Reactive conductors for increased efficiency of exploding foil initiators and other detonators
Morris, Christopher J.; Wilkins, Paul; May, Chadd; Zakar, Eugene
2015-05-05
Provided among other things are reactive energetic material systems used for conductors in detonators for increased efficiencies. According to an embodiment, a detonator may include: a conductor including at least two constituents including (i) an electrically conductive constituent, and (ii) an electrically non-conductive constituent, that when subjected to sufficient electrical energy, result in an exothermic reaction; and a flyer plate having a non-conductive surface in contact with said conductor. When the sufficient electrical energy is supplied to said conductor, rapid heating and vaporization of at least a portion of the conductor occurs so as to explosively drive at least a portion of the flyer plate away from said conductor. In an embodiment, a multilayer conductor may be formed of alternating layers of at least one electrically conductive layer, and at least one electrically non-conductive layer, that when subjected to sufficient electrical energy, result in an exothermic reaction.
NASA Technical Reports Server (NTRS)
Watson, Kent A.; Connell, John W.; Delozier, Donavon M.; Smith, Joseph G., Jr.
2004-01-01
Space environmentally durable polymeric films with low color and sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film while maintaining flexibility is to use single wall carbon nanotubes (SWNTs) as conductive additives. Approaches investigated in our lab involved an in-situ polymerization method, addition of SWNTs to a polymer containing reactive end-groups, and spray coating of polymer surfaces. The work described herein is a summary of the current status of this project. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the physical, thermal, mechanical and optical properties of the films. Additionally, the electrical conductivity was not affected by harsh mechanical manipulation of the films. The chemistry and physical properties of these nanocomposites will be discussed.
Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.
2002-01-01
Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.
Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David
2015-01-13
Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.
2003-01-01
Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.
Conductor-polymer composite electrode materials
Ginley, D.S.; Kurtz, S.R.; Smyrl, W.H.; Zeigler, J.M.
1984-06-13
A conductive composite material useful as an electrode, comprises a conductor and an organic polymer which is reversibly electrochemically dopable to change its electrical conductivity. Said polymer continuously surrounds the conductor in intimate electrical contact therewith and is prepared by electrochemical growth on said conductor or by reaction of its corresponding monomer(s) on said conductor which has been pre-impregnated or pre-coated with an activator for said polymerization. Amount of the conductor is sufficient to render the resultant composite electrically conductive even when the polymer is in an undoped insulating state.
High density associative memory
NASA Technical Reports Server (NTRS)
Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)
1989-01-01
A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.
Heterogeneous Superconducting Low-Noise Sensing Coils
NASA Technical Reports Server (NTRS)
Hahn, Inseob; Penanen, Konstantin I.; Ho Eom, Byeong
2008-01-01
A heterogeneous material construction has been devised for sensing coils of superconducting quantum interference device (SQUID) magnetometers that are subject to a combination of requirements peculiar to some advanced applications, notably including low-field magnetic resonance imaging for medical diagnosis. The requirements in question are the following: The sensing coils must be large enough (in some cases having dimensions of as much as tens of centimeters) to afford adequate sensitivity; The sensing coils must be made electrically superconductive to eliminate Johnson noise (thermally induced noise proportional to electrical resistance); and Although the sensing coils must be cooled to below their superconducting- transition temperatures with sufficient cooling power to overcome moderate ambient radiative heat leakage, they must not be immersed in cryogenic liquid baths. For a given superconducting sensing coil, this combination of requirements can be satisfied by providing a sufficiently thermally conductive link between the coil and a cold source. However, the superconducting coil material is not suitable as such a link because electrically superconductive materials are typically poor thermal conductors. The heterogeneous material construction makes it possible to solve both the electrical- and thermal-conductivity problems. The basic idea is to construct the coil as a skeleton made of a highly thermally conductive material (typically, annealed copper), then coat the skeleton with an electrically superconductive alloy (typically, a lead-tin solder) [see figure]. In operation, the copper skeleton provides the required thermally conductive connection to the cold source, while the electrically superconductive coating material shields against Johnson noise that originates in the copper skeleton.
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Delozier, D. M.; Watson, K. A.; Connell, J. W.; Yu, Aiping; Haddon, R. C.; Bekyarova, E.
2006-01-01
As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented.
Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites
NASA Astrophysics Data System (ADS)
Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo
2018-01-01
The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.
Space Durable Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation
NASA Technical Reports Server (NTRS)
Watson, Kent A.; Smith, Joseph G., Jr.; Connell, John W.
2003-01-01
Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film is based on the use of single walled carbon nanotubes (SWNT) as conductive additives. Earlier approaches investigated in our lab involved both an in-situ polymerization approach and addition of SWNT to an oligomer containing reactive end-groups as methods to improve SWNT dispersion. The work described herein is based on the spray coating of a SWNT/solvent dispersion onto the film surface. Two types of polyimides were investigated, one with reactive end groups that can lead to bond formation between the oligomer chain and the SWNT surface and those without reactive end-groups. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the mechanical, optical, thermo-optical properties of the film as compared to the other methods. The chemistry and physical properties of these nanocomposites will be discussed.
Sensor system for web inspection
Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.
2002-01-01
A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.
Experimental analysis of electrical properties of composite materials
NASA Astrophysics Data System (ADS)
Fiala, L.; Rovnaník, P.; Černý, R.
2017-02-01
Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.
Polymer composites with graphene nanofillers: electrical properties and applications.
Tjong, Sie Chin
2014-02-01
Graphene with extraordinary high elastic modulus and excellent electrical conductivity has good prospects for use as the filler material for fabricating novel polymer composites designed for electrostatic discharge and EMI shielding protection, field emission, gas sensor, and fuel cell applications. Large amounts of graphene oxide (GO) can be obtained by wet chemical oxidation of graphite into a mixture of concentrated sulfuric acid, sodium nitrate and potassium permanganate. Accordingly, carbon atoms in the basal plane and edges of GO are decorated with oxygenated functional groups, forming an electrical insulator. To restore electrical conductivity, chemical reduction or thermal annealing is needed to eliminate oxygenated groups of GO. However, such treatments induce internal defects and remove oxygenated atoms of GO partially. The remnant-oxygenated groups affect electrical conductivity of graphene greatly. Nevertheless, reduced graphene oxide and thermally reduced graphene oxide are sufficiently conductive to form polymer nanocomposites at very low percolation threshold. This review provides the fundamentals and state-of-the-art developments in the fabrication methods and electrical property characterizations as well as the applications of novel graphene/polymer nanocomposites. Particular attention is paid to their processing-structural-electrical property relationships.
Integrated electrical connector
Benett, William J.; Ackler, Harold D.
2005-05-24
An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.
Electrical and Thermal Conductivity of Solid Solution Sn1- x Mn x Te (0 ≥ x ≥ 0.04)
NASA Astrophysics Data System (ADS)
Akhundova, N. M.
2018-01-01
Electrical and thermal properties of the Sn1-xMnxTe single crystals (0 ≥ x ≥ 0.04) with contacts of eutectic alloy 57Bi + 43Sn (in mass%) are investigated at temperatures from 77 to 300 K. Experimental results show that this alloy with specified single crystals forms ohmic contact with a sufficiently low contact resistance. The electronic thermal conductivity in some samples reaches about 50% of the total thermal conductivity, and structural defects contribute significantly to the thermal resistance of the crystals.
Experiments in Magnetohydrodynamics
ERIC Educational Resources Information Center
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Vail, III, William Banning
2001-01-01
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information useful to determine the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a plurality of spaced apart voltage measurement electrodes that electrically engage a portion of the interior of the cased well. During measurements of information useful to determine formation resistivity, current is conducted between a first current conducting electrode in electrical contact with the interior of the cased well to a second current conducting electrode that is also in electrical contact with the interior of the cased well. The first and second current conducting electrodes are separated by a distance sufficient so that at least a portion of the current conducted between the first and second current conducting electrodes is conducted through the geological formation of interest.
Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.
2004-01-01
Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH
2011-02-15
This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.
1991-01-01
Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to thermally char (pyrolyze) the Kapton. Such charred Kapton has sufficient electrical conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an investigation to ascertain the likelihood of the Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of SSF, and the consequences of arc initiation.
NASA Technical Reports Server (NTRS)
Caplan, Maggie L. (Inventor); Stoakley, Diane M. (Inventor); St. Clair, Anne K. (Inventor)
1996-01-01
An electrically conductive, thermooxidatively stable poltimide, especially a film thereof, is prepared from an intimate admixture of a particular polyimide and gold (III) ions, in an amount sufficient to provide between 17 and 21 percent by weight of gold (III) ions, based on the weight of electrically conductive, thermooxidatively stable polyimide. The particular polyimide is prepared from a polyamic acid which has been synthesized from a dianhydride/diamine combination selected from the group consisting of 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis[4-(4 -aminophenoxy)phenyl]hexafluoropropane; 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 4,4'-oxydianiline; 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride and 4,4'-oxydianiline; and 3,3'4,4'-benzophenonetetracarboxylic dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane.
How Insulating Particles Increase the Conductivity of a Suspension
NASA Astrophysics Data System (ADS)
Pannacci, N.; Lobry, L.; Lemaire, E.
2007-08-01
Nonconducting particles suspended in a liquid usually decreases the bulk conductivity since they form obstacles to the ions’ migration. However, for sufficiently high dc electric fields, these particles rotate spontaneously (Quincke rotation) and facilitate the ions migration: the effective conductivity of the suspension is thus increased. We present a theoretical analysis and show experimental results which demonstrate that the apparent conductivity of the whole suspension can be higher than that of the suspending liquid.
High Thermal Conductive BBL/Graphene Nanocomposite System
2011-09-02
properties. Composite materials employing carbon -based materials such as carbon - nanotube (CNT), graphene, and fullerene have been explored. However, at...fraction as low as 0.1 vol %, comparable to those observed in carbon nanotube -based composites1c and a conductivity of 0.1 Sm-1, sufficient for many...in both poly(benzimidazobenzophenanthroline) (BBL) and the carbon sheets of the graphene so that the electrical-conductivity levels of the composites
Electric Field Activated Shape Memory Polymer Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Turner, Travis L. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)
2017-01-01
Provided is an electrically activated shape memory polymer composite capable of thermal shape reformation using electric power to heat the composite through its matrix glass transition temperature. The composite includes an adaptable polymer matrix component using a diglycidyl ether resin, at least one substantially well-dispersed conductive or magnetic nano-filler component, and at least one elastic, laminated layer. Also provided are methods of preparing the composite and methods of activating the composite. A shape reformation of the composite is triggered by applying an electric field at DC and/or at a frequency above about 1.mu.Hz for a sufficient time.
Remarks on the thermal stability of an Ohmic-heated nanowire
NASA Astrophysics Data System (ADS)
Timsit, Roland S.
2018-05-01
The rise in temperature of a wire made from specific materials, due to ohmic heating by a DC electrical current, may lead to uncontrollable thermal runaway with ensuing melting. Thermal runaway stems from a steep decrease with increasing temperature of the thermal conductivity of the conducting material and subsequent trapping of the ohmic heat in the wire, i.e., from the inability of the wire to dissipate the heat sufficiently quickly by conduction to the cooler ends of the wire. In this paper, we show that the theory used to evaluate the temperature of contacting surfaces in a bulk electrical contact may be applied to calculate the conditions for thermal runaway in a nanowire. Implications of this effect for electrical contacts are addressed. A possible implication for memory devices using ohmic-heated nanofilms or nanowires is also discussed.
Assessing field-scale biogeophysical signatures of bioremediation over a mature crude oil spill
Slater, Lee; Ntarlagiannis, Dimitrios; Atekwana, Estella; Mewafy, Farag; Revil, Andre; Skold, Magnus; Gorby, Yuri; Day-Lewis, Frederick D.; Lane, John W.; Trost, Jared J.; Werkema, Dale D.; Delin, Geoffrey N.; Herkelrath, William N.; Rectanus, H.V.; Sirabian, R.
2011-01-01
We conducted electrical geophysical measurements at the National Crude Oil Spill Fate and Natural Attenuation Research Site (Bemidji, MN). Borehole and surface self-potential measurements do not show evidence for the existence of a biogeobattery mechanism in response to the redox gradient resulting from biodegradation of oil. The relatively small self potentials recorded are instead consistent with an electrodiffusion mechanism driven by differences in the mobility of charge carriers associated with biodegradation byproducts. Complex resistivity measurements reveal elevated electrical conductivity and interfacial polarization at the water table where oil contamination is present, extending into the unsaturated zone. This finding implies that the effect of microbial cell growth/attachment, biofilm formation, and mineral weathering accompanying hydrocarbon biodegradation on complex interfacial conductivity imparts a sufficiently large electrical signal to be measured using field-scale geophysical techniques.
NASA Astrophysics Data System (ADS)
Lizarralde, Daniel; Chave, Alan; Hirth, Greg; Schultz, Adam
1995-09-01
We present results of a long-period magnetotelluric (MT) investigation of the electrical structure beneath the eastern North Pacific. The electric field data consist of ˜2 years of continuously recorded voltages across an unpowered, ˜4000-km-long submarine telephone cable (HAW-1) extending from Point Arena, California, to Oahu, Hawaii. The electric field measurements are coherent to some degree with magnetic field measurements from Honolulu Observatory at periods of 0.1 to 45 days. This coherence is enhanced at long periods over that observed with point electric field sensors due to horizontal averaging of the motional electric fields of spatial scale smaller than the cable length, significantly diminishing their effect. Robust, controlled leverage MT response estimates and their jacknife confidence limits are computed for the HAW-1 to Honolulu data. An equivalent scalar MT response obtained from Honolulu magnetic variations data is used to correct the HAW-1 MT response for static shift and to extend the MT response estimate to periods of 100 days. The composite response function satisfies necessary and sufficient conditions for consistency with a one-dimensional conductivity structure and is most sensitive to structure between 150 and 1000 km. Inversion of the MT response reveals a conductive zone (0.05-0.1 S/m) between 150 and 400 km depth and a positive gradient below 500 km; these observations are consistent with previous MT studies in the North Pacific. This upper mantle conductivity is too high to be explained by solid-state conduction in dry olivine using reasonable mantle geotherms. Calculations based on measurements of hydrogen solubility and diffusivity in olivine indicate that H+ dissolved in olivine, possibly combined with a lattice preferred orientation consistent with measured seismic anisotropy, provide sufficient conductivity enhancement to explain the inversion results. The high conductivity may also be explained by the presence of gravitationally stable partial melt. Comparison of the HAW-1 results with long-period MT studies conducted on land reveals differences in upper mantle conductivity between different tectonic regimes. In particular, the upper mantle beneath the Pacific Ocean is considerably more conductive than that beneath the Canadian shield and similar in conductivity to that beneath the Basin and Range.
Reduction of thermal conductivity in phononic nanomesh structures.
Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R
2010-10-01
Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.
Evaluation of a Conductive Elastomer Seal for Spacecraft
NASA Technical Reports Server (NTRS)
Daniels, C. C.; Mather, J. L.; Oravec, H. A.; Dunlap, P. H., Jr.
2016-01-01
An electrically conductive elastomer was evaluated as a material candidate for a spacecraft seal. The elastomer used electrically conductive constituents as a means to reduce the resistance between mating interfaces of a sealed joint to meet spacecraft electrical bonding requirements. The compound's outgassing levels were compared against published NASA requirements. The compound was formed into a hollow O-ring seal and its compression set was measured. The O-ring seal was placed into an interface and the electrical resistance and leak rate were quantified. The amount of force required to fully compress the test article in the sealing interface and the force needed to separate the joint were also measured. The outgassing and resistance measurements were below the maximum allowable levels. The room temperature compression set and leak rates were fairly high when compared against other typical spacecraft seal materials, but were not excessive. The compression and adhesion forces were desirably low. Overall, the performance of the elastomer compound was sufficient to be considered for future spacecraft seal applications.
Brown, R.J.; Gerth, H.L.; Robinson, S.C.
1981-01-23
This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.
Brown, R. Jack; Gerth, Howard L.; Robinson, Samuel C.
1982-01-01
This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.
Trujillo, Macarena; Bon, Jose; Berjano, Enrique
2017-09-01
(1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. A 12-min RFA in liver was modelled using an ICW electrode (17 G, 3 cm tip) by an impedance-control pulsing protocol with a constant current of 1.5 A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74 cm for differences in electrical conductivity of 0.31 S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1 mL/min). Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA.
Tissue-Simulating Gel For Medical Research
NASA Technical Reports Server (NTRS)
Companion, John A.
1992-01-01
Nonhardening, translucent gel more nearly simulates soft human or animal tissue. Modified to be softer or harder by altering proportions of ingredients. Fillers added to change electrical, mechanical, heat-conducting, or sound-conducting/scattering properties. Molded to any desired shape and has sufficient mechanical strength to maintain shape without supporting shell. Because of its thermal stability, gel especially useful for investigation of hyperthermia as treatment for cancer.
Electrically Conductive Anodized Aluminum Surfaces
NASA Technical Reports Server (NTRS)
Nguyen, Trung Hung
2006-01-01
Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to < or = 10(exp 9) Omega-cm. The present treatment does this. The treatment is a direct electrodeposition process in which the outer anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In comparison with these competing finishes, the present nanocomposite finishes are expected to cost 50 to 20 percent less and to last longer.
Olson, J.M.; Carleton, K.L.
1982-06-10
A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Olson, Jerry M.; Carleton, Karen L.
1984-01-01
A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Generation of dynamo magnetic fields in the primordial solar nebula
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.
1992-01-01
The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.
Organometallic Polymeric Conductors
NASA Technical Reports Server (NTRS)
1997-01-01
For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.
NASA Astrophysics Data System (ADS)
Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel
2016-04-01
Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.
29 CFR 1910.66 - Powered platforms for building maintenance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to supply electrical power and/or control current for equipment or to provide voice communication... access to, and egress from, the equipment and sufficient space to conduct necessary maintenance of the... in use; and (vi) An effective two-way voice communication system shall be provided between the...
29 CFR 1910.66 - Powered platforms for building maintenance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to supply electrical power and/or control current for equipment or to provide voice communication... access to, and egress from, the equipment and sufficient space to conduct necessary maintenance of the... in use; and (vi) An effective two-way voice communication system shall be provided between the...
Ultrashort pulse high intensity laser illumination of a simple metal
NASA Astrophysics Data System (ADS)
Milchberg, H. M.; Freeman, R. R.; Davey, S. C.
1988-10-01
We have observed the self-reflection of intense, sub-picosecond 308 nm light pulse incident on a planar Al target and have inferred the electrical conductivity of solid density Al. The pulse lengths were sufficiently short that no significant expansion of the target occurred during the measurement.
Behavior Of A Simple Metal Under Ultrashort Pulse High Intensity Laser Illumination
NASA Astrophysics Data System (ADS)
Milchberg, H. M.; Freeman, R. R.; Davey, S. C.
1988-07-01
We have observed the self-reflection of intense, sub-picosecond 308 nm light pulse incident on a planar AI target and have inferred the electrical conductivity of solid density AI. The pulse lengths were sufficiently short that no significant expansion of the target occurred during the measurement.
Electric-field-driven phase transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Wu, B.; Zimmers, A.; Aubin, H.; Ghosh, R.; Liu, Y.; Lopez, R.
2011-12-01
We report on local probe measurements of current-voltage and electrostatic force-voltage characteristics of electric-field-induced insulator to metal transition in VO2 thin film. In conducting AFM mode, switching from the insulating to metallic state occurs for electric-field threshold E˜6.5×107Vm-1 at 300K. Upon lifting the tip above the sample surface, we find that the transition can also be observed through a change in electrostatic force and in tunneling current. In this noncontact regime, the transition is characterized by random telegraphic noise. These results show that electric field alone is sufficient to induce the transition; however, the electronic current provides a positive feedback effect that amplifies the phenomena.
NASA Astrophysics Data System (ADS)
Han, Tongcheng
2018-07-01
Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.
Beretta, Davide; Barker, Alex J; Maqueira-Albo, Isis; Calloni, Alberto; Bussetti, Gianlorenzo; Dell'Erba, Giorgio; Luzio, Alessandro; Duò, Lamberto; Petrozza, Annamaria; Lanzani, Guglielmo; Caironi, Mario
2017-05-31
Organic conductors are being evaluated for potential use in waste heat recovery through lightweight and flexible thermoelectric generators manufactured using cost-effective printing processes. Assessment of the potentiality of organic materials in real devices still requires a deeper understanding of the physics behind their thermoelectric properties, which can pave the way toward further development of the field. This article reports a detailed thermoelectric study of a set of highly conducting inkjet-printed films of commercially available poly(3,4-ethylenedioxythiophene) polystyrene sulfonate formulations characterized by in-plane electrical conductivity, spanning the interval 10-500 S/cm. The power factor is maximized for the formulation showing an intermediate electrical conductivity. The Seebeck coefficient is studied in the framework of Mott's relation, assuming a (semi-)classical definition of the transport function. Ultraviolet photoelectron spectroscopy at the Fermi level clearly indicates that the shape of the density of states alone is not sufficient to explain the observed Seebeck coefficient, suggesting that carrier mobility is important in determining both the electrical conductivity and thermopower. Finally, the cross-plane thermal conductivity is reliably extracted thanks to a scaling approach that can be easily performed using typical pump-probe spectroscopy.
Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI
2009-03-03
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2011-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
NASA Technical Reports Server (NTRS)
Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)
2009-01-01
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory.
Kim, Gun Hwan; Lee, Jong Ho; Jeon, Woojin; Song, Seul Ji; Seok, Jun Yeong; Yoon, Jung Ho; Yoon, Kyung Jean; Park, Tae Joo; Hwang, Cheol Seong
2012-10-24
The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.
Conducting nanotubes or nanostructures based composites, method of making them and applications
NASA Technical Reports Server (NTRS)
Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)
2013-01-01
An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.
Apparatus for enhancing tissue repair in mammals
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2007-01-01
An apparatus is disclosed for enhancing tissue repair in mammals, with the apparatus comprising: a sleeve for encircling a portion of a mammalian body part, said sleeve comprising an electrically conductive coil capable of generating an electromagnetic field when an electrical current is applied thereto, means for supporting the sleeve on the mammalian body part; and means for supplying the electrically conductive coil with a square wave time varying electrical current sufficient to create a time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss within the interior of the coil in order that when the sleeve is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss is generated on the mammalian body part for an extended period of time, tissue regeneration within the mammalian body part is increased to a rate in excess of the normal tissue regeneration rate that would occur without application of the time varying electromagnetic force.
Durgam, Hymavathi; Sapp, Shawn; Deister, Curt; Khaing, Zin; Chang, Emily; Luebben, Silvia; Schmidt, Christine E
2010-01-01
Synthetic polymers such as polypyrrole (PPy) are gaining significance in neural studies because of their conductive properties. We evaluated two novel biodegradable block co-polymers of PPy with poly(epsilon-caprolactone) (PCL) and poly(ethyl cyanoacrylate) (PECA) for nerve regeneration applications. PPy-PCL and PPy-PECA co-polymers can be processed from solvent-based colloidal dispersions and have essentially the same or greater conductivity (32 S/cm for PPy-PCL, 19 S/cm for PPy-PECA) compared to the PPy homo-polymer (22 S/cm). The PPy portions of the co-polymers permit electrical stimulation whereas the PCL or PECA blocks enable degradation by hydrolysis. For in vitro tests, films were prepared on polycarbonate sheets by air brushing layers of dispersions and pressing the films. We characterized the films for hydrolytic degradation, electrical conductivity, cell proliferation and neurite extension. The co-polymers were sufficient to carry out electrical stimulation of cells without the requirement of a metallic conductor underneath the co-polymer film. In vitro electrical stimulation of PPy-PCL significantly increased the number of PC12 cells bearing neurites compared to unstimulated PPy-PCL. For in vivo experiments, the PPy co-polymers were coated onto the inner walls of nerve guidance channels (NGCs) made of the commercially available non-conducting biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV). The NGCs were implanted in a 10 mm defect made in the sciatic nerve of rats, and harvested after 8 weeks. Histological staining showed axonal growth. The studies indicated that these new conducting degradable biomaterials have good biocompatibility and support proliferation and growth of PC12 cells in vitro (with and without electrical stimulation) and neurons in vivo (without electrical stimulation).
Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarský, Jonáš, E-mail: jonas.tokarsky@vsb.cz; IT4Innovations Centre of Excellence, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava—Poruba; Kulhánková, Lenka
2016-03-15
Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and inmore » orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.« less
NASA Astrophysics Data System (ADS)
Eguchi, Kei; Sugimura, Tatsuya; Watanabe, Toshiya; Kurebayashi, Shuji
To investigate the perception of science and technology of university students, the scholastic test concerning electric field was conducted in this paper. The scholastic test, which was conducted to university students, is based on the scholastic test provided by the National Institute for Educational Policy Research of Japan's Curriculum Research Center. The result of the scholastic test showed that 1. For the questions related to “A4(i): Maintenance check and prevention of accidents of equipment” in the junior high school government guidelines for teaching, the percentage of correct answer was the lowest and 2. Not only liberal arts course students but also science course students do not have sufficient perception concerning the capability of “Device and Creativity”, because the percentage of correct answer to the questions concerning “Device and Creativity” was about 70%. The results of this study will give us the directivity of electricity education.
Jang, Ji-Un; Park, Hyeong Cheol; Lee, Hun Su; Khil, Myung-Seob; Kim, Seong Yun
2018-05-16
There is growing interest in carbon fibre fabric reinforced polymer (CFRP) composites based on a thermoplastic matrix, which is easy to rapidly produce, repair or recycle. To expand the applications of thermoplastic CFRP composites, we propose a process for fabricating conductive CFRP composites with improved electrical and thermal conductivities using an in-situ polymerizable and thermoplastic cyclic butylene terephthalate oligomer matrix, which can induce good impregnation of carbon fibres and a high dispersion of nanocarbon fillers. Under optimal processing conditions, the surface resistivity below the order of 10 +10 Ω/sq, which can enable electrostatic powder painting application for automotive outer panels, can be induced with a low nanofiller content of 1 wt%. Furthermore, CFRP composites containing 20 wt% graphene nanoplatelets (GNPs) were found to exhibit an excellent thermal conductivity of 13.7 W/m·K. Incorporating multi-walled carbon nanotubes into CFRP composites is more advantageous for improving electrical conductivity, whereas incorporating GNPs is more beneficial for enhancing thermal conductivity. It is possible to fabricate the developed thermoplastic CFRP composites within 2 min. The proposed composites have sufficient potential for use in automotive outer panels, engine blocks and other mechanical components that require conductive characteristics.
Gay, Eddie C.; Martino, Fredric J.
1976-01-01
Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.
Diffusion in liquid metal systems. [information on electrical resistivity and thermal conductivity
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.
1975-01-01
Physical properties of twenty liquid metals are reported; some of the data on such liquid metal properties as density, electrical resistivity, thermal conductivity, and heat capacity are summarized in graphical form. Data on laboratory handling and safety procedure are summarized for each metal; heat-transfer-correlations for liquid metals under various conditions of laminar and turbulent flow are included. Where sufficient data were available, temperature equations of properties were obtained by the method of least-squares fit. All values of properties given are valid in the given liquid phase ranges only. Additional tabular data on some 40 metals are reported in the appendix. Included is a brief description of experiments that were performed to investigate diffusion in liquid indium-gallium systems.
You, Ilhwan; Yoo, Doo-Yeol; Kim, Soonho; Kim, Min-Jae; Zi, Goangseup
2017-01-01
This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state. PMID:29109388
You, Ilhwan; Yoo, Doo-Yeol; Kim, Sooho; Kim, Min-Jae; Zi, Goangseup
2017-10-29
This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.
Casimir self-entropy of a spherical electromagnetic δ -function shell
NASA Astrophysics Data System (ADS)
Milton, Kimball A.; Kalauni, Pushpa; Parashar, Prachi; Li, Yang
2017-10-01
In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies. Here we consider an electromagnetic δ -function sphere ("semitransparent sphere") whose electric susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization (subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under different regularization schemes. These rather surprising findings require further investigation.
NASA Astrophysics Data System (ADS)
Jain, Shrenik Kumar
Fused deposition modeling (FDM) technology uses thermoplastic filament for layer by layer fabrication of objects. To make functional objects with desired properties, composite filaments are required in the FDM. In this thesis, less expensive mesoporous Nano carbon (NC) and carbon nanotube (CNT) infused in Polylactide (PLA) thermoplastic filaments were fabricated to improve the electrical properties and maintain sufficient strength for 3D printing. Solution blending was used for nanocomposite fabrication and melt extrusion was employed to make cylindrical filaments. Mechanical and electrical properties of 1 to 20 wt% of NC and 1 to 3 wt% of CNT filaments were investigated and significant improvement of conductivity (3.76 S/m) and sufficient yield strength (35MPa) were obtained. Scanning electron microscopy (SEM) images exhibited uniform dispersion of nanoparticles in polymer matrix and differential scanning calorimetry (DSC) results showed no significant changes in the glass transition temperature (Tg) for all the compositions. Perspective uses of this filament are for fabrication of electrical wires in 3D printed robots, drones, prosthetics, orthotics and others.
Model 'zero-age' lunar thermal profiles resulting from electrical induction
NASA Technical Reports Server (NTRS)
Herbert, F.; Sonett, C. P.; Wiskerchen, M. J.
1977-01-01
Thermal profiles for the moon are calculated under the assumption that a pre-main-sequence T-Tauri-like solar wind excites both transverse magnetic and transverse electric induction while the moon is accreting. A substantial initial temperature rise occurs, possibly of sufficient magnitude to cause subsequent early extensive melting throughout the moon in conjunction with nominal long-lived radioactives. In these models, accretion is an unimportant direct source of thermal energy but is important because even small temperature rises from accretion cause significant changes in bulk electrical conductivity. Induction depends upon the radius of the moon, which we take to be accumulating while it is being heated electrically. The 'zero-age' profiles calculated in this paper are proposed as initial conditions for long-term thermal evolution of the moon.
Electrical conductivity of H2O-NaCl fluids to 10 kbar
NASA Astrophysics Data System (ADS)
Sinmyo, R.; Keppler, H.
2016-12-01
Magnetotelluric studies often reveal zones of elevated electrical conductivity in the mantle wedge above subducting slabs, in the deep crust below fold belts, or below active volcanoes. Since both aqueous fluids and hydrous silivate melts may be highly conductive, they may both account for these observations. Distinguishing between these two posssibilities, however, is difficult. One reason for this problem is that while there are very good conductivity data for silicate melts, such data do not exist for aqueous fluids under the relevant conditions of pressure, temperature and solute concentration. Most crustal and mantle fluids likely contain some NaCl, which greatly enhances conductivity due to its partial dissociation into Na+ and Cl-. We therefore studied the electrical conductivity of 0.01, 0.1 and 1 m NaCl solutions in water to 10 kbar and 600 °C. The measurements were carried out in externally-heated diamond cells containing two gaskets separated by an insulating ring of diamond, following a method described by Ni et al. (2014). The two gaskets were used as electrodes and full impedance spectra were measured from 30 Hz to 10 MHz using a Solartron 1260 impedance analyzer. Electrical conductivity was generally found to increase with pressure temperature, and fluid density. The conductivity increase observed upon variation of NaCl concentration from 0.1m to 1m was smaller than from 0.01m to 0.1m, which reflects the reduced degree of dissociation at high NaCl concentration. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O-NaCl fluids may enhance electrical conductivities with little disturbance of vp or vp/vs ratios.
Electron penetration of spacecraft thermal insulation
NASA Technical Reports Server (NTRS)
Powers, W. L.; Adams, B. F.; Inouye, G. T.
1981-01-01
The external thermal blanket with 13 mils of polyethylene which has the known range and stopping power as a function of electron energy is investiated. The most recent omnidirectional peak Jovian electron flux at 5 Jupiter radii is applied, the electron current penetrating the thermal blanket is calculated and allowed to impinge on a typical 20 mil polyethylene insulator surrounding a wire. The radiation dose rate to the insulator is then calculated and the electrical conductivity found. The results demonstrate that the increased electronic mobility is sufficient to keep the maximum induced electric field two orders of magnitude below the critical breakdown strength.
Infection Risk From Conducted Electrical Weapon Probes: What Do We Know?
Kroll, Mark W; Ritter, Mollie B; Guilbault, Richard A; Panescu, Dorin
2016-11-01
Concern has been raised over the infection risk of the TASER electrical weapon since the probes penetrate the skin. The manufacturing process produces unsterilized probes with a 5% rate of Staphylococcus aureus contamination. Voluntary recipients (n = 208) of probe exposures were surveyed and there were no self-observations of infection. With over 3.3 million probe landings, there have been 10 case reports of penetrations of sensitive tissue with no reported infections. The electrical field was modeled and found that the electrical pulses generate a field of over 1200 V/mm on the dart portion. This is sufficient to sterilize the dart via electroporation. Electrical weapon probes appear to have a very low (possibly zero) rate of infection. The factors leading to this low infection rate appear to be a manufacturing process producing a low rate of bacterial contamination and the pulses sterilizing the dart via electroporation. © 2016 American Academy of Forensic Sciences.
Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields.
Inoue, M; Miller, M W; Cox, C; Carstesen, E L
1985-01-01
Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane.
Electrical isolation of component cells in monolithically interconnected modules
Wanlass, Mark W.
2001-01-01
A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.
Analytical instruments, ionization sources, and ionization methods
Atkinson, David A.; Mottishaw, Paul
2006-04-11
Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.
NASA Astrophysics Data System (ADS)
Sekine, Katsuhisa
2017-12-01
In order to represent the effects of T-tubules and folded surface membranes on the electrical admittance and impedance of skeletal muscles measured by the external-electrode method, analytical relations for the equivalent complex conductivities of hypothetical smooth surface membranes were derived. In the relations, the effects of each tubule were represented by the admittance of a straight cable. The effects of the folding of a surface membrane were represented by the increased area of surface membranes. The equivalent complex conductivities were represented as summation of these effects, and the effects of the T-tubules were different between the transversal and longitudinal directions. The validity of the equivalent complex conductivities was supported by the results of finite-difference method (FDM) calculations made using three-dimensional models in which T-tubules and folded surface membranes were represented explicitly. FDM calculations using the equivalent complex conductivities suggested that the electrically inhomogeneous structure due to the existence of muscle cells with T-tubules was sufficient for explaining the experimental results previously obtained using the external-electrode method. Results of FDM calculations in which the structural changes caused by muscle contractions were taken into account were consistent with the reported experimental results.
Extreme-UV electrical discharge source
Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.
2002-01-01
An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.
Electromechanical characterization of individual micron-sized metal coated polymer particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazilchuk, Molly; Kristiansen, Helge; Conpart AS, Skjetten 2013
Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contactmore » behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.« less
NASA Astrophysics Data System (ADS)
Shim, Hyung Cheoul; Choi, Hyekyoung; Jeong, Sohee
2018-03-01
In this paper, we fabricated quantum dot (QD) aggregates at desired locations using dielectrophoretic (DEP) forces induced in the carbon nanotube (CNT) nanogap created by Joule heating-induced electrical breakdown. Nanogaps with a size of at least 20-30 nm can be effectively fabricated in the ambient condition, and fabrication yield can be monitored through in-situ electrical signal without post morphological analysis. The geometry of CNT electrodes with high aspect ratio as well as the gap size of the electrodes to a few tens of nanometers scale enabled the derivation of sufficiently high DEP forces that facilitate the trapping of QD in the CNT nanogap. Above all, we were able to fabricate a conducting crack-free QD aggregates by exchanging the ligands on the surface of the QDs in the presence of a DEP force and this approach showed the possibility of being applied as a QD based optoelectronic devices.
Electrophoretic sample insertion. [device for uniformly distributing samples in flow path
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Inventor)
1974-01-01
Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.
NASA Astrophysics Data System (ADS)
Irimia, Andrei; Swinney, Kenneth R.; Wikswo, John P.
2009-05-01
In this paper, we clearly demonstrate that the electric potential and the magnetic field can contain different information about current sources in three-dimensional conducting media. Expressions for the magnetic fields of electric dipole and quadrupole current sources immersed in an infinite conducting medium are derived, and it is shown that two different point dipole distributions that are electrically equivalent have different magnetic fields. Although measurements of the electric potential are not sufficient to determine uniquely the characteristics of a quadrupolar source, the radial component of the magnetic field can supply the additional information needed to resolve these ambiguities and to determine uniquely the configuration of dipoles required to specify the electric quadrupoles. We demonstrate how the process can be extended to even higher-order terms in an electrically silent series of magnetic multipoles. In the context of a spherical brain source model, it has been mathematically demonstrated that the part of the neuronal current generating the electric potential lives in the orthogonal complement of the part of the current generating the magnetic potential. This implies a mathematical relationship of complementarity between electroencephalography and magnetoencephalography, although the theoretical result in question does not apply to the nonspherical case [G. Dassios, Math. Med. Biol. 25, 133 (2008)]. Our results have important practical applications in cases where electrically silent sources that generate measurable magnetic fields are of interest. Moreover, electrically silent, magnetically active moments of higher order can be useful when cancellation due to superposition of fields can occur, since this situation leads to a substantial reduction in the measurable amplitude of the signal. In this context, information derived from magnetic recordings of electrically silent, magnetically active multipoles can supplement electrical recordings for the purpose of studying the physiology of the brain. Magnetic fields of the electric multipole sources in a conducting medium surrounded by an insulating spherical shell are also presented and the relevance of this calculation to cardiographic and encephalographic experimentation is discussed.
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.
Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David
2016-10-20
Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.
A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)
2016-10-01
Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.
1991-01-01
Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to themally chlar (pyrolyze) the Kapton. Such charred Kapton has sufficient electricxl conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an invetigation to ascertain the likelihood of Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF's) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of the SSF, and the consequences of arc initiation.
NASA Technical Reports Server (NTRS)
Wentzel, Daniel
2015-01-01
Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.
Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang
2015-12-16
Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.
Electrokinetic transport of aerobic microorganisms under low-strength electric fields.
Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R
2011-01-01
To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.
Apparatus and method for enhancing tissue repair in mammals
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2009-01-01
An apparatus is introduced for the use of enhancing tissue repair in mammals. The apparatus includes a sleeve; an electrically conductive coil; a sleeve support; an electrical circuit configured to supply the coil with a square wave time varying electrical current sufficient to create approximately 0.05 gauss to 0.5 gauss. When in use, the sleeve of the apparatus is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.5 gauss is generated on the mammalian body for an extended period of time so that the tissue is encouraged to be regenerated in the mammalian body part at a rate in excess of the normal tissue regeneration rate relative to regeneration without application of the time varying electromagnetic force.
A Method to have Multi-Layer Thermal Insulation Provide Damage Detection
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.; Jones, Thomas W.; Shams, Qamar A.; Lyons, Frankel; Henderson, Donald
2007-01-01
Design and testing of a multi-layer thermal insulation system that also provides debris and micrometeorite damage detection is presented. One layer of the insulation is designed as an array of passive open-circuit electrically conductive spiral trace sensors. The sensors are a new class of sensors that are electrically open-circuits that have no electrical connections thereby eliminating one cause of failure to circuits. The sensors are powered using external oscillating magnetic fields. Once electrically active, they produce their own harmonic magnetic fields. The responding field frequency changes if any sensor is damaged. When the sensors are used together in close proximity, the inductive coupling between sensors provides a means of telemetry. The spiral trace design using reflective electrically conductive material provides sufficient area coverage for the sensor array to serves as a layer of thermal insulation. The other insulation layers are designed to allow the sensor s magnetic field to permeate the insulation layers while having total reflective surface area to reduce thermal energy transfer. Results of characterizing individual sensors and the sensor array s response to punctures are presented. Results of hypervelocity impact testing using projectiles of 1-3.6 millimeter diameter having speeds ranging from 6.7-7.1 kilometers per second are also presented.
Chang, Chia Min; Chu, Cheng Hung; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping
2011-05-09
Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge(2)Sb(2)Te(5) layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge(2)Sb(2)Te(5) films provides useful information for furthering research and development efforts in this important area of modern technology. © 2011 Optical Society of America
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.
Değirmenci, Evren; Eyüboğlu, B Murat
2007-12-21
Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.
A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries
Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)
2016-01-01
Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles. PMID:27762261
Spacecraft Charging in Low Temperature Environments
NASA Technical Reports Server (NTRS)
Parker, Linda N.
2007-01-01
Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.
Polymeric salt bridges for conducting electric current in microfluidic devices
Shepodd, Timothy J [Livermore, CA; Tichenor, Mark S [San Diego, CA; Artau, Alexander [Humacao, PR
2009-11-17
A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.
Analysis of Electrical Transport and Noise Mechanisms in Amorphous Silicon
2015-11-23
and Skhlovskii [9] considered the long range Coulomb interaction and found that it reduces the DOS to zero at the Fermi level, thereby creating a so...called “ Coulomb gap (CG)” at low enough temperatures. This form of hopping conductivity results when an electron migrates from one site to another...site leaving a positively charged vacancy. For hopping to occur, the electron must have sufficient energy to overcome this Coulomb interaction
Do steady fast magnetic dynamos exist?
NASA Technical Reports Server (NTRS)
Finn, John M.; Ott, Edward; Hanson, James D.; Kan, Ittai
1989-01-01
This paper considers the question of the existense of a steady fast kinematic magnetic dynamo for a conducting fluid with a steady velocity field and vanishingly small electrical resistivity. The analysis of examples of steady dynamos, found by considering the zero-resistivity dynamics, indicated that, for sufficiently small resistivity, dynamo action can indeed occur in steady smooth three-dimensional chaotic fluid flows and that fast dynamos should consequently be a typical occurrence for such flows.
Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses
NASA Astrophysics Data System (ADS)
Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto
2018-04-01
We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.
Criteria for disintegration of an uncharged conducting liquid jet in a transverse electric field
NASA Astrophysics Data System (ADS)
Zubareva, O. V.; Zubarev, N. M.; Volkov, N. B.
2018-01-01
An uncharged conducting liquid cylindrical column (a jet for applications) placed between a pair of flat electrodes is considered. In the trivial case, when the electric field is absent, the jet with circular cross-section is the only possible equilibrium configuration of the system. In the presence of a potential difference between the electrodes, the jet is deformed by the electrostatic forces: its cross-section stretches along the electric field lines. In the case of the mutual compensation of the electrostatic and capillary forces, a new equilibrium configuration of the jet can appear. In a sufficiently strong field, the balance of the forces becomes impossible, and the jet disintegrates (splits into two separate jets). In the present work, we find the range of the parameters (the applied potential difference and the interelectrode distance), where the problem of finding the equilibrium configurations of the jet has solutions. Also we obtain the conditions under which the solutions do not exist and, consequently, the jet splits. The results are compared with the previously studied limiting case of infinite interelectrode distance.
Aircraft measurements of the atmospheric electrical global circuit during the period 1971-1984
NASA Technical Reports Server (NTRS)
Markson, R.
1985-01-01
This report will update an investigation of the global circuit conducted over the last 14 years through aircraft measurements of the variation of ionospheric potential and associated parameters. The data base included electric field, conductivity, and air-earth current density profiles from the tropics (25 deg N) to the Arctic (79 deg N). Almost all of the data have been obtained over the ocean to reduce noise associated with local generators, aerosols, and convection. Recently, two aircraft have been utilized to obtain, for the first time, quasi-periodic sets of simultaneous ionospheric potential (VI) soundings at remote locations and extending over time spans sufficiently long so that the universal time diurnal variation (Carnegie curve) could be observed. In additon, these measurements provided the first detection of the modulation of electric fields in the troposphere caused by the double vortex ionospheric convection pattern. Besides summarizing these measurements and comparing them to similar data obtained by other groups, this report discusses meteorological sources of error and criteria for determining if the global circuit is being measured rather than variations caused by local meteorological processes.
Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation
NASA Technical Reports Server (NTRS)
Delozier, D. M.; Tigelaar, D. M.; Watson, K. A.; Smith, J. G., Jr.; Lillehei, P. T.; Connell, J. W.
2004-01-01
Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge build-up have been under investigation as part of a materials development activity. In the work described herein, single-walled carbon nanotubes (SWNT) solutions were dispersed in solutions of a novel ionomer in N,N-dimethylacetamide resulting in homogenous suspensions or quasi-solutions. The ionomer was used to aid in the dispersal of SWNTs in to a soluble, low color space environmentally durable polyimide. The use of the ionomer as a dispersant enabled the nanotubes to be dispersed at loading levels up to 3 weight % in a polyimide solution without visual agglomeration. The films were further characterized for their electrical and mechanical properties.
Method for starting operation of a resistance melter
Chapman, Christopher Charles
1977-01-01
A method for starting the operation of a resistance furnace, where heating occurs by passing a current through the charge between two furnace electrodes and the charge is a material which is essentially electrically nonconductive when in a solid physical state but which becomes more electrically conductive when in a molten physical state, by connecting electrical resistance heating wire between the furnace electrodes, placing the wire in contact with the charge material between the electrodes and passing a current through the wire to heat the wire to a temperature sufficient to melt the material between the furnace electrodes so that as the material melts, current begins to pass between the electrodes through the melted material, further heating and melting more material until all current between the electrodes passes through the charge material without the aid or presence of the resistance element.
Electrical switching in cadmium boracite single crystals
NASA Technical Reports Server (NTRS)
Takahashi, T.; Yamada, O.
1981-01-01
Cadmium boracite single crystals at high temperatures ( 300 C) were found to exhibit a reversible electric field-induced transition between a highly insulative and a conductive state. The switching threshold is smaller than a few volts for an electrode spacing of a few tenth of a millimeter corresponding to an electric field of 100 to 1000 V/cm. This is much smaller than the dielectric break-down field for an insulator such as boracite. The insulative state reappears after voltage removal. A pulse technique revealed two different types of switching. Unstable switching occurs when the pulse voltage slightly exceeds the switching threshold and is characterized by a pre-switching delay and also a residual current after voltage pulse removal. A stable type of switching occurs when the voltage becomes sufficiently high. Possible device applications of this switching phenomenon are discussed.
NASA Astrophysics Data System (ADS)
Schumann, Timo; Galletti, Luca; Kealhofer, David A.; Kim, Honggyu; Goyal, Manik; Stemmer, Susanne
2018-01-01
The magnetotransport properties of epitaxial films of Cd3 As2 , a paradigm three-dimensional Dirac semimetal, are investigated. We show that an energy gap opens in the bulk electronic states of sufficiently thin films and, at low temperatures, carriers residing in surface states dominate the electrical transport. The carriers in these states are sufficiently mobile to give rise to a quantized Hall effect. The sharp quantization demonstrates surface transport that is virtually free of parasitic bulk conduction and paves the way for novel quantum transport studies in this class of topological materials. Our results also demonstrate that heterostructuring approaches can be used to study and engineer quantum states in topological semimetals.
Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Saidi, Mohammad Hassan; Moosavi, Ali; Sadeghi, Arman
2017-12-01
Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any arbitrary cross section, nine nanogeometries including polygonal, trapezoidal, double-trapezoidal, rectangular, elliptical, semi-elliptical, isosceles triangular, rhombic, and isotropically etched profiles are selected for presentation. For the special case of an elliptic cross section, full analytical solutions are also obtained utilizing the Mathieu functions. We show that the geometrical configuration plays a key role in determination of the ionic conductance, surface charge density, electrical potential and velocity fields, and proton enhancement. In this respect, the net electric charge and convective ionic conductance are higher for channels of larger perimeter to area ratio, whereas the opposite is true for the average surface charge density and mean velocity; the geometry impact on the two latest ones, however, vanishes if the background salt concentration is high enough. Moreover, we demonstrate that considering a constant surface potential equal to the average charge-regulated potential provides sufficiently accurate results for smooth geometries such as an ellipse at medium-high aspect ratios but leads to significant errors for geometries having narrow corners such as a triangle.
NASA Astrophysics Data System (ADS)
Qin, Jianqi; Celestin, Sebastien; Pasko, Victor P.
2013-05-01
Carrot sprites, exhibiting both upward and downward propagating streamers, and columniform sprites, characterized by predominantly vertical downward streamers, represent two distinct morphological classes of lightning-driven transient luminous events in the upper atmosphere. It is found that positive cloud-to-ground lightning discharges (+CGs) associated with large charge moment changes (QhQ) tend to produce carrot sprites with the presence of a mesospheric region where the electric field exceeds the value 0.8Ek and persists for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasingmore » ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.« less
Graphene-based composite materials.
Stankovich, Sasha; Dikin, Dmitriy A; Dommett, Geoffrey H B; Kohlhaas, Kevin M; Zimney, Eric J; Stach, Eric A; Piner, Richard D; Nguyen, SonBinh T; Ruoff, Rodney S
2006-07-20
Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.
Capacitively coupled RF diamond-like-carbon reactor
Devlin, David James; Coates, Don Mayo; Archuleta, Thomas Arthur; Barbero, Robert Steven
2000-01-01
A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.
Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David
2014-05-01
The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.
Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang
2015-01-01
Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673
Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.
Jung, Sunshin; Chun, Su Jin; Shon, Chae-Hwa
2016-08-10
Cellulose-based paper is essential in everyday life, but it also has further potentials for use in low-cost, printable, disposable, and eco-friendly electronics. Here, a method is developed for the cellulose-mediated microwave sintering of Ag patterns on conventional paper, in which the paper plays a significant role both as a flexible insulating substrate for the conductive Ag pattern and as a lossy dielectric media for rapid microwave heating. The anisotropic dielectric properties of the cellulose fibers mean that a microwave electric field applied parallel to the paper substrate provides sufficient heating to produce Ag patterns with a conductivity 29-38% that of bulk Ag in a short period of time (∼1 s) at 250-300 °C. Significantly, there is little thermal degradation of the substrate during this process. The microwave-sintered Ag patterns exhibit good mechanical stability against 10 000 bending cycles and can be easily soldered with lead-free solder. Therefore, cellulose-mediated microwave sintering presents a promising means of achieving short processing times and high electrical performance in flexible paper electronics.
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...
2016-12-01
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Using electrical resistance tomography to map subsurface temperatures
Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.
1994-09-13
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.
1994-01-01
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.
Runaway breakdown and hydrometeors in lightning initiation.
Gurevich, A V; Karashtin, A N
2013-05-03
The particular electric pulse discharges are observed in thunderclouds during the initiation stage of negative cloud-to-ground lightning. The discharges are quite different from conventional streamers or leaders. A detailed analysis reveals that the shape of the pulses is determined by the runaway breakdown of air in the thundercloud electric field initiated by extensive atmospheric showers (RB-EAS). The high amplitude of the pulse electric current is due to the multiple microdischarges at hydrometeors stimulated and synchronized by the low-energy electrons generated in the RB-EAS process. The series of specific pulse discharges leads to charge reset from hydrometeors to the free ions and creates numerous stretched ion clusters, both positive and negative. As a result, a wide region in the thundercloud with a sufficiently high fractal ion conductivity is formed. The charge transport by ions plays a decisive role in the lightning leader preconditioning.
Antifuse with a single silicon-rich silicon nitride insulating layer
Habermehl, Scott D.; Apodaca, Roger T.
2013-01-22
An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0
Method of bonding single crystal quartz by field-assisted bonding
Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.
1991-04-23
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.
Method of bonding single crystal quartz by field-assisted bonding
Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.
1991-01-01
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.
NASA Astrophysics Data System (ADS)
Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.
2017-08-01
A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.
Process for making electroformed stents
Hines, Richard A.
2000-02-01
This invention is directed to an expandable stent useful for implantation into an artery or the like. The stents are made using electroforming techniques in which an electrically-conductive mandrel is coated with a suitable resist material, after which the resist is exposed to an appropriate light pattern and frequency so as to form a stent pattern in the resist. The mandrel is then electroplated with a suitable stent material. The mandrel is etched away once a sufficient layer of stent material is deposited, leaving a completed stent.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, Theodore M.; Lowden, Richard A.
1990-01-01
An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.
Simultaneous head tissue conductivity and EEG source location estimation.
Akalin Acar, Zeynep; Acar, Can E; Makeig, Scott
2016-01-01
Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15cm(2)-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm(2)-scale accurate 3-D functional cortical imaging modality. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1992-01-01
Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.
Simultaneous head tissue conductivity and EEG source location estimation
Acar, Can E.; Makeig, Scott
2015-01-01
Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-subject and measurement method differences. In simulations, mis-estimation of skull conductivity can produce source localization errors as large as 3 cm. Here, we describe an iterative gradient-based approach to Simultaneous tissue Conductivity And source Location Estimation (SCALE). The scalp projection maps used by SCALE are obtained from near-dipolar effective EEG sources found by adequate independent component analysis (ICA) decomposition of sufficient high-density EEG data. We applied SCALE to simulated scalp projections of 15 cm2-scale cortical patch sources in an MR image-based electrical head model with simulated BSCR of 30. Initialized either with a BSCR of 80 or 20, SCALE estimated BSCR as 32.6. In Adaptive Mixture ICA (AMICA) decompositions of (45-min, 128-channel) EEG data from two young adults we identified sets of 13 independent components having near-dipolar scalp maps compatible with a single cortical source patch. Again initialized with either BSCR 80 or 25, SCALE gave BSCR estimates of 34 and 54 for the two subjects respectively. The ability to accurately estimate skull conductivity non-invasively from any well-recorded EEG data in combination with a stable and non-invasively acquired MR imaging-derived electrical head model could remove a critical barrier to using EEG as a sub-cm2-scale accurate 3-D functional cortical imaging modality. PMID:26302675
Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications
NASA Technical Reports Server (NTRS)
Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.
Heat Transfer Issues in Thin-Film Thermal Radiation Detectors
NASA Technical Reports Server (NTRS)
Barry, Mamadou Y.
1999-01-01
The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.
Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography
Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.
2016-01-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.
Electromagnetic augmentation for casting of thin metal sheets
Hull, J.R.
1987-10-28
Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.
NASA Astrophysics Data System (ADS)
Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.
2015-07-01
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.
Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; ...
2016-05-01
Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.
Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
30 CFR 57.12004 - Electrical conductors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage shall...
NASA Astrophysics Data System (ADS)
Acosta, Michael Anthony
The research presented in this thesis provides an understanding of small-scale hybrid power systems. Experiments were conducted to identify potential applications of renewable energy in residential and commercial applications in the Rio Grande Valley of Texas. Solar and wind energy converted into electric energy was stored in batteries and inverted to power common household and commercial appliances. Several small to medium size hybrid power systems were setup and utilized to conduct numerous tests to study renewable energy prospects and feasibility for various applications. The experimental results obtained indicate that carefully constructed solar power systems can provide people living in isolated communities with sufficient energy to consistently meet their basic power needs.
Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M
2013-09-27
A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
30 CFR 77.503 - Electric conductors; capacity and insulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors; capacity and insulation... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such...
30 CFR 77.503 - Electric conductors; capacity and insulation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors; capacity and insulation... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such...
30 CFR 75.513-1 - Electric conductor; size.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductor; size. 75.513-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.513-1 Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...
30 CFR 75.513-1 - Electric conductor; size.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductor; size. 75.513-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.513-1 Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...
30 CFR 75.513-1 - Electric conductor; size.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductor; size. 75.513-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.513-1 Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...
Hermetic aluminum radio frequency interconnection and method for making
Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.
2000-01-01
The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.
Electric motorcycle charging station powered by solar energy
NASA Astrophysics Data System (ADS)
Siriwattanapong, Akarawat; Chantharasenawong, Chawin
2018-01-01
This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.
Biogeochemical processes controlling density stratification in an iron-meromictic lake
NASA Astrophysics Data System (ADS)
Nixdorf, E.; Boehrer, B.
2015-06-01
Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.
Iron active electrode and method of making same
Jackovitz, John F.; Seidel, Joseph; Pantier, Earl A.
1982-10-26
An iron active electrode and method of preparing same in which iron sulfate is calcined in an oxidizing atmosphere at a temperature in the range of from about 600.degree. C. to about 850.degree. C. for a time sufficient to produce an iron oxide with a trace amount of sulfate. The calcined material is loaded into an electrically conductive support and then heated in a reducing atmosphere at an elevated temperature to produce activated iron having a trace amount of sulfide which is formed into an electrode plate.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, T.M.; Lowden, R.A.
1990-05-29
An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.
Investigation of electrically conducting yarns for use in textile actuators
NASA Astrophysics Data System (ADS)
Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.
2018-07-01
Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.
Yu, Xiao; Li, Zihua; Liu, Yong; Zhao, Wenxia; Xu, Ruimei; Wang, Donghai; Shen, Hui
2017-02-15
A promising new concept is the application of flexible and foldable conductive film or paper for wearable electronics, in which silver nanowires, carbon nanotubes, and graphene are primarily used as conductive materials. However, their insufficient nanostructure contacts lead to poor electrical conductivity and mechanical fracture. Here, we demonstrate a simple and innovative strategy for fabricating a free-standing silver film with inverted pyramids by replicating pyramids on a textured silicon wafer under a hydrothermal reaction. In this unique structure, the inverted pyramids on the film surface can provide sufficient buffer space for a mechanically foldable and unfoldable cushion, and the continuous film ensures an uninterrupted electron transport pathway. As a result, the silver film with inverted pyramids can exhibit extremely high conductivity, with a sheet resistance as low as 2.55 × 10 -3 Ω/sq, corresponding to an electrical conductivity of 4.2 × 10 5 S cm -1 for a 9.2-μm-thick film (67.7% of bulk silver's conductivity). Surprisingly, this film has outstanding mechanical folding stability, with less than a 0.5% deviation from the initial resistance after 35,000 repetitive folding and unfolding cycles when tested at the folding site. The film is free-standing, thin, flexible, foldable, and suitable for cutting and patterned growth, which makes it suitable for wearable electronics, showing a much wider range of applications than substrate-based ones.
Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.
Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John
2016-03-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.
Transition from a beads-on-string to a spike structure in an electrified viscoelastic jet
NASA Astrophysics Data System (ADS)
Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen
2017-02-01
A one-dimensional numerical simulation is performed to study the nonlinear behaviors of a perfectly conducting, slightly viscoelastic liquid jet under a large radial electric field. A singular spike structure different from a beads-on-string structure is detected. The electric field is found to be the key factor for the formation of spikes. The transition from a beads-on-string to a spike structure occurs at sufficiently large electric fields. Moreover, the transition occurs more easily for smaller wave numbers. Viscosity is found to suppress spikes while elasticity promotes them. The mechanism responsible for spike formation is further explored by examining the maximum radius of the jet in the beads-on-string case. The capillary and electrostatic forces prove to be dominant in droplets, and the transition takes place when the electrostatic force exceeds the capillary force. The self-similarity in spikes is discussed. Different from the transition moment, the inertial, electrostatic, and solvent viscous forces are important in a developed spike.
Probing the electrical switching of a memristive optical antenna by STEM EELS
Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.
2016-01-01
The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ∼10−6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope. PMID:27412052
Cellular responses to endogenous electrochemical gradients in morphological development
NASA Technical Reports Server (NTRS)
Desrosiers, M. F.
1996-01-01
Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.
Pu, Wuli; Fu, Daihua; Wang, Zhanhua; Gan, Xinpeng; Lu, Xili; Yang, Li
2018-01-01
Abstract Combining self‐healing functions with damage diagnosing, which can achieve timely healing autonomously, is expected to improve the reliability and reduce life cycle cost of materials. Here, a flexible conductive composite composed of a dynamically crosslinked polyurethane bearing Diels–Alder bonds (PUDA) and carbon nanotubes (CNTs), which possess both crack diagnosing and self‐healing functions, is reported. The introduced dynamic Diels–Alder bonds endow the materials self‐healing function and the powder‐based preparation route based on the specially designed CNTs‐coated PUDA micropowders leads to the formation of segregated CNTs network, which makes the composite possess excellent mechanical properties and high conductivity. Because of the sufficient electrothermal and photothermal effect of CNTs, the composites can be healed rapidly and repeatedly by electricity or near‐infrared light based on the retro‐Diels–Alder reaction. An obvious color difference in the infrared thermograph resulting from the resistance difference between damaged and undamaged area can be observed when applying the voltage, which can be used for crack diagnosing. Using the same electrical circuit, the crack in the PUDA/CNTs composite can be noninvasively detected first and then be autonomously healed. The composites also exhibit a strain‐sensing function with good sensitivity and high reliability, thus will have potential applications in electronic strain sensors. PMID:29876226
Vasileiou, Alexandros A; Kontopoulou, Marianna; Docoslis, Aristides
2014-02-12
Graphene was prepared by low temperature vacuum-assisted thermal exfoliation of graphite oxide. The resulting thermally reduced graphene oxide (TRGO) had a specific surface area of 586 m(2)/g and consisted of a mixture of single-layered and multilayered graphene. The TRGO was added to maleated linear low-density polyethylene LLDPE and to its derivatives with pyridine aromatic groups by melt compounding. The LLDPE/TRGO composites exhibited very low electrical percolation thresholds, between 0.5 and 0.9 vol %, depending on the matrix viscosity and the type of functional groups. The dispersion of the TRGO in the compatibilized composites was improved significantly, due to enhanced noncovalent interactions between the aromatic moieties grafted onto the polymer matrix and the filler. Better dispersion resulted in a slight increase in the rheological and electrical percolation thresholds, and to significant improvements in mechanical properties and thermal conductivity, compared to the noncompatibilized composites. The presence of high surface area nanoplatelets within the polymer also resulted in a substantially improved thermal stability. Compared to their counterparts containing multiwalled carbon nanotubes, LLDPE/TRGO composites had lower percolation thresholds. Therefore, lower amounts of TRGO were sufficient to impart electrical conductivity and modulus improvements, without compromising the ductility of the composites.
NASA Astrophysics Data System (ADS)
Hejazi, M. M.; Safari, A.
2011-11-01
This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.
NASA Technical Reports Server (NTRS)
Seyed-Yagoobi, J.; Didion, J.; Ochterbeck, J. M.; Allen, J.
2000-01-01
There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force: induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping relies on the generation of induced charges. This charge induction in the presence of an electric field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be caused by a non-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous liquid. In order to generate Coulomb force, a space charge must be generated. There are two main mechanisms for generating a space charge in an isothermal liquid. The first one is associated with the ion injection at a metal/liquid interface and the related pumping is referred to as ion-drag pumping. Ion-drag pumping is not desirable because it can deteriorate the electrical properties of the working fluid. The second space charge generation mechanism is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge layers result from dissociation of the neutral electrolytic species and recombination of the generated ions. This type of pumping is referred to as pure conduction pumping. This project investigates the EHD pumping through pure conduction phenomenon. Very limited work has been conducted in this field and the majority of the published papers in this area have mistakenly assumed that the electrostriction force was responsible for the net flow generated in an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction pump for a two-phase loop to be operated in the microgravity environment. The pump is installed in the liquid return passage (isothermal liquid) from the condenser section to the evaporator section. Unique high voltage and ground electrodes have been designed that generate sufficient pressure heads with very low electric power requirements making the EHD conduction pumping attractive to applications such as two-phase systems (e.g. capillary pumped loops and heat pipes). Currently, the EHD conduction pump performance is being tested on a two-phase loop under various operating conditions in the laboratory environment. The simple non-mechanical and lightweight design of the EHD pump combined with the rapid control of performance by varying the applied electric field, low power consumption, and reliability offer significant advantages over other pumping mechanisms; particularly in reduced gravity applications.
Methods of Using a Magnetic Field Response Sensor Within Closed, Electrically Conductive Containers
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Taylor, Bryant D.
2010-01-01
Magnetic field response sensors are a class of sensors that are powered via oscillating magnetic fields, and when electrically active, respond with their own magnetic fields with attributes dependent upon the magnitude of the physical quantity being measured. A magnetic field response recorder powers and interrogates the magnetic sensors [see Magnetic-Field-Response Measurement- Acquisition System, NASA Tech Briefs Vol. 30, No, 6 (June 2006, page 28)]. Electrically conductive containers have low transmissivity for radio frequency (RF) energy and thus present problems for magnetic field response sensors. It is necessary in some applications to have a magnetic field response sensor s capacitor placed in these containers. Proximity to conductive surfaces alters the inductance and capacitance of the sensors. As the sensor gets closer to a conductive surface, the electric field and magnetic field energy of the sensor is reduced due to eddy currents being induced in the conductive surface. Therefore, the capacitors and inductors cannot be affixed to a conductive surface or embedded in a conductive material. It is necessary to have a fixed separation away from the conductive material. The minimum distance for separation is determined by the desired sensor response signal to noise ratio. Although the inductance is less than what it would be if it were not in proximity to the conductive surface, the inductance is fixed. As long as the inductance is fixed, all variations of the magnetic field response are due to capacitance changes. Numerous variations of inductor mounting can be utilized, such as providing a housing that provides separation from the conductive material as well as protection from impact damage. The sensor can be on the same flexible substrate with a narrow throat portion of the sensor between the inductor and the capacitor, Figure 1. The throat is of sufficient length to allow the capacitor to be appropriately placed within the container and the inductor placed outside the container. The throat is fed through the orifice in the container wall (e.g., fuel tank opening) and connects to the inductor and capacitor via electrical leads to form a closed circuit, Figure 2. Another embodiment is to have the inductor and capacitor fabricated as separate units. In this embodiment, the inductor is mounted external to the container, and the capacitor is mounted internal to the container, Figure 1. Electrical leads are fed through the orifice to connect the inductor and capacitor, Figure 2. When a container holding multiple sensors is made of a conductive material, an antenna can be placed internal to the container. An internal antenna allows all components of the sensors to reside inside the container. The antenna must be separated from the container wall s conductive surface. Additionally, the inductors must be maintained in a fixed position relative to and separated from the container
Investigation of biowaste resistojets for space station application
NASA Technical Reports Server (NTRS)
Halbach, C. R.; Page, R. J.; Mccaughey, O. J.; Short, R. A.
1972-01-01
The feasibility of using electrically conducting ceramics to heat biowaste propellants to 2000 K in resistojet thrustors was demonstrated. These thrustors are being developed for use on the space station. Among the candidate ceramic heater materials, zirconia and thoria are chemically resistant to the biopropellants, and they are also sufficiently conductive at high temperatures to make them suitable for the heater elements in these thrustors. A proof of concept thrustor design is presented, incorporating a multiple passage cylindrical heater made of zirconia ceramic which is capable of operating at 2000 K wall temperature with CO2 and H2O biopropellants. For the 25 mlb size thrustor, specific impulses of 200 seconds for CO2 and 275 seconds for H2O biopropellants are predicted.
Intrinsic electrical properties of LuFe2O4
NASA Astrophysics Data System (ADS)
Lafuerza, Sara; García, Joaquín; Subías, Gloria; Blasco, Javier; Conder, Kazimierz; Pomjakushina, Ekaterina
2013-08-01
We here revisit the electrical properties of LuFe2O4, compound candidate for exhibiting multiferroicity. Measurements of dc electrical resistivity as a function of temperature, electric-field polarization measurements at low temperatures with and without magnetic field, and complex impedance as a function of both frequency and temperature were carried out in a LuFe2O4 single crystal, perpendicular and parallel to the hexagonal c axis, and in several ceramic polycrystalline samples. Resistivity measurements reveal that this material is a highly anisotropic semiconductor, being about two orders of magnitude more resistive along the c axis. The temperature dependence of the resistivity indicates a change in the conduction mechanism at TCO ≈ 320 K from thermal activation above TCO to variable range hopping below TCO. The resistivity values at room temperature are relatively small and are below 5000 Ω cm for all samples but we carried out polarization measurements at sufficiently low temperatures, showing that electric-field polarization curves are a straight line as expected for a paraelectric or antiferroelectric material. Furthermore, no differences are found in the polarization curves when a magnetic field is applied either parallel or perpendicular to the electric field. The analysis of the complex impedance data corroborates that the claimed colossal dielectric constant is a spurious effect mainly derived from the capacitance of the electrical contacts. Therefore, our data unequivocally evidence that LuFe2O4 is not ferroelectric.
30 CFR 75.513-1 - Electric conductor; size.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductor; size. 75.513-1 Section 75.513-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...
30 CFR 75.513-1 - Electric conductor; size.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; size. 75.513-1 Section 75.513-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying...
Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya
2017-09-14
Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.
Electrodeless electro-hydrodynamic gentle printing of personalized medicines
NASA Astrophysics Data System (ADS)
Khusid, Boris; Elele, Ezinwa; Shen, Yueyang
2010-11-01
Drop-on-demand (DOD) principle appears to be a particular promising approach for manufacturing personalized treatments carefully tailored to a patient's genetic background. The authors have recently developed a DOD method for gentle printing of personalized medicines. A fluid is infused into an electrically insulating nozzle to form a pendant drop. A sufficiently strong voltage pulse is applied to external electrodes to stretch the pendant drop until it touches an electrically insulating film and forms a liquid bridge. As the liquid bridge is intentionally formed in an unstable configuration, it breaks up, creating two drops, one on the film and the other hanging from the nozzle. To prove the validity and versatility of the method, experiments are conducted on fluids whose viscosity, conductivity, dielectric constant, and surface tension vary over a broad range, respectively: 1-1045 cP, 0.02-290 μS/cm, 9-78, and 41-72 dyn/cm. We present a scaling analysis that captures the essential physics of drop evolution and provides the critical design guidelines. The work was supported by NSF Engineering Research Center on Structured Organic Particulate Systems.
Song, Jinhui; Zhou, Jun; Wang, Zhong Lin
2006-08-01
This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.
BioCapacitor: A novel principle for biosensors.
Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako
2016-02-15
Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Electric Field Induced Interfacial Instabilities
NASA Technical Reports Server (NTRS)
Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira
1999-01-01
The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.
Inhibition Potentiates the Synchronizing Action of Electrical Synapses
Pfeuty, Benjamin; Golomb, David; Mato, Germán; Hansel, David
2007-01-01
In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces oscillatory activity in the γ range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to promote or impede synchrony, when alone, depends on their location on the dendritic tree of the neurons, the intrinsic properties of the neurons and the connectivity of the network. The goal of the present paper is to show that this versatility in the synchronizing ability of electrical synapses is greatly reduced when the neurons also interact via inhibition. To this end, we study a model network comprising two-compartment conductance-based neurons interacting with both types of synapses. We investigate the effect of electrical synapses on the dynamical state of the network as a function of the strength of the inhibition. We find that for weak inhibition, electrical synapses reinforce inhibition-generated synchrony only if they promote synchrony when they are alone. In contrast, when inhibition is sufficiently strong, electrical synapses improve synchrony even if when acting alone they would stabilize asynchronous firing. We clarify the mechanism underlying this cooperative interplay between electrical and inhibitory synapses. We show that it is relevant in two physiologically observed regimes: spike-to-spike synchrony, where neurons fire at almost every cycle of the population oscillations, and stochastic synchrony, where neurons fire irregularly and at a rate which is substantially lower than the frequency of the global population rhythm. PMID:18946530
A complete electrical shock hazard classification system and its application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Lloyd; Cartelli, Laura; Graham, Nicole
Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less
A complete electrical shock hazard classification system and its application
Gordon, Lloyd; Cartelli, Laura; Graham, Nicole
2018-02-08
Current electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. As a result, this leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. We find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50/60 Hz power. This paper proposes a method of classifying allmore » of the electrical shock hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Lastly, the new comprehensive electrical shock hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards.« less
A simple sensing mechanism for wireless, passive pressure sensors.
Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H
2016-08-01
We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.
NASA Astrophysics Data System (ADS)
Skaggs, Todd H.
2011-10-01
Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow and transport processes in porous media. However, the results of several numerical investigations of critical path analysis on pore network models raise questions about the applicability of CPA to porous media. Among other things, these studies found that (i) in well-connected 3D networks, CPA predictions were inaccurate and became worse when heterogeneity was increased; and (ii) CPA could not fully explain the transport properties of 2D networks. To better understand the applicability of CPA to porous media, we made numerical computations of permeability and electrical conductivity on 2D and 3D networks with differing pore-size distributions and geometries. A new CPA model for the relationship between the permeability and electrical conductivity was found to be in good agreement with numerical data, and to be a significant improvement over a classical CPA model. In sufficiently disordered 3D networks, the new CPA prediction was within ±20% of the true value, and was nearly optimal in terms of minimizing the squared prediction errors across differing network configurations. The agreement of CPA predictions with 2D network computations was similarly good, although 2D networks are in general not well-suited for evaluating CPA. Numerical transport coefficients derived for regular 3D networks of slit-shaped pores were found to be in better agreement with experimental data from rock samples than were coefficients derived for networks of cylindrical pores.
Bernuy-Lopez, Carlos; Rioja-Monllor, Laura; Nakamura, Takashi; Ricote, Sandrine; O’Hayre, Ryan; Amezawa, Koji; Einarsrud, Mari-Ann
2018-01-01
The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration. PMID:29373541
Brosten, Troy R.; Day-Lewis, Frederick D.; Schultz, Gregory M.; Curtis, Gary P.; Lane, John W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of − 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.
Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.
2011-01-01
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the exposed surfaces...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., such as by providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., such as by providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... providing complete electrical insulation of battery terminals or other external electrical connectors. Battery terminals or other electrical connectors penetrating the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to prevent the temperature of the exposed surfaces...
Induction heaters used to heat subsurface formations
Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX
2012-04-24
A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.
NASA Astrophysics Data System (ADS)
Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.
2016-03-01
In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2013 CFR
2013-10-01
... to effectively resist underfilm migration of moisture; (3) Be sufficiently ductile to resist cracking... is an electrically insulating type must also have low moisture absorption and high electrical...
Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin
1991-01-01
A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.
The Evolution and Discharge of Electric Fields within a Thunderstorm
NASA Astrophysics Data System (ADS)
Hager, William W.; Nisbet, John S.; Kasha, John R.
1989-05-01
A 3-dimensional electrical model for a thunderstorm is developed and finite difference approximations to the model are analyzed. If the spatial derivatives are approximated by a method akin to the ☐ scheme and if the temporal derivative is approximated by either a backward difference or the Crank-Nicholson scheme, we show that the resulting discretization is unconditionally stable. The forward difference approximation to the time derivative is stable when the time step is sufficiently small relative to the ratio between the permittivity and the conductivity. Max-norm error estimates for the discrete approximations are established. To handle the propagation of lightning, special numerical techniques are devised based on the Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply our model to a storm observed at the Kennedy Space Center on July 11, 1978.
Chiral magnetoresistance in the Weyl semimetal NbP
NASA Astrophysics Data System (ADS)
Niemann, Anna Corinna; Gooth, Johannes; Wu, Shu-Chun; Bäßler, Svenja; Sergelius, Philip; Hühne, Ruben; Rellinghaus, Bernd; Shekhar, Chandra; Süß, Vicky; Schmidt, Marcus; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius
2017-03-01
NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive. Here, we use Ga-doping to relocate the Fermi energy in NbP sufficiently close to the W2 Weyl points, for which the different Fermi surfaces are verified by resultant quantum oscillations. Consequently, we observe a NMR for parallel electric and magnetic fields, which is considered as a signature of the chiral anomaly in condensed-matter physics. The NMR survives up to room temperature, making NbP a versatile material platform for the development of Weyltronic applications.
Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine
NASA Astrophysics Data System (ADS)
Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane
2014-06-01
We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.
NASA Astrophysics Data System (ADS)
de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.
2017-06-01
In this paper, we show that the apparent delocalization of the conduction band reported from first-principles simulations for the high-mobility amorphous oxide semiconductor \\text{InGaZn}{{\\text{O}}4} (a-IGZO) is an artifact induced by the periodic conditions imposed to the model. Given a sufficiently large unit-cell dimension (over 40 Å), the conduction band becomes localized. Such a model size is up to four times the size of commonly used models for the study of a-IGZO. This finding challenges the analyses done so far on the nature of the defects and on the interpretation of numerous electrical measurements. In particular, we re-interpret the meaning of the computed effective mass reported so far in literature. Our finding also applies to materials such as SiZnSnO, ZnSnO, InZnSnO, In2O3 or InAlZnO4 whose models have been reported to display a fully delocalized conduction band in the amorphous phase.
Thermal electric vapor trap arrangement and method
Alger, Terry
1988-01-01
A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself.
Thermal electric vapor trap arrangement and method
Alger, T.
1988-03-15
A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.
An Engineering Tool for the Prediction of Internal Dielectric Charging
NASA Astrophysics Data System (ADS)
Rodgers, D. J.; Ryden, K. A.; Wrenn, G. L.; Latham, P. M.; Sorensen, J.; Levy, L.
1998-11-01
A practical internal charging tool has been developed. It provides an easy-to-use means for satellite engineers to predict whether on-board dielectrics are vulnerable to electrostatic discharge in the outer radiation belt. The tool is designed to simulate irradiation of single-dielectric planar or cylindrical structures with or without shielding. Analytical equations are used to describe current deposition in the dielectric. This is fast and gives charging currents to sufficient accuracy given the uncertainties in other aspects of the problem - particularly material characteristics. Time-dependent internal electric fields are calculated, taking into account the effect on conductivity of electric field, dose rate and temperature. A worst-case model of electron fluxes in the outer belt has been created specifically for the internal charging problem and is built into the code. For output, the tool gives a YES or NO decision on the susceptibility of the structure to internal electrostatic breakdown and if necessary, calculates the required changes to bring the system below the breakdown threshold. A complementary programme of laboratory irradiations has been carried out to validate the tool. The results for Epoxy-fibreglass samples show that the code models electric field realistically for a wide variety of shields, dielectric thicknesses and electron spectra. Results for Teflon samples indicate that some further experimentation is required and the radiation-induced conductivity aspects of the code have not been validated.
Spin generation by strong inhomogeneous electric fields
NASA Astrophysics Data System (ADS)
Finkler, Ilya; Engel, Hans-Andreas; Rashba, Emmanuel; Halperin, Bertrand
2007-03-01
Motivated by recent experiments [1], we propose a model with extrinsic spin-orbit interaction, where an inhomogeneous electric field E in the x-y plane can give rise, through nonlinear effects, to a spin polarization with non-zero sz, away from the sample boundaries. The field E induces a spin current js^z= z x(αjc+βE), where jc=σE is the charge current, and the two terms represent,respectively, the skew scattering and side-jump contributions. [2]. The coefficients α and β are assumed to be E- independent, but conductivity σ is field dependent. We find the spin density sz by solving the equation for spin diffusion and relaxation with a source term ∇.js^z. For sufficiently low fields, jc is linear in E, and the source term vanishes, implying that sz=0 away from the edges. However, for large fields, σ varies with E. Solving the diffusion equation in a T-shaped geometry, where the electric current propagates along the main channel, we find spin accumulation near the entrance of the side channel, similar to experimental findings [1]. Also, we present a toy model where spin accumulation away from the boundary results from a nonlinear and anisotropic conductivity. [1] V. Sih, et al, Phys. Rev. Lett. 97, 096605 (2006). [2] H.-A. Engel, B.I. Halperin, E.I.Rashba, Phys. Rev. Lett. 95, 166605 (2005).
Directly tailoring photon-electron coupling for sensitive photoconductance
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao
2016-03-01
The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.
Kroll, Mark W; Panescu, Dorin; Hinz, Andrew F; Lakkireddy, Dhanunjaya
2010-01-01
It has been long recognized that there are 2 methods for inducing VF (ventricular fibrillation) with electrical currents‥ These are: (1) delivering a high-charge shock into the cardiac T-wave, and (2) delivering lower level currents for 1-5 seconds. Present electrical safety standards are based on this understanding. We present new data showing a 3(rd) mechanism of inducing VF which involves the steps of delivering sufficient current to cause high-rate cardiac capture, causing cardiac output collapse, leading to ischemia, for sufficiently long duration, which then lowers the VFT (VF threshold) to the level of the current, which finally results in VF. This requires about 40% of the normal VF-induction current but requires a duration of minutes instead of seconds for the VF to be induced. Anesthetized and ventilated swine (n=6) had current delivered from a probe tip 10 mm from the epicardium sufficient to cause hypotensive capture but not directly induce VF within 5 s. After a median time of 90 s, VF was induced. This 3(rd) mechanism of VF induction should be studied further and considered for electrical safety standards and is relevant to long-duration TASER Electronic Control Device applications.
Passive safety device and internal short tested method for energy storage cells and systems
Keyser, Matthew; Darcy, Eric; Long, Dirk; Pesaran, Ahmad
2015-09-22
A passive safety device for an energy storage cell for positioning between two electrically conductive layers of the energy storage cell. The safety device also comprising a separator and a non-conductive layer. A first electrically conductive material is provided on the non-conductive layer. A first opening is formed through the separator between the first electrically conductive material and one of the electrically conductive layers of the energy storage device. A second electrically conductive material is provided adjacent the first electrically conductive material on the non-conductive layer, wherein a space is formed on the non-conductive layer between the first and second electrically conductive materials. A second opening is formed through the non-conductive layer between the second electrically conductive material and another of the electrically conductive layers of the energy storage device. The first and second electrically conductive materials combine and exit at least partially through the first and second openings to connect the two electrically conductive layers of the energy storage device at a predetermined temperature.
Viscosity of a Suspension with Internal Rotation
NASA Astrophysics Data System (ADS)
Elisabeth, Lemaire; Laurent, Lobry; François, Peters
2008-07-01
When an insulating particle immersed into a low conducting liquid is submitted to a sufficiently high DC field, E, it can rotate spontaneously around itself along any axis perpendicular to the electric field. This symmetry break is known as Quincke rotation and could have important consequences on the rheology of such a suspension of particles (insulating particles dispersed in a slightly conducting liquid). Indeed, if the suspension is subject to a shear rate, and a DC electric field is applied in the velocity gradient direction, the spin rate of the particles is greater than in the absence of an E field, so that the macroscopic spin rate of the particles drives the suspending liquid and thus leads to a decrease of the apparent viscosity of the suspension. The purpose of this paper is to provide a relation between the apparent viscosity of the suspension, the spin rate of the particles and the E field intensity. The predictions of the model are compared to experimental data which have been obtained on a suspension of PMMA particles dispersed in a low polar dielectric liquid. The agreement between experiments and theory is rather good even if the model overestimates the viscosity decrease induced by the field.
Optical and electrical properties of P3HT:graphene composite based devices
NASA Astrophysics Data System (ADS)
Yadav, Anjali; Verma, Ajay Singh; Gupta, Saral Kumar; Negi, Chandra Mohan Singh
2018-04-01
The polymer-carbon derivate composites are well known for their uses and performances in the photovoltaic and optoelectronic industries. In this paper, we synthesis P3HT:graphene composites and discuss their optical and electrical properties. The composites have been prepared by using spin-coating technique onto the glass substrates. It has been found that the incorporation of graphene reduces absorption intensity. However, absorption peak remain unchanged with addition of graphene. The surface morphology studies display homogeneous distribution of graphene with P3HT. Raman studies suggest that chemical structure was not affected by graphene doping. Devices having the structure of glass/ITO/P3HT/ Al and glass ITO/P3HT:graphene/Al were then fabricated. I-V behavior of the fabricated devices was found to be similar to the Schottky diode. ITO/P3HT:graphene/Al structure shows tremendous increase in current values as compared to the ITO/P3HT/Al. Furthermore, charge transport mechanism were studied by analyzing the double logarithmic J-V characteristics curve, which indicates that the current at low voltage follows Ohmic behavior, trap-charge limited conduction (TCLC) mechanism at an intermediate voltage and space charge limited conduction (SCLC) mechanism at sufficiently high voltages.
Nanoscale thermal cross-talk effect on phase-change probe memory.
Wang, Lei; Wen, Jing; Xiong, Bangshu
2018-05-14
Phase-change probe memory is considered as one of the most promising means for next-generation mass storage devices. However, the achievable storage density of phase-change probe memory is drastically affected by the resulting thermal cross-talk effect while previously lacking of detailed study. Therefore, a three dimensional model that couples electrical, thermal, and phase-change processes of the Ge2Sb2Te5 media is developed, and subsequently deployed to assess the thermal cross-talk effect based on Si/TiN/ Ge2Sb2Te5/diamond-like carbon structure by appropriately tailoring the electro-thermal and geometrical properties of the storage media stack for a variety of external excitations. The modeling results show that the diamond-like carbon capping with a thin thickness, a high electrical conductivity, and a low thermal conductivity is desired to minimize the thermal cross-talk, while the TiN underlayer has a slight impact on the thermal cross-talk. Combining the modeling findings with the previous film deposition experience, an optimized phase-change probe memory architecture is presented, and its capability of providing ultra-high recording density simultaneously with a sufficiently low thermal cross-talk is demonstrated. . © 2018 IOP Publishing Ltd.
Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2015-11-28
We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.
Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger
2015-05-05
We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT
2008-01-15
A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.
Direct measurement of exciton dissociation energy in polymers
NASA Astrophysics Data System (ADS)
Toušek, J.; Toušková, J.; Chomutová, R.; Paruzel, B.; Pfleger, J.
2017-01-01
Exciton dissociation energy was obtained based on the comparison of thickness of the space charge region estimated from the measurement of capacitance of prepared Schottky diode and from the measurement of photovoltage spectra. While the capacitance measurements provide information about the total width of the space charge region (SCR) the surface photovoltaic effect brings information only about the part of the SCR where electric field is sufficiently high to cause dissociation. For determination of the dissociation energy it is sufficient to find the electric potential in the SCR where the process starts.
Novel PLA-Based Conductive Polymer Composites for Biomedical Applications
NASA Astrophysics Data System (ADS)
Shah, Aziurah Mohd; Kadir, Mohammed Rafiq Abdul; Razak, Saiful Izwan Abd
2017-12-01
In this study, the electrical conductivity of polylactic acid (PLA)-based composites has been improved using polyaniline (PANI) with two different solvents: dodecylbenzene sulfonic acid and citric acid. The effects of various factors including PLA quantity, solvent concentration, type of solvent and thickness on the resistivity were investigated using the design of experiments. The experimental plan was based on irregular fraction design to develop the regression models. The results revealed that the proposed mathematical models were sufficient and could describe the performance of resistivity of PLA within the limits of a factor. The findings also indicated that thickness had the most significant effect on the resistivity of PLA, while the effect of the type of solvent was of least significance. Moreover, it was illustrated that, by incorporating two different solvents into PANI, the resistivity could be changed for further applications.
Hutsuliak, A I
2016-08-01
In the experiment on 50 rabbits cholecysto-entero and entero-entero anastomoses were formed on intestinal Roux loop. In 35 animals (the main group) a single layer evert- ing anastomoses by using high frequence (HF) electric welding method were formed, in 15 (the comparison group) single row suture anastomoses has been done. The anas- tomosis sufficiency were performed by using hydropressure, pneumopressure meth- ods and breakload test. It was established that all anastomoses formed by HF-electric welding method were passable and hermetic, also had strong sufficiency. Strength of weld joint in the postoperative period increased in a linear progression and after 3 weeks almost reached strength intact intestine (240-250 mm Hg).
Firefighter safety and photovoltaic installations research project
NASA Astrophysics Data System (ADS)
Backstrom, Robert; Dini, Dave
2012-10-01
Under the United States Department of Homeland Security (DHS) Assistance to Fire Fighters grant, UL LLC examined fire service concerns of photovoltaic (PV) systems. These concerns included firefighter vulnerability to electrical and casualty hazards when mitigating a fire involving photovoltaic (PV) modules systems. Findings include: 1. The electric shock hazard due to application of water is dependent on voltage, water conductivity, distance and spray pattern of the suppression stream. 2. Outdoor weather exposure rated electrical enclosures are not resistant to water penetration by fire hose streams. 3. Firefighter's gloves and boots afford limited protection against electrical shock provided the insulating surface is intact and dry. 4. "Turning off" an array is not a simple matter of opening a disconnect switch. 5. Tarps offer varying degrees of effectiveness. 6. Fire equipment scene lighting and exposure fires may illuminate PV systems sufficiently to cause a lock-on hazard. 7. Severely damaged PV arrays are capable of producing hazardous conditions. 8. Damage to modules from tools may result in both electrical and fire hazards. 9. Severing of conductors in both metal and plastic conduit results in electrical and fire hazards. 10. Responding personnel must stay away from the roofline in the event of modules or sections of an array sliding off the roof. 11. Fires under an array but above the roof may breach roofing materials and decking allowing fire to propagate into the attic space. Several tactical considerations were developed utilizing the data from the experiments.
In-Situ Wire Damage Detection System
NASA Technical Reports Server (NTRS)
Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Williams, Martha K. (Inventor)
2014-01-01
An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.
Method of manufacturing iron aluminide by thermomechanical processing of elemental powders
Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.
2000-01-01
A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.
Tutorial: Physics and modeling of Hall thrusters
NASA Astrophysics Data System (ADS)
Boeuf, Jean-Pierre
2017-01-01
Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.
Numerical system for monitoring pressurized equipment
NASA Astrophysics Data System (ADS)
Dobra, Remus; Pasculescu, Dragos; Boca, Maria Loredana; Moldovan, Lucian
2016-12-01
Electrical devices for operation in potentially explosive atmospheres are designed and built in accordance with European standard EN 50015: 1995 ex. the pressurized enclosure "p". The type of protector p, by using a protective gas in the housing is intended to prevent the formation of an explosive atmosphere within it, while maintaining an overpressure to the surrounding atmosphere and, where appropriate, by the use dilution. Research conducted for pressurized encapsulation aimed at developing new procedures for determining the parameters of pressurization to allow safe use of electrical appliances. Pressurization with compensation for losses allegedly maintaining overpressure inside the enclosure when the outlets are closed, is made by feeding protective gas in an amount sufficient to fully compensate for losses from the housing inevitable pressurized and its associated pipework. The conditions and necessary measures that are required for appliances and equipment with potential ignition of explosive atmospheres are detailed in the SR EN 50016/2000. For pressurized encapsulation protection mode, the electric equipment can be maintained safety by the overpressure created inside them and in the supply pipes with air. The paper presents a modern method to determine the parameters of the electric equipment with pressurization enclosures. For controlling of such equipment, a specific algorithm has been developed and laboratory tested.
Electromicroinjection of particles into living cells
Ray, F. Andrew; Cram, L. Scott; Galey, William R.
1988-01-01
Method and apparatus for introducing particles into living cells. Fluorescently-stained human chromosomes are introduced into cultured, mitotic Chinese hamster cells using electromicroinjection. The recipient cells frequently survived the physiological perturbation imposed by a successful chromosome injection. Successfully injected recipient cells maintained viability as evidenced by their ability to be expanded. The technique relies on the surface charge of fluorescently stained chromosomes and their ability to be attracted and repelled to and from the tip of a micropipette. The apparatus includes a micropipette having a tip suitable for piercing the membrane of a target cell and an electrode inserted into the lumen thereof. The target cells and suspended particles are located in an electrically conducted solution, and the lumen of the micropipette is filled with an electrically conducting solution which contacts the electrode located therein. A second electrode is also located in the conducting solution containing the target cells and particles. Voltages applied to the electrode within the micropipette attract the particles to the region of the tip thereof. The particles adhere to the surface of the micropipette with sufficient force that insertion of the micropipette tip and attached particle through the membrane of a target cell will not dislodge the particle. By applying a voltage having the opposite polarity of the attraction voltage, the particles are expelled from the micropipette to which is then withdrawn from the cell body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
NASA Astrophysics Data System (ADS)
Yaşar Korkanç, Selma; Kayıkçı, Sedef; Korkanç, Mustafa
2017-05-01
The aim of this study is to investigate the water pollution in the Akkaya Dam watershed spatially and temporally and put forward management suggestions in a watershed scale. For this purpose, monthly water sampling was performed from 11 sampling stations on streams that fed the dam. According to land surveys they have a potential to inflict pollution to the dam. Thus the physical and chemical parameters (i.e. pH, dissolved oxygen, electrical conductivity, temperature, chemical oxygen demand, turbidity and suspended solids) were monitored monthly for 1-year period. Chloride, sulfate, total nitrogen, ammonium, nitrite, nitrate were monitored for a 6-month period, and the results were evaluated in accordance with the Turkish Regulation of Surface Water Quality Management. Results of the study show that the most important reasons for the pollution in the dam are caused by domestic and industrial wastewaters, which were released to the system without being treated, or without being sufficiently treated, and also of agricultural activities. It was determined that electrical conductivity, dissolved oxygen, turbidity, chemical oxygen demand, suspended solids, nitrite, nitrate, total nitrogen, sulfate, and chloride parameters which were high at the sampling stations where domestic and industrial wastewaters discharge were present. pH and temperature demonstrate a difference at a significant level by seasons. As a result of the study, it was determined that the water was of IVth quality in terms of nitrate, chemical oxygen demand, and total nitrogen, and it was of IIIrd quality water with respect to ammonium, electrical conductivity, and dissolved oxygen. It was observed that the dam outflow water was of IVth quality with respect to nitrate, chemical oxygen demand, and total nitrogen, and of IIIrd quality with respect to dissolved oxygen and electrical conductivity. It is considered that the pollution problem in the Akkaya Dam can only be resolved with prevention studies on a watershed scale. Therefore, coordination between the institutions is necessary. The preparation for the integrated water management plan of the watershed will provide a significant contribution to the solution of the water quality problem.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, Peter; MacArthur, Duncan W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.
Missile launch detection electric field perturbation experiment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, R.J.; Rynne, T.M.
1993-04-28
The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch periodmore » failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.« less
"Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, P. F.; Mayes, R.; Wang, X. Q.
2011-04-20
Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less
Direct measurements of the atmospheric conduction current
NASA Technical Reports Server (NTRS)
Burke, H. K.; Few, A. A.
1978-01-01
A method of measuring the atmospheric conduction current above the ground has been employed to obtain data for 12 weeks during the first half of 1974. The instrument consists of a split aluminum sphere suspended by insulated wires to a wooden frame. The measuring electronics and the transmitter are enclosed within the spherical structure. The interaction of the instrument with its atmospheric electrical environment is analyzed, and it is shown that in steady state conditions, predictable differences in the instrumentally measured currents and the atmospheric conduction current will be less than 5% and in the nonsteady state situations the difference is less than 20%. Diurnal variations, a probable winter-summer variation, sunrise, and fog effects were observed for the data obtained during fair-weather conditions. Disturbed weather data are interpreted for the effects of low clouds on the atmospheric current. The charge concentrations within overcast clouds sufficient to produce the observed reversed atmospheric currents are estimated to be small in relation to values in thunderclouds.
Holography and thermalization in optical pump-probe spectroscopy
NASA Astrophysics Data System (ADS)
Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.
2018-04-01
Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?
Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Fulvio, Pasquale F; Mayes, Richard T
2011-01-01
Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less
Low resistance thin film organic solar cell electrodes
Forrest, Stephen [Princeton, NJ; Xue, Jiangeng [Piscataway, NJ
2008-01-01
A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.
Flexible neural interfaces with integrated stiffening shank
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa
2016-07-26
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Electromagnetic Measurements in an Active Oilfield Environment
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Aur, K. A.; Schramm, K. A.; Aldridge, D. F.; O'rourke, W. T.
2016-12-01
An important issue in oilfield development is mapping fracture distributions (either natural or man-made) controlling subsurface fluid flow. Although microseismic monitoring has been successful in constraining fracture system geometry and dynamics, accurate interpretation of microseismic data can be confounded by factors such as complex or poorly-understood velocity distributions, reactivation of previously unknown faults and fractures, and the problem of relating flow patterns to the cloud of hypocenter locations. For the particular problem of hydrocarbon production, the question of which fractures remain sufficiently "open" to allow economical fluid extraction is critical. As a supplement to microseismic analysis, we are investigating a novel electromagnetic (EM) technique for detecting and mapping hydraulic fractures in a hydrocarbon or geothermal reservoir by introducing an electrically conductive contrast agent into the fracturing fluid. In the field experiment presented here, a proppant-filled fracture zone is illuminated by a large engineered antenna consisting of an insulated current-carrying cable, grounded to `Earth' near the wellhead, and grounded at the other end to the steel-cased borehole near the target. Time-lapse measurements of horizontal electric field are subsequently made on Earth's surface to map the change in subsurface conductivity due to proppant emplacement. As predicted by 3D numerical modelling, observed differences in electric field values are very small. While these numbers are above the noise floor of electric field sensors, pervasive anthropogenic EM noise and regional-scale magnetotelluric signals make extraction of the differences from the observed time series especially difficult. We present field-acquired data on ambient EM noise in an active oilfield environment and demonstrate techniques for extracting the difference signal due to proppant emplacement. These techniques include classical spectral methods along with estimation of time-domain Green's function by regularized, linear least squares methods.
NASA Astrophysics Data System (ADS)
Antonova, K.; Vitkova, V.; Mitov, M. D.
2010-02-01
The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, P.; MacArthur, D.W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.
Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S
2013-02-12
A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.
Measurement of Noise Produced by a Plasma Contactor Operating in Ground Based Facilities
NASA Technical Reports Server (NTRS)
Snyder, Steve
1996-01-01
Methods to measure electric field fluctuations accurately in a plasma with an active monopole antenna are described. It is shown that the conductive surfaces of the antenna must be adequately isolated from the ambient plasma and that the monopole must be sufficiently short to avoid antenna amplifier saturation. Experimental results illustrate that the noise produced by plasma contactor operation and sensed by the antenna is due to plasma phenomena and is not induced by laboratory power supplies. A good correlation is shown between the current fluctuations in the contactor electrical circuit and the noise detected by the antenna. A large body of experimental data support the conclusion that the majority of noise sensed by the antenna at frequencies less than 1 MHz is due to current fluctuations (electrostatic waves) in the plasma adjacent to the antenna and not to electromagnetic wave radiation. Caution is suggested when comparing antenna noise measurements to conventional specifications for radiated emissions.
A boundary element method for particle and droplet electrohydrodynamics in the Quincke regime
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2014-11-01
Quincke electrorotation is the spontaneous rotation of dielectric particles suspended in a dielectric liquid of higher conductivity when placed in a sufficiently strong electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions, whose effective viscosity can be controlled and reduced by application of an external field. While spherical harmonics can be used to solve the governing equations for a spherical particle, they cannot be used to study the dynamics of particles of more complex shapes or deformable particles or droplets. Here, we develop a novel boundary element formulation to model the dynamics of a dielectric particle under Quincke rotation based on the Taylor-Melcher leaky dielectric model, and compare the numerical results to theoretical predictions. We then employ this boundary element method to analyze the dynamics of a two-dimensional drop under Quincke rotation, where we allow the drop to deform under the electric field. Extensions to three-dimensions and to the electrohydrodynamic interactions of multiple droplets are also discussed.
Lei, Yu; Huang, Zheng-Hong; Yang, Ying; Shen, Wanci; Zheng, Yongping; Sun, Hongyu; Kang, Feiyu
2013-01-01
Li4Ti5O12/activated carbon hybrid supercapacitor can combine the advantages of both lithium-ion battery and supercapacitor, which may meet the requirements for developing high-performance hybrid electric vehicles. Here we proposed a novel “core-shell” porous graphitic carbon (PGC) to replace conventional activated carbon for achieving excellent cell performance. In this PGC structure made from mesocarbon microbead (MCMB), the inner core is composed of porous amorphous carbon, while the outer shell is graphitic carbon. The abundant porosity and the high surface area not only offer sufficient reaction sites to store electrical charge physically, but also can accelerate the liquid electrolyte to penetrate the electrode and the ions to reach the reacting sites. Meanwhile, the outer graphitic shells of the porous carbon microbeads contribute to a conductive network which will remarkably facilitate the electron transportation, and thus can be used to construct a high-rate, high-capacity cathode for hybrid supercapacitor, especially at high current densities. PMID:23963328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pao, C.K.
1975-05-01
An assessment of wave energy as a source of electrical power in the United Kingdom is reported. British Hovercraft Corporation has conducted some tank tests for Wavepower Limited, studying various simple float systems. It aims to develop a wave-power device that is simple, cheap, made up of small mass- produced units, can be installed in sections, and can be easily maintained. A chain of floats, hinged together, with waves traveling down the chain, was investigated. Pumps on the hinges absorb power from the relative rotation of adjacent floats. A wave-power device could also serve as an effective breakwater. Direct generationmore » of electricity is a feasible application of wave power. The system is compared with a rocking boom concept. Wave energy could be used in conjunction with thermal stations to provide sufficient capacity when wave power is low. Wave power has a high availability when compared with wind power. (MCW)« less
Christo, Steven Basil
2006-12-19
Apparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled with an ionizing gas mixture such as, but not limited to, Argon:CO.sub.2. A wire is suspended along each tube axis and electrically connected at both ends of the tube. A positive, dc high voltage is supplied to one end of the wire and an amplifier is attached to the other end through a capacitance to decouple the amplifier from the high voltage. X-rays, gamma rays or neutrons produced by nuclear material and passing through the tube ionize the gas. The electrons from the gas ionization process are accelerated toward the wire surface due to the wire's electrical potential. The acceleration of the electrons near the wire's surface is sufficient to ionize more gas and produce an amplification of electrons/ions that create a surge of current large enough to be detectable by the amplifier. Means are also provided for a warning device coupled to the amplifier.
NASA Astrophysics Data System (ADS)
Gendron, Mathieu
This thesis describes a new medical imaging technique for determining the electrical conductivity distribution of tissues in a body region with a resolution comparable to that of current ultrasound techniques. The new technique, henceforth referred to as "Acousto-Electric Conductivity Modulation" (AECM) imaging, is based on the interaction of a sound wave with an electrical field. In its simplest form, four electrodes located near the region to be imaged apply a low-amplitude electrical current and measure the potential difference arising from current flow in the tissues. A focused ultrasound transducer directs a pressure wave to a voxel of the region of interest, modifying its conductivity distribution and, as a result, the amplitude of the potential measured by the electrodes. An image of the conductivity distribution can thus be constructed point-by-point by moving the electrodes and transducer to scan the object. In this context, the acoustic wave acts as the localization agent while the electrical potential provides a measure of the local conductivity change that occurs in the voxel. The first model presented in the thesis is based on the use of bipolar acoustic waves for excitation. This waveform is generally used with narrow band transducers. Acoustic waves generated by an ultrasound transducer driven with a burst of sine waves consists of alternating compression and rarefaction phases which tend to cancel each other in terms of the conductivity changes they produce. However when the thickness of the target object is small compared to the wavelength of the acoustic wave, this cancelling effect will not occur and the AECM signals will have sufficiently high amplitude to achieve image reconstruction using successive transducer positions to scan the region of interest. By extracting from the spectra of the AECM signals the amplitude of the peak at the excitation frequency, a map of the acousto-electric sensitivity of the system can be obtained. This map is then used to reconstruct the electrical conductivity distribution. The second model presented in the thesis uses a unipolar acoustic wave to generate AECM signals of relatively large amplitude. There are two aspects related to this type of wave. The first aspect is that the acoustic modulation is unidirectional if the applied pressure is unidirectional. As a result, a positive pressure only produces an increase in electrical conductivity and this will result in a large AECM signal even when the thickness of the object is large. The second aspect concerns the shape of the acoustic field. Since the unipolar acoustic wave is not focused, it modulates the conductivity over a large area, and thus the associated AECM signals needs to be processed through a reconstruction algorithm so as to recover local conductivity. In this model, the data required for image reconstruction are acquired by rotating the transducer around the target object. An experimental setup has been developed during our project to get values of certain parameter that are required to define the numerical models. The setup comprises a large tank which is filled with water and in which are immersed the ultrasound transducer, a hydrophone and a measurement cell. The acousto-electric interaction takes place within this cell. A computer controlled positioning system allows precise displacements of the transducer relative to the hydrophone and the measurement cell. This cell comprises a cavity in which the object to be analyzed is placed and that is then filled with an electrolytic solution. The cavity is closed on two sides by an acoustic window to allow propagation of the ultrasound wave and on another side by six Ag/AgCl electrodes that are used to apply current and to measure the resulting electrical potential. Mammography is presently the most widely used medical imaging procedure for breast cancer screening. The average sensitivity of this technique is 80 % but it is less for younger women. According to recent studies, MRI offers a higher sensitivity and the possibility of detecting very small tumors, thus allowing earlier treatment. The operating costs of MRI systems are at the moment too high to consider using the modality for breast cancer screening on a large scale. AECM imaging could eventually provide an interesting compromise between operating costs and the sensitivity required for screening patients of all ages. (Abstract shortened by UMI.).
Thread-like supercapacitors based on one-step spun nanocomposite yarns.
Meng, Qinghai; Wang, Kai; Guo, Wei; Fang, Jin; Wei, Zhixiang; She, Xilin
2014-08-13
Thread-like electronic devices have attracted great interest because of their potential applications in wearable electronics. To produce high-performance, thread-like supercapacitors, a mixture of stable dispersions of single-walled carbon nanotubes and conducting polyaniline nanowires are prepared. Then, the mixture is spun into flexible yarns with a polyvinyl alcohol outer sheath by a one-step spinning process. The composite yarns show excellent mechanical properties and high electrical conductivities after sufficient washing to remove surfactants. After applying a further coating layer of gel electrolyte, two flexible yarns are twisted together to form a thread-like supercapacitor. The supercapacitor based on these two yarns (SWCNTs and PAniNWs) possesses a much higher specific capacitance than that based only on pure SWCNTs yarns, making it an ideal energy-storage device for wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conduction of thermal energy in the neighborhood of the earth's bow shock
NASA Technical Reports Server (NTRS)
Hohlfeld, R. G.
1976-01-01
The Rankine-Hugoniot equations for MHD shocks are generalized by the addition of a term to the energy conservation equation representing a nonzero heat flow in the plasma in the neighborhood of the shock. This generalization is found to be compatible with the assumption of infinite electrical conductivity. The effects of plasma waves in this treatment are of the order of the reciprocal Alfvenic Mach number squared and hence are neglected. The effect of alpha particles in the solar wind is discussed. Seven crossings of the earth's bow shock by Explorer 35 in lunar orbit are analyzed. Sufficient data are available so that the determination of a dimensionless parameter, psi, characterizing the heat-flow difference across the bow shock is possible. The values of psi indicate energy-flux densities due to heat flow which are a nonnegligible fraction of the total energy flux. Two possible interpretations of psi are discussed.
NASA Astrophysics Data System (ADS)
Tao, Yinglei; Kumar Wickramasinghe, H.
2017-02-01
We demonstrate a coaxial AFM nanoprobe device for dielectrophoretic (DEP) trapping of DNA molecules in Tris-EDTA (TE) and phosphate-buffered saline (PBS) buffers. The DEP properties of 20 nm polystyrene beads were studied with coaxial probes in media with different conductivities. Due to the special geometry of our DEP probe device, sufficiently high electric fields were generated at the probe end to focus DNA molecules with positive DEP. DEP trapping for both polystyrene beads and DNA molecules was quantitatively analyzed over the frequency range from 100 kHz to 50 MHz and compared with the Clausius-Mossotti theory. Finally, we discussed the negative effect of medium salinity during DEP trapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aikawa, Shinya, E-mail: aikawa@cc.kogakuin.ac.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Research Institute for Science and Technology, Kogakuin University, Hachioji, Tokyo 192-0015; Mitoma, Nobuhiko
We discuss the environmental instability of amorphous indium oxide (InO{sub x})-based thin-film transistors (TFTs) in terms of the excess oxygen in the semiconductor films. A comparison between amorphous InO{sub x} doped with low and high concentrations of oxygen binder (SiO{sub 2}) showed that out-diffusion of oxygen molecules causes drastic changes in the film conductivity and TFT turn-on voltages. Incorporation of sufficient SiO{sub 2} could suppress fluctuations in excess oxygen because of the high oxygen bond-dissociation energy and low Gibbs free energy. Consequently, the TFT operation became rather stable. The results would be useful for the design of reliable oxide TFTsmore » with stable electrical properties.« less
Electricity storage: Friend or foe of the networks?
NASA Astrophysics Data System (ADS)
Jamasb, Tooraj
2017-06-01
As storage technology progresses it offers a range of solutions and services to users and the electricity industry. A new study explores whether or not this will eventually lead to self-sufficient consumers and spell the end of the networks as we know them.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., individually or regionally performing a system security Vulnerability and Risk Assessment (VRA), establishing... electrical condition and security of its electric system and for the quality of services provided to its... sufficient resources to operate and maintain its system and annually exercise its ERP in accordance with the...
Murray, M.M.; Wilfong, D.H.; Lomax, R.E.
1998-12-08
An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.
Method of Fault Detection and Rerouting
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Medelius, Pedro J. (Inventor); Lewis, Mark E. (Inventor)
2013-01-01
A system and method for detecting damage in an electrical wire, including delivering at least one test electrical signal to an outer electrically conductive material in a continuous or non-continuous layer covering an electrically insulative material layer that covers an electrically conductive wire core. Detecting the test electrical signals in the outer conductive material layer to obtain data that is processed to identify damage in the outer electrically conductive material layer.
Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts
NASA Astrophysics Data System (ADS)
Frischknecht, Amalie
Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.
2017-10-01
An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.
Electrical conductivity modeling in fractal non-saturated porous media
NASA Astrophysics Data System (ADS)
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
NASA Astrophysics Data System (ADS)
Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl
2017-11-01
In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.
Self-potential response to periodic pumping test: a numerical study
NASA Astrophysics Data System (ADS)
Konosavsky, Pavel; Maineult, Alexis; Narbut, Mikhail; Titov, Konstantin
2017-09-01
We numerically model self-potential responses associated with periodic pumping test experiments by sequential calculation of the hydraulic response and the coupled electrical potential. We assume the pumping test experiments with a fully saturated confined aquifer. Application of different excitation functions leads to quasi-linear trends in electrical records whose direction and intensity depend on the form of the excitation function. The hydraulic response is phase shifted compared to the excitation function; the phase shift increases quasi-linearly with the distance from the pumping well. For the electrical signals, we investigated separately the cases of conducting and insulating casings of the pumping well. For the conducting casing the electrical signals are larger in magnitude than that for the insulating casing; they reproduce the drawdown signals in the pumping well at any distance from the well and exhibit any phase shift with the increased distance. For the insulating casing, the electrical signals are phase shifted and their shape depends on the distance from the pumping well. Three characteristic regimes were found for the phase shift, φ, with the increased distance and for various hydraulic diffusivity values. At small distances φ increases quasi-linearly; at intermediate distances φ attends the value of π/2 and stay about this value (for relatively small diffusivity values); and at large distances φ attends the value of π and, stay about this value at larger distances. This behaviour of the electrical signals can be explained by two electrical sources of reverse polarity. They are (i) linear, time independent, and located at the pumping interval of the well; and (ii) volumetric, time dependent, with maximum value located in the aquifer at the distance corresponding to maximum variation of the hydraulic head magnitude with time. We also model the variation of the amplitude and phase of the hydraulic and electrical signals with increased excitation function period, and we show the characteristic periods corresponding to transition of the periodic pumping test regime to the classical pumping test regime, when the excitation function is considered as the step-function. This transition depends on the distance from the pumping well and the hydraulic diffusivity value of aquifer. Finally, with this modelling of saturated flow we reproduced in sufficient details the field data previously obtained by Maineult et al.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2017-04-04
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
Livesay, Ronald Jason; Mason, Brandon William; Kuhn, Michael Joseph; Rowe, Nathan Carl
2015-10-13
Disclosed are several examples of a system and method for detecting if an article is being tampered with. Included is a covering made of a substrate that is coated with a layer of an electrically conductive material that forms an electrically conductive surface having an electrical resistance. The covering is configured to at least partially encapsulate the article such that the article cannot be tampered with, without modifying the electrical resistance of the electrically conductive surface of the covering. A sensing device is affixed to the electrically conductive surface of the covering and the sensing device monitors the condition of the covering by producing a signal that is indicative of the electrical resistance of the electrically conductive surface of the covering. A measured electrical resistance that differs from a nominal electrical resistance is indicative of a covering that is being tampered with and an alert is communicated to an observer.
An analysis of electrical conductivity model in saturated porous media
NASA Astrophysics Data System (ADS)
Cai, J.; Wei, W.; Qin, X.; Hu, X.
2017-12-01
Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.
Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.
1998-01-01
An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.
Apparatus for Use in Determining Surface Conductivity at Microwave Frequencies
NASA Technical Reports Server (NTRS)
Hearn, Chase P. (Inventor)
1995-01-01
An apparatus is provided for use in determining surface conductivity of a flat or shaped conductive material at microwave frequencies. A plate has an electrically conductive surface with first and second holes passing through the plate. An electrically conductive material under test (MUT) is maintained in a spaced apart relationship with the electrically conductive surface of the plate by one or more nonconductive spacers. A first coupling loop is electrically shielded within the first hole while a second coupling loop is electrically shielded within the second hole. A dielectric resonator element is positioned between the first and second coupling loops, while also being positioned closer to the MUT than the electrically conductive surface of the plate. Microwave energy at an operating frequency f is supplied from a signal source to the first coupling loop while microwave energy received at the second coupling loop is measured. The apparatus is capable of measuring the Q-factor of the dielectric resonator situated in the 'cavity' existing between the electrically conductive surface of the plate and the MUT. Surface conductivity of the electrically conductive surface can be determined via interpolation using: 1 ) the measured Q-factor with the electrically conductive surface in place, and 2) the measured Q-factor when the MUT is replaced with reference standards having known surface conductivities.
46 CFR 111.79-1 - Receptacle outlets; general.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Receptacle outlets; general. 111.79-1 Section 111.79-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-1 Receptacle outlets; general. (a) There must be a sufficient...
46 CFR 111.79-1 - Receptacle outlets; general.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Receptacle outlets; general. 111.79-1 Section 111.79-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-1 Receptacle outlets; general. (a) There must be a sufficient...
46 CFR 111.79-1 - Receptacle outlets; general.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Receptacle outlets; general. 111.79-1 Section 111.79-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-1 Receptacle outlets; general. (a) There must be a sufficient...
46 CFR 111.79-1 - Receptacle outlets; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Receptacle outlets; general. 111.79-1 Section 111.79-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-1 Receptacle outlets; general. (a) There must be a sufficient...
46 CFR 111.79-1 - Receptacle outlets; general.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Receptacle outlets; general. 111.79-1 Section 111.79-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-1 Receptacle outlets; general. (a) There must be a sufficient...
Piezo-phototronic effect devices
Wang, Zhong L.; Yang, Qing
2013-09-10
A semiconducting device includes a piezoelectric structure that has a first end and an opposite second end. A first conductor is in electrical communication with the first end and a second conductor is in electrical communication with the second end so as to form an interface therebetween. A force applying structure is configured to maintain an amount of strain in the piezoelectric member sufficient to generate a desired electrical characteristic in the semiconducting device.
Electric field driven evolution of topological domain structure in hexagonal manganites
NASA Astrophysics Data System (ADS)
Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.
2017-10-01
Controlling and manipulating the topological state represents an important topic in condensed matters for both fundamental researches and applications. In this work, we focus on the evolution of a real-space topological domain structure in hexagonal manganites driven by electric field, using the analytical and numerical calculations based on the Ginzburg-Landau theory. It is revealed that the electric field drives a transition of the topological domain structure from the type-I pattern to the type-II one. In particular, it is identified that a high electric field can enforce the two antiphase-plus-ferroelectric (AP +FE ) domain walls with Δ Φ =π /3 to approach each other and to merge into one domain wall with Δ Φ = 2 π /3 eventually if the electric field is sufficiently high, where Δ Φ is the difference in the trimerization phase between two neighboring domains. Our simulations also reveal that the vortex cores of the topological structure can be disabled at a sufficiently high critical electric field by suppressing the structural trimerization therein, beyond which the vortex core region is replaced by a single ferroelectric domain without structural trimerization (Q = 0 ). Our results provide a stimulating reference for understanding the manipulation of real-space topological domain structure in hexagonal manganites.
Electrohydrodynamic interactions in Quincke rotation: from pair dynamics to collective motion
NASA Astrophysics Data System (ADS)
Das, Debasish; Saintillan, David
2013-11-01
Weakly conducting dielectric particles suspended in a dielectric liquid can undergo spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions whose effective viscosity can be reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between identical spheres using method of reflections. We also consider the case of spherical particles undergoing Quincke rotation next to a planar electrode, where hydrodynamic interactions with the no-slip boundary lead to a self-propelled velocity. The interactions between such Quincke rollers are analyzed, and a transition to collective motion is predicted in sufficiently dense collections of many rollers, in agreement with recent experiments.
Telecommunications equipment power supply in the Arctic by means of solar panels
NASA Astrophysics Data System (ADS)
Terekhin, Vladimir; Lagunov, Alexey
2016-09-01
Development of the Arctic region is one of the priorities in the Russian Federation. Amongst other things, a reliable telecommunications infrastructure in the Arctic is required. Petrol and diesel generators are traditionally employed but their use has considerable environmental impact. Solar panels can be used as an alternative power source. The electricity generated will be sufficient to supply small-sized telecommunications equipment with total the power of over 80 watts. An installation consisting of the solar modules, a charge controller, batteries, an inverter and load was designed. Tests were conducted at Cape Desire of the Novaya Zemlya (island). The solar panels provided in excess of 80 W from 7 a.m. to 11 p.m. The batteries charge during this time was sufficient to provide the power supply for the communication equipment during the night, from 11 p.m. to 7 a.m. The maximum value of 638 W of the power generation was observed at 3 p.m. The minimum value of 46 W was at 4 a.m. The solar modules thus can be used during the polar day to power the telecommunications equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hyun Woo; Kim, Jeongmin; Sung, Bong June, E-mail: jjpark@chonnam.ac.kr, E-mail: bjsung@sogang.ac.kr
We investigate how the electrical conductance of microfibers (made of polymers and conductive nanofillers) decreases upon uniaxial deformation by performing both experiments and simulations. Even though various elastic conductors have been developed due to promising applications for deformable electronic devices, the mechanism at a molecular level for electrical conductance change has remained elusive. Previous studies proposed that the decrease in electrical conductance would result from changes in either distances or contact numbers between conductive fillers. In this work, we prepare microfibers of single walled carbon nanotubes (SWCNTs)/polyvinyl alcohol composites and investigate the electrical conductance and the orientation of SWCNTs uponmore » uniaxial deformation. We also perform extensive Monte Carlo simulations, which reproduce experimental results for the relative decrease in conductance and the SWCNTs orientation. We investigate the electrical networks of SWCNTs in microfibers and find that the decrease in the electrical conductance upon uniaxial deformation should be attributed to a subtle change in the topological structure of the electrical network.« less
Han, Xue; Ke, Jie; Suleiman, Norhidayah; Levason, William; Pugh, David; Zhang, Wenjian; Reid, Gillian; Licence, Peter; George, Michael W
2016-06-07
We present investigations into a variety of supporting electrolytes and supercritical fluids probing the phase and conductivity behaviour of these systems and show that they not only provide sufficient electrical conductivity for an electrodeposition bath, but match the requirements imposed by the different precursors and process parameters, e.g. increased temperature, for potential deposition experiments. The two supercritical fluids that have been explored in this study are difluoromethane (CH2F2) and 1,1-difluoroethane (CHF2CH3). For CH2F2, the phase behaviour and electrical conductivity of eight ionic compounds have been studied. Each compound consists of a cation and an anion from the selected candidates i.e. tetramethylammonium ([N(CH3)4](+)), tetrabutylammonium ([N((n)C4H9)4](+)), 1-ethyl-3-methylimidazolium ([EMIM](+)) and 1-butyl-3-methylimidazolium ([BMIM](+)) for cations, and tetrakis(perfluoro-tert-butoxy)aluminate ([Al(OC(CF3)3)4](-)), chloride (Cl(-)), trifluoromethyl sulfonimide ([NTf2](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) for anions. For CHF2CH3, [N((n)C4H9)4][BF4] and [N((n)C4H9)4][B{3,5-C6H3(CF3)2}4] have been investigated for comparison with the previously measured solubility and conductivity in CH2F2. We have found that [N((n)C4H9)4][Al(OC(CF3)3)4], [N((n)C4H9)4][FAP] and [N(CH3)4][FAP] have much higher molar conductivity in scCH2F2 at similar conditions than [N((n)C4H9)4][BF4], a widely used commercial electrolyte. Additionally, scCHF2CH3 shows potential for use as the solvent for supercritical fluid electrodeposition, especially at high temperatures since high density of this fluid can be achieved at lower operating pressures than similar fluids that can be used to produce electrochemical baths with comparable conductivity.
Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA
2011-11-15
A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.
Electrically-conductive proppant and methods for making and using same
Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.
2016-09-06
Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.
NASA Astrophysics Data System (ADS)
Hui, KeShi; Dai, LiDong; Li, HePing; Hu, HaiYing; Jiang, JianJun; Sun, WenQing; Zhang, Hui
2017-03-01
The electrical conductivity of pyroxene andesite was in situ measured under conditions of 1.0-2.0 GPa and 673-1073 K using a YJ-3000t multi-anvil press and Solartron-1260 Impedance/Gain-phase analyzer. Experimental results indicate that the electrical conductivities of pyroxene andesite increase with increasing temperature, and the electrical conductivities decrease with the rise of pressure, and the relationship between electrical conductivity ( σ) and temperature ( T) conforms to an Arrhenius relation within a given pressure and temperature range. When temperature rises up to 873-923 K, the electrical conductivities of pyroxene andesite abruptly increase, and the activation enthalpy increases at this range, which demonstrates that pyroxene andesite starts to dehydrate. By the virtue of the activation enthalpy (0.35-0.42 eV) and the activation volume (-6.75 ± 1.67 cm3/mole) which characterizes the electrical properties of sample after dehydration, we consider that the conduction mechanism is the small polaron conduction before and after dehydration, and that the rise of carrier concentration is the most important reason of increased electrical conductivity.
Electrically conductive cellulose composite
Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan
2010-05-04
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
Nostrand, Gerald E.; Hanak, Joseph J.
1979-01-01
A method of removing the effects of electrical shorts and shunts created during the fabrication process and improving the performance of a solar cell with a thick film cermet electrode opposite to the incident surface by applying a reverse bias voltage of sufficient magnitude to burn out the electrical shorts and shunts but less than the break down voltage of the solar cell.
Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin
2017-09-27
Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.
Reaction propagation test. Evaluation of the behavior of nonmetallic materials in hydrogen
NASA Technical Reports Server (NTRS)
Smith, I. D.
1972-01-01
Results of tests conducted to evaluate the behavior of nonmetallic materials in hydrogen are described. The reaction propagation test simulates the conditions resulting from the interaction of an electrical wire in an overload condition in contract with a material in the test medium. The test is designed to evaluate the behavior of a material subjected to an energy input (usually heat) sufficient to cause a reaction which propagates to consume larger quantities of the material. Ten nonmetallic materials were evaluated to establish baseline data on the behavior of nonmetallic materials in hydrogen and to characterize, on an initial basis, one mode of material failure considered to be a factor pertinent to the safe use of a material in hydrogen.
Lee, S-Y; Sagong, H-G; Ryu, S; Kang, D-H
2012-04-01
The purpose of this study was to investigate the efficacy of continuous ohmic heating for reducing Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Orange juice and tomato juice were treated with electric field strengths in the range of 25-40 V cm(-1) for different treatment times. The temperature of the samples increased with increasing treatment time and electric field strength. The rate of temperature change for tomato juice was higher than for orange juice at all voltage gradients applied. Higher electric field strength or longer treatment time resulted in a greater reduction of pathogens. Escherichia coli O157:H7 was reduced by more than 5 log after 60-, 90- and 180-s treatments in orange juice with 40, 35 and 30 V cm(-1) electric field strength, respectively. In tomato juice, treatment with 25 V cm(-1) for 30 s was sufficient to achieve a 5-log reduction in E. coli O157:H7. Similar results were observed in Salm. Typhimurium and L. monocytogenes. The concentration of vitamin C in continuous ohmic heated juice was significantly higher than in conventionally heated juice (P < 0·05). Continuous ohmic heating can be effective in killing foodborne pathogens on orange juice and tomato juice with lower degradation of quality than conventional heating. These results suggest that continuous ohmic heating might be effectively used to pasteurize fruit and vegetable juices in a short operating time and that the effect of inactivation depends on applied electric field strengths, treatment time and electric conductivity. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Method of forming an electrically conductive cellulose composite
Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB
2011-11-22
An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.
NASA Astrophysics Data System (ADS)
André, F.; Lambot, S.; Moghadas, D.; Vereecken, H.
2009-04-01
Electromagnetic induction (EMI) has been widely used since the 70s to retrieve soil physico-chemical properties through the measurement of soil electrical conductivity. Soil electrical conductivity integrates several factors, mainly soil water content, salinity, clay content and temperature, and to a lesser extent, mineralogy, porosity, structure, cation exchange capacity, organic matter and bulk density. EMI has been shown to be useful for a wide range of environmental applications. EMI is non invasive and individual measurements are almost instantaneous, which permits to characterise large areas with fine spatial and/or temporal resolutions. Nevertheless, current EMI systems present some limitations. First, EMI usually operates at a single or at a limited number of fixed frequencies, which limits the information that can be retrieved from the subsurface. In addition, the calibration of existing commercial sensors is generally rather empirical and not accurate, which reduces the reliability of the data. Finally, the data processing techniques that are used to retrieve the soil electrical properties from EMI data often rely on strong simplifying assumptions with respect to wave propagation through the antenna-air-soil system. Performing EMI measurements with Vector Network Analyzer (VNA) technology would overcome a part of these limitations, allowing to work simultaneously at a wide range of frequencies and to readily perform robust calibrations, which are defined as an international standard. On that basis, we have developed a new algorithm for off-ground, zero-offset, frequency domain EMI based on full-waveform inverse modelling. The EMI forward model is based on a linear system of complex transfer functions for describing the loop antenna and its interactions with soil and an exact solution of Maxwell's equations for wave propagation in three-dimensional multilayered media. The approach has been validated in laboratory conditions for measurements at different heights above a perfect electric conductor (copper sheet). Although VNA technology has a relatively wide dynamic range, regular loop antennas do not have a sufficient efficiency to ensure enough sensitivity to the soil electrical conductivity in zero-offset, off-ground mode. For higher efficiency, we have designed a specific transmitting antenna based on two coils in series together with a variable capacitor to modify the resonant frequency. The two coils have different diameters and are placed in the same plane, centred on the same point. The current in the inner coil is travelling in opposite direction compared to the outer coil, leading to two magnetic fields with opposite polarity. This produces a magnetic cavity in the middle of the coils (the magnetic field tends to zero), where a regular receiving coil is situated. This set up permits to strongly decrease direct coupling between the antennas, thereby increasing the dynamic range of the system. In addition, a wideband amplifier is used to further strengthen the received wave. The results obtained with this new method show great promise for quantitative and accurate characterization of the soil electrical conductivity with EMI.
NASA Astrophysics Data System (ADS)
Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.
2015-03-01
Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.
Cascade of kinetic energy and scalar variance in DC electrokinetic turbulence
NASA Astrophysics Data System (ADS)
Zhao, Wei; Wang, Guiren
2017-11-01
Turbulent flow can be generated by DC electrokinetic (EK) force based on the electric conductivity and permittivity variations in fluids, as have been demonstrated by Varshney et al (2016), where a -1.4 slope of velocity power spectrum is observed. Here, we theoretically found the scaling exponents of velocity and scalar structures in the electric-body-force (EBF) dominant subregion of DC EK turbulence were 2/5 (equivalent to the -7/5 slope of velocity power spectrum) and 4/5 respectively. The theory perfectly explains the experimental results of Varshney et al. (2016). Based on Kármán-Howarth equation with forcing terms, the energy cascade process of DC EK turbulence was also investigated. Depending on the electric Rayleigh number (Rae) , two different energy cascade processes may happen. When Rae is small, the kinetic energy cascades along inertial subregion and EBF dominant subregion in sequence, before it is dissipated by fluid viscosity. When Rae is sufficiently large, the inertial subregion may be absent with EBF dominant subregion left. This investigation is very important on understand EK turbulence, which could be widely existed in nature and applied in engineerings. The work was supported by NSFC (11672229), and NSF (CAREER CBET-0954977 and MRI CBET-1040227).
Nikkari, Jason J; Di, LorioJoannaM; Thomson, Murray J
2002-01-20
An optical near-infrared process sensor for electric are furnace pollution control and energy efficiency is proposed. A near-IR tunable diode laser has performed simultaneous in situ measurements of CO (1,577.96 nm), H2O (1,577.8 and 1,578.1 nm), and temperature in the exhaust gas region above a laboratory burner fueled with methane and propane. The applicable range of conditions tested is representative of those found in a commercial electric arc furnace and includes temperatures from 1,250 to 1,750 K, CO concentrations from 0 to 10%, and H20 concentrations from 3 to 27%. Two-tone frequency modulation was used to increase the detection sensitivity. An analysis of the method's accuracy has been conducted with 209 calibration and 105 unique test burner setpoints. Based on the standard deviation of differences between optical predictions and independently measured values, the minimum accuracy of the technique has been estimated as 36 K for temperature, 0.5% for CO, and 3% for H2O for all 105 test data points. This accuracy is sufficient for electric arc furnace control. The sensor's ability to nonintrusively measure CO and temperature in real time will allow for improved process control in this application.
Electromagnetic interference filter for automotive electrical systems
Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D
2013-07-02
A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder.
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-12-22
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service.
Investigation of the electrical characteristics of electrically conducting yarns and fabrics
NASA Astrophysics Data System (ADS)
Akbarov, R. D.; Baymuratov, B. H.; Akbarov, D. N.; Ilhamova, M.
2017-11-01
Electro-conductive textile materials and products are used presently giving solutions to the problems, related to static electricity, electromagnetic shielding and electromagnetic radiation. Thus a study of their electro-physical characteristics, character of conductivity, possibility of forecasting of electric parameters etc has a substantial value. This work shows the possibility of production electro-conducting textile materials with stable anti-static properties by introduction of electro-conducting yarn into the structure of fabrics. The results of the research, directed to the study of the electro-physical characteristics of electroconducting yarn and fabrics, are influenced by the frequent washing of polyester fabrics containing the different amounts of electro-conducting filaments in the composition. This article reviews the results of the related research, of the electrical characteristics of the yarn and fabric, of the effect of multiple water treatments on the electrical properties of polyester fabrics, containing in their composition different amounts of electrically conductive yarns.
Electrical contact arrangement for a coating process
Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W
2013-09-17
A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.
Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature
NASA Astrophysics Data System (ADS)
Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi
2010-09-01
AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.
High electric field conduction in low-alkali boroaluminosilicate glass
NASA Astrophysics Data System (ADS)
Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.
2018-02-01
Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.
Capillary zone electrophoresis-mass spectrometer interface
D'Silva, Arthur
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.
Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos
2009-10-07
This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
Residential Photovoltaic/Thermal Energy System
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1987-01-01
Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.
Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics for metal-insulator-metal capacitor applications
NASA Astrophysics Data System (ADS)
Ding, Shi-Jin; Zhu, Chunxiang; Li, Ming-Fu; Zhang, David Wei
2005-08-01
Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics have been investigated to replace conventional silicon oxide and nitride for radio frequency and analog metal-insulator-metal capacitors applications. In the case of 1-nm-Al2O3, sufficiently good electrical performances are achieved, including a high dielectric constant of ˜17, a small dissipation factor of 0.018 at 100kHz, an extremely low leakage current of 7.8×10-9A/cm2 at 1MV/cm and 125°C, perfect voltage coefficients of capacitance (74ppm/V2 and 10ppm/V). The quadratic voltage coefficient of capacitance decreases with the applied frequency due to the change of relaxation time with different carrier mobility in insulator, and correlates with the dielectric composition and thickness, which is of intrinsic property owing to electric field polarization. Furthermore, the conduction mechanism of the AHA dielectrics is also discussed, indicating the Schottky emission dominated at room temperature.
Self-assembling semiconducting polymers--rods and gels from electronic materials.
Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H
2013-02-26
In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.
O'Shea, R; Wall, D; Murphy, J D
2016-09-01
Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan
2015-01-01
The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.
View of "iron horse" a machine capable of simulating ...
View of "iron horse" - a machine capable of simulating the shape of a hull at any given area in a 1/10 scale. Specific points are identified from 1/10 scale drawings of the ship's body plan. Plastic splines are configured to the body plat at several stations. Points are positioned to specific locations from the body plan over the splines with sufficient gap to insert a piece of electrically conductive paper. The paper is inserted between the points and the splines and forms a section of hull plating at 1/10 scale. An electric current is applied to each point and burns a mark on the paper. The paper is then removed, flattened and now represents a section of hull plating. Using precise photography, the section is projected (as a glass slide) on to a piece of hull plating which may be up to 300 feet long and 8 feet wide. Marks are traced on the plate, which serve as a guide to the cutters who trim the plate to final dimensions. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structural Assembly Shop, League Island, Philadelphia, Philadelphia County, PA
Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, C. E.; Johnson, T. C.; Odom, R. I.
2015-08-28
Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of themore » electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.« less
Electrical condition monitoring method for polymers
Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA; Masakowski, Daniel D [Worcester, MA; Wong, Ching Ping [Duluth, GA; Luo, Shijian [Boise, ID
2008-08-19
An electrical condition monitoring method utilizes measurement of electrical resistivity of an age sensor made of a conductive matrix or composite disposed in a polymeric structure such as an electrical cable. The conductive matrix comprises a base polymer and conductive filler. The method includes communicating the resistivity to a measuring instrument and correlating resistivity of the conductive matrix of the polymeric structure with resistivity of an accelerated-aged conductive composite.
Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2005-01-01
Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical conductivities of individual carbon nanotubes can be so high that the mat of carbon nanotubes could be made sparse enough to be adequately transparent while affording adequate lateral electrical conductivity of the mat as a whole. The thickness of the nanotube layer would be chosen so that the layer would contribute significant lateral electrical conductivity, yet would be as nearly transparent as possible to incident light. A typical thickness for satisfying these competing requirements is expected to lie between 50 and 100 nm. The optimum thickness must be calculated by comparing the lateral electrical conductivity, the distance between front metal stripes, and the amount of light lost by absorption in the nanotube layer.
Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C
McCleskey, R. Blaine
2011-01-01
The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) molkg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.
Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes
NASA Astrophysics Data System (ADS)
Ashrafi, Behnam; Jakubinek, Michael B.; Martinez-Rubi, Yadienka; Rahmat, Meysam; Djokic, Drazen; Laqua, Kurtis; Park, Daesun; Kim, Keun-Su; Simard, Benoit; Yousefpour, Ali
2017-12-01
Recent progress in nanotechnology has made several nano-based materials available with the potential to address limitations of conventional fiber reinforced polymer composites, particularly in reference to multifunctional structures. Carbon nanotubes (CNTs) are the most prevalent case and offer amazing properties at the individual nanotube level. There are already a few high-profile examples of the use of CNTs in space structures to provide added electrical conductivity for static dissipation and electromagnetic shielding. Boron nitride nanotubes (BNNTs), which are structurally analogous to CNTs, also present a range of attractive properties. Like the more widely explored CNTs, individual BNNTs display remarkable mechanical properties and high thermal conductivity but with contrasting functional attributes including substantially higher thermal stability, high electrical insulation, polarizability, high neutron absorption and transparency to visible light. This presents the potential of employing either or both BNNTs and CNTs to achieve a range of lightweight, functional composites for space structures. Here we present the case for application of BNNTs, in addition to CNTs, in space structures and describe recent advances in BNNT production at the National Research Council Canada (NRC) that have, for the first time, provided sufficiently large quantities to enable commercialization of high-quality BNNTs and accelerate development of chemistry, composites and applications based on BNNTs. Early demonstrations showing the fabrication and limited structural testing of polymer matrix composites, including glass fiber-reinforced composite panels containing BNNTs will be discussed.
Magnetic flux density reconstruction using interleaved partial Fourier acquisitions in MREIT.
Park, Hee Myung; Nam, Hyun Soo; Kwon, Oh In
2011-04-07
Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive modality to visualize the internal conductivity and/or current density of an electrically conductive object by the injection of current. In order to measure a magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels the systematic artifacts accumulated in phase signals and also reduces the random noise effect. However, it is important to reduce scan duration maintaining spatial resolution and sufficient contrast, in order to allow for practical in vivo implementation of MREIT. The purpose of this paper is to develop a coupled partial Fourier strategy in the interleaved sampling in order to reduce the total imaging time for an MREIT acquisition, whilst maintaining an SNR of the measured magnetic flux density comparable to what is achieved with complete k-space data. The proposed method uses two key steps: one is to update the magnetic flux density by updating the complex densities using the partially interleaved k-space data and the other is to fill in the missing k-space data iteratively using the updated background field inhomogeneity and magnetic flux density data. Results from numerical simulations and animal experiments demonstrate that the proposed method reduces considerably the scanning time and provides resolution of the recovered B(z) comparable to what is obtained from complete k-space data.
Wang, Qingqing; Rui, Kun; Zhang, Chao; Ma, Zhongyuan; Xu, Jingsan; Sun, Wenping; Zhang, Weina; Zhu, Jixin; Huang, Wei
2017-11-22
A general synthetic approach has been demonstrated to fabricate three-dimensional (3D) structured metal sulfides@graphene, employing few-layered sulfide nanostructures with expanded interlayer spacing of the (002) plane (e.g., 0.98 nm for MoS 2 nanoclusters and 0.65 nm for VS 4 nanoribbons) and electrically conductive graphene as ideal building blocks. Here, small molecules (thioacetamide) acting as both the sulfur source and, more importantly, the structure-directing agent adjusting the interlayer spacing are wisely selected, further contributing to a sufficient space for ultrafast Li + ion intercalation. The appealing features of a mechanically robust backbone, ultrathin thickness, abundant exposure of interlayer edges, and good electrical conductivity in such 3D architectures are favorable for providing easy access for the electrolyte to the structures and offering a shortened diffusion length of Li + when utilized for energy storage. As a proof of concept, the electrochemical behavior of the resulting 3D structured metal sulfides@graphene as an anode material of lithium ion batteries (LIBs) is systematically investigated. As a consequence, high specific capacities, long lifespans, and superior rate capabilities have been realized in such well-designed architectures, e.g. maintaining a specific capacity as high as 965 mAh g -1 for 120 cycles for VS 4 @graphene and 1100 mAh g -1 for 150 cycles for MoS 2 @graphene.
Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z
2014-04-08
A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.
Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Dong, Li-Ying; Chen, Feng; Lu, Bing-Qiang; Yang, Ri-Long
2017-11-15
How to survive under various harsh working conditions is a key challenge for flexible electronic devices because their performances are always susceptible to environments. Herein, we demonstrate the novel design and fabrication of a new kind of the all-weather flexible electrically conductive paper based on ultralong hydroxyapatite nanowires (HNs) with unique combination of the superhydrophobic surface, electrothermal effect, and flame retardancy. The superhydrophobic surface with water repellency stabilizes the electrically conductive performance of the paper in water. For example, the electrical current through the superhydrophobic paper onto which water droplets are deposited shows a little change (0.38%), and the electrical performance is steady as well even when the paper is immersed in water for 120 s (just 3.65% change). In addition, the intrinsic electrothermal effect of the electrically conductive paper can efficiently heat the paper to reach a high temperature, for example, 224.25 °C, within 10 s. The synergistic effect between the electrothermal effect and superhydrophobic surface accelerates the melting and removal of ice on the heated electrically conductive paper. Deicing efficiency of the heated superhydrophobic electrically conductive paper is ∼4.5 times that of the unheated superhydrophobic electrically conductive paper and ∼10.4 times that of the heated superhydrophilic paper. More importantly, benefiting from fire-resistant ultralong HNs, thermally stable Ketjen black, and Si-O backbone of poly(dimethylsiloxane), we demonstrate the stable and continuous service of the as-prepared electrically conductive paper in the flame for as long as 7 min. The electrical performance of the electrically conductive paper after flame treatment can maintain as high as 90.60% of the original value. The rational design of the electrically conductive paper with suitable building materials and structure demonstrated here will give an inspiration for the development of new kinds of all-weather flexible electronic devices that can work under harsh conditions.
NASA Technical Reports Server (NTRS)
Rauh, R. David (Inventor)
1990-01-01
A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.
Electrical grounding prong socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, R.
1989-09-12
This paper describes a socket for a grounding prong used in a three prong electrical plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 11 figs.
Ghazikhanlou-Sani, K; Firoozabadi, S M P; Agha-Ghazvini, L; Mahmoodzadeh, H
2016-06-01
There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475-0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.
Depositing nanometer-sized particles of metals onto carbon allotropes
NASA Technical Reports Server (NTRS)
Delozier, Donavon M. (Inventor); Fallbach, Michael J. (Inventor); Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)
2010-01-01
A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.
Meloni, Gabriel N; Bertotti, Mauro
2017-01-01
A simple and cost effective alternative for fabricating custom Scanning Electron Microscope (SEM) sample holders using 3D printers and conductive polylactic acid filament is presented. The flexibility of the 3D printing process allowed for the fabrication of sample holders with specific features that enable the high-resolution imaging of nanoelectrodes and nanopipettes. The precise value of the inner semi cone angle of the nanopipettes taper was extracted from the acquired images and used for calculating their radius using electrochemical methods. Because of the low electrical resistivity presented by the 3D printed holder, the imaging of non-conductive nanomaterials, such as alumina powder, was found to be possible. The fabrication time for each sample holder was under 30 minutes and the average cost was less than $0.50 per piece. Despite being quick and economical to fabricate, the sample holders were found to be sufficiently resistant, allowing for multiple uses of the same holder.
Bertotti, Mauro
2017-01-01
A simple and cost effective alternative for fabricating custom Scanning Electron Microscope (SEM) sample holders using 3D printers and conductive polylactic acid filament is presented. The flexibility of the 3D printing process allowed for the fabrication of sample holders with specific features that enable the high-resolution imaging of nanoelectrodes and nanopipettes. The precise value of the inner semi cone angle of the nanopipettes taper was extracted from the acquired images and used for calculating their radius using electrochemical methods. Because of the low electrical resistivity presented by the 3D printed holder, the imaging of non-conductive nanomaterials, such as alumina powder, was found to be possible. The fabrication time for each sample holder was under 30 minutes and the average cost was less than $0.50 per piece. Despite being quick and economical to fabricate, the sample holders were found to be sufficiently resistant, allowing for multiple uses of the same holder. PMID:28753638
NASA Astrophysics Data System (ADS)
Wilson, S. K.
1993-05-01
Analytical and numerical techniques are used to analyze the effect of a uniform vertical magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of quiescent, electrically conducting fluid subject to a uniform vertical temperature gradient. Marangoni numbers for the onset of steady convection are found to be critically dependent on the nondimensional Crispation and Bond numbers. Two different asymptotic limits of strong surface tension and strong magnetic field are analyzed. Data obtained indicate that the presence of the magnetic field always has a stabilizing effect on the layer. Assuming that the Marangoni number is a critical parameter, it is shown that, if the free surface is nondeformable, then any particular disturbance can be stabilized with a sufficiently strong magnetic field. If the free surface is deformable and gravity waves are excluded, then the layer is always unstable to infinitely long wavelength disturbances with or without a magnetic field.
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
NASA Astrophysics Data System (ADS)
Wiora, Neda; Mertens, Michael; Brühne, Kai; Fecht, Hans-Jörg; Tran, Ich C.; Willey, Trevor; van Buuren, Anthony; Biener, Jürgen; Lee, Jun-Sik
2017-10-01
N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H2, CH4 and NH3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10-2 to 5 × 101 S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown by systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300-1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.
New Materials for Structural Composites and Protective Coatings
NASA Technical Reports Server (NTRS)
2008-01-01
The objective of this Phase I project was to create novel conductive materials that are lightweight and strong enough for multiple ground support equipment and Exploration applications. The long-term goal is to combine these materials within specially designed devices to create composites or coatings with diagnostic capabilities, increased strength, and tunable properties such as transparency, electroluminescence, and fire resistance. One such technology application is a smart windows system. In such a system, the transmission of light through a window is controlled by electrical power. In the future, these materials may also be able to absorb sunlight and convert it into electrical energy to produce light, thereby creating a self-sufficient lighting system. This experiment, conducted in collaboration with the Georgia Institute of Technology, demonstrated enhancements in fabricating fiber materials from carbon nanotubes (CNT). These nanotubes were grown as forests in an ultra-high-purity chemical vapor deposition (CVD) furnace and then drawn, using novel processing techniques, into fibers and yarns that would be turned into filaments. This work was submitted to the Journal of Advanced Functional Materials. The CNT fibers were initially tested as filament materials at atmospheric pressure; however, even under high current loads, the filaments produced only random sparking. The CNT fibers were also converted into transparent, hydrophobic, and conductive sheets. Filament testing at low vacuum pressures is in progress, and the technology will be enhanced in 2008. As initial proof of the smart-windows application concept, the use of CNT sheets as composites/ protective coatings was demonstrated in collaboration with Nanocomp Technologies of Concord, New Hampshire.
Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M
2014-12-01
Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant. Copyright © 2014 John Wiley & Sons, Ltd.
Effect of the mechanical deformation on the electrical properties of the polymer/CNT fiber
NASA Astrophysics Data System (ADS)
Cho, Hyun Woo; Sung, Bong June; Nano-Bio Computational Chemistry Laboratory Team
2014-03-01
We elucidate the effect of the mechanical deformation on the electrical properties of the polymer/CNT fiber. The conductive polymer fiber has drawn a great attention for its potential application to a stretchable electronics such as wearable devices and artificial muscles, etc. However, the electrical conductivity of the polymer-based stretchable electronics decreases significantly during the deformation, which may limit the applicability of the polymer/CNT fiber for the stretchable electronics. Moreover, its physical origin for the decrease in electrical conductivity has not been explained clearly. In this work, we employ a coarse-grained model for the polymer/CNT fiber, and we calculate the electric conductivity using global tunneling network (GTN) model. We show that the electric conductivity decreases during the elongation of the polymer/CNT fiber. We also find using critical path approximation (CPA) that the structure of the electrical network of the CNTs changes collectively during the elongation of the fiber, which is strongly responsible for the reduction of the electrical conductivity of the polymer/CNT fiber.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Maximum on the Electrical Conductivity Polytherm of Molten TeCl4
NASA Astrophysics Data System (ADS)
Salyulev, Alexander B.; Potapov, Alexei M.
2017-05-01
The electrical conductivity of molten TeCl4 was measured up to 761K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl4 electrical conductivity polytherm has a maximum. It was recorded at 705K (κmax=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.
NASA Astrophysics Data System (ADS)
Mehrali, Mohammad; Sadeghinezhad, Emad; Rashidi, Mohammad Mehdi; Akhiani, Amir Reza; Tahan Latibari, Sara; Mehrali, Mehdi; Metselaar, Hendrik Simon Cornelis
2015-06-01
Electrical conductivity is an important property for technological applications of nanofluids that have not been widely investigated, and few studies have been concerned about the electrical conductivity. In this study, nitrogen-doped graphene (NDG) nanofluids were prepared using the two-step method in an aqueous solution of 0.025 wt% Triton X-100 as a surfactant at several concentrations (0.01, 0.02, 0.04, 0.06 wt%). The electrical conductivity of the aqueous NDG nanofluids showed a linear dependence on the concentration and increased up to 1814.96 % for a loading of 0.06 wt% NDG nanosheet. From the experimental data, empirical models were developed to express the electrical conductivity as functions of temperature and concentration. It was observed that increasing the temperature has much greater effect on electrical conductivity enhancement than increasing the NDG nanosheet loading. Additionally, by considering the electrophoresis of the NDG nanosheets, a straightforward electrical conductivity model is established to modulate and understand the experimental results.
Ultrahigh Oxidation Resistance and High Electrical Conductivity in Copper-Silver Powder
Li, Jiaxiang; Li, Yunping; Wang, Zhongchang; Bian, Huakang; Hou, Yuhang; Wang, Fenglin; Xu, Guofu; Liu, Bin; Liu, Yong
2016-01-01
The electrical conductivity of pure Cu powder is typically deteriorated at elevated temperatures due to the oxidation by forming non-conducting oxides on surface, while enhancing oxidation resistance via alloying is often accompanied by a drastic decline of electrical conductivity. Obtaining Cu powder with both a high electrical conductivity and a high oxidation resistance represents one of the key challenges in developing next-generation electrical transferring powder. Here, we fabricate a Cu-Ag powder with a continuous Ag network along grain boundaries of Cu particles and demonstrate that this new structure can inhibit the preferential oxidation in grain boundaries at elevated temperatures. As a result, the Cu-Ag powder displays considerably high electrical conductivity and high oxidation resistance up to approximately 300 °C, which are markedly higher than that of pure Cu powder. This study paves a new pathway for developing novel Cu powders with much enhanced electrical conductivity and oxidation resistance in service. PMID:28004839
System and method for evaluating a wire conductor
Panozzo, Edward; Parish, Harold
2013-10-22
A method of evaluating an electrically conductive wire segment having an insulated intermediate portion and non-insulated ends includes passing the insulated portion of the wire segment through an electrically conductive brush. According to the method, an electrical potential is established on the brush by a power source. The method also includes determining a value of electrical current that is conducted through the wire segment by the brush when the potential is established on the brush. The method additionally includes comparing the value of electrical current conducted through the wire segment with a predetermined current value to thereby evaluate the wire segment. A system for evaluating an electrically conductive wire segment is also disclosed.
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions. PMID:21505445
Zheng, Ruiting; Gao, Jinwei; Wang, Jianjian; Chen, Gang
2011-01-01
Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce a general strategy to achieve large contrasts in electrical and thermal conductivities using first-order phase transitions in percolated composite materials. Internal stress generated during a phase transition modulates the electrical and thermal contact resistances, leading to large contrasts in the electrical and thermal conductivities at the phase transition temperature. With graphite/hexadecane suspensions, the electrical conductivity changes 2 orders of magnitude and the thermal conductivity varies up to 3.2 times near 18 °C. The generality of the approach is also demonstrated in other materials such as graphite/water and carbon nanotube/hexadecane suspensions.
Depositing bulk or micro-scale electrodes
Shah, Kedar G.; Pannu, Satinderpall S.; Tolosa, Vanessa; Tooker, Angela C.; Sheth, Heeral J.; Felix, Sarah H.; Delima, Terri L.
2016-11-01
Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
Introduction of the conducted electrical weapon into a hospital setting.
Ho, Jeffrey D; Clinton, Joseph E; Lappe, Mark A; Heegaard, William G; Williams, Martin F; Miner, James R
2011-09-01
The TASER(®) X26 Conducted Electrical Weapon (CEW) provides painful stimuli and neuromuscular incapacitation to potentially violent persons. Use by law enforcement in society is common. Presenting a CEW is known to de-escalate some situations. Health care personnel sometimes encounter violent persons within the confines of the hospital. CEW use by health care security personnel has not been described. The objective is to describe results from the introduction of the CEW into a hospital environment. Upon introducing the CEW into an urban hospital campus, standardized reports were made describing all CEW use by hospital security. Reports were retrospectively reviewed for the first 12 months of CEW use. Collected data included force options used, potential injuries avoided, witness comments, outcomes, and whether the CEW required full activation or if inactive presentation was sufficient to control the situation. Rates of security personnel injuries were also gathered. Descriptive analysis was applied. Twenty-seven CEW deployments occurred: four were inactive presentation, 20 were presentation with LASER sight activation, and three were probe deployments with a 5-s delivery of electrical current. Two persons required evaluation for minor injuries not related to CEW use. Witnesses reported that in all incidents, injuries were likely avoided due to CEW presentation or use. CEW use aborted one suicide attempt. Personnel injury rates decreased during the study period. CEW introduction into a health care setting demonstrated the ability to avert and control situations that could result in further injury to subjects, patients, and personnel. This correlates with a decrease in injury for hospital personnel. Further study is recommended for validation. Copyright © 2011 Elsevier Inc. All rights reserved.
Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci
Mandelkern, M.; Bui, D.; Salamon, N.; Vinters, H. V.; Mathern, G. W.
2010-01-01
Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients. PMID:20440549
Assessing the Impacts of Wind Integration in the Western Provinces
NASA Astrophysics Data System (ADS)
Sopinka, Amy
Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.
Coated carbon nanotube array electrodes
Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi
2006-12-12
The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.
Coated carbon nanotube array electrodes
Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA
2008-10-28
The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.
Polarity effect of electromigration on mechanical properties of lead-free solder joints
NASA Astrophysics Data System (ADS)
Ren, Fei
The trend of electronic packaging is to package the chips and the associated interconnections in a compact way that allows high speed operation; that allows for sufficient heat removal; that can withstand the thermal cycling associated with the turning on and turning off of the circuits; and that protects the circuits from environmental attack. These goals require that flip chip solder joints have higher resistance to electromigration, stronger mechanical property to sustain thermal mechanical stress, and are lead-free materials to satisfy environment and health concern. With lots of work on chemical reaction, electromigration and mechanical study in flip chip solder joints, however, the interaction between different driving forces is still little known. As a matter of fact, the combination study of chemical, electrical and mechanical is more and more significant to the understanding of the behavior of flip chip solder joints. In this dissertation, I developed one dimensional Cu (wire)-eutectic SnAgCu(ball)-Cu(wire) structure to investigate the interaction between electrical and mechanical force in lead-free solder joints. Electromigration was first conducted. The mechanical behaviors of solder joints before, after, and during electromigration were examined. Electrical current and mechanical stress were applied either in serial or in parallel to the solder joints. Tensile, creep, and drop tests, combined with different electrical current densities (1˜5x10 3A/cm2) and different stressing time (3˜144 hours), have been performed to study the effect of electromigration on the mechanical behavior of solder joints. Nano-indentation test was conducted to study the localized mechanical property of IMC at both interfaces in nanometer scale. Fracture images help analyze the failure mechanism of solder joints driven by both electrical and mechanical forces. The combination study shows a strain build-up during electromigration. Furthermore, a ductile-to-brittle transition in flip chip solder joints induced by electromigration is observed, in which the fracture position migrates from the middle to the cathode interface of the joint with increasing current density and time. The transition is explained by the polarity effect of electromigration, particular due to the accumulation of vacancies at the cathode interface.
Using impedance measurements for detecting pathogens trapped in an electric field
Miles, Robin R.
2004-07-20
Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.
An oppositely charged insect exclusion screen with gap-free multiple electric fields
NASA Astrophysics Data System (ADS)
Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kimbara, Junji; Kusakari, Shin-ichi; Osamura, Kazumi; Toyoda, Hideyoshi
2012-12-01
An electric field screen was constructed to examine insect attraction mechanisms in multiple electric fields generated inside the screen. The screen consisted of two parallel insulated conductor wires (ICWs) charged with equal but opposite voltages and two separate grounded nets connected to each other and placed on each side of the ICW layer. Insects released inside the fields were charged either positively or negatively as a result of electricity flow from or to the insect, respectively. The force generated between the charged insects and opposite ICW charges was sufficient to capture all insects.
Ceramic substrate including thin film multilayer surface conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Joseph Ambrose; Peterson, Kenneth A.
2017-05-09
A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on anmore » upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.« less
Estimates of olivine-basaltic melt electrical conductivity using a digital rock physics approach
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Montési, Laurent G. J.; Zhu, Wen-lu
2015-12-01
Estimates of melt content beneath fast-spreading mid-ocean ridges inferred from magnetotelluric tomography (MT) vary between 0.01 and 0.10. Much of this variation may stem from a lack of understanding of how the grain-scale melt geometry influences the bulk electrical conductivity of a partially molten rock, especially at low melt fraction. We compute bulk electrical conductivity of olivine-basalt aggregates over 0.02 to 0.20 melt fraction by simulating electric current in experimentally obtained partially molten geometries. Olivine-basalt aggregates were synthesized by hot-pressing San Carlos olivine and high-alumina basalt in a solid-medium piston-cylinder apparatus. Run conditions for experimental charges were 1.5 GPa and 1350 °C. Upon completion, charges were quenched and cored. Samples were imaged using synchrotron X-ray micro-computed tomography (μ-CT). The resulting high-resolution, 3-dimensional (3-D) image of the melt distribution constitutes a digital rock sample, on which numerical simulations were conducted to estimate material properties. To compute bulk electrical conductivity, we simulated a direct current measurement by solving the current continuity equation, assuming electrical conductivities for olivine and melt. An application of Ohm's Law yields the bulk electrical conductivity of the partially molten region. The bulk electrical conductivity values for nominally dry materials follow a power-law relationship σbulk = Cσmeltϕm with fit parameters m = 1.3 ± 0.3 and C = 0.66 ± 0.06. Laminar fluid flow simulations were conducted on the same partially molten geometries to obtain permeability, and the respective pathways for electrical current and fluid flow over the same melt geometry were compared. Our results indicate that the pathways for flow fluid are different from those for electric current. Electrical tortuosity is lower than fluid flow tortuosity. The simulation results are compared to existing experimental data, and the potential influence of volatiles and melt films on electrical conductivity of partially molten rocks is discussed.
Photovoltaic device having light transmitting electrically conductive stacked films
Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.
1990-07-10
A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.
Electric moisture meters for wood
William L. James
1988-01-01
Electric moisture meters for wood measure electric conductance (resistance) or dielectric properties, which vary fairly consistently with moisture content when it is less than 30 percent. The two major classes of electric moisture meters are the conductance (resistance) type and the dielectric type. Conductance-t ype meters use penetrating electrodes that measure in a...
Electrically-Conductive Polyaramid Cable And Fabric
NASA Technical Reports Server (NTRS)
Orban, Ralph F.
1988-01-01
Tows coated with metal provide strength and conductance. Cable suitable for use underwater made of electrically conductive tows of metal-coated polyaramid filaments surrounded by electrically insulating jacket. Conductive tows used to make conductive fabrics. Tension borne by metal-coated filaments, so upon release, entire cable springs back to nearly original length without damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waliyo
Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developingmore » nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.« less
NASA Astrophysics Data System (ADS)
Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd
2018-04-01
Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.
Minimizing radiation damage in nonlinear optical crystals
Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.
1998-09-08
Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.
Alternating gradient photodetector
NASA Technical Reports Server (NTRS)
Overhauser, Albert W. (Inventor); Maserjian, Joseph (Inventor)
1989-01-01
A far infrared (FIR) range responsive photodetector is disclosed. There is a substrate of degenerate germanium. A plurality of alternating impurity-band and high resistivity layers of germanium are disposed on the substrate. The impurity-band layers have a doping concentration therein sufficiently high to include donor bands which can release electrons upon impingement by FIR photons of energy hv greater than an energy gap epsilon. The high resistivity layers have a doping concentration therein sufficiently low as to not include conducting donor bands and are depleted of electrons. Metal contacts are provided for applying an electrical field across the substrate and the plurality of layers. In the preferred embodiment as shown, the substrate is degenerate n-type (N++) germanium; the impurity-band layers are n+ layers of germanium doped to approximately the low 10(exp 16)/cu cm range; and, the high resistivity layers are n-layers of germanium doped to a maximum of approximately 10(exp)/cu cm. Additionally, the impurity-band layers have a thickness less than a conduction-electron diffusion length in germanium and likely to be in the range of 0.1 to 1.0 micron, the plurality of impurity-bands is of a number such that the flux of FIR photons passing therethrough will be substantially totally absorbed therein, the thickness of the high resistivity layers is such compared to the voltage applied that the voltage drop in each the high resistivity layers controls the occurence of impact ionization in the impurity-band layers to a desired level.
Single High Fidelity Geometric Data Sets for LCM - Model Requirements
2006-11-01
are extensive single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems, which make...single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems. During this same period...be sufficiently flexible to accommodate the diverse requirements of various types of structural analyses. Section Properties & Material Data
Vulnerability Analysis of an All-Electric Warship
2010-06-01
active. Damage Control: Fire fighting, dewatering, lighting, electrical receptacles (for powering damage control equipment such as submersible pumps ...sufficient radar not available. This also requires an increase in chill water capacity by adding pump , compressor, and ASW pump . Remaining ventilation systems...Activate towed-array sonar, if applicable. Increase speed to 25 knots. Non-Vital Loads: All non-vital loads. Examples include galley equipment, heat
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob Aldo; Vavrina, Matthew; Hinckley, David
2016-01-01
Low-thrust electric propulsion provides many advantages for mission to difficult targets-Comets and asteroids-Mercury-Outer planets (with sufficient power supply)Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (Isp), leading to very good mass fractions. Low-thrust trajectory design is a very different process from chemical trajectory.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.
2018-02-01
The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiora, Neda; Mertens, Michael; Bruhne, Kai
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Grain boundary dominated electrical conductivity in ultrananocrystalline diamond
Wiora, Neda; Mertens, Michael; Bruhne, Kai; ...
2017-10-09
Here, N-type electrically conductive ultrananocrystalline diamond (UNCD) films were deposited using the hot filament chemical vapor deposition technique with a gas mixture of H 2, CH 4 and NH 3. Depending on the deposition temperature and ammonia feed gas concentration, which serves as a nitrogen source, room temperature electrical conductivities in the order of 10 –2 to 5 × 10 1S/cm and activation energies in the meV range were achieved. In order to understand the origin of the enhanced electrical conductivity and clarify the role of ammonia addition to the process gas, a set of UNCD films was grown bymore » systematically varying the ammonia gas phase concentration. These samples were analyzed with respect to their morphology and electrical properties as well as their carbon and nitrogen bonding environments. Temperature dependent electrical conductivity measurements (300–1200 K) show that the electrical conductivity of the samples increases with temperature. The near edge x-ray absorption fine structure measurements reveal that the electrical conductivity of the UNCD films does not correlate directly with ammonia addition, but depends on the total amount of sp2 bonded carbon in the deposited films.« less
Gasket Assembly for Sealing Mating Surfaces
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III (Inventor)
2003-01-01
A pair of substantially opposed mating surfaces are joined to each other and sealed in place by means of an electrically-conductive member which is placed in proximity to the mating surfaces. The electrically-conductive member has at least one element secured thereto which is positioned to contact the mating surfaces, and which softens when the electrically-conductive member is heated by passing an electric current therethrough. The softened element conforms to the mating surfaces, and upon cooling of the softened element the mating surfaces are joined together in an effective seal. Of particular significance is an embodiment of the electrically-conductive member which is a gasket having an electrically-conductive gasket base and a pair of the elements secured to opposite sides of the gasket base. This embodiment is positioned between the opposed mating surfaces to be joined to each other. Also significant is an embodiment of the electrically-conductive member which is an electrically-conductive sleeve having an element secured to its inner surface. This embodiment surrounds cylindrical members the bases of which are the substantially opposed mating surfaces to be joined, and the element on the inner surface of the sleeve contacts the outer surfaces of the cylindrical members.
High gain photoconductive semiconductor switch having tailored doping profile zones
Baca, Albert G.; Loubriel, Guillermo M.; Mar, Alan; Zutavern, Fred J; Hjalmarson, Harold P.; Allerman, Andrew A.; Zipperian, Thomas E.; O'Malley, Martin W.; Helgeson, Wesley D.; Denison, Gary J.; Brown, Darwin J.; Sullivan, Charles T.; Hou, Hong Q.
2001-01-01
A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.
Microwave response of hole and patch arrays
NASA Astrophysics Data System (ADS)
Taylor, Melita C.; Edmunds, James D.; Hendry, Euan; Hibbins, Alastair P.; Sambles, J. Roy
2010-10-01
The electromagnetic response of two-dimensional square arrays of perfectly conducting square patches, and their complementary structures, is modeled utilizing a modal matching technique and employing Babinet’s principle. This method allows for the introduction of progressively higher diffracted orders and waveguide modes to be included in the calculation, hence aiding understanding of the underlying causal mechanism for the observed response. At frequencies close to, but below, the onset of diffraction, a near-complete reflection condition is predicted, even for low filling fractions: conversely, for high filling fractions a near-complete transmission condition results. These resonance phenomena are associated with evanescent diffraction, which is sufficiently strong to reverse the step change in transmission upon establishment of electrical continuity; i.e., the connected structure demonstrates increased transmission with increasing filling fraction.
NASA Astrophysics Data System (ADS)
Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav
2018-04-01
We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.
NASA Astrophysics Data System (ADS)
Dong, Song-Tao; Zhang, Bin-Bin; Xiong, Ye; Lv, Yang-Yang; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Chen, Yan-Feng
2015-09-01
Bi2AE2Co2O8+δ (AE represents alkaline earth), constructed by stacking of rock-salt Bi2AE2O4 and triangle CoO2 layers alternatively along c-axis, is one of promising thermoelectric oxides. The most impressive feature of Bi2AE2Co2O8+δ, as reported previously, is their electrical conductivity mainly lying along CoO2 plane, adjusting Bi2AE2O4 layer simultaneously manipulates both thermal conductivity and electrical conductivity. It in turn optimizes thermoelectric performance of these materials. In this work, we characterize the anisotropic thermal and electrical conductivity along both ab-plane and c-direction of Bi2AE2Co2O8+δ (AE = Ca, Sr, Ba, Sr1-xBax) single crystals. The results substantiate that isovalence replacement in Bi2AE2Co2O8+δ remarkably modifies their electrical property along ab-plane; while their thermal conductivity along ab-plane only has a slightly difference. At the same time, both the electrical conductivity and thermal conductivity along c-axis of these materials also have dramatic changes. Certainly, the electrical resistance along c-axis is too high to be used as thermoelectric applications. These results suggest that adjusting nano-block Bi2AE2O4 layer in Bi2AE2Co2O8+δ cannot modify the thermal conductivity along high electrical conductivity plane (ab-plane here). The evolution of electrical property is discussed by Anderson localization and electron-electron interaction U. And the modification of thermal conductivity along c-axis is attributed to the microstructure difference. This work sheds more light on the manipulation of the thermal and electrical conductivity in the layered thermoelectric materials.
Solar energy thermally powered electrical generating system
NASA Technical Reports Server (NTRS)
Owens, William R. (Inventor)
1989-01-01
A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.
Semiconductor bridge (SCB) igniter
Bickes, Jr., Robert W.; Schwarz, Alfred C.
1987-01-01
In an explosive device comprising an explosive material which can be made to explode upon activation by activation means in contact therewith; electrical activation means adaptable for activating said explosive material such that it explodes; and electrical circuitry in operation association with said activation means; there is an improvement wherein said activation means is an electrical material which, at an elevated temperature, has a negative temperature coefficient of electrical resistivity and which has a shape and size and an area of contact with said explosive material sufficient that it has an electrical resistance which will match the resistance requirements of said associated electrical circuitry when said electrical material is operationally associated with said circuitry, and wherein said electrical material is polycrystalline; or said electrical material is crystalline and (a) is mounted on a lattice matched substrate or (b) is partially covered with an intimately contacting metallization area which defines its area of contact with said explosive material.
Electrically conductive material
Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.
1993-01-01
An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.
Free-Energy Calculations. A Mathematical Perspective
NASA Technical Reports Server (NTRS)
Pohorille, Andrzej
2015-01-01
Ion channels are pore-forming assemblies of transmembrane proteins that mediate and regulate ion transport through cell walls. They are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses. They are also essential to cardiac processes, muscle contraction and epithelial transport. Ion channels from lower organisms can act as toxins or antimicrobial agents, and in a number of cases are involved in infectious diseases. Because of their important and diverse biological functions they are frequent targets of drug action. Also, simple natural or synthetic channels find numerous applications in biotechnology. For these reasons, studies of ion channels are at the forefront of biophysics, structural biology and cellular biology. In the last decade, the increased availability of X-ray structures has greatly advanced our understanding of ion channels. However, their mechanism of action remains elusive. This is because, in order to assist controlled ion transport, ion channels are dynamic by nature, but X-ray crystallography captures the channel in a single, sometimes non-native state. To explain how ion channels work, X-ray structures have to be supplemented with dynamic information. In principle, molecular dynamics (MD) simulations can aid in providing this information, as this is precisely what MD has been designed to do. However, MD simulations suffer from their own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. To assess the reliability of MD simulations it is only natural to turn to the main function of channels - conducting ions - and compare calculated ionic conductance with electrophysiological data, mainly single channel recordings, obtained under similar conditions. If this comparison is satisfactory it would greatly increase our confidence that both the structures and our computational methodologies are sufficiently accurate. Channel conductance, defined as the ratio of ionic current through the channel to applied voltage, can be calculated in MD simulations by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. If the current is small, a voltage significantly higher than the experimental one needs to be applied to collect sufficient statistics of ion crossing events. Then, the calculated conductance has to be extrapolated to the experimental voltage using procedures of unknown accuracy. Instead, we propose an alternative approach that applies if ion transport through channels can be described with sufficient accuracy by the one-dimensional diffusion equation in the potential given by the free energy profile and applied voltage. Then, it is possible to test the assumptions of the equation, recover the full voltage/current dependence, determine the reliability of the calculated conductance and reconstruct the underlying (equilibrium) free energy profile, all from MD simulations at a single voltage. We will present the underlying theory, model calculations that test this theory and simulations on ion conductance through a channel that has been extensively studied experimentally. To our knowledge this is the first case in which the complete, experimentally measured dependence of the current on applied voltage has been reconstructed from MD simulations.
Contact-independent electrical conductance measurement
Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat
2017-01-24
Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.
Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W
2011-09-01
To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Conducting single-molecule magnet materials.
Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro
2018-05-11
Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.
Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia
Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.
2014-01-01
BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4–8 Hz). In all rats with SN electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS Electrical stimulation of the VTA, but not the SN, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816
The electrical conductivity of in vivo human uterine fibroids.
DeLonzor, Russ; Spero, Richard K; Williams, Joseph J
2011-01-01
The purpose of this study was to determine the value of electrical conductivity that can be used for numerical modelling in vivo radiofrequency ablation (RFA) treatments of human uterine fibroids. No experimental electrical conductivity data have previously been reported for human uterine fibroids. In this study electrical data (voltage) from selected in vivo clinical procedures on human uterine fibroids were used to numerically model the treatments. Measured versus calculated power dissipation profiles were compared to determine uterine fibroid electrical conductivity. Numerical simulations were conducted utilising a wide range of values for tissue thermal conductivity, heat capacity and blood perfusion coefficient. The simulations demonstrated that power dissipation was insensitive to the exact values of these parameters for the simulated geometry, treatment duration, and power level. Consequently, it was possible to determine tissue electrical conductivity without precise knowledge of the values for these parameters. Results of this study showed that an electrical conductivity for uterine fibroids of 0.305 S/m at 37°C and a temperature coefficient of 0.2%/°C can be used for modelling Radio Frequency Ablation of human uterine fibroids at a frequency of 460 kHz for temperatures from 37°C to 100°C.
NASA Astrophysics Data System (ADS)
Morozov, V. N.
2018-01-01
The problem of the penetration of nonstationary ionospheric electric fields into the lower atmospheric layers is considered based on the model of the global electric circuit in the Earth's atmosphere. For the equation of the electric field potential, a solution that takes into account exponential variation in the electrical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approximation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimating the electric field strength near the Earth's surface have been obtained.
Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane
NASA Technical Reports Server (NTRS)
Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)
2017-01-01
An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.
NASA Astrophysics Data System (ADS)
E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi
2016-07-01
We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.
Downhole data transmission system
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S; Dahlgren, Scott; Fox, Joe
2006-06-20
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
Downhole Data Transmission System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe
2003-12-30
A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.
NASA Astrophysics Data System (ADS)
Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando
2016-04-01
Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.
Cheng, Yehong; Zhou, Shanbao; Hu, Ping; Zhao, Guangdong; Li, Yongxia; Zhang, Xinghong; Han, Wenbo
2017-05-03
Graphene aerogels with high surface areas, ultra-low densities and thermal conductivities have been prepared to exploit their wide applications from pollution adsorption to energy storage, supercapacitor, and thermal insulation. However, the low mechanical properties, poor thermal stability and electric conductivity restrict these aerogels' applications. In this paper, we prepared mechanically strong graphene aerogels with large BET surface areas, low thermal conductivities, high thermal stability and electric conductivities via hydrothermal reduction and supercritical ethanol drying. Annealing at 1500 °C resulted in slightly increased thermal conductivity and further improvement in mechanical properties, oxidation temperature and electric conductivity of the graphene aerogel. The large BET surface areas, together with strong mechanical properties, low thermal conductivities, high thermal stability and electrical conductivities made these graphene aerogels feasible candidates for use in a number of fields covering from batteries to sensors, electrodes, lightweight conductor and insulation materials.
Differential and directional effects of perfusion on electrical and thermal conductivities in liver.
Podhajsky, Ronald J; Yi, Ming; Mahajan, Roop L
2009-01-01
Two different measurement probes--an electrical probe and a thermal conductivity probe--were designed, fabricated, calibrated, and used in experimental studies on a pig liver model that was designed to control perfusion rates. These probes were fabricated by photolithography and mounted in 1.5-mm diameter catheters. We measured the local impedance and thermal conductivity, respectively, of the artificially perfused liver at different flow rates and, by rotating the probes, in different directions. The results show that both the local electrical conductivity and the thermal conductivity varied location to location, that thermal conductivity increased with decreased distance to large blood vessels, and that significant directional differences exist in both electrical and thermal conductivities. Measurements at different perfusion rates demonstrated that both the local electrical and local thermal conductivities increased linearly with the square root of perfusion rate. These correlations may be of great value to many energy-based biomedical applications.
Capillary zone electrophoresis-mass spectrometer interface
D`Silva, A.
1996-08-06
A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.
NASA Astrophysics Data System (ADS)
Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour
2018-04-01
The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.
A percolation model for electrical conduction in wood with implications for wood-water relations
Samuel L. Zelinka; Samuel V. Glass; Donald S. Stone
2008-01-01
The first models used to describe electrical conduction in cellulosic materials involved conduction pathways through free water. These models were abandoned in the middle of the 20th century. This article re-evaluates the theory of conduction in wood by using a percolation model that describes electrical conduction in terms of overlapping paths of loosely bound or...
NASA Astrophysics Data System (ADS)
Wolfenstine, J.; Lee, U.; Allen, J. L.
Recently there has considerable interest in Li 4Ti 5O 12 as a potential anode for use in Li-ion batteries [1-8]. It has many advantages compared to the currently used graphite. For example, it is a zero-strain lithium insertion host suggesting virtually unlimited cycle life. It features a flat, operating voltage of about 1.5 V versus lithium, above the reduction potential of common electrolyte solvents thus, it does not form a solid electrolyte interface based on solvent reduction which should be a favorable property for high rate and low temperature operation. This voltage also is sufficiently high such that the dangers of lithium plating that can occur at high rate and/or low temperature are removed. However, several disadvantages exist compared to graphite. These include low rate-capability as a result of its low electronic conductivity [6]. Consequently, there have been several studies which have focused on improving electronic conductivity with the intent of improving its rate-capability [4,6,8]. For example, recently Huang et al. [8] have shown that the formation of a Li 4Ti 5O 12/Cu xO composite anode that was formed by heat-treatment under a 3 vol.% H 2 in N 2 atmosphere at high rates (>2C) had a higher capacity over a similar powders heat-treated under air. For example, at 10C the capacity of the powders heated under the 3 vol.% H 2 in N 2 atmosphere was about 1.8 X that for the powders heated under air and was attributed to the higher electrical conductivity of the composite heated under the reducing atmosphere compared to under air. The electrical conductivity of the composite formed under the reducing atmosphere was about an order magnitude higher than that for the composite heated under air. Huang et al. [8] suggested that the improved electrical conductivity was a result of the reduction of some Ti 4+ to Ti 3+ in Li 4Ti 5O 12 and/or reduction of Cu 2+/Cu + in Cu xO to Cu metal under the reducing atmosphere. However, they did not separate these effects. For example, they did not compare the results of the Li 4Ti 5O 12 matrix material heated under the reducing atmosphere to that for heat-treatment under air. It is the purpose of this letter to investigate and compare the electronic conductivity and rate-capability of Li 4Ti 5O 12 heated under a reducing atmosphere to that for heat-treatment under air and to determine the contribution of the Li 4Ti 5O 12 matrix to the excellent rate-capability of the Li 4Ti 5O 12/Cu xO composite heated under a reducing atmosphere.
Additive manufacturing of permanent magnets
Paranthaman, M. P.; Nlebedim, I. C.; Johnson, F.; ...
2016-10-28
Here, permanent magnets enable energy conversion. Motors and generators are used to convert both electrical to mechanical energy and mechanical to electrical energy, respectively. They are precharged (magnetized) prior to being used in an application and must remain magnetized during operation. In addition, they should generate sufficient magnetic flux for a given application. Nevertheless permanent magnets can be demagnetized (discharged of their magnetization) by other magnetic materials in their service vicinity, temperature changes (thermal demagnetization), microstructural degradations and the magnet’s internal demagnetizing field. Therefore a permanent magnet can be qualified based on the properties that measure its ability to withstandmore » demagnetization and to supply sufficient magnetic flux required for a given application. Some of those properties are further discussed below. Additive manufacturing followed by exchange spring magnets will be discussed afterwards.« less
Electrically conductive material
Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.
1993-09-07
An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.
Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa
2011-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.
All diamond self-aligned thin film transistor
Gerbi, Jennifer [Champaign, IL
2008-07-01
A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.
Forecasting electricity usage using univariate time series models
NASA Astrophysics Data System (ADS)
Hock-Eam, Lim; Chee-Yin, Yip
2014-12-01
Electricity is one of the important energy sources. A sufficient supply of electricity is vital to support a country's development and growth. Due to the changing of socio-economic characteristics, increasing competition and deregulation of electricity supply industry, the electricity demand forecasting is even more important than before. It is imperative to evaluate and compare the predictive performance of various forecasting methods. This will provide further insights on the weakness and strengths of each method. In literature, there are mixed evidences on the best forecasting methods of electricity demand. This paper aims to compare the predictive performance of univariate time series models for forecasting the electricity demand using a monthly data of maximum electricity load in Malaysia from January 2003 to December 2013. Results reveal that the Box-Jenkins method produces the best out-of-sample predictive performance. On the other hand, Holt-Winters exponential smoothing method is a good forecasting method for in-sample predictive performance.
Perforation patterned electrical interconnects
Frey, Jonathan
2014-01-28
This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.
Capacitor discharge process for welding braided cable
Wilson, Rick D.
1995-01-01
A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.
Simplified Calculation of the Electrical Conductivity of Composites with Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Ivanov, S. G.; Aniskevich, A.; Kulakov, V.
2018-03-01
The electrical conductivity of two groups of polymer nanocomposites filled with the same NC7000 carbon nanotubes (CNTs) beyond the percolation threshold is described with the help of simple formulas. Different manufacturing process of the nanocomposites led to different CNT network structures, and, as a consequence, their electrical conductivity, at the same CNT volume, differed by two orders of magnitude. The relation between the electrical conductivity and the volume content of CNTs of the first group of composites (with a higher electrical conductivity) is described assuming that the CNT network structure is close to a statistically homogeneous one. The formula for this case, derived on the basis of a self-consistent model, includes only two parameters: the effective longitudinal electrical conductivity of CNT and the percolation threshold (the critical value of CNT volume content). These parameters were determined from two experimental points of electrical conductivity as a function of the volume fraction of CNTs. The second group of nanocomposites had a pronounced agglomerative structure, which was confirmed by microscopy data. To describe the low electrical conductivity of this group of nanocomposites, a formula based on known models of micromechanics is proposed. Two parameters of this formula were determined from experimental data of the first group, but the other two — of the second group of nanocomposites. A comparison of calculation and experimental relations confirmed the practical expediency of using the approach described.
Electrical grounding prong socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, R.
1990-01-01
The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.
Electrical grounding prong socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, R.
1990-12-31
The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.
Electrical grounding prong socket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leong, R.
1991-06-18
This patent describes a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.
Electrical grounding prong socket
Leong, Robert
1991-01-01
The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.
Mesoscale Effective Property Simulations Incorporating Conductive Binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.
Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less
Mesoscale Effective Property Simulations Incorporating Conductive Binder
Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.; ...
2017-07-26
Lithium-ion battery electrodes are composed of active material particles, binder, and conductive additives that form an electrolyte-filled porous particle composite. The mesoscale (particle-scale) interplay of electrochemistry, mechanical deformation, and transport through this tortuous multi-component network dictates the performance of a battery at the cell-level. Effective electrode properties connect mesoscale phenomena with computationally feasible battery-scale simulations. We utilize published tomography data to reconstruct a large subsection (1000+ particles) of an NMC333 cathode into a computational mesh and extract electrode-scale effective properties from finite element continuum-scale simulations. We present a novel method to preferentially place a composite binder phase throughout the mesostructure,more » a necessary approach due difficulty distinguishing between non-active phases in tomographic data. We compare stress generation and effective thermal, electrical, and ionic conductivities across several binder placement approaches. Isotropic lithiation-dependent mechanical swelling of the NMC particles and the consideration of strain-dependent composite binder conductivity significantly impact the resulting effective property trends and stresses generated. Lastly, our results suggest that composite binder location significantly affects mesoscale behavior, indicating that a binder coating on active particles is not sufficient and that more accurate approaches should be used when calculating effective properties that will inform battery-scale models in this inherently multi-scale battery simulation challenge.« less
Conductivity is a measure of the ability of water to pass an electrical current. Because dissolved salts and other inorganic chemicals conduct electrical current, conductivity increases as salinity increases.
Method and Apparatus for Obtaining a Precision Thickness in Semiconductor and Other Wafers
NASA Technical Reports Server (NTRS)
Okojie, Robert S. (Inventor)
2002-01-01
A method and apparatus for processing a wafer comprising a material selected from an electrical semiconducting material and an electrical insulating material is presented. The wafer has opposed generally planar front and rear sides and a peripheral edge, wherein said wafer is pressed against a pad in the presence of a slurry to reduce its thickness. The thickness of the wafer is controlled by first forming a recess such as a dimple on the rear side of the wafer. A first electrical conducting strip extends from a first electrical connection means to the base surface of the recess to the second electrical connector. The first electrical conducting strip overlies the base surface of the recess. There is also a second electrical conductor with an electrical potential source between the first electrical connector and the second electrical connector to form. In combination with the first electrical conducting strip, the second electrical conductor forms a closed electrical circuit, and an electrical current flows through the closed electrical circuit. From the front side of the wafer the initial thickness of the wafer is reduced by lapping until the base surface of the recess is reached. The conductive strip is at least partially removed from the base surface to automatically stop the lapping procedure and thereby achieve the desired thickness.
Embedded Heaters for Joining or Separating Plastic Parts
NASA Technical Reports Server (NTRS)
Bryant, Melvin A., III
2004-01-01
A proposed thermal-bonding technique would make it possible to join or separate thermoplastic parts quickly and efficiently. The technique would eliminate the need for conventional welding or for such conventional fastening components as bolted flanges or interlocking hooks. The technique could be particularly useful in the sign industry (in which large quantities of thermoplastics are used) or could be used to join plastic pipes. A thin sheet of a suitable electrically conductive material would be formed to fit between two thermoplastic parts to be joined (see figure). The electrically conductive sheet and the two parts would be put together tightly, then an electrical current would be sent through the conductor to heat the thermoplastic locally. The magnitude of the current and the heating time would be chosen to generate just enough heat to cause the thermoplastic to adhere to both sides of the electrically conductive sheet. Optionally, the electrically conductive sheet could contain many small holes to provide purchase or to increase electrical resistance to facilitate the generation of heat. After thermal bonding, the electrically conductive sheet remains as an integral part of the structure. If necessary, the electrically conductive sheet can be reheated later to separate the joined thermoplastic parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard A. Bilonick; Daniel Connell; Evelyn Talbott
2006-12-20
Eighty-nine (89) percent of the electricity supplied in the 35-county Pittsburgh region (comprising parts of the states of Pennsylvania, Ohio, West Virginia, and Maryland) is generated by coal-fired power plants making this an ideal region in which to study the effects of the fine airborne particulates designated as PM{sub 2.5} emitted by the combustion of coal. This report demonstrates that during the period from 1999-2006 (1) sufficient and extensive exposure data, in particular samples of speciated PM{sub 2.5} components from 1999 to 2003, and including gaseous co-pollutants and weather have been collected, (2) sufficient and extensive mortality, morbidity, and relatedmore » health outcomes data are readily available, and (3) the relationship between health effects and fine particulates can most likely be satisfactorily characterized using a combination of sophisticated statistical methodologies including latent variable modeling (LVM) and generalized linear autoregressive moving average (GLARMA) time series analysis. This report provides detailed information on the available exposure data and the available health outcomes data for the construction of a comprehensive database suitable for analysis, illustrates the application of various statistical methods to characterize the relationship between health effects and exposure, and provides a road map for conducting the proposed study. In addition, a detailed work plan for conducting the study is provided and includes a list of tasks and an estimated budget. A substantial portion of the total study cost is attributed to the cost of analyzing a large number of archived PM{sub 2.5} filters. Analysis of a representative sample of the filters supports the reliability of this invaluable but as-yet untapped resource. These filters hold the key to having sufficient data on the components of PM{sub 2.5} but have a limited shelf life. If the archived filters are not analyzed promptly the important and costly information they contain will be lost.« less
7 CFR 1726.204 - Multiparty unit price quotations.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.204 Multiparty unit price quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.205 - Multiparty lump sum quotations.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.205 Multiparty lump sum quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.205 - Multiparty lump sum quotations.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.205 Multiparty lump sum quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.204 - Multiparty unit price quotations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.204 Multiparty unit price quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.204 - Multiparty unit price quotations.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.204 Multiparty unit price quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.205 - Multiparty lump sum quotations.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.205 Multiparty lump sum quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.205 - Multiparty lump sum quotations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.205 Multiparty lump sum quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.204 - Multiparty unit price quotations.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.204 Multiparty unit price quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.205 - Multiparty lump sum quotations.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.205 Multiparty lump sum quotations. The borrower or its engineer must contact a sufficient number of...
7 CFR 1726.204 - Multiparty unit price quotations.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Procurement Procedures § 1726.204 Multiparty unit price quotations. The borrower or its engineer must contact a sufficient number of...
Electrical Conductivity of Ferritin Proteins by Conductive AFM
NASA Technical Reports Server (NTRS)
Xu, Degao; Watt, Gerald D.; Harb, John N.; Davis, Robert C.
2005-01-01
Electrical conductivity measurements were performed on single apoferritin and holoferritin molecules by conductive atomic force microscopy. Conductivity of self-assembled monolayer films of ferritin molecules on gold surfaces was also measured. Holoferritin was 5-25 times more conductive than apoferritin, indicating that for holoferritin most electron-transfer goes through the ferrihydrite core. With 1 V applied, the average electrical currents through single holoferritin and apoferritin molecules were 2.6 PA and 0.19 PA, respectively.
Transverse-type laser assembly using induced electrical discharge excitation and method
Ault, Earl R.
1994-01-01
A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase.
Transverse-type laser assembly using induced electrical discharge excitation and method
Ault, E.R.
1994-04-19
A transverse-type laser assembly is disclosed herein. This assembly defines a laser cavity containing a vapor or gaseous substance which lases when subjected to specific electrical discharge excitation between a pair of spaced-apart electrodes located within the cavity in order to produce a source of light. An arrangement located entirely outside the laser cavity is provided for inducing a voltage across the electrodes within the cavity sufficient to provide the necessary electrical discharge excitation to cause a vapor substance between the electrodes to lase. 3 figures.
NASA Technical Reports Server (NTRS)
Ducharme, Stephen Paul (Inventor); El Hajj, Hassanayn Machlab (Inventor); Johs, Blaine D. (Inventor); Woollam, John A. (Inventor)
1997-01-01
In an ellipsometer, a phase-modulated, polarized light beam is applied to a sample, electrical signals are obtained representing the orthogonal planes of polarization of the light after it has interacted with the sample and the constants of the sample are calculated from the two resulting electrical signals. The phase modulation is sufficiently small so that the calibration errors are negligible. For this purpose, the phase modulator, phase modulates the light within a range of no more than ten degrees peak to peak. The two electrical signals are expanded by Fourier analysis and the coefficients thereof utilized to calculate psi and delta.
Lai, Ying-Chih; Deng, Jianan; Niu, Simiao; Peng, Wenbo; Wu, Changsheng; Liu, Ruiyuan; Wen, Zhen; Wang, Zhong Lin
2016-12-01
Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator is demonstrated for the first time by using triboelectric effect. This newly designed nanogenerator can produce electricity by touch or tapping despite under various extreme mechanical deformations or even after experiencing damage. This device can be used not only as deformable and wearable power source but also as fully autonomous and self-sufficient adaptive electronic skin system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MEANS AND METHOD FOR PRODUCING A VACUUM
Otavka, M.A.
1960-08-01
A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.
Modeling of electric field distribution in tissues during electroporation
2013-01-01
Background Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. Methods We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. Results The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of electric field distribution modeling in linear model of composite tissue (i.e. in the subcutaneous tumor model that do not take into account the relationship σ(E)) showed that a very high electric field (above irreversible threshold value) was concentrated only in the stratum corneum while the target tumor tissue was not successfully treated. Furthermore, the calculated volume of the target tumor tissue exposed to the electric field above reversible threshold in the subcutaneous model was zero assuming constant conductivities of each tissue. Our results also show that the inverse analysis allows for identification of both baseline tissue conductivity (i.e. conductivity of non-electroporated tissue) and tissue conductivity vs. electric field (σ(E)) of electroporated tissue. Conclusion Our results of modeling of electric field distribution in tissues during electroporation show that the changes in electrical conductivity due to electroporation need to be taken into account when an electroporation based treatment is planned or investigated. We concluded that the model of electric field distribution that takes into account the increase in electric conductivity due to electroporation yields more precise prediction of successfully electroporated target tissue volume. The findings of our study can significantly contribute to the current development of individualized patient-specific electroporation based treatment planning. PMID:23433433
Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.
Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis
2016-05-01
Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.
Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges
Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis
2016-01-01
Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526
Chemical Detection using Electrically Open Circuits having no Electrical Connections
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.
2008-01-01
This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.
NASA Astrophysics Data System (ADS)
Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji
2018-01-01
The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).
Non-permeable substrate carrier for electroplating
Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava
2012-11-27
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
Non-permeable substrate carrier for electroplating
Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor
2015-12-29
One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.
Yuan, Pengyi; Kim, Younggy
2017-01-01
Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. The main objective was to improve phosphorus recovery by examining various cathode configurations and electric current conditions. The stainless steel mesh (SSM) cathode was relatively inefficient to achieve complete phosphorus recovery because struvite crystals were smaller (a few to tens of micrometers) than the open space between mesh wires (80 µm). As a result, the use of multiple pieces of SSM also showed a limited improvement in the phosphorus recovery up to only 68% with 5 SSM pieces. Readily available organic substrates were not sufficient in the dewatering centrate, resulting in relatively low electric current density (mostly below 0.2 A/m 2 ). The slow electrode reaction did not provide sufficiently high pH conditions near the cathode for complete recovery of phosphorus as struvite. Based on these findings, additional experiments were conducted using stainless steel foil (SSF) as the cathode and acetate (12 mM) as an additional organic substrate for exoelectrogens at the bioanode. With the high electric current (>2 A/m 2 ), a thick layer of struvite crystals was formed on the SSF cathode. The phosphorus recovery increased to 96% with the increasing MEC operation time from 1 to 7 days. With the high phosphorus recovery, estimated energy requirement was relatively low at 13.8 kWh (with acetate) and 0.30 kWh (without acetate) to produce 1 kg struvite from dewatering centrate. For efficient phosphorus recovery from real wastewater, a foil-type cathode is recommended to avoid potential losses of small struvite crystals. Also, presence of readily available organic substrates is important to maintain high electric current and establish high local pH conditions near the cathode. Struvite precipitation was relatively slow, requiring 7 days for nearly complete removal (92%) and recovery (96%). Future studies need to focus on shortening the time requirement.
Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury
NASA Astrophysics Data System (ADS)
Zhang, Zhou; Pommier, Anne
2017-12-01
We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10-2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1996-12-03
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, T.E.
1997-03-04
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, the balance of the ITO being insulative. The device is made by the following general steps: (a) providing a substrate having a conductive ITO coating on at least one surface thereof; (b) rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway. 8 figs.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1996-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
Method of forming electrical pathways in indium-tin-oxide coatings
Haynes, Tony E.
1997-01-01
An electrical device includes a substrate having an ITO coating thereon, a portion of which is conductive and defines at least one electrical pathway, and the balance of the ITO being insulative. The device is made by the following general steps: a. providing a substrate having a conductive ITO coating on at least one surface thereof; b. rendering a preselected portion of the coating of conductive ITO insulative, leaving the remaining portion of conductive ITO as at least one electrical pathway.
40 CFR 60.4151 - Establishment of accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4151 Establishment of... obligation to review or evaluate the sufficiency of such documents, if submitted. (2) Authorization of Hg...
NASA Astrophysics Data System (ADS)
Gupta, Sanju; Price, Carson
2015-10-01
Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites density at solid/liquid interface.
NASA Astrophysics Data System (ADS)
Nixdorf, E.; Boehrer, B.
2015-11-01
Lake stratification controls the cycling of dissolved matter within the water body. This is of particular interest in the case of meromictic lakes, where permanent density stratification of the deep water limits vertical transport, and a chemically different (reducing) milieu can be established. As a consequence, the geochemical setting and the mixing regime of a lake can stabilize each other mutually. We attempt a quantitative approach to the contribution of chemical reactions sustaining the density stratification. As an example, we chose the prominent case of iron meromixis in Waldsee near Doebern, a small lake that originated from near-surface underground mining of lignite. From a data set covering 4 years of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed the changing of the chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we designed a lab experiment, in which we removed iron compounds and organic material from monimolimnetic waters by introducing air bubbles. Precipitates could be identified by visual inspection. Eventually, the remaining solutes in the aerated water layer looked similar to mixolimnetic Waldsee water. Due to its reduced concentration of solutes, this water became less dense and remained floating on nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron-rich deep groundwater and the aeration through the lake surface were fully sufficient for the formation of iron meromixis.
Electrical conductivity of rocks at high pressures and temperatures
NASA Technical Reports Server (NTRS)
Parkhomenko, E. I.; Bondarenko, A. T.
1986-01-01
The results of studies of the electrical conductivity in the most widely distributed types of igneous rocks, at temperatures of up to 1200 C, at atmospheric pressure, and also at temperatures of up to 700 C and at pressures of up to 20,000 kg/sq cm are described. The figures of electrical conductivity, of activaation energy and of the preexponential coefficient are presented and the dependence of these parameters on the petrochemical parameters of the rocks are reviewed. The possible electrical conductivities for the depository, granite and basalt layers of the Earth's crust and of the upper mantle are presented, as well as the electrical conductivity distribution to the depth of 200 to 240 km for different geological structures.
RF transmission line and drill/pipe string switching technology for down-hole telemetry
Clark, David D [Santa Fe, NM; Coates, Don M [Santa Fe, NM
2007-08-14
A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.
Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current
Kilgore, Kevin L.; Bhadra, Niloy
2013-01-01
Objectives The features and clinical applications of balanced-charge kilohertz frequency alternating currents (KHFAC) are reviewed. Preclinical studies of KHFAC block have demonstrated that it can produce an extremely rapid and reversible block of nerve conduction. Recent systematic analysis and experimentation utilizing KHFAC block has resulted in a significant increase in interest in KHFAC block, both scientifically and clinically. Materials and Methods We review the history and characteristics of KHFAC block, the methods used to investigate this type of block, the experimental evaluation of block, and the electrical parameters and electrode designs needed to achieve successful block. We then analyze the existing clinical applications of high frequency currents, comparing the early results with the known features of KHFAC block. Results Although many features of KHFAC block have been characterized, there is still much that is unknown regarding the response of neural structures to rapidly fluctuating electrical fields. The clinical reports to date do not provide sufficient information to properly evaluate the mechanisms that result in successful or unsuccessful treatment. Conclusions KHFAC nerve block has significant potential as a means of controlling nerve activity for the purpose of treating disease. However, early clinical studies in the use of high frequency currents for the treatment of pain have not been designed to elucidate mechanisms or allow direct comparisons to preclinical data. We strongly encourage the careful reporting of the parameters utilized in these clinical studies, as well as the development of outcome measures that could illuminate the mechanisms of this modality. PMID:23924075
Electrical conductivity behavior of Gum Arabic biopolymer-Fe3O4 nanocomposites
NASA Astrophysics Data System (ADS)
Bhakat, D.; Barik, P.; Bhattacharjee, A.
2018-01-01
Present work reports a study on the electrical conduction properties of some composites of Gum Arabic biopolymer and magnetite nanoparticles as host and guest, respectively, synthesized in different weight percentages. The nanocomposites are found to be non-extrinsic type of semiconductors with guest content dependent trap distribution of charge carriers. Conductivity of these materials increases with increasing guest content along with a concomitant decrease in the activation energy. Percolation theory has been employed for the analysis of the electrical conductivity results to explore the effect of the guest on the electrical conductivity of the host.
Influence of temperature on the electrical conductivity of leachate from municipal solid waste.
Grellier, Solenne; Robain, Henri; Bellier, Gérard; Skhiri, Nathalie
2006-09-01
A bioreactor landfill is designed to manage municipal solid waste, through accelerated waste biodegradation, and stabilisation of the process by means of the controlled addition of liquid, i.e. leachate recirculation. The measurement of electrical resistivity by Electrical Resistivity Tomography (ERT) allows to monitor water content present in the bioreactors. Variations in electrical resistivity are linked to variations in moisture content and temperature. In order to overcome this ambiguity, two laboratory experiments were carried out to establish a relationship between temperature and electrical conductivity: the first set of measurements was made for leachate alone, whereas the second set was made with two different granular media saturated with leachate. Both experiments confirm a well known increase in conductivity of about 2% degrees C(-1). However, higher suspended matter concentrations lead to a lower dependence of electrical conductivity on temperature. Furthermore, for various porous media saturated with an identical leachate, the higher the specific surface of the granular matrix, the lower the effective bulk electrical conductivity. These observations show that a correct understanding of the electrical properties of liquids requires the nature and (in particular) the size of the electrical charge carriers to be taken into account.
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Jiménez-Martínez, Joaquín; Legendre, Raphaël; Le Borgne, Tanguy; Méheust, Yves; Linde, Niklas
2018-03-01
Time-lapse electrical resistivity tomography (ERT) is a geophysical method widely used to remotely monitor the migration of electrically-conductive tracers and contaminant plumes in the subsurface. Interpretations of time-lapse ERT inversion results are generally based on the assumption of a homogeneous solute concentration below the resolution limits of the tomogram depicting inferred electrical conductivity variations. We suggest that ignoring small-scale solute concentration variability (i.e., at the sub-resolution scale) is a major reason for the often-observed apparent loss of solute mass in ERT tracer studies. To demonstrate this, we developed a geoelectrical milli-fluidic setup where the bulk electric conductivity of a 2D analogous porous medium, consisting of cylindrical grains positioned randomly inside a Hele-Shaw cell, is monitored continuously in time while saline tracer tests are performed through the medium under fully and partially saturated conditions. High resolution images of the porous medium are recorded with a camera at regular time intervals, and provide both the spatial distribution of the fluid phases (aqueous solution and air), and the saline solute concentration field (where the solute consists of a mixture of salt and fluorescein, the latter being used as a proxy for the salt concentration). Effective bulk electrical conductivities computed numerically from the measured solute concentration field and the spatial distributions of fluid phases agree well with the measured bulk conductivities. We find that the effective bulk electrical conductivity is highly influenced by the connectivity of high electrical conductivity regions. The spatial distribution of air, saline tracer fingering, and mixing phenomena drive temporal changes in the effective bulk electrical conductivity by creating preferential paths or barriers for electrical current at the pore-scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical conductivity, especially for partially saturated conditions. We highlight how these phenomena contribute to the typically large apparent mass loss observed when conducting field-scale time-lapse ERT.
Double anisotropic electrically conductive flexible Janus-typed membranes.
Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia
2017-12-07
Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.
NASA Astrophysics Data System (ADS)
Sheftman, D.; Shafer, D.; Efimov, S.; Krasik, Ya. E.
2012-03-01
Sub-microsecond timescale underwater electrical wire explosions using Cu and Al materials have been conducted. Current and voltage waveforms and time-resolved streak images of the discharge channel, coupled to 1D magneto-hydrodynamic simulations, have been used to determine the electrical conductivity of the metals for the range of conditions between hot liquid metal and strongly coupled non-ideal plasma, in the temperature range of 10-60 KK. The results of these studies showed that the conductivity values obtained are typically lower than those corresponding to modern theoretical electrical conductivity models and provide a transition between the conductivity values obtained in microsecond time scale explosions and those obtained in nanosecond time scale wire explosions. In addition, the measured wire expansion shows good agreement with equation of state tables.
Method of imaging the electrical conductivity distribution of a subsurface
Johnson, Timothy C.
2017-09-26
A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.
Economic Assessment of Hydrogen Technologies Participating in California Electricity Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichman, Joshua; Townsend, Aaron; Melaina, Marc
As the electric sector evolves and increasing amounts of variable renewable generation are installed on the system, there are greater needs for system flexibility and sufficient capacity, and greater concern for overgeneration from renewable sources not well matched in time with electric loads. Hydrogen systems have the potential to support the grid in each of these areas. However, limited information is available about the economic competitiveness of hydrogen system configurations. This paper quantifies the value for hydrogen energy storage and demand response systems to participate in select California wholesale electricity markets using 2012 data. For hydrogen systems and conventional storagemore » systems (e.g., pumped hydro, batteries), the yearly revenues from energy, ancillary service, and capacity markets are compared to the yearly cost to establish economic competitiveness. Hydrogen systems can present a positive value proposition for current markets. Three main findings include: (1) For hydrogen systems participating in California electricity markets, producing and selling hydrogen was found to be much more valuable than producing and storing hydrogen to later produce electricity; therefore systems should focus on producing and selling hydrogen and opportunistically providing ancillary services and arbitrage. (2) Tighter integration with electricity markets generates greater revenues (i.e., systems that participate in multiple markets receive the highest revenue). (3) More storage capacity, in excess of what is required to provide diurnal shifting, does not increase competitiveness in current California wholesale energy markets. As more variable renewable generation is installed, the importance of long duration storage may become apparent in the energy price or through additional markets, but currently, there is not a sufficiently large price differential between days to generate enough revenue to offset the cost of additional storage. Future work will involve expanding to consider later year data and multiple regions to establish more generalized results.« less
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)
1998-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Severin, Erik (Inventor); Lewis, Nathan S. (Inventor)
2001-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensors for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)
1999-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Sensor arrays for detecting analytes in fluids
NASA Technical Reports Server (NTRS)
Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)
1996-01-01
Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.
Transport properties of olivine grain boundaries from electrical conductivity experiments
NASA Astrophysics Data System (ADS)
Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt
2018-05-01
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.
Electrically Conductive and Protective Coating for Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Pyung; Stevenson, Jeffry W.
Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less
Method of fabricating high-density hermetic electrical feedthroughs
Shah, Kedar G.; Pannu, Satinderpall S.; Delima, Terri L.
2015-06-02
A method of fabricating electrical feedthroughs selectively removes substrate material from a first side of an electrically conductive substrate (e.g. a bio-compatible metal) to form an array of electrically conductive posts in a substrate cavity. An electrically insulating material (e.g. a bio-compatible sealing glass) is then flowed to fill the substrate cavity and surround each post, and solidified. The solidified insulating material is then exposed from an opposite second side of the substrate so that each post is electrically isolated from each other as well as the bulk substrate. In this manner a hermetic electrically conductive feedthrough construction is formed having an array of electrical feedthroughs extending between the first and second sides of the substrate from which it was formed.
NASA Astrophysics Data System (ADS)
Ogawa, Emiyu; Arai, Tsunenori
2018-02-01
The time for electrical conduction blockade induced by a photodynamic reaction was studied on a myocardial cell wire in vitro and an in silico simulation model was constructed to understand the necessary time for electrical conduction blockade for the wire. Vulnerable state of the cells on a laser interaction would be an unstable and undesirable state since the cells might progress to completely damaged or repaired to change significantly therapeutic effect. So that in silico model, which can calculate the vulnerable cell state, is needed. Understanding an immediate electrical conduction blockade is needed for our proposed new methodology for tachyarrhythmia catheter ablation applying a photodynamic reaction. We studied the electrical conduction blockade occurrence on the electrical conduction wire made of cultured myocardial cells in a line shape and constructed in silico model based on this experimental data. The intracellular Ca2+ ion concentrations were obtained using Fluo-4 AM dye under a confocal laser microscope. A cross-correlation function was used for the electrical conduction blockade judgment. The photodynamic reaction was performed under the confocal microscopy with 3-120 mW/cm2 in irradiance by the diode laser with 663 nm in wavelength. We obtained that the time for the electrical conduction blockade decreased with the irradiance increasing. We constructed a simulation model composed of three states; living cells, vulnerable cells, and blocked cells, using the obtained experimental data and we found the rate constant by an optimization using a conjugate gradient method.
NASA Astrophysics Data System (ADS)
Bourdo, Shawn Edward
Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from Raman spectroscopy, X-ray diffraction, and thermal analysis suggesting a more crystalline graphite matrix due to intimate interactions with PANI that resulted in a charge transfer. Confirmation of charge transfer was observed through magnetic susceptibility, electron paramagnetic resonance, and temperature dependent electrical conductivity studies.
Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy
NASA Astrophysics Data System (ADS)
Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro
2017-11-01
Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.
Electrical and Thermal Conductivity and Conduction Mechanism of Ge2Sb2Te5 Alloy
NASA Astrophysics Data System (ADS)
Lan, Rui; Endo, Rie; Kuwahara, Masashi; Kobayashi, Yoshinao; Susa, Masahiro
2018-06-01
Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann-Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.
Electrically conductive diamond electrodes
Swain, Greg [East Lansing, MI; Fischer, Anne [Arlington, VA; Bennett, Jason [Lansing, MI; Lowe, Michael [Holt, MI
2009-05-19
An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.
Polymers that Conduct Electricity.
ERIC Educational Resources Information Center
Edelson, Edward
1983-01-01
Although polymers are regarded as electrical insulators, it was discovered that they can be made to conduct electricity. This discovery has opened vast new practical and theoretical areas for exploration by physicists and chemists. Research studies with these conducting polymers and charge-transfer salts as well as possible applications are…
Soil permittivity response to bulk electrical conductivity for selected soil water sensors
USDA-ARS?s Scientific Manuscript database
Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...
Relaxation of polar order in suspensions with Quincke effect.
Belovs, M; Cēbers, A
2014-05-01
The Quincke effect--spontaneous rotation of dielectric particles in a liquid with low conductivity under the action of an electric field--is considered. The distribution functions for the orientation of particle rotation planes are introduced and a set of nonlinear kinetic equations is derived in the mean field approximation considering the dynamics of their orientation in the flow induced by rotating particles. As a result the nonequilibrium phase transition to the polar order, if the concentration of the particles is sufficiently high, is predicted and the condition of the synchronization of particle rotations is established. Two cases are considered: the layer of the Quincke suspension with one free boundary and the ensemble of the particles rolling on the solid wall under the action of a torque in an electric field. It is shown that in both cases the synchronization of particle rotations occurs due to the hydrodynamic interactions. In the limit of small spatial nonhomogeneity a set of nonlinear partial differential equations for the macroscopic variables--the concentration and the director of the polar order--is derived from the kinetic equation. Its properties are analyzed and compared with available recent experimental results.
Relaxation of polar order in suspensions with Quincke effect
NASA Astrophysics Data System (ADS)
Belovs, M.; CÄ`bers, A.
2014-05-01
The Quincke effect—spontaneous rotation of dielectric particles in a liquid with low conductivity under the action of an electric field—is considered. The distribution functions for the orientation of particle rotation planes are introduced and a set of nonlinear kinetic equations is derived in the mean field approximation considering the dynamics of their orientation in the flow induced by rotating particles. As a result the nonequilibrium phase transition to the polar order, if the concentration of the particles is sufficiently high, is predicted and the condition of the synchronization of particle rotations is established. Two cases are considered: the layer of the Quincke suspension with one free boundary and the ensemble of the particles rolling on the solid wall under the action of a torque in an electric field. It is shown that in both cases the synchronization of particle rotations occurs due to the hydrodynamic interactions. In the limit of small spatial nonhomogeneity a set of nonlinear partial differential equations for the macroscopic variables—the concentration and the director of the polar order—is derived from the kinetic equation. Its properties are analyzed and compared with available recent experimental results.
Wuest, C.R.
1998-12-08
A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.
Vasileiou, Alexandros A; Kontopoulou, Marianna; Gui, Hua; Docoslis, Aristides
2015-01-28
The objectives of this work are to quantify the degree of multiwalled carbon nanotube (MWCNT) length reduction upon melt compounding and to demonstrate unambiguously that the length reduction is mainly responsible for the increase in electrical percolation threshold of the resulting composites. Polyolefin matrices of varying viscosities and different functional groups are melt compounded with MWCNTs. A simple method is developed to solubilize the polymer matrix and isolate the MWCNTs, enabling detailed imaging analysis. In spite of the perceived strength of the MWCNTs, the results demonstrate that the shear forces developed during melt mixing are sufficient to cause significant nanotube breakage and length reduction. Breakage is promoted when higher MWCNT contents are used, due to increased probability of particle collisions. Furthermore, the higher shear forces transmitted to the nanotubes in the presence of higher matrix viscosities and functional groups that promote interfacial interactions, shift the nanotube distribution toward smaller sizes. The length reduction of the MWCNTs causes significant increases in the percolation threshold, due to the loss of interconnectivity, which results in fewer conductive pathways. These findings are validated by comparing the experimental percolation threshold values with those predicted by the improved interparticle distance theoretical model.
BATTERIES AND BULBS, BOOK 1, CIRCUITS I, AN EARLY EXPLORATION OF ELECTRICAL CIRCUITS AND MAGNETS.
ERIC Educational Resources Information Center
1966
THIS TRIAL EDITION OF A TEACHING GUIDE IS INTENDED TO PROVIDE RESOURCE MATERIAL FOR AN INTRODUCTORY STUDY OF ELECTRICITY AND MAGNETISM, AND IS NUMBER ONE OF A SERIES OF FOUR. IT IS SUITABLE FOR USE AT VARIOUS LEVELS FROM GRADES 2-10. THE FOUR VOLUMES PRESENT ACTIVITIES SUFFICIENT FOR A PROGRAM OF FROM 5 TO 40 WEEKS, DEPENDING UPON EXTENT OF USE…
Initial Feasibility Report on Decentralized Small Cogeneration for Navy Shore Bases.
1984-02-01
PURPA ), they generally had stand-alone generating capacity sufficient to meet all the electrical needs of the building A’’ ".w...electric utilties since the enactment of PURPA . An example of a recent small cogeneration application uses the 60-kW Thermo Electron cogeneration...utilities are naturally not enthusias- tic about cogeneration. However, PURPA was enacted to ensure that cogenerators receive just, reasonable, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Michael; Frew, Bethany A.; Bloom, Aaron
This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. We explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for longterm reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs« less
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
The Role of Additional Pulses in Electropermeabilization Protocols
Suárez, Cecilia; Soba, Alejandro; Maglietti, Felipe; Olaiz, Nahuel; Marshall, Guillermo
2014-01-01
Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate predictions of treatment outcomes. PMID:25437512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Carl A., E-mail: bauerca@colorado.ed; Werner, Gregory R.; Cary, John R.
A new frequency-domain electromagnetics algorithm is developed for simulating curved interfaces between anisotropic dielectrics embedded in a Yee mesh with second-order error in resonant frequencies. The algorithm is systematically derived using the finite integration formulation of Maxwell's equations on the Yee mesh. Second-order convergence of the error in resonant frequencies is achieved by guaranteeing first-order error on dielectric boundaries and second-order error in bulk (possibly anisotropic) regions. Convergence studies, conducted for an analytically solvable problem and for a photonic crystal of ellipsoids with anisotropic dielectric constant, both show second-order convergence of frequency error; the convergence is sufficiently smooth that Richardsonmore » extrapolation yields roughly third-order convergence. The convergence of electric fields near the dielectric interface for the analytic problem is also presented.« less
Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.
2009-01-01
Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.
Small Fermi surfaces and strong correlation effects in Dirac materials with holography
NASA Astrophysics Data System (ADS)
Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin
2017-10-01
Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.
Nonlinear conductivity in silicon nitride
NASA Astrophysics Data System (ADS)
Tuncer, Enis
2017-08-01
To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.
40 CFR 60.4113 - Certificate of representation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4113... authority nor the Administrator shall be under any obligation to review or evaluate the sufficiency of such...
40 CFR 60.4113 - Certificate of representation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4113... authority nor the Administrator shall be under any obligation to review or evaluate the sufficiency of such...
49 CFR 173.189 - Batteries containing sodium or cells containing sodium.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the heat insulation fitted in battery casings must be provided with thermal insulation sufficient to... preventing external short circuits, such as by providing complete electrical insulation of battery terminals...
30 CFR 57.6405 - Firing devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...
30 CFR 57.6405 - Firing devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...
30 CFR 57.6405 - Firing devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...
30 CFR 57.6405 - Firing devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...
30 CFR 57.6405 - Firing devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... sufficient current to energize all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired...
Fluidic-thermochromic display device
NASA Technical Reports Server (NTRS)
Grafstein, D.; Hilborn, E. H.
1968-01-01
Fluidic decoder and display device has low-power requirements for temperature control of thermochromic materials. An electro-to-fluid converter translates incoming electrical signals into pneumatics signal of sufficient power to operate the fluidic logic elements.
33 CFR 155.1125 - Additional response plan requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of sufficient numbers of trained personnel with the necessary technical skills to remove, to the... recommended procedures, to include— (A) Start-up and running under load of all electrical motors, pumps, power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, A.; Piacentini, G.; Zanichelli, M.
2014-05-12
A method for reconstructing the spatial profile of the electric field along the thickness of a generic bulk solid-state photodetector is proposed. Furthermore, the mobility and lifetime of both electrons and holes can be evaluated contextually. The method is based on a procedure of minimization built up from current transient profiles induced by laser pulses in a planar detector at different applied voltages. The procedure was tested in CdTe planar detectors for X- and Gamma rays. The devices were measured in a single-carrier transport configuration by impinging laser light on the sample cathode. This method could be suitable for manymore » other devices provided that they are made of materials with sufficiently high resistivity, i.e., with a sufficiently low density of intrinsic carriers.« less
Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum
2008-11-01
To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation could not be achieved at higher inner/outer perfusions (>4 kg/m(3)-s). For varied electrical conductivities in the setting of varied perfusion, greatest RF heating occurred for inner electrical conductivities simulating injection of saline around the electrode with an outer electrical conductivity of soft tissue, and the least amount of heating occurring while simulating renal cell carcinoma in normal kidney. Characterization of these scenarios demonstrated the role of electrical and thermal conductivity interactions, with the greatest differences in effect seen in the 3-4 cm tumor range, as almost all 2 cm tumors and almost no 5 cm tumors could be treated. Optimal combinations of thermal and electrical conductivity can partially negate the effect of perfusion. For clinically relevant tumor sizes, thermal and electrical conductivity impact which tumors can be successfully ablated even in the setting of almost non-existent perfusion.
Electrically Conductive Polyimide Films Containing Gold Surface
NASA Technical Reports Server (NTRS)
Caplan, Maggie L.; Stoakley, Diane M.; St. Clair, Anne K.
1994-01-01
Polyimide films exhibiting high thermo-oxidative stability and including electrically conductive surface layers containing gold made by casting process. Many variations of basic process conditions, ingredients, and sequence of operations possible, and not all resulting versions of process yield electrically conductive films. Gold-containing layer formed on film surface during cure. These metallic gold-containing polyimides used in film and coating applications requiring electrical conductivity, high reflectivity, exceptional thermal stability, and/or mechanical integrity. They also find commercial potential in areas ranging from thin films for satellite antennas to decorative coatings and packaging.
Tunable electrical conductivity in metal-organic framework thin film devices
Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois
2016-08-30
A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.
Tunable electrical conductivity in metal-organic framework thin film devices
Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois
2016-05-24
A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.
PLZT capacitor and method to increase the dielectric constant
Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.
2017-12-12
A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.
NASA Astrophysics Data System (ADS)
Rodionov, A. K.; Karashchuk, S. A.
2013-07-01
Results from tests of pH meters carried out in ammonia media having low electric conductivity (less than 5.0 μS/cm) are presented. The check media for the tests were prepared in a special manner the use of which makes it possible to reproduce the pH value of solution with an error not exceeding ˜0.04pH in the range of electrical conductivities above 0.1 μS/cm. The instrument measurement error was determined at different electrical conductivities of medium. Different electrodes were tested, the majority of which were domestically produced ones intended for general industrial applications. Some results were also obtained for one dedicated electrode from a foreign manufacturer. The test results show that the instrument gives a biased pH value for such media. The bias has a random value, which nonetheless is stable in the majority of cases, depends on the electrical conductivity of medium being monitored, and may be quite essential for small electrical conductivities (0.5pH or more). A conclusion is drawn about the need to calibrate the instruments with respect to standard media having electrical conductivity close to that of the medium being monitored. Analytic relations characterizing the check media used fort tests (check solutions) are presented.
NASA Astrophysics Data System (ADS)
De Caires, Sunshine A.; Wuddivira, Mark N.; Bekele, Isaac
2014-10-01
Cocoa remains in the same field for decades, resulting in plantations dominated with aging trees growing on variable and depleted soils. We determined the spatio-temporal variability of key soil properties in a (5.81 ha) field from the International Cocoa Genebank, Trinidad using geophysical methods. Multi-year (2008-2009) measurements of apparent electrical conductivity at 0-0.75 m (shallow) and 0.75-1.5 m (deep) were conducted. Apparent electrical conductivity at deep and shallow gave the strongest linear correlation with clay-silt content (R = 0.67 and R = 0.78, respectively) and soil solution electrical conductivity (R = 0.76 and R = 0.60, respectively). Spearman rank correlation coefficients ranged between 0.89-0.97 and 0.81- 0.95 for apparent electrical conductivity at deep and shallow, respectively, signifying a strong linear dependence between measurement days. Thus, in the humid tropics, cocoa fields with thick organic litter layer and relatively dense understory cover, experience minimal fluctuations in transient properties of soil water and temperature at the topsoil resulting in similarly stable apparent electrical conductivity at shallow and deep. Therefore, apparent electrical conductivity at shallow, which covers the depth where cocoa feeder roots concentrate, can be used as a fertility indicator and to develop soil zones for efficient application of inputs and management of cocoa fields.
High conductivity carbon nanotube wires from radial densification and ionic doping
NASA Astrophysics Data System (ADS)
Alvarenga, Jack; Jarosz, Paul R.; Schauerman, Chris M.; Moses, Brian T.; Landi, Brian J.; Cress, Cory D.; Raffaelle, Ryne P.
2010-11-01
Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr4 doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3×106 S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr4 significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, John L.
1998-11-09
Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.
Low-Heat-Leak Electrical Leads For Cryogenic Systems
NASA Technical Reports Server (NTRS)
Wise, Stephanie A.; Hooker, Matthew W.
1994-01-01
Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.
Morrison, John L [Idaho Falls, ID
2001-04-24
Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.
Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron
2013-08-01
Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.
Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W
2014-03-11
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
Sustainer electric propulsion system application for spacecraft attitude control
NASA Astrophysics Data System (ADS)
Obukhov, V. A.; Pokryshkin, A. I.; Popov, G. A.; Yashina, N. V.
2010-07-01
Application of electric propulsion system (EPS) requires spacecraft (SC) equipping with large solar panels (SP) for the power supply to electric propulsions. This makes the problem of EPS-equipped SC control at the insertion stage more difficult to solve than in the case of SC equipped with chemical engines, because in addition to the SC attitude control associated with the mission there appears necessity in keeping SP orientation to Sun that is necessary for generation of electric power sufficient for the operation of service systems, purpose-oriented equipment, and EPS. The theoretical study of the control problem is the most interesting for a non-coplanar transfer from high elliptic orbit (HEO) to geostationary orbit (GSO).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolosa, Vanessa; Pannu, Satinderpall S.; Sheth, Heeral
2017-07-04
An implantable device has a cylindrical base, at least one electrode on the cylindrical base, at least one electrically conducting lead on the cylindrical base connected to the electrode wherein the electrically conducting lead has a feature size of <10 micrometers. A protective coating on the cylindrical base covers the at least one electrically conducting lead.
Three essays on pricing and risk management in electricity markets
NASA Astrophysics Data System (ADS)
Kotsan, Serhiy
2005-07-01
A set of three papers forms this dissertation. In the first paper I analyze an electricity market that does not clear. The system operator satisfies fixed demand at a fixed price, and attempts to minimize "cost" as indicated by independent generators' supply bids. No equilibrium exists in this situation, and the operator lacks information sufficient to minimize actual cost. As a remedy, we propose a simple efficient tax mechanism. With the tax, Nash equilibrium bids still diverge from marginal cost but nonetheless provide sufficient information to minimize actual cost, regardless of the tax rate or number of generators. The second paper examines a price mechanism with one price assigned for each level of bundled real and reactive power. Equilibrium allocation under this pricing approach raises system efficiency via better allocation of the reactive power reserves, neglected in the traditional pricing approach. Pricing reactive power should be considered in the bundle with real power since its cost is highly dependent on real power output. The efficiency of pricing approach is shown in the general case, and tested on the 30-bus IEEE network with piecewise linear cost functions of the generators. Finally the third paper addresses the problem of optimal investment in generation based on mean-variance portfolio analysis. It is assumed the investor can freely create a portfolio of shares in generation located on buses of the electrical network. Investors are risk averse, and seek to minimize the variance of the weighted average Locational Marginal Price (LMP) in their portfolio, and to maximize its expected value. I conduct simulations using a standard IEEE 68-bus network that resembles the New York - New England system and calculate LMPs in accordance with the PJM methodology for a fully optimal AC power flow solution. Results indicate that the network topology is a crucial determinant of the investment decision as line congestion makes it difficult to deliver power to certain nodes at system peak load. Determining those nodes is an important task for an investor in generation as well as the transmission system operator.
NASA Astrophysics Data System (ADS)
Minakova, N. N.; Ushakov, V. Ya.
2017-12-01
One of the key problems in modern materials technology is synthesis of materials for electrotechnical devices capable of operating under severe conditions. Electrical and power engineering, in particular, demands for electrically conductive composite materials operating at high and low temperatures, various mechanical loads, electric fields, etc. Chaotic arrangement of electrically conductive component in the matrix and its structural and geometrical inhomogeneity can increase the local electric and thermal energy flux densities up to critical values even when their average values remain moderate. Elastomers filled with technical carbon being a promising component for electrotechnical devices was chosen as an object of study.
AlInAsSb/GaSb staircase avalanche photodiode
NASA Astrophysics Data System (ADS)
Ren, Min; Maddox, Scott; Chen, Yaojia; Woodson, Madison; Campbell, Joe C.; Bank, Seth
2016-02-01
Over 30 years ago, Capasso and co-workers [IEEE Trans. Electron Devices 30, 381 (1982)] proposed the staircase avalanche photodetector (APD) as a solid-state analog of the photomultiplier tube. In this structure, electron multiplication occurs deterministically at steps in the conduction band profile, which function as the dynodes of a photomultiplier tube, leading to low excess multiplication noise. Unlike traditional APDs, the origin of staircase gain is band engineering rather than large applied electric fields. Unfortunately, the materials available at the time, principally AlxGa1-xAs/GaAs, did not offer sufficiently large conduction band offsets and energy separations between the direct and indirect valleys to realize the full potential of the staircase gain mechanism. Here, we report a true staircase APD operation using alloys of a rather underexplored material, AlxIn1-xAsySb1-y, lattice-matched to GaSb. Single step "staircase" devices exhibited a constant gain of ˜2×, over a broad range of applied bias, operating temperature, and excitation wavelengths/intensities, consistent with Monte Carlo calculations.
Solar Powered CO.Sub.2 Conversion
NASA Technical Reports Server (NTRS)
Chen, Bin (Inventor)
2016-01-01
Methods and devices for reducing CO.sub.2 to produce hydrocarbons are disclosed. A device comprises a photoanode capable of splitting H.sub.2O into electrons, protons, and oxygen; an electrochemical cell cathode comprising an electro-catalyst capable of reducing CO.sub.2; H.sub.2O in contact with the surface of the photoanode; CO.sub.2 in contact with the surface of the cathode; and a proton-conducting medium positioned between the photoanode and the cathode. Electrical charges associated with the protons and the electrons move from the photoanode to the cathode, driven in part by a chemical potential difference sufficient to drive the electrochemical reduction of CO.sub.2 at the cathode. A light beam is the sole source of energy used to drive chemical reactions. The photoanode can comprise TiO.sub.2 nanowires or nanotubes, and can also include WO.sub.3 nanowires or nanotubes, quantum dots of CdS or PbS, and Ag or Au nanostructures. The cathode can comprise a conductive gas diffusion layer with nanostructures of an electro-catalyst such as Cu or Co.
NASA Astrophysics Data System (ADS)
Huang, Shouguo; Feng, Shuangjiu; Lu, Qiliang; Li, Yide; Wang, Hong; Wang, Chunchang
2014-04-01
Sr0.9Ce0.1Co0.9Nb0.1O3-δ (SCCN) has been synthesized using solid state reaction, and investigated as a new cathode material for intermediate temperature solid oxide fuel cells (ITSOFCs). SCCN material exhibits sufficiently high electronic conductivity and excellent chemical compatibility with SDC electrolyte. Highly charged Ce4+ and Nb5+ successfully stabilize the perovskite structure to avoid order-disorder phase transition. The electrical conductivity reaches a high value of 516 S cm-1 at 300 °C in air. The area specific resistances of the SCCN-50 wt.% Ce0.8Sm0.2O1.9 (SDC) cathode are as low as 0.027, 0.049, and 0.094 Ω cm2 at 700, 650, and 600 °C, respectively, with the corresponding peak power densities of 1074, 905, and 589 mW cm-2. A relatively low thermal expansion coefficient of SCCN-SDC is 14.3 × 10-6 K-1 in air. All these results imply that SCCN holds tremendous promise as a cathode material for ITSOFCs.
Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.
Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa
2015-11-28
Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.
1700 deg C optical temperature sensor
NASA Technical Reports Server (NTRS)
Mossey, P. W.; Shaffernocker, W. M.; Mulukutla, A. R.
1986-01-01
A new gas temperature sensor was developed that shows promise of sufficient ruggedness to be useful as a gas turbine temperature sensor. The sensor is in the form of a single-crystal aluminum oxide ceramic, ground to a cone shape and given an emissive coating. A lens and an optical fiber conduct the thermally emitted light to a remote and near-infrared photodetector assembly. Being optically coupled and passive, the sensor is highly immune to all types of electrical interference. Candidate sensors were analyzed for optical sensor performance, heat transfer characteristics, stress from gas loading. This led to the selection of the conical shape as the most promising for the gas turbine environment. One uncoated and two coated sensing elements were prepared for testing. Testing was conducted to an indicated 1750 C in a propane-air flame. Comparison with the referee optical pyrometer shows an accuracy of + or - 25 C at 1700 C for this initial development. One hundred cycles from room temperature to 1700 C left the sapphire cone intact, but some loss of the platinum, 6% rhodium coating was observed. Several areas for improving the overall performance and durability are identified.
Theoretical study of spin Hall effect in conjugated Organic semiconductors
NASA Astrophysics Data System (ADS)
Mahani, M. R.; Delin, A.
The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.
NASA Astrophysics Data System (ADS)
Fuji-ta, K.; Katsura, T.; Tainosho, Y.
2004-04-01
We have developed a technique to measure electrical conductivity of crustal rocks with relatively low conductivity and complicated mineral components in order to compare with results given by magneto-telluric (MT) measurements. A granulite from Hidaka metamorphic belt (HMB) in Hokkaido, Japan at high temperature and pressure conditions was obtained. The granulite sample was ground and sintered under the conditions similar to those of mid- to lower crust. We have observed smooth and reversible change of conductivity with temperature up to about 900 K at 1 GPa. The results were consistent with the electrical conductivity structures suggested by the MT data analysis. Considering pore fluid conduction mechanism or the role of accessory minerals in the rock, the mechanisms of electrical conductivity paths in dry or basic rocks should be reconsidered.
Solazzo, Stephanie A; Liu, Zhengjun; Lobo, S Melvyn; Ahmed, Muneeb; Hines-Peralta, Andrew U; Lenkinski, Robert E; Goldberg, S Nahum
2005-08-01
To determine whether radiofrequency (RF)-induced heating can be correlated with background electrical conductivity in a controlled experimental phantom environment mimicking different background tissue electrical conductivities and to determine the potential electrical and physical basis for such a correlation by using computer modeling. The effect of background tissue electrical conductivity on RF-induced heating was studied in a controlled system of 80 two-compartment agar phantoms (with inner wells of 0.3%, 1.0%, or 36.0% NaCl) with background conductivity that varied from 0.6% to 5.0% NaCl. Mathematical modeling of the relationship between electrical conductivity and temperatures 2 cm from the electrode (T2cm) was performed. Next, computer simulation of RF heating by using two-dimensional finite-element analysis (ETherm) was performed with parameters selected to approximate the agar phantoms. Resultant heating, in terms of both the T2cm and the distance of defined thermal isotherms from the electrode surface, was calculated and compared with the phantom data. Additionally, electrical and thermal profiles were determined by using the computer modeling data and correlated by using linear regression analysis. For each inner compartment NaCl concentration, a negative exponential relationship was established between increased background NaCl concentration and the T2cm (R2= 0.64-0.78). Similar negative exponential relationships (r2 > 0.97%) were observed for the computer modeling. Correlation values (R2) between the computer and experimental data were 0.9, 0.9, and 0.55 for the 0.3%, 1.0%, and 36.0% inner NaCl concentrations, respectively. Plotting of the electrical field generated around the RF electrode identified the potential for a dramatic local change in electrical field distribution (ie, a second electrical peak ["E-peak"]) occurring at the interface between the two compartments of varied electrical background conductivity. Linear correlations between the E-peak and heating at T2cm (R2= 0.98-1.00) and the 50 degrees C isotherm (R2= 0.99-1.00) were established. These results demonstrate the strong relationship between background tissue conductivity and RF heating and further explain electrical phenomena that occur in a two-compartment system.
NASA Astrophysics Data System (ADS)
Fuji-Ta, K.; Katsura, T.; Tainosho, Y.
2003-12-01
We have developed a technique to measure electrical conductivity of crustal rocks with relatively low conductivity and complicated mineral components in order to compare with results given by Magneto-Telluric (MT) measurements. A granulite from Hidaka Metamorphic Belt (HMB) in Hokkaido, Japan at high temperature and pressure conditions was obtained. The granulite sample was ground and sintered under the conditions similar to those of mid to lower crust. We have observed smooth and reversible change of conductivity with temperature up to about 900 K at 1 GPa. Through the qualitative and quantitative evaluations using Electron Probe Micro Analysis (EPMA), microstructures of the sintered sample were inspected. This inspection is essential to confirm the sample was not affected by chemical interaction of minerals. We also examined the role of accessory minerals in the rock, and the mechanisms of electrical conductivity paths in _gdry_h or _gbasic_h rocks should be reconsidered. Finally, results from electrical conductivity measurements were consistent with the electrical conductivity structures suggested by the former MT data analysis.
NASA Astrophysics Data System (ADS)
Zheng, Peng; Zhang, Rui-zhi; Chen, Hao-ying; Hao, Wen-tao
2014-06-01
The Seebeck coefficient and electrical conductivity of CaCu3Ti4O12 (CCTO) ceramics were measured and analyzed in the high temperature range of 300°C to 800°C, and then the electrical conduction mechanism was investigated by using a combination of experimental data fitting and first-principles calculations. The Seebeck coefficient of the CCTO ceramic sintered at 1050°C is negative with largest absolute value of ˜650 μV/K at 300°C, and the electrical conductivity is 2-3 orders greater than the value reported previously by other researchers. With increasing sintering temperature, the Seebeck coefficient decreases while the electrical conductivity increases. The temperature dependence of the electrical conductivity follows the rule of adiabatic hopping conduction of small polarons. The calculated density of states of CCTO indicates that the conduction band is mainly contributed by the antibonding states of Cu 3 d electrons, therefore small-polaron hopping between CuO4 square planar clusters was proposed. Possible ways to further improve the thermoelectric properties of CCTO are also discussed.
Determination of consolidation properties using electrical resistivity
NASA Astrophysics Data System (ADS)
Kibria, Golam; Hossain, Sahadat; Khan, Mohammad Sadik
2018-05-01
Electrical conductivity is an indirect method used to evaluate pore-structures and their influence on macro and microscale behavior of soils. Although this method can provide useful information about the consolidation properties of soil samples, insufficient studies have been conducted to identify correlations between electrical and consolidation properties. The current study presents electrical resistivity responses of clayey samples at different consolidation stages. The consolidation properties of four soil specimens were measured in conjunction with electrical conductivity. Scanning electron microscope (SEM) analyses were performed on soil samples before and after consolidation to identify the changes in fabric morphology due to the application of loads. It was observed that the electrical conductivity of samples decreased with the increase of pressure, and the trends of variations were similar to e vs. logP curves. Although a linear correlation exists between electrical conductivity and void ratio, the relationship depends on the structural changes in clay particles. Therefore, changes in fabric structures were analyzed using SEM images, and results showed that the aspect ratio of the particles increased as much as 18.3% after consolidation. Based on the investigation, the coefficient of consolidations and one-dimensional strain were determined using electrical resistivity measurements.
Impact of Market Behavior, Fleet Composition, and Ancillary Services on Revenue Sufficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany; Gallo, Giulia; Brinkman, Gregory
Revenue insufficiency, or the missing money problem, occurs when the revenues that generators earn from the market are not sufficient to cover both fixed and variable costs to remain in the market and/or justify investments in new capacity, which may be needed for reliability. The near-zero marginal cost of variable renewable generators further exacerbates these revenue challenges. Estimating the extent of the missing money problem in current electricity markets is an important, nontrivial task that requires representing both how the power system operates and how market participants behave. This paper explores the missing money problem using a production cost modelmore » that represented a simplified version of the Electric Reliability Council of Texas (ERCOT) energy-only market for the years 2012-2014. We evaluate how various market structures -- including market behavior, ancillary services, and changing fleet compositions -- affect net revenues in this ERCOT-like system. In most production cost modeling exercises, resources are assumed to offer their marginal capabilities at marginal costs. Although this assumption is reasonable for feasibility studies and long-term planning, it does not adequately consider the market behaviors that impact revenue sufficiency. In this work, we simulate a limited set of market participant strategic bidding behaviors by means of different sets of markups; these markups are applied to the true production costs of all gas generators, which are the most prominent generators in ERCOT. Results show that markups can help generators increase their net revenues overall, although net revenues may increase or decrease depending on the technology and the year under study. Results also confirm that conventional, variable-cost-based production cost simulations do not capture prices accurately, and this particular feature calls for proxies for strategic behaviors (e.g., markups) and more accurate representations of how electricity markets work. The analysis also shows that generators face revenue sufficiency challenges in this ERCOT-like energy-only market model; net revenues provided by the market in all base markup cases and sensitivity scenarios (except when a large fraction of the existing coal fleet is retired) are not sufficient to justify investments in new capacity for thermal and nuclear power units. Overall, the work described in this paper points to the need for improved behavioral models of electricity markets to more accurately study current and potential market design issues that could arise in systems with high penetrations of renewable generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Song-Tao; Institute of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003; Zhang, Bin-Bin
Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ} (AE represents alkaline earth), constructed by stacking of rock-salt Bi{sub 2}AE{sub 2}O{sub 4} and triangle CoO{sub 2} layers alternatively along c-axis, is one of promising thermoelectric oxides. The most impressive feature of Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ}, as reported previously, is their electrical conductivity mainly lying along CoO{sub 2} plane, adjusting Bi{sub 2}AE{sub 2}O{sub 4} layer simultaneously manipulates both thermal conductivity and electrical conductivity. It in turn optimizes thermoelectric performance of these materials. In this work, we characterize the anisotropic thermal and electrical conductivity along both ab-plane and c-direction of Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ}more » (AE = Ca, Sr, Ba, Sr{sub 1−x}Ba{sub x}) single crystals. The results substantiate that isovalence replacement in Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ} remarkably modifies their electrical property along ab-plane; while their thermal conductivity along ab-plane only has a slightly difference. At the same time, both the electrical conductivity and thermal conductivity along c-axis of these materials also have dramatic changes. Certainly, the electrical resistance along c-axis is too high to be used as thermoelectric applications. These results suggest that adjusting nano-block Bi{sub 2}AE{sub 2}O{sub 4} layer in Bi{sub 2}AE{sub 2}Co{sub 2}O{sub 8+δ} cannot modify the thermal conductivity along high electrical conductivity plane (ab-plane here). The evolution of electrical property is discussed by Anderson localization and electron-electron interaction U. And the modification of thermal conductivity along c-axis is attributed to the microstructure difference. This work sheds more light on the manipulation of the thermal and electrical conductivity in the layered thermoelectric materials.« less
NASA Astrophysics Data System (ADS)
Gurk, M.; Bosch, F. P.; Tougiannidis, N.
2013-04-01
Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.
Integrated Renewable Hydrogen Utility System (IRHUS) business plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-03-01
This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewablemore » Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.« less
Current collectors for improved safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less
Enhancement of Electrical Conductivity in Multicomponent Nanocomposites.
NASA Astrophysics Data System (ADS)
Ni, Xiaojuan; Hui, Chao; Su, Ninghai; Liu, Feng
To date, very limited theoretical or numerical analyses have been carried out to understand the electrical percolation properties in multicomponent nanocomposite systems. In this work, a disk-stick percolation model was developed to investigate the electrical percolation behavior of an electrically insulating matrix reinforced with one-dimensional (1D) and two-dimensional (2D) conductors via Monte Carlo simulation. The effective electrical conductivity was evaluated through Kirchhoff's current law by transforming it into an equivalent resistor network. The percolation threshold, equivalent resistance and conductivity were obtained from the distribution of nodal voltages by solving a system of linear equations with Gaussian elimination method. The effects of size, aspect ratio, relative concentration and contact patterns of 1D/2D inclusions on conductivity performance were examined. Our model is able to predict the electrical percolation threshold and evaluate the conductivity for hybrid systems with multiple components. The results suggest that carbon-based nanocomposites can have a high potential for applications where favorable electrical properties and low specific weight are required. We acknowledge the financial support from DOE-BES (No. DE-FG02-04ER46148).
Inward transport of a toroidally confined plasma subject to strong radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.
1977-01-01
The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.
Electrical and fluid transport in consolidated sphere packs
NASA Astrophysics Data System (ADS)
Zhan, Xin; Schwartz, Lawrence M.; Toksöz, M. Nafi
2015-05-01
We calculate geometrical and transport properties (electrical conductivity, permeability, specific surface area, and surface conductivity) of a family of model granular porous media from an image based representation of its microstructure. The models are based on the packing described by Finney and cover a wide range of porosities. Finite difference methods are applied to solve for electrical conductivity and hydraulic permeability. Two image processing methods are used to identify the pore-grain interface and to test correlations linking permeability to electrical conductivity. A three phase conductivity model is developed to compute surface conductivity associated with the grain-pore interface. Our results compare well against empirical models over the entire porosity range studied. We conclude by examining the influence of image resolution on our calculations.
Kamonsawas, Jirarat; Sirivat, Anuvat; Niamlang, Sumonman; Hormnirun, Pimpa; Prissanaroon-Ouajai, Walaiporn
2010-01-01
Poly(p-phenylenevinylene) (PPV) was chemically synthesized via the polymerization of p-xylene-bis(tetrahydrothiophenium chloride) monomer and doped with H2SO4. To improve the electrical conductivity sensitivity of the conductive polymer, Zeolites Y (Si/Al = 5.1, 30, 60, 80) were added into the conductive polymer matrix. All composite samples show definite positive responses towards NH4NO3. The electrical conductivity sensitivities of the composite sensors increase linearly with increasing Si/Al ratio: with values of 0.201, 1.37, 2.80 and 3.18, respectively. The interactions between NH4NO3 molecules and the PPV/zeolite composites with respect to the electrical conductivity sensitivity were investigated through the infrared spectroscopy. PMID:22219677
Thermal and Electrical Conductivity Measurements of Cda 510 Phosphor Bronze
NASA Astrophysics Data System (ADS)
Tuttle, J.; Canavan, E.; DiPirro, M.
2010-04-01
Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, results vary among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). These harnesses dominate the heat conducted into the JWST instrument stage, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment that measured its electrical and thermal conductivity between 4 and 295 Kelvin.
Electrically conductive anodized aluminum coatings
NASA Technical Reports Server (NTRS)
Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)
2001-01-01
A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.
A flight simulator control system using electric torque motors
NASA Technical Reports Server (NTRS)
Musick, R. O.; Wagner, C. A.
1975-01-01
Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.
NASA Astrophysics Data System (ADS)
Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd
2011-05-01
The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.
Electrical torques on the electrostatic gyro in the gyro relativity experiment
NASA Technical Reports Server (NTRS)
Eby, P.; Darbo, W.
1980-01-01
A comprehensive discussion and calculation of electrical torques on an electrostatic gyro as they relate to the gyroscope experiment to test general relativity is presented. Drift rates were computed for some typical state of the art rotors, including higher harmonics in the rotor shape. The effect of orbital averaging of gravity gradient forces, roll averaging of torques, and the effect of spin averaging on the effective shape of the rotor were considered. The electrical torques are reduced sufficiently in a low g environment to permit a measurement of the relativistic drifts predicted by general relativity.