determine the effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation. This study was a randomized clinical trial with a crossover design. The study subjects included 50 mechanically ventilated patients, hospitalized in intensive care wards of Valiasr and Mousavi hospitals in Zanjan, Iran. Subjects were selected by consecutive sampling and randomly allocated to groups 1 and 2. The patients received endotracheal suctioning with or without rib cage compression, with a minimum of 3 h interval between the two interventions. Expiratory rib cage compression was performed for 5 min before endotracheal suctioning. Vital signs were measured 5 min before and 15 and 25 min after endotracheal suctioning. Data were recorded on a data recording sheet. Data were analyzed using paired t-tests. There were statistically significant differences in the means of vital signs measured 5 min before with 15 and 25 min after endotracheal suctioning with rib cage compression (P < 0. 01). There was no significant difference in the means of diastolic pressure measured 25 min after with baseline in this stage). But on the reverse mode, there was a significant difference between the means of pulse and respiratory rate 15 min after endotracheal suctioning and the baseline values (P < 0.002). This effect continued up to 25 min after endotracheal suctioning just for respiratory rate (P = 0.016). Moreover, there were statistically significant differences in the means of vital signs measured 5 min before and 15 min after endotracheal suctioning between the two methods (P ≤ 0001). Findings showed that expiratory rib cage compression before endotracheal suctioning improves the vital signs to normal range in patients under mechanical ventilation. More studies are suggested on performing expiratory rib cage compression before endotracheal suctioning in patients undergoing mechanical ventilation.

  1. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  2. Wind tunnel testing of low-drag airfoils

    NASA Technical Reports Server (NTRS)

    Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

    1986-01-01

    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

  3. Numerical Solution of the Navier-Stokes Equations for Steady Magnetohydrodynamic Flow Between Two Parallel Porous Plates with an Angular Velocity

    NASA Astrophysics Data System (ADS)

    Delhi Babu, R.; Ganesh, S.

    2018-04-01

    The Steady Laminar stream of an electrically directing thick, incompressible liquid between two parallel permeable plates of a divert within the sight of a transverse attractive field with an angular velocity when the liquid is being pulled back through both the dividers of the channel at a similar rate with a precise speed is examined. Numerical arrangement is acquired for various estimations of R (Suction Reynolds number) utilizing R-K Gill's technique and the diagrams of dimensionless functions f ' and f have been drawn.

  4. Suction forces generated by passive bile bag drainage on a model of post-subdural hematoma evacuation.

    PubMed

    Tenny, Steven O; Thorell, William E

    2018-05-05

    Passive drainage systems are commonly used after subdural hematoma evacuation but there is a dearth of published data regarding the suction forces created. We set out to quantify the suction forces generated by a passive drainage system. We created a model of passive drainage after subdural hematoma evacuation. We measured the maximum suction force generated with a bile bag drain for both empty drain tubing and fluid-filled drain tube causing a siphoning effect. We took measurements at varying heights of the bile bag to analyze if bile bag height changed suction forces generated. An empty bile bag with no fluid in the drainage tube connected to a rigid, fluid-filled model creates minimal suction force of 0.9 mmHg (95% CI 0.64-1.16 mmHg). When fluid fills the drain tubing, a siphoning effect is created and can generate suction forces ranging from 18.7 to 30.6 mmHg depending on the relative position of the bile bag and filled amount of the bile bag. The suction forces generated are statistically different if the bile bag is 50 cm below, level with or 50 cm above the experimental model. Passive bile bag drainage does not generate significant suction on a fluid-filled rigid model if the drain tubing is empty. If fluid fills the drain tubing then siphoning occurs and can increase the suction force of a passive bile bag drainage system to levels comparable to partially filled Jackson-Pratt bulb drainage.

  5. Femtosecond Laser in situ Keratomileusis Flap Creation in Narrow Palpebral Fissure Eyes without Suction.

    PubMed

    Chang, John S M; Law, Antony K P; Ng, Jack C M; Cheng, May S Y

    2017-01-01

    To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK.

  6. Femtosecond Laser in situ Keratomileusis Flap Creation in Narrow Palpebral Fissure Eyes without Suction

    PubMed Central

    Chang, John S.M.; Law, Antony K.P.; Ng, Jack C.M.; Cheng, May S.Y.

    2017-01-01

    Purpose To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). Methods All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. Results In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Conclusion Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK. PMID:28690535

  7. Structural Evaluation of Exo-Skeletal Engine Fan Blades

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Abumeri, Galib; Chamis, Christos C.

    2003-01-01

    The available computational simulation capability is used to demonstrate the structural viability of composite fan blades of innovative Exo-Skeletal Engine (ESE) developed at NASA Glenn Research Center for a subsonic mission. Full structural analysis and progressive damage evaluation of ESE composite fan blade is conducted through the NASA in-house computational simulation software system EST/BEST. The results of structural assessment indicate that longitudinal stresses acting on the blade are in compression. At a design speed of 2000 rpm, pressure and suction surface outer most ply stresses in longitudinal, transverse and shear direction are much lower than the corresponding composite ply strengths. Damage is initiated at 4870 rpm and blade fracture takes place at rotor speed of 7735 rpm. Damage volume is 51 percent. The progressive damage, buckling, stress and strength results indicate that the design at hand is very sound because of the factor of safety, damage tolerance, and buckling load of 6811 rpm.

  8. Application of Synthetic Jets to Reduce Stator Flow Separation in a Low Speed Axial Compressor

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Culley, Dennis E.; Zaman, Khairul B.M.Q.

    2008-01-01

    Flow control using synthetic jet injection has been applied in a low speed axial compressor. The synthetic jets were applied from the suction surface of a stator vane via a span-wise row of slots pitched in the streamwise direction. Actuation was provided externally from acoustic drivers coupled to the vane tip via flexible tubing. The acoustic resonance characteristics of the system, and the resultant jet velocities were obtained. The effects on the separated flow field for various jet velocities and frequencies were explored. Total pressure loss reductions across the vane passage were measured. The effect of synthetic jet injection was shown to be comparable to that of pulsatory injection with mass addition for stator vanes which had separated flow. While only a weak dependence of the beneficial effect was noted based on the excitation frequency, a strong dependence on the amplitude was observed at all frequencies.

  9. High Reynolds Number Hybrid Laminar Flow Control (HLFC) Flight Experiment. Report 4; Suction System Design and Manufacture

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This document describes the design of the leading edge suction system for flight demonstration of hybrid laminar flow control on the Boeing 757 airplane. The exterior pressures on the wing surface and the required suction quantity and distribution were determined in previous work. A system consisting of porous skin, sub-surface spanwise passages ("flutes"), pressure regulating screens and valves, collection fittings, ducts and a turbocompressor was defined to provide the required suction flow. Provisions were also made for flexible control of suction distribution and quantity for HLFC research purposes. Analysis methods for determining pressure drops and flow for transpiration heating for thermal anti-icing are defined. The control scheme used to observe and modulate suction distribution in flight is described.

  10. Immunodiagnostic Techniques for Bacterial Infections

    DTIC Science & Technology

    1981-01-01

    specificity that specific immune sera (the immune response) provides. The early use of immunological diagnosis was to demonstrate circulating antibodies to...testing requirements. 4. Carefully remove punched plugs by suction. 5. Fill the central well with immune serum and the surrounding wells with test...capsulatuni Serum Actinomvcesr israeli Serum Aspergillus fumiqatus Serum Protozoan: Trvnanosoma cruzi Serum Entameaba histolvtica Serum Trichinella sviralis

  11. F-16XL Ship #2 wing glove close-up, laser cut holes, with dime for scale

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This June 1995 photograph of a test panel similiar to the one attached to the surface of an F-16XL research aircraft's left wing at NASA's Dryden Flight Research Center, Edwards, California, shows the size of the more than 10 million laser-cut holes in the panel, called a glove, as compared with a dime. Below the titanium panel into which holes are cut is a suction system linked to a compressor. During research flights with the modified, delta-winged F-16XL, the suction system pulled a small part of the boundary layer of air through the glove's porous surface to expand the extent of smooth (laminar) flow. Researchers believe that laminar flow conditions can reduce aerodynamic drag (friction) and contribute to reduced operating costs by improving fuel consumption and lowering aircraft weight. This Supersonic Laminar Flow Control (SLFC) experiment represents a collaborative effort between NASA and aerospace industry (specifically Boeing, Rockwell, and McDonnell Douglas), with Boeing assembling the panel and McDonnell Douglas designing the suction system.

  12. Suction on chest drains following lung resection: evidence and practice are not aligned.

    PubMed

    Lang, Peter; Manickavasagar, Menaka; Burdett, Clare; Treasure, Tom; Fiorentino, Francesca

    2016-02-01

    A best evidence topic in Interactive CardioVascular and Thoracic Surgery (2006) looked at application of suction to chest drains following pulmonary lobectomy. After screening 391 papers, the authors analysed six studies (five randomized controlled trials [RCTs]) and found no evidence in favour of postoperative suction in terms of air leak duration, time to chest drain removal or length of stay. Indeed, suction was found to be detrimental in four studies. We sought to determine whether clinical practice is consistent with published evidence by surveying thoracic units nationally and performing a meta-analysis of current best evidence. We systematically searched MEDLINE, EMBASE and CENTRAL for RCTs, comparing outcomes with and without application of suction to chest drains after lung surgery. A meta-analysis was performed using RevMan(©) software. A questionnaire concerning chest drain management and suction use was emailed to a clinical representative in every thoracic unit. Eight RCTs, published 2001-13, with 31-500 participants, were suitable for meta-analysis. Suction prolonged length of stay (weighted mean difference [WMD] 1.74 days; 95% confidence interval [CI] 1.17-2.30), chest tube duration (WMD 1.77 days; 95% CI 1.47-2.07) and air leak duration (WMD 1.47 days; 95% CI 1.45-2.03). There was no difference in occurrence of prolonged air leak. Suction was associated with fewer instances of postoperative pneumothorax. Twenty-five of 39 thoracic units responded to the national survey. Suction is routinely used by all surgeons in 11 units, not by any surgeon in 5 and by some surgeons in 9. Of the 91 surgeons represented, 62 (68%) routinely used suction. Electronic drains are used in 15 units, 10 of which use them routinely. Application of suction to chest drains following non-pneumonectomy lung resection is common practice. Suction has an effect in hastening the removal of air and fluid in clinical experience but a policy of suction after lung resection has not been shown to offer improved clinical outcomes. Clinical practice is not aligned with Level 1a evidence. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Steady and unsteady blade stresses within the SSME ATD/HPOTP inducer

    NASA Technical Reports Server (NTRS)

    Gross, R. Steven

    1994-01-01

    There were two main goals of the ATD HPOTP (alternate turbopump development)(high pressure oxygen turbopump). First, determine the steady and unsteady inducer blade surface strains produced by hydrodynamic sources as a function of flow capacity (Q/N), suction specific speed (Nss), and Reynolds number (Re). Second, to identify the hydrodynamic source(s) of the unsteady blade strains. The reason the aforementioned goals are expressed in terms of blade strains as opposed to blade hydrodynamic pressures is because of the interest regarding the high cycle life of the inducer blades. This report focuses on the first goal of the test program which involves the determination of the steady and unsteady strain (stress) values at various points within the inducer blades. Strain gages were selected as the strain measuring devices. Concurrent with the experimental program, an analytical study was undertaken to produce a complete NASTRAN finite-element model of the inducer. Computational fluid dynamics analyses were utilized to provide the estimated steady-state blade surface pressure loading needed as load input to the NASTRAN inducer model.

  14. Feeding kinematics and performance of Hawaiian stream gobies, Awaous guamensis and Lentipes concolor: linkage of functional morphology and ecology.

    PubMed

    Maie, Takashi; Wilson, Megan P; Schoenfuss, Heiko L; Blob, Richard W

    2009-03-01

    Distributions of Hawaiian stream fishes are typically interrupted by waterfalls that divide streams into multiple segments. Larvae hatch upstream, are flushed into the ocean, and must climb these waterfalls to reach adult habitats when returning back to freshwater as part of an amphidromous life cycle. Stream surveys and studies of climbing performance show that Lentipes concolor Gill can reach fast-flowing upper stream segments but that Awaous guamensis Valenciennes reaches only slower, lower stream segments. Gut content analyses for these two species indicate considerable overlap in diet, suggesting that feeding kinematics and performance of these two species might be comparable. Alternatively, feeding kinematics and performance of these species might be expected to differ in relation to the different flow regimes in their habitat (feeding in faster stream currents for L. concolor versus in slower currents for A. guamensis). To test these alternative hypotheses, we compared food capturing kinematics and performance during suction feeding behaviors of A. guamensis and L. concolor using morphological data and high-speed video. Lentipes concolor showed both a significantly larger gape angle and faster jaw opening than A. guamensis. Geometric models calculated that despite the inverse relationship of gape size and suction pressure generation, the fast jaw motions of L. concolor allow it to achieve higher pressure differentials than A. guamensis. Such elevated suction pressure would enhance the ability of L. concolor to successfully capture food in the fast stream reaches it typically inhabits. Differences in jaw morphology may contribute to these differences in performance, as the lever ratio for jaw opening is about 10% lower in L. concolor compared with A. guamensis, suiting the jaws of L. concolor better for fast opening. Copyright 2008 Wiley-Liss, Inc.

  15. Instability and Transition of Flow at, and Near, an Attachment-line - Including Control by Surface Suction

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1996-01-01

    Advances in aviation during and following the Second World War led to an enormous improvement in the performance of aircraft. The push for enhanced efficiency brought cruise speeds into the transonic range, where the associated drag rise due to the appearance of shock-waves became a limiting factor. Wing sweep was adopted to delay the onset of this drag rise, but with this development came several new and unforeseen problems. Preliminary theoretical work assumed that the boundary layer transition characteristics of a swept wing would be subject to the independence principle, so the chordwise transition position could be predicted from two-dimensional work Gas turbine development has now reached a point where additional increases in efficiency are both difficult and expensive to achieve. Consequently, aircraft manufacturers are looking elsewhere for ways to reduce Direct Operating Costs (DOC's) or increase military performance. The attention of industry is currently focusing on Hybrid Laminar Flow Control (HLFC) as a possible method of reducing DOC's for civil aircraft. Following this study and discussions with NASA Langley and Boeing a different series of questions have been addressed in the present work. There are five areas of interest: Relaminarisation of the attachment-line boundary layer when the value of R exceeds 600. The effects of large suction levels on transition in the attachment-line boundary layer (ie critical oversuction). The transition characteristics of a relaminarised attachment-line flow which encounters a non-porous surface. The effect of attachment-line suction on the spanwise propagation of gross disturbances emanating from the wing-fuselage junction. The attachment-line transition caused by surface blowing.

  16. Are Prolactin Levels Linked to Suction Pressure?

    PubMed

    Zhang, Feng; Xia, Haiou; Shen, Meiyun; Li, Xia; Qin, Ling; Gu, Hongmei; Xu, Xujuan

    2016-11-01

    Suction pressure has been reported to be a key driving force of lactation. An infant's sucking at its mother's breasts is the major stimulus to post-natal prolactin (PRL) secretion, and PRL is the essential hormone for lactation and milk production. It is unknown what role suction pressure has in PRL secretion and milk supply postnatally. To explore the relationship between the suction pressure, PRL level, lactation, and milk supply in breastfeeding mother-infant dyads. Healthy women with normal full-term infants were enrolled (n = 122). Data collection included suction pressure, PRL level, and the mother's perception of both the onset of her lactation and her milk supply at 1 month. Suction pressure was measured with a pressure sensor connected to a tube placed alongside the nipple. The chemiluminescence method was used to quantify maternal serum PRL level both before and after a breastfeed to explore the effect of suckling on PRL increment. The mother's perception of the onset of her lactation was evaluated by the mother's sense of fullness in her breast. The mother's perception of milk supply was evaluated by using the H&H Lactation Scale. Data from 117 participants were included in this analysis. Low suction pressure, a shorter gestational age, a high pre-gestational body mass index (BMI), and high infant birth weight were associated with a smaller than average PRL increment. High suction pressure, longer sucking duration, and a low gestational weight gain were related to a mother's perception of an earlier onset of her lactation. However, low suction pressure, a high frequency of giving formula, a small PRL increment, and the mother's perception of a later onset of her lactation were correlated with her perception of an insufficient milk supply. Suction pressure varied directly with the post-natal PRL increment. Suction pressure was associated with the timing of the mother's perception of her lactation. Strong suction pressure by the infant is likely to enhance the mother's confidence in her lactation. Additionally, sucking duration, frequency of giving formula, maternal BMI, and infant birth weight played a role in early breastfeeding success.

  17. Feeding Kinematics, Suction, and Hydraulic Jetting Performance of Harbor Seals (Phoca vitulina)

    PubMed Central

    Marshall, Christopher D.; Wieskotten, Sven; Hanke, Wolf; Hanke, Frederike D.; Marsh, Alyssa; Kot, Brian; Dehnhardt, Guido

    2014-01-01

    The feeding kinematics, suction and hydraulic jetting capabilities of captive harbor seals (Phoca vitulina) were characterized during controlled feeding trials. Feeding trials were conducted using a feeding apparatus that allowed a choice between biting and suction, but also presented food that could be ingested only by suction. Subambient pressure exerted during suction feeding behaviors was directly measured using pressure transducers. The mean feeding cycle duration for suction-feeding events was significantly shorter (0.15±0.09 s; P<0.01) than biting feeding events (0.18±0.08 s). Subjects feeding in-water used both a suction and a biting feeding mode. Suction was the favored feeding mode (84% of all feeding events) compared to biting, but biting comprised 16% of feeding events. In addition, seals occasionally alternated suction with hydraulic jetting, or used hydraulic jetting independently, to remove fish from the apparatus. Suction and biting feeding modes were kinematically distinct regardless of feeding location (in-water vs. on-land). Suction was characterized by a significantly smaller gape (1.3±0.23 cm; P<0.001) and gape angle (12.9±2.02°), pursing of the rostral lips to form a circular aperture, and pursing of the lateral lips to occlude lateral gape. Biting was characterized by a large gape (3.63±0.21 cm) and gape angle (28.8±1.80°; P<0.001) and lip curling to expose teeth. The maximum subambient pressure recorded was 48.8 kPa. In addition, harbor seals were able to jet water at food items using suprambient pressure, also known as hydraulic jetting. The maximum hydraulic jetting force recorded was 53.9 kPa. Suction and hydraulic jetting where employed 90.5% and 9.5%, respectively, during underwater feeding events. Harbor seals displayed a wide repertoire of behaviorally flexible feeding strategies to ingest fish from the feeding apparatus. Such flexibility of feeding strategies and biomechanics likely forms the basis of their opportunistic, generalized feeding ecology and concomitant breadth of diet. PMID:24475170

  18. Feeding kinematics, suction, and hydraulic jetting performance of harbor seals (Phoca vitulina).

    PubMed

    Marshall, Christopher D; Wieskotten, Sven; Hanke, Wolf; Hanke, Frederike D; Marsh, Alyssa; Kot, Brian; Dehnhardt, Guido

    2014-01-01

    The feeding kinematics, suction and hydraulic jetting capabilities of captive harbor seals (Phoca vitulina) were characterized during controlled feeding trials. Feeding trials were conducted using a feeding apparatus that allowed a choice between biting and suction, but also presented food that could be ingested only by suction. Subambient pressure exerted during suction feeding behaviors was directly measured using pressure transducers. The mean feeding cycle duration for suction-feeding events was significantly shorter (0.15±0.09 s; P<0.01) than biting feeding events (0.18±0.08 s). Subjects feeding in-water used both a suction and a biting feeding mode. Suction was the favored feeding mode (84% of all feeding events) compared to biting, but biting comprised 16% of feeding events. In addition, seals occasionally alternated suction with hydraulic jetting, or used hydraulic jetting independently, to remove fish from the apparatus. Suction and biting feeding modes were kinematically distinct regardless of feeding location (in-water vs. on-land). Suction was characterized by a significantly smaller gape (1.3±0.23 cm; P<0.001) and gape angle (12.9±2.02°), pursing of the rostral lips to form a circular aperture, and pursing of the lateral lips to occlude lateral gape. Biting was characterized by a large gape (3.63±0.21 cm) and gape angle (28.8±1.80°; P<0.001) and lip curling to expose teeth. The maximum subambient pressure recorded was 48.8 kPa. In addition, harbor seals were able to jet water at food items using suprambient pressure, also known as hydraulic jetting. The maximum hydraulic jetting force recorded was 53.9 kPa. Suction and hydraulic jetting where employed 90.5% and 9.5%, respectively, during underwater feeding events. Harbor seals displayed a wide repertoire of behaviorally flexible feeding strategies to ingest fish from the feeding apparatus. Such flexibility of feeding strategies and biomechanics likely forms the basis of their opportunistic, generalized feeding ecology and concomitant breadth of diet.

  19. Reciprocating and Screw Compressor semi-empirical models for establishing minimum energy performance standards

    NASA Astrophysics Data System (ADS)

    Javed, Hassan; Armstrong, Peter

    2015-08-01

    The efficiency bar for a Minimum Equipment Performance Standard (MEPS) generally aims to minimize energy consumption and life cycle cost of a given chiller type and size category serving a typical load profile. Compressor type has a significant chiller performance impact. Performance of screw and reciprocating compressors is expressed in terms of pressure ratio and speed for a given refrigerant and suction density. Isentropic efficiency for a screw compressor is strongly affected by under- and over-compression (UOC) processes. The theoretical simple physical UOC model involves a compressor-specific (but sometimes unknown) volume index parameter and the real gas properties of the refrigerant used. Isentropic efficiency is estimated by the UOC model and a bi-cubic, used to account for flow, friction and electrical losses. The unknown volume index, a smoothing parameter (to flatten the UOC model peak) and bi-cubic coefficients are identified by curve fitting to minimize an appropriate residual norm. Chiller performance maps are produced for each compressor type by selecting optimized sub-cooling and condenser fan speed options in a generic component-based chiller model. SEER is the sum of hourly load (from a typical building in the climate of interest) and specific power for the same hourly conditions. An empirical UAE cooling load model, scalable to any equipment capacity, is used to establish proposed UAE MEPS. Annual electricity use and cost, determined from SEER and annual cooling load, and chiller component cost data are used to find optimal chiller designs and perform life-cycle cost comparison between screw and reciprocating compressor-based chillers. This process may be applied to any climate/load model in order to establish optimized MEPS for any country and/or region.

  20. The effect of closed system suction on airway pressures when using the Servo 300 ventilator.

    PubMed

    Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M

    2001-12-01

    To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.

  1. In situ control of cardiotomy suction reduces blood trauma.

    PubMed

    Tevaearai, H T; Mueller, X M; Horisberger, J; Augstburger, M; Bock, H; Knorr, A; von Segesser, L K

    1998-01-01

    Cardiotomy suction is known for its deleterious effects on formed and unformed blood elements. The authors investigated an "intelligent" remote controlled automatic suction system. A suction cannula with an optic sensor at its tip was connected to a special closed cardiotomy reservoir. Contact with blood immediately generated a reservoir vacuum from 0 to -100 mmHg, permitting aspiration until the blood was no longer detected (automatic shut off). Blood trauma was evaluated in a bovine model, comparing the automatic suction system vs standard continuous aspiration (control) adjusted to -100 mmHg. After full systemic heparinization, five calves (weight, 62.5 +/- 4.4 kg) for the automatic suction system group, and four (weight, 62.8 +/- 5.1 kg) for the control group, were equipped with a jugular cannula connected via a roller pump to the cardiotomy reservoir. Through a small thoracotomy, a standardized hole was created in the right atrium, allowing for a blood loss of approximately 400 ml/min. The suction cannula was placed into the chest cavity in a fixed position. Blood samples were drawn at regular intervals for cell count and chemistry. Lactate dehydrogenase values, for the automatic suction system and the control groups, respectively, expressed as percent of baseline value, were 88 +/- 14 vs 116 +/- 22 after 1 hr; 94 +/- 16 vs 123 +/- 23 after 2 hr; and 97 +/- 19 vs 140 +/- 48 after 3 hr (p < 0.05). Values for free hemoglobin in plasma (percent of baseline value), for the automatic suction system and the control groups, respectively, were 102 +/- 18 vs 200 +/- 69 after 1 hr; 98 +/- 29 vs 163 +/- 37 after 2 hr; and 94 +/- 37 vs 179 +/- 42 after 3 hr (p < 0.05). Compared with a standard continuous aspiration system, in situ regulation of suction significantly reduces blood trauma.

  2. Physiological characterization of the hematophagy of Ornithodoros rostratus (Acari: Argasidae) on live hosts.

    PubMed

    Costa, Gabriel Cerqueira Alves; Soares, Adriana Coelho; Pereira, Marcos Horácio; Gontijo, Nelder Figueiredo; Sant'Anna, Maurício Roberto Viana; Araujo, Ricardo Nascimento

    2016-11-15

    Ornithodoros rostratus is an argasid tick and its importance is based on its hematophagy and the resulting transmission of pathogens such as Rickettsia rickettsii and Coxiella burnetii to its vertebrate hosts. In the face of a lack of physiological studies related to hematophagy in argasid ticks, this paper aims to identify and characterize the events that occur throughout the feeding by O. rostratus on live hosts. Electrical signals and alterations on the feeding site were monitored using intravital microscopy and electromyography. The analyses allowed for the characterization of four distinct events: suction, salivation, chelicerae movements and inactivity. Feeding was divided into two distinct phases: (1) penetration of mouthparts (when only salivation and chelicerae movements occurred) and the formation of the feeding pool (salivation and chelicerae movements with the first signs of suction) and (2) engorgement, during which chelicerae movements ceased and blood intake took place in feeding complexes (salivation followed by suction). Variations in patterns of the electrical signals, suction frequency and salivation showed four distinct sub-phases: (2a) suction with electrical signals of irregular shape, increased suction frequency and decreased salivation frequency throughout blood feeding; (2b) suction with electrical signals of symmetrical shape, high suction rates (3.8 Hz on average) and feeding complexes lasting for 7.7 s; (2c) suction with electrical signals of irregular shape, high suction frequency and feeding complex lasting 11.5 s; and (2d) electrical signals with no profile and the longest feeding complexes (14.5 s). Blood feeding ended with the withdrawal of the mouthparts from the host's skin. © 2016. Published by The Company of Biologists Ltd.

  3. Pre-compression volume on flow ripple reduction of a piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  4. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  5. Control of Inflow Distortion in a Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Biedron, Robert T.

    2002-01-01

    The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.

  6. Place Atrium to Water Seal (PAWS): Assessing Wall Suction Versus No Suction for Chest Tubes After Open Heart Surgery.

    PubMed

    Kruse, Tamara; Wahl, Sharon; Guthrie, Patricia Finch; Sendelbach, Sue

    2017-08-01

    Traditionally chest tubes are set to -20 cm H 2 O wall suctioning until removal to facilitate drainage of blood, fluid, and air from the pleural or mediastinal space in patients after open heart surgery. However, no clear evidence supports using wall suction in these patients. Some studies in patients after pulmonary surgery indicate that using chest tubes with a water seal is safer, because this practice decreases duration of chest tube placement and eliminates air leaks. To show that changing chest tubes to a water seal after 12 hours of wall suction (intervention) is a safe alternative to using chest tubes with wall suction until removal of the tubes (usual care) in patients after open heart surgery. A before-and-after quality improvement design was used to evaluate the differences between the 2 chest tube management approaches in chest tube complications, output, and duration of placement. A total of 48 patients received the intervention; 52 received usual care. The 2 groups (intervention vs usual care) did not differ significantly in complications (0 vs 2 events; P = .23), chest tube output (H 1 = 0.001, P = .97), or duration of placement (median, 47 hours for both groups). Changing chest tubes from wall suction to water seal after 12 hours of wall suction is a safe alternative to using wall suctioning until removal of the tubes. ©2017 American Association of Critical-Care Nurses.

  7. Wall Climbing Micro Ground Vehicle (MGV)

    DTIC Science & Technology

    2013-09-01

    magnetic attraction, (2) vacuum suction, (3) bio-mimetic techniques such as gecko pads, and (4) adhesion forces generated by aerodynamic principles, also...large attractive forces, but are limited to ferrous surfaces. Vacuum suction, such as in suction cups, also has the ability to create large adhesion...clean. Vortex adhesion does not require a perfect seal like vacuum suction and has the ability to travel over porous surfaces such as brick and

  8. Vacuum-actuated percutaneous insertion/implantation tool for flexible neural probes and interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheth, Heeral; Bennett, William J.; Pannu, Satinderpall S.

    A flexible device insertion tool including an elongated stiffener with one or more suction ports, and a vacuum connector for interfacing the stiffener to a vacuum source, for attaching the flexible device such as a flexible neural probe to the stiffener during insertion by a suction force exerted through the suction ports to, and to release the flexible device by removing the suction force.

  9. Catheter drainage of spontaneous pneumothorax: suction or no suction, early or late removal?

    PubMed Central

    So, S Y; Yu, D Y

    1982-01-01

    Twenty-three patients with primary spontaneous pneumothorax and 30 patients with secondary spontaneous pneumothorax treated by intercostal catheter drainage with underwater seal were divided randomly into two groups, one receiving suction drainage (up to 20 cm H2O pressure) and the other no suction. The success rate was 57% for the former and 50% for the latter. The suction group spent an average of five days in hospital, whereas the non-suction group averaged four days. Suction drainage therefore did not have any advantage. To determine how soon the catheter could be removed without complication, patients were also divided randomly into two subgroups--one had the catheter removed, without previous clamping, as soon as the lung was expanded; the other had the catheters left in situ for a further three days. The success rate was 52% for the former, and 53% for the latter. But most of the failure in the early removal group was caused by re-collapse of the lung rather than persistent air leakage; hence removal of the catheter too early was not recommended. PMID:7071793

  10. The effect of intraoral suction on oxygen-enriched surgical environments: a mechanism for reducing the risk of surgical fires.

    PubMed

    VanCleave, Andrea M; Jones, James E; McGlothlin, James D; Saxen, Mark A; Sanders, Brian J; Vinson, LaQuia A

    2014-01-01

    In this study, a mechanical model was applied in order to replicate potential surgical fire conditions in an oxygen-enriched environment with and without high-volume suction typical for dental surgical applications. During 41 trials, 3 combustion events were measured: an audible pop, a visible flash of light, and full ignition. In at least 11 of 21 trials without suction, all 3 conditions were observed, sometimes with an extent of fire that required early termination of the experimental trial. By contrast, in 18 of 20 with-suction trials, ignition did not occur at all, and in the 2 cases where ignition did occur, the fire was qualitatively a much smaller, candle-like flame. Statistically comparing these 3 combustion events in the no-suction versus with-suction trials, ignition (P = .0005), audible pop (P = .0211), and flash (P = .0092) were all significantly more likely in the no-suction condition. These results suggest a possible significant and new element to be added to existing surgical fire safety protocols toward making surgical fires the "never-events" they should be.

  11. Audit of Endotracheal Tube Suction in a Pediatric Intensive Care Unit.

    PubMed

    Davies, Kylie; Bulsara, Max K; Ramelet, Anne-Sylvie; Monterosso, Leanne

    2017-02-01

    We report outcomes of a clinical audit examining criteria used in clinical practice to rationalize endotracheal tube (ETT) suction, and the extent these matched criteria in the Endotracheal Suction Assessment Tool(ESAT)©. A retrospective audit of patient notes ( N = 292) and analyses of criteria documented by pediatric intensive care nurses to rationalize ETT suction were undertaken. The median number of documented respiratory and ventilation status criteria per ETT suction event that matched the ESAT© criteria was 2 [Interquartile Range (IQR) 1-6]. All criteria listed within the ESAT© were documented within the reviewed notes. A direct link was established between criteria used for current clinical practice of ETT suction and the ESAT©. The ESAT©, therefore, reflects documented clinical decision making and could be used as both a clinical and educational guide for inexperienced pediatric critical care nurses. Modification to the ESAT © requires "preparation for extubation" to be added.

  12. Control of water and nutrients using a porous tube - A method for growing plants in space

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Sager, John C.

    1989-01-01

    A plant nutrient delivery system that uses a microporous, hydrophilic tube was developed with potential application for crop production in the microgravity of space. The tube contains a nutrient solution and delivers it to the roots. Pumps attached to the tubing create a very small suction that holds the solution within the tube. This system was used to grow wheat for 107 d in a controlled environment at suctions of 0.40, 1.48, or 2.58 kPa. The water absorbed through the pores of the tube by baby diaper sections decreased as suction increased. Correspondingly, final plant biomass, seed number, and spikelet number also tended to decrease as suction increased. The reduced yield at higher suction suggests that the plants experienced water stress, although all suctions were below those typical of soils at field capacity.

  13. Methods and systems to enhance flame holding in a gas turbine engine

    DOEpatents

    Zuo, Baifang [Simpsonville, SC; Lacy, Benjamin Paul [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2012-01-31

    A fuel nozzle including a swirler assembly that includes a shroud, a hub, and a plurality of vanes extending between the shroud and the hub. Each vane includes a pressure sidewall and an opposite suction sidewall coupled to the pressure sidewall at a leading edge and at a trailing edge. At least one suction side fuel injection orifice is formed adjacent to the leading edge and extends from a first fuel supply passage to the suction sidewall. A fuel injection angle is oriented with respect to the suction sidewall. The suction side fuel injection orifice is configured to discharge fuel outward from the suction sidewall. At least one pressure side fuel injection orifice extends from a second fuel supply passage to the pressure sidewall and is substantially parallel to the trailing edge. The pressure side fuel injection orifice is configured to discharge fuel tangentially from the trailing edge.

  14. Effect of suction on the mechanical characteristics of uniformly compacted rammed earth

    NASA Astrophysics Data System (ADS)

    El Hajjar, A.; Chauhan, P.; Prime, N.; Plé, O.

    2018-04-01

    Rammed earth, in the current environmental situation, is an alternative construction technique which can help in reducing energy and raw material consumption owing to its “sustainable” characteristics. To fully understand its behavior and properties, recent scientific investigations consider it as a compacted unsaturated material with suction as its one of the main sources of strength. Eathern constructions face, over their lifetime, variations in the suction state which have a significant impact on their mechanical characteristics. In the present contribution, unconfined compression tests are performed, with and without unload-reload cycles, on homogeneously compacted samples subjected to various suction conditions. This study shows that both the unconfined compressive strength and Young modulus reduce with the reduction of suction states. Suction also seems to influence the amount of plastic strains and damage phenomenon. Indeed, the soils analyzed are slightly active and shows both plasticity behavior and damage phenomenon.

  15. Effects of snout dimensions on the hydrodynamics of suction feeding in juvenile and adult seahorses.

    PubMed

    Roos, Gert; Van Wassenbergh, Sam; Aerts, Peter; Herrel, Anthony; Adriaens, Dominique

    2011-01-21

    Seahorses give birth to juveniles having a fully functional feeding apparatus, and juvenile feeding behaviour shows striking similarities to that of adults. However, a significant allometric growth of the snout is observed during which the snout shape changes from relatively short and broad in juveniles to relatively long and slender in adults. Since the shape of the buccal cavity is a critical determinant of the suction performance, this snout allometry will inevitably affect the suction feeding ability. To test whether the snout is optimised for suction feeding throughout an ontogeny, we simulated the expansion of different snout shapes varying from extremely long and slender to short and broad for juvenile and adult snout sizes, using computational fluid dynamic models. Our results showed that the snout diameter at the start of the simulations is involved in a trade-off between the realizable suction volume and expansion time on the one hand (improving with larger initial diameters), and maximal flow velocity on the other hand (improving with smaller initial diameters). Moreover suction performance (suction volume as well as maximal attainable flow velocity) increased with decreasing snout length. However, an increase in snout length decreases the time to reach the prey by the cranial rotation, which may explain the prevalence of long snouts among syngnathid fishes despite the reduced suction performance. Thus, the design of the seahorse snout revolves around a trade-off between the ability to generate high-volume suction versus minimisation of the time needed to reach the prey by the cranial rotation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Clinical judgments about endotracheal suctioning: what cues do expert pediatric critical care nurses consider?

    PubMed

    Thomas, Margot; Fothergill-Bourbonnais, Frances

    2005-12-01

    Making accurate and timely judgments based on multiple ways of knowing is an essential skill in critical care nursing practice. Studies have proposed that positive patient outcomes are linked to expert judgments in a variety of critical care situations; however, little is known about clinical judgments related to specific critical care nursing interventions. This article presents a qualitative nursing research study which examined the cues that expert pediatric critical care nurses used in making clinical judgments about suctioning intubated and ventilated, critically ill children. The participants' words and actions attest that the 'sensing' and 'thinking' of the process of cue use, are interwoven with, and integral to, the 'doing,' which is the process of skilled performance.

  17. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Suction coefficient analysis

    NASA Technical Reports Server (NTRS)

    Brooks, Cuyler W., Jr.; Harris, Charles D.; Harvey, William D.

    1991-01-01

    A swept supercritical wing incorporating laminar flow control at transonic flow conditions was designed and tested. The definition of an experimental suction coefficient and a derivation of the compressible and incompressible formulas for the computation of the coefficient from measurable quantities is presented. The suction flow coefficient in the highest velocity nozzles is shown to be overpredicted by as much as 12 percent through the use of an incompressible formula. However, the overprediction on the computed value of suction drag when some of the suction nozzles were operating in the compressible flow regime is evaluated and found to be at most 6 percent at design conditions.

  18. Calculation of vortex lift effect for cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented.

  19. Poroelasticity-driven lubrication in hydrogel interfaces.

    PubMed

    Reale, Erik R; Dunn, Alison C

    2017-01-04

    It is widely accepted that hydrogel surfaces are slippery, and have low friction, but dynamic applied stresses alter the hydrogel composition at the interface as water is displaced. The induced osmotic imbalance of compressed hydrogel which cannot swell to equilibrium should drive the resistance to slip against it. This paper demonstrates the driving role of poroelasticity in the friction of hydrogel-glass interfaces, specifically how poroelastic relaxation of hydrogels increases adhesion. We translate the work of adhesion into an effective surface energy density that increases with the duration of applied pressure from 10 to 50 mJ m -2 , as measured by micro-indentation. A model of static friction coefficient is derived from an area-based rules of mixture for the surface energies, and predicts the friction coefficient changes upon initiation of slip. For kinetic friction, the competition between duration of contact and relaxation time is quantified by a contacting Péclet number, Pe C . A single length parameter on the scale of micrometers fits these two models to experimental micro-friction data. These models predict how short durations of applied pressure and faster sliding speeds, do not disrupt interfacial hydration; this prevailing water maintains low friction. At low speeds where interface drainage dominates, the osmotic suction works against slip for higher friction. The prediction of friction coefficients after adhesion characterization by micro-indentation makes use of the interplay between poroelasticity, adhesion, and friction. This approach provides a starting point for prediction of, and design for, hydrogel interfacial friction.

  20. An application of the suction analog for the analysis of asymmetric flow situations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1976-01-01

    A recent extension of the suction analogy for estimation of vortex loads on asymmetric configurations is reviewed. This extension includes asymmetric augmented vortex lift and the forward sweep effect on side edge suction. Application of this extension to a series of skewed wings has resulted in an improved estimating capability for a wide range of asymmetric flow situations. Hence, the suction analogy concept now has more general applicability for subsonic lifting surface analysis.

  1. Reliability and criterion-related validity testing (construct) of the Endotracheal Suction Assessment Tool (ESAT©).

    PubMed

    Davies, Kylie; Bulsara, Max K; Ramelet, Anne-Sylvie; Monterosso, Leanne

    2018-05-01

    To establish criterion-related construct validity and test-retest reliability for the Endotracheal Suction Assessment Tool© (ESAT©). Endotracheal tube suction performed in children can significantly affect clinical stability. Previously identified clinical indicators for endotracheal tube suction were used as criteria when designing the ESAT©. Content validity was reported previously. The final stages of psychometric testing are presented. Observational testing was used to measure construct validity and determine whether the ESAT© could guide "inexperienced" paediatric intensive care nurses' decision-making regarding endotracheal tube suction. Test-retest reliability of the ESAT© was performed at two time points. The researchers and paediatric intensive care nurse "experts" developed 10 hypothetical clinical scenarios with predetermined endotracheal tube suction outcomes. "Experienced" (n = 12) and "inexperienced" (n = 14) paediatric intensive care nurses were presented with the scenarios and the ESAT© guiding decision-making about whether to perform endotracheal tube suction for each scenario. Outcomes were compared with those predetermined by the "experts" (n = 9). Test-retest reliability of the ESAT© was measured at two consecutive time points (4 weeks apart) with "experienced" and "inexperienced" paediatric intensive care nurses using the same scenarios and tool to guide decision-making. No differences were observed between endotracheal tube suction decisions made by "experts" (n = 9), "inexperienced" (n = 14) and "experienced" (n = 12) nurses confirming the tool's construct validity. No differences were observed between groups for endotracheal tube suction decisions at T1 and T2. Criterion-related construct validity and test-retest reliability of the ESAT© were demonstrated. Further testing is recommended to confirm reliability in the clinical setting with the "inexperienced" nurse to guide decision-making related to endotracheal tube suction. The ESAT© is the first validated tool to systematically guide endotracheal nursing practice for the "inexperienced" nurse. © 2018 John Wiley & Sons Ltd.

  2. Airfoil

    DOEpatents

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  3. Design and Control of a Mechatronic Tracheostomy Tube for Automated Tracheal Suctioning.

    PubMed

    Do, Thanh Nho; Seah, Tian En Timothy; Phee, Soo Jay

    2016-06-01

    Mechanical ventilation is required to aid patients with breathing difficulty to breathe more comfortably. A tracheostomy tube inserted through an opening in the patient neck into the trachea is connected to a ventilator for suctioning. Currently, nurses spend millions of person-hours yearly to perform this task. To save significant person-hours, an automated mechatronic tracheostomy system is needed. This system allows for relieving nurses and other carers from the millions of person-hours spent yearly on tracheal suctioning. In addition, it will result in huge healthcare cost savings. We introduce a novel mechatronic tracheostomy system including the development of a long suction catheter, automatic suctioning mechanisms, and relevant control approaches to perform tracheal suctioning automatically. To stop the catheter at a desired position, two approaches are introduced: 1) Based on the known travel length of the catheter tip; 2) Based on a new sensing device integrated at the catheter tip. It is known that backlash nonlinearity between the suction catheter and its conduit as well as in the gear system of the actuator are unavoidable. They cause difficulties to control the exact position of the catheter tip. For the former case, we develop an approximate model of backlash and a direct inverse scheme to enhance the system performances. The scheme does not require any complex inversions of the backlash model and allows easy implementations. For the latter case, a new sensing device integrated into the suction catheter tip is developed and backlash compensation controls are avoided. Automated suctioning validations are successfully carried out on the proposed experimental system. Comparisons and discussions are also introduced. The results demonstrate a significant contribution and potential benefits to the mechanical ventilation areas.

  4. Performance of a water suction system using hydrophilic fibrous cloth under low gravity and microgravity in parabolic flight.

    PubMed

    Tani, A; Saito, T; Kitaya, Y; Takahashi, H; Goto, E

    2000-06-01

    For suction of water from a water supply vessel including both water and air under microgravity and g-jitter conditions, a water suction system using hydrophilic fibrous cloth was developed and its performance was evaluated at 0.01-0.02 g-realized for 20 s by parabolic flight in an aircraft. Vessels used for the experiment were glass flasks and had a suction port for suction filtration. A piece of hydrophilic fibrous cloth was arranged along the inner surface of the vessels and the end was fixed to the suction port of the vessels. In vessel without hydrophilic cloths and containing 220 mL of water, the water did not move more than 5 mm along the inner surface and did not reach the suction port under low gravity. When hydrophilic cloths were used, on the other hand, water gathered onto the cloth surface, moved up along the cloth and reached the suction port under low gravity. The amount of water sucked from vessels varied with the amount of water in the vessel and the sectional area of hydrophilic cloths. When the vessels including both water and air were flown during parabolic flight (10(-4) g), water in the vessel moved along the cloth and a water film was formed on the cloth. These results indicated that it is possible to suck water using the fibrous cloth suction system under low gravity and microgravity conditions. Under low gravity conditions, it was difficult to suck water only. However, it is not necessary to separate water from air when the system is used for supplying water to plant root medium consisting of both liquid and gas phases.

  5. Feeding of the megamouth shark (Pisces: Lamniformes: Megachasmidae) predicted by its hyoid arch: a biomechanical approach.

    PubMed

    Tomita, Taketeru; Sato, Keiichi; Suda, Kenta; Kawauchi, Junro; Nakaya, Kazuhiro

    2011-05-01

    Studies of the megamouth shark, one of three planktivorous sharks, can provide information about their evolutionary history. Megamouth shark feeding has never been observed in life animals, but two alternative hypotheses on biomechanics suggest either feeding, i.e., ram feeding or suction feeding. In this study, the second moment of area of the ceratohyal cartilages, which is an indicator of the flexural stiffness of the cartilages, is calculated for 21 species of ram- and suction-feeding sharks using computed tomography. The results indicate that suction-feeding sharks have ceratohyal cartilages with a larger second moment of area than ram-feeding sharks. The result also indicates that the ram-suction index, which is an indicator of relative contribution of ram and suction behavior, is also correlated with the second moment of area of the ceratohyal. Considering that large bending stresses are expected to be applied to the ceratohyal cartilage during suction, the larger second moment of area of the ceratohyal of suction-feeding sharks can be interpreted as an adaptation for suction feeding. Based on the small second moment of area of the ceratohyal cartilage of the megamouth shark, the feeding mode of the megamouth shark is considered to be ram feeding, similar to the planktivorous basking shark. From these results, an evolutionary scenario of feeding mechanics of three species of planktivorous sharks can be suggested. In this scenario, the planktivorous whale shark evolved ram feeding from a benthic suction-feeding ancestor. Ram feeding in the planktivorous megamouth shark and the basking shark evolved from ram feeding swimming-type ancestors and that both developed their unique filtering system to capture small-sized prey. Copyright © 2011 Wiley-Liss, Inc.

  6. Photosynthesis and Transpiration of Monterey Pine Seedlings as a Function of Soil Water Suction and Soil Temperature

    PubMed Central

    Babalola, O.; Boersma, L.; Youngberg, C. T.

    1968-01-01

    Rates of photosynthesis, respiration, and transpiration of Monterey pine (Pinus radiata D. Don) were measured under controlled conditions of soil water suction and soil temperature. Air temperature, relative humidity, light intensity, and air movement were maintained constant. Rates of net photosynthesis, respiration, and transpiration decreased with increasing soil water suction. The decrease in the rates of net photosynthesis and transpiration as a function of the soil temperature at low soil water suctions may be attributed to changes in the viscosity of water. At soil water suctions larger than 0.70 bars rates of transpiration and net photosynthesis may be affected in the same proportion by changes in stomatal apertures. Images PMID:16656800

  7. 21 CFR 870.4430 - Cardiopulmonary bypass intracardiac suction control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass intracardiac suction control. 870.4430 Section 870.4430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4430 Cardiopulmonary bypass intracardiac suction control. (a) Identification. A cardiopulmonary bypass...

  8. 21 CFR 870.4430 - Cardiopulmonary bypass intracardiac suction control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass intracardiac suction control. 870.4430 Section 870.4430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4430 Cardiopulmonary bypass intracardiac suction control. (a) Identification. A cardiopulmonary bypass...

  9. Hydroponic Feed With Suction

    NASA Technical Reports Server (NTRS)

    Cox, William M.; Brown, Christopher S.; Dreschel, Thomas W.

    1994-01-01

    Placing nutrient solution under suction increases growth. Foam plug seals growing stem of plant, making it possible to maintain suction in nutrient liquid around roots. Jar wrapped in black tape to keep out light. Potential use in terrestrial applications in arid climates or in labor-intensive agricultural situations.

  10. Performance of high-area-ratio annular dump diffuser using suction-stabilized-vortex flow control

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Smith, J. M.

    1977-01-01

    A short annular dump diffuser having a geometry conductive to formation of suction stabilized toroidal vortices in the region of abrupt area change was tested. The overall diffuser area ratio was 4.0 and the length to inlet height ratio was 2.0. Performance data were obtained at near ambient temperature and pressure for inlet Mach numbers of 0.18 and 0.30 with suction rates ranging from 0 to 18 percent of total inlet mass flowrate. Results show that the exit velocity profile could be readily biased toward either wall by adjustment of inner and outer wall suction rates. Symmetric exit velocity profiles were inherently unstable with a tendency to revert to a hub or tip bias. Diffuser effectiveness was increased from about 38 percent without suction to over 85 percent at a total suction rate of 10 to 12 percent. At the same time diffuser total pressure loss was reduced from 3.1 percent to 1.1 percent at an inlet Mach number of 0.3.

  11. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  12. Some physiological responses of wheat and bean to soil salinity at low matric suctions

    NASA Astrophysics Data System (ADS)

    Khatar, Mahnaz; Mohammadi, Mohammad Hossein; Shekari, Farid

    2017-01-01

    The effect of soil matric suction (2-33 kPa) and salinity (soil solution electrical conductivity 0.7-8 dS m-1 for bean and 2-20 dS m-1 for wheat) on some physiological characteristics of bean and wheat in a clay loam soil under greenhouse condition was investigated. The results showed that the leaf chlorophyll content index and potassium concentration decrease under salinity stress and increase with matric suction from 2 to 33 kPa suction for both plants. The wheat chlorophyll content index declines during the stress spell but bean chlorophyll content index remains nearly constant. The lowest values of the content of soluble sugars and the highest values of leaf proline content are observed at2 kPa matric suction (highest aeration stress) for bean and wheat. As matric suction increases from 2 to 6 kPa, the soluble sugars increases and proline content decreases significantly and then soluble sugars decreases and proline content increases until 10 kPa suction, and the soluble sugars remains nearly constant at the higher matric suctions for both plants. While the electrical conductivity effect on the soluble sugars is not significant, the values of proline content for both crop increase significantly with electrical conductivity. It was shown that the aeration stress can result in more considerable and rapid physiological responses, in comparison with salinity stress. There is a strong correlation between wheat and bean chlorophyll content index and potassium concentration under salinity and aeration stresses.

  13. Drop tower with no aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr.

    1981-01-01

    Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.

  14. 46 CFR 56.50-45 - Circulating pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-45 Circulating pumps. (a) A main circulating pump and emergency means for circulating water through the main condenser shall be provided. The... circulating pump and the condenser. (b) Independent sea suctions shall be provided for the main circulating...

  15. 21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4680 Nonpowered, single patient, portable suction apparatus. (a) Identification. A nonpowered, single patient, portable suction apparatus is a device that consists of a manually operated plastic, disposable...

  16. 21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4680 Nonpowered, single patient, portable suction apparatus. (a) Identification. A nonpowered, single patient, portable suction apparatus is a device that consists of a manually operated plastic, disposable...

  17. Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    NASA Technical Reports Server (NTRS)

    Tingas, S. A.; Rao, D. M.

    1982-01-01

    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack.

  18. Computational analysis of semi-span model test techniques

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Chokani, Ndaona

    1996-01-01

    A computational investigation was conducted to support the development of a semi-span model test capability in the NASA LaRC's National Transonic Facility. This capability is required for the testing of high-lift systems at flight Reynolds numbers. A three-dimensional Navier-Stokes solver was used to compute the low-speed flow over both a full-span configuration and a semi-span configuration. The computational results were found to be in good agreement with the experimental data. The computational results indicate that the stand-off height has a strong influence on the flow over a semi-span model. The semi-span model adequately replicates the aerodynamic characteristics of the full-span configuration when a small stand-off height, approximately twice the tunnel empty sidewall boundary layer displacement thickness, is used. Several active sidewall boundary layer control techniques were examined including: upstream blowing, local jet blowing, and sidewall suction. Both upstream tangential blowing, and sidewall suction were found to minimize the separation of the sidewall boundary layer ahead of the semi-span model. The required mass flow rates are found to be practicable for testing in the NTF. For the configuration examined, the active sidewall boundary layer control techniques were found to be necessary only near the maximum lift conditions.

  19. Impact of tip-gap size and periodicity on turbulent transition

    NASA Astrophysics Data System (ADS)

    Pogorelov, Alexej; Meinke, Matthias; Schroeder, Wolfgang

    2015-11-01

    Large-Eddy Simulations of the flow field in an axial fan are performed at a Reynolds number of 936.000 based on the diameter and the rotational speed of the casing wall. A finite-volume flow solver based on a conservative Cartesian cut-cell method is used to solve the unsteady compressible Navier-Stokes equations. Computations are performed at a flow rate coefficient of 0.165 and a tip-gap size of s/D =0.01, for a 72 degrees fan section resolving only one out of five blades and a full fan resolving all five blades to investigate the impact of the periodic boundary condition. Furthermore, a grid convergence study is performed using four computational grids. Results of the flow field are analyzed for the computational grid with 1 billion cells. An interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, is observed, which leads to a cyclic transition with high pressure fluctuations on the suction side of the blade. Two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level such that their physical origin is explained. A variation of the tip-gap size alters the transition on the suction side, i.e., no cyclic transition is observed.

  20. 75 FR 43150 - Marine Mammals; File Nos. 10018, 13846, 14451, 14585, 14599, 14122, 14296, and 14353

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... of sloughed skin, photogrammetry, biopsy sampling, playback experiments, and/or suction- cup and... to individuals; (6) attachment of suction cup tags; (7) SCUBA observations; and (8) opportunistic.... Research will include vessel-based approaches: (1) to humpback whales for biological sampling, suction cup...

  1. 21 CFR 870.4270 - Cardiopulmonary bypass cardiotomy suction line blood filter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blood filter. 870.4270 Section 870.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4270 Cardiopulmonary bypass cardiotomy suction line blood filter. (a) Identification. A cardiopulmonary bypass cardiotomy suction line blood filter is a device used as part of a gas exchange (oxygenator...

  2. 21 CFR 870.4270 - Cardiopulmonary bypass cardiotomy suction line blood filter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... blood filter. 870.4270 Section 870.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4270 Cardiopulmonary bypass cardiotomy suction line blood filter. (a) Identification. A cardiopulmonary bypass cardiotomy suction line blood filter is a device used as part of a gas exchange (oxygenator...

  3. 21 CFR 870.4270 - Cardiopulmonary bypass cardiotomy suction line blood filter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... blood filter. 870.4270 Section 870.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4270 Cardiopulmonary bypass cardiotomy suction line blood filter. (a) Identification. A cardiopulmonary bypass cardiotomy suction line blood filter is a device used as part of a gas exchange (oxygenator...

  4. 21 CFR 870.4270 - Cardiopulmonary bypass cardiotomy suction line blood filter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... blood filter. 870.4270 Section 870.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4270 Cardiopulmonary bypass cardiotomy suction line blood filter. (a) Identification. A cardiopulmonary bypass cardiotomy suction line blood filter is a device used as part of a gas exchange (oxygenator...

  5. 21 CFR 870.4270 - Cardiopulmonary bypass cardiotomy suction line blood filter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... blood filter. 870.4270 Section 870.4270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4270 Cardiopulmonary bypass cardiotomy suction line blood filter. (a) Identification. A cardiopulmonary bypass cardiotomy suction line blood filter is a device used as part of a gas exchange (oxygenator...

  6. 21 CFR 874.5350 - Suction antichoke device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...

  7. 21 CFR 874.5350 - Suction antichoke device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...

  8. 21 CFR 874.5350 - Suction antichoke device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...

  9. 21 CFR 874.5350 - Suction antichoke device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...

  10. 21 CFR 874.5350 - Suction antichoke device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...

  11. 21 CFR 878.5040 - Suction lipoplasty system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Suction lipoplasty system. 878.5040 Section 878.5040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5040 Suction lipoplasty system...

  12. 21 CFR 878.5040 - Suction lipoplasty system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Suction lipoplasty system. 878.5040 Section 878.5040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5040 Suction lipoplasty system...

  13. 21 CFR 878.5040 - Suction lipoplasty system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Suction lipoplasty system. 878.5040 Section 878.5040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.5040 Suction lipoplasty system...

  14. Experimental study of flow due to an isolated suction hole and a partially plugged suction slot

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Wilkinson, S. P.

    1980-01-01

    Details for construction of a model of a partially plugged, laminar flow control, suction slot and an isolated hole are presented. The experimental wind tunnel facility and instrumentation is described. Preliminary boundary layer velocity profiles (without suction model) are presented and shown to be in good agreement with the Blasius laminar profile. Recommendations for the completion of the study are made. An experimental program for study of transition on a rotating disk is described along with preliminary disturbance amplification rate data.

  15. Numerical Studies on a Rotor with Distributed Suction for Noise Reduction

    NASA Astrophysics Data System (ADS)

    Lutz, Thorsten; Arnold, Benjamin; Wolf, Alexander; Krämer, Ewald

    2014-06-01

    Minimizing the flow-induced noise is an important issue in the design of modern onshore wind turbines. There is a number of proven passive means to reduce the aeroacoustic noise, such as the implementation of serrations, porous trailing edges or the aeroacoustic airfoil design. The noise emission can be further reduced by active flow control techniques. In the present study the impact of distributed boundary layer suction on the noise emission of an airfoil and a complete rotor is investigated. Aerodynamic and aeroacoustic wind tunnel tests were performed for the NACA 64-418 airfoil and supplemented by numerical calculations. The aeroacoustic analyses have been conducted by means of the institute's Rnoise prediction scheme. The 2D studies have shown that noise reductions of 5 dB can be achieved by suction at moderate mass flow rates. To study the impact of three-dimensional effects numerical investigations have been conducted on the example of the generic NREL 5MW rotor with suction applied in the outer part of the blade. The predictions for the complete rotor provided smaller benefits compared to those for the isolated airfoil, mainly because the examined suction configurations were not optimized with respect to the extent of the suction patch and suction distribution.

  16. [Efficiency of novel splash-proof ventilator circuit component on VAP and the colonization of multiple-drug resistant bacteria prevention in patients undergoing mechanical ventilation: a prospective randomized controlled intervention study with 318 patients].

    PubMed

    Xu, Songao; Yu, Huijie; Sun, Hui; Zhu, Xiangyun; Xu, Xiaoqin; Xu, Jun; Cao, Weizhong

    2017-01-01

    To investigate the efficiency of closed tracheal suction system (CTSS) using novel splash-proof ventilator circuit component on ventilator-associated pneumonia (VAP) and the colonization of multiple-drug resistant bacteria (MDR) in patients undergoing mechanical ventilation (MV) prevention. A prospective single-blinded randomized parallel controlled intervention study was conducted. 330 severe patients admitted to the intensive care unit (ICU) of the First Hospital of Jiaxing from January 2014 to May 2016 were enrolled, and they were divided into open tracheal suction group, closed tracheal suction group, and splash-proof suction group on average by random number table. The patients in the three groups used conventional ventilator circuit component, conventional CTSS, and CTSS with a novel splash-proof ventilator circuit component for MV and sputum suction, respectively. The incidence of VAP, airway bacterial colonization rate, MDR and fungi colonization rate, duration of MV, length of ICU and hospitalization stay, and financial expenditure during hospitalization, as well as the in-hospital prognosis were recorded. After excluding patients who did not meet the inclusion criteria, incomplete data, backed out and so on, 318 patients were enrolled in the analysis finally. Compared with the open tracheal suction group, the total incidence of VAP was decreased in the closed tracheal suction group and splash-proof suction group [20.95% (22/105), 21.90% (23/105) vs. 29.63% (32/108)], but no statistical difference was found (both P > 0.05), and the incidence of VAP infections/1 000 MV days showed the same change tendency (cases: 14.56, 17.35 vs. 23.07). The rate of airway bacterial colonization and the rate of MDR colonization in the open tracheal suction group and splash-proof suction group were remarkably lower than those of closed tracheal suction group [32.41% (35/108), 28.57% (30/105) vs. 46.67% (49/105), 20.37% (22/108), 15.24% (16/105) vs. 39.05% (41/105)] with significantly statistical differences (all P < 0.05). Besides, no significantly statistical difference was found in the fungi colonization rate among open tracheal group, closed tracheal group, and splash-proof suction group (4.63%, 3.81% and 6.67%, respectively, P > 0.05). Compared with the closed tracheal suction group, the duration of MV, the length of ICU and hospitalization stay were shortened in the open tracheal suction group and splash-proof suction group [duration of MV (days): 8.00 (4.00, 13.75), 8.00 (5.00, 13.00) vs. 9.00 (5.00, 16.00); the length of ICU stay (days): 10.00 (6.00, 16.00), 11.00 (7.00, 19.00) vs. 13.00 (7.50, 22.00); the length of hospitalization stay (days): 16.50 (9.25, 32.00), 19.00 (10.50, 32.50) vs. 21.00 (10.00, 36.00)], and financial expenditure during hospitalization was lowered [10 thousand Yuan: 4.95 (3.13, 8.62), 5.47 (3.84, 9.41) vs. 6.52 (3.99, 11.02)] without significantly statistical differences (all P > 0.05). Moreover, no significantly statistical difference was found in the in-hospital prognosis among the three groups. CTSS performed using novel splash-proof ventilator circuit component shared similar advantages in preventing VAP with the conventional CTSS. Meanwhile, it is superior because it prevented the colonization of MDR and high price in the conventional CTSS.Clinical Trail Registration Chinese Clinical Trial Registry, ChiCTR-IOR-16009694.

  17. The NASA Langley 16-Foot Transonic Tunnel: Historical Overview, Facility Description, Calibration, Flow Characteristics, and Test Capabilities

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; Bare, E. Ann

    1995-01-01

    The Langley 16-Foot Transonic Tunnel is a closed-circuit single-return atmospheric wind tunnel that has a slotted octagonal test section with continuous air exchange. The wind tunnel speed can be varied continuously over a Mach number range from 0.1 to 1.3. Test-section plenum suction is used for speeds above a Mach number of 1.05. Over a period of some 40 years, the wind tunnel has undergone many modifications. During the modifications completed in 1990, a new model support system that increased blockage, new fan blades, a catcher screen for the first set of turning vanes, and process controllers for tunnel speed, model attitude, and jet flow for powered models were installed. This report presents a complete description of the Langley 16-Foot Transonic Tunnel and auxiliary equipment, the calibration procedures, and the results of the 1977 and the 1990 wind tunnel calibration with test section air removal. Comparisons with previous calibrations showed that the modifications made to the wind tunnel had little or no effect on the aerodynamic characteristics of the tunnel. Information required for planning experimental investigations and the use of test hardware and model support systems is also provided.

  18. Analysis of the effects of boundary-layer control in the take-off and power-off landing performance characteristics of a liaison type of airplane

    NASA Technical Reports Server (NTRS)

    Horton, Elmer A; Loftin, Laurence K; Racisz, Stanley F; Quinn, John

    1951-01-01

    A performance analysis has been made to determine whether boundary-layer control by suction might reduce the minimum take-off and landing distances of a four-place or five-place airplane or a liaison type of airplane below those obtainable with conventional high-lift devices. The airplane was assumed to have a cruise duration of 5 hours at 60-percent power and to be operating from airstrips having a ground friction coefficient of 0.2 or a combined ground and braking coefficient of 0.4. The payload was fixed at 1500 pounds, the wing span was varied from 25 to 100 feet, the aspect ratio was varied from 5 to 15, and the power was varied from 300 to 1300 horsepower. Maximum lift coefficients of 5.0 and 2.8 were assumed for the airplanes with and without boundary-layer-control --equipment weight was included. The effects of the boundary-layer control on total take-off distance, total power-off landing distance, landing and take-off ground run, stalling speed, sinking speed, and gliding speed were determined.

  19. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be mechanically... suction from the condenser and a discharge to the feed tank, it may be accepted as an independent...

  20. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca).

    PubMed

    Karolyi, Florian; Morawetz, Linde; Colville, Jonathan F; Handschuh, Stephan; Metscher, Brian D; Krenn, Harald W

    2013-11-01

    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.

  1. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca)

    NASA Astrophysics Data System (ADS)

    Karolyi, Florian; Morawetz, Linde; Colville, Jonathan F.; Handschuh, Stephan; Metscher, Brian D.; Krenn, Harald W.

    2013-11-01

    A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.

  2. Endotracheal Suctioning in Preterm Infants Using Four-Handed versus Routine Care

    PubMed Central

    Cone, Sharon; Pickler, Rita H.; Grap, Mary Jo; McGrath, Jacqueline; Wiley, Paul M.

    2013-01-01

    Objective To evaluate the effect of four-handed care on preterm infants’ physiologic and behavioral responses to and recovery from endotracheal suctioning versus routine endotracheal (ETT) suctioning. Design Randomized crossover design with infants as their own controls. Setting Single-family-room newborn intensive care unit in an academic health center. Participants Ten intubated infants on conventional ventilation with inline suctioning who were fewer than 37 weeks gestation at birth, and less than one week of age. Methods Each infant was observed twice on a single day. One observation involved routine ETT suctioning and one involved four-handed care. Physiologic and behavioral response data were collected. Results No differences were noted when comparing baseline heart rate (HR) or oxygen saturation (SpO2) data to those obtained during and after suctioning while in the routine care condition. In the four-handed care condition, mean SpO2 increased from preobservation 95.49 to during observation saturation 97.75 (p = .001). Salivary cortisol levels did not differ between groups at baseline or postsuctioning. No significant difference in behavior state was observed between the two conditions. More stress and defense behaviors occurred postsuctioning when infants received routine care as opposed to four-handed care (p = .001) and more self-regulatory behaviors were exhibited by infants during (p = .019) and after suctioning (p = .016) when receiving four-handed care. No statistical difference was found in the number of monitor call-backs postsuctioning. Conclusions Four-handed care during suctioning was associated with a decrease in stress and defense behaviors and an increase in self-regulatory behaviors. PMID:23316894

  3. In-flight flow visualization with pressure measurements at low speeds on the NASA F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Delfrate, John H.; Fisher, David F.; Zuniga, Fanny A.

    1990-01-01

    In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation.

  4. F-16XL Ship #2 during last flight viewed from tanker showing titanium laminar flow glove on left win

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy drops NASA F-16XL #848 away from the tanker in the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew turbulent boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' fitted to the upper left wing. About 90 hours of flight time were logged by the unique aircraft during the 13-month flight research program, much of it at speeds of Mach 2. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  5. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  6. Vortex shedding within laminar separation bubbles forming over an airfoil

    NASA Astrophysics Data System (ADS)

    Kirk, Thomas M.; Yarusevych, Serhiy

    2017-05-01

    Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.

  7. 75 FR 70271 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ...: Non-Powered Suction Apparatus Device Intended for Negative Pressure Wound Therapy; Availability AGENCY...-powered Suction Apparatus Device Intended for Negative Pressure Wound Therapy (NPWT).'' This guidance document describes a means by which non-powered suction apparatus devices intended for NPWT may comply with...

  8. Liposuction: more curettage than aspiration.

    PubMed

    Mottura, A A

    1991-01-01

    After infiltration with epinephrine solution in each adipose area, an 8- or 10-mm cannula, without the suction tube connected, was introduced. With a curettage maneuver and by directing the cannula upward, the fat began to come out spontaneously. After obtaining a considerable amount of fat, the suction tube was connected and the remaining fat tissue aspirated at low suction power (250 mm Hg). With this curettage maneuver adiposity of the abdomen, knees, and trochanteric areas can be reduced. However, in the back, buttocks, or thighs, where adiposity is more fibrous, aspiration is needed from the start in almost every case, but always at low-power suction. This procedure is indicated in particular for the face and neck and for secondary liposuction. The fact that fat comes out easily through the cannula (without suction) demonstrates that the curettage maneuver is more important than the aspiration. Only with curettage can a considerable amount of fat be removed. No fat is removed when aspiration of 1 atm without a curettage maneuver is used. Suction only helps to remove fat already mobilized and free in the cannula. Our experience includes 34 patients.

  9. Morphology, Kinematics, and Dynamics: The Mechanics of Suction Feeding in Fishes.

    PubMed

    Day, Steven W; Higham, Timothy E; Holzman, Roi; Van Wassenbergh, Sam

    2015-07-01

    Suction feeding is pervasive among aquatic vertebrates, and our understanding of the functional morphology and biomechanics of suction feeding has recently been advanced by combining experimental and modeling approaches. Key advances include the visualization of the patterns of flow in front of the mouth of a feeding fish, the measurement of pressure inside their mouth cavity, and the employment of analytical and computational models. Here, we review the key components of the morphology and kinematics of the suction-feeding system of anatomically generalized, adult ray-finned fishes, followed by an overview of the hydrodynamics involved. In the suction-feeding apparatus, a strong mechanistic link among morphology, kinematics, and the capture of prey is manifested through the hydrodynamic interactions between the suction flows and solid surfaces (the mouth cavity and the prey). It is therefore a powerful experimental system in which the ecology and evolution of the capture of prey can be studied based on first principals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Dielectric elastomer actuators for octopus inspired suction cups.

    PubMed

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  11. Octopus-like suction cups: from natural to artificial solutions.

    PubMed

    Tramacere, F; Follador, M; Pugno, N M; Mazzolai, B

    2015-05-13

    Octopus suckers are able to attach to all nonporous surfaces and generate a very strong attachment force. The well-known attachment features of this animal result from the softness of the sucker tissues and the surface morphology of the portion of the sucker that is in contact with objects or substrates. Unlike artificial suction cups, octopus suckers are characterized by a series of radial grooves that increase the area subjected to pressure reduction during attachment. In this study, we constructed artificial suction cups with different surface geometries and tested their attachment performances using a pull-off setup. First, smooth suction cups were obtained for casting; then, sucker surfaces were engraved with a laser cutter. As expected, for all the tested cases, the engraving treatment enhanced the attachment performance of the elastomeric suction cups compared with that of the smooth versions. Moreover, the results indicated that the surface geometry with the best attachment performance was the geometry most similar to octopus sucker morphology. The results obtained in this work can be utilized to design artificial suction cups with higher wet attachment performance.

  12. An improved design method and experimental performance of two dimensional curved wall diffusers

    NASA Technical Reports Server (NTRS)

    Yang, T.; Hudson, W. G.; El-Nashar, A. M.

    1972-01-01

    A computer design program was developed to incorporate the suction slots in solving the potential flow equations with prescribed boundary conditions. Using the contour generated from this program two Griffith diffusers were tested having area ratios AR = 3 and 4. The inlet Reynolds number ranged from 600,000 to 7 million. It was found that the slot suction required for metastable operation depends on the sidewall suction applied. Values of slot suction of 8% of the inlet flow rate was required for AR = 4 with metastable condition, provided that enough sidewall suction was applied. For AR = 3, the values of slot suction was about 25% lower than those required for AR = 4. For nearly all unseparated test runs, the effectiveness was 100% and the exit flow was uniform. In addition to the Griffith diffusers, dump and cusp diffusers of comparable area ratios were built and tested. The results obtained from these diffusers were compared with those of the Griffith diffusers. Flow separation occurred in all test runs with the dump and cusp diffusers.

  13. Continuous irrigation with suction started at early days after pancreatic surgery prevents severe complications.

    PubMed

    Sawada, Shigeaki; Yamagishi, Fuminori; Suzuki, Syuuichiro; Matsuoha, Jiro; Arai, Hideki; Tsukada, Kazuhiro

    2008-01-01

    The management of pancreatic leakage is important after pancreatic resection because such leakagge can be associated with additional complications. In this paper, we present a new therapy "irrigation with suction" after pancreatic surgery. The addition of suction permits the start of irrigation early after surgery and prevents severe post-operative complications. Between January 1995 and June 2003, 29 consecutive patients underwent surgical treatment of the pancreas for a variety of indications. Among them, 18 patients were treated with continuous irrigation with suction prophylactically. In these 29 patients, we did not encounter any additional complications such as intraabdominal hemorrhage or abscess formation. A representative case report demonstrates the application of this treatment. The irrigation with suction therapy was started on the first post-operative day after the pylorus-preserving pancreatoduodenectomy with left lobectomy of the liver. CT with irrigation of contrast reagent showed that the reagent did not spread to the uninvolved abdominal area, and the patient did not develop hemorrhage or abscess. It seems that continuous irrigation with suction therapy was effective in preventing additional serious complications after pancreatic resection.

  14. Absence of Suction Feeding Ichthyosaurs and Its Implications for Triassic Mesopelagic Paleoecology

    PubMed Central

    Motani, Ryosuke; Ji, Cheng; Tomita, Taketeru; Kelley, Neil; Maxwell, Erin; Jiang, Da-yong; Sander, Paul Martin

    2013-01-01

    Mesozoic marine reptiles and modern marine mammals are often considered ecological analogs, but the extent of their similarity is largely unknown. Particularly important is the presence/absence of deep-diving suction feeders among Mesozoic marine reptiles because this would indicate the establishment of mesopelagic cephalopod and fish communities in the Mesozoic. A recent study suggested that diverse suction feeders, resembling the extant beaked whales, evolved among ichthyosaurs in the Triassic. However, this hypothesis has not been tested quantitatively. We examined four osteological features of jawed vertebrates that are closely linked to the mechanism of suction feeding, namely hyoid corpus ossification/calcification, hyobranchial apparatus robustness, mandibular bluntness, and mandibular pressure concentration index. Measurements were taken from 18 species of Triassic and Early Jurassic ichthyosaurs, including the presumed suction feeders. Statistical comparisons with extant sharks and marine mammals of known diets suggest that ichthyosaurian hyobranchial bones are significantly more slender than in suction-feeding sharks or cetaceans but similar to those of ram-feeding sharks. Most importantly, an ossified hyoid corpus to which hyoid retractor muscles attach is unknown in all but one ichthyosaur, whereas a strong integration of the ossified corpus and cornua of the hyobranchial apparatus has been identified in the literature as an important feature of suction feeders. Also, ichthyosaurian mandibles do not narrow rapidly to allow high suction pressure concentration within the oral cavity, unlike in beaked whales or sperm whales. In conclusion, it is most likely that Triassic and Early Jurassic ichthyosaurs were ‘ram-feeders’, without any beaked-whale-like suction feeder among them. When combined with the inferred inability for dim-light vision in relevant Triassic ichthyosaurs, the fossil record of ichthyosaurs does not suggest the establishment of modern-style mesopelagic animal communities in the Triassic. This new interpretation matches the fossil record of coleoids, which indicates the absence of soft-bodied deepwater species in the Triassic. PMID:24348983

  15. Early surgical suction and washout for treatment of cytotoxic drug extravasations.

    PubMed

    Vandeweyer, E; Deraemaecker, R

    2000-02-01

    This case report is presented to assess safety and efficiency of early suction and saline washout of extravasated cytotoxic drugs. Through multiple small skin incisions, the area of extravasation is first suctioned and subsequently extensively washed out with saline. Incisions are left open and the arm is elevated for 24 hours. A complete healing was obtained in five days without any skin or soft tissue loss. No additional treatment was needed. Early referral and surgical treatment by suction and washout is a safe and reliable treatment protocol for major cytotoxic drug extravasation injuries.

  16. Instabilities orginating from suction holes used for Laminar Flow Control (LFC)

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1994-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer studies has been modified for experiments in laminar flow control. The facility incorporates suction through interchangeable porous test surfaces which are used to stabilize the boundary layer and delay transition to turbulent flow. The thin porous test surfaces are supported by a baffled plenum chamber box which also acts to gather the flow through the surface into tubes which are routed to a high pressure fan. An elliptic leading edge is attached to the assembly to establish a new layer on the test plate. A slot is used to remove the test section flow below the leading edge. The test section was lengthened and fitted with a new ceiling. Substantial modifications were also made to the 3D probe traverse. Detailed studies have been made using isolated holes to explore the underlying instability mechanisms. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance. Conditions corresponding to strong suction and without suction have been studied. In both cases, 3D contour surfaces in the vicinity of the hole show highly three-dimensional T-S waves that fan out away from the hole with streamwise distance. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the far field is similar to the case without suction. Downstream the contour surfaces of the bow-shaped TS waves develop spanwise irregularities which eventually form into clumps. The contours remain smooth when suction is not applied. Even without suction, the harmonic point source is challenging for CFD; e.g. DNS has been used for streamwise growth. With suction, grid resources are consumed by the hole and this makes DNS even more expensive. Limited DNS results so far indicate that the vortices which emanate from suction holes appear to be stable. The spanwise clumping observed in the experiment is evidence of a secondary instability that could be associated with suction vortices. A typical porous surface for LFC consists of 0.002 inch diameter holes with 0.020 inch grid spacing L, which is too small to resolve disturbances. A 20:1 scale porous test surface has been machined for improved spatial resolution while the L/d is still representative of flight conditions. Designers of porous surfaces use Goldsmith's criterion to minimize crossstream interaction. However nothing is known about the streamwise interactions. Results using two holes, aligned but displaced in the streamwise direction, indicate that partial TS wave cancellation is possible, depending on the hole spacing and disturbance frequency. Using DNS for streamwise interaction studies will be prohibitively expensive if linear superposition cannot be used for the multiple holes.

  17. Flight thresholds and seasonal variations in flight activity of the light-brown apple moth, Epiphyas postvittana (Walk.) (Tortricidae), in Victoria, Australia.

    PubMed

    Danthanarayana, W

    1976-12-01

    The flight activity of Epiphyas postvittana was studied at two sites near Melbourne with the aid of suction traps, over a period of 4 years. Maximum numbers were found to fly during the period September to March with peak activity coinciding with the emergence of winter, spring and summer generation moths. E. postivittana is predominantly a nocturnal flier with maximum activity around 20.00-24.00 h. The lower temperature threshold of flight was 8-11°C. The upper temperature threshold varied from 20-21°C, 24-25°C and 27-28°C for the winter, spring and summer generation moths respectively. Flight was highly influenced by the prevailing wind. The lower wind speed threshold was 0.5-0.8 m -s and the upper wind speed threshold was 2.6-2.7 m -s . The relationship between wind speed and the amount of flight was non-linear, with the frequency of flights decreasing sharply with increasing wind speed. No flights occurred at wind speeds greater than 2.8 m -s . Variation in relative humidity had no influence on flight, but lack of rain favoured flight. The amount of flight activity and the amount of rainfall were negatively correlated; flights did not occur when the daily precipitation exceeded 32.5 mm, and with a precipitation exceeding 39 mm no flights could be expected. The value of these findings to pest control programmes is discussed.

  18. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  19. Characterization of zebrafish larvae suction feeding flow using μPIV and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Chang, Brian; Uslu, Fazil; Mani, Karthick; Chen, Chia-Yuan; Holzman, Roi

    2016-07-01

    The hydrodynamics of suction feeding is critical for the survival of fish larvae; failure to capture food during the onset of autonomous feeding can rapidly lead to starvation and mortality. Fluid mechanics experiments that investigate the suction feeding of suspended particles are limited to adult fishes, which operate at large Reynolds numbers. This manuscript presents the first literature results in which the external velocity fields generated during suction feeding of early zebrafish larvae (2500-20,000 μm total length) are reported using time-resolved microscopic particle image velocimetry. For the larval stages studied, the maximum peak suction velocity of the inflow bolus is measured at a finite distance from the mouth tip and ranges from 1 to 8 mm/s. The average pressure gradient and the velocity profile proximal to the buccal (mouth) cavity are calculated, and two distinct trends are identified. External recirculation regions and reverse flow feeding cycles are also observed and quantified. One of the unresolved questions in fish suction feeding is the shape and dynamics of the buccal cavity during suction feeding; optical coherence tomography imaging is found to be useful for reconstructing the mouth kinematics. The projected area of the mouth cavity during the feeding cycle varies up to 160 and 22 % for the transverse and mid-sagittal planes, respectively. These findings can inspire novel hydrodynamically efficient biomedical and microfluidic devices.

  20. Liquid-Based Endometrial Cytology Using SurePath™ Is Not Inferior to Suction Endometrial Tissue Biopsy in Clinical Performance for Detecting Endometrial Cancer Including Atypical Endometrial Hyperplasia.

    PubMed

    Yanaki, Fumiko; Hirai, Yasuo; Hanada, Azusa; Ishitani, Ken; Matsui, Hideo

    2017-01-01

    We evaluated the clinical performance of liquid-based endometrial cytology (SurePath™) for detecting endometrial malignancies by comparison with the performance of suction endometrial tissue biopsy. From November 2011 to May 2013, we consecutively collected 1,118 liquid-based endometrial cytology specimens and 674 suction endometrial tissue biopsy specimens. The rate of nonpositive final histology in nonpositive liquid-based endometrial cytology (98.2%) was higher than the rate of nonpositive final histology in nonpositive suction endometrial tissue biopsy (97.0%). None of the clinical performance values of liquid-based endometrial cytology for detecting the endometrial malignancies were statistically inferior to those of the suction endometrial tissue biopsy. When the positivity threshold was more than "atypical endometrial cells of undetermined significance," the rate of positive liquid-based endometrial cytology from cases with a positive final histology (84.5%) was higher than the rate of positive suction endometrial tissue biopsy from cases with a positive final histology (69.8%). However, there were still no significant differences among all the performance values. Our liquid-based endometrial cytology would be more appropriate in various clinical situations as the initial detection tool for endometrial malignancies, rather than suction endometrial tissue biopsy. In addition, it could be used in screening for endometrial malignancies on a broader scale. © 2017 S. Karger AG, Basel.

  1. Differing ERP patterns caused by suction and puff stimuli.

    PubMed

    Choi, Mi-Hyun; Kim, Hyung-Sik; Baek, Ji-Hye; Lee, Jung-Chul; Park, Sung-Jun; Jeong, Ul-Ho; Gim, Seon-Young; You, Ji Hye; Kim, Sung-Pil; Lim, Dae-Woon; Kim, Hyun-Jun; Chung, Soon-Cheol

    2015-05-06

    The present study compared event-related potential (ERP) patterns for two stimuli types, puff and suction, by applying these stimuli to the fingers; ERP patterns for the two stimuli were compared at C3, an area related to somatosensory perception, and at FC5, an area related to motor function. Participants were 12 healthy males in their 20s (mean age=23.1±2.0 years). One session consisted of a Control Phase (3s), a Stimulation Phase (3s), and a Rest Phase (9s). During the Stimulation Phase, a 4-psi suction or puff stimulus was applied to the first joint of the right index finger. After completion of the session, a subjective magnitude test was presented. In all phases, electroencephalography signals were recorded. We extracted maximum positive amplitude and minimum negative amplitude as well as relevant latency values for C3 and FC5 signals. Suction and puff stimuli had similar subjective magnitude scores. For both C3 and FC5, the maximum and minimum amplitude latency was reached earlier for the suction stimulus than for the puff stimulus. In conclusion, when suction and puff stimuli of the same intensity were applied to the fingers, the suction stimulus caused a more sensitive response in the somatosensory area (C3) and motor area (FC5) than did the puff stimulus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of vacuum suctioning and strategic drape tenting on oxygen concentration in a simulated surgical field.

    PubMed

    Kung, Theodore A; Kong, Sarah W; Aliu, Oluseyi; Azizi, Jahan; Kai, Salim; Cederna, Paul S

    2016-02-01

    To investigate the isolated and combined effects of vacuum suctioning and strategic drape tenting on oxygen concentration in an experimental setting. Experimental. Clinical simulation center of a university-affiliated hospital. Mannequin simulation of a patient undergoing facial surgery under sedation anesthesia. Supplemental oxygen was delivered via nasal cannula. Vacuum suctioning and strategic drape tenting. The experimental trials entailed measuring oxygen concentration around the nasal cannula continuously either in the presence or absence of a standard operating room vacuum suction system and strategic tenting of surgical drapes. The primary outcome was the time required for oxygen concentration to reach 21%. In the control group (without suction or strategic tenting), a mean time of 180 seconds elapsed until the measured oxygen concentration reached 21% after cessation of oxygen delivery. Use of a vacuum suction device alone (110 seconds; P < .01) or in combination with strategic tenting (110 seconds; P < .01) significantly reduced this time. No significant benefit was seen when tenting was used alone (160 seconds; P < .30). Use of a vacuum suction device during surgery will lower local oxygen concentration, and this in turn may decrease the risk of operating room fires. Although strategic tenting of surgical drapes has a theoretical benefit to decreasing the pooling of oxygen around the surgical site, further investigation is necessary before its routine use is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. F-14 VSTFE

    NASA Image and Video Library

    1986-04-11

    NASA 834, an F-14 Navy Tomcat, seen here in flight, was used at Dryden in 1986 and 1987 in a program known as the Variable-Sweep Transition Flight Experiment (VSTFE). This program explored laminar flow on variable sweep aircraft at high subsonic speeds. An F-14 aircraft was chosen as the carrier vehicle for the VSTFE program primarily because of its variable-sweep capability, Mach and Reynolds number capability, availability, and favorable wing pressure distribution. The variable sweep outer-panels of the F-14 aircraft were modified with natural laminar flow gloves to provide not only smooth surfaces but also airfoils that can produce a wide range of pressure distributions for which transition location can be determined at various flight conditions and sweep angles. Glove I, seen here installed on the upper surface of the left wing, was a "cleanup" or smoothing of the basic F-14 wing, while Glove II was designed to provide specific pressure distributions at Mach 0.7. Laminar flow research continued at Dryden with a research program on the NASA 848 F-16XL, a laminar flow experiment involving a wing-mounted panel with millions of tiny laser cut holes drawing off turbulent boundary layer air with a suction pump.

  4. F-14 VSTFE - gloves #1 and #2

    NASA Image and Video Library

    1987-04-22

    NASA 834, an F-14 Navy Tomcat, seen here in flight, was used at Dryden in 1986 and 1987 in a program known as the Variable-Sweep Transition Flight Experiment (VSTFE). This program explored laminar flow on variable sweep aircraft at high subsonic speeds. An F-14 aircraft was chosen as the carrier vehicle for the VSTFE program primarily because of its variable-sweep capability, Mach and Reynolds number capability, availability, and favorable wing pressure distribution. The variable sweep outer-panels of the F-14 aircraft were modified with natural laminar flow gloves to provide not only smooth surfaces but also airfoils that can produce a wide range of pressure distributions for which transition location can be determined at various flight conditions and sweep angles. Glove I, seen here installed on the upper surface of the left wing, was a "cleanup" or smoothing of the basic F-14 wing, while Glove II was designed to provide specific pressure distributions at Mach 0.7. Laminar flow research continued at Dryden with a research program on the NASA 848 F-16XL, a laminar flow experiment involving a wing-mounted panel with millions of tiny laser cut holes drawing off turbulent boundary layer air with a suction pump.

  5. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    NASA Astrophysics Data System (ADS)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  6. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility

    PubMed Central

    Ng, Boon C.; Timms, Daniel; Cohn, William E.

    2018-01-01

    Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9–15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states. PMID:29677212

  7. Mercury vapour exposure during dental student training in amalgam removal

    PubMed Central

    2013-01-01

    Background Amalgam that is used for dental fillings contains approximately 50% elemental mercury. During dental student training, amalgam is often removed by drilling without the use of water spray and suction, which are protective measures in preventing mercury aerosol. In this study we measured mercury vapor levels in ambient air during amalgam removal as is typically performed in dental training. Methods Mercury vapor levels in ambient air were measured in a dental school laboratory during removal of amalgam fillings from artificial teeth set into a dental jaw simulator. Mercury vapor was measured under three conditions (25 measurements each): with the simultaneous use of water spray and suction, with the use of suction only, and with the use of neither suction nor water spray. These three conditions are all used during dental student training. Results were compared to Alberta occupational exposure limits for mercury vapor in order to assess potential occupational risk to students. Analysis of variance testing was used to compare data obtained under the three conditions. Results When water spray and suction were used, mercury vapor levels ranged from 4.0 to 19.0 μg/m3 (arithmetic mean = 8.0 μg/m3); when suction only was used, mercury vapor levels ranged from 14.0 to 999.0 (999.0 μg/m3 represents the high limit detection of the Jerome analyzer) (arithmetic mean = 141.0 μg/m3); when neither suction nor water was used, the vapor levels ranged from 34.0 to 796.0 μg/m3 (arithmetic mean = 214.0 μg/m3). Conclusions The Alberta Occupational Health and Safety threshold limit value for mercury vapor over an eight-hour time-weighted period is 25.0 μg/m3. The absolute ceiling for mercury vapor, not to be exceeded at any time, is 125.0 μg/m3. When both water spray and suction were used, mercury vapor levels were consistently below this threshold. When suction without water spray was used, mercury vapor levels exceeded the safety threshold 8% of the time. When neither water spray nor suction was used, 36% of the mercury vapor readings exceeded the absolute ceiling value. To maximize safety, dental schools should train students to remove amalgam only while using water spray and high volume suction. Alternatively, students should use appropriate occupational hygiene personal protective equipment during amalgam removals. PMID:24090056

  8. Open and closed-circuit endotracheal suctioning in acute lung injury: efficiency and effects on gas exchange.

    PubMed

    Lasocki, Sigismond; Lu, Qin; Sartorius, Alfonso; Fouillat, Dominique; Remerand, Francis; Rouby, Jean-Jacques

    2006-01-01

    Closed-circuit endotracheal suctioning (CES) is advocated for preventing hypoxemia caused by the loss of lung volume resulting from open endotracheal suctioning (OES). However, the efficiency of CES and OES on tracheal secretion removal has never been compared in patients with acute lung injury. The authors designed a two-part study aimed at comparing gas exchange and efficiency between OES and CES performed at two levels of negative pressure. Among 18 patients with acute lung injury, 9 underwent CES and OES at 3-h intervals in a random order using a negative pressure of -200 mmHg. Nine other patients underwent CES twice using two levels of negative pressure (-200 and -400 mmHg) applied in a random order. After each CES, a recruitment maneuver was performed using 20 consecutive hyperinflations. Tracheal aspirates were weighed after each suctioning procedure. Arterial blood gases were continuously recorded using an intravascular sensor. Open endotracheal suctioning induced a significant 18% decrease in arterial oxygen tension (Pa(O2)) (range, +13 to -71%) and an 8% increase in arterial carbon dioxide tension (Pa(CO2)) (range, -2 to +16%) that persisted 15 min after the end of the procedure. CES using -200 cm H2O did not change Pa(O2), but tracheal aspirate mass was lower compared with OES (0.6 +/- 1.0 vs. 3.2 +/- 5.1 g; P = 0.03). Increasing negative pressure to -400 cm H2O during CES did not change Pa(O2) but increased the tracheal aspirate mass (1.7 +/- 1.6 vs. 1.0 +/- 1.3 g; P = 0.02). Closed-circuit endotracheal suctioning followed by a recruitment maneuver prevents hypoxemia resulting from OES but decreases secretion removal. Increasing suctioning pressure enhances suctioning efficiency without impairing gas exchange.

  9. Lateral drill holes decrease strength of the femur: an observational study using finite element and experimental analyses.

    PubMed

    Fox, Melanie J; Scarvell, Jennie M; Smith, Paul N; Kalyanasundaram, Shankar; Stachurski, Zbigniew H

    2013-08-30

    Internal fixation of femoral fractures requires drilling holes through the cortical bone of the shaft of the femur. Intramedullary suction reduces the fat emboli produced by reaming and nailing femoral fractures but requires four suction portals to be drilled into the femoral shaft. This work investigated the effect of these additional holes on the strength of the femur. Finite element analysis (FEA) was used to calculate compression, tension and load limits which were then compared to the results from mechanical testing. Models of intact femora and fractured femora internally fixed with intramedullary nailing were generated. In addition, four suction portals, lateral, anterior and posterior, were modelled. Stresses were used to calculate safety factors and predict fatigue. Physical testing on synthetic femora was carried out on a universal mechanical testing machine. The FEA model for stresses generated during walking showed tensile stresses in the lateral femur and compression stresses in the medial femur with a maximum sheer stress through the neck of the femur. The lateral suction portals produced tensile stresses up to over 300% greater than in the femur without suction portals. The anterior and posterior portals did not significantly increase stresses. The lateral suction portals had a safety factor of 0.7, while the anterior and posterior posts had safety factors of 2.4 times walking loads. Synthetic bone subjected to cyclical loading and load to failure showed similar results. On mechanical testing, all constructs failed at the neck of the femur. The anterior suction portals produced minimal increases in stress to loading so are the preferred site should a femur require such drill holes for suction or internal fixation.

  10. Evaluation of hypopharyngeal suction to eliminate aspiration: the Retro-Esophageal Suction (REScue) catheter.

    PubMed

    Belafsky, Peter C; Mehdizadeh, O B; Ledgerwood, L; Kuhn, M

    2015-02-01

    Profound oropharyngeal dysphagia (OPD) is common and costly. Treatment options are limited. The purpose of this investigation was to evaluate the utility of hypopharyngeal suction at the upper esophageal sphincter (UES) to eliminate aspiration. Five different catheters were passed retrograde up the esophagus and positioned at the UES in a cadaver model of profound OPD. Suction was affixed to each catheter. 10 cc of barium was administered into the pyriform sinus, and videofluoroscopy was utilized to evaluate the presence of aspiration. 6 trials were administered per catheter and for a no catheter control. The outcome measures were the incidence of aspiration, the NIH Swallow Safety Scale (NIH-SSS), and UES opening. Control trials with no suction resulted in an aspiration rate of 100 % (6/6 trials). Negative pressure through 16, 18, 24, and 30 Fr catheter resulted in an aspiration rate of 0 % (0/24 trials; p < 0.001), and suction through a 12-Fr catheter resulted in an aspiration rate of 33 % (2/6 trials; p > 0.05). The mean NIH-SSS improved from 7.0 (±0.0) in the control to 0 (±0.0) with hypopharyngeal suction (18 Fr nasogastric catheter; p < 0.001). Mean UES opening improved from 0.0 (±0.0) mm in the control condition to 8.6 (±0.2) mm with a hypopharyngeal catheter (16 Fr Foley catheter; p < 0.001). Negative pressure applied through retro-esophageal suction catheters (>12 Fr) at the level of the UES reduced aspiration by 100 % and significantly increased UES opening in a cadaveric model of profound oropharyngeal dysphagia.

  11. Suction generation in white-spotted bamboo sharks Chiloscyllium plagiosum.

    PubMed

    Wilga, Cheryl D; Sanford, Christopher P

    2008-10-01

    After the divergence of chondrichthyans and teleostomes, the structure of the feeding apparatus also diverged leading to alterations in the suction mechanism. In this study we investigated the mechanism for suction generation during feeding in white-spotted bamboo sharks, Chiloscyllium plagiosum and compared it with that in teleosts. The internal movement of cranial elements and pressure in the buccal, hyoid and pharyngeal cavities that are directly responsible for suction generation was quantified using sonomicrometry and pressure transducers. Backward stepwise multiple linear regressions were used to explore the relationship between expansion and pressure, accounting for 60-96% of the variation in pressure among capture events. The progression of anterior to posterior expansion in the buccal, hyoid and pharyngeal cavities is accompanied by the sequential onset of subambient pressure in these cavities as prey is drawn into the mouth. Gape opening triggers the onset of subambient pressure in the oropharyngeal cavities. Peak gape area coincides with peak subambient buccal pressure. Increased velocity of hyoid area expansion is primarily responsible for generating peak subambient pressure in the buccal and hyoid regions. Pharyngeal expansion appears to function as a sink to receive water influx from the mouth, much like that of compensatory suction in bidirectional aquatic feeders. Interestingly, C. plagiosum generates large suction pressures while paradoxically compressing the buccal cavity laterally, delaying the time to peak pressure. This represents a fundamental difference from the mechanism used to generate suction in teleost fishes. Interestingly, pressure in the three cavities peaks in the posterior to anterior direction. The complex shape changes that the buccal cavity undergoes indicate that, as in teleosts, unsteady flow predominates during suction feeding. Several kinematic variables function together, with great variation over long gape cycles to generate the low subambient pressures used by C. plagiosum to capture prey.

  12. J-2X Fuel Turbopump Point of Departure: The Performance of the J-2s Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, S. R.; Becht, D. G.; Mulder, A. D.

    2008-01-01

    To aid the J-2X program design effort with detailed performance and environment information, the J-2S fuel turbopump (FTP) inducer has undergone a thorough test series in both water and hydrogen. The test series utilizes both inducer only and a complete pump configuration to assess the inducer interaction to the overall turbopump system. The test goals include verification of suction performance against heritage J-2S data, head production, effects of thermodynamic suppression head (TSH), and evaluation of the inducer dynamic pressure caused by cavitation instabilities. Test facilities at both Pratt & Whitney Rocketdyne (PWR) and NASA s Stennis Space Center (SSC) are employed for the testing. The inducer only water test effort conducted at PWR established performance curves for suction performance, head production, and efficiency over a wide operating range. Because the heritage J-2S suction performance data set is in hydrogen, it is desired to obtain current suction performance data in hydrogen as well, thus avoiding the reliance on a theoretical TSH correlation for direct comparison. This data then provides an empirically based TSH correlation allowing for the comparison of water test suction data to system suction requirements. The FTP testing performed at SSC provides these suction performance relationships as well as inlet duct dynamic pressures during liquid hydrogen operation. The test effort successfully confirms the heritage J-2S suction performance and establishes the amount of TSH between water and hydrogen operation at the design flow coefficient. Correlating data is also obtained for cavitating instability frequency content, illustrating the validity of using the wide flow range water test data to predict hydrogen performance.

  13. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve

    NASA Astrophysics Data System (ADS)

    Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding

    2018-01-01

    Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.

  14. Integrated axial and tangential serpentine cooling circuit in a turbine airfoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2015-05-05

    A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall andmore » not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.« less

  15. Similarity transformation for equilibrium boundary layers, including effects of blowing and suction

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Hussain, Fazle

    2017-03-01

    We present a similarity transformation for the mean velocity profiles in sink flow turbulent boundary layers, including effects of blowing and suction. It is based on symmetry analysis which transforms the governing partial differential equations (for mean mass and momentum) into an ordinary differential equation and yields a new result including an exact, linear relation between the mean normal (V ) and streamwise (U ) velocities. A characteristic length function is further introduced which, under a first order expansion (whose coefficient is η ) in wall blowing and suction velocity, leads to the similarity transformation for U with the value of η ≈-1 /9 . This transformation is shown to be a group invariant and maps different U profiles under different blowing and suction conditions into a (universal) profile for no blowing or suction. Its inverse transformation enables predictions of all mean quantities in the mean mass and momentum equations, in good agreement with DNS data.

  16. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal

    2015-11-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.

  17. Turbine blade with contoured chamfered squealer tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Pang

    2014-12-30

    A squealer tip formed from a pressure side tip wall and a suction side tip wall extending radially outward from a tip of the turbine blade is disclosed. The pressure and suction side tip walls may be positioned along the pressure sidewall and the suction sidewall of the turbine blade, respectively. The pressure side tip wall may include a chamfered leading edge with film cooling holes having exhaust outlets positioned therein. An axially extending tip wall may be formed from at least two outer linear surfaces joined together at an intersection forming a concave axially extending tip wall. The axiallymore » extending tip wall may include a convex inner surface forming a radially outer end to an inner cavity forming a cooling system. The cooling system may include one or more film cooling holes in the axially extending tip wall proximate to the suction sidewall, which promotes increased cooling at the pressure and suction sidewalls.« less

  18. Determination of minimum suction level necessary for field dental units.

    PubMed

    Charlton, David G

    2010-04-01

    A significant problem with most field dental units is that their suction is too weak to effectively remove debris from the mouth. The purpose of this study was to determine the minimum clinically acceptable suction level for routine dentistry. A vacuum pump was connected to a high-volume dental evacuation line in a simulated clinical setting and different suction airflow rates were evaluated by nine evaluator dentists for their capability to effectively remove amalgam debris and water. Airflow levels were rated as "clinically acceptable" or "clinically unacceptable" by each evaluator. Data were analyzed using a chi2 test for trend. Analysis indicated a significant linear trend between airflow and ratings (p < 0.0001). The first airflow level considered by all evaluators as producing clinically acceptable suction was 4.5 standard cubic feet per minute (0.127 standard cubic meters per minute). This value should be the minimum level required for all military field dental units.

  19. Gas turbine blade film cooling and blade tip heat transfer

    NASA Astrophysics Data System (ADS)

    Teng, Shuye

    The detailed heat transfer coefficient and film cooling effectiveness distributions as well as the detailed coolant jet temperature profiles on the suction side of a gas turbine blade were measured using a transient liquid crystal image method and a traversing cold wire and thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 105. The upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 and 0.1. The coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness. Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in the same wind tunnel facility as above. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1%, 2.1%, and 3% of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.

  20. 75 FR 53271 - Marine Mammals; File No. 15271

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... suction-cup tagged, 10 would be dart-tagged, and 10 would be tagged with small implantable tags; 30 fin whales would be approached for photo-ID and biopsy, of which 10 would be suction-cup tagged, 5 would be... approached for photo-ID and biopsy, of which 30 would be suction-cup tagged, 10 would be dart-tagged, and 10...

  1. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0, allowing for a good fitting of the experimental data, are in agreement with the values of water potential marking the limit between capillary and adsorptive soil water retention, which can be estimated from the shape of the water retention curve. Therefore, with the proposed approach, at least in principle it is possible to derive the SSSC directly from the knowledge of the SWRC.

  2. Does the new low-frequency ultrasonic debridement technology pose an infection control risk for clinicians, patients, and the clinic environment?

    PubMed

    Michailidis, Lucia; Kotsanas, Despina; Orr, Elizabeth; Coombes, Georgia; Bergin, Shan; Haines, Terry; Williams, Cylie

    2016-12-01

    Low-frequency ultrasonic debridement (LFUD) is a technology that uses sound waves conducted through saline mist to debride wound tissue. Whilst this technology purportedly reduces wound-healing times, the airborne mist generated is potentially problematic. Theoretically, the saline mist could carry an increased number of microbes into the surrounding environment, posing an infection control risk to the patient, clinician, and clinical environment. This research aimed to establish the degree and extent to which there is microbial spread during the use of, and following the use of, LFUD. The total number of colony forming units was identified for use of LFUD without the suction attachment (control) and with the suction attachment (intervention). This was a prospective, observational study with repeated measures across each treatment (before, during, and after). Quota sampling in a 2 × 2 × 2 factorial design was undertaken so that half of the 24 treatments were conducted at each health service (Monash Health vs Peninsula Health), in different treatment environments (inpatient vs outpatient), and half were conducted with and without suction. The use of suction was not randomized but was determined at the treating clinician's discretion. Patients treated in the inpatient environment lay on their beds, whereas patients in the outpatient environment sat in a treatment chair. There was higher microbial count during treatment (P < .001) with a higher microbial count associated with lower ultrasound amplitude (P = .028), lower saline flow rate (P = .010), no suction attachment (P = > .001), and a larger wound area (P = .002). All were independently associated with greater microorganism aerosolization. There was no correlation between the type of handpiece selected, the presence of wound infection, and the treatment time or treatment environment. This research has assisted in developing guidelines for cleaning of equipment and environments following treatment, as well as around the use of personal protective equipment required to protect the staff member and the patient during the use of LFUD. Additionally, recommendations have been made regarding the specific LFUD settings to reduce the risk of cross-infection to the clinic environment. These include selecting a higher ultrasound amplitude and saline flow rate as well as the use of suction where clinically possible. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Endotracheal suctioning in intubated newborns: an integrative literature review

    PubMed Central

    Gonçalves, Roberta Lins; Tsuzuki, Lucila Midori; Carvalho, Marcos Giovanni Santos

    2015-01-01

    Evidence-based practices search for the best available scientific evidence to support problem solving and decision making. Because of the complexity and amount of information related to health care, the results of methodologically sound scientific papers must be integrated by performing literature reviews. Although endotracheal suctioning is the most frequently performed invasive procedure in intubated newborns in neonatal intensive care units, few Brazilian studies of good methodological quality have examined this practice, and a national consensus or standardization of this technique is lacking. Therefore, the purpose of this study was to review secondary studies on the subject to establish recommendations for endotracheal suctioning in intubated newborns and promote the adoption of best-practice concepts when conducting this procedure. An integrative literature review was performed, and the recommendations of this study are to only perform endotracheal suctioning in newborns when there are signs of tracheal secretions and to avoid routinely performing the procedure. In addition, endotracheal suctioning should be conducted by at least two people, the suctioning time should be less than 15 seconds, the negative suction pressure should be below 100 mmHg, and hyperoxygenation should not be used on a routine basis. If indicated, oxygenation is recommended with an inspired oxygen fraction value that is 10 to 20% greater than the value of the previous fraction, and it should be performed 30 to 60 seconds before, during and 1 minute after the procedure. Saline instillation should not be performed routinely, and the standards for invasive procedures must be respected. PMID:26465249

  4. Intermittent At-Home Suctioning of Esophageal Content for Prevention of Recurrent Aspiration Pneumonia in 4 Dogs with Megaesophagus.

    PubMed

    Manning, K; Birkenheuer, A J; Briley, J; Montgomery, S A; Harris, J; Vanone, S L; Gookin, J L

    2016-09-01

    Megaesophagus carries a poor to guarded prognosis due to death from aspiration pneumonia. Options for medical management of regurgitation are limited to strategic oral or gastrostomy tube feeding. To describe the use and efficacy of intermittent esophageal suctioning to prevent regurgitation and associated episodes of aspiration pneumonia in dogs with megaesophagus. Four dogs with acquired idiopathic megaesophagus and recurrent aspiration pneumonia. Retrospective review of medical records of dogs with megaesophagus in which intermittent suctioning of esophageal content was employed for management of recurrent aspiration pneumonia. Intermittent suctioning of the esophagus was initiated in 4 dogs after failure of strict gastrostomy tube feeding failed to prevent regurgitation and repeated episodes of aspiration pneumonia. Suctioning was accomplished by esophagostomy tube in 3 dogs and per os in 1 dog. After initiation of esophageal suctioning, dogs survived for a median of 13.5 additional months (range, 10-30 months) during which time 2 dogs had no additional episodes of aspiration pneumonia and 2 dogs had infrequent episodes of pneumonia, but aspiration was suspected to be a contributing factor in their death. Complications included clogging of the esophagostomy tube, esophagostomy site infections, and esophagitis. Use of intermittent esophageal suctioning in dogs with megaesophagus that continue to regurgitate despite gastrostomy tube feedings can reduce or abolish clinical episodes of aspiration pneumonia. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  5. Secondary subharmonic instability of boundary layers with pressure gradient and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1988-01-01

    Three-dimensional linear secondary instability is investigated for boundary layers with pressure gradient and suction in the presence of a finite amplitude TS wave. The focus is on principal parametric resonance responsible for a strong growth of subharmonics in a low disturbance environment. Calculations are presented for the effect of pressure gradients and suction on controlling the onset and amplification of the secondary instability.

  6. A new method of evaluating the side wall interference effect on airfoil angle of attack by suction from the side walls

    NASA Technical Reports Server (NTRS)

    Sawada, H.; Sakakibara, S.; Sato, M.; Kanda, H.; Karasawa, T.

    1984-01-01

    A quantitative evaluation method of the suction effect from a suction plate on side walls is explained. It is found from wind tunnel tests that the wall interference is basically described by the summation form of wall interferences in the case of two dimensional flow and the interference of side walls.

  7. 108. DETAIL OF DENVER DISC FILTER IN CO91107, SUCTION END. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. DETAIL OF DENVER DISC FILTER IN CO-91-107, SUCTION END. NOTE BEARING HOUSING WITH CAST LOGO, SUCTION PIPE GOING OFF TO THE RIGHT, AND FILTER DISC IN BACKGROUND. VACUUM INSIDE DISCS FURTHER DEWATERED CONCENTRATE. AS DISC SLOWLY ROTATED A BAR SCRAPED DRIED CONCENTRATE FROM OUTSIDE OF FILTER CLOTH. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  8. Effects of suction dredging on streams: a review and an evaluation strategy

    Treesearch

    Bret C. Harvey; Thomas E. Lisle

    1998-01-01

    Abstract - Suction dredging for gold in river channels is a small-scale mining practice whereby streambed material is sucked up a pipe, passed over a sluice box to sort out the gold, and discarded as tailings over another area of bed. Natural resource managers should be concerned about suction dredging because it is common in streams in western North America that...

  9. Development of advanced stability theory suction prediction techniques for laminar flow control. [on swept wings

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1978-01-01

    The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.

  10. 43 CFR 3809.31 - Are there any special situations that affect what submittals I must make before I conduct...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... having jurisdiction over the lands. (b) Suction dredges. (1) If your operations involve the use of a suction dredge, the State requires an authorization for its use, and BLM and the State have an agreement... suction dredge not covered by paragraph (b)(1) of this section, you must contact BLM before beginning such...

  11. [Metabolic and cardiovascular consequences of suction-assisted lipectomy: Systematic review].

    PubMed

    Crahay, F-X; Nizet, J L

    2016-08-01

    Suction-assisted lipectomy is one of the most frequent procedures in plastic surgery. The aim of this study was to investigate whether suction-assisted lipectomy causes changes in the carbohydrates and lipid metabolism and the potential effects on cardiovascular risk factors. We interrogated five databases: Medline, American College of Physicians Journal Club Database, Cochrane central register of controlled trials, Cochrane database of systematic reviews, Database of abstracts of reviews of effects. A systematic review of the literature was performed in order to compare results of randomized controlled trials and observational studies concerning changes in weight, metabolism, endocrinology, inflammatory markers and cardiovascular risk factors after suction-assisted lipectomy. All articles were assessed by criteria from Oxford Center For Evidence Based Medicine (OCEBM). The search resulted in 40 articles: 12 experimental animal studies and 28 human studies. Different metabolic parameters are affected by suction-assited lipectomy. First, all articles point out a decrease of body weight after suction-assisted lipectomy. Weight lost only affects fat mass without any change of lean mass. The potential compensatory growth of visceral fat seems to be counteracted by physical activity. Then, resting energy expenditure seems to be stable or decrease after the surgery. This reduction is significantly related to the decrease of leptin levels and also seems to be counteracted by physical activity. About adipocytokines, leptin level decreases after suction-assisted lipectomy while results are contradictory about adiponectin and resistin levels. However adiponectin seems to tend to increase after surgery. Inflammatory markers seem to increase within first hours after surgery. Then they seem to decrease or remain at the preoperative levels. Fasting insulin level decreases and is linked to the aspirated volume. So insulin sensitivity seems to be improved. Concerning lipid profil, it tends to remain the same or to be improved by suction-assisted lipectomy. In conclusion, regarding all the literature, there is still debate about metabolic effect of suction-assisted lipectomy. Prospective clinical studies are needed to confirm or invalidate some hypotheses. These studies must consider some potential biases as physical activity, diet and medical treatment modifications (statins). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Theoretical investigation of maintaining the boundary layer of revolution laminar using suction slits in incompressible flow

    NASA Technical Reports Server (NTRS)

    Thiede, P.

    1978-01-01

    The transition of the laminar boundary layer into the turbulent state, which results in an increased drag, can be avoided by sucking of the boundary layer particles near the wall. The technically-interesting case of sucking the particles using individual slits is investigated for bodies of revolution in incompressible flow. The results of the variational calculations show that there is an optimum suction height, where the slot separations are maximum. Combined with favorable shaping of the body, it is possible to keep the boundary layer over bodies of revolution laminar at high Reynolds numbers using relatively few suction slits and small amounts of suction flow.

  13. Magnetohydrodynamic peristaltic motion of a Newtonian fluid through porous walls through suction and injection

    NASA Astrophysics Data System (ADS)

    Sivaiah, R.; Hemadri Reddy, R.

    2017-11-01

    In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.

  14. A law of the wall for turbulent boundary layers with suction: Stevenson's formula revisited

    NASA Astrophysics Data System (ADS)

    Vigdorovich, Igor

    2016-08-01

    The turbulent velocity field in the viscous sublayer of the boundary layer with suction to a first approximation is homogeneous in any direction parallel to the wall and is determined by only three constant quantities — the wall shear stress, the suction velocity, and the fluid viscosity. This means that there exists a finite algebraic relation between the turbulent shear stress and the longitudinal mean-velocity gradient, using which as a closure condition for the equations of motion, we establish an exact asymptotic behavior of the velocity profile at the outer edge of the viscous sublayer. The obtained relationship provides a generalization of the logarithmic law to the case of wall suction.

  15. Investigation at low speeds of the effect of aspect ratio and sweep on rolling stability derivatives of untapered wings

    NASA Technical Reports Server (NTRS)

    Goodman, Alex; Fisher, Lewis R.

    1949-01-01

    A low scale wind tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. Test results indicate that when the aspect ratio was held constant, an increase in the sweepback angle caused a significant reduction in the damping in roll at low lift coefficients for only the higher aspect ratios that were tested. This result was in agreement with available swept wing theory which indicated no effect of sweep for aspect ratios near zero. The result of the linear theory that the damping in roll is independent of lift coefficient and that the yawing moment and lateral force due to rolling are directly proportional to the lift coefficient was found to be valid for only a very limited lift coefficient range when the wings were highly swept. For such wings, the damping was found to increase in magnitude and the yawing moment due to rolling, to change from negative to positive at moderate lift coefficients. The effect of wing tip suction, not acounted for by present theory, was found to be very important with regard to the yawing moment due to rolling, particularly for low aspect ratio swept wings. An empirical means of correcting present theory for the effect of tip suction is suggested.

  16. An Experimental Study of Cavitation Detection in a Centrifugal Pump Using Envelope Analysis

    NASA Astrophysics Data System (ADS)

    Tan, Chek Zin; Leong, M. Salman

    Cavitation represents one of the most common faults in pumps and could potentially lead to a series of failure in mechanical seal, impeller, bearing, shaft, motor, etc. In this work, an experimental rig was setup to investigate cavitation detection using vibration envelope analysis method, and measured parameters included sound, pressure and flow rate for feasibility of cavitation detection. The experiment testing included 3 operating points of the centrifugal pump (B.E.P, 90% of B.E.P and 80% of B.E.P). Suction pressure of the centrifugal pump was decreased gradually until the inception point of cavitation. Vibration measurements were undertaken at various locations including casing, bearing, suction and discharge flange of the centrifugal pump. Comparisons of envelope spectrums under cavitating and non-cavitating conditions were presented. Envelope analysis was proven useful in detecting cavitation over the 3 testing conditions. During the normal operating condition, vibration peak synchronous to rotational speed was more pronounced. It was however during cavitation condition, the half order sub-harmonic vibration component was clearly evident in the envelope spectrums undertaken at all measurement locations except at the pump bearing. The possible explanation of the strong sub-harmonic (½ of BPF) during cavitation existence in the centrifugal pump was due to insufficient time for the bubbles to collapse completely before the end of the single cycle.

  17. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.

    PubMed

    Blackmon, Richard L; Case, Jason R; Trammell, Susan R; Irby, Pierce B; Fried, Nathaniel M

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ~2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  18. Flow analysis for the nacelle of an advanced ducted propeller at high angle-of-attack and at cruise with boundary layer control

    NASA Technical Reports Server (NTRS)

    Hwang, D. P.; Boldman, D. R.; Hughes, C. E.

    1994-01-01

    An axisymmetric panel code and a three dimensional Navier-Stokes code (used as an inviscid Euler code) were verified for low speed, high angle of attack flow conditions. A three dimensional Navier-Stokes code (used as an inviscid code), and an axisymmetric Navier-Stokes code (used as both viscous and inviscid code) were also assessed for high Mach number cruise conditions. The boundary layer calculations were made by using the results from the panel code or Euler calculation. The panel method can predict the internal surface pressure distributions very well if no shock exists. However, only Euler and Navier-Stokes calculations can provide a good prediction of the surface static pressure distribution including the pressure rise across the shock. Because of the high CPU time required for a three dimensional Navier-Stokes calculation, only the axisymmetric Navier-Stokes calculation was considered at cruise conditions. The use of suction and tangential blowing boundary layer control to eliminate the flow separation on the internal surface was demonstrated for low free stream Mach number and high angle of attack cases. The calculation also shows that transition from laminar flow to turbulent flow on the external cowl surface can be delayed by using suction boundary layer control at cruise flow conditions. The results were compared with experimental data where possible.

  19. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    NASA Astrophysics Data System (ADS)

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.

    2016-06-01

    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  20. Resolvent analysis of suboptimal control for turbulent skin friction drag reduction

    NASA Astrophysics Data System (ADS)

    Nakashima, Satoshi; Fukagata, Koji; Luhar, Mitul

    2017-11-01

    We study the drag reduction mechanisms of suboptimal control (Lee et al. 1998) via the resolvent formulation developed by McKeon and Sharma (2010). Under this formulation, the nonlinear term in the Navier-Stokes equations is regarded as a forcing which acts upon the linear dynamics to output a velocity response across Fourier space. This analysis enables targeted analyses of the effects of the control on modes resembling dynamically important coherent structures such as the near-wall (NW) cycle. Suboptimal control generates blowing and suction at the wall that is proportional to the streamwise (Case ST) or spanwise (Case SP) wall shear-stress, with the magnitude of blowing and suction being a design parameter. Both Case ST and SP can suppress resolvent modes resembling the NW cycle. However, for Case ST, the analysis reveals that the control leads to substantial increase in amplification for structures that are long in the spanwise direction. High actuation of such energetic spanwise structures was confirmed by conducting limited direct numerical simulations. In addition to the study of modes resembling the NW cycle, we will discuss modes of varying propagating speed and wavelength to provide insight into the effects of suboptimal control across spectral space. This work was supported through Grant-in-Aid for Scientific Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  1. Comparing new BSN RN self skills assessment to actual skills demonstration.

    PubMed

    Adair, Jean; Hughes, Lin; Davis, Sue; Wolcott-Breci, Mary

    2014-01-01

    The purpose of the study was to compare the self-skills assessment with the skill competence during an actual skills demonstration of newly hired bachelor of science in nursing (BSN) registered nurse graduates. This retrospective study included 32 randomly selected BSN registered nurse graduates from January 2010 to December 31, 2010. The participants were already hired into a midwest health system. Because this was a retrospective study, no demographic data were collected, and no consent from participants was needed. This study included a clinical skills check list where the participants rated themselves on specific skills utilizing a Likert scale ranging from 1 (no knowledge) to 4 (able to perform independently). The same clinical check list was utilized by an expert registered nurse when the skill was demonstrated. This study compared the difference between the subject's self-rating of skills and the clinical demonstration of the skills. We used t tests in the analysis to demonstrate the differences between the participant's self-rating of skills and the expert evaluation of the clinical demonstration of the skills. The data were inserted into the Statistical Package for the Social Sciences 19 software program to assist in the analysis process. The study demonstrated 17 significant differences in the skills ratings between the participant and competency demonstration of new BSN graduates. These significant results (2 tailed) ranged from .000 to .048.The 17 out of 46 specific skills where differences were noted included the following: staple removal, nasal pharyngeal suctioning, urinary catheter specimen collection, site care dressing change, urinary catheter irrigation, Juzo application and measurement, 5-lead telemetry, oral airway insertion, hemovac/Jackson Pratt, oral pharyngeal suctioning, urinary catheter insertion, dry suction chest drainage, bed to cart/slider board, urinary catheter removal, antiembolism stockings, measurement and application, removal of iv and sit-and-stand alarm. Overall, the participants rated their skill levels lower in 15 out of 17 significant skills when compared with their competency assessment (t test: -3.284, df = 31, P = .003). In two skill ratings (urinary catheter specimen collection and oral pharyngeal suction), the participants rated themselves higher than the competency demonstration. Two skills that had a mean participant and expert score between 1 (no knowledge) and 2 (able to perform with 1-to-1 coaching) were oral airway insertion and dry suction chest drainage. Some possible reasons why the participants rated themselves lower could be the use of different or unfamiliar terms or uncertainty of the procedure at a different health institution. Some newly graduated BSN nurses may have not performed the skills on a regular basis or only in simulation. © 2014.

  2. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorrmore » - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.« less

  3. Experiments to verify nonparallel stability theory at Virginia Polytechnic Institute and State University, Blacksburg, Virginia

    NASA Technical Reports Server (NTRS)

    Saric, William S.

    1988-01-01

    The effects of normal mass injection and suction on boundary-layer stability and transition are studied on a flat plate. Titanium panels, in which 0.063 mm diameter holes were drilled on 0.635 mm centers, are inserted in the plate. Suction level and distribution are variable. Disturbances are introduced by means of a vibrating ribbon and measurements of both mean- and disturbance-flow velocities are made with a hot wire. Disturbance amplitudes are measured as a function of Reynolds number, frequency, and suction characteristics, and are compared with the previous results obtained over a Dynapore surface. Transition measurements under natural and forced conditions are also made. The stabilizing effects of suction are documented. It is also shown that very high local flow rates through the suction holes (which approach a hole Reynolds number of 300) do not destabilize the flow. On the other hand, weak blowing lowers the transition Reynolds number, but is found not to cause serious problems.

  4. The use of IV-tubing as a closed-suction drainage system during neurosurgical cases in Tanzania.

    PubMed

    Bonfield, Christopher M; Shabani, Hamisi K; Kanumba, Emmanuel S; Ellegala, Dilantha B; Nicholas, Joyce

    2013-01-01

    Commercial closed-suctions drainage systems are commonly used in the United States and many other countries for use in neurosurgical cases. However, in Tanzania and other developing nations with fewer resources, these are not available. This report explores another option for a closed-system drainage system utilizing inexpensive supplies found commonly in hospitals around the world. Sterile IV-tubing is cut, inserted into the wound, and brought out through an adjacent puncture incision. For suction, an empty plastic bottle can be attached to the tubing. The IV-tubing closed-suction drainage system was applied in both cranial and spinal neurosurgical procedures, including as subdural, subgaleal, epidural, and suprafacial drains. It maintained suction and was an adequate substitute when commercial drains are unavailable. This report illustrates how sterile IV-tubing can be adapted for use as a closed-drainage system. It utilizes inexpensive supplies commonly found in many hospitals throughout the world and can be applied to both cranial and spinal neurosurgical procedures.

  5. On the Active and Passive Flow Separation Control Techniques over Airfoils

    NASA Astrophysics Data System (ADS)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  6. The generation of side force by distributed suction

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard; Hong, John

    1993-01-01

    This report provides an approximate analysis of the generation of side force on a cylinder placed horizontal to the flow direction by the application of distributed suction on the rearward side of the cylinder. Relationships are derived between the side force coefficients and the required suction coefficients necessary to maintain attached flow on one side of the cylinder, thereby inducing circulation around the cylinder and a corresponding side force.

  7. Use of Suction Piles for Mooring of Mobile Offshore Bases.

    DTIC Science & Technology

    1998-06-11

    This procedure did not, however, take into account the passive suction developed by the pile. Investigation of soil interaction with suction piles...resulting o’^ distribution, which accounts for friction, is also shown in Fig. 5. The effective vertical stress profile within the clay just before the... accounting for active/passive soil pressures and skirt friction components. The principles used by Bye and his colleagues in the stability calculation

  8. A Report on Deliverable Three: Determine a Standard Performance Test for Military Suction Device Use

    DTIC Science & Technology

    2017-09-20

    prehospital combat casualty care have unique performance requirements and should be tested in a manner that effectively simulates the anticipated...artificial airway or assisted ventilation . Loss of patient airway in tactical and combat environments commonly occurs. The proximate cause can be...points related to avoidance of adverse effects in the performance of suction:  There are no contraindications to suctioning, however prolonged

  9. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  10. Oil cooled, hermetic refrigerant compressor

    DOEpatents

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  11. Reduction of the suction losses through reed valves in hermetic reciprocating compressors using a magnet coil

    NASA Astrophysics Data System (ADS)

    Hopfgartner, J.; Posch, S.; Zuber, B.; Almbauer, R.; Krischan, K.; Stangl, S.

    2017-08-01

    Reed valves are widely used in hermetic reciprocating compressors and are responsible for a large part of the thermodynamic losses. Especially, the suction valve, which is opened nearly during the whole suction stroke, has a big potential for improvement. Usually, suction valves are opened only by vacuum created by the moving piston and should be closed before the compression stroke starts to avoid a reversed mass-flow through the valve. Therefore, the valves are prestressed, which results on the other hand in a higher flow resistance. In this work, a suction valve is investigated, which is not closed by the preload of the valve but by an electromagnetic coil located in the suction muffler neck. Shortly before the piston reaches its bottom dead centre, voltage is applied to the coil and a magnetic force is generated which pulls the valve shut. Thereby, the flow resistance through the valve can be reduced by changing the preload on the reed valve because it is no longer needed to close the valve. The investigation of this adapted valve and the electromagnetic coil is firstly done by numerical simulations including fluid structure interactions of the reed valves of a reciprocating compressor and secondly by experiments made on a calorimeter test bench.

  12. Experiments on tandem diffusers with boundary-layer suction applied in between

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1979-01-01

    Experiments were performed on conical diffusers of various configurations with the same, but rather unusually large, 16:1 area ratio. Because available performance data on diffusers fall short of very large area ratio configurations, an unconventional design, consisting of two diffusers following each other in tandem, was proposed. Both diffusers had the same area ratio of 4:1, but had different taper angles. While for the first diffuser (called leading) the angle remained constant, for the second (called follower), the taper angle was stepped up to higher values. Boundary layer control, by way of suction, was applied between the diffusers, and a single slot suction ring was inserted between them. The leading diffuser had an enclosed nominal divergence angle 2 theta = 5 degrees, while the follower diffusers had either 10, 20, 30, or 40 degrees, respectively, giving 4 combinations. The experiments were performed at four different Reynolds numbers with various suction rates. The rates indicate a general improvement in the performance of all diffusers with boundary layer suction. It appears that the improvement of the pressure recovery depends on both the Reynolds number and the suction rate, and the largest increase, 0.075, was found at the lowest R sub e when the follower divergence was 2 theta = 40 degrees.

  13. Unshrouded Centrifugal Turbopump Impeller Design Methodology

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Williams, Morgan; Chen, Wei-Chung; Paris, John; Williams, Robert; Stewart, Eric

    2001-01-01

    Turbopump weight continues to be a dominant parameter in the trade space for reduction of engine weight. Space Shuttle Main Engine weight distribution indicates that the turbomachinery make up approximately 30% of the total engine weight. Weight reduction can be achieved through the reduction of envelope of the turbopump. Reduction in envelope relates to an increase in turbopump speed and an increase in impeller head coefficient. Speed can be increased until suction performance limits are achieved on the pump or due to alternate constraints the turbine or bearings limit speed. Once the speed of the turbopump is set the impeller tip speed sets the minimum head coefficient of the machine. To reduce impeller diameter the head coefficient must be increased. A significant limitation with increasing head coefficient is that the slope of the head-flow characteristic is affected and this can limit engine throttling range. Unshrouded impellers offer a design option for increased turbopump speed without increasing the impeller head coefficient. However, there are several issues with regard to using an unshrouded impeller: there is a pump performance penalty due to the front open face recirculation flow, there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face, and since test data is very limited for this configuration, there is uncertainty in the magnitude and phase of the rotordynamic forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the hydrodynamic performance, axial thrust, and rotordynamic performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design.

  14. Randomized, controlled pilot study comparing large-volume paracentesis using wall suction and traditional glass vacuum bottle methods.

    PubMed

    Konerman, Monica A; Price, Jennifer; Torres, Dawn; Li, Zhiping

    2014-09-01

    Large-volume paracentesis (LVP) can be time and labor intensive depending on the amount of ascites removed and the method of drainage. Wall suction has been adopted as the preferred method of drainage at many centers, though the safety and benefits of this technique have not been formally evaluated. The primary objective of this study was to define the cost and time savings of wall suction over the traditional glass vacuum bottle method for ascites drainage. The secondary objective was to compare the safety profile and patient satisfaction using these two techniques. We conducted a randomized, controlled pilot study of the wall suction versus vacuum bottle methods for LVP in hospitalized patients. All LVPs were performed under ultrasound guidance by a single proceduralist. Patients with at least 4 liters removed received 25% intravenous albumin, 8 g/liter fluid removed. Demographic, clinical characteristics, and procedure details were recorded. Laboratory and hemodynamic data were recorded for 24 h prior to and 24-48 h post LVP. An electronic chart review was conducted to evaluate procedure-related complications. Data were compared using Fisher's exact test, t test, or Mann-Whitney U test. Thirty-four patients were randomized to wall suction at 200 mmHg (n = 17) or glass vacuum bottle drainage (n = 17). Wall suction was significantly faster and less costly than vacuum bottle drainage (7 versus 15 min, p = 0.002; $4.59 versus $12.73, p < 0.001). There were no differences in outcomes at 24 and 48 h post LVP, or at 60-day follow up. Performing LVP using wall suction resulted in significantly shorter procedure time and supply cost savings. There were no differences in outcomes between the groups, suggesting equivalent safety, though larger studies powered to detect small differences are needed. Given its efficiency, convenience, and cost effectiveness, wall suction may be a superior method of ascites drainage for LVP.

  15. Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane

    1999-01-01

    Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.

  16. Predation by the Dwarf Seahorse on Copepods: Quantifying Motion and Flows Using 3D High Speed Digital Holographic Cinematography - When Seahorses Attack!

    NASA Astrophysics Data System (ADS)

    Gemmell, Brad; Sheng, Jian; Buskey, Ed

    2008-11-01

    Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.

  17. An optical backscatter probe for time resolved droplet measurements in turbomachines

    NASA Astrophysics Data System (ADS)

    Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.

    2016-01-01

    The presence of particles in the flow path of turbomachines can result in undesirable engine operation. In order to improve the efficiency of turbomachines and guarantee their safe operation, the flow mechanisms that govern the particles’ need to be studied and associated with the main aerodynamic flow field. This paper describes a newly developed optical backscatter probe for droplet diameter and speed measurements in turbomachines. The miniature probe has a tip diameter of 5 mm and is capable of resolving droplets from 40 to 110 μm in diameter that travel up to 200 m s-1. The calibration of the novel probe is performed with a droplet generator capable of producing monodispersed water droplets. In addition, the probe is calibrated for droplet speed measurements in the same calibration facility. The paper conducts a detailed uncertainty analysis and describes the post processing code. In the final part of this paper the probe is used in an axial turbine with an installed spray generator to perform droplet measurements under two different operating conditions. Measurements have shown that the part load condition results in larger droplet diameters and higher relative droplet speeds. As a consequence higher erosion rates at the rotor leading edge suction side will occur when operating at part load condition.

  18. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dryden research pilot Dana Purifoy bends NASA F-16 XL #848 away from the tanker on the 44th flight in the Supersonic Laminar Flow Control program recently. The flight test portion of the program ended with the 45th and last data collection flight from NASA's Dryden Flight Research Center, Edwards, California, on Nov. 26, 1996. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds. The flight tests at Dryden involved use of a suction system which drew boundary-layer air through millions of tiny laser-drilled holes in a titanium 'glove' that was fitted to the upper surface of the F-16XL's left wing.

  19. F-16XL Ship #1 in flight - used for laminar airflow studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    One of two F-16XL prototype aircraft, on loan from the Air Force, was used by NASA's Dryden Flight Research Center, Edwards, California, in a program to investigate laminar flow technology and help improve the flow of air over an aircraft's wing at sustained supersonic speeds. A small, perforated titanium wing glove with a turbo compressor was tested on the F-16XL to determine if air suction can remove a small part of the boundary-layer air flowing over the wing and thereby achieve laminar (smooth) flow over a portion of the wing. The flight research program on ship #1 ended in 1996. It was then conducted with NASA's two-seat F-16XL, ship #2 employing a larger glove.

  20. Abortion - surgical

    MedlinePlus

    Suction curettage; Surgical abortion; Elective abortion - surgical; Therapeutic abortion - surgical ... Surgical abortion involves dilating the opening to the uterus (cervix) and placing a small suction tube into the uterus. ...

  1. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  2. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  3. Turbine blades and systems with forward blowing slots

    DOEpatents

    Zuteck, Michael D.; Zalusky, Leigh; Lees, Paul

    2015-09-15

    A blade for use in a wind turbine comprises a pressure side and suction side meeting at a trailing edge and leading edge. The pressure side and suction side provide lift to the turbine blade upon the flow of air from the leading edge to the trailing edge and over the pressure side and suction side. The blade includes one or more openings at the suction side, in some cases between the leading edge and the trailing edge. The one or more openings are configured to provide a pressurized fluid towards the leading edge of the blade, in some cases at an angle between about 0.degree. and 70.degree. with respect to an axis oriented from a centerline of the blade toward the leading edge.

  4. Subdermal liposuction.

    PubMed

    Gasperoni, C; Salgarello, M; Emiliozzi, P; Gargani, G

    1990-01-01

    Liposuction is a widely used technique today and indications are that it is becoming even more popular due to new technical refinements. The use of cannulae with a smaller diameter allows suction of the fat immediately under the dermis. The cannula we use to perform this new kind of fat suction is straight and has an external diameter of less than 2 mm. This cannula, the so-called Mercedes cannula, has a bullet tip and a three-hole head. Moreover, the holes are not round but are slit-shaped and oriented in the same plane at 120 degrees. This cannula is specifically designed to produce less trauma. The cannula with one downward-facing orifice is not suitable for suction of the subdermal layer and an upward-facing orifice would be too traumatic. The advantage of this new technique, apart from the possibility of treating patients with very slight adiposity, is to allow an effective skin retraction. When a large amount of fat has already been aspirated, residual deformities can occur. These skin irregularities represent the lack of an effective cutaneous retraction mostly due to the permanence of the subdermal fat. In fact, the presence of a thick subdermal adipose layer decreases the possibility of skin retraction. Therefore, indications for liposuction of the subdermal fat are mainly the slight adiposities and the remnant deformities of a previous liposuction operation. Moreover, this technique is applied to every lipoplasty whenever better skin retraction is needed.

  5. Assessment of capillary suction time (CST) test methodologies.

    PubMed

    Sawalha, O; Scholz, M

    2007-12-01

    The capillary suction time (CST) test is a commonly used method to measure the filterability and the easiness of removing moisture from slurry and sludge in numerous environmental and industrial applications. This study assessed several novel alterations of both the test methodology and the current standard capillary suction time (CST) apparatus. Twelve different papers including the standard Whatman No. 17 chromatographic paper were tested. The tests were run using four different types of sludge including a synthetic sludge, which was specifically developed for benchmarking purposes. The standard apparatus was altered by the introduction of a novel rectangular funnel instead of a standard circular one. A stirrer was also introduced to solve the problem of test inconsistency (e.g. high CST variability) particularly for heavy types of sludge. Results showed that several alternative papers, which are cheaper than the standard paper, can be used to estimate CST values accurately, and that the test repeatability can be improved in many cases and for different types of sludge. The introduction of the rectangular funnel demonstrated an obvious enhancement of test repeatability. The use of a stirrer to avoid sedimentation of heavy sludge did not have statistically significant impact on the CST values or the corresponding data variability. The application of synthetic sludge can support the testing of experimental methodologies and should be used for subsequent benchmarking purposes.

  6. Active chimney effect using heated porous layers: optimum heat transfer

    NASA Astrophysics Data System (ADS)

    Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid

    2017-05-01

    The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  7. The influence of total suction on the brittle failure characteristics of clay shales

    NASA Astrophysics Data System (ADS)

    Amann, F.; Linda, W.; Zimmer, S.; Thoeny, R.

    2013-12-01

    Clay shale testing is challenging and the results obtained from standard laboratory tests may not always reflect the strength of the clay shale in-situ. This is to a certain extend associated with the sensitivity of these rock types to desaturation processes during drilling, sample storage, and sample preparation. In this study the relationship between total suction, uniaxial compressive strength and Brazilian tensile (BTS) strength of cylindrical samples of Opalinus Clay was established in a systematic manner. Unconfined uniaxial compression and BTS tests were performed utilizing a servo-controlled testing procedure. Total suctions in the specimens was generated in air tight desiccators using supersaturated saline solutions which establish a relative humidity ranging from 20% to 99%. For unconfined compressive strength tests loading of the specimens occurred parallel to bedding. For BTS tests loading was either oriented normal or perpendicular to bedding. Both, the crack initiation and volumetric strain reversal threshold values were determined using volumetric and radial stress-strain methods. The results of BTS tests show that the tensile strength normal and perpendicular to bedding increases by a factor of approximately 3 when total suction is increased from 0 to 90 MPa (i.e. saturation decreases from 1.0 to 0.7) . Beyond 90 MPa total suction no further increase in tensile strength was observed, most probably due to shrinkage cracks which alter the tensile strength of the clay shale. Results obtained from UCS tests suggest that higher total suctions result in higher UCS values. Between total suctions of 0 to 90 MPa, the strength increase is almost linear (i.e. the UCS increases by a factor of 1.5 MPa). Beyond 90 MPa total suction no further strength increase was observed. A similar trend can be observed for crack initiation and crack damage values. In the same range of total suction the crack initiation stress increases by a factor of 5 (from 2 MPa to 10 MPa), and the crack damage stress increases by a factor of 2 (from 6 to 12 MPa). In addition to UCS tests, the water retention curve of intact and disturbed specimens was established. Here, results indicate that the drying path remains nearly unaffected by mechanical damage. However, the wetting path is considerably affected by mechanical damage.

  8. Soil water retention and maximum capillary drive from saturation to oven dryness

    USGS Publications Warehouse

    Morel-Seytoux, Hubert J.; Nimmo, John R.

    1999-01-01

    This paper provides an alternative method to describe the water retention curve over a range of water contents from saturation to oven dryness. It makes two modifications to the standard Brooks and Corey [1964] (B-C) description, one at each end of the suction range. One expression proposed by Rossi and Nimmo [1994] is used in the high-suction range to a zero residual water content. (This Rossi-Nimmo modification to the Brooks-Corey model provides a more realistic description of the retention curve at low water contents.) Near zero suction the second modification eliminates the region where there is a change in suction with no change in water content. Tests on seven soil data sets, using three distinct analytical expressions for the high-, medium-, and low-suction ranges, show that the experimental water retention curves are well fitted by this composite procedure. The high-suction range of saturation contributes little to the maximum capillary drive, defined with a good approximation for a soil water and air system as HcM = ∫0∞ Krwdhc , where krw is relative permeability (or conductivity) to water and hc is capillary suction, a positive quantity in unsaturated soils. As a result, the modification suggested to describe the high-suction range does not significantly affect the equivalence between Brooks-Corey (B-C) and van Genuchten [1980] parameters presented earlier. However, the shape of the retention curve near “natural saturation” has a significant impact on the value of the capillary drive. The estimate using the Brooks-Corey power law, extended to zero suction, will exceed that obtained with the new procedure by 25 to 30%. It is not possible to tell which procedure is appropriate. Tests on another data set, for which relative conductivity data are available, support the view of the authors that measurements of a retention curve coupled with a speculative curve of relative permeability as from a capillary model are not sufficient to accurately determine the (maximum) capillary drive. The capillary drive is a dynamic scalar, whereas the retention curve is of a static character. Only measurements of infiltration rates with time can determine the capillary drive with precision for a given soil.

  9. Influence of optimized leading-edge deflection and geometric anhedral on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration. [langley 7 by 10 foot tunnel

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Huffman, J. K.

    1979-01-01

    An investigation conducted in the Langley 7 by 10 foot tunnel to determine the influence of an optimized leading-edge deflection on the low speed aerodynamic performance of a configuration with a low aspect ratio, highly swept wing. The sensitivity of the lateral stability derivative to geometric anhedral was also studied. The optimized leading edge deflection was developed by aligning the leading edge with the incoming flow along the entire span. Owing to spanwise variation of unwash, the resulting optimized leading edge was a smooth, continuously warped surface for which the deflection varied from 16 deg at the side of body to 50 deg at the wing tip. For the particular configuration studied, levels of leading-edge suction on the order of 90 percent were achieved. The results of tests conducted to determine the sensitivity of the lateral stability derivative to geometric anhedral indicate values which are in reasonable agreement with estimates provided by simple vortex-lattice theories.

  10. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release.

    PubMed

    Zhang, Peiran; Ren, Lihui; Zhang, Xu; Shan, Yufei; Wang, Yun; Ji, Yuetong; Yin, Huabing; Huang, Wei E; Xu, Jian; Ma, Bo

    2015-02-17

    Raman-activated cell sorting (RACS) is a promising single-cell technology that holds several significant advantages, as RACS is label-free, information-rich, and potentially in situ. To date, the ability of the technique to identify single cells in a high-speed flow has been limited by inherent weakness of the spontaneous Raman signal. Here we present an alternative pause-and-sort RACS microfluidic system that combines positive dielectrophoresis (pDEP) for single-cell trap and release with a solenoid-valve-suction-based switch for cell separation. This has allowed the integration of trapping, Raman identification, and automatic separation of individual cells in a high-speed flow. By exerting a periodical pDEP field, single cells were trapped, ordered, and positioned individually to the detection point for Raman measurement. As a proof-of-concept demonstration, a mixture of two cell strains containing carotenoid-producing yeast (9%) and non-carotenoid-producing Saccharomyces cerevisiae (91%) was sorted, which enriched the former to 73% on average and showed a fast Raman-activated cell sorting at the subsecond level.

  11. Evaluation of a flexible bronchoscope prototype designed for bronchoscopy during mechanical ventilation: a proof-of-concept study.

    PubMed

    Nay, M-A; Auvet, A; Mankikian, J; Herve, V; Dequin, P-F; Guillon, A

    2017-06-01

    Bronchoscopy during mechanical ventilation of patients' lungs significantly affects ventilation because of partial obstruction of the tracheal tube, and may thus be omitted in the most severely ill patients. It has not previously been possible to reduce the external diameter of the bronchoscope without reducing the diameter of the suction channel, thus reducing the suctioning capacity of the device. We believed that a better-designed bronchoscope could improve the safety of bronchoscopy in patients whose lungs were ventilated. We designed a flexible bronchoscope prototype with a drumstick-shaped head consisting of a long, thin proximal portion; a short and large distal portion for camera docking; and a large suction channel throughout the length of the device. The aims of our study were to test the impact of our prototype on mechanical ventilation when inserted into the tracheal tube, and to assess suctioning capacity. We first tested the efficiency of the suction channel, and demonstrated that the suction flow of the prototype was similar to that of conventional adult bronchoscopes. We next evaluated the consequences of bronchoscopy when using the prototype on minute ventilation and intrathoracic pressures during mechanical ventilation: firstly, in vitro using a breathing simulator; and secondly, in vivo using a porcine model of pulmonary ventilation. The insertion of adult bronchoscopes into the tracheal tube immediately impaired the protective ventilation strategy employed, whereas the prototype preserved it. For the first time, we have developed an innovative flexible bronchoscope designed for bronchoscopy during invasive mechanical ventilation, that both preserved the protective ventilation strategy, and enabled efficient suction flow. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  12. High negative pressure subcutaneous suction drain for managing debilitating subcutaneous emphysema secondary to tube thoracostomy for an iatrogenic post computed tomography guided transthoracic needle biopsy pneumothorax: Case report and review of literature.

    PubMed

    Ahmed, Zeeshan; Patel, Pinakin; Singh, Suresh; Sharma, Raj Govind; Somani, Pankaj; Gouri, Abdul Rauf; Singh, Shiv

    2016-01-01

    Subcutaneous emphysema is a common complication of tube thoracostomy. Though self-limiting, it should be treated when it causes palpebral closure, dyspnea, dysphagia or undue disfigurement resulting in anxiety and distress to the patient. A 72year old man who was a known case of COPD on bronchodilators developed a large pneumothorax and respiratory distress after a CT guided transthoracic lung biopsy done for a lung opacity (approx. 3×3cm) at the right hilar region on Chest X-ray. Within 24h of an urgent tube thoracostomy, patient developed intractable subcutaneous emphysema with closure of palpebral fissure and dyspnea unresponsive to increasing suction on chest tube. A subcutaneous fenestrated drain was placed mid-way between the nipple and clavicle in the mid-clavicular line bilaterally. Continuous negative suction (-150mmHg) resulted in immediate, sustained relief and complete resolution within 5days. Extensive and debilitating SE (subcutaneous emphysema) has to be treated promptly to relieve patient discomfort, dysphagia or imminent respiratory compromise. A variety of treatment have been tried including infraclavicular blow-hole incisions, subcutaneous drains +/- negative pressure suction, fenestrated angiocatheters, Vacuum assisted dressings and increasing suction on a pre-existing chest tube. We describe a high negative pressure subcutaneous suction drain which provides immediate and sustained relief in debilitating SE. Debilitating subcutaneous emphysema which causes distress, anxiety, palpebral closure, dyspnoea or dysphagia requires intervention. High negative pressure subcutaneous suction drain provides immediate and sustained relief in extensive and debilitating SE. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Suction power output and the inertial cost of rotating the neurocranium to generate suction in fish.

    PubMed

    Van Wassenbergh, Sam; Day, Steven W; Hernández, L Patricia; Higham, Timothy E; Skorczewski, Tyler

    2015-05-07

    To expand the buccal cavity, many suction-feeding fishes rely on a considerable contribution from dorsal rotation of the dorsal part of the head including the brains, eyes, and several bones forming the braincase and skull roof (jointly referred to as the neurocranium). As the neurocranium takes up a large part of the total mass of the head, this rotation may incur a considerable inertial cost. If so, this would suggest a significant selective pressure on the kinematics and mass distribution of the neurocranium of suction feeders. Here, an inverse dynamic model is formulated to calculate the instantaneous power required to rotate the neurocranium, approximated by a quarter ellipsoid volume of homogeneous density, as well as to calculate the instantaneous suction power based on intra-oral pressure and head volume quantifications. We applied this model to largemouth bass (Micropterus salmoides) and found that the power required to rotate the neurocranium accounts for only about 4% of the power required to suck water into the mouth. Furthermore, recovery of kinetic energy from the rotating neurocranium converted into suction work may be possible during the phase of neurocranial deceleration. Thus, we suggest that only a negligible proportion of the power output of the feeding muscles is lost as inertial costs in the largemouth bass. Consequently, the feeding performance of piscivorous suction feeders with generalised morphology, comparable to our model species, is not limited by neurocranial motion during head expansion. This suggests that it is thus not likely to be a factor of importance in the evolution of cranial shape and size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Blood loss associated with Ring uncemented total knee replacement: comparison between continuous and intermittent suction drainage.

    PubMed Central

    Wittmann, F W; Ring, P A

    1984-01-01

    In a retrospective comparison of blood loss following uncemented total knee replacement, in which either continuous or intermittent suction drainage was used, measured blood loss was significantly greater with continuous drainage. However, a method of calculating actual blood loss demonstrated no significant difference. With intermittent drainage, more blood remains undetected around the knee joint; this technique should therefore be abandoned in favour of continuous suction drainage. PMID:6747978

  15. Distributed Blowing and Suction for the Purpose of Streak Control in a Boundary Layer Subjected to a Favorable Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Forgoston, Eric; Tumin, Anatoli; Ashpis, David E.

    2005-01-01

    An analysis of the optimal control by blowing and suction in order to generate stream- wise velocity streaks is presented. The problem is examined using an iterative process that employs the Parabolized Stability Equations for an incompressible uid along with its adjoint equations. In particular, distributions of blowing and suction are computed for both the normal and tangential velocity perturbations for various choices of parameters.

  16. The effects of suction on the nonlinear stability of the three-dimensional boundary layer above a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Seddougui, Sharon O.

    1991-01-01

    There exist two types of stationary instability of the flow over a rotating disc corresponding to the upper branch, inviscid mode and the lower branch mode, which has a triple deck structure, of the neutral stability curve. A theoretical study of the linear problem and an account of the weakly nonlinear properties of the lower branch modes have been undertaken by Hall and MacKerrell respectively. Motivated by recent reports of experimental sightings of the lower branch mode and an examination of the role of suction on the linear stability properties of the flow here, the effects are studied of suction on the nonlinear disturbance described by MacKerrell. The additional analysis required in order to incorporate suction is relatively straightforward and enables the derivation of an amplitude equation which describes the evolution of the mode. For each value of the suction, a threshold value of the disturbance amplitude is obtained; modes of size greater than this threshold grow without limit as they develop away from the point of neutral stability.

  17. Suction is kid's play: extremely fast suction in newborn seahorses.

    PubMed

    Van Wassenbergh, Sam; Roos, Gert; Genbrugge, Annelies; Leysen, Heleen; Aerts, Peter; Adriaens, Dominique; Herrel, Anthony

    2009-04-23

    Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feeding structures, making it an all-or-none phenomenon. Here, we show that newborn Hippocampus reidi are able to successfully feed using an extremely rapid and powerful snout rotation combined with a high-volume suction, surpassing that observed in adult seahorses. An inverse dynamic analysis shows that an elastic recoil mechanism is also used to power head rotation in newborn H. reidi. This illustrates how extreme levels of performance in highly complex musculoskeletal systems can be present at birth given a delayed birth and rapid development of functionally important structures. The fact that the head skeleton of newborn seahorses is still largely cartilaginous may not be problematic because the hydrodynamic stress on the rotating snout appeared considerably lower than in adult syngnathids.

  18. Suction is kid's play: extremely fast suction in newborn seahorses

    PubMed Central

    Van Wassenbergh, Sam; Roos, Gert; Genbrugge, Annelies; Leysen, Heleen; Aerts, Peter; Adriaens, Dominique; Herrel, Anthony

    2009-01-01

    Ongoing anatomical development typically results in a gradual maturation of the feeding movements from larval to adult fishes. Adult seahorses are known to capture prey by rotating their long-snouted head extremely quickly towards prey, followed by powerful suction. This type of suction is powered by elastic recoil and requires very precise coordination of the movements of the associated feeding structures, making it an all-or-none phenomenon. Here, we show that newborn Hippocampus reidi are able to successfully feed using an extremely rapid and powerful snout rotation combined with a high-volume suction, surpassing that observed in adult seahorses. An inverse dynamic analysis shows that an elastic recoil mechanism is also used to power head rotation in newborn H. reidi. This illustrates how extreme levels of performance in highly complex musculoskeletal systems can be present at birth given a delayed birth and rapid development of functionally important structures. The fact that the head skeleton of newborn seahorses is still largely cartilaginous may not be problematic because the hydrodynamic stress on the rotating snout appeared considerably lower than in adult syngnathids. PMID:19324657

  19. Observation of the spiral flow and vortex induced by a suction pump in superfluid 4He

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ohyama, K.; Obara, K.; Ishikawa, O.

    2018-03-01

    A suction flow generates a whirlpool, namely a bathtub vortex, in a classical fluid; in contrast, rotating containers, which are usually used for studies of superfluid helium, can produce only simple solid rotation. In the present work, the superfluid flow and concentrated quantized vortices induced by a cryogenic motor immersed in superfluid 4He were investigated. Using a motor with six blades in a cylinder caused the free surface of the superfluid 4He to take on a parabolic shape, indicating that the motor produces a rotating superfluid flow. To drive a suction flow in superfluid helium, the motor was mounted in a cylindrical container with a small hole at the center of the top and a slit at the side, acting as a superfluid pump. This pump was successfully used to generate a spiral flow and a vortex with a funnel-shaped core in superfluid 4He, suggesting that the resulting suction flow transports and centralizes quantized vortices to the suction hole, increasing the vortex circulation and sucking the free surface of the superfluid down.

  20. Cold-air investigation of a 4 1/2 stage turbine with stage-loading factor of 4.66 and high specific work output. 2: Stage group performance

    NASA Technical Reports Server (NTRS)

    Whitney, W. J.; Behning, F. P.; Moffitt, T. P.; Hotz, G. M.

    1980-01-01

    The stage group performance of a 4 1/2 stage turbine with an average stage loading factor of 4.66 and high specific work output was determined in cold air at design equivalent speed. The four stage turbine configuration produced design equivalent work output with an efficiency of 0.856; a barely discernible difference from the 0.855 obtained for the complete 4 1/2 stage turbine in a previous investigation. The turbine was designed and the procedure embodied the following design features: (1) controlled vortex flow, (2) tailored radial work distribution, and (3) control of the location of the boundary-layer transition point on the airfoil suction surface. The efficiency forecast for the 4 1/2 stage turbine was 0.886, and the value predicted using a reference method was 0.862. The stage group performance results were used to determine the individual stage efficiencies for the condition at which design 4 1/2 stage work output was obtained. The efficiencies of stages one and four were about 0.020 lower than the predicted value, that of stage two was 0.014 lower, and that of stage three was about equal to the predicted value. Thus all the stages operated reasonably close to their expected performance levels, and the overall (4 1/2 stage) performance was not degraded by any particularly inefficient component.

  1. Enhancing the performance of the domestic refrigerator with hot gas injection to suction line

    NASA Astrophysics Data System (ADS)

    Berman, E. T.; Hasan, S.; Mutaufiq

    2016-04-01

    The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to - 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.

  2. Remotely operated submersible underwater suction apparatus

    DOEpatents

    Kristan, Louis L.

    1990-01-01

    A completely submersible, remotely operated underwater suction device for collection of irradiated materials in a nuclear pool is disclosed. The device includes a pump means for pumping water through the device, a filter means for capturing irradiated debris, remotely operated releasable connector means, a collection means and a means for remotely maneuvering the collection means. The components of the suction device may be changed and replaced underwater to take advantage of the excellent radiation shielding ability of water to thereby minimize exposure of personnel to radiation.

  3. A perspective of laminar-flow control. [aircraft energy efficiency program

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Muraca, R. J.

    1978-01-01

    A historical review of the development of laminar flow control technology is presented with reference to active laminar boundary-layer control through suction, the use of multiple suction slots, wind-tunnel tests, continuous suction, and spanwise contamination. The ACEE laminar flow control program is outlined noting the development of three-dimensional boundary-layer codes, cruise-noise prediction techniques, airfoil development, and leading-edge region cleaning. Attention is given to glove flight tests and the fabrication and testing of wing box designs.

  4. Design and simulation of bi-directional microfluid driving systems

    NASA Astrophysics Data System (ADS)

    Jen, Chun-Ping; Lin, Yu-Cheng

    2002-03-01

    Micro total analysis systems (μTAS) have been developed to perform a number of analytical processes involving chemical reactions, separation and sensing on a single chip. In medical and biomedical applications, μTAS must be designed considering special transport mechanisms to move samples and reagents through the microchannels in the system. For conventional micropumps, however, complicated relationships exist between the pumping mechanisms, the conditions under which the devices operate and the behavior of the multi-component fluids transported in these channels. A bi-directional microfluid driving system has been developed in this paper. This pneumatic system is an on-chip planar structure with no moving parts and does not require microfabricated heaters or electrodes. The pumping actuation is introduced to the microchannel fabricated in the chip by blowing an airflow through this device. The bi-directional driving module combines two individual components for suction and exclusion. The driving system provides a stable and flexible bi-directional microfluid driving control. The tunable parameters for adjusting the exclusion/suction ratios, such as the location of the inlet channel and the velocities of the airflow, have been observed in the numerical study. The optimal exclusion/suction ratio for the specific purpose of the driving system can be selected by changing the location of the microchannel to the reaction area for the sample/reagent. The velocity at the microchannel can be adjusted by varying the inlet velocities for the suction and exclusion components. For the presented design, no air conduit was employed to connect the servo-system to the driving system; therefore the packaging difficulty and leakage problem, which may arise in conventional systems, can be eliminated. The final airflow outlet was fixed in one direction so that it can prevent cross-contamination between the servo-system and the chip. The driving system is therefore particularly suited to microdevices for biochemical analysis.

  5. Healthcare-Wide Hazards: Surgical Suite

    MedlinePlus

    ... smoke evacuators and room suction systems with inline filters. Keep the smoke evacuator or room suction hose ... all surgical or other procedures. Consider all tubing, filters, and absorbers as infectious waste and dispose of ...

  6. 78 FR 30872 - Marine Mammals; File Nos. 14451, 14353, and 13846

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... recording, and underwater photo/videography. Suction cup tags are deployed on humpback whales. Minke whales..., collection of sloughed skin, photogrammetry, biopsy sampling, playback experiments, and/or suction cup and...

  7. 76 FR 542 - Marine Mammals; File No. 15616

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... recording, biopsy sampling, tagging with barbed darts and suction cups, and collecting samples of marine... acoustically record (PI), biopsy sample (BS), attach barbed dart satellite tags (DT), and suction cup tags (ST...

  8. 78 FR 2955 - Marine Mammals; File Nos. 14451, 14353, and 13846

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... photo/videography. Suction cup tags are deployed on humpback whales. Minke whales are approached for..., biopsy sampling, playback experiments, and/or suction cup and implant tagging of target whales. The...

  9. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  10. Evaluation of prototype air/fluid separator for Space Station Freedom Health Maintenance Facility

    NASA Technical Reports Server (NTRS)

    Billica, Roger; Smith, Maureen; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    A prototype air/fluid separator suction apparatus proposed as a possible design for use with the Health Maintenance Facility aboard Space Station Freedom (SSF) was evaluated. A KC-135 parabolic flight test was performed for this purpose. The flights followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. A protocol was prepared to evaluate the prototype device in several regulator modes (or suction force), using three fluids of varying viscosity, and using either continuous or intermittent suction. It was felt that a matrixed approach would best approximate the range of utilization anticipated for medical suction on SSF. The protocols were performed in one-gravity in a lab setting to familiarize the team with procedures and techniques. Identical steps were performed aboard the KC-135 during parabolic flight.

  11. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George [Palm City, FL

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  12. Aerosol distribution during open suctioning and long-term surveillance of air quality in a respiratory care center within a medical center.

    PubMed

    Chung, Fen-Fang; Lin, Hui-Ling; Liu, Hsueh-Erh; Lien, Angela Shin-Yu; Hsiao, Hsiu-Feng; Chou, Lan-Ti; Wan, Gwo-Hwa

    2015-01-01

    The investigation of hospital air quality has been conducted in wards, ICUs, operating theaters, and public areas. Few studies have assessed air quality in respiratory care centers (RCCs), especially in mechanically ventilated patients with open suctioning. The RCC air quality indices (temperature, relative humidity, levels of CO2, total volatile organic compounds, particulate matter [PM], bacteria, and fungi) were monitored over 1 y. The air around the patient's head was sampled during open suctioning to examine the probability of bioaerosol exposure affecting health-care workers. This investigation found that the levels of indoor air pollutants (CO2, PM, bacteria, and fungi) were below the indoor air quality standard set by the Taiwan Environmental Protection Agency. Meanwhile, the levels of total volatile organic compounds sometimes exceeded the indoor air quality standard, particularly in August. The identified bacterial genera included Micrococcus species, Corynebacterium species, and Staphylococcus species, and the predominant fungal genera included yeast, Aspergillus species, Scopulariopsis species, and Trichoderma species. Additionally, airborne PM2.5, PM1, and bacteria were clearly raised during open suctioning in mechanically ventilated patients. This phenomenon demonstrated that open suctioning may increase the bacterial exposure risk of health-care workers. RCC air quality deserves long-term monitoring and evaluation. Health-care workers must implement self-protection strategies during open suctioning to ensure their occupational health and safety in health-care settings. Copyright © 2015 by Daedalus Enterprises.

  13. Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers

    NASA Astrophysics Data System (ADS)

    Blackmon, Richard L.; Case, Jason R.; Trammell, Susan R.; Irby, Pierce B.; Fried, Nathaniel M.

    2013-02-01

    Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation for fiber-optic suctioning of plaster-of-paris (PoP) stone phantoms. A TFL (wavelength of 1908 nm, pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rate of 10 to 350 Hz) and a holmium laser (wavelength of 2120 nm, pulse energy of 35 to 360 mJ, pulse duration of 300 μs, and pulse rate of 20 Hz) were tested using 270-μm-core optical fibers. A peak drag speed of ˜2.5 mm/s was measured for both TFL (35 mJ and 150 to 250 Hz) and holmium laser (210 mJ and 20 Hz). Particle image velocimetry and thermal imaging were used to track water flow for all parameters. Fiber-optic suctioning of urinary stone phantoms is feasible. TFL operation at high pulse rates/low pulse energies is preferable to holmium operation at low pulse rates/high pulse energies for rapid and smooth stone pulling. With further development, this novel technique may be useful for manipulating stone fragments in the urinary tract.

  14. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  15. Use of Body-Mounted Cameras to Enhance Data Collection: An Evaluation of Two Arthropod Sampling Techniques.

    PubMed

    Hagler, James R; Thompson, Alison L; Stefanek, Melissa A; Machtley, Scott A

    2018-03-01

    A study was conducted that compared the effectiveness of a sweepnet versus a vacuum suction device for collecting arthropods in cotton. The study differs from previous research in that body-mounted action cameras (B-MACs) were used to record the activity of the person conducting the arthropod collections. The videos produced by the B-MACs were then analyzed with behavioral event recording software to quantify various aspects of the sampling process. The sampler's speed and the number of sampling sweeps or vacuum suctions taken over a fixed distance (12.2 m) of cotton were two of the more significant sampling characteristics quantified for each method. The arthropod counts obtained, combined with the analyses of the videos, enabled us to estimate arthropod sampling efficiency for each technique based on fixed distance, time, and sample unit measurements. Data revealed that the vacuuming was the most precise method for collecting arthropods in the relatively small cotton research plots. However, data also indicates that the sweepnet method would be more efficient for collecting most of the cotton-dwelling arthropod taxa, especially if the sampler could continuously sweep for at least 1 min or ≥80 m (e.g., in larger research plots). The B-MACs are inexpensive and non-cumbersome, the video images generated are outstanding, and they can be archived to provide permanent documentation of a research project. The methods described here could be useful for other types of field-based research to enhance data collection efficiency.

  16. NASA F-16XL supersonic laminar flow control program overview

    NASA Technical Reports Server (NTRS)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  17. F-16XL Ship #2 during last flight showing titanium laminar flow glove on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The perforated titanium overlay mounted on the upper surface of the left wing is clearly evident on this view of NASA 848, a highly modified F-16XL aircraft flown by NASA's Dryden Flight Research Center in the Supersonic Laminar Flow Control (SLFC) research program. The two-seat, single-engine craft, one of only two 'XL' F-16s built, recently concluded the SLFC project with its 45th data collection mission. The project demonstrated that laminar--or smooth--airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. The system drew a small part of the boundary-layer air through millions of tiny laser-drilled holes in the 'glove' fitted to the upper left wing.

  18. An evaluation of a teaching intervention to improve the practice of endotracheal suctioning in intensive care units.

    PubMed

    Day, T; Wainwright, S P; Wilson-Barnett, J

    2001-09-01

    Endotracheal suctioning is a frequently performed procedure that has many associated risks and complications. It is imperative that nurses are aware of these risks and are able to practise according to current research recommendations. This study was designed to examine to what extent intensive care nurses' knowledge and practice of endotracheal suctioning is based on research evidence, to investigate the relationships between knowledge and practice, and to evaluate the effectiveness of a research-based teaching programme. This quasi-experimental study was a randomized, controlled, single-blinded comparison of two research-based teaching programmes, with 16 intensive care nurses, using non-participant observation and a self-report questionnaire. Initial baseline data revealed a low level of knowledge for many participants, which was also reflected in practice, as suctioning was performed against many of the research recommendations. Following teaching, significant improvements were seen in both knowledge and practice. Four weeks later these differences were generally sustained, and provide evidence of the effectiveness of the educational intervention. The study raised concern about all aspects of endotracheal suctioning and highlighted the need for changes in nursing practice, with clinical guidelines and focused practice-based education.

  19. Endoscopic en bloc resection of an exophytic gastrointestinal stromal tumor with suction excavation technique

    PubMed Central

    Choi, Hyuk Soon; Chun, Hoon Jai; Kim, Kyoung-Oh; Kim, Eun Sun; Keum, Bora; Jeen, Yoon-Tae; Lee, Hong Sik; Kim, Chang Duck

    2016-01-01

    Here, we report the first successful endoscopic resection of an exophytic gastrointestinal stromal tumor (GIST) using a novel perforation-free suction excavation technique. A 49-year-old woman presented for further management of a gastric subepithelial tumor on the lesser curvature of the lower body, originally detected via routine upper gastrointestinal endoscopy. Abdominal computed tomography and endoscopic ultrasound showed a 4-cm extraluminally protruding mass originating from the muscularis propria layer. The patient firmly refused surgical resection owing to potential cardiac problems, and informed consent was obtained for endoscopic removal. Careful dissection and suction of the tumor was repeated until successful extraction was achieved without serosal injury. We named this procedure the suction excavation technique. The tumor’s dimensions were 3.5 cm × 2.8 cm × 2.5 cm. The tumor was positive for C-KIT and CD34 by immunohistochemical staining. The mitotic count was 6/50 high-power fields. The patient was followed for 5 years without tumor recurrence. This case demonstrated the use of endoscopic resection of an exophytic GIST using the suction excavation technique as a potential therapy without surgical resection. PMID:27340363

  20. Influence of hydraulic hysteresis on the mechanical behavior of unsaturated soils and interfaces

    NASA Astrophysics Data System (ADS)

    Khoury, Charbel N.

    Unsaturated soils are commonly widespread around the world, especially at shallow depths from the surface. The mechanical behavior of this near surface soil is influenced by the seasonal variations such as rainfall or drought, which in turn may have a detrimental effect on many structures (e.g. retaining walls, shallow foundations, mechanically stabilized earth walls, soil slopes, and pavements) in contact with it. Thus, in order to better understand this behavior, it is crucial to study the complex relationship between soil moisture content and matric suction (a stress state variable defined as pore air pressure minus pore water pressure) known as the Soil Water Characteristic Curve (SWCC). In addition, the influence of hydraulic hysteresis on the behavior of unsaturated soils, soil-structure interaction (i.e. rough and smooth steel interfaces, soil-geotextile interfaces) and pavement subgrade (depicted herein mainly by resilient modulus, Mr) was also studied. To this end, suction-controlled direct shear tests were performed on soils, rough and smooth steel interfaces and geotextile interface under drying (D) and wetting after drying (DW). The shearing behavior is examined in terms of the two stress state variables, matric suction and net normal stress. Results along the D and DW paths indicated that peak shear strength increased with suction and net normal stress; while in general, the post peak shear strength was not influenced by suction for rough interfaces and no consistent trend was observed for soils and soil-geotextiles interfaces. Contrary to saturated soils, results during shearing at higher suction values (i.e. 25 kPa and above) showed a decrease in water content eventhough the sample exhibited dilation. A behavior postulated to be related to disruption of menisci and/or non-uniformity of pore size which results in an increase in localized pore water pressures. Interestingly, wetting after drying (DW) test results showed higher peak and post peak shear strength than that of the drying (D) tests. This is believed to be the result of many factors such as: (1) cyclic suction stress loading, (2) water content (less on wetting than drying), and (3) type of soil. The cyclic suction loading may have induced irrecoverable plastic strains, resulting in stiffer samples for wetting tests as compared to drying. Additionally, water may be acting as a lubricant and thus resulting in lower shear strength for test samples D with higher water contents than DW samples. Furthermore, various shear strength models were investigated for their applicability to the experimental data. Models were proposed for the prediction of shear strength with suction based on the SWCC. The models are able to predict the shear strength of unsaturated soil and interfaces due to drying and wetting (i.e. hydraulic hysteresis) by relating directly to the SWCC. The proposed models were used and partly validated by predicting different test results from the literature. In addition, an existing elastoplastic constitutive model was investigated and validated by comparing the predicted and experimental (stress-displacement, volume change behavior) results obtained from rough and geotextile interface tests. This study also explores the effect of hydraulic hysteresis on the resilient modulus (Mr) of subgrade soils. Suction-controlled Mr tests were performed on compacted samples along the primary drying, wetting, secondary drying and wetting paths. Two test types were performed to check the effect of cyclic deviatoric stress loading on the results. First, M r tests were performed on the same sample at each suction (i.e. 25, 50, 75, 100 kPa) value along all the paths (drying, wetting etc.). A relationship between resilient modulus (Mr) and matric suction was obtained and identified as the resilient modulus characteristic curve (MRCC). MRCC results indicated that Mr increased with suction along the drying curve. On the other hand, results on the primary wetting indicated higher Mr than that of the primary drying and the secondary drying. The second type of test was performed at selected suction without subjecting the sample to previous Mr tests. Results indicated that Mr compared favorably with the other type of test (i.e. with previous M r testing), which indicates that the cyclic deviatoric stress loading influence was not as significant as the hydraulic hysteresis (i.e. cyclic suction stress loading). A new model to predict the MRCC results during drying and wetting (i.e., hydraulic hysteresis) is proposed based on the SWCC hysteresis. The model predicted favorably the drying and then the wetting results using the SWCC at all stress levels. (Abstract shortened by UMI.)

  1. 21 CFR 884.1175 - Endometrial suction curette and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... uterus by scraping and vacuum suction. This device is used to obtain tissue for biopsy or for menstrual extraction. This generic type of device may include catheters, syringes, and tissue filters or traps. (b...

  2. 21 CFR 884.1175 - Endometrial suction curette and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... uterus by scraping and vacuum suction. This device is used to obtain tissue for biopsy or for menstrual extraction. This generic type of device may include catheters, syringes, and tissue filters or traps. (b...

  3. Evolution and failure of liquid bridges between grains due to evaporation and due to extension

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Mielniczuk, B.; Said El Youssoufi, M.

    2012-04-01

    Evolution and rupture of liquid bridges between glass spheres during liquid evaporation and during mechanical extension was examined. The latter type of the tests has been widely studied, while a number of pertinent measurements during transient evaporation have not yet been reported. Also the resultant total capillary forces were measured and geometrical characteristics (curvature radii)were recorded with a photo camera and high-speed camera and subsequently digitalized. The obtained results reveal substantial differences in geometry of liquid bridges during extension and evaporation. On the other hand, evaporation and extension of liquid bridgelead to a similar qualitative response in terms of the pressure within the liquid bridge, starting with a significant suction, which initially somewhat increases during evaporation to reach a maximum, followed by a rapid monotonic decrease until zero, to become a sizable positive pressure prior to rupture. Extension same pattern is followed, except that there is no initial suction increase. Hence, in both cases, rupture consistently occurs at a positive fluid pressure. The pressure evolution is a simple resultant of the evolution of radii of curvature, with the neck radius becoming smaller than meridian radius. In terms of resultant capillary force, as the area of the bridge cross-section decreases with the square of the neck radius, the pressure difference is almost entirely negative, in part also due to surface tension component. Nevertheless, the suction decreases nearly monotonically during both processes. Rupture during evaporation of the bridges occurs most abruptly for larger separations, as early as after 25% volume evaporated. It is seen as a bifurcation of the geometry of equilibrium, as demonstrated on a movie with 27, 000 shots per second. The evolution of a bridge between three spheres exhibits a centrally located thin film instability with a circular hole growing within 1/3000th of a second. All these findings have an enormous impact on the mechanics of unsaturated media, as they determine the conditions and criteria for the loss of the "sand-castle" cohesion effect in the final phase of soil drying.

  4. Effects of expiratory ribcage compression before endotracheal suctioning on arterial blood gases in patients receiving mechanical ventilation.

    PubMed

    Kohan, Mahmoud; Rezaei-Adaryani, Morteza; Najaf-Yarandi, Akram; Hoseini, Fatemeh; Mohammad-Taheri, Nahid

    2014-09-01

    To investigate the effects of expiratory ribcage compression (ERCC) before endotracheal suctioning on the arterial blood gases (ABG) in patients receiving mechanical ventilation. Endotracheal suctioning is one of the most frequently used methods for airway clearance in patients receiving mechanical ventilation. Chest physiotherapy techniques such as ERCC before endotracheal suctioning can be used as a means to facilitate mobilizing and removing airway secretions and improving alveolar ventilation. A prospective, randomized, controlled cross-over design. A randomized controlled cross-over trial with a convenience sample of 70 mechanically ventilated patients was conducted from 2006 to 2007. The patients received endotracheal suctioning with (experiment-period) or without (control-period) an antecedent 5-min expiratory ribcage. All the patients experienced both periods with at least a 3-h washed-out interval between the two periods. ABG were measured 5 min before and 25 min after endotracheal suctioning. The statistical tests showed that the levels of partial pressure of oxygen (PaO2 )/fraction of inspired oxygen (FiO2 ), partial pressure of carbon dioxide (PaCO2 ) and arterial oxygen saturation (SaO2 ) in the experimental period at 25 min after the intervention were significantly different from the control period. The tests also revealed that the levels of these variables at 25 min after suctioning were also significantly different from baseline values. However, these differences were clinically significant only for PaO2 /FiO2 . By improving the levels of PaO2 /FiO2 , ERCC can reduce the patients' need for oxygen and hence it can at least reduce the side effects of oxygen therapy. Improving PaO2 /FiO2 levels means less need for oxygen therapy. Hence, by applying ERCC we can at least minimize the side effects of oxygen therapy. © 2014 British Association of Critical Care Nurses.

  5. Suction evacuation of hemothorax: A prospective study.

    PubMed

    Savage, Stephanie A; Cibulas, George A; Ward, Tyler A; Davis, Corinne A; Croce, Martin A; Zarzaur, Ben L

    2016-07-01

    Although tube thoracostomy is a common procedure after thoracic trauma, incomplete evacuation of fluid places the patient at risk for retained hemothorax. As little as 300 to 500 cm of blood may result in the need for an additional thoracostomy tube or, in more severe cases, lung entrapment and empyema. We hypothesized that suction evacuation of the thoracic cavity before tube placement would decrease the incidence of late complications. Patients requiring tube thoracostomy within 96 hours of admission were prospectively identified and underwent suction evacuation of the pleural space (SEPS) before tube placement. These patients were compared to historical controls without suction evacuation. Demographics, admission vital signs, laboratory values, details of chest tube placement, and outcomes were collected on all patients. Multivariable logistic regression was used to compare outcomes between groups. A total of 199 patients were identified, consisting of 100 retrospective controls and 99 SEPS patients. There were no differences in age, sex, admission injury severity score or chest abbreviated injury score, admission laboratory values or vital signs, or hospital length of stay. Mean (SD) volume of hemothorax in SEPS patients was 220 (297) cm; with only 48% having a volume greater than 100 cm at the time of tube placement. Three patients developed empyema, and 19 demonstrated retained blood; there was no difference between SEPS and control patients. Suction evacuation of the pleural space was significantly protective against recurrent pneumothorax after chest tube removal (odds ratio, 0.332; 95% confidence interval, 0.148-0.745). Preemptive suction evacuation of the thoracic cavity did not have a significant impact on subsequent development of retained hemothorax or empyema. Suction evacuation of the pleural space significantly decreased incidence of recurrent pneumothorax after thoracostomy removal. Although the mechanism is unclear, such a benefit may make this simple procedure worthwhile. A larger sample size is required for validation and to determine if preemptive thoracic evacuation has a clinical benefit. Therapeutic/care management study, level IV.

  6. Increased resistance of hygroscopic condenser humidifiers when using a closed circuit suction system.

    PubMed

    Martinez, F J; Pietchel, S; Wise, C; Walek, J; Beamis, J F

    1994-10-01

    To examine a hygroscopic condenser after clinical use and to describe the interaction of a hygroscopic condenser and a closed circuit suction system used simultaneously. Prospective evaluation of hygroscopic condensers used clinically, and laboratory investigation of a hygroscopic condenser used with a closed circuit suction system. Tertiary referral centers. The hygroscopic condenser used during mechanical ventilation was removed and peak inflation pressure was measured by delivering a standard tidal volume and inspiratory flow across the isolated hygroscopic condenser while recording the peak inflation pressure. In the laboratory, four 10-mL aliquots of saline were instilled via closed circuit suction system into a test lung with fresh hygroscopic condensers (n = 15) inline. At baseline and after each instillation, the hygroscopic condenser was weighed and the peak inflation pressure was measured while in five condensers, peak expiratory flow rate was also measured. In these five devices, hygroscopic condenser resistance was measured with 100 L/min of constant gas flow while measuring the pressure drop across the hygroscopic condenser. In 11 hygroscopic condensers used for 27.5 +/- 11.9 hrs with no closed circuit suction system, the peak inflation pressure was 3.74 +/- 0.58 cm H2O. In the laboratory, instillation of saline via closed circuit suction system was associated with an increase in hygroscopic condenser weight. Peak inflation pressure increased in a quadratic fashion with the increase in hygroscopic condenser weight, while peak expiratory flow rate decreased in a linear fashion. After four saline instillations, hygroscopic condenser resistance increased from 5.66 +/- 0.31 to 13.9 +/- 2.42 cm H2O/L/sec. Clinical use of a hygroscopic condenser alone is not associated with a significant increase in peak inflation pressure. We caution the use of a hygroscopic condenser and a closed circuit suction system simultaneously, as an increase in hygroscopic condenser resistance may develop and may be poorly tolerated in patients with marginal ventilatory reserve.

  7. Hydrological effect of vegetation against rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ollauri, Alejandro; Mickovski, Slobodan B.

    2017-06-01

    The hydrological effect of vegetation on rainfall-induced landslides has rarely been quantified and its integration into slope stability analysis methods remains a challenge. Our goal was to establish a reproducible, novel framework to evaluate the hydrological effect of vegetation on shallow landslides. This was achieved by accomplishing three objectives: (i) quantification in situ of the hydrological mechanisms by which woody vegetation (i.e. Salix sp.) might impact slope stability under wetting and drying conditions; (ii) to propose a new approach to predict plant-derived matric suctions under drying conditions; and (iii) to evaluate the suitability of the unified effective stress principle and framework (UES) to quantify the hydrological effect of vegetation against landslides. The results revealed that plant water uptake was the main hydrological mechanism contributing to slope stability, as the vegetated slope was, on average, 12.84% drier and had matric suctions three times higher than the fallow slope. The plant-related mechanisms under wetting conditions had a minimal effect on slope stability. The plant aerial parts intercepted up to 26.73% of the rainfall and concentrated a further 10.78% of it around the stem. Our approach successfully predicted the plant-derived matric suctions and UES proved to be adequate for evaluating the hydrological effect of vegetation on landslides. Although the UES framework presented here sets the basis for effectively evaluating the hydrological effect of vegetation on slope stability, it requires knowledge of the specific hydro-mechanical properties of plant-soil composites and this in itself needs further investigation.

  8. The impact analysis of the connecting pipe length and diameter on the operation of a piston hybrid power machine of positive displacement with gas suction capacity

    NASA Astrophysics Data System (ADS)

    Shcherba, V. E.; Grigoriev, A. V.; Averyanov, G. S.; Surikov, V. I.; Vedruchenko, V. P.; Galdin, N. S.; Trukhanova, D. A.

    2017-08-01

    The article analyzes the impact of the connecting liquid pipe length and diameter on consumables and power characteristics of the piston hybrid power machine with gas suction capacity. The following operating characteristics of the machine were constructed and analyzed: the average height of the liquid column in the jacket space; instantaneous velocity and height of the liquid column in the jacket space; the relative height of the liquid column in the jacket space; volumetric efficiency; indicator isothermal efficiency; flowrate in the pump section; relative pressure losses during suction; relative flowrate. The dependence of the instantaneous pressure in the work space and the suction space of the compressor section on the rotation angle of the crankshaft is determined for different values of the length and diameter of the connecting pipeline.

  9. Active Control of Flow Separation Over an Airfoil

    NASA Technical Reports Server (NTRS)

    Ravindran, S. S.

    1999-01-01

    Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

  10. [A non-invasive portable blood-glucose monitoring system: sampling of suction effusion fluid].

    PubMed

    Arai, T; Kayashima, S; Kikuchi, M; Kaneyoshi, A; Itoh, N

    1995-04-01

    We developed a new portable transcutaneous blood glucose monitoring system using non-invasive collection of suction effusion fluid (SEF) from human skin. A ion sensitive field effect transistor (ISFET) sensor was employed to measure glucose concentration in a very small quantity of the SEF. The system was composed of a couple of portions. One structure was a suction cell, and the other was a main frame. The suction cell included the ISFET glucose sensor, a dilution mechanism, and a sucking interface to human skin. The main frame contained a dilution solution reservoir, a liquid waste reservoir, a fluid pump, a vacuum pump, a micro processor, batteries, and a user interface. The system is self-contained for portable usage during up to 6 hrs monitoring. This system may be the first blood glucose monitoring equipment which does not use blood sampling.

  11. Finger-triggered portable PDMS suction cup for equipment-free microfluidic pumping

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Kim, Hojin; Lee, Wonhyung; Kim, Joonwon

    2018-12-01

    This study presents a finger-triggered portable polydimethylsiloxane suction cup that enables equipment-free microfluidic pumping. The key feature of this method is that its operation only involves a "pressing-and-releasing" action for the cup placed at the outlet of a microfluidic device, which transports the fluid at the inlet toward the outlet through a microchannel. This method is simple, but effective and powerful. The cup is portable and can easily be fabricated from a three-dimensional printed mold, used without any pre-treatment, reversibly bonded to microfluidic devices without leakage, and applied to various material-based microfluidic devices. The effect of the suction cup geometry and fabrication conditions on the pumping performance was investigated. Furthermore, we demonstrated the practical applications of the suction cup by conducting an equipment-free pumping of thermoplastic-based microfluidic devices and water-in-oil droplet generation.

  12. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  13. A preliminary design study of a laminar flow control wing of composite materials for long range transport aircraft

    NASA Technical Reports Server (NTRS)

    Swinford, G. R.

    1976-01-01

    The results of an aircraft wing design study are reported. The selected study airplane configuration is defined. The suction surface, ducting, and compressor systems are described. Techniques of manufacturing suction surfaces are identified and discussed. A wing box of graphite/epoxy composite is defined. Leading and trailing edge structures of composite construction are described. Control surfaces, engine installation, and landing gear are illustrated and discussed. The preliminary wing design is appraised from the standpoint of manufacturing, weight, operations, and durability. It is concluded that a practical laminar flow control (LFC) wing of composite material can be built, and that such a wing will be lighter than an equivalent metal wing. As a result, a program of suction surface evaluation and other studies of configuration, aerodynamics, structural design and manufacturing, and suction systems are recommended.

  14. Safety System for Controlling Fluid Flow into a Suction Line

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2015-01-01

    A safety system includes a sleeve fitted within a pool's suction line at the inlet thereof. An open end of the sleeve is approximately aligned with the suction line's inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining a plurality of distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. Each of the distinct channels is at least approximately three feet in length. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith.

  15. A new suction mask to reduce leak during neonatal resuscitation: a manikin study.

    PubMed

    Lorenz, Laila; Maxfield, Dominic A; Dawson, Jennifer A; Kamlin, C Omar F; McGrory, Lorraine; Thio, Marta; Donath, Susan M; Davis, Peter G

    2016-09-01

    Leak around the face mask is a common problem during neonatal resuscitation. A newly designed face mask using a suction system to enhance contact between the mask and the infant's face might reduce leak and improve neonatal resuscitation. The aim of the study is to determine whether leak is reduced using the suction mask (Resusi-sure mask) compared with a conventional mask (Laerdal Silicone mask) in a manikin model. Sixty participants from different professional categories (neonatal consultants, fellows, registrars, nurses, midwives and students) used each face mask in a random order to deliver 2 min of positive pressure ventilation to a manikin. Delivered airway pressures were measured using a pressure line. Inspiratory and expiratory flows were measured using a flow sensor, and expiratory tidal volumes and mask leaks were derived from these values. A median (IQR) leak of 12.1 (0.6-39.0)% was found with the conventional mask compared with 0.7 (0.2-4.6)% using the suction mask (p=0.002). 50% of the participants preferred to use the suction mask and 38% preferred to use the conventional mask. There was no correlation between leak and operator experience. A new neonatal face mask based on the suction system reduced leak in a manikin model. Clinical studies to test the safety and effectiveness of this mask are needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Physical therapy for airway clearance improves cardiac autonomic modulation in children with acute bronchiolitis

    PubMed Central

    Jacinto, Cynthia P.; Gastaldi, Ada C.; Aguiar, Daniela Y.; Maida, Karina D.; Souza, Hugo C. D.

    2013-01-01

    Background The effects of physical therapy on heart rate variability (HRV), especially in children, are still inconclusive. Objective We investigated the effects of conventional physical therapy (CPT) for airway clearance and nasotracheal suction on the HRV of pediatric patients with acute bronchiolitis. Method 24 children were divided into two groups: control group (CG, n=12) without respiratory diseases and acute bronchiolitis group (BG, n=12). The heart rate was recorded in the BG at four different moments: basal recording (30 minutes), 5 minutes after the CPT (10 minutes), 5 minutes after nasotracheal suction (10 minutes), and 40 minutes after nasotracheal suction (30 minutes). The CG was subjected to the same protocol, except for nasotracheal suction. To assess the HRV, we used spectrum analysis, which decomposes the heart rate oscillations into frequency bands: low frequency (LF=0.04-0.15Hz), which corresponds mainly to sympathetic modulation; and high frequency (HF=0.15-1.2Hz), corresponding to vagal modulation. Results Under baseline conditions, the BG showed higher values in LF oscillations, lower values in HF oscillations, and increased LF/HF ratio when compared to the CG. After CPT, the values for HRV in the BG were similar to those observed in the CG during basal recording. Five minutes after nasotracheal suction, the BG showed a decrease in LF and HF oscillations; however, after 40 minutes, the values were similar to those observed after application of CPT. Conclusions The CPT and nasotracheal suction, both used for airway clearance, promote improvement in autonomic modulation of HRV in children with acute bronchiolitis. PMID:24271093

  17. Role of axial muscles in powering mouth expansion during suction feeding in largemouth bass (Micropterus salmoides).

    PubMed

    Camp, Ariel L; Brainerd, Elizabeth L

    2014-04-15

    Suction-feeding fishes capture food by fast and forceful expansion of the mouth cavity, and axial muscles probably provide substantial power for this feeding behavior. Dorsal expansion of the mouth cavity can only be powered by the epaxial muscles, but both the sternohyoid, shortening against an immobile pectoral girdle to retract the hyoid, and the hypaxial muscles, shortening to retract both the pectoral girdle and hyoid, could contribute ventral expansion power. To determine whether hypaxial muscles generate power for ventral expansion, and the rostrocaudal extent of axial muscle shortening during suction feeding, we measured skeletal kinematics and muscle shortening in largemouth bass (Micropterus salmoides). The three-dimensional motions of the cleithrum and hyoid were measured with X-ray reconstruction of moving morphology (XROMM), and muscle shortening was measured with fluoromicrometry, wherein changes in the distance between radio-opaque intramuscular markers are measured using biplanar X-ray video recording. We found that the hypaxials generated power for ventral suction expansion, shortening (mean of 6.2 mm) to rotate the pectoral girdle caudoventrally (mean of 9.3 deg) and retract the hyoid (mean of 8.5 mm). In contrast, the sternohyoid shortened minimally (mean of 0.48 mm), functioning like a ligament to transmit hypaxial shortening to the hyoid. Hypaxial and epaxial shortening were not confined to the rostral muscle regions, but extended more than halfway down the body during suction expansion. We conclude that hypaxial and epaxial muscles are both crucial for powering mouth expansion in largemouth bass, supporting the integration of axial and cranial musculoskeletal systems for suction feeding.

  18. Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.

    DOT National Transportation Integrated Search

    2009-09-01

    ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...

  19. Monitoring And Controlling Hydroponic Flow

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  20. A Comparison of delO18 Composition of Water Extracted from Suction Lysimeters, Centrifugation, and Azeotropic Distillation

    NASA Astrophysics Data System (ADS)

    Figueroa, A.; Tindall, J. A.; Friedel, M. J.

    2005-12-01

    Concentration of delO18 in water samples extracted by suction lysimeters is compared to samples obtained by methods of centrifugation and azeotropic distillation. Intact soil cores (30 cm diameter by 40 cm height) were extracted from two different sites. Site 1 was rapid infiltration basin number 50, near Altamonte Springs in Seminole County, Florida on properties belonging to the Walt Disney World Resort Complex. Site 2 was the Missouri Management System Evaluation Area (MSEA) near Centralia in Boone County, Missouri. The delO18 water was analyzed on a mass spectrophotometer. Potassium Bromide (KBr) was also used as a tracer and analyzed by ion chromatography. A portion of the data obtained was modeled using CXTFIT. Water collected by centrifugation and azeotropic distillation data were about 2-5% more negative than that collected by suction lysimeter values from the Florida (sandy) soil and about 5-7 % more negative from the Missouri (well structured clay) soil. Results indicate that the majority of soil water in well structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. Also, it is plausible that evaporation caused some delO18 enrichment in the suction lysimeters. Suction lysimeters preferentially sampled water held at lower matric potentials, which may not represent total soil water. In cases where a sufficient volume of water has passed through the soil profile and displaced all previous pore water, suction lysimeters will however collect a representative sample of all the water at that depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeters be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The CXTFIT program worked well for Florida soils (a more homogeneous sand), but gave poor performance for Missouri soils (well structured clays) except for deeper depths where clay structure was less variable. The data also suggest that each extraction method samples a separate component of soil-pore water. Consequently, centrifugation can be used with good success, particularly for efficient sampling of large areas. Azeotropic distillation is more appropriate when strict qualitative and quantitative data for desorption, desorption, and various types of kinetic studies are needed.

  1. Preliminary Design of the Low Speed Propulsion Air Intake of the LAPCAT-MR2 Aircraft

    NASA Astrophysics Data System (ADS)

    Meerts, C.; Steelant, J.; Hendrick, P.

    2011-08-01

    A supersonic air intake has been designed for the low speed propulsion system of the LAPCAT-MR2 aircraft. Development has been based on the XB-70 aircraft air intake which achieves extremely high performances over a wide operation range through the combined use of variable geometry and porous wall suction for boundary layer control. Design of the LAPCAT-MR2 intake has been operated through CFD simulations using DLR TAU-Code (perfect gas model - Menter SST turbulence model). First, a new boundary condition has been validated into the DLR TAU-Code (perfect gas model) for porous wall suction modelling. Standard test cases have shown surprisingly good agreement with both theoretical predictions and experimental results. Based upon this validation, XB-70 air intake performances have been assessed through CFD simulations over the subsonic, transonic and supersonic operation regions and compared to available flight data. A new simulation strategy was deployed avoiding numerical instabilities when initiating the flow in both transonic and supersonic operation modes. First, the flow must be initiated with a far field Mach number higher than the target flight Mach number. Additionally, the inlet backpressure may only be increased to its target value once the oblique shock pattern downstream the intake compression ramps is converged. Simulations using that strategy have shown excellent agreement with in-flight measurements for both total pressure recovery ratio and variable geometry schedule prediction. The demarcation between stable and unstable operation could be well reproduced. Finally, a modified version of the XB-70 air intake has been integrated in the elliptical intake on the LAPCAT vehicle. Operation of this intake in the LAPCAT-MR2 environment is under evaluation using the same simulation strategy as the one developed for the XB-70. Performances are assessed at several key operation points to assess viability of this design. This information will allow in a next phase to better quantify the operation of the aerojet engines from take-off till the switch-over flight Mach number for the dual mode ramjet.

  2. Controls on shallow landslide initiation: Diverse hydrologic pathways, 3D failure geometries, and unsaturated soil suctions

    NASA Astrophysics Data System (ADS)

    Reid, Mark; Iverson, Richard; Brien, Dianne; Iverson, Neal; LaHusen, Richard; Logan, Matthew

    2017-04-01

    Shallow landslides and ensuing debris flows are a common hazard worldwide, yet forecasting their initiation at a specific site is challenging. These challenges arise, in part, from diverse near-surface hydrologic pathways under different wetting conditions, 3D failure geometries, and the effects of suction in partially saturated soils. Simplistic hydrologic models typically used for regional hazard assessment disregard these complexities. As an alterative to field studies where the effects of these governing factors can be difficult to isolate, we used the USGS debris-flow flume to conduct controlled, field-scale landslide initiation experiments. Using overhead sprinklers or groundwater injectors on the flume bed, we triggered failures using three different wetting conditions: groundwater inflow from below, prolonged moderate-intensity precipitation, and bursts of high-intensity precipitation. Failures occurred in 6 m3 (0.65-m thick and 2-m wide) prisms of loamy sand on a 31° slope; these field-scale failures enabled realistic incorporation of nonlinear scale-dependent effects such as soil suction. During the experiments, we monitored soil deformation, variably saturated pore pressures, and moisture changes using ˜50 sensors sampling at 20 Hz. From ancillary laboratory tests, we determined shear strength, saturated hydraulic conductivities, and unsaturated moisture retention characteristics. The three different wetting conditions noted above led to different hydrologic pathways and influenced instrumental responses and failure timing. During groundwater injection, pore-water pressures increased from the bed of the flume upwards into the sediment, whereas prolonged moderate infiltration wet the sediment from the ground surface downward. In both cases, pore pressures acting on the impending failure surface slowly rose until abrupt failure. In contrast, a burst of intense sprinkling caused rapid failure without precursory development of widespread positive pore pressures. Using coupled 2D variably saturated groundwater flow modeling and 3D limit-equilibrium analyses, we simulated the observed hydrologic behaviors and the time evolution of changes in factors of safety. Our measured parameters successfully reproduced pore pressure observations without calibration. We also quantified the mechanical effects of 3D geometry and unsaturated soil suction on stability. Although suction effects appreciably increased the stability of drier sediment, they were dampened (to <10% increase) in wetted sediment. 3D geometry effects from the lateral margins consistently increased factors of safety by >20% in wet or dry sediment. Importantly, both 3D and suction effects enabled more accurate simulation of failure times. Without these effects, failure timing and/or back-calculated shear strengths would be markedly incorrect. Our results indicate that simplistic models could not consistently predict the timing of slope failure given diverse hydrologic pathways. Moreover, high frequency monitoring (with sampling periods < ˜60 s) would be required to measure and interpret the effects of rapid hydrologic triggers, such as intense rain bursts.

  3. Tube Suction Test for Evaluating

    DOT National Transportation Integrated Search

    2012-06-01

    In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (F-T/W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moisture ...

  4. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  5. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  6. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  7. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  8. 33 CFR 162.80 - Mississippi River below mouth of Ohio River, including South and Southwest passes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... withstand currents, winds, wave action, suction from passing vessels or any other forces which might cause... sufficient fastenings to prevent the vessels from breaking loose by wind, current, wave action, suction from...

  9. Surgical treatment of axillary hyperhidrosis by suction-curettage of sweat glands*

    PubMed Central

    de Rezende, Rebeca Maffra; Luz, Flávio Barbosa

    2014-01-01

    Suction curettage is a dermatologic surgery technique for the treatment of axillary hyperhidrosis, which is becoming more popular. Objective: The purpose of this study is to describe the current technique of removal of axillary sweat glands, and evaluate its efficacy and safety. Conclusion: Suction-curettage of sweat glands is a minimally invasive surgical technique that is easy to perform, safe, has high rates of success and relatively few side-effects. It is generally well tolerated by patients and requires shorter time away from daily activities, when compared with other surgical modalities. PMID:25387499

  10. Application of laminar flow control to supersonic transport configurations

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Nagel, A. L.

    1990-01-01

    The feasibility and impact of implementing a laminar flow control system on a supersonic transport configuration were investigated. A hybrid laminar flow control scheme consisting of suction controlled and natural laminar flow was developed for a double-delta type wing planform. The required suction flow rates were determined from boundary layer stability analyses using representative wing pressure distributions. A preliminary design of structural modifications needed to accommodate suction through a perforated titanium skin was carried out together with the ducting and systems needed to collect, compress and discharge the suction air. The benefits of reduced aerodynamic drag were weighed against the weight, volume and power requirement penalties of suction system installation in a mission performance and sizing program to assess the net benefits. The study showed a feasibility of achieving significant laminarization of the wing surface by use of a hybrid scheme, leading to an 8.2 percent reduction in the cruise drag. This resulted in an 8.5 percent reduction in the maximum takeoff weight and a 12 percent reduction in the fuel burn after the inclusion of the LFC system installation penalties. Several research needs were identified for a resolution of aerodynamics, structural and systems issues before these potential benefits could be realized in a practical system.

  11. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  12. Intermittent subglottic secretion drainage may cause tracheal damage in patients with few oropharyngeal secretions.

    PubMed

    Suys, E; Nieboer, K; Stiers, W; De Regt, J; Huyghens, L; Spapen, H

    2013-12-01

    Injurious prolapse of tracheal mucosa into the suction port has been reported in up to 50% of intubated patients receiving continuous aspiration of subglottic secretions. We investigated whether similar injury could be inflicted by automated intermittent aspiration. Six consecutive patients, intubated with the Mallinckrodt TaperGuard Evac™ endotracheal tube, were studied. A flow sensor was placed between the vacuum regulating system and the mucus collector. Intermittent suctioning was performed at a pressure of -125 mmHg with a 25s interval and duration of 15s. After 24h, a CT scan of the tracheal region was performed. Excessive negative suction pressure, a fast drop in aspiration flow to zero, and important "swinging" movements of secretions in the evacuation line were observed in all patients. Oral instillation of antiseptic mouthwash restored normal aspiration flow and secretion mobility. CT imaging showed marked entrapment of tracheal mucosa into the suction port in all patients. In patients with few oropharyngeal secretions, automated intermittent subglottic aspiration may result in significant and potential harmful invagination of tracheal mucosa into the suction lumen. A critical amount of fluid must be present in the oropharynx to assure adequate and safe aspiration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of suction-dependent soil deformability on landslide susceptibility maps

    NASA Astrophysics Data System (ADS)

    Lizarraga, Jose J.; Buscarnera, Giuseppe; Frattini, Paolo; Crosta, Giovanni B.

    2016-04-01

    This contribution presents a physically-based, spatially-distributed model for shallow landslides promoted by rainfall infiltration. The model features a set of Factor of Safety values aimed to capture different failure mechanisms, namely frictional slips with limited mobility and flowslide events associated with the liquefaction of the considered soils. Indices of failure associated with these two modes of instability have been derived from unsaturated soil stability principles. In particular, the propensity to wetting-induced collapse of unsaturated soils is quantified through the introduction of a rigid-plastic model with suction-dependent yielding and strength properties. The model is combined with an analytical approach (TRIGRS) to track the spatio-temporal evolution of soil suction in slopes subjected to transient infiltration. The model has been tested to reply the triggering of shallow landslides in pyroclastic deposits in Sarno (1998, Campania Region, Southern Italy). It is shown that suction-dependent mechanical properties, such as soil deformability, have important effects on the predicted landslide susceptibility scenarios, resulting on computed unstable zones that may encompass a wide range of slope inclinations, saturation levels, and depths. Such preliminary results suggest that the proposed methodology offers an alternative mechanistic interpretation to the variability in behavior of rainfall-induced landslides. Differently to standard methods the explanation to this variability is based on suction-dependent soil behavior characteristics.

  14. Experimental and numerical investigation of the effect of distributed suction on oblique shock wave/turbulent boundary layer interaction. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Benhachmi, Driss; Greber, Isaac; Hingst, Warren R.

    1988-01-01

    A combined experimental and numerical study of the interaction of an incident oblique shock wave with a turbulent boundary layer on a rough plate and on a porous plate with suction is presented. The experimental phase involved the acquisition of mean data upstream of, within, and downstream of the interaction region at Mach numbers 2.5 and 3.0. Data were taken at unit Reynolds numbers of 1.66 E7 and 1.85 E7 m respectively, and for flow deflection angles of 0, 4, 6 and 8 degs. Measured data include wall static pressure, pitot pressure profiles, and local bleed distributions on the porous plate. On the rough plate, with no suction, the boundary layer profiles were modified near the wall, but not separated for the 4 deg flow deflection angle. For the higher deflection angles of 6 and 8 degs, the boundary layer was separated. Suction increases the strength of the incident shock required to separate the turbulent boundary layer; for all shock strengths tested, separation is completely eliminated. The pitot pressure profiles are affected throughout the whole boundary layer; they are fuller than the ones obtained on the rough plate. It is also found that the combination of suction and roughness introduces spatial perturbations.

  15. Placement of percutaneous transhepatic biliary stent using a silicone drain with channels

    PubMed Central

    Yoshida, Hiroshi; Mamada, Yasuhiro; Taniai, Nobuhiko; Mineta, Sho; Mizuguchi, Yoshiaki; Kawano, Yoichi; Sasaki, Junpei; Nakamura, Yoshiharu; Aimoto, Takayuki; Tajiri, Takashi

    2009-01-01

    This report describes a method for percutaneous transhepatic biliary stenting with a BLAKE Silicone Drain, and discusses the usefulness of placement of the drain connected to a J-VAC Suction Reservoir for the treatment of stenotic hepaticojejunostomy. Percutaneous transhepatic biliary drainage was performed under ultrasonographic guidance in a patient with stenotic hepaticojejunostomy after hepatectomy for hepatic hilum malignancy. The technique used was as follows. After dilatation of the drainage root, an 11-Fr tube with several side holes was passed through the stenosis of the hepaticojejunostomy. A 10-Fr BLAKE Silicone Drain is flexible, which precludes one-step insertion. One week after insertion of the 11-Fr tube, a 0.035-inch guidewire was inserted into the tube. After removal of the 11-Fr tube, the guidewire was put into the channel of a 10-Fr BLAKE Silicone Drain. The drain was inserted into the jejunal limb through the intrahepatic bile duct and was connected to a J-VAC Suction Reservoir. Low-pressure continued suction was applied. Patients can be discharged after insertion of the 10-Fr BLAKE Silicone Drain connected to the J-VAC Suction Reservoir. Placement of a percutaneous transhepatic biliary stent using a 10-Fr BLAKE Silicone Drain connected to a J-VAC Suction Reservoir is useful for the treatment of stenotic hepaticojejunostomy. PMID:19725159

  16. The survival of monogenean (platyhelminth) parasites on fish skin.

    PubMed

    Kearn, G C

    1999-01-01

    This review deals with the problems faced by those monogenean (platyhelminth) parasites that attach themselves to fish skin. The structure of the skin and the ways in which the posterior hook-bearing haptor achieves virtually permanent attachment to the skin are considered. Small marginal hooklets are specialized for attachment to superficial host epidermal cells, finding anchorage in the terminal web of keratinous tonofilaments, while large hooks (hamuli) may penetrate into and lodge in the collagenous dermis. The complementary roles of suction and sticky secretions in haptor attachment and the role of the pharynx in temporary attachment during feeding are also considered. During leech-like locomotion the haptor is briefly detached and, at this critical time, the anterior end is strongly fixed to the wet, current-swept and possibly slimy skin by a sticky secretion. This secretion is deployed on paired pads or discs, the latter sometimes backed up by suction. After attachment by the haptor is re-established, the special tegument covering the anterior adhesive areas may be instrumental in their instant release. The role of fish skin in the phenomenon of host specificity and in the generation of a defensive response against monogeneans is considered and site-specificity of parasites on the host's body is discussed. Possible selection pressures exerted by predatory 'cleaner' organisms are briefly evaluated.

  17. Airfoil modification effects on subsonic and transonic pressure distributions and performance for the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Sewall, William G.

    1995-01-01

    Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.

  18. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  19. Basic research in fan source noise: Inlet distortion and turbulence noise

    NASA Technical Reports Server (NTRS)

    Kantola, R. A.; Warren, R. E.

    1978-01-01

    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.

  20. Effect of suction hysteresis on resilient modulus of fine-grained cohesionless soil.

    DOT National Transportation Integrated Search

    2010-07-30

    The mechanical behavior of subgrade soil is influenced by the seasonal variations in moisture content. To better understand this behavior, it is crucial to study the relationship between soil moisture content and matric suction known as the Soil Wate...

  1. The paradox of negative pressure wound therapy--in vitro studies.

    PubMed

    Kairinos, Nicolas; Solomons, Michael; Hudson, Donald A

    2010-01-01

    Negative-pressure wound therapy (NPWT) has revolutionised wound care. Yet, it is still not understood how hypobaric tissue pressure accelerates wound healing. There is very little reported on the relevant physics of any substance subjected to suction in this manner. The common assumption is that applying suction to a substance is likely to result in a reduction of pressure in that substance. Although more than 250 research articles have been published on NPWT, there are little data verifying whether suction increases or decreases the pressure of the substance it is applied to. Clarifying this basic question of physics is the first step in understanding the mechanism of action of these dressings. In this study, pressure changes were recorded in soft plasticene and processed meat, using an intracranial tissue pressure microsensor. Circumferential, non-circumferential and cavity NPWT dressings were applied, and pressure changes within the underlying substance were recorded at different suction pressures. Pressures were also measured at 1cm, 2 cm and 3 cm from the NPWT placed in a cavity. In all three types of NPWT dressings, the underlying substance pressure was increased (hyperbaric) as suction pressure increased. Although there was a substantial pressure increase at 1cm, the rise in pressure at the 2-cm and 3-cm intervals was minimal. Substance pressure beneath all types of NPWT dressing is hyperbaric in inanimate substances. Higher suction pressures generate greater substance pressures; however, the increased pressure rapidly dissipates as the distance from the dressing is increased. The findings of this study on inanimate objects suggest that we may need to review our current perception of the physics underlying NPWT dressings. Further research of this type on living tissues is warranted. Copyright (c) 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Closed-Suction Drainage and Cerebrospinal Fluid Leakage Following Microvascular Decompression : A Retrospective Comparison Study

    PubMed Central

    Kim, Young-Hoon; Kim, Chae-Yong; Oh, Chang Wan

    2013-01-01

    Objective We performed this study to investigate whether the use of closed-suction drainage following microvascular decompression (MVD) causes cerebrospinal fluid (CSF) leakage. Methods Between 2004 and 2011, a total of 157 patients with neurovascular compression were treated with MVD. MVD was performed for hemifacial spasm in 150 (95.5%) cases and for trigeminal neuralgia in 7 (4.5%) cases. The mean age of the patients was 49.8±9.6 years (range, 20-69). Dural substitutes were used in 44 (28.0%) patients. Ninety-two patients (58.6%) were underwent a 4-5 cm craniotomy using drainage (drainage group), and 65 (41.4%) did a small 2-2.5 cm retromastoid craniectomy without closed-suction drainage (no-drainage group). Results Eleven (7.0%) patients experienced CSF leakage following MVD based on the criteria of this study; all of these patients were in the drainage group. In the unadjusted analyses, the incidence of CSF leakage was significantly related with the use of closed-suction drainage following MVD (12.0% in the drainage group vs. 0% in the no-drainage group, respectively; p=0.003; Fisher's exact test). Those who received dural substitutes and the elderly (cut-off value=60 years) exhibited a tendency to develop CSF leakage (p=0.075 and p=0.090, respectively; Fisher's exact test). In the multivariate analysis, only the use of closed-suction drainage was significantly and independently associated with the development of CSF leakage following MVD (odds ratio=9.900; 95% confidence interval, 1.418 to infinity; p=0.017). Conclusion The use of closed-suction drainage following MVD appears to be related to the development of CSF leakage. PMID:24175025

  3. Comparison of Suction Versus Nonsuction Drainage After Lung Resections: A Prospective Randomized Trial.

    PubMed

    Gocyk, Wojciech; Kużdżał, Jarosław; Włodarczyk, Janusz; Grochowski, Zbigniew; Gil, Tomasz; Warmus, Janusz; Kocoń, Piotr; Talar, Piotr; Obarski, Piotr; Trybalski, Łukasz

    2016-10-01

    Sufficiently large, prospective randomized trials comparing suction drainage and nonsuction drainage are lacking. The aim of the present study was to compare the effects of suction drainage and nonsuction drainage on the postoperative course in patients who have undergone lung resection. This prospective, randomized trial included patients undergoing different types of lung resections. On the day of surgery, suction drainage at -20 cm H2O was used. On the morning of the first postoperative day, patients, in whom the pulmonary parenchyma was fully reexpanded, were randomized in the ratio of 1:1. Patients assigned to group A continued with suction drainage, while those assigned to group B underwent nonsuction drainage. The study included 254 patients, with 127 patients in each group. The drainage volumes were 1098.8 mL and 814.4 mL in groups A and B, respectively (p = 0.0014). The times to chest tube removal were 5.61 days and 4.49 days in groups A and B, respectively (p = 0.0014). Prolonged air leakage occurred in 5.55% of patients in group A and in 0.7% of patients in group B (p = 0.032), and asymptomatic residual air spaces were noted in 0.8% of patients in group A and 9.4% of patients in group B (p = 0.0018). Nonsuction drainage is more effective than suction drainage with regard to drainage volume, drainage duration, and incidence of persistent air leakage. However, it is associated with a higher incidence of asymptomatic residual air spaces. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Endotracheal suction in intensive care: A point prevalence study of current practice in New Zealand and Australia.

    PubMed

    Gilder, Eileen; Parke, Rachael L; Jull, Andrew

    2018-04-14

    Despite the evidence and available guidelines about endotracheal suction (ETS), a discrepancy between published guidelines and clinical practice persists. To date, ETS practice in the adult intensive care unit (ICU) population across New Zealand and Australia has not been described. To describe ICU nurses' ETS practice in New Zealand and Australia including the triggers for performing endotracheal suction. A single day, prospective observational, binational, multicentre point prevalence study in New Zealand and Australian ICUs. All adult patients admitted at 10:00 on the study day were included. In addition to patient demographic data, we assessed triggers for ETS, suction canister pressures, use of preoxygenation, measures of oxygenation, and ETS at extubation. There were 682 patients in the ICUs on the study day, and 230 were included in the study. Three of 230 patients were excluded for missing data. A total of 1891 ETS events were performed on 227 patients during the study day, a mean of eight interventions per patient. The main triggers reported were audible (n = 385, 63%) and visible (n = 239, 39%) secretions. Less frequent triggers included following auscultation (n = 142, 23%), reduced oxygen saturations (n = 140, 22%), and ventilator waveforms (n = 53, 9%). Mean suction canister pressure was -337 mmHg (standard deviation = 189), 67% of patients received preoxygenation (n = 413), and ETS at extubation was performed by 84% of nurses. Some practices were inconsistent with international guidelines, in particular concerning patient assessment for ETS and suction canister pressure. Copyright © 2018 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Lift Augmentation on a Delta Wing via Leading Edge Fences and the Gurney Flap

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.; Tso, Jin

    1993-01-01

    Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  6. Effect of inflow control on inlet noise of a cut-on fan. [in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.

    1980-01-01

    The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone, suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise.

  7. Tube suction test for evaluating durability of cementitiously stabilized soils.

    DOT National Transportation Integrated Search

    2011-06-01

    In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (F-T/W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moisture ...

  8. 21 CFR 878.5040 - Suction lipoplasty system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... The device consists of a powered suction pump (containing a microbial filter on the exhaust and a microbial in-line filter in the connecting tubing between the collection bottle and the safety trap), collection bottle, cannula, and connecting tube. The microbial filters, tubing, collection bottle, and...

  9. 21 CFR 878.5040 - Suction lipoplasty system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... The device consists of a powered suction pump (containing a microbial filter on the exhaust and a microbial in-line filter in the connecting tubing between the collection bottle and the safety trap), collection bottle, cannula, and connecting tube. The microbial filters, tubing, collection bottle, and...

  10. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  11. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  12. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  13. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  14. Tube suction test for evaluating durability of cementitiously stabilized soils.

    DOT National Transportation Integrated Search

    2011-06-01

    In a comprehensive laboratory study, different tests namely, unconfined compressive strength (UCS) at the end of freeze-thaw/wet-dry (FT/ : W-D) cycles, resilient modulus (Mr) at the end of F-T/W-D cycles, vacuum saturation, tube suction, and moistur...

  15. FCA Group LLC Request for GHG Credit for Variable Crankcase Suction Valve Technology in Denso AC Compressors

    EPA Pesticide Factsheets

    FCA Group LLC request to the EPA regarding greenhouse (GHG) off-cycle credit for the use of the Denso SAS AC compressor with variable crankcase suction valve technology beginning with the 2019 MY Ram pickup truck.

  16. Evaluation of viscous drag reduction schemes for subsonic transports

    NASA Technical Reports Server (NTRS)

    Marino, A.; Economos, C.; Howard, F. G.

    1975-01-01

    The results are described of a theoretical study of viscous drag reduction schemes for potential application to the fuselage of a long-haul subsonic transport aircraft. The schemes which were examined included tangential slot injection on the fuselage and various synergetic combinations of tangential slot injection and distributed suction applied to wing and fuselage surfaces. Both passive and mechanical (utilizing turbo-machinery) systems were examined. Overall performance of the selected systems was determined at a fixed subsonic cruise condition corresponding to a flight Mach number of free stream M = 0.8 and an altitude of 11,000 m. The nominal aircraft to which most of the performance data was referenced was a wide-body transport of the Boeing 747 category. Some of the performance results obtained with wing suction are referenced to a Lockheed C-141 Star Lifter wing section. Alternate designs investigated involved combinations of boundary layer suction on the wing surfaces and injection on the fuselage, and suction and injection combinations applied to the fuselage only.

  17. Phase dependencies of the human baroreceptor reflex

    NASA Technical Reports Server (NTRS)

    Seidel, H.; Herzel, H.; Eckberg, D. L.

    1997-01-01

    We studied the influence of respiratory and cardiac phase on responses of the cardiac pacemaker to brief (0.35-s) increases of carotid baroreceptor afferent traffic provoked by neck suction in seven healthy young adult subjects. Cardiac responses to neck suction were measured indirectly from electrocardiographic changes of heart period. Our results show that it is possible to separate the influences of respiratory and cardiac phases at the onset of a neck suction impulse by a product of two factors: one depending only on the respiratory phase and one depending only on the cardiac phase. This result is consistent with the hypothesis that efferent vagal activity is a function of afferent baroreceptor activity, whereas respiratory neurons modulate that medullary throughput independent of the cardiac phase. Furthermore, we have shown that stimulus broadening and stimulus cropping influence the outcome of neck suction experiments in a way that makes it virtually impossible to obtain information on the phase dependency of the cardiac pacemaker's sensitivity to vagal stimulation without accurate knowledge of the functional shape of stimulus broadening.

  18. Intermittent Behavior of the Separated Boundary Layer along the Suction Surface of a Low Pressure Turbine Blade under Periodic Unsteady Flow Conditions

    NASA Technical Reports Server (NTRS)

    Oeztuerk, B; Schobeiri, M. T.; Ashpis, David E.

    2005-01-01

    The paper experimentally and theoretically studies the effects of periodic unsteady wake flow and aerodynamic characteristics on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experiments were carried out at Reynolds number of 110,000 (based on suction surface length and exit velocity). For one steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, intermittency behaviors were experimentally and theoretically investigated. The current investigation attempts to extend the intermittency unsteady boundary layer transition model developed in previously to the LPT cases, where separation occurs on the suction surface at a low Reynolds number. The results of the unsteady boundary layer measurements and the intermittency analysis were presented in the ensemble-averaged and contour plot forms. The analysis of the boundary layer experimental data with the flow separation, confirms the universal character of the relative intermittency function which is described by a Gausssian function.

  19. Flow quality of NAL two-dimensional transonic wind tunnel. Part 1: Mach number distributions, flow angularities and preliminary study of side wall boundary layer suction

    NASA Technical Reports Server (NTRS)

    Sakakibara, Seizo; Takashima, Kazuaki; Miwa, Hitoshi; Oguni, Yasuo; Sato, Mamoru; Kanda, Hiroshi

    1988-01-01

    Experimental data on the flow quality of the National Aerospace Laboratory two-dimensional transonic wind tunnel are presented. Mach number distributions on the test section axis show good uniformity which is characterized by the two sigma (standard deviation) values of 0.0003 to 0.001 for a range of Mach numbers from 0.4 to 1.0. Flow angularities, which were measured by using a wing model with a symmetrical cross section, remained within 0.04 deg for Mach numbers from 0.2 to 0.8. Side wall boundary layer suction was applied through a pair of porous plates. The variation of aerodynamic properties of the model due to the suction mass flow rate change is presented with a brief discussion. Two dimensionality of the flow over the wing span is expected to be improved by applying the appropriate suction rate, which depends on the Mach number, Reynolds number, and lift coefficient.

  20. Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection

    NASA Astrophysics Data System (ADS)

    Raju, C. S. K.; Ibrahim, S. M.; Anuradha, S.; Priyadharshini, P.

    2016-11-01

    In modern days, the mass transfer rate is challenging to the scientists due to its noticeable significance for industrial as well as engineering applications; owing to this we attempt to study the cross-diffusion effects on the magnetohydrodynamic nonlinear radiative Carreau fluid over a wedge filled with gyro tactic microorganisms. Numerical results are presented graphically as well as in tabular form with the aid of the Runge-Kutta and Newton methods. The effects of pertinent parameters on velocity, temperature, concentration and density of motile organism distributions are presented and discussed for two cases (suction and injection flows). For real-life application we also calculated the local Nusselt and Sherwood numbers. It is observed that thermal and concentration profiles are not uniform in the suction and injection flow cases. It is found that the heat and mass transport phenomenon is high in the injection case, while heat and mass transfer rates are high in the suction flow case.

  1. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    DOEpatents

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  2. Use of the Blom Tracheotomy Tube with Suction Inner Cannula to Decontaminate Microorganisms from the Subglottic Space. A Proof of Concept.

    PubMed

    Rabach, Lesley; Siegel, Mark D; Puchalski, Jonathan T; Towle, Dana; Follert, Michelle; Johnson, Kelsey M; Rademaker, Alfred W; Leder, Steven B

    2015-06-01

    Preventing pulmonary complications during mechanical ventilation via tracheotomy is a high priority. To investigate if the Blom tracheotomy tube with suction-above-the-cuff inner cannula reduced the quantity of normal flora and pathogens in supra- versus subglottic spaces. We enrolled 20 consecutive medical ICU adults requiring tracheostomy for mechanical ventilation in this proof-of-concept, prospective, single-center study. All participants received a Blom tracheotomy tube with suction-above-the-cuff inner cannula to decontaminate microorganisms from the supra- and subglottic spaces. Supra- and subglottic sputum samples were obtained for microbiologic analysis while an endotracheal tube was in place before tracheotomy and once per week for up to 4 weeks of mechanical ventilation after tracheotomy. Demographics, duration of endotracheal tube intubation, and duration of mechanical ventilation post-tracheotomy were recorded. There was a significant reduction for supraglottic (2.86 ± 1.11 [mean ± SD]) versus subglottic suction samples (2.48 ± 1.07) (paired t test, P = 0.048; Wilcoxon test, P = 0.045) when all data pairs for normal flora and pathogens were combined across times. There was a significant reduction of normal flora pooled across times in 19 data pairs for supraglottic (3.00 ± 1.05) versus subglottic suction samples (2.00 ± 0.94) (paired t test, P = 0.0004; Wilcoxon test, P = 0.0007). There was no significant reduction of pathogens pooled across times in 25 data pairs for supraglottic (2.76 ± 1.16) versus subglottic suction samples (2.84 ± 1.03) (paired t test, P = 0.75; Wilcoxon test, P = 0.83). Proof-of-concept was confirmed. The Blom tracheotomy tube with disposable suction-above-the-cuff inner cannula decontaminated microorganisms from the subglottic space when normal flora and pathogens were combined. Future research should investigate if decreased quantity of normal flora and pathogens in the subglottic space reduces the incidence of ventilator-associated pulmonary complications in critically ill patients requiring ongoing mechanical ventilation via tracheotomy.

  3. Industrializing Offshore Wind Power with Serial Assembly and Lower-cost Deployment - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempton, Willett

    A team of engineers and contractors has developed a method to move offshore wind installation toward lower cost, faster deployment, and lower environmental impact. A combination of methods, some incremental and some breaks from past practice, interact to yield multiple improvements. Three designs were evaluated based on detailed engineering: 1) a 5 MW turbine on a jacket with pin piles (base case), 2) a 10 MW turbine on a conventional jacket with pin piles, assembled at sea, and 3) a 10 MW turbine on tripod jacket with suction buckets (caissons) and with complete turbine assembly on-shore. The larger turbine, assemblymore » ashore, and the use of suction buckets together substantially reduce capital cost of offshore wind projects. Notable capital cost reductions are: changing from 5 MW to 10 MW turbine, a 31% capital cost reduction, and assembly on land then single-piece install at sea an additional 9% capital cost reduction. An estimated Design 4) estimates further cost reduction when equipment and processes of Design 3) are optimized, rather than adapted to existing equipment and process. Cost of energy for each of the four Designs are also calculated, yielding approximately the same percentage reductions. The methods of Design 3) analyzed here include accepted structures such as suction buckets used in new ways, innovations conceived but previously without engineering and economic validation, combined with new methods not previously proposed. Analysis of Designs 2) and 3) are based on extensive engineering calculations and detailed cost estimates. All design methods can be done with existing equipment, including lift equipment, ports and ships (except that design 4 assumes a more optimized ship). The design team consists of experienced offshore structure designers, heavy lift engineers, wind turbine designers, vessel operators, and marine construction contractors. Comparing the methods based on criteria of cost and deployment speed, the study selected the third design. That design is, in brief: a conventional turbine and tubular tower is mounted on a tripod jacket, in turn atop three suction buckets. Blades are mounted on the tower, not on the hub. The entire structure is built in port, from the bottom up, then assembled structures are queued in the port for deployment. During weather windows, the fully-assembled structures are lifted off the quay, lashed to the vessel, and transported to the deployment site. The vessel analyzed is a shear leg crane vessel with dynamic positioning like the existing Gulliver, or it could be a US-built crane barge. On site, the entire structure is lowered to the bottom by the crane vessel, then pumping of the suction buckets is managed by smaller service vessels. Blades are lifted into place by small winches operated by workers in the nacelle without lift vessel support. Advantages of the selected design include: cost and time at sea of the expensive lift vessel are significantly reduced; no jack up vessel is required; the weather window required for each installation is shorter; turbine structure construction is continuous with a queue feeding the weather-dependent installation process; pre-installation geotechnical work is faster and less expensive; there are no sound impacts on marine mammals, thus minimal spotting and no work stoppage Industrializing Offshore Wind Power 6 of 96 9 for mammal passage; the entire structure can be removed for decommissioning or major repairs; the method has been validated for current turbines up to 10 MW, and a calculation using simple scaling shows it usable up to 20 MW turbines.« less

  4. Chest Tube Management after Surgery for Pneumothorax.

    PubMed

    Pompili, Cecilia; Salati, Michele; Brunelli, Alessandro

    2017-02-01

    There is scant evidence on the management of chest tubes after surgery for pneumothorax. Most of the current knowledge is extrapolated from studies performed on subjects with lung cancer. This article reviews the existing literature with particular focus on the effect of suction and no suction on the duration of air leak after lung resection and surgery for pneumothorax. Moreover, the role of regulated suction, which seems to provide some benefit in reducing pneumothorax recurrence after bullectomy and pleurodesis, is discussed. Finally, a personal view on the management of chest tubes after surgery for pneumothorax is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Controlling the Flow past a Semicircular Airfoil at Zero Angle of Attack Using Slot Suction in One or Two Vortex Cells for Attaining Extremal Lift

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Baranov, P. A.; Sudakov, A. G.; Popov, I. A.; Usachov, A. E.

    2017-12-01

    Calculations using multiblock computational technologies and a model of shear-stress transport modified with allowance for the curvature of streamlines in turbulent airflow were performed at a zero angle of attack for a semicircular airfoil containing one or two surface vortex cells with slot suction. The results showed evidence of stabilization of a nearly undetached flow and attainment of an extremal lift of C y = 5.2 and a lift-to-drag ratio of K = 24 with allowance for energy losses for suction in the vortex cells.

  6. PIV Measurements of Gas Flow Fields from Burning End

    NASA Astrophysics Data System (ADS)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  7. Effect of the tubular-fan drum shapes on the performance of cleaning head module

    NASA Astrophysics Data System (ADS)

    Hong, C. K.; Y Cho, M.; Kim, Y. J.

    2013-12-01

    The geometrical effects of a tubular-fan drum on the performance improvement of the cleaning head module of a vacuum cleaner were investigated. In this study, the number of blades and the width of the blade were selected as the design parameters. Static pressure, eccentric vortex, turbulence kinetic energy (TKE) and suction efficiency were analysed and tabulated. Three-dimensional computational fluid dynamics method was used with an SST (Shear Stress Transfer) turbulence model to simulate the flow field at the suction of the cleaning head module using the commercial code ANSYS-CFX. Suction pressure distributions were graphically depicted for different values of the design parameters.

  8. Rotor boundary layer development with inlet guide vane (IGV) wake impingement

    NASA Astrophysics Data System (ADS)

    Jia, Lichao; Zou, Tengda; Zhu, Yiding; Lee, Cunbiao

    2018-04-01

    This paper examines the transition process in a boundary layer on a rotor blade under the impingement of an inlet guide vane wake. The effects of wake strengths and the reduced frequency on the unsteady boundary layer development on a low-speed axial compressor were investigated using particle image velocimetry. The measurements were carried out at two reduced frequencies (fr = fIGVS0/U2i, fr = 1.35, and fr = 0.675) with the Reynolds number, based on the blade chord and the isentropic inlet velocity, being 97 500. At fr = 1.35, the flow separated at the trailing edge when the wake strength was weak. However, the separation was almost totally suppressed as the wake strength increased. For the stronger wake, both the wake's high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the airfoil. The boundary layer displacement thickened first due to the negative jet effect. Then, as the disturbances developed underneath the wake, the boundary layer thickness reduced gradually. The high disturbance region convected downstream at a fraction of the free-stream velocity and spread in the streamwise direction. The separation on the suction surface was suppressed until the next wake's arrival. Because of the long recovery time at fr = 0.675, the boundary layer thickened gradually as the wake convected further downstream and finally separated due to the adverse pressure gradient. The different boundary layer states in turn affected the development of disturbances.

  9. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  10. The influence of shrouded stator cavity flows on multistage compressor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellborn, S.R.; Okiishi, T.H.

    1999-07-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved systematic changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Rig data indicate increasing seal-tooth leakage substantially degraded compressor performance. For every 1 percent increase in seal-tooth clearance-to-span ratio, the decrease in pressure rise was 3 percent and the reduction in efficiency was 1 point. These observed performance penalties are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. The performance degradation observed with increased leakagemore » was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near-hub performance of the stator row in which leakage occurred. Second, the altered stator exit flow conditions, caused by increased leakage, impaired the performance of the next downstream stage by decreasing the work input of the rotor and increasing total pressure loss of the stator. These trends caused the performance of downstream stages to deteriorate progressively. Numerical simulations of the test rig stator flow field were also conducted to help resolve important fluid mechanic details associated with the interaction between the primary and cavity flows. Simulation results show that fluid originating in the upstream cavity collected on the stator suction surface when the cavity tangential momentum was low and on the pressure side when it was high. The convection of cavity fluid to the suction surface was a mechanism that reduced stator performance when leakage increased.« less

  11. Durophagy in sharks: feeding mechanics of the hammerhead Sphyrna tiburo.

    PubMed

    Wilga, C D; Motta, P J

    2000-09-01

    This study investigates the motor pattern and head movements during feeding of a durophagus shark, the bonnethead Sphyrna tiburo, using electromyography and simultaneous high-speed video. Sphyrna tiburo feeds almost exclusively on hard-shelled crabs, with shrimp and fish taken occasionally. It captures crabs by ram feeding, then processes or reduces the prey by crushing it between molariform teeth, finally transporting the prey by suction for swallowing. The prey-crushing mechanism is distinct from that of ram or bite capture and suction transport. This crushing mechanism is accomplished by altering the duration of jaw adductor muscle activity and modifying jaw kinematics by the addition of a second jaw-closing phase. In crushing events, motor activity of the jaw adductor muscles continues (biting of the prey occurs as the jaws close and continues after the jaws have closed) throughout a second jaw-closing phase, unlike capture and transport events during which motor activity (biting) ceases at jaw closure. Sphyrna tiburo is able to take advantage of a resource (hard prey) that is not readily available to most sharks by utilizing a suite of durophagous characteristics: molariform teeth, a modified jaw protrusor muscle, altered jaw adductor activity and modified jaw kinematics. Sphyrna tiburo is a specialist feeder on crab prey as demonstrated by the lack of differences in kinematic or motor patterns when offered prey of differing hardness and its apparent lack of ability to modulate its behavior when feeding on other prey. Functional patterns are altered and coupled with modifications in dental and jaw morphology to produce diverse crushing behaviors in elasmobranchs.

  12. Patients' perceptions and responses to procedural pain: results from Thunder Project II.

    PubMed

    Puntillo, K A; White, C; Morris, A B; Perdue, S T; Stanik-Hutt, J; Thompson, C L; Wild, L R

    2001-07-01

    Little is known about the painfulness of procedures commonly performed in acute and critical care settings. To describe pain associated with turning, wound drain removal, tracheal suctioning, femoral catheter removal, placement of a central venous catheter, and nonburn wound dressing change and frequency of use of analgesics during procedures. A comparative, descriptive design was used. Numeric rating scales were used to measure pain intensity and procedural distress; word lists, to measure pain quality. Data were obtained from 6201 patients: 176 younger than 18 years and 5957 adults. Mean pain intensity scores for turning and tracheal suctioning were 2.80 and 3.00, respectively (scale, 0-5), for 4- to 7-year-olds and 52.0 and 28.1 (scale, 0-100) for 8- to 12-year-olds. For adolescents, mean pain intensity scores for wound dressing change, turning, tracheal suctioning, and wound drain removal were 5 to 7 (scale, 0-10); mean procedural distress scores were 4.83 to 6.00 (scale, 0-10). In adults, mean pain intensity scores for all procedures were 2.65 to 4.93 (scale, 0-10); mean procedural distress scores were 1.89 to 3.47 (scale, 0-10). The most painful and distressing procedures were turning for adults and wound care for adolescents. Procedural pain was often described as sharp, stinging, stabbing, shooting, and awful. Less than 20% of patients received opiates before procedures. Procedural pain varies considerably and is procedure specific. Because procedures are performed so often, more individualized attention to preparation for and control of procedural pain is warranted.

  13. Early Postoperative Magnetic Resonance Imaging in Detecting Radicular Pain After Lumbar Decompression Surgery: Retrospective Study of the Relationship Between Dural Sac Cross-sectional Area and Postoperative Radicular Pain.

    PubMed

    Futatsugi, Toshimasa; Takahashi, Jun; Oba, Hiroki; Ikegami, Shota; Mogami, Yuji; Shibata, Syunichi; Ohji, Yoshihito; Tanikawa, Hirotaka; Kato, Hiroyuki

    2017-07-01

    A retrospective analysis. To evaluate the association between early postoperative dural sac cross-sectional area (DCSA) and radicular pain. The correlation between postoperative magnetic resonance imaging (MRI) findings and postoperative neurological symptoms after lumbar decompression surgery is controversial. This study included 115 patients who underwent lumbar decompression surgery followed by MRI within 7 days postoperatively. There were 46 patients with early postoperative radicular pain, regardless of whether the pain was mild or similar to that before surgery. The intervertebral level with the smallest DCSA was identified on MRI and compared preoperatively and postoperatively. Risk factors for postoperative radicular pain were determined using univariate and multivariate analyses. Subanalysis according to absence/presence of a residual suction drain also was performed. Multivariate regression analysis showed that smaller postoperative DCSA was significantly associated with early postoperative radicular pain (per -10 mm; odds ratio, 1.26). The best cutoff value for radicular pain was early postoperative DCSA of 67.7 mm. Even with a cutoff value of <70 mm, sensitivity and specificity are 74.3% and 75.0%, respectively. Early postoperative DCSA was significantly larger before suction drain removal than after (119.7±10.1 vs. 93.9±5.4 mm). Smaller DCSA in the early postoperative period was associated with radicular pain after lumbar decompression surgery. The best cutoff value for postoperative radicular pain was 67.7 mm. Absence of a suction drain at the time of early postoperative MRI was related to smaller DCSA.

  14. Microsatellite marker analysis of peach-potato aphids (Myzus persicae, Homoptera: Aphididae) from Scottish suction traps.

    PubMed

    Malloch, G; Highet, F; Kasprowicz, L; Pickup, J; Neilson, R; Fenton, B

    2006-12-01

    The peach-potato aphid Myzus persicae (Sulzer) is an important vector of plant viruses. A network of suction traps collects aerial samples of this aphid in order to monitor and help predict its spatial distribution and likely impact on virus transmission in crops. A suction trap catch is thought to be a good representation of the total aphid pool. Sensitive molecular markers have been developed that determine the genetic composition of the M. persicae population. In Scotland, UK, these were applied to field collections revealing a limited number of clones. Molecular markers are less successful when applied to specimens that have been preserved in an ethanol-based trap fluid designed to preserve morphology. An assessment of different DNA extraction and PCR techniques is presented and the most efficient are used to analyse M. persicae specimens caught in the Dundee suction trap in 2001, a year when exceptionally high numbers were caught. The results reveal that the majority of the M. persicae caught belonged to two highly insecticide resistant clones. In addition, it was possible to compare the relative frequencies of genotypes caught in the trap with those collected at insecticide treated and untreated field sites in the vicinity. These results indicate that, in addition to suction trap data, the ability to sample field sites provides valuable early warning data which have implications for pest control and virus management strategies.

  15. Gravity separation of pericardial fat in cardiotomy suction blood: an in vitro model.

    PubMed

    Kinard, M Rhett; Shackelford, Anthony G; Sistino, Joseph J

    2009-06-01

    Fat emboli generated during cardiac surgery have been shown to cause neurologic complications in patients postoperatively. Cardiotomy suction has been known to be a large generator of emboli. This study will examine the efficacy of a separation technique in which the cardiotomy suction blood is stored in a cardiotomy reservoir for various time intervals to allow spontaneous separation of fat from blood by density. Soybean oil was added to heparinized porcine blood to simulate the blood of a patient with hypertriglyceridemia (> 150 mg/dL). Roller pump suction was used to transfer the room temperature blood into the cardiotomy reservoir. Blood was removed from the reservoir in 200-mL aliquots at 0, 15, 30 45, and 60 minutes. Samples were taken at each interval and centrifuged to facilitate further separation of liquid fat. Fat content in each sample was determined by a point-of-care triglyceride analyzer. Three trials were conducted for a total of 30 samples. The 0-minute group was considered a baseline and was compared to the other four times. Fat concentration was reduced significantly in the 45- and 60-minute groups compared to the 0-, 15-, and 30-minute groups (p < .05). Gravity separation of cardiotomy suction blood is effective; however, it may require retention of blood for more time than is clinically acceptable during a routing coronary artery bypass graft surgery.

  16. Dental equipment test during zero-gravity flight

    NASA Technical Reports Server (NTRS)

    Young, John; Gosbee, John; Billica, Roger

    1991-01-01

    The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well.

  17. Preliminary study of efficacy of cup suction in the correction of typical pectus excavatum.

    PubMed

    Lopez, Manuel; Patoir, Arnaud; Costes, Frederic; Varlet, François; Barthelemy, Jean-Claude; Tiffet, Olivier

    2016-01-01

    This preliminary qualitative study evaluates the efficacy of cup suction in the correction of pectus excavatum (PE), and examines the place of this system as a strategic treatment and as an alternative to surgery. Between October 2011 and June 2014, a total of 84 patients (children and adult) presenting with PE were treated by cup suction, in our chest wall deformities unit. On first consultation, the patients with typical PE and with at least partial correction during the first application of cup suction and a maximal suction pressure for correction of less than 300 mbar (millibars) were included in this study. 11 patients were excluded from the present study as they presented with a complex carinatum/excavatum. The remaining 73 patients were divided into two groups: Group I, adult patients ≥ 18 year old, 17 patients. The mean age was 22.8 years old. Group II, pediatric patients <18 years old, 56 patients. The mean age was 11.5 years old. Medical photographic documentation was collected systematically. In addition, the depth of PE was measured. The management protocol involved: adjustment of cup suction, strengthening exercises, and clinical follow-up every two to three months. The evaluation criteria during, and on the completion of the trial were: depth of the PE, morbidity and treatment compliance. Partial and final results were evaluated by the patients, their parents, and doctor, using a qualitative scoring scale. A total of 73 patients presenting typical PE (symmetric in 52 cases and asymmetric in 21 cases) were treated by cup suction. The mean depth of PE was 23 mm (9-44). Of the 73 patients, one adult abandoned treatment and three children abandoned follow-up. The mean time of use of the device was 4h daily. At six months of treatment, the mean depth of PE was 9 mm (0-30) across all patients. 23 patients completed the treatment and exhibited flattening of the sternum. These patients were considered to have an excellent aesthetic result. The mean treatment duration to normal reshape was achieved at 10 months (4-21). The remaining patients are improving under continuing active treatment. The mean depth of PE in this group was 12 mm (4-30), after a mean treatment duration of 9 months (2-22). Treatment using cup suction is a promising useful alternative in selected cases of symmetric and asymmetric PE, providing that the thorax is flexible. Treatment duration is directly linked to age, severity and the frequency of use. It is becoming a well-recognized therapy, which improves the self-image of those patients whose anterior chest wall is still pliable. The cup suction can be used for pediatrics and young adults waiting for a treatment, possibly surgery, however, the long-term effect of this procedure remains unclear. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Possibility of cross-contamination between dental patients by means of the saliva ejector.

    PubMed

    Watson, C M; Whitehouse, R L

    1993-04-01

    Concern about cross-contamination between dental patients prompted investigation of current suctioning practices. The possibility of the suck-back phenomenon and the presence of oral bacteria in vacuum lines were studied, and dental offices were surveyed concerning the use and disinfection of suction equipment.

  19. Temperature stratification and insect pest populations in stored wheat with suction versus pressure aeration

    USDA-ARS?s Scientific Manuscript database

    A three-year study was conducted to compare temperature profiles in the headspace and in the bulk mass of wheat aerated through pressure aeration and suction aeration. Insect pitfall traps were used to measure naturally-occurring populations of stored product insects. Results show uniform distributi...

  20. 21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonpowered, single patient, portable suction apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...

  1. 21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonpowered, single patient, portable suction apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...

  2. 21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nonpowered, single patient, portable suction apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878...

  3. ANNULAR IMPACTOR SAMPLING DEVICE

    DOEpatents

    Tait, G.W.C.

    1959-03-31

    A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

  4. Aircraft energy efficiency laminar flow control glove flight conceptual design study

    NASA Technical Reports Server (NTRS)

    Wright, A. S.

    1979-01-01

    A laminar flow control glove applied to the wing of a short to medium range jet transport with aft mounted engines was designed. A slotted aluminum glove concept and a woven stainless steel mesh porous glove concept suction surfaces were studied. The laminar flow control glove and a dummy glove with a modified supercritical airfoil, ducting, modified wing leading and trailing edges, modified flaps, and an LFC trim tab were applied to the wing after slot spacing suction parameters, and compression power were determined. The results show that a laminar flow control glove can be applied to the wing of a jet transport with an appropriate suction system installed.

  5. Rotating flow of a nanofluid due to an exponentially stretching surface with suction

    NASA Astrophysics Data System (ADS)

    Salleh, Siti Nur Alwani; Bachok, Norfifah; Arifin, Norihan Md

    2017-08-01

    An analysis of the rotating nanofluid flow past an exponentially stretched surface with the presence of suction is studied in this work. Three different types of nanoparticles, namely, copper, titania and alumina are considered. The system of ordinary differential equations is computed numerically using a shooting method in Maple software after being transformed from the partial differential equations. This transformation has considered the similarity transformations in exponential form. The physical effect of the rotation, suction and nanoparticle volume fraction parameters on the rotating flow and heat transfer phenomena is investigated and has been described in detail through graphs. The dual solutions are found to appear when the governing parameters reach a certain range.

  6. Internal cooling circuit for gas turbine bucket

    DOEpatents

    Hyde, Susan Marie; Davis, Richard Mallory

    2005-10-25

    In a gas turbine bucket having a shank portion and an airfoil portion having leading and trailing edges and pressure and suction sides, an internal cooling circuit, the internal cooling circuit having a serpentine configuration including plural radial outflow passages and plural radial inflow passages, and wherein a coolant inlet passage communicates with a first of the radial outflow passages along the trailing edge, the first radial outflow passage having a plurality of radially extending and radially spaced elongated rib segments extending between and connecting the pressure and suction sides in a middle region of the first passage to prevent ballooning of the pressure and suction sides at the first radial outflow passage.

  7. Design of Airport Pavements for Expansive Soils.

    DTIC Science & Technology

    1981-01-01

    8217. . C.Iqt N. - DOT 7 "//-;-31/2I...... , _Ai --i/ 6Z/ ,d, ,-,,’/Design of Airport Pavements for Expansive Soils. JanLapy 1981 6. Per.omingOvgn,, en Code...L/)- V) 3 00L C)- LO en id ’NUN 51J. filter paper (next to the top of the sample) was used as the measure of soil suction. The second filter paper...8217 SITE 4 2 2 3 4 SUCTION, pF FIGURE 4-18. VARIATION OF SUCTION DURING RECHARGE AT DFW. 69 lij ’I41d3U IJ 6id3a LhLO U.. to U.. C.-9 en C, 00 ’U- LA jto

  8. Negative pressures during swing phase in below-knee prostheses with rubber sleeve suspension.

    PubMed

    Chino, N; Pearson, J R; Cockrell, J L; Mikishko, H A; Koepke, G H

    1975-01-01

    Negative pressures in the small space between the distal stump and the below-knee prosthetic socket were measured during swing phase for a series of nine subjects. A molded rubber sleeve connecting the prosthesis and the thigh was found to enhance this effect so that suction suspension occurred during the entire swing phase. Deterioration of the suction occurred when the sleeve was intentionally pierced, and when other suspensions such as a suprapatellar cuff or thigh band were tested. The findings indicate that the total-contact socket, gel liner and elastic sleeve combine to create suction in the below-knee socket which improves overall comfort and function for the patient in using the prosthesis.

  9. Numerical investigations of shock wave interaction with laminar boundary layer on compressor profile

    NASA Astrophysics Data System (ADS)

    Piotrowicz, M.; Flaszyński, P.

    2016-10-01

    The investigation of shockwave boundary layer interaction on suction side of transonic compressor blade is one of main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to look more closely into the flow structure on suction side of a profile, a design of generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results of flow structure on a suction side of the compressor profile investigations are presented. The numerical simulations are carried out for EARSM (Explicit Algebraic Reynolds Stress Model) turbulence model with transition model. The result are compared with oil flow visualisation, schlieren pictures, Pressure Sensitive Paint (PSP) and static pressure.

  10. Optimal concentrations in nectar feeding

    PubMed Central

    Kim, Wonjung; Gilet, Tristan; Bush, John W. M.

    2011-01-01

    Nectar drinkers must feed quickly and efficiently due to the threat of predation. While the sweetest nectar offers the greatest energetic rewards, the sharp increase of viscosity with sugar concentration makes it the most difficult to transport. We here demonstrate that the sugar concentration that optimizes energy transport depends exclusively on the drinking technique employed. We identify three nectar drinking techniques: active suction, capillary suction, and viscous dipping. For each, we deduce the dependence of the volume intake rate on the nectar viscosity and thus infer an optimal sugar concentration consistent with laboratory measurements. Our results provide the first rationale for why suction feeders typically pollinate flowers with lower sugar concentration nectar than their counterparts that use viscous dipping. PMID:21949358

  11. Energy Efficient Operation of Ammonia Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employmore » dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.« less

  12. 78 FR 39571 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... 2800, Aircraft Fuel System. (e) Unsafe Condition This AD was prompted by reports of two in-service... system, followed by loss of fuel system suction feed capability on one engine, and in-flight shutdown of... and correct loss of the engine fuel suction feed capability of the fuel system, which, in the event of...

  13. 77 FR 41934 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Transport Association (ATA) of America Code 2800, Aircraft Fuel System. (e) Unsafe Condition This AD was... operational tests of the engine fuel suction feed of the fuel system, and other related testing if necessary... loss of boost pump pressure of the fuel feed system, followed by loss of fuel system suction feed...

  14. Final Report: Summary of Findings and Recommendations for Suction Devices for Management of Prehospital Combat Casualty Care Injuries

    DTIC Science & Technology

    2017-11-13

    information and proposes a series of findings and recommendations to improved airway management in the prehospital combat environment. The key...Airway Final Report: Summary of Findings and Recommendations for Suction Devices for Management of Prehospital Combat Casualty Care Injuries...75 General Information and Device Usability

  15. Three scales of motions associated with tornadoes. [Cyclones, tornadoes, and suction vortexs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, G.S.

    1978-03-01

    This dissertation explores three scales of motion commonly associated with tornadoes, and the interaction of these scales: the tornado cyclone, the tornado, and the suction vortex. The goal of the research is to specify in detail the character and interaction of these scales of motion to explain tornadic phenomena.

  16. 77 FR 14010 - Millennium Pipeline Company, LLC; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... emergency electrical power generator. Pipeline facilities required for the project include approximately 545 feet of new 36-inch- diameter suction and discharge pipelines which would connect the compressor... pipeline located between the new suction and discharge pipelines. The FERC staff mailed copies of the EA to...

  17. A Force-Visualized Silicone Retractor Attachable to Surgical Suction Pipes.

    PubMed

    Watanabe, Tetsuyou; Koyama, Toshio; Yoneyama, Takeshi; Nakada, Mitsutoshi

    2017-04-05

    This paper presents a force-visually-observable silicone retractor, which is an extension of a previously developed system that had the same functions of retracting, suction, and force sensing. These features provide not only high usability by reducing the number of tool changes, but also a safe choice of retracting by visualized force information. Suction is achieved by attaching the retractor to a suction pipe. The retractor has a deformable sensing component including a hole filled with a liquid. The hole is connected to an outer tube, and the liquid level displaced in proportion to the extent of deformation resulting from the retracting load. The liquid level is capable to be observed around the surgeon's fingertips, which enhances the usability. The new hybrid structure of soft sensing and hard retracting allows the miniaturization of the retractor as well as a resolution of less than 0.05 N and a range of 0.1-0.7 N. The overall structure is made of silicone, which has the advantages of disposability, low cost, and easy sterilization/disinfection. This system was validated by conducting experiments.

  18. Primary Total Knee Replacement: Is Suction a Portal of Infection?

    PubMed Central

    Budnar, Vijaya M; Amirfeyz, Rouin; Ng, Michael; Bannister, Gordon C; Blom, Ashley W

    2009-01-01

    INTRODUCTION Pulsed lavage during a total knee replacement usually leaves a pool of fluid on the surgical drapes. It is common practice to suck away this fluid using the same suction device used intra-operatively. This could be a cause of direct wound contamination. We hypothesised that bacteria contaminate fluid that collects around the foot in total knee replacement surgery and that suction equipment could be a portal of contamination. We also hypothesised that bacterial count in the fluid is lower if chlorhexidine, rather than saline, is used in the pulsed lavage. PATIENTS AND METHODS Forty patients undergoing primary total knee replacement were divided into two groups. The first group had pulsed lavage with normal saline and the second with 0.05% chlorhexidine. RESULTS At the end of the operation, 20 ml of fluid, pooled on the surgical drapes was aspirated and cultured for bacterial growth. None of the fluid samples showed bacterial growth. CONCLUSIONS Suction device used peri-operatively during knee replacement is unlikely to be a cause of wound contamination. Pulsed lavage with normal saline is as effective as lavage with chlorhexidine. PMID:19335972

  19. F-16XL Wing Pressure Distributions and Shock Fence Results from Mach 1.4 to Mach 2.0

    NASA Technical Reports Server (NTRS)

    Landers, Stephen F.; Saltzman, John A.; Bjarke, Lisa J.

    1997-01-01

    Chordwise pressure distributions were obtained in-flight on the upper and lower surfaces of the F-16XL ship 2 aircraft wing between Mach 1.4 and Mach 2.0. This experiment was conducted to determine the location of shock waves which could compromise or invalidate a follow-on test of a large chord laminar flow control suction panel. On the upper surface, the canopy closure shock crossed an area which would be covered by a proposed laminar flow suction panel. At the laminar flow experiment design Mach number of 1.9, 91 percent of the suction panel area would be forward of the shock. At Mach 1.4, that value reduces to 65 percent. On the lower surface, a shock from the inlet diverter would impinge on the proposed suction panel leading edge. A chordwise plate mounted vertically to deflect shock waves, called a shock fence, was installed between the inlet diverter and the leading edge. This plate was effective in reducing the pressure gradients caused by the inlet shock system.

  20. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  1. Analysis of Infiltration-Suction Response in Unsaturated Residual Soil Slope in Gelugor, Penang

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Hasliza Hamzah, Nur; Min, Ng Soon; Hazreek Zainal Abidin, Mohd; Tajudin, Saiful Azhar Ahmad; Madun, Aziman

    2018-04-01

    Rainfall infiltration on residual soil slope may impair slope stability by altering the pore-water pressure in the soil. A study has been carried out on unsaturated residual soil slope in Gelugor, Penang to determine the changes in matric suction of residual soils at different depth due to rainwater infiltration. The sequence of this study includes the site investigation, field instrumentation, laboratory experiment and numerical modeling. Void ratio and porosity of soil were found to be decreasing with depth while the bulk density and dry density of soil increased due to lower porosity of soil at greater depth. Soil infiltration rate and matric suction of all depths decrease with the increase of volumetric water content as well as the degree of saturation. Numerical modeling was used to verify and predict the relationship between infiltration-suction response and degree of saturation. Numerical models can be used to integrate the rainfall scenarios into quantitative landslide hazard assessments. Thus, development plans and mitigation measures can be designed for estimated impacts from hazard assessments based on collected data.

  2. Turbulent transport of heat and momentum in a boundary layer subject to deceleration, suction and variable wall temperature

    NASA Technical Reports Server (NTRS)

    Orlando, A. F.; Moffat, R. J.; Kays, W. M.

    1974-01-01

    The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.

  3. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  4. A prospective randomized trial of tapered-cuff endotracheal tubes with intermittent subglottic suctioning in preventing ventilator-associated pneumonia in critically ill patients.

    PubMed

    Mahmoodpoor, Ata; Hamishehkar, Hadi; Hamidi, Masoud; Shadvar, Kamran; Sanaie, Sarvin; Golzari, Samad Ej; Khan, Zahid Hussain; Nader, Nader D

    2017-04-01

    Endotracheal tube placement is necessary for the control of the airway in patients who are mechanically ventilated. However, prolonged duration of endotracheal tube placement contributes to the development of ventilator-associated pneumonias (VAPs). The aim of this study was to evaluate whether subglottic suctioning using TaperGuard EVAC tubes was effective in decreasing the frequency of VAP. A total of 276 mechanically ventilated patients for more than 72 hours were randomly assigned to group E (EVAC tube) and group C (conventional tube). All patients received routine care including VAP prevention measures during their intensive care unit stay. In group E, subglottic suctioning was performed every 6 hours. Outcome variables included incidence VAP, intensive care unit length of stay, and mortality. Frequency of intraluminal suction, mechanical ventilation-free days, reintubation, the ratio of arterial oxygen partial pressure to fractional inspired oxygen and mortality rate were similar between the 2 groups (P > .05). The mean cuff pressure in group E was significantly less than that in group C (P < .001). Ventilator-associated pneumonia was significantly less in group E compared with group C (P = .015). The use of intermittent subglottic secretion suctioning was associated with a significant decrease in the incidence of the VAP in critically ill patients. However, larger multicenter trials are required to arrive at a concrete decision on routine usage of TaperGuard tubes in critical care settings. Published by Elsevier Inc.

  5. Development in corrosion resistance by microstructural refinement in Zr-16 SS 304 alloy using suction casting technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, N., E-mail: nirupamd@barc.gov.in; Sengupta, P.; Abraham, G.

    Highlights: • Grain refinement was made in Zr–16 wt.% SS alloy while prepared by suction casting process. • Distribution of Laves phase, e.g., Zr{sub 2}(Fe, Cr) was raised in suction cast (SC) Zr–16 wt.% SS. • Corrosion resistance was improved in SC alloy compared to that of arc-melt-cast alloy. • Grain refinement in SC alloy assisted for an increase in its corrosion resistance. - Abstract: Zirconium (Zr)-stainless steel (SS) hybrid alloys are being considered as baseline alloys for developing metallic-waste-form (MWF) with the motivation of disposing of Zr and SS base nuclear metallic wastes. Zr–16 wt.% SS, a MWF alloymore » optimized from previous studies, exhibit significant grain refinement and changes in phase assemblages (soft phase: Zr{sub 2}(Fe, Cr)/α-Zr vs. hard phase: Zr{sub 3}(Fe, Ni)) when prepared by suction casting (SC) technique in comparison to arc-cast-melt (AMC) route. Variation in Cr-distribution among different phases are found to be low in suction cast alloy, which along with grain refinement restricted Cr-depletion at the Zr{sub 2}(Fe, Cr)/Zr interfaces, prone to localized attack. Hence, SC alloy, compared to AMC alloy, showed lower current density, higher potential at the breakdown of passivity and higher corrosion potential during polarization experiments (carried out under possible geological repository environments, viz., pH 8, 5 and 1) indicating its superior corrosion resistance.« less

  6. Biorobotic adhesion in water using suction cups.

    PubMed

    Bandyopadhyay, Promode R; Hrubes, J Dana; Leinhos, Henry A

    2008-03-01

    Echeneid fish, limpets and octopi use suction cups for underwater adhesion. When echeneid fish use suckers to 'hitch a ride' on sharks (which have riblet-patterned skins), the apparent absence of any pump or plumbing may be an advantage over biorobotic suction cups. An intriguing question is: How do they achieve seemingly persistent leak-free contact at low energy cost over rough surfaces? The design features of their suckers are explored in a biorobotic context of adhesion in water over rough surfaces. We have carried out experiments to compare the release force and tenacity of man-made suction cups with those reported for limpets and echeneid fish. Applied tensile and shear release forces were monotonically increased until release. The effects of cup size and type, host surface roughness, curvature and liquid surface tension have been examined. The flow of water in the sharkskin-like host surface roughness has been characterized. The average tenacity is 5.28 N cm(-2) (sigma = 0.53 N cm(-2), N = 37) in the sub-ambient pressure range of 14.6-49.0 kPa, in man-made cups for monotonically increasing applied release force. The tenacity is lower for harmonically oscillating release forces. The dynamic structural interactions between the suction cup and the oscillating applied forcing are discussed. Inspired by the matching of sharkskin riblet topology in echeneid fish suckers, it was found that biorobotic sealed contact over rough surfaces is also feasible when the suction cup makes a negative copy of the rough host surface. However, for protracted, persistent contact, the negative topology would have to be maintained by active means. Energy has to be spent to maintain the negative host roughness topology to minute detail, and protracted hitch-riding on sharks for feeding may not be free for echeneid fish. Further work is needed on the mechanism and efficiency of the densely populated tiny actuators in the fish suckers that maintain leak-proof contact with minimal energy cost and the feasibility of their biorobotic replication.

  7. Prospective randomized trial compares suction versus water seal for air leaks.

    PubMed

    Cerfolio, R J; Bass, C; Katholi, C R

    2001-05-01

    Surgeons treat air leaks differently. Our goal was to evaluate whether it is better to place chest tubes on suction or water seal for stopping air leaks after pulmonary surgery. A second goal was to evaluate a new classification system for air leaks that we developed. Patients were prospectively randomized before surgery to receive suction or water seal to their chest tubes on postoperative day (POD) #2. Air leaks were described and quantified daily by a classification system and a leak meter. The air-leak meter scored leaks from 1 (least) to 7 (greatest). The group randomized to water seal stayed on water seal unless a pneumothorax developed. On POD #2, 33 of 140 patients had an air leak. Eighteen patients had been preoperatively randomized to water seal and 15 to suction. Air leaks resolved in 12 (67%) of the water seal patients by the morning of POD #3. All 6 patients whose air leak did not stop had a leak that was 4/7 or greater (p < 0.0001) on the leak meter. Of the 15 patients randomized to suction, only 1 patient's air leak (7%) resolved by the morning of POD #3. The randomization aspect of the trial was ended and statistical analysis showed water seal was superior (p = 0.001). The remaining 14 patients were then placed to water seal and by the morning of POD #4, 13 patients' leaks had stopped. Of the 32 total patients placed to seal, 7 (22%) developed a pneumothorax and 6 of these 7 patients had leaks that were 4/7 or greater (p = 0.001). Placing chest tubes on water seal seems superior to wall suction for stopping air leaks after pulmonary resection. However, water seal does not stop expiratory leaks that are 4/7 or greater. Pneumothorax may occur when chest tubes are placed on seal with leaks this large.

  8. Lung volume changes during cleaning of closed endotracheal suction catheters: a randomized crossover study using electrical impedance tomography.

    PubMed

    Corley, Amanda; Sharpe, Nicola; Caruana, Lawrence R; Spooner, Amy J; Fraser, John F

    2014-04-01

    Airway suctioning in mechanically ventilated patients is required to maintain airway patency. Closed suction catheters (CSCs) minimize lung volume loss during suctioning but require cleaning post-suction. Despite their widespread use, there is no published evidence examining lung volumes during CSC cleaning. The study objectives were to quantify lung volume changes during CSC cleaning and to determine whether these changes were preventable using a CSC with a valve in situ between the airway and catheter cleaning chamber. This prospective randomized crossover study was conducted in a metropolitan tertiary ICU. Ten patients mechanically ventilated via volume-controlled synchronized intermittent mandatory ventilation (SIMV-VC) and requiring manual hyperinflation (MHI) were included in this study. CSC cleaning was performed using 2 different brands of CSC (one with a valve [Ballard Trach Care 72, Kimberly-Clark, Roswell, Georgia] and one without [Portex Steri-Cath DL, Smiths Medical, Dublin, Ohio]). The maneuvers were performed during both SIMV-VC and MHI. Lung volume change was measured via impedance change using electrical impedance tomography. A mixed model was used to compare the estimated means. During cleaning of the valveless CSC, significant decreases in lung impedance occurred during MHI (-2563 impedance units, 95% CI 2213-2913, P < .001), and significant increases in lung impedance occurred during SIMV (762 impedance units, 95% CI 452-1072, P < .001). In contrast, cleaning of the CSC with a valve in situ resulted in non-significant lung volume changes and maintenance of normal ventilation during MHI and SIMV-VC, respectively (188 impedance units, 95% CI -136 to 511, P = .22; and 22 impedance units, 95% CI -342 to 299, P = .89). When there is no valve between the airway and suction catheter, cleaning of the CSC results in significant derangements in lung volume. Therefore, the presence of such a valve should be considered essential in preserving lung volumes and uninterrupted ventilation in mechanically ventilated patients.

  9. Endoscopic Ultrasound-guided Specimen Collection and Evaluation Techniques Affect Diagnostic Accuracy.

    PubMed

    Bang, Ji Young; Navaneethan, Udayakumar; Hasan, Muhammad K; Hawes, Robert; Varadarajulu, Shyam

    2018-03-11

    Outcomes of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) evaluation vary with technique, needles, and methods of specimen evaluation. We performed a direct comparison of diagnostic yields of EUS-FNA samples collected using different gauge needles (22- vs 25-gauge), with or without suction. We performed a randomized controlled study of 352 patients with suspected pancreatic masses, referred for EUS-FNA at a tertiary referral center. Patients were randomly assigned to 22-gauge needles with or without suction or 25-gauge needles with or without suction. Specimens were evaluated offsite by cell block and rapid onsite cytologic evaluation (ROSE). Final diagnoses were made based on histologic analyses or 12-month follow-up evaluations. The primary outcome was diagnostic adequacy of cell blocks. Secondary outcomes were operating characteristics of ROSE and EUS-FNA, number of passes required for accurate onsite diagnosis, and amount of blood in specimens. The final diagnoses were malignancy (81.5% of patients) and benign disease (17.0% of patients); 1.4% of patients were lost during follow up. Cell block, ROSE, and EUS-FNA led to diagnostic accuracies of 71.9%, 95.5%, and 96.6%, respectively. A 22-gauge needle with suction was associated with more passes for adequate onsite diagnosis (P = .003) and specimens contained more blood (P = .01). Diagnostic accuracy of specimens collected by transduodenal EUS-FNA was lower with 22-gauge needles with suction compared to other techniques (P = .004). In a randomized trial of patients undergoing EUS-FNA for pancreatic masses, samples collected with 22-gauge vs 25-gauge needles performed equally well for offsite specimen evaluation. Use of suction appears to increase number of passes needed and specimen bloodiness. Specimen collection techniques should be individualized based on method of evaluation. ClinicalTrials.gov no: NCT02424838. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Analytical investigation of aerodynamic characteristics of highly swept wings with separated flow

    NASA Technical Reports Server (NTRS)

    Reddy, C. S.

    1980-01-01

    Many modern aircraft designed for supersonic speeds employ highly swept-back and low-aspect-ratio wings with sharp or thin edges. Flow separation occurs near the leading and tip edges of such wings at moderate to high angles of attack. Attempts have been made over the years to develop analytical methods for predicting the aerodynamic characteristics of such aircraft. Before any method can really be useful, it must be tested against a standard set of data to determine its capabilities and limitations. The present work undertakes such an investigation. Three methods are considered: the free-vortex-sheet method (Weber et al., 1975), the vortex-lattice method with suction analogy (Lamar and Gloss, 1975), and the quasi-vortex lattice method of Mehrotra (1977). Both flat and cambered wings of different configurations, for which experimental data are available, are studied and comparisons made.

  11. Engine inlet distortion in a 9.2 percent scaled vectored thrust STOVL model in ground effect

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Flood, J. D.; Amuedo, K. C.; Strock, T. W.

    1989-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, a cooperative program has been defined for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. This paper presents results showing the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale Vectored Thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0, -6, and 18 deg. The model support system had 4 deg of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 kn.

  12. Forum on unsteady flow - 1985; Proceedings of the Winter Annual Meeting, Miami Beach, FL, November 17-22, 1985

    NASA Astrophysics Data System (ADS)

    Rothe, P. H.

    The conference includes such topics as the reduction of fluid transient pressures by minimax optimization, modeling blockage in unsteady slurry flow in conduits, roles of vacuum breaker and air release devices in reducing waterhammer forces, and an analysis of laminar fluid transients in conduits of unconventional shape. Papers are presented on modulation systems for high speed water jets, water hammer analysis needs in nuclear power plant design, tail profile effects on unsteady large scale flow structure in the wing and plate junction, and a numerical study of pressure transients in a borehole due to pipe movement. Consideration is also given to boundary layer growth near a stagnation point, calculation of unsteady mixing in two-dimensional flows, the trailing edge of a pitching airfoil at high reduced frequencies, and a numerical study of instability-wave control through periodic wall suction/blowing.

  13. Holographic studies of shock waves within transonic fan rotors

    NASA Technical Reports Server (NTRS)

    Benser, W. A.; Bailey, E. E.; Gelder, T. F.

    1974-01-01

    NASA has funded two separate contracts to apply pulsed laser holographic interferometry to the detection of shock patterns in the outer span regions of high tip speed transonic rotors. The first holographic approach used ruby laser light reflected from a portion of the centerbody just ahead of the rotor. These holograms showed the bow wave patterns upstream of the rotor and the shock patterns just inside the blade row near the tip. The second holographic approach, on a different rotor, used light transmitted diagonally across the inlet annulus past the centerbody. This approach gave a more extensive view of the region bounded by the blade leading and trailing edges, by the part span shroud and by the blade tip. These holograms showed the passage shock emanating from the blade leading edge and a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface.

  14. Lift augmentation on a delta wing via leading edge fences and the Gurney flap. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.

    1992-01-01

    Wind tunnel tests were conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  15. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  16. Flow Visualization Proposed for Vacuum Cleaner Nozzle Designs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In 1995, the NASA Lewis Research Center and the Kirby Company (a major vacuum cleaner company) began negotiations for a Space Act Agreement to conduct research, technology development, and testing involving the flow behavior of airborne particulate flow behavior. Through these research efforts, we hope to identify ways to improve suction, flow rate, and surface agitation characteristics of nozzles used in vacuum cleaner nozzles. We plan to apply an advanced visualization technology, known as Stereoscopic Imaging Velocimetry (SIV), to a Kirby G-4 vacuum cleaner. Resultant data will be analyzed with a high-speed digital motion analysis system. We also plan to evaluate alternative vacuum cleaner nozzle designs. The overall goal of this project is to quantify both velocity fields and particle trajectories throughout the vacuum cleaner nozzle to optimize its "cleanability"--its ability to disturb and remove embedded dirt and other particulates from carpeting or hard surfaces. Reference

  17. The Status of Water in Swelling Shales: An Insight from the Water Retention Properties of the Callovo-Oxfordian Claystone

    NASA Astrophysics Data System (ADS)

    Menaceur, Hamza; Delage, Pierre; Tang, Anh Minh; Talandier, Jean

    2016-12-01

    The Callovo-Oxfordian (COx) claystone is considered in France as a possible host rock for the disposal of high-level long-lived radioactive waste at great depth. During the operational phase, the walls of the galleries and of the disposal cells will be successively subjected to desaturation induced by ventilation followed by resaturation once the galleries are closed. To better understand this phenomenon, a sound understanding of the water retention properties of the COx claystone is necessary. Following a previous study by the same group, this paper presents an investigation of microstructure changes in COx claystone under suction changes. Microstructure was investigated by means of mercury intrusion porosimetry tests on freeze-dried specimens previously submitted to various suctions. Along the drying path, the initial microstructure, characterised by a well-classified unimodal pore population around a mean diameter value of 32 nm, slightly changed with the same shape of the PSD curve and slightly moved towards smaller diameters (27-28 nm) at suctions of 150 and 331 MPa, respectively. The infra-porosity too small to be intruded by mercury (diameter smaller than 5.5 nm) reduced from 4.3 to 3.3 %. Oven drying reduced the mean diameter to 20 nm and the infra-porosity to 1 %. Wetting up to 9 MPa suction leads to saturation with no significant change in the PSD curve, whereas wetting at zero suction gave rise to the appearance of a large pore population resulting from the development of cracks with width of several micrometres, together with an enlargement of the initial pore population above the mean diameter. The concepts describing the step hydration of smectites (by the successive placement within the clay platelets along the smectite faces of 1, 2, 3 and 4 layers of water molecules with respect to the suction applied) appeared relevant to better understand the changes in microstructure of the COx claystone under suction changes. This also allowed to better define the status of water in claystones and shales containing smectite, with a distinction made between the water adsorbed within the clay platelets, and the free inter-platelet water involved in hydromechanical couplings through changes in pore pressure and water transfers.

  18. 78 FR 70589 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... the NRC's E-Filing system does not support unlisted software, and the NRC Meta System Help Desk will... Osmosis (RO) system borated water storage tank suction connections. Basis for proposed no significant... requirement. For the SFP, the suction to the RO system is above the required TS water level, therefore, the...

  19. 46 CFR 182.510 - Bilge piping system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... feet) in length must be not less than 40 millimeters (1.5 inches) nominal pipe size. A bilge suction... meters (26 feet) in length must be provided with individual bilge lines and bilge suctions for each... provided. (b) A bilge pipe in a vessel of not more than 19.8 meters (65 feet) in length must be not less...

  20. 46 CFR 182.510 - Bilge piping system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... feet) in length must be not less than 40 millimeters (1.5 inches) nominal pipe size. A bilge suction... meters (26 feet) in length must be provided with individual bilge lines and bilge suctions for each... provided. (b) A bilge pipe in a vessel of not more than 19.8 meters (65 feet) in length must be not less...

  1. Capillary Suction Time. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    Capillary suction time is time required for the liquid phase of a treated sludge to travel through 1 centimeter of media (blotter or filter paper). Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with…

  2. Semidirect computation of three-dimensional viscous flows over suction holes in laminar flow control surfaces

    NASA Technical Reports Server (NTRS)

    Roache, P. J.

    1979-01-01

    A summary is given of the attempts made to apply semidirect methods to the calculation of three-dimensional viscous flows over suction holes in laminar flow control surfaces. The attempts were all unsuccessful, due to either (1) lack of resolution capability, (2) lack of computer efficiency, or (3) instability.

  3. 21 CFR 878.4683 - Non-Powered suction apparatus device intended for negative pressure wound therapy.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Non-Powered suction apparatus device intended for negative pressure wound therapy. 878.4683 Section 878.4683 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  4. 21 CFR 878.4683 - Non-Powered suction apparatus device intended for negative pressure wound therapy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Non-Powered suction apparatus device intended for negative pressure wound therapy. 878.4683 Section 878.4683 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  5. 21 CFR 878.4683 - Non-Powered suction apparatus device intended for negative pressure wound therapy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Non-Powered suction apparatus device intended for negative pressure wound therapy. 878.4683 Section 878.4683 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES...

  6. Comparative estimates of density and species diversity in adult mosquito populations landing on a human subject and captured using light and suction traps.

    USDA-ARS?s Scientific Manuscript database

    Comparative responses of 21 species of mosquitoes to light traps (LT) and suction traps (ST) and captured using the human landing collection method (HL) varied in accordance with collection technique but data analyses for most species revealed significant interaction between collection method and th...

  7. Numerical simulation of compressible fluid flow in an ultrasonic suction pump.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2016-08-01

    Characteristics of an ultrasonic suction pump that uses a vibrating piston surface and a pipe are numerically simulated and compared with experimental results. Fluid analysis based on the finite-difference time-domain (FDTD) routine is performed, where the nonlinear term and the moving fluid-surface boundary condition are considered. As a result, the suction mechanism of the pump is found to be similar to that of a check valve, where the gap is open during the inflow phase, and it is nearly closed during the outflow phase. The effects of Reynolds number, vibration amplitude and gap thickness on the pump performance are analyzed. The calculated result is in good agreement with the previously measured results. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Abdominal drainage following cholecystectomy: high, low, or no suction?

    PubMed Central

    McCormack, T. T.; Abel, P. D.; Collins, C. D.

    1983-01-01

    A prospective trial to assess the effect of suction in an abdominal drain following cholecystectomy was carried out. Three types of closed drainage system were compared: a simple tube drain, a low negative pressure drain, and a high negative pressure drain: 120 consecutive patients undergoing cholecystectomy were randomly allocated to one of the three drainage groups. There was no significant difference in postoperative pyrexia, wound infection, chest infection, or hospital stay. This study failed to demonstrate any clinically useful difference between high negative pressure, low negative pressure, and static drainage system were compared: a simple tube drain, a low negative used, suction is not necessary and a simple tube drain (greater than 6 mm internal diameter) is the most effective form of drainage. PMID:6614773

  9. Wind-tunnel and Flight Investigations of the Use of Leading-Edge Area Suction for the Purpose of Increasing the Maximum Lift Coefficient of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Bray, Richard S

    1956-01-01

    An investigation was undertaken to determine the increase in maximum lift coefficient that could be obtained by applying area suction near the leading edge of a wing. This investigation was performed first with a 35 degree swept-wing model in the wind tunnel, and then with an operational 35 degree swept-wing airplane which was modified in accord with the wind-tunnel results. The wind-tunnel and flight tests indicated that the maximum lift coefficient was increased more than 50 percent by the use of area suction. Good agreement was obtained in the comparison of the wind-tunnel results with those measured in flight.

  10. Hysteresis of unsaturated hydromechanical properties of a silty soil

    USGS Publications Warehouse

    Lu, Ning; Kaya, Murat; Collins, Brian D.; Godt, Jonathan W.

    2013-01-01

    Laboratory tests to examine hysteresis in the hydrologic and mechanical properties of partially saturated soils were conducted on six intact specimens collected from a landslide-prone area of Alameda County, California. The results reveal that the pore-size distribution parameter remains statistically unchanged between the wetting and drying paths; however, the wetting or drying state has a pronounced influence on the water-entry pressure, the water-filled porosity at zero suction, and the saturated hydraulic conductivity. The suction stress values obtained from the shear-strength tests under both natural moisture and resaturated conditions were mostly bounded by the suction stress characteristic curves (SSCCs) obtained from the hydrologic tests. This finding experimentally confirms that the soil-water retention curve, hydraulic conductivity function, and SSCC are intrinsically related.

  11. Ultra-fast Escape of a Octopus-inspired Rocket

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  12. The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Benfold, S. M.; Rowe, A. P.; Lowell, C. E.

    1979-01-01

    Superalloy turbine rotors in a single stage turbine with 6 percent partial admittance were operated in the effluent of a pressurized fluidized bed coal combustor for up to 164 hours. Total mass flow was 300 kg/hr and average particulate loadings ranged from 600 to 2800 ppm for several coal/sorbent combinations. A 5.5 atm turbine inlet gas pressure and inlet gas temperatures from 700 to 800 C yielded absolute gas velocities at the stator exit of about 500 m/s. The angular rotation speed (40,000 rpm) of the six inch diameter rotors was equivalent to a tip speed of about 300 m/s, and average gas velocities relative to the rotating surface ranged from 260 to 330 m/s at mean radius. The rotor erosion pattern reflects heavy particle separation with severe (5 to 500 cm/yr) erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern provides a spectrum of erosion/oxidation/deposition as a function of blade position. This spectrum includes enhanced oxidation (10 to 100 x air), mixed oxides in exposed depletion zones, sulfur rich oxides in deposition zones, and rugged areas of erosive oxide removal.

  13. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon

    2017-04-01

    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates persist until break-up is achieved and often reduce several tens of millions of years after continental separation. By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration during the transition from phase 1 to phase 2 induces elevated convergence rates at the opposite side of the continents. This leads to enhanced subduction velocities, e.g. between North America and the Farallon plate 200 million years ago, or to the closure of potential back-arc basins such as in the proto-Andean ranges of South America. Post-rift deceleration occurs when the global plate system re-equilibrates after the phase of enhanced stress during continental rupture. This phenomenon of a plate slow-down after mechanical rupture occurred in the real-world aftermath of Australia-Antarctica separation, South Atlantic opening, and North Atlantic break-up.

  14. Suction and cohesion demise in desaturating granular medium

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Mielniczuk, B.; El-Youssoufi, S. M.

    2017-12-01

    Continuum mechanics for unsaturated soils is based on the assumption of a one-to-one relationship betwee saturation degree and suction represented by the characteristic curve. Such curve commonly shows exceedingly high values of suction at saturation decreasing below 10%. We have performed a series of experiments on physical micro-structural models of 8-, 5, 4, 3, and 2-grain assemblies filled with water forming capillary, funicular and pendular bridges. Dynamic variables characterizing the evolution include: Laplace pressure, surface tension force, total intergralular force, contact angle and contact perimeter length. The Laplace pressure was calculated from the directly measured curvatures of interface surface for 2-grain bridges, and estimated from tomography stills for 3 grain bridges. The initial negative Laplace pressure (suction) as well as total intergranular force increase modestly at the begining of evaporation, but undergo an unstable decrease at the advanced stage, often with a jump in the force known as a Haines jumps since 1925. Laplace pressure turns into positive values prior to rupture for 2-grain bodies. For 3-grain bridges there is never an exceedingly high intergranular force of suction, reported in macro-scale experiments. For multiple-grain bodies there are two types of instabilities, depending on densitiy of the assembly and the Gaussian curvature (GC): at positive GC points it is thin-sheet instability, while at negative GC points instability is linked with air entry fingers, all associated with the split of assemblies into smaller isolated funicular, and eventually pendular bodies. The multi-grain bridges instabilities are linked to material drying cracking, the instabilities in 2 grain systems mean eventual loss of cohesion.

  15. Performance and scaling of a novel locomotor structure: adhesive capacity of climbing gobiid fishes.

    PubMed

    Maie, Takashi; Schoenfuss, Heiko L; Blob, Richard W

    2012-11-15

    Many species of gobiid fishes adhere to surfaces using a sucker formed from fusion of the pelvic fins. Juveniles of many amphidromous species use this pelvic sucker to scale waterfalls during migrations to upstream habitats after an oceanic larval phase. However, adults may still use suckers to re-scale waterfalls if displaced. If attachment force is proportional to sucker area and if growth of the sucker is isometric, then increases in the forces that climbing fish must resist might outpace adhesive capacity, causing climbing performance to decline through ontogeny. To test for such trends, we measured pressure differentials and adhesive suction forces generated by the pelvic sucker across wide size ranges in six goby species, including climbing and non-climbing taxa. Suction was achieved via two distinct growth strategies: (1) small suckers with isometric (or negatively allometric) scaling among climbing gobies and (2) large suckers with positively allometric growth in non-climbing gobies. Species using the first strategy show a high baseline of adhesive capacity that may aid climbing performance throughout ontogeny, with pressure differentials and suction forces much greater than expected if adhesion were a passive function of sucker area. In contrast, large suckers possessed by non-climbing species may help compensate for reduced pressure differentials, thereby producing suction sufficient to support body weight. Climbing Sicyopterus species also use oral suckers during climbing waterfalls, and these exhibited scaling patterns similar to those for pelvic suckers. However, oral suction force was considerably lower than that for pelvic suckers, reducing the ability for these fish to attach to substrates by the oral sucker alone.

  16. Novel Airway Training Tool that Simulates Vomiting: Suction-Assisted Laryngoscopy Assisted Decontamination (SALAD) System.

    PubMed

    DuCanto, James; Serrano, Karen D; Thompson, Ryan J

    2017-01-01

    We present a novel airway simulation tool that recreates the dynamic challenges associated with emergency airways. The Suction-Assisted Laryngoscopy Assisted Decontamination (SALAD) simulation system trains providers to use suction to manage emesis and bleeding complicating intubation. We modified a standard difficult-airway mannequin head (Nasco, Ft. Atkinson, WI) with hardware-store equipment to enable simulation of vomiting or hemorrhage during intubation. A pre- and post-survey was used to assess the effectiveness of the SALAD simulator. We used a 1-5 Likert scale to assess confidence in managing the airway of a vomiting patient and comfort with suction techniques before and after the training exercise. Forty learners participated in the simulation, including emergency physicians, anesthesiologists, paramedics, respiratory therapists, and registered nurses. The average Likert score of confidence in managing the airway of a vomiting or hemorrhaging patient pre-session was 3.10±0.49, and post-session 4.13±0.22. The average score of self-perceived skill with suction techniques in the airway scenario pre-session was 3.30±0.43, and post-session 4.03±0.26. The average score for usefulness of the session was 4.68±0.15, and the score for realism of the simulator was 4.65±0.17. A training session with the SALAD simulator improved trainee's confidence in managing the airway of a vomiting or hemorrhaging patient. The SALAD simulation system recreates the dynamic challenges associated with emergency airways and holds promise as an airway training tool.

  17. Analgesic efficacy of lidocaine for suction-assisted lipectomy with tumescent technique under general anesthesia: a randomized, double-masked, controlled trial.

    PubMed

    Danilla, Stefan; Fontbona, Montserrat; de Valdés, Victoria Diaz; Dagnino, Bruno; Sorolla, Juan Pablo; Israel, Guillermo; Searle, Susana; Norambuena, Hernán; Cabello, Rodrigo

    2013-08-01

    Suction-assisted lipectomy is one of the most common procedures performed in plastic surgery. To minimize blood loss and to obtain adequate analgesia, a liquid solution is infiltrated into the subcutaneous plane before suction. The objective of this study was to determine whether the use of lidocaine in the infiltration solution reduces postoperative pain. A prospective, randomized, double-masked, clinical trial was designed. Each side of patients' body zones to be treated with suction-assisted lipectomy was randomized to receive infiltration solution with or without lidocaine. Treatment allocation was performed using computer-generated random numbers in permuted blocks of eight. Pain was assessed using the visual analogue scale and registered 1, 6, 12, 18, and 24 hours after the procedure. The trial was stopped after a first interim analysis. The use of lidocaine in the dilute solution reduced pain by 0.5 point on the visual analogue scale (95 percent CI, 0.3 to 0.8; p<0.001). The effect was independent of the suctioned body zone (p=0.756), and lasted until 18 hours after surgery. Its analgesic effect was lost at the 24-hour postoperative control. Pain increased an average of 0.018 point on the visual analogue scale per hour (95 percent CI, 0.001 to 0.036; p=0.043). The use of lidocaine in the infiltration solution is effective in postoperative pain control until 18 hours after surgery. Nevertheless, its clinical effect is limited and clinically irrelevant, and therefore it is no longer used by the authors. Therapeutic, I.

  18. Air suctioning during colon biopsy forceps removal reduces bacterial air contamination in the endoscopy suite.

    PubMed

    Vavricka, S R; Tutuian, R; Imhof, A; Wildi, S; Gubler, C; Fruehauf, H; Ruef, C; Schoepfer, A M; Fried, M

    2010-09-01

    Bacterial contamination of endoscopy suites is of concern; however studies evaluating bacterial aerosols are lacking. We aimed to determine the effectiveness of air suctioning during removal of biopsy forceps in reducing bacterial air contamination. This was a prospective single-blinded trial involving 50 patients who were undergoing elective nontherapeutic colonoscopy. During colonoscopy, endoscopists removed the biopsy forceps first without and then with suctioning following contact with the sigmoid mucosa. A total of 50 L of air was collected continuously for 30 seconds at 30-cm distance from the biopsy channel valve of the colonoscope, with time starting at forceps removal. Airborne bacteria were collected by an impactor air sampler (MAS-100). Standard Petri dishes with CNA blood agar were used to culture Gram-positive bacteria. Main outcome measure was the bacterial load in endoscopy room air. At the beginning and end of the daily colonoscopy program, the median (and interquartile [IQR] range) bioaerosol burden was 4 colony forming units (CFU)/m (3) (IQR 3 - 6) and 16 CFU/m (3) (IQR 13 - 18), respectively. Air suctioning during removal of the biopsy forceps reduced the bioaerosol burden from a median of 14 CFU/m (3) (IQR 11 - 29) to a median of 7 CFU/m (3) (IQR 4 - 16) ( P = 0.0001). Predominantly enterococci were identified on the agar plates. The bacterial aerosol burden during handling of biopsy forceps can be reduced by applying air suction while removing the forceps. This simple method may reduce transmission of infectious agents during gastrointestinal endoscopies. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  19. Evolution of Delivery Room Management for Meconium-Stained Infants: Recent Updates.

    PubMed

    Chabra, Shilpi

    2018-06-08

    The approach to intrapartum and postnatal management of an infant born through meconium-stained amniotic fluid (MSAF) in the delivery room (DR) has changed several times over the last few decades, leading to confusion and anxiety among health care providers (nurses, nurse practitioners, respiratory therapists, midwives, and physicians). This article provides state-of-the-art insight into the evidence or lack thereof for the changes in guidelines. To discuss the evidence for evolution of DR management of vigorous and nonvigorous infants born through any type of MSAF. Review of guidelines from the Neonatal Resuscitation Program of the American Academy of Pediatrics and the American College of Obstetricians and Gynecologists, the International Liaison Committee on Resuscitation, Consensus on Science and Treatment Recommendations, and textbooks of neonatal resuscitation and research using MEDLINE via PubMed. In pregnancies complicated by MSAF, intrapartum suctioning of the oro- and nasopharynx and postnatal intubation with tracheal suctioning of infants have been traditionally used to clear the airway and decrease meconium aspiration syndrome. The recommendations for these perinatal practices have changed several times due to some evidence that the procedures are not beneficial and may even be harmful. Intrapartum suctioning and postnatal tracheal suctioning of infants (vigorous or nonvigorous) born through MSAF are not recommended. This is a "high-risk" delivery requiring 2 team members to be present at birth-one with full resuscitation skills including tracheal intubation. Need to evaluate effects of discontinuing the practice of tracheal suctioning in nonvigorous infants on the incidence of meconium aspiration syndrome and neonatal mortality.

  20. [Pain assessment of tracheal suctioning on brain injury patients by pain behavioral indicator scale (ESCID)].

    PubMed

    López-López, C; Murillo-Pérez, M A; Morales-Sánchez, C; Torrente-Vela, S; Orejana-Martín, M; García-Iglesias, M; Cuenca-Solanas, M; Alted-López, E

    2014-01-01

    To assess pain response on patients with moderate to severe head injury before a common nursing procedure: tracheal suctioning. An observational longitudinal pilot study with consecutive sampling performed from September to December of 2012. Pain was assessed by a pain behavioral indicator scale 5 minutes before, meanwhile and 15 minutes after tracheal suctioning the days 1, 3 and 6 of their intensive care unit (ICU) stay, as well as a non-painful procedure: rubbing with gauze the forearm of the patient. Pseudo-analgesia and hemodynamic variables were also recorded. Descriptive analysis of the variables, inferential statistics with t-student and Anova with SPSS 17.0; statistical tests were considered significant if the critical level observed was less than 5% (P<.05). Pain was assessed on 27 patients. 82% suffered from severe head trauma and 18% moderate. The average pain value during nursing procedure day 1 was 3, 18±2.6, day 3: 2, 59±2 and day 6: 3, 94±2.3. There was a significant increase in mean pain while performing suctioning during the three days of assessment (P<.05); however no significant differences between the average pain value on the three days of the assessment (P>.05) were shown. Data for the painless procedure were significantly different on day 6 (P<.05) CONCLUSION: During tracheal suctioning in patients with head injury in the first 6 days in the ICU, objective mild-moderate pain according to ESCID scale has been detected. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  1. Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation

    PubMed Central

    Mansouri, Mahdi; Salamonsen, Robert F.; Lim, Einly; Akmeliawati, Rini; Lovell, Nigel H.

    2015-01-01

    In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based Starling-like controller in comparison with our recently designed pulsatility controller and constant speed operation. In handling the transition from a baseline state to test states, which include vigorous exercise, blood loss and a major reduction in the LV contractility (LVC), the preload controller outperformed pulsatility control and constant speed operation in all three test scenarios. In exercise, preload-control achieved an increase of 54% in mean pump flow (QP-) with minimum loading on the LV, while pulsatility control achieved only a 5% increase in flow and a decrease in mean pump speed. In a hemorrhage scenario, the preload control maintained the greatest safety margin against LV suction. PLVED for the preload controller was 4.9 mmHg, compared with 0.4 mmHg for the pulsatility controller and 0.2 mmHg for the constant speed mode. This was associated with an adequate mean arterial pressure (MAP) of 84 mmHg. In transition to low LVC, QP- for preload control remained constant at 5.22 L/min with a PLVED of 8.0 mmHg. With regards to pulsatility control, QP- fell to the nonviable level of 2.4 L/min with an associated PLVED of 16 mmHg and a MAP of 55 mmHg. Consequently, pulsatility control was deemed inferior to constant speed mode with a PLVED of 11 mmHg and a QP- of 5.13 L/min in low LVC scenario. We conclude that pulsatility control imposes a danger to the patient in the severely reduced LVC scenario, which can be overcome by using a preload-based Starling-like control approach. PMID:25849979

  2. Laser cutting system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, Thomas J

    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  3. Small, high pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Warren, D. J.

    1980-01-01

    A high pressure, low capacity, liquid hydrogen turbopump was designed, fabricated, and tested. The design configuration of the turbopump is summarized and the results of the analytical and test efforts are presented. Approaches used to pin point the cause of poor suction performance with the original design are described and performance data are included with an axial inlet design which results in excellent suction capability.

  4. Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suction effect

    NASA Astrophysics Data System (ADS)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.; Pop, Ioan

    2018-06-01

    The steady boundary layer flow over a stretching/shrinking cylinder with suction effect is numerically studied. Using a similarity transformations, the governing partial differential equations are transformed into a set of nonlinear differential equations and have been solved numerically using a bvp4c code in Matlab software. The nanofluid model used is taking into account the effects of Brownian motion and thermophoresis. The influences of the governing parameters namely the curvature parameter γ, mass suction parameter S, Brownian motion parameter Nb and thermophoresis parameter Nt on the flow, heat and mass transfers characteristics are presented graphically. The numerical results obtained for the skin friction coefficient, local Nusselt number and local Sherwood number are thoroughly determined and presented graphically for several values of the governing parameters. From our investigation, it is found that the non-unique (dual) solutions exist for a certain range of mass suction parameter. It is observed that as curvature parameter increases, the skin friction coefficient and heat transfer rate decrease, meanwhile the mass transfer rates increase. Moreover, the stability analysis showed that the first solution is linearly stable, while the second solution is linearly unstable.

  5. Negative Suction Drain Through a Mini Periareolar Incision for the Treatment of Lactational Breast Abscess Shortens Hospital Stay and Increases Breastfeeding Rates.

    PubMed

    Wei, Jinli; Zhang, Jiaxin; Fu, Deyuan

    2016-06-01

    Although breast abscess is a serious uncommon complication of mastitis with high morbidity rate, there is a lack of high-quality randomized trial to demonstrate the best treatments. We reported a novel way of applying negative suction drain through a mini periareolar incision. We retrospectively analyzed and compared the clinical characteristics of 62 patients with lactational breast abscess in our department from August 2012 to April 2015. Thirty-two patients went through traditional incision and drainage (Group A) and 30 patients were placed on negative suction drain through mini periareolar incision (Group B). There is no significant difference between the two groups in terms of age, white blood cell (WBC) count, size of the abscess cavity, and positive rate of Staphylococcus aureus (SA) or methicillin-resistant Staphylococcus aureus (MRSA). Patients in Group B had a shorter hospitalized stay (p = 0.003) and had a higher rate of continuation of breastfeeding (p < 0.005). Applying drain with negative suction pressure through a mini periareolar incision is an effective modality for treating lactational breast abscess and maintaining breastfeeding.

  6. Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.

    1998-01-01

    A static experimental investigation of a counterflow thrust vectoring nozzle concept was performed. The study was conducted in the NASA Langley Research Center Jet Exit Test Facility. Internal performance characteristics were defined over a nozzle pressure ratio (jet total to ambient) range of 3.5 to 10.0. The effects of suction collar geometry and suction slot height on nozzle performance were examined. In the counterflow concept, thrust vectoring is achieved by applying a vacuum to a slot adjacent to a primary jet that is shrouded by a suction collar. Two flow phenomena work to vector the primary jet depending upon the test conditions and configuration. In one case, the vacuum source creates a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates, causing a drop in pressure on the collar. The second case works similarly except that the vacuum is not powerful enough to create a counterflowing stream and instead a coflowing stream is present. The primary jet is vectored if suction is applied asymmetrically on the top or bottom of the jet.

  7. State-dependent anisotrophy: Comparison of quasi-analytical solutions with stochastic results for steady gravity drainage

    USGS Publications Warehouse

    Green, Timothy R.; Freyberg, David L.

    1995-01-01

    Anisotropy in large-scale unsaturated hydraulic conductivity of layered soils changes with the moisture state. Here, state-dependent anisotropy is computed under conditions of large-scale gravity drainage. Soils represented by Gardner's exponential function are perfectly stratified, periodic, and inclined. Analytical integration of Darcy’s law across each layer results in a system of nonlinear equations that is solved iteratively for capillary suction at layer interfaces and for the Darcy flux normal to layering. Computed fluxes and suction profiles are used to determine both upscaled hydraulic conductivity in the principal directions and the corresponding “state-dependent” anisotropy ratio as functions of the mean suction. Three groups of layered soils are analyzed and compared with independent predictions from the stochastic results of Yeh et al. (1985b). The small-perturbation approach predicts appropriate behaviors for anisotropy under nonarid conditions. However, the stochastic results are limited to moderate values of mean suction; this limitation is linked to a Taylor series approximation in terms of a group of statistical and geometric parameters. Two alternative forms of the Taylor series provide upper and lower bounds for the state-dependent anisotropy of relatively dry soils.

  8. Numerical and experimental hydrodynamic analysis of suction cup bio-logging tag designs for marine mammals

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Shorter, Alex; Howle, Laurens; Johnson, Mark; Moore, Michael

    2012-11-01

    The improvement and miniaturization of sensing technologies has made bio-logging tags, utilized for the study of marine mammal behavior, more practical. These sophisticated sensing packages require a housing which protects the electronics from the environment and provides a means of attachment to the animal. The hydrodynamic forces on these housings can inadvertently remove the tag or adversely affect the behavior or energetics of the animal. A modification to the original design of a suction cup bio-logging tag housing was desired to minimize the adverse forces. In this work, hydrodynamic loading of two suction cup tag designs, original and modified designs, were analyzed using computational fluid dynamics (CFD) models and validated experimentally. Overall, the simulation and experimental results demonstrated that a tag housing that minimized geometric disruptions to the flow reduced drag forces, and that a tag housing with a small frontal cross-sectional area close to the attachment surface reduced lift forces. Preliminary results from experimental work with a common dolphin cadaver indicates that the suction cups used to attach the tags to the animal provide sufficient attachment force to resist failure at predicted drag and lift forces in 10 m/s flow.

  9. Development of laminar flow control wing surface porous structure

    NASA Technical Reports Server (NTRS)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.

    1984-01-01

    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  10. Close-up view of 20 March 1976 tornadoes - Sinking cloud tops to suction vortices

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Forbes, G. S.; Umenhofer, T. A.

    1976-01-01

    The article describes an airborne mission using a Learjet to secure direct data on a family of tornadoes spawned by a rotating thunderstorm in the Missouri-Illinois-Indiana area in March 1976 following an unusually warm February. Weakening of the tornado following increased cloud-scale vertical motion, predicted by a model constructed by Fujita (1972), was confirmed. The aircraft inspected overshooting cloud tops, examined subsidence (holes and depressions) in anvil tops it overflew, and surveyed footprints left by the tornadoes and tornado-blown litter on the ground traversed by the disturbances. Subsidence of cloud tops in advance of violent tornadoes below was confirmed. Isolated and multiple suction vortices left their characteristic ground marks; three scales of motion: tornado cyclone, tornado, and suction vortex, are evidenced by the ground truth.

  11. Suction and Blowing Flow Control on Airfoil for Drag Reduction in Subsonic Flow

    NASA Astrophysics Data System (ADS)

    Baljit, S. S.; Saad, M. R.; Nasib, A. Z.; Sani, A.; Rahman, M. R. A.; Idris, A. C.

    2017-10-01

    Lift force is produced from a pressure difference between the pressures acting in upper and lower surfaces. Therefore, flow becomes detached from the surface of the airfoil at separation point and form vortices. These vortices affect the aerodynamic performance of the airfoil in term of lift and drag coefficient. Therefore, this study is investigating the effect of suction and jet blowing in boundary layer separation control on NACA 0012 airfoil in a subsonic wind tunnel. The experiment examined both methods at the position of 25% of the chord-length of the airfoil at Reynolds number 1.2 × 105. The findings show that suction and jet blowing affect the aerodynamic performance of NACA 0012 airfoil and can be an effective means for boundary layer separation control in subsonic flow.

  12. Subsonic aerodynamic characteristics of interacting lifting surfaces with separated flow around sharp edges predicted by a vortex-lattice method

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Gloss, B. B.

    1975-01-01

    Because the potential flow suction along the leading and side edges of a planform can be used to determine both leading- and side-edge vortex lift, the present investigation was undertaken to apply the vortex-lattice method to computing side-edge suction force for isolated or interacting planforms. Although there is a small effect of bound vortex sweep on the computation of the side-edge suction force, the results obtained for a number of different isolated planforms produced acceptable agreement with results obtained from a method employing continuous induced-velocity distributions. By using the method outlined, better agreement between theory and experiment was noted for a wing in the presence of a canard than was previously obtained.

  13. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated holes in the impervious test plate that used to establish the Blasius base flow. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance, for conditions corresponding to strong suction and without suction. The technique was enhanced by using up to nine multiple probes to reduce the experimental run-time. In both cases, 3D contour surfaces in the vicinity of the hole show highly 3D TS waves which fan out in the spanwise direction forming bow-shaped waves downstream. The case without suction has proved useful for evaluating calculation methods. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the TS waves in the far field are similar to the case without suction. Downstream, the contour surfaces of the TS waves develop spanwise irregularities which eventually form into clumps. The spanwise clumping is evidence of a secondary instability that could be associated with suction vortices. Designers of porous surfaces use Goldsmith's Criterion to minimize cross-stream interactions. It is shown that partial TS wave cancellation is possible, depending on the hole spacing, disturbance frequency and free-stream velocity. New high-performance Constant Temperature Hot-Wire Anemometers were designed and built, based on a linear system theory analysis that can be extended to arbitrary order. The motivation was to achieve the highest possible frequency reponse while ensuring overall system stability. The performance is equal to or superior to commercially available instruments at about 10% of the cost. Details, such as fabrication drawings and a parts list, have been published to enable the instrument to be construced by others.

  14. Redesigning the continuous vacuum sealer packaging machine to improve the processing speed

    NASA Astrophysics Data System (ADS)

    Belo, J. B.; Widyanto, S. A.; Jamari, J.

    2017-01-01

    Vacuum sealer as a product packaging tool of food products to be able to vacuum air inside the plastic which is filled with food products and it causes the pressure lower. In this condition, the optimal heating temperature is reached in a shorter time, so that damage on plastic sealer of vacuumed food products could be prevented to be more effective and efficient. The purpose of this redesigning is to design a vacuum sealer packaging machine continuously through a conveyor mechanism on the packaging quality, time of processing speed of vacuuming food product in the plastic package. This designing process is conducted through several steps of designing and constructing tools until the products are ready to operate. Data analysis is done through quality test of vacuum and sealer to the plastic thickness of 75 µm, 80 µm, and 100 µm with temperature of 170°C, 180°C, 190°C and vacuum duration of 5 seconds, 8 seconds, and 60 seconds. Results of this designing process indicate that vacuum sealer works practically and more optimally with the time of vacuum processing speed of 0 to 1 minute/s; whereas, the pressure of vacuuming suction is until 1e-5 MPa. The results of tensile strength test are at a maximum of 32,796 (N/mm2) and a minimum of 20,155 (N/mm2) and the analysis of plastic composite with EDX. This result shows that the vacuum pressure and the quality of vacuum sealer are better and more efficient.

  15. Simulations of turbulent asymptotic suction boundary layers

    NASA Astrophysics Data System (ADS)

    Bobke, Alexandra; Örlü, Ramis; Schlatter, Philipp

    2016-02-01

    A series of large-eddy simulations of a turbulent asymptotic suction boundary layer (TASBL) was performed in a periodic domain, on which uniform suction was applied over a flat plate. Three Reynolds numbers (defined as ratio of free-stream and suction velocity) of Re = 333, 400 and 500 and a variety of domain sizes were considered in temporal simulations in order to investigate the turbulence statistics, the importance of the computational domain size, the arising flow structures as well as temporal development length required to achieve the asymptotic state. The effect of these two important parameters was assessed in terms of their influence on integral quantities, mean velocity, Reynolds stresses, higher order statistics, amplitude modulation and spectral maps. While the near-wall region up to the buffer region appears to scale irrespective of Re and domain size, the parameters of the logarithmic law (i.e. von Kármán and additive coefficient) decrease with increasing Re, while the wake strength decreases with increasing spanwise domain size and vanishes entirely once the spanwise domain size exceeds approximately two boundary-layer thicknesses irrespective of Re. The wake strength also reduces with increasing simulation time. The asymptotic state of the TASBL is characterised by surprisingly large friction Reynolds numbers and inherits features of wall turbulence at numerically high Re. Compared to a turbulent boundary layer (TBL) or a channel flow without suction, the components of the Reynolds-stress tensor are overall reduced, but exhibit a logarithmic increase with decreasing suction rates, i.e. increasing Re. At the same time, the anisotropy is increased compared to canonical wall-bounded flows without suction. The reduced amplitudes in turbulence quantities are discussed in light of the amplitude modulation due to the weakened larger outer structures. The inner peak in the spectral maps is shifted to higher wavelength and the strength of the outer peak is much less than for TBLs. An additional spatial simulation was performed, in order to relate the simulation results to wind tunnel experiments, which - in accordance with the results from the temporal simulation - indicate that a truly TASBL is practically impossible to realise in a wind tunnel. Our unique data set agrees qualitatively with existing literature results for both numerical and experimental studies, and at the same time sheds light on the fact why the asymptotic state could not be established in a wind tunnel experiment, viz. because experimental studies resemble our simulation results from too small simulation boxes or insufficient development times.

  16. Free Convection from a Semi-Infinite Vertical Plate with Discontinuous Blowing or Suction.

    DTIC Science & Technology

    1981-03-01

    SCHIESSR UNCLASSIFIED; EhEllllEllEE EE[E]hEEEIllIEllhlEEIl EEEEEIIIEEEEI EEEIIIIIIIIII EIIIEIIEEEEII EEEIIIIIIIIIIE LVEL NAVAL POSTGRADUATE SCHOOL Monterey...the unsteady free convective flow past a simi-infinite porous plate with constant suction were studied through mathematical analysis by Soundalgekar...boundary-layers and; therefore, will often indicate a preferred method of analytical solution. Although there are several possible mathematical techniques

  17. Intermittent patient suction system, self-contained control

    DOEpatents

    Lewis, Jay L.

    1992-01-01

    An intermittent patient suction system, a self-contained control device therefor and methods of making the same are provided, the self-contained control device having a housing that contains two restrictor units therein for respectively controlling the "on" time and "off" time that the control device applies a vacuum and does not apply a vacuum through the output of the control device to the patient.

  18. Flow Control about an Airborne Laser Turret

    DTIC Science & Technology

    1982-06-01

    that houses the laser telescope• Afterbody f=airing and f•iselage boundary layer suction were employed with porous material added when necessary to...Thesis Advisor Chairman, D partment of Aeronautics Dean of Scienci arnd Engineering 3 ABSTRACT This thesis project is the latest in a series of...that houses the laser telescope. Afterbody fairing and fuselage boundary layer suction were employed with porous material added when necessary to

  19. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space

    PubMed Central

    Ertl, Andrew C; Diedrich, André; Biaggioni, Italo; Levine, Benjamin D; Robertson, Rose Marie; Cox, James F; Zuckerman, Julie H; Pawelczyk, James A; Ray, Chester A; Buckey, Jay C; Lane, Lynda D; Shiavi, Richard; Gaffney, F Andrew; Costa, Fernando; Holt, Carol; Blomqvist, C Gunnar; Eckberg, Dwain L; Baisch, Friedhelm J; Robertson, David

    2002-01-01

    Astronauts returning from space have reduced red blood cell masses, hypovolaemia and orthostatic intolerance, marked by greater cardio–acceleration during standing than before spaceflight, and in some, orthostatic hypotension and presyncope. Adaptation of the sympathetic nervous system occurring during spaceflight may be responsible for these postflight alterations. We tested the hypotheses that exposure to microgravity reduces sympathetic neural outflow and impairs sympathetic neural responses to orthostatic stress. We measured heart rate, photoplethysmographic finger arterial pressure, peroneal nerve muscle sympathetic activity and plasma noradrenaline spillover and clearance, in male astronauts before, during (flight day 12 or 13) and after the 16 day Neurolab space shuttle mission. Measurements were made during supine rest and orthostatic stress, as simulated on Earth and in space by 7 min periods of 15 and 30 mmHg lower body suction. Mean (± s.e.m.) heart rates before lower body suction were similar pre–flight and in flight. Heart rate responses to −30 mmHg were greater in flight (from 56 ± 4 to 72 ± 4 beats min−1) than pre–flight (from 56 ± 4 at rest to 62 ± 4 beats min−1, P < 0.05). Noradrenaline spillover and clearance were increased from pre–flight levels during baseline periods and during lower body suction, both in flight (n = 3) and on post–flight days 1 or 2 (n = 5, P < 0.05). In–flight baseline sympathetic nerve activity was increased above pre–flight levels (by 10–33 %) in the same three subjects in whom noradrenaline spillover and clearance were increased. The sympathetic response to 30 mmHg lower body suction was at pre–flight levels or higher in each subject (35 pre–flight vs. 40 bursts min−1 in flight). No astronaut experienced presyncope during lower body suction in space (or during upright tilt following the Neurolab mission). We conclude that in space, baseline sympathetic neural outflow is increased moderately and sympathetic responses to lower body suction are exaggerated. Therefore, notwithstanding hypovolaemia, astronauts respond normally to simulated orthostatic stress and are able to maintain their arterial pressures at normal levels. PMID:11773339

  20. Tracheal tube biofilm removal through a novel closed-suctioning system: an experimental study.

    PubMed

    Aguilera Xiol, E; Li Bassi, G; Wyncoll, D; Ntoumenopoulos, G; Fernandez-Barat, L; Marti, J D; Comaru, T; De Rosa, F; Rigol, M; Rinaudo, M; Ferrer, M; Torres, A

    2015-11-01

    Tracheal tube biofilm develops during mechanical ventilation. We compared a novel closed-suctioning system vs standard closed-suctioning system in the prevention of tracheal tube biofilm. Eighteen pigs, on mechanical ventilation for 76 h, with P. aeruginosa pneumonia were randomized to be tracheally suctioned via the KIMVENT* closed-suctioning system (control group) or a novel closed-suctioning system (treatment group), designed to remove tracheal tube biofilm through saline jets and an inflatable balloon. Upon autopsy, two tracheal tube hemi-sections were dissected for confocal and scanning electron microscopy. Biofilm area, maximal and minimal thickness were computed. Biofilm stage was assessed. Sixteen animals were included in the final analysis. In the treatment and control group, the mean (sd) pulmonary burden was 3.34 (1.28) and 4.17 (1.09) log cfu gr(-1), respectively (P=0.18). Tracheal tube P. aeruginosa colonization was 5.6 (4.9-6.3) and 6.2 (5.6-6.9) cfu ml(-1) (median and interquartile range) in the treatment and control group, respectively (P=0.23). In the treatment group, median biofilm area was 3.65 (3.22-4.21) log10 μm2 compared with 4.49 (4.27-4.52) log10 μm2 in the control group (P=0.031). In the treatment and control groups, the maximal biofilm thickness was 48.3 (26.7-71.2) µm (median and interquartile range) and 88.8 (43.8-125.7) µm, respectively. The minimal thickness in the treatment and control group was 0.6 (0-4.0) µm and 23.7 (5.3-27.8) µm (P=0.040) (P=0.017). Earlier stages of biofilm development were found in the treatment group (P<0.001). The novel CSS reduces biofilm accumulation within the tracheal tube. A clinical trial is required to confirm these findings and the impact on major outcomes. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Top